Historical Document Released for Public Availability. ### **Hanford Production Reactor Heat Releases 1951-1971** Received OSTI JUN 1 0 1992 L. D. Kannberg **April 1992** Prepared for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830 Pacific Northwest Laboratory Operated for the U.S. Department of Energy by Battelle Memorial Institute #### **DISCLAIMER** This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. PACIFIC NORTHWEST LABORATORY operated by BATTELLE MEMORIAL INSTITUTE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC06-76RLO 1830 #### Printed in the United States of America Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401. FTS 626-8401. Available to the public from tl National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161. # HANFORD PRODUCTION REACTOR HEAT RELEASES 1951-1971 L. D. Kannberg August 1978 (date of work) April 1992 Work supported by the U.S. Department of Energy under Contract EY-76-C-06-1830 Pacific Northwest Laboratory Richland, Washington 99352 #### SUMMARY Beginning in 1944, nine nuclear materials production reactors were constructed and operated on the Hanford Reservation. Eight of the reactors operated from 1955 through 1964; nine operated most of 1964. Operating reactor levels grew throughout the period reaching highest levels in the middle 1960's. Maximum average reactor power reached 23,501 MW $_{\rm t}$ in December of 1964. For 13 of 15 months maximum average power levels exceeded 20,000 MW $_{\rm t}$. For over 8 years maximum average power levels exceeded 15,000 MW $_{\rm t}$. Only one reactor now remains in operation. All of the thermal energy produced in the reactors was released to the environment; 90 to 97% of that energy entered the Columbia River directly. The remaining 3 to 10% was transferred from retention basins to the atmosphere or ground water by surface heat transfer and leakage, respectively. The reactors operated with direct once-through cooling with effluents being discharged primarily at 70 to 90°C. Numerous studies have been performed investigating the mixing characteristics of the effluent plumes. These studies have shown that the effluents mix rapidly vertically but slowly laterally until major topographic features in the river force extensive mixing by wakes and secondary flows. Flow management by dams also appears to have a significant influence on Columbia River thermal dynamics. Studies on the persistence of the Hanford thermal discharges have indicated that the free flowing reach near the Hanford discharges experiences much more surface heat transfer than impounded waters either upstream or downstream of the Hanford reach. As a result, the bulk of the thermal additions introduced by the production reactors was dissipated before effluents reached the Washington-Oregon border. Extensive study of the Hanford ecosystem and anadramous fish migrating through, to, and spawning in the Hanford reach has detailed the effects of thermal exposures on the local ecosystem and on salmonid fish. The general conclusion is that Hanford thermal discharges caused no detectable harm to the aquatic ecology nor did they injure in any measurable manner the salmon or trout fisheries. However, dam effects on the aquatic ecology of the river, especially salmon and trout fisheries, may have masked Hanford thermal effects within natural variation. ## CONTENTS | SUMMA | ۱RY | | | • | • | • | • | | • | • | • | • | • | | • | • | • | • | • | • | • | • | • | iii | |-------|-----|-----|----|------|------|------|------|------|------|-----|-----|------|-----|------|---|---|---|---|---|---|---|---|---|-----| | INTRO | טסט | СТ | 10 | N. | | • | • | • | | • | | • | | | • | • | | • | • | • | | • | • | 1 | | DESCF | RIP | ΤI | ON | OF | THE | RE | AC | TOR | COC | LI | NG | SYS | TEM | S. | • | | | | • | • | • | • | • | 4 | | | N | RE | AC | TOR | COC |)LIN | NG S | SYST | ΓEM | • | | • | • | • | • | • | • | • | • | | • | • | | 9 | | HIST | RI | CA | L | HEA | r RE | LEA | \SE! | s. | • | • | • | • | • | | • | • | | • | • | • | • | • | | 12 | | | EN | IER | GY | 0U | TPUT | • | • | • | • | • | • | • | • | • | • | | • | • | • | • | • | | • | 12 | | | EN | ER | GΥ | TRA | ANSF | ER | | • | • | • | | • | | | • | | • | • | • | • | • | | • | 19 | | | FΔ | TE | 0 | F E | FFLL | JENT | rs | • | • | • | • | • | • | | • | • | | • | • | • | • | • | • | 20 | | THERM | 1AL | . C | ΉΑ | NGE: | S. | | • | • | • | • | • | • | • | | • | • | • | • | • | • | • | • | • | 22 | | ECOL(| GI | CA | L | EFFI | ECTS | S OF | - TI | HE H | IANF | FOR | D 0 | OISC | HAR | GES. | • | | | • | • | • | • | • | • | 26 | | REFE | REN | ICE | S | | | | | | _ | | | | | | | | | | | | | | | 29 | # TABLES | 1. | Reactor Startup and Deactivation | 1 | |----|---|----| | 2. | Retention Basin Statistics | 9 | | 3. | Selected Dam Statistics | 23 | | | | | | | FIGURES | | | 1. | Hanford Reservation | 2 | | 2. | Typical Limited Area for Dual Production Reactor Plants | 5 | | 3. | Water Flow for a Typical Production Reactor Plant | 6 | | 4. | Schematic of Cooling Systems for N Reactor and Hanford Generating | 10 | | | Plant | 10 | | 5. | | 14 | | 6. | | 15 | | 7. | | 16 | | 8. | | 17 | #### HANFORD PRODUCTION REACTOR HEAT RELEASES 1951-1971 #### INTRODUCTION The Hanford Reservation consists of about 570 square miles of semiarid lands in southeastern Washington. The Reservation was created in the early 1940's to permit production of weapons-grade nuclear materials. The Hanford site was ideally suited to the task for several reasons, including sparse population, ample cooling water supply, proximity to large electrical supply facilities, favorable geology and geohydrology, and low precipitation. Development of the site began with construction of B Reactor which was completed in September 1944. Eventually nine reactors were constructed; eight of which were employed solely for production of nuclear materials. The remaining N Reactor has produced steam for Washington Public Power Supply System's Hanford Generating Plant since 1966. The initial startup and deactivation dates of the nine reactors are given in Table 1. TABLE 1. Reactor Startup and Deactivation | Reactor | Initial Startup | Deactivation | |---------|--------------------|------------------------| | В | September 26, 1944 | February 12, 1968 | | D | December 17, 1944 | June 26, 1967 | | F | February 25, 1945 | June 25, 1965 | | Н | October 29, 1949 | April 21, 1965 | | DR | October 3, 1950 | December 30, 1964 | | C | November 18, 1952 | April 25, 1969 | | KW | January 4, 1955 | February 1, 1970 | | KE | April 17, 1955 | January 28, 1971 | | N | December 31, 1963 | Currently in Operation | Because all of the reactors operated with once through cooling water from the Columbia River, the plants were distributed along the river as it flowed through the Reservation. Reactor areas (100 Areas) as well as other major facility sites and roads are shown in Figure 1 as they currently exist. FIGURE 1. Hanford Reservation The purpose of this report is to document and detail the thermal releases from the Hanford nuclear production reactors during the period 1951 through 1971, and to put these releases in historical perspective with respect to changing Columbia River flows and temperatures. This information can also be used as a foundation for further ecological evaluations. When examining Hanford production reactor thermal releases to the Columbia River all related factors affecting the releases and the characteristics of the river should be considered. The major considerations in the present study were the characteristics of the releases themselves (primarily coolant flow rate, temperatures, discharge facilities, period of operation, and level of operation) and the characteristics of the river in that reach (primarily flow rate, temperature and mixing characteristics; the effects of dam construction were also taken into account. In addition, this study addressed ecological effects of thermal releases on aquatic species. Accordingly, this report includes discussion of the reactor cooling systems, historical heat releases, thermal mixing and transport studies, hydroelectric power development, and ecologic effects of Hanford production reactor heat releases on salmon and trout. Appendix A contains reactor operating statistics, and Appendix B provides computations of heat added to the Columbia River between Priest Rapids Dam and Richland, Washington. #### DESCRIPTION OF THE REACTOR COOLING SYSTEMS The cooling system used was direct once-through cooling with river water flowing directly through the reactors. The primary circulating system is shown in Figures 2 and 3. Figure 2 is an illustration of a typical dual production reactor area. Areas having dual production reactors were 100 B and C, 100 KW and KE, and 100 D and DR. Areas having single reactor facilities were
100 H and 100 F. The typical cooling system for the eight reactors is shown schematically in Figure 3 (the facilities at N Reactor are discussed later). Figure 3 also shows the buildings (designated by numbers) that were used for different facets of cooling treatment. Columbia River water was obtained through pump houses which enclosed 5 to 14 vertical deepwell pumps; the bottoms of the pump bowls were approximately 11 ft below normal flow water elevations. (a) The intake channels from the pump houses into the river were dredged and lined with rock and concrete. River water entered the pump house deepwell through traveling screens which prevented entrance of fish and debris. Combinations of 30-in., 36-in., 42-in., and 48-in. lines passed circulating water from the river pump houses (181 Bldg.) to reservoirs (b) in the 182 Building and chemical treatment and filtering facilities in the 183 Building. Although the Columbia River water is exceptionally pure it was necessary to filter and chemically treat it at the 183 Building to prevent filming in the reactor process tubes. Each reactor had a separate treatment plant consisting of a head house, raw water flume, mixing chambers, distribution ⁽a) Much of the information concerning details of the circulating water systems comes from References 1 and 2 which do not discuss 100-KE and 100-KW reactor areas. ⁽b) Prior to plant modification in 1956-1957 under project CG-558 the reservoirs were used as the principal water supply source for the filter plants and ultimately the reactors. Under project CG-558 flow modifications were made to various plant facilities to permit significantly higher coolant flow rates and thereby increase production of nuclear materials. After CG-558 the reservoirs were used primarily for "export water" used as a source for emergency cooling. Export water was water supplied to off-plant areas such as the 200 Area and to other reactor areas as needed. Typical Limited Area for Dual Production Reactor Plants (Figure Modified from Reference 4) FIGURE 2. FIGURE 3. Water Flow for a Typical Production Reactor Plant (Figure Modified from Reference 4) flume, flocculators, settling basins, collecting flume, influent flume, filters, effluent and backwash piping, effluent flumes, and clearwells. In the head house, alum (used as a flocculating agent), sulphuric acid (to control pH), and chlorine (used as an algacide for control of algae in the settling basins) were metered into the raw river water. The combination was mixed in the mixing chambers and conducted to paddle-wheel flocculators and settling basins via the distribution flume. After particulates settled out, the circulating water entered gravity flow filter beds consisting of layers of crushed gravel, sand, and crushed anthracite coal. An organic polyelectrolyte filter aid was added during filtering to increase efficiency. The filters were backwashed with water from the clearwells as necessary to maintain proper operation. From the filters the cooling water flowed by gravity into the clearwells. The clearwells, which served to collect and store waters from the filters, had storage capacities of approximately 3 x 10^6 to 10^7 gal. The filtered water was then pumped or gravity drained into four large storage tanks in the 190 Building. The storage tanks provided water to the coolant pumps that supplied cooling water to the reactor. Tank storage capacities varied from about 7 x 10^6 to 21 x 10^6 gal. For normal operating flow rates there was sufficient storage capacity to operate the reactor at full flow for more than an hour without supply from the clearwells. Intake of 182 Reservoir storage between reactor areas provided additional supplies if required. The 190 Building also housed the primary coolant pumps that supplied high pressure cooling water to the reactors, and high tanks which could supply 300,000 gal of emergency cooling water if pressure in the piping from the 190 Building to the reactor was lost. Gravity flow of emergency cooling water from the export water system could supply coolant if supplies in the high tanks were exhausted. Cooling water was supplied to the reactor building (105 Building) at 600 psi. Water flowed into vertical inlet risers which paralleled each side of the front face of the reactor. The coolant flowed from these risers through as many as 46 4-in. crossheaders to inlet nozzles on each process tube. The coolant then flowed through the process tube and around the fuel element housed within the process tube. During irradiation the coolant was heated by the hot fuel element and adjacent graphite moderator. The coolant left the reactor in a similar manner, passing through outlet nozzles, to crossheaders, to two vertical risers which were interconnected above the reactor to a downcomer. The downcomer served to break the fall of water from the crossover piping to the effluent lines. The downcomer was vented to relieve trapped gases (air) and steam. Reactor outlet piping had a rated working pressure of 150 psi. From the downcomer the effluent moved by gravity from the reactor building through underground piping to large retention basins. The retention basins were designed to permit decay of shortlived radioisotopes. The basins served another purpose by containing high concentrations of radioactive substances released during fuel element failures until they could be removed to adjacent cribs for effective filtering through the ground. The retention basins varied considerably in size although operation was similar in all of them. Effluent entered one end of the rectangular or round retention basins, flowed through or across the basins and exited from the other side. Several of the basins had baffles to prevent the effluent from channeling in the basins. The nominal dimensions, volumes, and estimated flow-through times for the retention basins are given in Table 2. In actuality, some channeling did occur thereby reducing travel times at certain plants. The reactor effluents left the retention basins by overflowing a weir at one end of the basin. Effluent flowed into a downpipe to underground piping leading to the outfall structure or, as necessary, to a crib for isolation. The outfall structure consisted of three compartments. The effluent flowed into one compartment, then overflowed into an adjacent chamber which led via one or two effluent pipelines (depending on the plant) center of the river for submerged vertical single port discharge. If flow through the discharge effluent lines was obstructed, or if river water elevation was extremely high, water could overflow the second chamber into a third which led via a spillway to the river shore for shoreline surface discharge. Submerged discharge in the center of the river was designed to provide rapid dilution with river waters, both thermally and radiologically. TABLE 2. Retention Basin Statistics | Reactor
Basin | Length
(Dia.)ft | Bas
Width,
ft | Depth, ft | Volume
10 ³ /ft | Travel ^(a)
<u>Time, hr</u> | Flow ^(b)
