Gated SIT vidicon streak tube

PDF Version Also Available for Download.

Description

A recently developed prototype streak tube designed to produce high gain and resolution by incorporating the streak and readout functions in one envelope thereby minimizing photon-to-change transformations and eliminating external coupling losses is presented. The tube is based upon a grid-gated Silicon-Intensified-Target Vidicon (SITV) with integral Focus Projection Scan (FPS) TV readout. Demagnifying electron optics (m=0.63) in the image section map the 40-mm-diameter photocathode image unto a 25-mm-diameter silicon target where gains greater than or equal to10/sup 3/ are achieved with only 10 KV accelerating voltage. This is compared with much lower gains (approx.50) at much higher voltages (approx.30 KV) ... continued below

Physical Description

Pages: 7

Creation Information

Dunbar, D.L.; Yates, G.J. & Black, J.P. January 1, 1985.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A recently developed prototype streak tube designed to produce high gain and resolution by incorporating the streak and readout functions in one envelope thereby minimizing photon-to-change transformations and eliminating external coupling losses is presented. The tube is based upon a grid-gated Silicon-Intensified-Target Vidicon (SITV) with integral Focus Projection Scan (FPS) TV readout. Demagnifying electron optics (m=0.63) in the image section map the 40-mm-diameter photocathode image unto a 25-mm-diameter silicon target where gains greater than or equal to10/sup 3/ are achieved with only 10 KV accelerating voltage. This is compared with much lower gains (approx.50) at much higher voltages (approx.30 KV) reported for streak tubes using phosphor screens. Because SIT technology is well established means for electron imaging in vacuum, such fundamental problems as ''backside thinning'' required for electron imaging unto CCDs do not exist. The high spatial resolution (approx.30 lp/mm), variable scan formats, and high speed electrostatic deflection (250 mm/sup 2/ areas are routinely rastered with 256 scan lines in 1.6 ms) available from FPS readout add versatility not available in CCD devices. Theoretical gain and spatial resolution for this design (developed jointly by Los Alamos National Laboratory and General Electric Co.) are compared with similar calculations and measured data obtained for RCA 73435 streaks fiber optically coupled to (1) 25-mm-diameter SIT FPS vidicons and (2) 40-mm-diameter MCPTs (proximity-focused microchannel plate image intensifier tubes) fiber optically coupled to 18-mm-diameter Sb/sub 2/S/sub 3/ FPS vidicons. Sweep sensitivity, shutter ratio, and record lengths for nanosecond duration (20 to 200 ns) streak applications are discussed.

Physical Description

Pages: 7

Notes

NTIS, PC A02/MF A01; 1.

Source

  • SPIE international technical symposium on optical and electro-optical engineers, San Diego, CA, USA, 18 Aug 1985

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE85017549
  • Report No.: LA-UR-85-2928
  • Report No.: CONF-850887-32
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 5258255
  • Archival Resource Key: ark:/67531/metadc1065887

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1985

Added to The UNT Digital Library

  • Feb. 4, 2018, 10:51 a.m.

Description Last Updated

  • June 4, 2018, 1:37 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Dunbar, D.L.; Yates, G.J. & Black, J.P. Gated SIT vidicon streak tube, article, January 1, 1985; New Mexico. (digital.library.unt.edu/ark:/67531/metadc1065887/: accessed August 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.