Rate, gpm | |-----------------------|--------------------|---------------------|-----------|-------------------------------|--|----------------------------------| | 107-B ^(c) | 450 | 230 | 16 | 1656 | 2.38 | 87,000 | | 107-CW | (330) | | 16 | 1368 | 1.96 | 87,000 ^(c) | | 107-CE | (330) | | 16 | 1368 | 1.78 | 96,000 | | 107-D | 450 | 230 | 16 | 1656 | 2.33 | 89,000 | | 107-DR | 450 | 230 | 16 | 1656 | 2.35 | 88,000 | | 107-F | 450 | 230 | 16 | 1656 | 2.33 | 89,000 | | 107-H | 600 | 270 | 15 | 2430 | 3.26 | 93,000 | | 107-KE ^(d) | (250) | | 29 | 4270 ^(d) | 2.59 | 206,000 | | 107-KW ^(d) | (250) | | 29 | 4270 ^(d) | 2.57 | 208,000 | ⁽a) Computed from assumed flow rate and calculated basin volume. #### N REACTOR COOLING SYSTEM N Reactor has a different cooling system because its main reactor colant loop produces steam. A schematic of the cooling systems for N Reactor and Hanford Generating Plant (HGP) is shown in Figure 4. There are essentially three circulating circuits. The primary system coolant picks up heat in the reactor and transfers it to the secondary system coolant in a steam generator. N Reactor is a pressurized water reactor using ultrapure water as the primary coolant, operating at approximately 1200-1500 psig. (2) In the steam generator energy from the primary coolant is transferred via a heat exchanger to the secondary coolant which boils to steam. Pressure in the secondary coolant in the steam generator is about 140 psig. (3) This low pressure steam is generally routed to the HGP where it is used to drive ⁽b) Nominal values for reactor flows in 1964. ⁽c) Because of excessive leakage from the 107-B retention basin effluent from B reactor was routed to 107-CW. ⁽d) Three basins of the size given. Volume is total of all three basins. turbines, then condensed to liquid, and pumped back to the steam generator. During periods when HGP is not operating it is routed to "dump" condensers in the 100 N Area for condensation and return to the steam generator. In the condensers, thermal energy is transferred from the condensing steam to circulating water from the river. Water is pumped from the river through the condenser heat exchanger back to the river. This is true of both the dump condensers and the HGP condensers. The major difference is that if steam is routed to the HGP, a portion (slightly less than 25%) of the energy in the steam can be transformed into electrical energy rather than dumped into the river. The intakes for N Reactor and HGP are very similar to the eight other production reactors; however, the discharges are somewhat different. N Reactor has a single port vertical outfall as do the other reactors but with a velocity cap to provide more rapid mixing. HGP employs an outfall having four vertical ports positioned 50-ft apart on a diffuser line across the central portion of the river providing even greater mixing than the
single ports. #### HISTORICAL HEAT RELEASES The Hanford production reactors represent a unique collection of historical industrial facilities in regard to thermal energy releases to the environment. Several features of these facilities are not likely to be duplicated at any other industrially developed site. For example: - No other facilities of any significant size discharged waste heat into the Columbia River for a considerable distance upstream and downstream of the reactor locations during the operating period of the reactors. - The magnitude of the releases dwarf those of many comparable industrial facilities. - Because of the nature of the plants and their discharges, excellent records exist providing reactor operating statistics. - Reasonably coherent and consistent environmental analyses were performed throughout the plant operating period. - The plant facilities were very similar and were operated in very similar manners. - The sites are in a relatively compact arrangement. - With the exception of the effects of dam construction and operation there was very little change in water quality entering the Hanford Reservation during the operating period. For these reasons the Hanford reactor heat releases are a valuable reference point for future development in the Columbia Basin and at other sites around the nation. #### ENERGY OUTPUT When the production reactors were designed and constructed (primarily in the 1940's and early 1950's) the main concern was production of weaponsgrade nuclear materials. The early designs permitted small production rates for nuclear materials and waste heat. The reactor designs were made with little operational experience and very limited knowledge of optimal values for production parameters. Their output was intially small until the design and operational characteristics were expanded to achieve greater production. The plants generally operated in two possible modes. Either the plant output was limited by the power level or the plant output was limited by the temperature of the effluent in the downcomer. During 1951-1955 power levels in the six older reactors rarely exceeded 6000 MW. However, in 1956 and 1957 these reactors underwent flow modifications under project CG-558. These modifications more than doubled the potential reactor sustained power levels. During the following years, as more experience was gained and minor modifications performed, the power level limits and downcomer temperatures limits were successively raised; in the middle 1960's all of the reactors operated at near peak power levels. Eight of the nine production reactors were operating in 1955 (N Reactor began in 1964); however, total maximum average heat release at that time was only 6000 to 9000 MW. In March 1964, the total maximum average heat release for these same reactors was nearly 21,000 MW. Figures 3 through 8 illustrate the monthly energy released by the production reactors in the period 1951-1971. In these figures the total maximum average heat release is the sum of the monthly average power levels during reactor operation for all of the reactors operated that month. This total represents a reasonable estimate of the peak combined heat release during the month since there would likely have been only a small portion of the time that all reactors operated during the month. Also shown in the figures is the integrated power released by the reactors in gigawatt days (GWD). This number was obtained by multiplying the average power level during reactor operation by the time during the month that the reactor operated for each reactor and summing for all the reactors. The integrated power thus represents the total energy released to the environment during the month. The third curve shown in these figures is the mean energy release to the river during the month and is computed as the integrated power divided by the number of days in the month. The development of production capacity at Hanford can readily be seen. X The maximum heat release was in December 1964 when all the reactors were operating and river temperatures were low. The total maximum heat discharge could have reached 23,501 MW during the month. Integrated power was 604.1 GWD and the mean monthly heat release computed to nearly 20,000 MT $_{\pm}$, 19,490 MW $_{\pm}$. Six 1250 MW $_{\rm e}$ nuclear generated stations today would generate 7500 MW $_{\rm e}$ total maximum power, and at 33% thermodynamic efficiency, 15,000 MT $_{\rm t}$ total maximum heat release. Using an annual plant factor of 0.7 including a 1-month refueling outage, these six plants would yield 352.2 GWD integrated heat release monthly and a mean monthly (30 days) heat release rate of 11,730 MW $_{\rm t}$. The Hanford production reactors exceeded 15,000 MW $_{\rm t}$ in total maximum heat release rate for 8 years between August 1959 and August 1967. Monthly integrated power exceeded 353 GWD for over 8 years during the period from December 1958 to August 1967. Total maximum heat release rate exceeded 20,000 MW $_{ m t}$ for 13 of 15 months between December 1963 and April 1965, and 10,000 MW $_{ m t}$ for more than 13 years between November 1956 and January 1970. Monthly integrated power exceeded 470 GWD in 19 months between March 1963 and April 1967; 235 GWD was exceeded for 13 years between June 1956 and June 1969. Data for the average power level during operation and the time operating efficiency (percent of month reactor operated) are given for each reactor by month in Appendix A for the period 1951-1971. Also given in Appendix A are the cooling water temperatures into and out of the reactor, and the nominal coolant flow rate for each reactor as recorded during the "last equilibrium operation." The last equilibrium operation is the latest time (within the month) that the reactor operated stably at operational limits. These temperatures and flow rates should not be taken as maximum operating values, nor should they necessarily be considered as an average operating value for that parameter. Rather, they should be interpreted as typical operating values when reactor operation was stable. Computation of the power levels of the reactor using the flow rates and temperatures across the reactor will result in values not necessarily the same as those given in Appendix A. The average power levels during operation and the time operating efficiencies are considered accurate. Table A-1 shows the total maximum average power level (or heat release) for that month (AVG. MW) and the integrated power (heat release) for the month for the combined reactors in GWD. When both N reactor and HGP were operating, the difference between the energy released by N reactor and the electrical production of $HGP^{(a)}$ is computed as N^* and represents the thermal energy release rate to the environment when both plants are operating. Examination of the table shows that after 1966 N Reactor rarely operated when HGP could not, making N^* a reasonable estimate of the N Reactor heat release to the environment. The total maximum average heat release is the sum of the average power levels during operation for all the reactors except when HGP was operating, for which N^* replaced the N Reactor contribution. The integrated heat release includes the N Reactor thermal contribution at its related time operating efficiency as well as subtracting HGP electrical generation at its related time operating efficiency. The integrated heat release represents the total energy released to the environment for the month. The mean monthly heat release rate to the environment may easily be computed as the integrated power, GWD, divided by the number of days in the month. ### ENERGY TRANSFER The energy produced by the reactors did not all reach the Columbia River—There were several mechanisms for energy transfer to the atmosphere and the ground before entering the river. For example, a certain amount of heat transfer occurred between the piping and the soil. No data exist to determine the magnitude of that heat transfer; however, it is expected to be relatively small due to the relative insulating value of soil. A far more signficant heat transfer mechanism for the eight reactors was the heat transfer to the atmosphere and ground from the retention basins. (b) During operation the hot effluent (occasionally greater than 90°C) passing through the retention basins transferred great quantities of heat and mass to the atmosphere in the form of vapor plumes. These plumes rose 1000 or 2000 ft ⁽a) All energy rates in the Appendices are given as thermal except for HGP energy rates which are electrical. ⁽b) N Reactor did not empty retention basins and experienced no known leakage between the dump condensers and the river shoreline. in the air under certain conditions. When evaporative heat loss dominated heat transfer to the atmosphere. Many of the retention basins leaked large quantities of effluent to the ground waters which eventually flowed to the Columbia River near the plant sites. While ground-water flow speeds into the Columbia River from the retention basins in the zones bordering the river were between 10 and 30 ft/day, normal ground-water influxes to the Columbia are estimated to contribute over four times the thermal energy leaked from reactor retention basins. $^{(4)}$ The piping between the 105 Reactor Buildings and the retention basins was also observed to leak. The water table was observed to rise in the regions of the retention basins and effluent lines. Large portions of these locally raised water tables were at elevated temperatures. The six older reactor areas had ground-water temperatures in excess of 70° C in extensive zones underneath the retention basins. Leakage from the retention basins is estimated to have been from 1 to 5% of the effluent flow from the reactor based on available information. $^{(4)}$ Based on temperature measurements of effluents in the downcomer and leaving the retention
basins, an estimated 3 to 8% heat loss occurred as a result of heat transfer to the atmosphere. There was also considerable leakage from piping leading from the retention basins to the discharge in the center of the river, as evidenced by thermal plume surveys with infrared imagery. (5) It is therefore very difficult to estimate the true heat releases from the Hanford production reactors to the Columbia River. A reasonable estimate is that probably 3 to 10% of the reactor thermal energy generated was dissipated to the atmosphere before effluents entered the river, leaving 90 to 97% to enter the river. #### FATE OF EFFLUENTS Numerous studies have been performed to determine the fate of effluents that entered the river from the production reactors. Mixing near the discharges was observed to be rapid vertically so that even the highly buoyant discharges from the production reactors were completely mixed vertically within a few hundred yards of the outfall. Mixing laterally was observed to proceed much slower than vertically. Narrow ribbons of effluent plume were often observed downstream until major river features (such as islands and bends in the river) enhanced lateral mixing. Lateral temperature profiles at Richland, Washington, demonstrated that complete lateral mixing was not obtained even to that point. Lateral mixing coefficients were observed to vary from about 0.5 ft^2 /sec to 12.6 ft^2 /sec depending on the river location and the buoyancy (lateral mixing increased for buoyant cases). (6) Generally acceptable values for lateral eddy diffusivities upstream of Locke Island are near 2 $ft^2/sec.$ Dilution of effluents near the discharge have been measured. (7) Dilution factors varied significantly for varying flow conditions and reactor discharges. The dilutions to the points where the plumes were first observed to strike the surface (about 50 ft downstream) were estimated to be from 2 to 7 for a river flow of 36,000 cfs. (a) For the same river flow dilution factors were estimated to be from 7 to 17 at 100 yd downstream from where the plume surfaced, and from 17 to 37 at 400 yd downstream. (a) As a general rule the dilution increased directly with river flow rate such that at a river flow of 360,000 cfs dilutions would be an order of magnitude larger than those estimated at 36,000 cfs. As would be expected, the data supporting those analyses display considerable scatter evidencing highly varying turbulent characteristics. ⁽a) Dilutions were computed based on maximum plume measured temperatures and efficiency and effluent temperatures recorded at the reactor downcomer. #### THERMAL CHANGES Because of the magnitude of energy released to the Columbia River by the production reactors, the importance of the river for commercial fishery on the Pacific Coast, and the emerging concern with thermal discharges as "pollution," numerous studies have been performed relating Hanford heat releases to 1) power development on the Columbia and 2) environmental effects of large heat releases. The emerging interest in the environment and resulting environmental regulation brought about an extensive effort by Hanford researchers to characterize and model the extent and persistence of the Hanford thermal discharges. Additional monitoring was performed on special studies and analyzed. (8-11) A temperature monitoring system already in existence on the Columbia was refined in 1964 to provided added data and remove biases that may have existed in prior monitoring programs. Analysis of data from this network and other studies with special computer routines and the development of various river reservoirs computer models for heat transfer and heat budget simulation led to several interesting observations ranging from the effects of the dams on the hydrothermal character of the Columbia River to the persistence of Hanford heat additions downstream of the Hanford Reservation. The Columbia River flows generally east across the northern portion of the Hanford Reservation, then turns south forming the eastern boundary. The Columbia is the second largest river in the United States with a discharge at its mouth slightly larger than the Ohio River. (12) Because of the large discharge, low suspended sediment load, and steep side slopes characterizing the river, significant hydroelectric power development has occurred. At present the only nontidal free flowing reach of the river is the 49-mile length from the head of McNary Reservoir (behind McNary Dam) to Priest Rapids Dam [river mile (RM) 397]. Except for about 9.5 miles immediately below Priest Rapids Dam, this reach lies completely within or is bounded by the Hanford Reservation. The period of major construction and operation of the Hanford production reactors (1951-1971) was also the period of major dam construction on the Columbia. Table 3 shows the river mile, the total storage, and the completion date for all U.S. dams on the mainstem of the Columbia River. In addition to these dams other major dams on the Snake River (Ice Harbor, Lower Monumental, Little Goose, Lower Granite, and others) contribute to power development, navigation and flood control. However, since the Snake River enters the Columbia below the Reservation (about RM 325) flow control on the Snake has no effect on the Columbia River flow past the Hanford Reservation. Additional dam construction on the upper Columbia or its tributaries in Canada and the U.S. (Mica, Duncan, Hungry Horse, Libby, and Arrow) will increase storage volumes fivefold over that of U.S. dams on the mainstem of the Columbia and aid significantly in flow control. TABLE 3. Selected Dam Statistics | Dam | River Mile | Reservoir Length
mi | Storage Capacity
1000 acre-ft | Completion Year | |---------------|------------|------------------------|----------------------------------|-----------------| | Bonneville | 146 | 48 | 87 | 1938 | | The Dalles | 192 | 24 | 53 | 1957 | | John Day | 216 | 75 | 535 | 1968 | | McNary | 292 | 59 | 185 | 1953 | | Priest Rapids | 397 | 56 | 44.8 | 1959 | | Wanapum | 415 | 18 | 160.8 | 1965 | | Rock Island | 453 | 20 | 8.6 | 1933 | | Rocky Reach | 474 | 42 | 36 | j 1961 | | Wells | 516 | 28 | 125 | 1970 | | Chief Joseph | 545 | 51 | 115 | 1955 | | Grand Coulee | 597 | 151 | 5232 | 1941 | Dam construction has had a major influence on Columbia River flows and temperature, thereby affecting both Hanford reactor operations and analyses of environmental effects of those operations. The impoundment of waters in the Snake and Upper Columbia Rivers has substantially reduced high water discharge. This is the intended effect of the 1971 Columbia Treaty between the United States and Canada, which provided for flood control on the Columbia and its tributaries. The effective storage of spring and summer runoff waters has signficantly aided in meeting large power demands during the winter through hydroelectric generation. At the same time, storage has created a temporal shift in the river temperature cycle. For example, the construction of Grand Coulee Dam produced a permanent delay of about 30 days in arrival of peak temperatures at locations downstream. Similarly, waters with peak temperatures arrive at Priest Rapids about 7 to 10 days later than they reach Rock Island. Previously, peak temperatures were simultaneous at these locations. The shifts are generally attributed to increased flow times through reservoirs behind the dams. Another temperature effect observed as a result of dam construction on the Upper Columbia is the lowering of peak and average temperatures. It has been predicted that the average August-September temperatures at Priest Rapids Dam after completion of the Canadian Dams will be nearly 2°C lower than the average 1961–1967 temperatures. (13) Construction of the Canadian Dams is predicted to lower temperatures of water emerging from Grand Coulee Dam by as much as as 4°C as compared to average peak temperatures for the period 1929 through 1957. Lower Columbia River temperatures and cycle shifting are most pronounced upstream from the mouth of the Snake River. The Columbia seems to equilibrate considerably between McNary Dam and Bonneville Dam. The bulk of this is due to climatological and hydrodynamic conditions characteristic of that reach. The Snake River raises temperatures in the Columbia particularly in late summer. Additional findings concerning thermal characteristics of the Columbia River are as follows: (15) - Dam impoundments respond much more slowly to thermal additions than free flowing river reaches evidencing larger heat transfer coefficients for free flowing rivers. - Columbia River temperatures appear to be closely related to river management practices (hydroelectric and storage operations). - Temperatures in the free flowing reach between Priest Rapids and Richland gain from 0.5 to 0.90°C in August and September due to natural heating in the absence of thermal discharges. - The majority of thermal energy released by the production reactors in 1969 was dissipated to the atmosphere before effluents reached the confluence with the Snake. At the Oregon-Washington border between 60 and 95% of the thermal additions of the production reactors had been dissipated, with the average dissipation being 65%. At Bonneville only about 20% of the production reactor heat release (1969) remained in the river. - An annual thermal addition of 4000 MW $_{\rm t}$ is attributable to the Snake River. During August and early September the addition is nearly twice the annual average. With the completion of the Canadian Treaty Dams this summer addition may rise to over 15,000 MW $_{\rm t}$. - Thermal additions in winter persist further downstream than those same discharges in summer. - ullet Studies concerning the thermal capacity of the Columbia indicate that there is a potential for addition of from 20 to 25 GW $_{\rm t}$ in the zone between Grand Coulee and Pasco, Washington, within state water quality criteria.
$^{(16)}$ The data in Appendix B illustrate the magnitude of thermal changes in the Hanford reach of the Columbia. Specifically, these data include the monthly average Priest Rapids temperature, Richland temperature, Columbia River discharge; the computed heat additions between Priest Rapids and Richland (based on their temperatures and the flow of the Columbia); the monthly mean heat additions by the Hanford production reactors (which lie between these sampling points); and the difference between the computed means and the reactor heat additions for the period of June 1964 through December 1971. The values given in Appendix B demonstrate that flow management tends to have a large influence on the natural heat gain. During high flow periods computed natural monthly mean heat gains often exceeding 20,000 MW $_{\rm t}$ were observed. During low flow periods the Hanford production reactor contributions formed a large part of the gross thermal gain of the river. #### ECOLOGICAL EFFECTS OF THE HANFORD DISCHARGES As early as 1945 ecologists were studying the effects of the Hanford production reactor discharges on the flora and fauna of the Columbia River in the Hanford reach. Generally, these studies have endeavored to determine the effect of Hanford production reactor operations on economically important species, primarily salmon and trout. Effects considered include thermal shock, thermal tolerance, upper thermal lethal limits, and, to a limited extent, temperature in regard to infectious diseases and gas bubble disease. Additional studies have been performed on migrating fish past the discharges, on the number of fish spawning in the Hanford reach, and on the effects of temperature on annual fish and insect cycles. These studies have demonstrated the following results: (17) - "Cold water" fish such as salmon have a much narrower tolerant temperature band than other fish; duration of exposure plays a critical part in loss of equilibria and mortality. - Field studies from March through September 1968 and 1969 were conducted to determine mortality of juvenile salmonids drifted through effluent plumes in liveboxes. Drifts through shoreline areas near seepage from retention basins resulted in significant mortalities among only a few test groups. Drifts through midriver effluent plumes resulted in losses only during unfavorable late summer conditions. - "Columnaris" disease (a myxo-bacterial infection) associated with the Columbia River in warmer months has not been linked to the Hanford discharges. Mortality of fish subjected to large doses of Columnaris organisms was higher in warmer waters than cooler. Fish ladders appear to have much higher concentrations of the organism than other river locations. - The problem of nitrogen supersaturation, which causes gas-bubble disease, may be enhanced in warmer water temperatures. Nitrogen supersaturation is linked primarily to entrainment and compression of air in dam spill-ways. Gas-bubble disease was not an obvious problem in the Hanford - reach; however, heat releases at Hanford may have contributed in a very minor way to occurrence at downstream dams. - Rainbow trout and chinook salmon were selectively preyed upon by larger fish after being subjected at sub-lethal exposures to water at lethal temperatures (i.e., thermally shocked) in the laboratory. Significant increases in predation rates were found when chinook salmon and rainbow trout received thermal doses that were 10 and 20% of doses causing equilibrium loss. - Juvenile fish appeared to be more resistant to warm temperature effects than adults. - Migrating fish appear to prefer shoreline areas particularly the area across from shoreline seepages of reactor effluents. Definite rheotaxis (thermal avoidance) was exhibited by migrating fish in the region of the shoreline effluent seepages near the reactor retention basins. - Changes in the timing of emergence of caddisflies (Trichoptera) have been related to river temperatures. Caddisfly emergence occurred a few weeks earlier in waters immediately downstream of the effluent discharges, slightly later in well mixed waters further downstream, and latest upstream of the reactors. It is felt this would have little effect on annual biologic cycles of juvenile fish of which 96% of their diet is adult and larval insects (the bulk of which are midges). - The annual census of spawning fall chinook salmon in the Hanford reach, begun in 1947, has failed to illustrate any deleterious effects of the Hanford discharges. Dam construction has displaced many spawning fish such that rearing nests in the Hanford reach have generally increased. This indicates that spawning in the Hanford reach has not been despoiled, and that Hanford heat releases have not resulted in a catastrophic fisheries disaster. - Tests on manually spawned fertilized salmon eggs taken from fish captured below Priest Rapids and reared at temperatures elevated above those in the river showed normal mortality (for hatchery operations) and increased body weight (factor of 1.4 for each 2°F rise above ambient to 12°F) for the eggs and young. The question exists whether or not warmer winter and spring waters might not increase body weight of migrants thereby improving survivorship until seaward migration. (Size of young at release from hatcheries is known to influence the number of adults returning.) A general conclusion is that the Hanford production reactor thermal discharges have had no <u>detectable</u> harmful influence on the Hanford reach aquatic environment including salmon and trout. Dam development on the Columbia and its tributaries has had a major effect on migrating salmon and trout. Although steps have been taken to mitigate the influence of dam construction on these anadromous fish (fish ladders, restocking, etc.), there is little doubt that dams have contributed to reducing or eliminating return of spawning fish to certain portions of the Columbia and its tributaries, increased mortality of spawning fish through mechanical stresses, increased incidence of infectious disease and gas bubble disease, and caused relocation of major spawning grounds. The influences of dam construction and operation and other factors (e.g., irrigation return) on the Columbia River fisheries and the Hanford aquatic ecology tend to mask the effects of the Hanford production reactors, and consequently, a definitive link between changes in the aquatic ecology and fisheries and the operations at Hanford is difficult to establish. Without segregating the effects of dams, irrigation and Hanford operations, it is unlikely that any discernible deleterious environmental effect can be attributable to Hanford production reactor operations. #### REFERENCES - 1. Hazards Summary Report: Volume 3 Description of the 100-B, 100-C, 100-D, 100-DR, 100-F and 100-H Production Reactor Plants. HW-74094, prepared by the Staff of the Irradiation Processing Dept., Hanford Atomic Products Operation, General Electric Co., Richland, WA 99352, April 1, 1963. - 2. N. R. Miller and R. E. Trumble, N-Reactor Hazards Summary Review (Phase I, Plutonium Production Only), Volume 3, Heat Dissipation Plant and Auxilliary Systems. HW-76930, N-Reactor Dept., Hanford Atomic Products Operation, General Electric Company, Richland, WA 99352, April 15, 1963. - 3. Selected "Summaries of WPPSS Hanford Generating Plant Monthly and Annual Operation Statistics," 1966 through 1971. - 4. D. J. Brown, Status of the Ground Water Beneath Hanford Reactor Areas January, 1962 to January, 1963. HW-77170, Hanford Atomic Products Operation, General Electric Company, Richland, WA 99352, April 1963. - 5. J. R. Eliason, Thermal Mapping of the Columbia River at Hanford Using an Infrared Imaging System. BNWL-CC-1074, Battelle, Pacific Northwest Laboratories, Richland, WA 99352, February 1967. - 6. J. C. Sonnichsen, Jr., D. A. Kottwitz, and R. T. Jaske, <u>Dispersion Characteristics of the Columbia River Between River Miles 385 and 355.</u> BNWL-1477, Battelle, Pacific Northwest Laboratories, Richland, WA 99352, October 1970. - 7. J. P. Corley, <u>Effluent Plume Temperature Data</u>. BNWL-CC-1628, Battelle, Pacific Northwest Laboratories, Richland, WA 99352, June 1968. - 8. J. K. Soldat, A Compilation of Basic Data Relating to the Columbia River, Section 8 Dispersion of Reactor Effluent in the Columbia River. HW-69369, General Electric Hanford Atomic Products Operation, Richland, WA 99352, November 16, 1962. (Also see Section 3 Temperature, Section 4 Chemical Characteristics, and Section 5 Hydrography). - 9. J. P. Corley, Effects of Hanford Operations on Columbia River Temperatures Interim Report. HW-76210, General Electric Hanford Atomic Products Operation, Richland, WA 99352, February 13, 1963. - 10. J. P. Corley, Effects of Hanford Operations on Columbia River Temperatures Interim Report No. 2. HW-80888, General Electric Hanford Atomic Products Operations, Richland, WA 99352, December 3,1964. - 11. J. P. Corley, <u>Inter-Reactor River Temperature Data</u>. BNWL-CC-807, Battelle, Pacific Northwest Laboratories, Richland, WA 99352, September 9, 1966. - 12. F. van der Leeden, <u>Water Resources of the World: Selected Statistics</u>. Water Information Center Inc., Port Washington, NY, 1975. - 13. R. T. Jaske, <u>Potential Thermal Effects of an Expanding Power Industry:</u> <u>Columbia River Basin</u>. BNWL-1646, Battelle, Pacific Northwest Laboratories, <u>Richland</u>, WA 99352, April 1972. - 14. R. T. Jaske and D. G. Daniels, <u>Simulation of the Effects of Hanford at the Washington-Oregon Border</u>. <u>BNWL-1344</u>, <u>Battelle</u>, <u>Pacific Northwest Laboratories</u>, <u>Richland</u>, <u>WA 99352</u>, <u>July 1970</u>. - 15. R. T. Jaske, and M. D. Synoground, <u>Effect of Hanford Plant Operations on</u> the Temperature of the Columbia River 1964 to Present. BNWL-1345, Battelle, Pacific Northwest Laboratories, Richland, WA 99352, November 1970. - 16. R. T. Jaske, <u>Potential Thermal Effects
of an Expanding Power Industry:</u> <u>Columbia River Basin</u>. BNWL-1646, Battelle, Pacific Northwest Laboratories, Richland, WA 99352, April 1972. ### APPENDIX A HISTORICAL HAMFORD PRODUCTION REACTOR OPERATING STATISTICS | | | T | 7 | , | | | | |------|-------------|---|---|--|--|--|---| | | GWD | | | 62.8 | 58.1 | 55.7 | 61.1 | | AVG | Ş
N
N | 2036 | 2025 | 2151 | 2167 | 2084 | 2215 | | | *
Z | | | | | | | | | HGP | | | | | | | | | Z | | | | | | | | | Κ | | | | | | | | | KE | | | | , | , | , | | TOR | I | 485 | 469 | 493
94.2 | 490
82.5 | 78.7 | 489
85.4 | | REAC | u. | 325 | 359 | 391
96.1 | 394
84.0 | 372
87.9 | 422
92.4 | | | DR | 461 | 448 | 494
97.3 | 469
88.4 | 422
85.2 | 441
86.3 | | | ۵ | 370 | 361 | 376
91.9 | 402
96.1 | 401
87.5 | 431
96.3 | | | ပ | | | | | | | | | 8 | 395 | 388 | 397
90.9 | 412
96.7 | 398
94.0 | 432
100 | | | PARAMETER | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN- °C
TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN -°C
TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | | | DATE | 19/1 | 2/51 | 3/51 | 4/51 | 5/51 | 15/9 | | | REACTOR | PARAMETER B C D DR F H KE KW N HGP N* MW | PARAMETER B C D DR F H KE KW N HGP N* MW AVG. OP. MW 395 370 461 325 485 8 2036 TEMP. IN- °C TEMP. IN- °C TEMP. OUT - °C TEMP. OUT - °C EMP. | REACTOR Avg. op. mw 395 370 461 325 485 RW N HGP N* Avg. T.O.E %
FLOW - KGPM
TEMP. IOL - °C Avg. op. mw 388 361 448 359 469 2025 Avg. op. mw 388 361 448 359 469 8 2025 TEMP. IN - °C
TEMP. IN - °C TEMP. OUT - °C TEMP. OUT - °C Avg. | REACTOR Avg. op. mw 395 370 461 325 485 RW N HGP N* MW T.O.E % T.O.E % 170 G. MW 388 361 448 359 469 359 469 359 469 361 494 391 4942 4942 4942 4942 4944 4944 4944 4944 4944 4944 4944 4944 4944 4944 4944 4944 | REACTOR PARAMETER B C D DR F H KE KW N HGP N* MW Avg. op. Mw 395 370 461 325 485 9 2036 | REACTOR AVG. OP. MW 395 370 461 325 485 R K K N HGP N* MW TO. E | " | | GWD | 55.8 | 62.3 | 61.1 | 62.1 | 62.6 | 9.09 | |---------|-------------|---|--|---|--|---|--| | 9/4 | į
N
N | 2194 | 2354 | 2386 | 2309 | 2314 | 2336 | | | * | · | | | | | | | | НВР | | | | | | | | | Z | | | | , | | | | | ΚW | | | | | | .1 | | | KE | | | | | | | | REACTOR | I | 514
86.9 | 512
79.0 | 538
75.6
41.4 | 513
95.6
41.6 | 529
96.0
42.5 | 545
92.3
42.5 | | REAC | Ŧ | 386
59.3 | 93.1 | 436
84.6
37.7 | 405
74.4
37.9 | 418
99.8
37.7 | 394
53.6
37.4 | | | DR | 499
87.7 | 528
95.6 | 528
96.0
41.3 | 521
91.0
40.8 | 466
85.8
40.1 | 489
85.8
40.7 | | | D | 403
84.9 | 439
82.5 | 434
74.2
37.4 | 440
87.4
36.6 | 456
81.9
36.7 | 477
93.8
38.1 | | | ၁ | | | | | | | | | В | 392
88.2 | 398
78.2 | 450
96.1
36.5 | 430
81.8
36.9 | 445
87.1
36.7 | 431
86.7
36.4 | | | PARAMETER | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN- °C
TEMP. OUT - °C | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN -°C
TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | AVG. OP. MW.
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW KGPM
TEMP. IN - °C
TEMP. OUT - °C | | | DATE | 7/51 | 8/51 | 19/6 | 10/51 | 13/11 | 12/51 | | <u>.</u> | GWD | 62.5 | 0.19 | 6.99 | 6.89 | 72.6 | 70.8 | |----------|-----------|---
--|--|--|--|--| | AVG. | | 2273 | 2418 | 2563 | 2555 | 2562 | 2614 | | | * 2 | | | | | | | | | ндь | | | | | , | | | | Z | | | | | | | | | ΚW | | | | | | | | | KE | | | | | | | | REACTOR | I | 559
96.7
42.6 | 558
91.7
41.1 | 559
88.6
42.4 | 582
93.8
42.9 | 506
76.7
43.4 | 532
90.0
43.4 | | REA(| LL | 451
83.4
36.7 | 512
78.8
37.5 | 496
51.4
36.8 | 496
84.6
36.5 | 509
99.8
37.0 | 461
78.7
36.8 | | | DR | 361
85.5
40.2 | 380
78.1
40.7 | 536
94.4
41.1 | 532
90. 1
40.8 | 548
97.0
41.6 | 546
96.3
42.0 | | | ۵ | 462
90.2
37.5 | 478
92.1
38.1 | 448
91.1
38.1 | 513
94.6
38.7 | 532
93.2
39.0 | 551
94.5
39.7 | | | ပ | | | | | | | | | 82 | 440
85.0
36.4 | 490
92.1
36.1 | 524
94.1
35.0 | 452
85.2
36.3 | 467
89.5
36.5 | 524
89.9
36.4 | | | PARAMETER | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN- °C
TEMP. OUT - °C | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | | | DATE | 1/52 | 2/52 | 3/52 | 4/52 | 5/52 | 6/52 | , | · | | | | | | REA(| REACTOR | | | | | | | | |------|--|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----|----|---|-----|---|------|------| | DATE | PARAMETER | В | ၁ | D | DR | щ | I | KE | KW | Z | HGP | * | AVG. | GWD | | 1/53 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN- °C TEMP. OUT - °C | 466
18.2
37.8 | 697
99.7
64.1 | 540
74.6
38.5 | 563
92.6
42.6 | 448
59.2
38.3 | 617
92.6
47.7 | ì | | | | | 3331 | 78.8 | | 2/53 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | 494
82.3
38.3 | 733
93.9
64.0 | 384
14.0
44.5 | 558
91.5
42.5 | 543
91.7
38.4 | 655
94.6
47.8 | | | | | | 3367 | 77.8 | | 3/53 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 526
91.1
38.1 | 764
91.3
71.2 | 543
84.3
44.9 | 485
1.7
 | 548
87.1
38.7 | 641
96.4
47.3 | | | | | | 3507 | 84.9 | | 4/53 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | 533
78.8
38.3 | 852
88.2
72.0 | 548
92.7
44.7 | 500
77.2
42.6 | 562
91.1
39.0 | 660
15.5
 | n | | | | | 3655 | 80.4 | | 5/53 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 539
93.4
38.5 | 876
81.1
73.9 | 594
90.1
46.7 | 415
80.4
42.9 | 595
92.8
39.3 | 586
65.8
49.7 | | | | | | 3605 | 93.6 | | 6/53 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 559
88.9
38.6 | 871
87.7
75.1 | 653
89.2
47.2 | 369
94.5
43.3 | 576
54.9
39.2 | 634
87.6
51.0 | | | | | | 3662 | 91.9 | | | | | | | | REACTOR | :TOR | | | | | | AVG. | | |-------|--|-------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|----|----|---|-----|----|------|-------| | DATE | PARAMETER | 89 | ပ | Q | DR | L | I | KE | ΚW | Z | НСР | *2 | MW | GWD | | 7/53 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN- °C
TEMP. OUT - °C | 519
91.8
38.5 | 866
99.9
74.5 | 605
82.4
47.5 | 530
91.3
43.6 | 584
90.1
38.9 | 762
94.8
52.6 | | | | | | 3866 | 116.7 | | 8/53 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 557
93
39.0
19.2
75.2 | 939
89.2
74.1
18.4
70.6 | 598
87.5
47.3
20.0
70.6 | 334
99.9
43.4
19.3
67.4 | 562
92.3
38.5
19.6
76.7 | 732
90.8
52.5
19.6
74.4 | | | | 4 | | 3722 | 105.3 | | 9/53 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN -°C | 521
78.8
38.9
18.0
72.1 | 978
80.4
73.7
16.8
71.3 | 640
92.6
47.4
17.8
71.6 | 351
99.9
43.2
17.9
66.3 | 581
87.4
39.2
17.8
78.9 | 638
65.0
52.5
18.0
69.5 | | | | | | 3709 | 91.9 | | 10/53 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 541
81.3
39.3
15.5
71.8 | 945
71.4
72.7
15.3
69.1 | 663
93.4
47.1
16.0
70.1 | 531
91.8
42.9
15.6
62.6 | 631
95.6
39.2
15.7
75.8 | 707
83.0
52.7
15.9
70.1 | | | | | | 4018 | 105.8 | | 11/53 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN -°C
TEMP. OUT - °C | 625
91.3
39.1
11.4
76.1 | 1000
92.0
72.2
10.8
65.5 | 649
82.9
46.5
12.4
68.3 | 512
87.9
42.5
12.1
59.1 | 633
86.9
40.0
12.1
75.3 | 795
90.3
52.2
11.9
76.0 | | | | | | 4214 | 112.4 | | 12/53 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 664
68.7
39.5
8.1
77.3 | 976
68.6
82.5
7.7
56.4 | 739
81.9
46.7
9.4
76.7 | 544
99.8
42.8
8.6
56.7 | 658
87.8
39.3
8.9
77.7 | 869
93.4
52.7
8.6
75.4 | | | | | | 4450 | 117.7 | | | GWD | 123.8 | The second state of the second state of | 98.5 | | 114.1 | 114.8 | 119.5 | 130.1 | |---------|-----------|------------------------|---|---------------------------------------|---------------------------------|--|--|--|--| | AVG | Ş M
M | 4646 | | 4470 | | 4762 | 4891 | 4850 | 5045 | | | * | | - | | | | | | | | | HGP | | | | | | | | | | | Z | | ************************************** | | | | | | | | | ΚW | | | | | | | | | | | KE | | | | | | | | | | REACTOR | I | 754
71.7
52.8 | 5.8
5.8
56.6 | 889
89.6
52.5 | 6.4 | 877
81.1
52.5
6.5
74.3 | 891
84.1
52.4
9.7
79.3 | 797
66.7
52.3
12.3
77.8 | 899
95.6
52.6
14.1
82.6 | | REA | ч | 704
77.3
38.8 | 4.9
68.8 | 628
70.0
45.2 | 6.4
74.0 | 713
78.7
45.5
6.9
76.3 | 737
82.3
45.6
9.6
78.2 | 701
68.6
45.0
12.6
78.0 | 718
89.0
45.9
14.3
80.3 | | | DR | 593
95.9
12.5 | 5.8
64.9 | 388
94.1
42.7 | | 566
75.7
43.1
6.3
66.8 | 642
83.0
43.0
9.4
73.8 | 652
94.9
43.1
12.7
68.7 | 620
77.8
42.8
14.0
70.7 | | | D | 814
99.8 | 6.2 | 796
87.8
47.8 | 6.8 | 787
89.7
47.7
6.5
74.5 | 741
77.8
46.8
9.6
73.9 | 776
86.2
47.7
12.7
74.8 | 760
96.2
47.5
14.2
73.7 | | | ပ | 1074
82.8
81.7 | 4.8
63.0 | 1096
69.4
81.5 | 5.6
63.6 | 1191
82.3
81.7
5.3
65.3 | 1172
70.9
82.0
8.6
64.5 | 1199
75.4
88.7
11.6
69.6 | 1227
73.6
89.2
13.4
67.6 | | | 8 | 707
90.3 | | 673
67.8
40.0 | | 628
46.6
45.5
6.3
71.6 | 708
74.7
48.4
9.7
73.0 | 731
89.8
48.5
13.0
74.8 | 821
87.8
48.7
14.4
84.9 | | | PARAMETER | AVG. OP. MW
T.O.E % | TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM | TEMP. IN - °C
TEMP. OUT - °C | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | | | DATE | 1/54 | | 2/54 | | 3/54 | 4/54 | 5/54 | 6/54 | | | | | | | | REACTOR | TOR | | | | | | 9/4 | | |-------|--|-------------------------------------|--|-------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|----|--------|---|-----|---|-------------|-------| | DATE | PARAMETER | 8 | C | Q | DR | u. | I | KE | X
M | Z | НВР | * | ž
N
N | GWD | | 7/54 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN. °C
TEMP. OUT - °C | 817
78.8
47.4
17.4
83.2 | 1182
75.7
88.8
16.1
67.3 | 739
92.2
48.3
17.7
76.1 | 610
89.6
42.8
16.5
76.3 | 781
96.1
45.5
17.5
82.0 | 908
89.9
52.5
17.3
83.1 | | | | | | 5037 | 134.3 | | 8/54 | AVG. OP. MW T.O.E % FI.OW - KGPM TEMP. IN - °C TEMP. OUT - °C | 829
75.1
48.7
18.5
85.7 | 1201
81.0
89.9
17.7
72.6 | 755
91.9
48.3
18.5
80.0 | 662
99.8
43.0
18.5
85.8 | 755
89.0
46.3
18.6
84.2 | 857
87.7
52.5
18.0
82.2 | | | | | | 5059 | 135.6 | | 9/54 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 809
88.7
48.1
17.2
84.2 | 1276
78.6
90.6
16.5
71.8 | 735
99.9
48.8
17 å
74.8 | 639
100.0
42.7
17.4
73.8 | 760
87.8
46.3
18.5
84.4 |
851
94.7
52.1
17.7
80.3 | | | | | | 5070 | 137.0 | | 10/54 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 851
82.9
47.7
13.6
85.7 | 1247 766
8.12*87.4
87.2 48.5
13.2 14.5
71.1 78.0 | 766
87.4
48.5
14.2
78.0 | 599
86.9
42.7
14.2
71.8 | 816
95.9
46.4
14.1
88.5 | 703
57.6
52.0
14.1
75.9 | | | | | | 4982 | 127.0 | | 11/54 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 897
88.6
47.7
11.5
85.7 | 1268
67.5
85.4
11.2 | 766
75.2
50.8
10.8
72.3 | 654
89.7
41.7
11.2
74.2 | 757
70.2
46.2
12.6
86.1 | 863
94.5
51.9
10.9
76.2 | | | | | | 5205 | 124.8 | | 12/54 | AVG. OP. MW
1.0.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 961
87.3
47.8
7.4
89.2 | 1307
65.0
84.3
6.9
76.4 | 910
71.9
51.7
8.5
84.0 | 689
90.6
42.2
7.9
71.7 | 897
81.8
46.6
8.3
86.0 | 925
93.3
51.5
7.5
78.7 | | | | | | 5689 | 141.5 | \star Data source lists suspected value of 8.12%. Value 81.2% was used in computation of GWD. | | | | | | | REACTOR | CTOR | | | | | | AVG | | |------|--|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---|-----|---|--------|-------| | DATE | PARAMETER | 8 | ၁ | D | DR | щ | I | KE | ΚW | Z | HGP | * | N
N | GWD | | 1/55 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN- °C
TEMP. OUT - °C | 918
75.5
48.1
6.2
85.6 | 1234
71.7
82.3
5.5
76.7 | 996
86.5
52.7
6.6
85.7 | 734
96.2
42.0
6.4
75.8 | 933
86.9
46.5
6.6
85.9 | 952
75.0
52.5
6.0
76.8 | | | | | | 5767 | 144.8 | | 2/55 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | 841
67.6
48.2
5.2
84.1 | 1358
65.7
82.8
4.3
74.8 | 888
75.8
58.8
4.7
77.3 | 680
83.0
41.5
4.7
71.3 | 952
13.7
 | 944
80.6
52.2
4.7
80.0 | | | | | | 5663 | 111.3 | | 3/55 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | 867
84.6
48.8
5.9
81.8 | 1350
69.5
81.8
5.1
74.8 | 951
73.9
53.2
5.5
84.2 | 735
93.0
41.1
6.0
75.1 | 864
95.6
45.9
6.3
78.5 | 959
78.5
52.6
5.5
80.0 | | 861
93.4
124.0
4.5
37.7 | | | | 6587 | 168.7 | | 4/55 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 794
87.3
48.7
8.1
83.7 | 907
66.3
82.7
7.1 | 708
79.5
52.9
8.0 | 350
50.1
41.0
7.2
74.7 | 566
64.5
52.9
8.4
89.2 | 920
91.9
126.3*
8.0
81.3 | 168
63.9
124.3*
7.4
37.3 | 734
77.3
*
6.7
37.1 | | | | 5327 | 120.2 | | 5/55 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 819
89.5
48.8
12.1
84.4 | 838
63.7
83.0
11.2
78.2 | 641
78.3
52.4
12.7
84.9 | 593
77.8
49.8
12.0
82.3 | 627
67.7
47.6
12.6
89.6 | 724
77.8
52.9
12.5
83.7 | 903
89.7
128.2
11.6
43.4 | 914
88.3
127.1
10.9
45.5 | | | | 6059 | 149.9 | | 6/55 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 773
85.5
48.5
15.4
87.8 | 933
69.5
83.4
14.0
80.2 | 481
60.5
52.4
14.8
83.4 | 799
93.0
49.8
14.8
78.9 | 446
50.6
46.8
15.3
86.4 | 715
77.2
53.0
15.3
84.7 | 999
93.9
129.3
14.6
46.8 | 970
88.1
127.3
13.6
45.7 | | | | 6116 | 147.4 | *Data source is suspect for these values, they should probably be offset one column to the right. | | | | | | | REA | REACTOR | | | | | | AVG | | |-------|--|-------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---|-----|---|--------|--------| | DATE | PARAMETER | 8 | ၁ | D | DR | ட | 工 | KE | KW | Z | HGP | * | N
N | GWD | | 7/55 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN- °C TEMP. OUT - °C | 922
25.6
48.4
15.3
87.5 | 1365
74.2
84.1
16.2
82.3 | 866
41.6
52.8
17.5
86.4 | 885
82.7
50.1
17.0
85.4 | 836
67.1
47.3
17.4
89.3 | 931
92.2
53.5
16.8
85.0 | 1086
99.6
128.6
16.7
49.4 | 1055
83.0
128.7
15.8
50.0 | | | | 7946 | 177.2. | | 8/55 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | 938
86.3
48.4
19.3
89.4 | 1351
79.6
83.0
17.8
82.7 | 863
73.4
53.2
19.8
88.5 | 872
88.8
50.3
19.5
86.9 | 801
61.9
47.2
19.9
88.9 | 937
55.3
57.1
19.5
92.0 | 1006
83.1
128.5
18.5
52.2 | 1036
73.9
130.0
18.4
50.7 | | | | 7804 | 183.2 | | 9/55 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | 861
91.1
48.2
17.5
90.0 | 1278
56.2
83.1
16.2
77.5 | 900
60.4
53.1
18.0
90.0 | 641
80.4
51.0
17.5
83.9 | 747
38.8
46.9
18.0
88.8 | 965
70.2
57.1
17.7
80.4 | 1068
89.8
126.4
16.7
51.5 | 1099
56.8
128.8
16.6
49.2 | | | | 7559 | 153.4 | | 10/55 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | 912
96.4
47.8
14.0
84.5 | 1358
72.9
83.0
13.1
81.8 | 853
42.7
53.2
16.4
82.3 | 948
74.4
51.0
13.6
92.3 | 820
45.8
47.3
14.4
85.4 | 1020
63.5
56.9
14.4
87.4 | 1240
63.8
136.7
13.4
63.5 | 1386
80.2
127.4
12.7
64.0 | | | | 8537 | 181.8 | | 11/55 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | 875
63.8
47.5
10.1
83.6 | 1313
57.6
82.1
9.0
71.8 | 878
48.3
52.1
9.3
82.3 | 1033
94.5
50.5
9.2
89.8 | 784
47.4
45.9
10.3
85.0 | 1071
85.1
56.7
9.8
85.1 | 1537
85.9
125.3
8.3
62.3 | 1592
77.7
127.9
8.9
62.9 | | | | 9083 | 196.7 | | 12/55 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | 895
90.9
46.6
5.5
81.3 | 1413
68.3
83.8
5.5
78.2 | 843
19.6
52.0
6.3
80.3 | 862
74.9
49.6
5.9
85.4 | 867
69.6
47.0
6.7
84.9 | 915
64.9
56.1
6.3
80.5 | 1846
90.6
125.5
4.9
64.9 | 1763
90.1
125.0
4.4
61.8 | | | | 9404 | 218.5 | | | | | | | | REACTOR | :TOR | | | | | | 9//6 | | |-------|--|-------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---|-----|---|------------------|-------| | DATE | PARAMETER | В | ၁ | D | DR | u. | I | KE | ΚW | z | HGP | * | ë
M
M
M | GWD | | 1/56 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN- °C
TEMP. OUT - °C | 784
57.8
47.1
1.8
75.2 | 1432
56.4
84.0
1.4
76.8 | 885
58.6
51.1
2.6
54.6 | 833
73.4
50.0
5.4
85.6 | 829
36.2
45.9
3.2
82.5 | 1042
64.0
55.7
5.9
82.5 | 1882
75.0
124.0
4.1
65.5 | 1814
79.5
122.5
2.1
63.4 | | | | 9501 | 192.6 | | 2/56 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 826
60.0
46.1
4.2
80.8 | 1461
73.7
83.8
3.6
78.5 | 633
41.8
49.9
3.4
77.9 | 828
72.3
49.8
4.8
80.9 | 888
45.3
47.0
5.4
81.5 | 957
69.5
55.4
5.0
84.0 | 1766
86.5
139.0
3.4
58.3 | 1849
91.5
136.0
3.0
64.0 | | | | 9208 | 194.9 | | 3/56 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 841
60.4
46.1
6.5
84.0 | 1504
74.3
83.2
5.0
79.5 | 886
62.7
49.9
6.5
82.5 | 898
73.7
50.3
5.9
77.8 | 781
48.5
46.9
6.4
70.8 | 1052
77.6
55.6
6.0
82.0 | 1930
90.0
140.0
4.8
59.8 | 1963
86.7
134.0
4.2
63.5 | | | | 9855 | 231.8 | | 4/56 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 897
87.0
45.8
10.0
84.2 | 1532
79.6
83.9
9.4
81.8 | 922
68.3
49.8
9.6
84.7 | 924
85.1
50.2
10.1
80.2 | 834
39.5
47.0
9.0
82.2 | 1119
70.1
56.4
8.5
86.0 | 1979
88.1
140.0
8.9
68.5 | 1823
84.3
138.0
8.0
62.2 | | · | | 10030 | 234.3 | | 2/56 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN -°C
TEMP. OUT - °C | 842
83.3
46.0
14.3
84.3 | 1400
74.6
83.0
12.8
81.0 | 831
55.3
49.9
9.8
84.8 | 901
79.5
51.2
13.0
84.3 | 834
57.9
46.7
14.7
87.4 | 1015
63.0
11.0
12.6
86.6 | 1887
92.0
138.0
12.1
68.1 | 1789
84.2
140.0
12.6
66.0 | | | | 9499 | 225.9 | | 94/56 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 834
80.5
45.8
15.0
85.0 | 1492
84.4
84.4
13.9
84.0 | 853
73.5
50.1
14.0
85.0 | 933
95.1
51.0
15.0
84.8 | 858
43.8
7.6
14.3
84.6 | 942
61.2
16.8
14.3
86.2 | 2038
88.2
141.0
14.2
72.8 |
1875
88.6
136.0
14.0
70.9 | : | | | 9825 | 235.7 | | | | | | | | REACTOR | TOR | | ı | | | | AVG | | |-------|--|-------------------------------------|---------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---|-----|----|-------|-------| | DATE | PARAMETER | 89 | ပ | Q | DR | ட | I | KE | ΚW | Z | ндь | *2 | MW | GWD | | 7/56 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN- °C
TEMP. OUT - °C | 815
95.3
46.4
18.3
84.9 | 14.17
77.0
85.8
17.0
86.3 | 764
51.9
51.2
17.7
83.1 | 901
88.8
51.7
18.3
84.3 | 772
52.4
47.6
18.8
84.8 | 955
61.3
57.2
18.9
87.6 | 2146
83.3
143.0
17.8
79.6 | 1894
90.5
146.0
17.2
73.1 | | | | 9694 | 235.0 | | 8/56 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 772
77.8
46.5
19.8
84.8 | 1418
73.9
85.0
18.4
85.5 | 847
78.2
51.0
20.4
84.5 | 886
92.7
51.8
19.4
86.5 | 790
77.1
47.4
20.4
83.0 | 1010
71.4
56.7
21.1
91.0 | 1986
80.6
145.5
20.2
78.0 | 2069
86.7
147.0
19.0
77.5 | | | | 9778 | 243.6 | | 95/6 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | 784
68.8
46.2
19.8
86.4 | 1299
76.3
86.0
18.4
82.2 | 841
87.1
50.3
19.9
87.4 | 902
90.9
51.5
19.1
87.4 | 793
72.3
47.0
19.0
85.5 | 982
75.6
56.4
18.4
87.8 | 1811
71.4
149.0
17.0
76.8 | 2202
82.4
147.0
18.0
72.1 | | | | 9614 | 225.2 | | 10/56 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C | 0
0
14.0 | 1276
92.9
84.2
13.0 | 879
91.2
49.5
15.6
85.8 | 904
86.0
51.5
16.5
84.9 | 805
75.2
48.0
14.9
86.5 | 1034
91.0
56.5
14.8
87.5 | 2261
85.3
149.0
13.0
79.2 | 2337
87.5
149.0
13.0
80.5 | | | , | 9496 | 256.8 | | 11/56 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 0 | 1308
75.0
84.0
9.5
75.3 | 932
68.8
51.0
10.4
86.8 | 938
86.4
52.0
10.1
86.3 | 875
86.6
48.0
11.0
86.7 | 1079
86.8
56.3
10.5
87.7 | 2464
86.2
149.5
9.0
76.0 | 2448
83.8
148.5
8.9
77.9 | | | | 10044 | 249.6 | | 12/56 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 938
61.2
69.0
7.0
69.8 | 1411
78.9
84.0
7.3
73.5 | 963
84.9
51.3
9.6
87.3 | 1077
100.0
51.8
8.4
88.2 | 914
73.2
47.7
8.1
80.4 | 1045
73.1
56.0
9.6
82.7 | 2294
57.6
147.0
6.0
73.0 | 2573
88.2
148.0
6.6 | | | | 11215 | 266.8 | | | GWD | 5 266.7 | 237.2 | 256.9 | 285.8 | | 3 272.7 | |---------|-----------|---|--|---|--|--|--| | AVG | MW | 11625 | 11750 | 10999 | 11506 | 12026 | 11219 | | | *
2 | | | | | | | | | HGP | | | | | | | | | Z | | | | | ' | | | | ΚW | 2513
80.5
147.0
1.0
71.9 | 2529
84.9
150.0
2.6
77.0 | 2837
89.9
149.0
5.6
79.0 | 2824
83.9
150.5
7.8
84.0 | 2663
87.6
150.5
12.1
84.5 | 2565
85.0
155.5
16.4
83.9 | | | KE | 2586
80.5
146.0
1.8
72.1 | 2686
84.1
148.0
3.9
78.0 | 2628
72.0
149.5
5.2
81.7 | 2678
85.7
45.5
7.5
78.3 | 2478
79.8
150.0
13.0
82.4 | 2576
80.2
161.0
15.8
82.8 | | TOR | I | 1112
82.1
56.1
5.0
83.1 | 1161
84.8
56.1
5.8
86.0 | 1153
72.2
56.9*
7.8
88.8 | 1140
78.8
56.1
10.1
88.8 | 981
25.3 | 0 | | REACTOR | ıL | 972
68.0
47.8
4.8
87.8 | 1008
83.2
48.2
5.2
90.0 | 1010
71.8
47.4
6.7
90.8 | 00000 | 1058
40.4
72.9
13.6
79.5 | 1074
75.0
73.0
16.9
80.0 | | | DR | 7.0 | 1042
32.0
71.5
5.1
70.0 | 1100
78.1
68.9
7.5 | 1205
85.7
69.1
10.3
80.7 | 1151
78.0
69.2
13.1
82.2 | 1213
84.6
70.5
16.3
87.0 | | | a | 1031
84.6
51.1
3.2
86.2 | 1029
37.8 | 00 | 1084
80.4
67.2
10.0
80.7 | 1116
63.8
71.0
13.0
77.3 | 1145
77.1
71.0
16.5
84.8 | | | ပ | 1326
83.1
81.2
2.9
68.8 | 1265
64.1
81.6
4.4
72.0 | 1324
69.6
82.9
6.5
73.2 | 1348
74.1
83.0
8.1
74.9 | 1427
94.6
83.6
13.3
80.6 | 1410
86.6
85.0
15.5
83.5 | | | 8 | 979
89.2
71.0
3.0
62.3 | 1030
69.9
70.2
3.5
66.0 | 1147
59.8
71.0
5.5
72.1 | 1227
86.4
71.0
9.1
79.9 | 1152
67.4
70.5
14.1
83.8 | 1236
73.6
71.7
16.2
87.8 | | | PARAMETER | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN- °C
TEMP. OUT - °C | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | | | DATE | 1/57 | 2/57 | 3/57 | 4/57 | 5/57 | 6/57 | * Value given in source is 56.9 gpm | | GWD | 296.5 | 273.3 | 294.7 | 324.5 | 321.0 | 319.1 | |---------|-----------|---|--|--|--|--|--| | AVG. | MW | 12725 | 11726 | 12451 | 12825 | 13273 | 13158 | | | * 2 | | | | | | | | | нВР | | | | | | · | | | Z | | | | | | | | · | ΚW | 2848
75.7
165.0
18.1
89.0 | 2706
81.7
165.5
18.2
87.0 | 2511
82.8
162.0
18.0
84.8 | 2739
85.8
164.0
14.8
81.8 | 2874
80.7
152.5
10.5
87.0 | 2918
82.0
155.5
6.0
79.9 | | | KE | 2603
80.4
162.0
19.1
86.7 | 1576
45.7
165.5
 | 2300
85.0
164.0
18.1
82.1 | 2639
84.9
153.5
15.8
85.9 | 2794
82.3
152.0
12.7
85.3 | 2632
76.1
153.0
7.0
81.9 | | CTOR | I | 1124
63.7
69.4
20.2
85.4 | 1186
80.2
69.0
21.4
89.2 | 1198
77.4
70.3
20.1
87.7 | 1201
78.9
71.4
16.7
87.1 | 1237
84.3
69.0
12.5
83.2 | 1245
83.7
70.3
8.8
82.6 | | REACTOR | ட | 1222
90.5
73.2
19.6
87.1 | 1207
76.4
72.5
20.8
89.3 | 1276
80.0
71.5
19.9
91.9 | 1060
56.8
70.2
15.3
84.5 | 1246
82.1
71.2
11.1
83.8 | 1260
76.6
71.5
9.8
81.2 | | | DR | 1254
78.2
71.8
19.0
88.3 | 1244
88.0
70.7
18.9
88.0 | 1268
82.0
70.0
19.3
90.0 | 1241
71.5
70.4
15.9
90.2 | 1253
76.8
69.8
12.0
88.2 | 1222
58.9
69.1
9.8
88.2 | | | Q | 1216
83.4
70.9
19.0
89.0 | 1204
83.8
70.5
21.1
92.9 | 1218
72.3
71.0
18.9
88.0 | 1269
92.0
71.2
15.5
87.3 | 1242
78.8
71.0
13.6
84.6 | 1272
83.0
70.4
8.7
83.7 | | | ပ | 1335
50.9
85.5
18.7
84.8 | 1368
74.3
85.8
19.0
85.6 | 1436
71.7
87.0
19.0
85.8 | 1352
85.1
82.0
14.8
86.5 | 1329
76.1
82.5
10.4
78.0 | 1372
78.7
71.2
7.6
77.4 | | | c | 1123
73.1
71.0
19.1
91.3 | 1235
72.1
71.0
19.5
92.3 | 1244
71.7
71.0
19.4
93.0 | 1324
84.8
71.6
16.2
89.2 | 1298
82.0
71.5
10.6
84.1 | 1237
83.7
71.0
7.4
79.0 | | | PARAMETER | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN- °C
TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | | | DATE | 7/2/ | 8/57 | 9/57 | 10/57 | 11/57 | 12/57 | | | | | | | | REACTOR | TOR | | | | : | | AVG | | |------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|-----|-----|-----|-------------|-------| | DATE | PARAMETER | œ | ပ | ۵ | DR | ட | H | KE | ΚW | z | нСР | * 2 | M
M
M | GWD | | 1/58 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN- °C
TEMP. OUT - °C | 1333
74.1
70.8
7.6
82.8 | 1472
91.7
84.5
7.5
76.0 | 1265
87.5
71.0
8.3
80.8 | 1338
90.2
70.7
7.5
84.4 | 1297
71.4
71.4
9.2
83.2 | 1299
86.2
70.3
8.5
84.0 | 2765
74.9
152.5
7.5
81.9 | 2847
78.9
154.0
7.2
80.4 | | | | 13616 | 341.1 | | 2/58 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | 1286
80.8
70.8
8.0
84.1 |
1356
71.7
85.2
7.8
77.0 | 1291
88.7
70.9
8.0
83.8 | 1331
76.4
70.5
7.5
84.5 | 1329
89.3
72.4
8.0
81.6 | 1335
84.4
70.8
7.6
84.4 | 2877
78.7
153.5
7.2
81.0 | 2018
75.6
154.5
6.8
72.5 | • . | | | 12823 | 287.8 | | 3/58 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | 1218
71.7
70.6
7.9
83.3 | 1454
80.6
85.5
7.8 | 1305
79.5
71.2
9.4
84.2 | 1323
78.3
69.6
7.8
86.3 | 1342
76.7
72.2
9.2
82.9 | 1331
80.7
71.1
7.2
82.3 | 2790
67.7
158.0
7.5
82.9 | 2454
70.4
155.5
7.0
83.8 | | | | 13217 | 305.0 | | 4/58 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | 1306
84.8
70.8
11.8
86.2 | 1460
86.2
90.2
11.0 | 1335
84.9
70.2
10.3
88.0 | 1261
64.1
70.6
9.0
85.3 | 1351
84.2
72.5
11.3
84.3 | 1374
45.7
71.5
9.7
87.3 | 2550
73.8
173.0
8.9
74.9 | 2796
91.1
157.0
9.8
77.5 | | | | 13433 | 315.1 | | 5/58 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1330
77.8
71.0
15.9
90.6 | 1425
79.7
92.3
14.2
84.2 | 1275
82.2
70.7
14.8
90.0 | 1256
69.2
73.1
14.1
87.2 | 1348
81.6
73.0
14.5
88.1 | 1386
86.7
71.5
15.0
92.6 | 2462
72.7
157.5
14.8
79.8 | 2589
82.9
172.5
15.0
78.2 | | | | 13071 | 320.0 | | 6/58 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1361
81.1
71.0
17.2
92.8 | 1582
88.1
94.0
18.0
86.1 | 1224
82.5
71.0
17.2
91.5 | 1368
90.3
73.4
16.2
90.7 | 1392
86.6
73.0
17.3
91.3 | 1363
84.0
74.1
17.1
90.8 | 2853
92.2
157.0
17.4
86.8 | 2814
88.6
172.5
16.5
84.0 | | | | 13957 | 366.5 | | | GWD | 338 | 329.4 | 324.7 | 341.6 | 267.2 | 370.1 | |---------|-----------|---|--|---|--|--|--| | | AVG. | 13269 | 13160 | 13501 | 13383 | 13746 | 13798 | | | * | | | | | | | | | НСР | | | | | | | | | Z | | | | | | | | | ΚW | 2536
80.6
173.5
20.4
83.0 | 2573
87.0
173.0
20.1
85.7 | 2804
87.0
172.5
18.8
85.5 | 2900
91.7
172.0
17.7
85.8 | 3090
7.8
 | 2385
80.9
171.0
8.0
71.9 | | | KE | 2707
93.0
147.0
20.0
83.7 | 2711
80.1
174.0
21.3
87.6 | 2838
85.4
175.5
19.0
86.1 | 2508
76.9
172.0
18.0
83.9 | 2757
91.6
172.5
8.5
71.4 | 2859
84.1
172.5
8.1
77.7 | | REACTOR | Ξ | 1326
84.7
74.5
21.7
93.5 | 1280
88.0
74.9
22.0
92.9 | 1273
78.6
76.8
20.2
92.5 | 1265
76.0
79.3
16.8
86.9 | 1365
93.7
80.9
9.5
78.2 | 1440
100.0
80.6
9.1
78.2 | | REAC | щ | 1357
85.9
73.7
21.6
93.5 | 1321
82.1
75.5
22.6
91.2 | 1227
78.2
75.1-
21.5
89.0 | 1317
97.4
75.2
17.0
86.9 | 1252
65.7
80.5
10.2
75.7 | 1439
100.0
80.0
9.9
78.1 | | | DR | 1347
66.9
73.6
21.4
93.5 | 1278
67.2
73.2
21.8
88.9 | 1278
71.5
74.2
19.1
91.0 | 1215
57.7
76.5
16.1
86.1 | 1245
63.1
76.9
9.3
79.0 | 1336
72.6
78.9
8.7
78.2 | | | O | 1270
78.7
75.2
22.0
90.9 | 1242
87.0
77.5
22.4
89.8 | 1333
85.0
78.7
20.1
89.1 | 1399
94.5
78.7
16.9
86.8 | 1399
92.2
78.8
10.0
79.3 | 1403
90.2
80.2
9.5
78.1 | | | ပ | 1460
77.1
94.5
20.7
87.5 | 1482
71.1
94.0
21.8
89.0 | 1481
74.3
95.0
18.5
87.7 | 1482
78.5
93.8
15.3
83.1 | 1284
62.3
93.5
8.6
79.1 | 1581
83.3
94.2
8.1
77.8 | | | 83 | 1266
82.0
73.3
21.2
91.7 | 1273
79.4
72.3
21.9
91.6 | 1267
67.4
73.9
20.0
90.0 | 1297
77.1
75.3
16.2
87.4 | 1354
85.9
76.2
9.3
77.6 | 1355
86.6
76.8
8.1
79.2 | | | PARAMETER | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN- °C TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN -°C
TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | | | DATE | 7/58 | 8/58 | 9/58 | 10/58 | 11/58 | 12/58 | | | | | | | , | REACTOR | :TOR | | | | | | 27.6 | | |------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---|-----|---|-------|-------| | DATE | PARAMETER | В | ၁ | D | DR | u. | I | KE | ΚW | Z | HGP | * | MW | GWD | | 1/59 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN- °C | 1345
53.3
78.2
6.1
76.8 | 1509
69.2
94.8
5.7
76.3 | 1404
86.5
79.4
6.7
76.3 | 1360
78.9
78.4
6.1
75.6 | 1362
76.0
81.2
7.5
74.4 | 1368
70.6
81.4
6.2
77.3 | 2922
90.6
171.5
5.1
76.2 | 2824
85.7
171.5
5.6
74.8 | , | | | 14094 | 344.6 | | 2/59 | AVG. GP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1458
87.7
78.0
4.8
78.0 | 1695
75.5
94.5
4.7
77.8 | 1435
92.0
79.9
5.4
79.2 | 1502
99.9
80.0
4.4
79.3 | 1498
100.0
81.2
5.9
78.2 | 1494
83.5
81.2
5.0
80.3 | 3189
92.4
172.5
4.1
77.0 | 3038
92.4
171.5
3.8
74.6 | | | | 15309 | 388.6 | | 3/59 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | 1468
86.3
79.0
7.0
80.8 | 1760
74.3
95.3
6.0
79.5 | 1437
78.7
78.4
6.4
82.9 | 1466
82.9
80.2
6.0
83.8 | 1415
65.4
81.4
7.4
77.2 | 1599
100.0
81.8
6.9
81.9 | 2775
78.5
171.5
5.2
78.6 | 3119
87.5
171.0
5.2
77.3 | | | | 15039 | 382.9 | | 4/59 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1468
92.1
79.9
9.5
81.3 | 1625
70.3
94.2
9.5
86.0 | 1458
83.8
78.4
10.1
88.0 | 1426
80.7
80.2
9.0
86.2 | 1509
86.8
82.3
10.6
80.8 | 1530
83.4
82.5
9.0
83.4 | 2747
45.3
157.5
6.7
79.3 | 3148
84.5
173.5
8.5
81.3 | | | | 14911 | 340.7 | | 65/5 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1444
73.8
80.0
11.7
86.7 | 1737
82.2
95.0
12.1
85.2 | 1457
92.6
78.6
12.6
87.5 | 1479
89.3
79.3
11.5
86.5 | 1399
53.4
82.3
12.6
82.8 | 1480
81.5
83.0
12.0
86.0 | 2493
53.2
174.5
11.1
78.8 | 2752
81.0
176.5
12.0
78.4 | | | | 14241 | 330.8 | | 6/29 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1471
82.9
83.1
14.7
87.7 | 1693
81.9
95.2
14.3
87.2 | 1412
73.2
78.9
15.6
90.5 | 1471
81.4
79.5
14.4
87.6 | 1356
83.2
82.2
15.0
84.2 | 1428
80.4
85.2
14.7
85.7 | 3040
88.8
175.0
13.9
83.8 | 2882
89.0
178.0
13.9
78.5 | | | | 14753 | 371.2 | | | | | | | | REACTOR | :TOR | | | | | | 977 | | |-------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---|-----|---|-------|-------| | DATE | PARAMETER | 8 | ပ | D | DR | Ŧ | H | KE | ΚW | Z | НВР | * | MW G | GWD | | 7/59 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN- °C
TEMP. OUT - °C | 1477
89.1
83.0
18.6
90.9 | 1715
84.8
95.3
18.2
88.6 | 1429
90.6
81.0
18.0
92.1 | 1399
71.8
82.0
17.8
88.5 | 1483
80.8
82.2
18.1
87.6 | 1593
100.0
85.4
18.2
90.8 | 2739
76.0
175.0
17.4
85.4 | 2939
85.3
178.5
17.6
85.2 | | | | 14774 | 385.9 | | 8/59 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | 1457
77.5
82.8
18.8
91.1 | 1731
83.5
95.8
18.3
89.9 | 1484
83.0
81.0
18.8
92.8 | 1547
89.9
83.4
19.3
91.8 | 1462
87.7
85.4
19.5
88.3 | 1448
79.6
85.3
18.8
90.3 | 3044
83.5
174.5
18.6
90.8 | 3193
91.7
178.0
17.8
88.1 | | | | 15366 | 406.1 | | 65/6 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | 1499
83.3
82.8
17.2
88.2 | 1615
65.4
96.4
16.7
87.0 | 1520
94.3
81.1
17.7
92.0 | 1498
94.4
82.0
17.5 | 1401
70.5
83.6
17.6
86.3 | 1543
83.4
85.8
17.9
89.0 | 3142
88.2
174.5
16.5
89.1 | 3300
88.0
178.0
16.3
89.3 | | | | 15527 | 393.3 | | 10/29 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1454
79.6
80.3
13.6
87.2 | 1760
94.4
95.2
13.7
88.3 | 1548
89.9
79.0
13.7
92.3 |
1497
80.8
80.2
14.6 | 1460
83.5
83.4
16.4
91.8 | 1581
84.3
84.5
14.1 | 3153
82.8
175.5
12.9
87.1 | 3302
78.9
178.5
12.7
86.8 | | | | 15755 | 408.8 | | 11/59 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1619
87.8
80.0
9.9
87.8 | 1812
77.9
95.0
9.0
84.8 | 1449
72.1
78.8
11.1 | 1603
93.8
80.0
9.3 | 1274
93.8
83.6
9.9
87.8 | 1631
85.2
83.4
10.0 | 3317
92.8
174.0
8.5
86.5 | 3415
90.9
179.0
8.3
85.7 | | | | 16120 | 424.5 | | 12/59 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1405
75.4
82.9
7.6
80.8 | 1756
77.0
96.0
7.4
81.5 | 1597
90.0
79.0
6.5
86.8 | 1543
75.3
79.9
6.4
84.0 | 1610
80.7
83.4
8.5
86.1 | 1636
89.0
83.2
8.6
90.0 | 3325
80.2
176.0
7.0
86.2 | 3406
90.1
179.5
5.0
83.6 | | | | 16278 | 418.3 | | Times and proceeds | | | | | | REACTOR | TOR | | | | | • | 0,74 | | |--------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---|-----|---|-------|-------| | DATE | PARAMETER | В | ပ | D | DR | F | I | KE | KW | z | HGP | * | MW.G | GWD | | 1/60 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN- °C
TEMP. OUT - °C | 1540
81.7
80.5
4.8
84.0 | 1743
79.9
94.8
4.0
87.1 | 1595
74.4
77.7
4.2
88.2 | 1556
88.9
79.6
4.8
87.2 | 1624
79.1
83.3
4.5
86.6 | 1684
82.4
83.5
5.2
89.5 | 3549
85.3
178.0
3.3
81.7 | 3507
85.7
179.5
3.3
83.4 | | | · | 16798 | 431.7 | | 2/60 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1594
74.8
80.0
4.0
84.9 | 1781
73.0
94.5
4.2
85.2 | 1639
86.7
78.2
5.5
91.2 | 1533
69.2
80.0
4.6
89.3 | 1699
68.8
83.5
5.2
88.2 | 79.1
84.0
5.1
89.4 | 3372
78.3
180.0
4.0
83.5 | 3598
82.5
179.5
3.5
83.5 | | | | 16924 | 380.0 | | 3/60 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1544
80.1
81.0
5.6
85.0 | 1783
81.6
95.0
6.2
86.2 | 1632
79.2
78.9
6.9
92.0 | 1733
84.6
80.0
6.5
92.5 | 1590
74.8
82.4
8.1
89.8 | 1761
79.2
84.2
6.6
91.8 | 3289
85.2
180.5
5.3
79.0 | 3540
82.3
180.0
5.4
83.1 | | | | 16872 | 335.9 | | 4/60 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1619
71.9
80.5
8.9
90.3 | 1842
70.5
95.5
10.3
86.8 | 1710
91.5
82.0
10.9 | 1754
89.5
82.8
10.8
93.0 | 1553
84.3
83.4
9.8 | 1759
77.1
87.5
11.5 | 3378
80.9
181.0
10.9
83.1 | 3560
87.3
179.5
9.2
85.9 | | | : | 17175 | 423.1 | | 2/60 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1635
88.6
81.0
13.1
92.2 | 1851
86.6
94.5
12.7
89.0 | 1601
81.2
82.2
11.8 | 1580
73.1
82.5
12.0
88.8 | 1604
89.1
86.1
13.2
88.0 | 1765
79.0
86.8
11.7
93.3 | 3574
93.3
182.0
12.7
87.5 | 3327
90.4
180.0
12.2
88.1 | | | | 16937 | 454.8 | | 09/9 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1584
82.3
84.0
16.3
90.2 | 1805
78.8
95.8
16.0
90.7 | 1659
88.8
83.7
15.8
93.2 | 1594
92.6
84.1
15.9
93.0 | 1531
83.1
86.5
16.3
89.1 | 1675
63.4
86.6
15.8
93.1 | 3589
91.9
183.5
15.8
90.5 | 3553
94.5
180.0
15.0
91.4 | | | | 16990 | 435.2 | | | GWD | 409.1 | 418.7 | 425.4 | 420.6 | 456.3 | 471.5 | |---------|-------------------|---|--|--|--|--|--| | AVG | M
M | 16486 | 16172 | 16683 | 16975 | 17737 | 18092 | | | * | | | | | | | | | н | | | | | | | | | Z | | · | | | | | | | Κ | 3413
86.2
179.0
19.2
91.9 | 3343
84.0
182.0
17.9
90.6 | 3493
88.7
181.5
18.0 | 3447
86.9
181.5
13.9
91.3 | 3701
50.4
182.0
9.8
91.3 | 3872
86.3
182.0
6.0
89.6 | | | KE | 3368
78.6
180.5
19.5
91.3 | 3169
73.4
180.5
18.5
91.1 | 3515
94.5
180.0
18.0
94.2 | 3620
86.1
180.5
14.2
92.7 | 3742
83.6
179.5
10.5
91.4 | 3497
74.9
180.5
6.8
86.0 | | REACTOR | I | 1622
77.3
87.2
20.5
93.4 | 1631
86.7
87.2
20.2
93.1 | 1596
87.0
88.0
20.0
93.2 | 1564
72.5
87.2
17.9
90.8 | 1673
81.4
87.1
13.0
93.3 | 1834
92.5
86.7
10.3
93.2 | | REAC | щ | 1550
69.9
86.9
20.6
91.2 | 1575
87.4
87.3
20.0
93.2 | 1613
90.6
86.1
19.8
93.0 | 1605
67.4
86.8
16.3
91.2 | 1723
84.6
86.8
11.9 | 1760
83.4
86.7
9.8
89.4 | | | DR | 1618
89.8
83.9
19.7
93.2 | 1454
85.6
83.5
19.7
92.9 | 1569
77.7
84.8
19.0
94.2 | 1665
65.3
85.0
17.6
94.3 | 1574
82.4
85.0
11.2
90.3 | 1715
89.4
84.2
9.0
88.9 | | | ۵ | 1556
72.8
84.8
19.2
93.2 | 1571
85.2
85.0
19.5
92.8 | 1577
67.7
84.8
19.0
93.4 | 1652
89.5
84.8
15.4
90.9 | 1718
86.1
84.9
11.0
91.8 | 1773
92.6
85.3
8.3
89.9 | | | ပ | 1792
78.5
95.8
20.0
92.9 | 1825
94.2
96.0
18.5 | 1809
79.5
95.8
18.4
92.3 | 1835
80.2
96.0
14.4
91.2 | 1929
87.7
95.0
10.0
89.5 | 1922
77.8
95.3
7.7
90.8 | | | \(\Omega\) | 1567
81.5
85.3
20.0
93.0 | 1604
79.8
85.3
18.5
91.4 | 1508
78.6
85.2
18.7
93.1 | 1587
75.7
85.7
14.6
91.6 | 1677
86.3
84.8
10.5
90.3 | 1719
82.2
85.0
6.8
89.3 | | | PARAMETER | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN- °C
TEMP. OUT - °C | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | | | DATE | 09// | 8/60 | 09/5 | 09/01 | 11/60 | 12/60 | | | | | | | | REACTOR | TOR | | | | | | | | |------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---|-----|---|-------|-------| | DATE | PARAMETER | 8 | ပ | D | DR | ч. | I | KE | ΚW | Z | HGP | * | MV G | GWD | | 19/1 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN- °C | 1758
78.1
84.5
6.0
86.8 | 2011
87.5
95.5
5.8
90.2 | 1750
75.3
85.6
5.3
86.2 | 1746
73.6
83.0
6.8
92.8 | 1775
80.3
86.7
6.9
88.0 | 1709
65.5
86.2
7.4
90.0 | 3802
85.2
181.0
5.6
89.6 | 3900
90.3
181.5
5.8
88.9 | | · | | 18451 | 466.3 | | 2/61 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1783
85.3
84.8
6.0
89.8 | 2072
81.0
96.3
5.7
91.1 | 1864
83.9
86.0
6.7
92.0 | 1871
94.3
86.1
5.7
91.2 | 1755
72.1
84.4
6.4
89.3 | 1659
63.4
86.3
6.0
90.3 | 3505
84.6
181.0
4.9
88.3 | 3930
93.8
182.5
4.6
89.0 | | | | 18439 | 433.9 | | 3/61 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | 1733
72.8
85.8
6.2
88.8 | 1971
76.0
96.0
8.1
91.3 | 1871
83.0
86.3
7.9
92.0 | 1764
77.9
86.4
7.0
89.0 | 1800
68.5
88.3
7.9
90.3 | 1836
82.3
86.4
8.0
93.3 | 3818
72.6
182.0
7.8
90.2 | 3810
74.0
182.5
6.1 | | | | 18603 | 434.7 | | 4/61 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1787
84.3
86.2
11.7
92.5 | 2006
81.8
95.5
10.9
93.7 | 1799
78.7
86.8
11.3
93.3 | 1628
65.6
87.2
9.7
89.0 | 1860
87.6
89.1
11.8 | 1752
83.5
86.4
12.4
91.1 | 3793
80.7
183.0
10.7
89.2 | 3867
85.6
183.5
10.4
92.0 | | | | 18492 | 452.8 | | 5/61 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1726
73.3
87.5
13.2
93.5 | 1971
80.0
98.5
12.7
93.8 | 1834
83.6
87.2
12.5
93.4 | 1803
79.8
87.8
12.3
93.7 | 1759
70.4
90.3
12.6
90.0 | 1616
55.6
86.2
13.5
92.0 | 3851
86.1
182.5
12.2
92.9 | 3821
87.7
184.0
12.2
92.0 | | | | 18381 | 453.1 | | 19/9 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1760
78.3
88.0
17.2
93.1 | 1908
70.6
99.8
15.5
93.9 | 1732
68.6
87.5
16.1
93.2 | 1769
82.8
90.1
16.0
92.9 | 1742
77.5
89.9
15.4
93.7 |
1655
77.9
87.8
16.5
93.1 | 3804
86.6
183.5
16.0
94.8 | 3807
83.5
184.5
15.3
94.6 | | | | 18177 | 434.7 | | | | | | | | REACTOR | TOR | | | | | | AVG | | |-------|--|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|---------------------------------------|---------------------------------------|---|-----|---|-------------|-------| | DATE | PARAMETER | . B | ၁ | D | DR | u. | I | KE | ΚW | Z | HGP | * | j
N
E | GWD | | 19/2 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN- °C
TEMP. OUT - °C | 1709
79.8
88.0
20.9
93.3 | 1990
94.9
100.0
20.5
94.6 | 1656
71.9
87.9
21.3
93.3 | 1129
42.2
88.0
20.3
65.6 | 1657
51.6
89.9
20.2
92.6 | 1645
93.7
87.1
21.7
93.5 | 3647
87.3
183.5
19.9
94.5 | 3641
90.1
185.0
20.0
94.8 | | | | 17074 | 427.2 | | 8/61 | AWG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1596
75.8
88.4
21.1
93.5 | 1863
60.8
100.2
21.2
94.8 | 1607
70.8
88.2
21.0
93.2 | 1369
81.4
88.5
20.9
90.1 | 1401
89.4
90.0
20.9
93.6 | 1554
73.7
86.3
22.5
93.0 | 3558
85.0
184.0
20.7
94.7 | 3506
79.3
185.5
21.4
94.6 | | | | 16454 | 396.7 | | 19/6 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1669
68.4
88.6
19.0
93.5 | 1933
85.4
101.5
17.6
94.7 | 1541
61.7
88.0
19.0
93.3 | 1614
65.0
88.7
18.7 | 1663
67.7
90.1
18.9
93.4 | 1442
51.5
86.3
20.0
91.9 | 3508
82.8
184.5
17.4
94.2 | 3629
87.9
184.5
17.0 | | | | 66691 | 382.7 | | 19/01 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1612
70.1
88.2
14.4
91.7 | 1970
80.1
100.0
14.1
94.5 | 1618
76.9
88.0
15.0 | 1591
59.3
88.0
14.9 | 1738
68. 5
90. 3
15. 9
93. 4 | 1605
81.9
86.0
15.5
93.1 | 3745
81.2
185.5
14.0
92.9 | 3752
89.2
185.5*
13.7 | | | | 17631 | 427.4 | | 19/11 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1717
47.2
88.0
9.3
91.3 | 2081
84.7
100.0
9.6
94.8 | 1687
63.5
88.0
12.7
93.2 | 1756
83.1
87.8
10.8
91.3 | 1799
71.6
89.9
11.8
93.5 | 1570
65.3
86.0
13.6
92.2 | 3816
89.4
184.5
9.6
89.3 | 3972
90.6
185.0
9.1 | | | | 18399 | 432.8 | | 12/61 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1648
65.1
88.0
6.3
85.6 | 1965
47.6
97.7
7.3
89.2 | 1924
63.4
87.8
9.0
93.2 | 1746
80.0
87.7
8.8
90.5 | 1822
75.3
90.3
9.3
88.6 | 1710
75.7
84.9
8.8
92.5 | 3870
78.0
184.0
6.6
92.7 | 4023
91.9
184.5
6.9
90.7 | | | | 18708 | 434.2 | * Source of data gives suspect value of 18.55 KGPM | | | | | | | REACTOR | TOR | | | | | | AVG | | |------|--|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---|-----|----|------------|-------| | DATE | PARAMETER | 8 | ပ | O | DR | L. | I | KE | ΚW | z | НВР | *2 | MW | GWD | | 1/62 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN- °C | 1631
35.2
88.0
5.0
85.0 | 2082
74.1
97.7
3.0
89.8 | 1610
65.7
87.1
5.8
51.9 | 1734
50.6
87.8
6.2
87.8 | 1756
86.9
90.8
6.2
78.8 | 1613
54.7
85.3
3.9
83.1 | 4248
86.2
188.0
4.9
92.0 | 3977
73.4
185.0
3.6
90.4 | | | | 18651 | 404.3 | | 2/62 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1769
67.1
88.0
5.2
86.3 | 2173
69.1
98.0
5.4 | 1631
62.3
87.0
6.3
81.3 | 1825
91.1
87.7
6.7
88.1 | 1611
36.1
90.7
6.4
78.2 | 1723
54.7
86.1
6.4
87.1 | 4326
91.5
188.8
5.0 | 3917
82.9
185.5
4.0
93.6 | | | | 18975 | 408.8 | | 3/62 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | 1730
82.9
88.0
7.2
91.9 | 2216
63.9
101.5
6.6 | 1930
64.9
87.0
7.1
93.4 | 1728
35.7
87.2
5.0
85.0 | 1749
88.1
88.7
8.5
88.0 | 1746
81.5
85.7
8.3
89.2 | 4298
78.4
187.6
5.9
93.6 | 4222
90.5
186.5
6.3
94.6 | | | | 19619 | 461.1 | | 4/62 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1684
33.3
88.2
8.3
92.2 | 2140
77.2
100.5
9.0 | 1762
70.9
87.0
9.0 | 1648
69.2
88.0
8.9
8.9 | 1790
81.3
89.5
8.5
87.2 | 1698
48.9
86.3
9.4
91.8 | 4155
81.9
188.6
8.3
94.6 | 4085
82.5
188.0
8.4
94.5 | | | | 18962 | 409.8 | | 5/62 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1761
84.9
89.0
12.5
93.3 | 2074
52.2
101.5
11.7 | 1813
83.7
87.0
12.1
93.4 | 1734
89.3
88.0
12.1 | 1762
50.1
88.9
12.2
92.8 | 1693
41.1
86.1
11.0 | 3988
83.4
193.7
12.0
94.5 | 4051
86.6
188.0
11.6
94.4 | | | | 18876 | 435.7 | | 6/62 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1761
80.1
89.5
17.2
93.2 | 1909
44.6
100.4
16.5
94.2 | 1745
82.3
87.0
16.2
93.3 | 1619
38.3
87.0
16.0
93.1 | 1724
68.1
89.3
15.1
93.4 | 1689
59.6
86.1
15.5
93.1 | 4087
86.8
200.8
15.7
94.2 | 3983
88.6
188.5
15.0
94.0 | | | | 18535 | 407.6 | | | GWD | 4 436.2 | 2 364 | 1 494.3 | 5 502.6 | 9 385.0 | 1 462.9 | |---------|-----------|---|--|---|--|--|--| | 97.4 | | 19024 | 19302 | 1981 | 19705 | 19219 | 19261 | | | * | | | · | | | | | | HGP | · | | | | | | | | z | | | | | | | | | ΚW | 4349
82.3
205.5
3.5
84.8 | 4253
59.5
204.0
4.9
86.4 | 4353
94.9
204.0
5.6
87.6 | 4206
78.4
206.0
8.9
90.2 | 3804
30.4
207.0
13.5
91.9 | 4337
100.0
206.5
14.9
94.4 | | | KE | 4162
84.0
206.0
4.9
86.6 | 3989
62.2
205.0
4.8
86.5 | 4215
82.4
205.0
6.0
87.5 | 4336
93.0
205.5
9.3
90.4 | 4399
35.7
205.0
10.7
91.6 | 4201
75.8
205.8
15.7
94.5 | | TOR | I | 1489
28.0
 | 1805
96.2
84.8
6.4
93.0 | 1861
92.9
84.3
7.9
93.3 | 1827
86.8
84.2
10.1
93.3 | 1687
70.7
84.6
14.6
93.4 | 1719
100.0
84.5
16.5
93.4 | | REACTOR | щ | 1726
50.6
90.3
5.7
85.0 | 1843
89.9
90.1
6.1
84.8 | 1835
83.6
89.5
6.3
86.0 | 1792
94.2
89.3
9.3
87.2 | 1791
87.2
89.9
13.0
90.4 | 1751
73.9
90.2
15.1
92.6 | | | DR | 1646
81.0
86.1
5.2
81.4 | 1721
44.0
85.6
5.2
85.3 | 1658
72.6
86.3
7.6
87.9 | 1810
87.7
86.9
10.0
87.1 | 1749
90.3
87.4
14.0
92.0 | 1737
86.0
87.0
16.0
93.6 | | | D | 1790
79.4
87.8
4.8
89.5 | 1893
76.7
87.8
5.6
92.0 | 1879
45.1
87.3
7.9
92.5 | 1867
84.5
87.7
10.4
92.8 | 1823
94.6
87.5
14.4
93.3 | 1737
46.8
87.3
15.9
93.4 | | | ၁ | 2021
82.0
97.8
3.8
88.1 | 2069
71.2
97.8
4.7
88.3 | 2146
62.8
97.5
6.2
88.8 | 2062
76.5
97.5
9.6
9.6 | 2181
95.1
100.0
14.5
94.5 | 2039
80.5
100.0
16.4
95.0 | | | В | 1841
70.2
89.3
6.3
86.9 | 1679
52.5
89.0
6.7
87.7 | 1864
90.1
89.0
8.2
88.4 | 1805
78.0
89.3
10.7
88.2 | 1785
87.3
89.8
15.2
92.5 | 1740
54.4
90.7
17.0
94.9 | | | PARAMETER | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN- °C
TEMP. OUT - °C | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN -°C
TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | | | DATE | 1/63 | 2/63 | 3/63 | 4/63 | 5/63 | 6/63 | | | | | | | | REACTOR | TOR | | | | | | AVG | | |-------|--|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---|--|---|-----|---|--------|-------| | DATE | PARAMETER | 8 | ၁ | D | DR | L | Ξ | KE | ΚW | Z | HGP | * | N
N | GWD | | 1/63 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN- °C
TEMP. OUT - °C | 1718
79.9
90.5
19.4
94.5 |
1978
89.7
100.0
18.7
94.6 | 1672
82.1
87.8
18.5
93.5 | 1691
82.2
97.0
18.3
93.6 | 1778
92.9
89.8
17.8 | 1652
87.7
83.7
19.4
93.8 | 3991
76.1
206.0
18.0
94.9 | 3957
73.3
206.5
17.8
94.5 | | | · | 18437 | 463.4 | | 8/63 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | 1698
85.4
90.4
20.4
95.0 | 1915
81.8
100.2
19.7
93.8 | 1674
99.9
87.5
20.0
93.5 | 1657
86.7
87.5
19.1
93.5 | 1727
89.9
87.5
19.3
93.5 | 1573
88.7
83.5
20.9
94.5 | . 4023
64.4
206.2
18.6
94.8 | 3555
19.3
210.0
19.3
94.1 | | | | 17822 | 382.9 | | 89/6 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN -°C
TEMP. OUT - °C | 1725
88.7
90.0
20.2
94.3 | 1868
61.6
100.0
19.2
94.8 | 1627
82.3
87.7
20.8
93.0 | 1651
91.0
87.1
20.4
93.8 | 1666
72.8
89.8
19.2
94.1 | 1554
58.3
84.6
21.7
94.6 | 3682
47.2
206.0
18.9
94.6 | 4144
100.0
208.0
18.7
94.6 | | | | 17917 | 405.7 | | 10/63 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1748
86.3
90.4
15.3
94.3 | 2020
93.0
97.5
14.7 | 1675
75.8
87.8
14.2
94.0 | 1707
83.1
87.6
14.6 | 1755
87.7
89.7
14.4
94.0 | 1663
93.5
84.7
15.4
95.0 | 4111
23.6
205.0
18.0
94.3 | 3957
80.7
208.0
14.6
94.2 | | | | 18636 | 413.3 | | 11/63 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1895
92.6
89.5
10.7
93.3 | 2018
77.6
96.0
10.1 | 1821
95.0
87.8
11.4 | 1781
83.5
86.3
11.9 | 1778
76.3
89.5
11.6
93.8 | 1782
100.0
84.9
12.9
94.7 | 4304
92.0
205.5
10.0
91.4 | 3870
26.9
208.0
10.0
89.8 | | | | 19249 | 440.3 | | 12/63 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | 1894
84.7
89.9
8.6
90.8 | 2134
75.1
99.5
8.0
94.2 | 1914
90.7
88.0
8.2
94.6 | 1813
77.8
87.1
8.2
93.4 | 1805
77.0
89.3
7.8
91.0 | 1771
85.4
84.5
9.4
93.6 | 4148
76.0
206.0
7.3
88.5 | 4194
82.6
208.0
7.6
87.7 | | | | 19673 | 492.0 | | <u>د</u> | ن | | C | <u> </u> | REACTOR | CTOR | 7 | KW | Z | d DH | * | AVG. | ON S | |---|---|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---|------|---|-------|-------------| | 1853 | Commercial | 220] | | 1873 | 1906 | 1840 | 4351 | KW
4393 | 2 | HGF | 2 | 20366 | GWD | | | | 77.0
96.2
5.6
94.1 | 79.9
88.8
6.6
93.4 | 88.9
87.6
6.7
91.5 | 51.9
89.1
6.8
90.1 | 34.0
93.3
8.2
88.4 | 68.1
205.5
5.8
5.8
87.1 | 4353
100.0
207.5
5.3
85.8 | V | | | 2007 | ?
?
? | | 1895
81.5
89.3
6.0
94.5 | | 2262
79.5
97.8
5.7
94.2 | 1999
87.3
78.8
5.4
93.6 | 1928
86.9
87.6
5.8
94.2 | 1900
86.7
88.8
6.5
90.8 | 1967
93.8
93.3
7.0
92.5 | 4102
43.1
207.5
4.7
85.5 | 4396
41.5
207.5
4.9
85.5 | · | | | 20449 | 387.7 | | 2030
51.7
89.2
6.3
94.8 | | 2237
85.7
96.2
6.4
95.0 | 1996
91.5
88.0
7.5
94.4 | 1943
66.9
87.5
7.7
93.7 | 1954
66.3
89.1
7.6
94.0 | 2042
93.1
93.3
8.5
93.5 | 4402
100.0
206.0
6.1
87.0 | 4314
70.7
208.0
6.3
86.0 | | | | 20918 | 519.0 | | 1853 21
77.1 83
89.5 96
9.9 9 | 26 | 2178
83.6
96.0
9.4
94.7 | 1823
38.5
88.8
9.6
94.2 | 1880
68.4
87.2
10.2
93.4 | 1749
71.5
89.6
9.6
94.3 | 1709
43.4
93.3
10.5
91.6 | 4189
68.4
207.0
9.9
90.5 | 4362
89.1
209.5
8.4
88.3 | | | | 19744 | 419.5 | | 1808 2.75.6 80.9 99.9 12.8 13.8 13.9 94.9 | 2 8 9 E 9 | 2101
80.8
99.6
13.9
93.5 | 1892
89.0
88.8
13.3 | 1835
85.2
87.2
13.4
94.5 | 1843
80.8
89.0
14.4
93.8 | 1949
96.5
93.3
13.0
93.6 | 4330
94.8
207.0
13.4
93.9 | 4369
84.8
209.5
12.8
92.8 | | | | 20127 | 542.2 | | 1855 20
91.9 80
90.0 99
15.9 15 | 76 76 76 76 76 76 76 76 76 76 76 76 76 7 | 2035
80.9
99.9
15.0
94.0 | 1860
83.6
89.0
14.5
94.0 | 1807
88.1
87.2
14.3
94.2 | 1841
86.6
89.0
15.4
94.2 | 1864
96.1
93.2
15.3
93.6 | 4305
75.9
208.5
14.8
94.9 | 4329
81.8
209.5
14.4
93.9 | | | | 19886 | 500.8 | | | GWD | 501.0 | 488.2 | 495.3 | 406.0 | 536.7 | 604.2 | |---------|-----------|---|--|--|--|--|--| | AVG. | N
N | 20648 | 20567 | 21529 | 21208 | 22493 | 23501 | | | * | | | | · | | | | | НВР | | | | | | _ | | | Z | 1140
56.9
164.0
18.1 | 1560
27.4
375.0
20.0
71.1 | 2660
46.8
500.0
21.1
56.1 | 2456
23.3
v300.0
15.6
52.8 | 2932
63.0
300.0
14.4
56.7 | 3476
77.0
325.0
8.3
55.6 | | | KW | 4250
82.2
209.5
17.5
94.5 | 4127
81.9
208.5
18.1
94.3 | 4270
95.3
210.0
16.7
94.4 | 3963
32.9
210.0
13.8
92.2 | 4320
84.4
209.0
9.6
89.3 | 4169
84.0
206.5
4.0
84.5 | | | KE | 4277
89.8
209.0
17.8
94.9 | 4235
59.7
209.0
17.8
94.9 | 4102
62.5
210.0
16.3
94.9 | 4265
85.3
209.0
14.0 | 4347
85.0
210.0
9.9
89.6 | 4331
85.7
209.0
4.3
84.5 | | TOR | I | 1851
75.6
93.3
19.1
93.6 | 1832
100.0
92.8
18.3
93.8 | 1756
76.1
92.6
19.8
93.9 | 1802
88.2
93.9
16.4
94.2 | 1794
86.1
93.2
12.5
89.9 | 1934
85.4
93.3
6.5
93.3 | | REACTOR | ᄠ | 1741
88.8
89.3
19.6
94.4 | 1732
91.5
89.9
19.2
93.9 | 1681
86.4
89.9
18.0
93.0 | 1768
87.0
89.9
16.5
93.7 | 1812
82.0
89.8
11.7
92.0 | 1895
82.2
87.1
8.8
87.0 | | | DR | 1762
88.6
87.8
18.0
94.5 | 1706
78.1
87.8
17.1
93.8 | 1696
84.8
88.0
16.5
93.1 | 1627
71.9
88.0
15.2
53.2 | 1807
95. 0
87. 5
10. 0
93. 1 | 1837
91.7
87.1
6.0
85.3 | | | Q | 1800
94.8
89.2
18.1 | 1748
91.0
89.0
17.6 | 1743
87.1
89.0
16.5
94.0 | 1660
45.6
88.4
16.0
94.6 | 1713
70.2
89.3
11.2
93.1 | 1901
85.5
89.0
5.3
92.1 | | | ပ | 2041
39.1
99.5
18.3
94.0 | 1976
86.0
100.0
17.6
93.7 | 1985
80.0
101.3
16.3
93.0 | 1980
68.7
99.2
15.4
94.9 | 2092
70.6
99.5
10.2
94.1 | 2204
73.6
100.1
5.0
91.0 | | | 83 | 1786
65.3
89.2
19.0
91.2 | 1651
83.1
89.0
18.2
91.0 | 1636
79.3
88.2
16.8
92.8 | 1687
69.3
88.9
15.3
93.5 | 1676
76.0
89.1
10.6
88.3 | 1754
83.1
87.5
6.9
88.0 | | | PARAMETER | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN- °C
TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C |
AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | | | DATE | 7/64 | 8/64 | 9/64 | 10/64 | 11/64 | 12/64 | | DATE | PARAMETER | 6 | ပ | Q | DR | REACTOR | TOR
H | X | X | z | HGF | * | AVG. | GWD | |-------|--|--------------------------------------|---------------------------------------|--------------------------------------|----|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|-----|---|-------|-------| | 1/65 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN- °C TEMP. OUT - °C | 1888
81.3
87.5
6.9 | 2157
84.8
99.8
7.6 | 1812
80.9
89.0
11.0 | | 1987
100.0
88.7
10.0 | 2033
90.6
92.9
9.3 | 4332
74.0
208.2
6.2
86.2 | 3936
66.4
204.0
5.5
86.8 | 3025
77.4
325.0
6.1 | | | 21170 | 521.4 | | 2/65 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1947
79.9
88.5
4.8
91.9 | 2167
80.9
99.5
5.6
93.5 | 1757
65.8
89.0
4.0
83.8 | | 1872
73.4
89.5
6.4
93.0 | 1927
77.2
92.4
6.0
89.2 | 4351
88.1
208.0
5.0
84.7 | 4357
80.4
203.0
3.6
85.3 | 3060
76.1
325.0
4.4
51.7 | | | 21438 | 475.8 | | 3/65. | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN -°C | 1855
62.2
89.1
6.6
89.9 | 2175
75.4
99.8
6.7
94.8 | 1811
91.4
86.0
6.2
89.2 | | 1973
84.3
90.2
7.7
93.7 | 1893
89.7
93.1
7.4
88.8 | 4365
85.8
207.0
5.8
86.0 | 4192
83.2
205.0
4.6
85.8 | 0000 | | | 18264 | 477.8 | | 4/65 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1950
87.2
89.2
10.4
94.2 | 2176
87.9
100.6
10.2
94.0 | 1774
82.1
86.1
10.0
89.3 | | 1877
87.3
90.1
11.0
93.6 | 1719
87.3
93.2
10.0
79.0 | 4219
68.0
207.0
9.2
89.8 | 4221
76.3
206.5
8.8
89.6 | 2855
74.5
 | | | 20791 | 492.9 | | 5/65 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1799
77.6
90.0
14.5
90.8 | 2052
67.7
100.8
13.6
94.6 | 1711
55.3
86.3
12.2
90.2 | | 1817
88.8
89.8
14.0 | | 4325
73.8
207.5
13.0
92.3 | 4336
86.8
206.5
12.5
93.5 | 3472
85.7
 | | | 19512 | 473.6 | | 9/92 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | 1818
91.7
89.5
17.3
94.6 | 2060
81.0
101.2
16.7
94.9 | 1889
95.7
90.0
15.8
94.8 | | 1737
86.2
89.8
15.5
91.8 | | 4370
82.1
208.0
15.1
94.9 | 4174
77.1
208.0
15.0
94.7 | 2883
38.0
 | | | 18931 | 436.3 | | | Į | | | | REACTOR | TOR | | | | | | AVG | | |---|----------|--------------------------------------|------------------------------------|----|---------|-----|---------------------------------------|---------------------------------------|------------------|-----|-----|-------|-------| | B C D | | ۵ | | DR | ı | Ξ | KE | ΚW | 2 | НВР | * 2 | MM | GWD | | 1710 1832 1761 82.7 66.6 80.9 89.5 101.2 89.9 20.6 19.3 20.3 95.0 94.8 94.9 | | 1761
80.9
89.9
20.3
94.9 | | | | | 4314
94.9
208.5
18.8
94.7 | 4148
62.3
209.8
18.9
94.8 | 2800
56.0
 | | | 16565 | 382.0 | | 1712 1925 1673 84.2 86.5 75.6 89.5 102.4 90.2 19.6 19.4 20.5 94.5 94.8 93.8 | <u> </u> | 16
75
90
20
20
93 | 673
5.6
10.2
10.5
13.8 | | | | 1 | 4028
76.3
209.0
18.1
94.7 | 3337
62.1
 | | | 16773 | 391.3 | | 1740 1922 1711 83.8 74.1 90.4 89.0 102.0 90.0 18.3 18.8 19.0 94.1 94.8 93.0 | | 90
90
90
19
93 | 1711
30.4
30.0
19.0 | | | | 4223
75.6
211.5
17.7
94.8 | 4165
73.9
208.5
17.8
94.6 | 3306
72.3
 | · | | 17067 | 392.7 | | 1745 1987 1722 85.4 45.0 80.6 89.1 102.2 90.4 15.5 18.9 19.4 93.7 94.7 94.9 | ļ | 172
80.
90.
19. | 9 4 4 9 | J. | | | 4274
81.9
210.0
15.5
94.1 | 4296
92.2
211.0
14.9
94.2 | 3314
48.5
 | | | 17338 | 398.1 | | 1836 2166 1875
79.0 87.6 39.6
88.7 108.8 92.2
10.6 13.9 14.2
94.2 94.7 94.0 | | 187
39.
92.
14. | 75 | | | | 4251
81.6
210.0
10.0
88.6 | 4096
60.9
209.5
9.8
89.6 | 3374
70.9
 | | | 17598 | 373.4 | | 1974 2151 2004 86.4 63.9 93.9 88.9 107.7 92.2 7.0 9.2 8.0 93.9 93.2 94.0 | | 200
93.
92.
8. | 46700 | | | | 4371
82.4
208.0
6.5
86.6 | 4358
74.5
209.5
6.0
86.0 | 3200 61.0 | | | 18058 | 426.6 | | AVG. | N* MW GWD | 18200 420.0 | 18942 411.1 | 19112 508.9 | 3400 18383 424.9 | 3602 18409 381.3 | 2534 17007 367.4 | |---------|----------------|---|--|---|--|---|---| | | нСР | | 3900
93.1
 | 3850
78.8
 | 142 29.7 | 168 2.0 | 328
24.2 | | | KW N | 84 4225 333
.8 71.7 58.1
.0 209.5
.9 4.8
.7 84.7 | 4349
69.3
214.0
4.5
82.6 | 4383
89.3
214.0
8.8
87.0 | 52 4287 3542
4 42.2 89.2
5 214.0
9 8.3
5 86.6 | 4240
81.9
214.5
12.8 * | 73 4194 2862
.8 63.9 52.3
.0 215.3 | | REACTOR | H KE | 4284
76.8
208.0
5.9
85.7 | 4263
67.3
213.0
5.0
82.7 | 4380
95.7
213.5
9.5
87.2 | 4352
83.4
213.5
10.9
88.5 | 4362
78.4
214.0
13.2
90.2 | 4373
89.8
213.0
14.9 | | REA | DR F | | | | | | | | | C D | 2348 2051
91.7 74.6
105.9 93.0
6.0 6.4
94.1 92.8 | 2358 2103
73.0 91.3
106.7 92.7
5.4 6.1
94.1 94.4 | 2387 2102
84.0 73.6
107.3 92.4
9.1 14.2
94.9 94.8 | 2366 2003
82.0 94.8
107.5 92.6
10.1 12.3
94.8 94.9 | 2286 1977
86.4 71.4
107.8 92.5
13.8 13.8
94.9 94.4 | 2208 1953
65.9 86.6
108.4 94.2
15.8 15.4 | | | AETER B | ». MW 1961
% 82.2
KGPM 89.4
N- °C 5.5
UT - °C 93.8 | % 1969 % 17.6 % KGPM 89.2 % 1. °C 5.3 % 1. °C 93.2 | 2010 %
85.8 %
KGPM 90.3 N -°C 9.1 | % 89.6
KGPM 87.6
N - °C 10.1 | ". MW 1938
% 100.0
KGPM 89.8
N - °C 14.2
UT - °C 94.4 | MW 1745
% 61.7
KGPM 90.5
V - °C 14.8 | | | DATE PARAMETER | 1/66 AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN- °C
TEMP. OUT - ° | 2/66 AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - ° | 3/66 AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | 4/66 AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - ° | 5/66 AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °c | 6/66 AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C | * N Reactor was in shutdown status essentially all month. | DATE | PARAMETER | c | ·
ن | Q | DR | REACTOR
F H | TOR
H | KE | X | z | HGP | * | AVG. | GWD | |-------|--|--------------------------------------|---------------------------------------|---------------------------------------|----|----------------|----------|---------------------------------------|---------------------------------------|-------------------|-------------|------|-------|-------| | 99/2 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN- °C | 1765
23.6
90.6
17.3
95.0 | 2159
15.0
108.1
15.6
94.7 | 1730
16.2
93.5
17.0
94.2 | | | | 4395
20.4
213.0
15.2
92.8 | 4394
24.8
215.0
15.3
93.2 | 3160 | 374
16.1 | 2786 | 17229 | 109.1 | | 8/66 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1663
20.1
90.6
19.4
94.0 | 2065
21.0
108.5
18.9
94.8 | 1804
26.8
93.9
19.9
94.8 | | | | 3757
14.7
213.5
18.9
93.6 | 4213
23.5
215.0
18.0
94.8 | 2874 | 380
10.6 | 2494 | 15996 | 98.5 | | 99/6 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | 1758
76.9
90.5
20.1
95.0 | 2133
93.4
108.9
19.3
94.8 | 1759
62.1
94.0
20.8
94.2 | | | | 4188
93.0
213.0
18.5
95.0 | 4307
71.8
216.0
18.1
94.8 | -3797
89.7
 | 405
88.1 | 3392 | 17537 | 434.2 | | 10/66 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1805
90.5
89.9
15.0
94.5 | 2204
77.9
108.3
15.0
94.8 | 1877
100.0
94.0
16.3
94.0 | | | | 4322
44.5
212.0
14.5
94.0 | 4211
80.8
198.0
14.5
93.0 | 2626 | 367
33.5 | 2259 | 16678 | 355.1 | | 11/66 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN -°C
TEMP. OUT - °C | 1855
28.7
93.6
11.6 | 2217
79.9
104.9
12.0
94.1 | 1896
71.3
94.0
13.7
94.3 | | | | 4373
85.1
212.0
11.7
89.9 | 4365
85.3
215.5
10.8
88.2 | 3515
87.5
 | 428
80.1 | 3087 | 17793 | 415.0 | | 12/66 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1982
89.6
94.4
7.7
94.7 | 2335
84.6
107.4
8.4
94.5 | 2050
100.0
94.3
9.4
93.9 | | | | 4360
85.1
212.5
7.9
86.2 | 4302
70.3
215.5
8.4
85.7 | 3355
85.1
 | 443 | 2912 | 17941 | 466.6 | | | GWD | 468.6 | 423 | 417.8 | 477.7 | 394.7 | 435.9 | |---------|-----------|---
--|--|--|--|--| | AVG. | MW | 18295 | 18460 | 18181 | 18247 | 17520 | 18861 | | | *2 | 3054 | 3135 | 3065 | 3047 | 2870 | 4123 | | | ндь | 462
66.2 | 640
69.9 | 641
57.9 | 650
66.3 | 702
41.2 | 0 | | | Z | 3516
73.4
 | 3775 | 3706
62.4
 | 3697 | 3572
62.4
 | 4123
43.9
 | | | KW | 4387
99.7
215.0
6.0
83.7 | 4305
79.9
216.5
5.5
82.7 | 4295
79.9
216.5
6.0
82.8 | 4363
83.1
216.5
8.2
85.2 | 4188
63.1
217.0
12.1
88.7 | 4373
87.1
216.5
15.8
92.4 | | , | KE | 4354
78.4
212.0
6.4
84.3 | 4380
78.1
213.5
6.0
83.5 | 4393
80.3
197.5
5.9
90.0 | 4394
100.0
197.5
9.8
93.7 | 427 <u>8</u>
65.6
214.5
12.3
89.7 | 4369
87.1
213.0
15.5
93.4 | | TOR | I | | | | | | | | REACTOR | Ľ. | | | | | | | | | DR | | | | | | | | | a | 2027
75.9
93.7
8.7
94.3 | 2043
86.2
93.8
8.0
8.0 | 2081
74.0
94.4
9.6
94.0 | 2001
81.6
89.8
9.5
94.5 | 1937
79.8
93.0
12.7
93.7 | 1924
98.1
92.8
15.2
94.9 | | | ပ | 2417
80.9
107.2
7.6
94.8 | 2410
84.0
107.6
6.1
94.9 | 2455
74.6
107.3
6.8
94.8 | 2317
84.6
104.6
9.9
94.6 | 2262
100.0
104.4
13.3
95.0 | 2078
58.9
103.7
15.2
94.6 | | | æ | 2056
75.9
95.0
6.9
6.9 | 2187-
100.0
94.3
6.7
94.7 | 1982
64.4
95.0
7.6
87.0 | 2125
100.0
94.9
10.1
95.0 | 1985
77.4
95.2
13.7
94.9 | 1994
100.0
94.4
16.0
94.9 | | | PARAMETER | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN- °C | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | | | DATE | 1/67 | 2/67 | 3/67 | 4/67 | 5/67 | 6/67 | | | | | | | | REACTOR | TOR | | | | | | AVG. | | |-------|--|--------------------------------------|--|---|----|---------|-----|--|---------------------------------------|------------------|-------------|------|-------|-------| | DATE | PARAMETER | 8 | ၁ | D | DR | щ | Ξ | KE | ΚM | z | НСР | *2 | MW | GWD | | 19/1 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN- °C
TEMP. OUT - °C | 1870
84.6
95.5
19.4
94.8 | 2074
94.0
103.5
19.3
94.9 | | | | | 4262
79.5
212.5
17.9
94.9 | 4310
86.0
216.5
18.7
94.5 | 3659 65.6 | 775
50.1 | 2884 | 15400 | 391.8 | | 8/67 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1626
83.5
94.8
20.3
92.0 | 2017
100.0
103.3
20.1
94.7 | | | | | 4239
100.0
214.0
20.0
94.4 | 4211
78.2
216.5
19.3
93.8 | 3904
77.0
 | 774 | 3130 | 15223 | 413.2 | | 29/6 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1774
68.2
95.8
19.4
93.1 | 1958
60.1
103.4
19.2
94.7 | | | | | 4145
77.2
214.0
19.0
94.2 | 4207
83.7
216.5
18.3
94.5 | 0 | 0 | 0 | 12084 | 273.2 | | 10/67 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | 1727
78.5
95.4
16.9
93.4 | 2081
85.8
101.7
15.5
94.2 | | | | | 4223
72.1
214.5
15.0
92.8 | 4301
72.2
215.5
14.2
91.6 | 0 | 0 | 0 | 12322 | 288 | | 11/67 | AVG. OP. MW T.O.E % FI.OW - KGPM TEMP. IN - °C TEMP. OUT - °C | 1855
74.5
95.8
10.6
94.3 | 2110
65.0
102.2
10.7
93.9 | | | | | 4311
86.3
198.0
11.0
93.8 | 4400
100
215.0
10.0
87.7 | 0 | 0 | 0 0 | 12676 | 326 | | 12/67 | AVG. OP. MW T.O.E% FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | 2071
94.7
94.7
8.1
95.0 | 2279
74.2
105.1
8.0
94.4 | | | | | 4355
84.2
194.5
7.5
93.3 | 4349
74.8
215.5
6.5
84.1 | 42
6.0
 | 383
0.66 | | 12713 | 327.7 | | | GWD | 328.3 | 348.4 | 336.5 | 328.1 | 323.1 | 257.8 | |---------|------------|---|--|--|--|--|--| | | ÿ M
M ⊗ | 14620 | 14852 | 13606 | 13456 | 13236 | 13382 | | | * | 2225 | 2346 | 2487 | 2643 | 2593 | 2601 | | | HGP | 564
79.4 | 63.9 | 672
67.6 | 702
72.0 | 682
69.5 | 664
70.3 | | | Z | 2789
88.5
 | 2953
67.9
 | 3159
72.4 | 3345 75.0 | 3275 72.8 | 3265 75.3 | | | ΚW | 4152
75.5
194.5
3.9
85.9 | 4256
90.7
192.5
4.6
89.0 | 4385
82.0
193.5
5.0
91.1 | 4172
75.3
195.0
9.9
94.6 | 4135
78.1
212.0
12.3
91.4 | 4259
23.7
212.0
13.0
92.0 | | | KE | 4299
68.3
196.0
4.4
89.4 | 4340
86.5
193.0
5.5
92.1 | 4316
73.3
196.0
6.8 | 4355
93.9
194.5
10.9
94.6 | 4250
77.9
195.0
12.9
94.8 | 4346
87.7
207.5
15.2
94.8 | | TOR | I | | | | | | | | REACTOR | Ŧ | | | | | | | | | DR | | | | | | | | | D | | | | | | | | | ၁ | 2331
59.5
105.9
6.5
93.9 | 2236
54.3
106.3
7.9
94.8 | 2418
93.6
106.2
8.0
94.9 | 2286
74.5
107.7
11.6
94.8 | 2258
87.4
107.7
14.4
95.0 | 2176
81.8
107.3
16.0
94.8 | | | В | 1613
68.9
93.6
5.1
79.4 | 1674
93.7
93.2
5.4
79.6 | | | | | | | PARAMETER | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN- °C TEMP. OUT - °C | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | | | DATE | 1/68 | 2/68 | 3/68 | 4/68 | 2/68 | 89/9 | | | | | | | | REACTOR | TOR | | | | | | AVG. | | |-------|--|---|---------------------------------------|---|----|---------|-----|--|---------------------------------------|------------------|-------------|------|-------|-------| | DATE | PARAMETER | 8 | ၁ | D | DR | щ | I | KE | ΚW | z | ндь | * | MW | GWD | | 89/2 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN- °C TEMP. OUT - °C | | 2076
79.6
106.2
20.3
95.0 | | | | | 4183
80.5
207.5
19.2
94.3 | 3486
9.3 | 3670
50.6
 | 656
48.8 | 3014 | 12759 | 213.3 | | 89/8 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | | 1940
79.6
106.2
19.3
95.0 | | | | | 3933
58.8
207.5
18.6
92.6 | 4070
89.1
210.5
18.0
94.8 | 3417 50.1 | 740
45.0 | 2677 | 12620 | 274.7 | | 89/6 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP IN - °C TEM2. OUT - °C | | 1935
32.6
106.6
19.4
94.6 | | | | | 3717
81.4
194.5
17.8 | 3942
100
196.5
17.3
94.2 | 3750 | 776 | 2974 | 12568 | 297.6 | | 10/68 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | | 2117
88.1
105.7
13.8
94.1 | | | | | 4039
100.0
193.0
13.8
93.7 | 3857
60.5
194.5
14.0
90.0 | 3679 | 774 | 2905 | 12918 | 326.1 | | 11/68 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN -°C
TEMP. OUT - °C | | 2173
69.6
105.4
10.5
94.0 | | | | | 3963
84.9
192.0
10.3
89.6 | 3845
89.2
193.5
10.6
89.0 | 3801 67.2 | 789 | 3012 | 12993 | 310.6 | | 12/68 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | | 2225
84.2
105.0
3.9
88.1 | | | | | 3935
80.2
190.5
4.0
83.2 | 3934
83.4
193.5
6.1
85.5 | 3716
51.8
 | 49.2 | 2939 | 13033 | 305.4 | • | | | | | | | REACTOR | TOR: | | | · | | | 978 | | |------|---|---|--------------------------------------|---|----|---------|------|---------------------------------------|---------------------------------------|------------------|-------------|------|-------|-------| | DATE | PARAMETER | 8 | ၁ | D | DR | Ŧ | I | KE | KW | Z | HGP | * | Ž M | GWD | | 69/1 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN- °C
TEMP. OUT - °C | | 2196
51.8
100.8
2.4
93.9 | | | | | 3908
74.8
190.0
1.0
80.3 | 3818
84.7
192.0
0.5
80.0 | 3609
61.5
 | 769
56.2 | 2840 | 12762 | 281.5 | | 2/69 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | | 2311
65.7
98.9
2.8
94.2 | | | | | 3879
82.7
188.0
2.7
75.5 | 3738
70.5
191.5
2.0
81.0 | 3868
70.3
 | 732
68.6 | 3136 | 13064 | 268.2 | | 3/69 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | | 2183
75.6
99.7
7.3
94.0 | | | | | 3792
84.7
188.0
6.0
83.5 | 3652
74.5
191.0
5.9
83.5 | 3735
56.1
 | 769
53.8 | 2966 | 12593 | 287.2 | | 4/69 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C | | 2069
80.8
101.4
9.4
94.0 | | | N. | | 3369
26.0
190.0
9.5
87.4 |
3953
100.0
191.0
8.7
87.6 | 3856
88.8
 | 765
86.9 | 3091 | 12482 | 277.9 | | 5/69 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | | | | | | | 3851
83.1
190.0
14.0
93.5 | 3757
51.5
192.0
11.0
90.3 | 3678
38.6
 | 754
36.8 | 2924 | 10532 | 194.6 | | 69/9 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | | | | | | | 3902
91.1
190.0
16.6
94.6 | 3777
76.7
193.5
15.9
93.1 | 3717
59.6
 | 775
56.9 | 2942 | 10621 | 246.8 | | | | | | | | REACTOR | TOR | | | | | | AVG. | | |-------|----------------|---|---|---|----|---------|-----|----------------|----------|-------------|------|------|-------|-------| | DATE | PARAMETER | 8 | ပ | ۵ | DR | ш. | I | KE | ΚM | Z | ндь | * | MW | GWD | | 7/69 | AVG. OP. MW | | | | | | | 3758 | 3653 | 3524 | 229 | 2847 | 10258 | 188.5 | | | T.O.E % | | | | | | | 43.7 | 79.7 | 5.15 | 42.5 | | | | | | FLOW - KGPM | | | | | | | 10.00 | 19.00 | ! !
! ! | | | | | | | TEMP. OUT - °C | | - | | | | | 94.7 | 94.6 | 1 | | | | | | 03/0 | AVA GO DVA | | | | | | | 35.12 | 3720 | - | C | C | 7241 | 175 1 | | 8/03 | AVG. OF. MW | | | | | | | 21.CC
68.89 | 86.7 | | 00 | > | 147/ | | | | FLOW - KGPM | | | | | | | 191.5 | 192.5 | | | | | | | | TEMP. IN - °C | | | | | | | 19.3 | 19.3 | | | | | | | | TEMP. OUT - °C | | | | | | | 94.8 | 94.7 | | | | | | | 69/6 | AVG OP MW | | | | | | | 3651 | 3475 | 3079 | 709. | 2370 | 9496 | 206.5 | | | T.O.F % | | | | | | | 82.9 | 65.6 | 64.4 | 57.2 | | | | | | FLOW - KGPM | | | | | | | 190.5 | 195.0 | | | | | | | | TEMP. IN -°C | | | | | | | 17.9 | 8.7 | ! | | | | | | | TEMP. OUT - °C | | | | | | | 94.0 | 6.06 | !
! | | | | | | 10/69 | AVG. OP. MW | | | | | | | 3615 | 3757 | 3841 | 785 | 3056 | 10428 | 221.6 | | | T.O.E % | | | | | | | 100 5 | 104.3 | 8/.0 | 82.9 | | | | | | FLOW - KGPM | | | | | | | 14.9 | 15.1 |

 | | | | | | | TEMP. OUT - °C | | | | | | | 92.4 | 89.4 | 1. | | | | | | 11/60 | 70 ON V | | | | | | | 3442 | 3646 | 3702 | 789 | 2913 | 10001 | 189.2 | | - | | | | | | | | 50.2 | 77.9 | 59.5 | 58.8 | | | | | | FLOW - KGPM | | | | | | | 190.0 | 203.5 | 1 | | | | | | | TEMP. IN -°C | | | | | | | 1.71 |)
- 0 | ! ! | | | | | | | TEMP. OUT - °C | | | | | | | 26.3 | 2.00 | | | | | | | 12/69 | 1 | | | | | | | 3741 | 3911 | 3686 | 787 | 2899 | 10551 | 265.9 | | | T.O.E % | | | - | | | | 7.2.7 | 001 | 7./0 | 64.8 | | | | | | FLOW - KGPM | - | | | | | | 8.2 | 6.1 |

 | | | | | | | TEMP. OUT - °C | | | | | | | 86.0 | 81.0 | ! | REACTOR | :TOR | | | | | | 976 | | |------|--|---|---|---|----|---------|------|---------------------------------------|--------------------------------------|------------------|-------------|------|-------|-------| | DATE | PARAMETER | 8 | ၁ | D | DR | ч | H | KE | ΚW | Z | HGP | * | MW | GWD | | 1/70 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN- °C
TEMP. OUT - °C | | | | | | | 3944
89.5
199.5
4.6
80.4 | 3946
77.4
202.5
4.1
79.0 | 3602
50.9
 | 769
47.5 | 2833 | 10723 | 249.6 | | 2/70 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | | | | | | | 3920
1.1
199.5
4.6
80.4 | | 3622
80.8
 | 770 | 2852 | 6772 | 66.5 | | 3/70 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | | | | | , | | 3390
22.3
199.5
4.6
80.4 | | 3862
57.6
 | 749
53.6 | 3113 | 6503 | 79.9 | | 4/70 | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | | | | | | | 3903
82.9
199.5
8.6
84.2 | | 3709
72.7
 | 784
70.1 | 2925 | 6828 | 161.5 | | 5/70 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | | | | | | | 3778
71.7
200.0
13.5
87.1 | | 3061
45.5
 | 714 | 2347 | 6125 | 118.0 | | 0//9 | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | | | | | | | 3777
71.9
200.0
17.5
91.5 | | 0 | 0 | 0 | 3777 | 81.5 | | | GWD | 73.3 | 48.9 | 109.1 | 109.2 | 163.1 | 133.1 | |---------|-------------|---|--|--|--|--|--| | AVG | Ş
M
M | 3454 | 3653 | 5850 | 6116 | 6649 | 6582 | | | * | 0 | 0 | 2331 | 2416 | 2830 | 2716 | | | ндр | 0 | 0 | 686
31.5 | 716
21.4 | 795
88.2 | 800
45.8 | | | Z | 0 | 0 0 1 1 1 | 3017 36.0 | 3132
23.9
 | 3625
90.1
 | 3516
48.5
 | | , | ΚW | | | | - | | | | | KE | 3454
68.5
200.5
20.1
90.1 | 3653
43.2
202.5
20.2
89.7 | 3519
78.6
202.0
17.5
88.4 | 3700
79.1
202.0
13.2
85.1 | 3819
75.2
201.5
7.8
83.6 | 3866
76.4
202.0
6.0
81.6 | | REACTOR | I | | | | | | | | REAC | u. | | | | | | | | | DR | | | | | | | | | 0 | | | | | | | | | ပ | | | | | | | | | 8 | | | | | | | | | PARAMETER | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN- °C
TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | | | DATE | 7/70 | 8/70 | 9/70 | 10/70 | 11/70 | 12/70 | ٠, . ٠, | | GWD | 149.7 | | 1.7 | 48.0 | 82.2 | 9.09 | |---------|-----------|---|--|--|--|--|--| | | AVG. | 6727 | | 729 | 1720 | 2843 | 2790 | | | * | 2798 | | 729 | 1720 | 2843 | 2790 | | | HGP | 801
78.7 | | | 775
51.8 | 843
95.5 | 848
67.7 | | | Z | 3599
81.2
 | | 729 7.5 | 2495
80.0
 | 3686
96.2
 | 3638 69.5 | | | KW | | 176 | | | | | | | KE | 3929
64.6
202.0
4.6
80.1 | June 1971 | | | | | | REACTOR | Ξ | | 1971 to | | | | | | REA(| F | | from February | | | | | | | DR | | from Fe | | | | | | | D | | s down | | | | | | | ၁ | | N Reactor was | | | | | | | 8 | | N Rea | | | | | | | PARAMETER | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN- °C
TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | | | DATE | וק/ו | 2/71-6/71 | 1//7 | 8/71 | 9/71 | 17/01 | | | GWD | 72.6 | 45 | | | | | |---------|--------------|---|--|--|--|---|--| | AVG. | MW. | 2734 | 2561 | | | | | | | * 2 | 2734 | 2561 | | | | | | | HGP | 849
82.8 | 808
50.7 | | | | | | | Z | 3583
87.2
 | 3369
55.2
 | | | | | | | ΚW | | | | | | | | | KE | | | | | | | | TOR | I | | | | | | | | REACTOR | щ | | | | | | | | | DR | | | | | | | | | O | | | | | | | | | ၁ | | | | | | | | | & | | | | | | | | | PARAMETER | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN- °C
TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN - °C
TEMP. OUT - °C | AVG. OP. MW
T.O.E %
FLOW - KGPM
TEMP. IN -°C
TEMP. OUT - °C | AVG. OP. MW T.O.E % FLOW - KGPM TEMP. IN - °C TEMP. OUT - °C | | | DATE | 11/71 | 12/71 | | | | | ## APPENDIX B COMPARISONS OF COLUMBIA RIVER HEAT GAIN WITH REACTOR ADDITIONS | DATE | PRIEST RAPIDS
TEMPERATURE
(DEG. C) | | DIFF. | RIVER
FLOW
C) (KCFS) | COMPUTED
HEAT
(MM) | REACTOR
HEAT
(MW) | HEAT
Diff.
(MW) | |----------------|--|----------------|----------------|----------------------------|--------------------------|-------------------------|-----------------------| | 6764 | 12.84 | 13.83 | 0.99 | 388.00 | 45518. | 16693. | 28825. | | 7764 | 15. 30 | | 1. 21 | 295.81 | 42348. | 16161. | 26187. | | 8764 | 17.06 | | 1.82 | 131.14 | 28324. | 15748. | | | 9764 | 16.32 | | 2.14 | 74. 32 | 18876. | 16510. | 2366. | | 10764 | 14.55 | 15. 75 | 1.20 | 87.11 | 12354. | 13097. | -743. | | 11/64 | , 10.80 | 12. 24 | 1.44 | 70.12 | 11937. | 17890. | -5953. | | 12/64 | 6. 25 | 7.82 | 1.57 | 68, 48 | 12723. | 19490. | -6767. | | 1/65 | 4. 45 | 6.10 | 1. 65 | 77.37 | 15173. | 16819. | -1646. | | 2765 | 3. 33 | 5. 36 | 2.03 | 99, 24 | 23897. | 16993. | 6904. | | 3765 | 4. 11 | 6. 27 | 2. 15 | 88. 33 | 22553. | 15413. | 7140. | | 4765 | 6. 65 | 9.09 | 2.44 | 111.61 | 32270. | 16430. | 15840. | | 5765 | 10.01 | 11.03 | 1.02 | 235. 39 | 28524. | 15277. | 13247. | | 6765 | 13.35 | 14. 22 | 0.87 | 310, 50 | 32132. | 14543. | 17589. | | 7765 | 16.05 | 17. 28 | 1. 23 | 218.42 | 31727. | 12323. | | | 8765 | 18.36 | 19.83 | 1.47
| 127.77 | 22321. | 12623. | 9698. | | 9765 | 17.31
15.30 | 18. 53 | 1.23 | 77. 23 | 11225. | 13090. | | | 10/65
11/65 | 15.30
11.87 | 16.41
12.56 | 1. 11 | 63. 78 | 8411. | 12842. | -4431. | | 12/65 | 11. 87
7. 79 | 12.06
8.44 | . 0.69
0.65 | 70, 96
74, 15 | 5774. | 12447. | -6673. | | 1/66 | 7. 75
4. 84 | 5. 92 | 9.65
1.08 | 67. 91 | 5698.
8657. | 13761. | -8063.1 | | 2/66 | 4: 14 | | 2.11 | 80.39 | 20073. | 13548.
14682. | -4891.
5391. | | 3/66 | 4. 45 | 6.80 | 2. 35 | 76. 79 | 20073.
21315. | 14652.
16416. | | | 4766 | 7. 93 | 10.31 | 2.48 | 75. 88 | 22330. | 14163. | | | 5766 | 10.59 | 12.05 | 1. 46 | 182.58 | 31547. | 12300. | 19247. | | 6766 | 12. 43 | 13.47 | 1.04 | 276.33 | 34163 | 12247. | 21916 | | 7766 | 15. 30 | 16. 18 | 0.88 | 229. 39 | 23937. | 3519. | 20418. | | 8766 | 17. 55 | 18. 77 | 1. 22 | 108.65 | 15740. | 3177. | 12563. | | 9766 | 17.48 | 19.36 | 1.88 | 72. 94 | 16249 | 14473. | 1776. | | 10/66 | 14.63 | 15. 63 | 1.00 | 66. 74 | 7908. | 11455. | -3547. | | 11766 | 11.63 | 12.57 | 0.94 | 65. 58 | 7305. | 13833. | -6528. | | 12/66 | 8. 37 | 9. 49 | 1. 12 | 73. 71 | 9777. | 15052 | -5275. | | DATE | PRIEST RAPIDS
TEMPERATURE
(DEG. C) | RICHLAND
TEMPERATURE
(DEG. C) | TEMP.
DIFF.
(DEG. C) | RIVER
FLOW
(KCFS) | COMPUTED
HEAT
(MW) | REACTOR
HEAT
(MN) | HEAT
DIFF.
(MW) | |------|--|-------------------------------------|----------------------------|-------------------------|--------------------------|-------------------------|-----------------------| | | | | | | | | | | 1767 | 5. 92 | 7. 36 | 1.44 | 75. 25 | 12858 | 15116. | -2258. | | 2/67 | 5. 25 | e. 99 | 1.74 | 76.63 | 15793. | 15107 | 686. | | 3767 | 4, 99 | 6. 64 | 1.65 | 90, 22 | 17678. | 13477. | 4201. | | 4767 | <i>6</i> . 81 | ୫. ୫୭ | 2.00 | 89, 22 | 21109. | 15923. | 518 <i>6</i> . | | 5767 | 10.05 | 12.03 | 1.98 | 138. 60 | 32478. | 12732. | 19746. | | 6767 | 13. 27 | 13.88 | 0.61 | 430, 30 | 31104. | 14530. | 16574. | | 7767 | 16. 07 | 17.00 | Ø. 93 (| 288.00 | 31596. | 12639. | 18957. | | 8767
9767 | | 20, 22 | 1.67 | 125,00 | 24703. | 13329. | 11374. | |--------------|---------------|-------------|--------|---------|----------|----------------|-----------------| | 9767 | '' ଏକ ହଳ | | | | | | | | | , | 19.39 | 1.19 | 80.85 | 11433. | 9107. | 2326. | | 10/67 | 15, 42 | 16.05 | 0.63 | 71.94 | 5390. | 9290, | -3900. | | 11/67 | 11.34 | 11.96 | 0.62 | 74, 24 | 5483. | 10867. | -5384. | | 12/67 | 7. 17 | 7, 93 | មា. ៩៩ | 88, 62 | 6945. | 10571. | -3626. | | 1/68 | 4, 65 | 5, 66 | 1.92 | 77.89 | 9378. | 10590. | -1212. | | 2768 | | 5.00 | 1. 67 | 73. 79 | 14594. | 12014. | 2580. | | 3768 | | ୫. ଷ୍ଟ | 1.42 | 108.39 | 18189. | 11823. | 6366. | | 4768 | 7.09 | 8, 83 | 1.74 | 100.07 | 20633. | 10937. | 9696. | | 5768 | | 12.84 | 1.78 | 125.70 | 26573. | 10423. | 16150. | | 6768 | | 14. 26 | 0.82 | 271.30 | 26256. | 85 9 3. | 17663. | | 7768 | | 16, 99 | ø. 93 | 226, 35 | 24832. | 6881. | 17951. | | 8768 | | 18.75 | 1.24 | 112.53 | 16517. | 8861. | 7656. | | 9768 | | 18.30 | 1. 14 | 90.88 | 12242. | 9920 | 2322. | | 10/68 | | 14. 95 | 9.71 | 76. 97 | 6473. | 10519. | -4046. | | 11/68 | | 11.40 | 0.55 | 78.67 | 5128. | 10353. | -5225. | | 12/68 | | 7. 36 | 0.59 | 91. 65 | 6447. | 9852. | -3405. | | 1/69 | | 2.71 | 0.26 | 104, 49 | 3275. | 9081. | -580 <i>6</i> . | | 2/69 | | 1.90 | 0.44 | 118.81 | 6185. | 9248. | -3063. | | 3/69 | | 4. 34 | 0.95 | 105.76 | 11386. | 9265. | 2621. | | 4/69 | | 7. 97 | 0.76 | 185. 33 | 16764. | 92 <i>6</i> 3. | 7501. | | 5/69 | | 11.44 | 0.63 | 234, 71 | 17586. | 6277. | 11309. | | 5769 | | 15. 32 | 0.71 | 239.17 | 20029. | 8227. | 11802. | , | | | | | | | | DATE | PRIEST RAPIDS | RICHLAND | TEMP. | RIVER | COMPUTED | REACTOR | HEAT | | | TEMPERATURE | TEMPERATURE | DIFF. | FLOW | HEAT | HEAT
ZMIAN | DIFF. | | DATE | PRIEST RAPIDS
TEMPERATURE
(DEG. C) | TEMPERATURE | DIFF. | | COMPUTED
HEAT
(MN) | HEAT | | |---------------|--|-------------|-------|---------|--------------------------|-------|----------------| | 7/69 | 17.11 | 17.87 | 0.76 | 189. 90 | 17131. | 6081. | 11050. | | 8769 | | 19, 26 | | | 12658. | | | | 9769 | 17.70 | 18, 60 | | | 8159. | | | | 10/69 | | 15. 15 | | 82,46 | | | | | 11/69 | | 11.72 | 0.17 | 88.66 | 1786. | | -4521. | | 12/69 | 7.64 | 8.03 | 0.38 | | 4409. | 8577. | | | 1778 | | 5. 27 | 1.00 | 87, 21 | | 8052. | | | 2/70 | 4. 14 | 4, 86 | 0.72 | 77.02 | 65 84. | 2293. | | | 3/70 | 4.75 | 5, 72 | 0.96 | 85, 75 | 9768. | 2577. | 7191. | | 4770 | | 7. 94 | 1.09 | 91.91 | 11908. | 5383. | 1 6525. | | 5770 | | 11.72 | 0.85 | 131.10 | 13131. | 3806. | 9325. | | 6770 | | 15. 39 | Ø. 56 | 183.12 | 12223. | 2717. | 950 <i>6</i> . | | 7770 | | 19.02 | 0.99 | 124, 60 | 14574. | 2365. | | | 8770 | | 19. 94 | Ø. 70 | 100.79 | | 1577. | 6784. | | 9770 | | 17.51 | 0.02 | 75. 33 | 208. | | -3429. | | 10/70 | | 14.87 | -0.31 | 74, 58 | | | -6232. | | 11/70 | | 10.56 | ପ. ପତ | 74. 76 | 3 . | 5437. | -5437. | | 12/70 | | 5. 95 | -0.21 | 78. 57 | -1952. | | -6246. | | 1771 | | 4, 25 | 0.24 | 71.38 | | | -2810. | | 2/71 | | 3.45 | -0.10 | 95, 93 | | 5162. | -6258. | | 3771 | | | 0.15 | 131, 74 | | 4829. | -2564. | | 4771 | 6.61 | 7.05 | 0.44 | 120.71 | | | 1256. | | 5/71 | | 11.05 | 9, 37 | 270,85 | 12010. | 4829. | 7181. | | 6771 | | 12.95 | 0.33 | 298.86 | 11570. | 4990. | 6580. | | 7771 | | 16.44 | 1.13 | 213.36 | 28464. | 55. | 28409. | | 8/71 | | 19.54 | 1.12 | 132.34 | 17502. | 1548. | 15954. | | 9771 | | 17.84 | 0.63 | 74.63 | 5601. | 2740. | 2861. | | 10/71 | | 14.96 | -0.28 | 71. 91 | -2364. | 1955. | -4319. | | 11/71 | | 10.71 | -0.59 | | -5738. | 2420. | -8208. | | 12771
Mord | 6. 78 | 6.18 | -0.60 | 99, 93 | -7143. | 1452. | ~8595. | ## DISTRIBUTION | No. c
Copie | | No o
Copi | | |----------------|---|----------------------------|---| | OFFS] | <u>ITE</u> | <u>ONSI</u> | <u>TE</u> | | 1 | DOE Office of Scientific and
Technical Information
Technical Information Center
P.O. Box 62
Oak Ridge, TN 37830 | 1
1
2
1
1
2 | RL Public Reading Room J.J. Fix S.P. Gydesen C.M. Heeb L.D. Kannberg J.P. McNeece Technical Library | ## DATE FILMED 7/23/92