NUREG/CR--3558

DES4 007790

Handbook of Nuclear Power Plant Seismic Fragilities

Seismic Safety Margins Research Program

PORTIONS OF	MOTICE THIS REPORT ARE	ILLEGIBLE!
It has been available co possible ava	reproduced from py to permit the ilability.	the best broadest.

J.

Manuscript Completed: December 1983 Date Published:

Prepared by L. E. Cover, M. P. Bohn, R. D. Campbell,* and D. A. Wesley*

Lawrence Livermore National Laboratory 7000 East Avenue Livermore, CA 94550

Prepared for Division of Engineering Technology Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, D.C. 20555 NRC FIN No. A0126

* Structural Mechanics Associates, Newport Beach, CA.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

ABSTRACT

The Seismic Safety Margins Research Program (SSMRP) is a U.S. NRC-funded multivear program conducted by Lawrence Livermore National Laboratory (LLNL). Its goal is to develop a complete fully coupled analysis procedure (including methods and computer codes) for estimating the risk of an earthquake-induced radioactive release from a commercial nuclear power plant. As part of this program, calculations of the seismic risk from a typical commercial nuclear reactor were made. These calculations required a knowledge of the probability of failure (fragility) of safety-related components in the reactor system which actively participate in the hypothesized accident scenarios. This report describes the development of the required fragility relations and the data sources and data reduction techniques upon which they are based. Both building and component fragilities are covered. The building fragilities are for the Zion Unit 1 reactor which was the specific plant used for development of methodology in the program. Some of the component fragilities are site-specific also, but most would be usable for other sites as well.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

CONTENTS

•

4

Abstract		• • •		•		•		•			•			iii
List of	Figures	• • •		•		•	•	•	•		•			vii
List of	Tables	• •		•				•		•	•		•	viii
Foreword	• • • •	• • •		•		•	• •	•		•	•		•	ix
Executiv	e Summary .	•••		• •	•	•		•	•	•	•			1
Section	l: Introduc	ction .		•		•		•	•	•	•		•	3
Section	2: Overview	of the	Frag	ilitie	s De	velc	pmen	t.		•	•			5
2.1	Data Sourc	es for	Compo	nents		•		•	•	•	•			5
2.2	Descriptio	n of Ca	tegor	ies .				•		•			•	9
2.3	Summary of	Compon	ent Fi	cagili	lties	•		•	•		•			16
	2.3.1 Sep	aration	of Ur	ncerta	inty	•		•	•	•		•	•	16
Section	3: Zion Bui	lding F	ragil	ities	•	•		•	•	•	•			23
3.1	Scope		• •	• •	•	•	• •	•	•	•	• •	•	•	23
3.2	General Ap	proach	•••	• •	•	•		•	•	•	•	•	•	24
	3.2.1 Sys	tematic	Versu	ıs Ran	dom	Unce	rtai	ntie	s	•	• •	•	•	26
	3.2.2 The	Streng	th Fac	ctor F	้ร	•	• •	•	•	•	• •	•	•	28
	3.2.3 The	Ductil	ity Fa	actor	Fμ	•	• •	•	•	•	• •	•	•	31
	3.2.4 The	Respon	se Fac	ctor F	R	•	• •	•	•	•	• •	•	•	33
2.2	3.2.5 Exa	mple of	Fragi	lity	Deve	lopm	ent	•	•	•	• •	•	•	33
3.3		ntainme	nt Bui	llaing	Fra	g111	ties	•	•	•	• •	•	•	38
	3.3.1 Des	criptio	n . dog ar	•••	•	•	• •	•	•	•	• •	٠	•	38
	2 2 2 Cum	Ture Mo	des al	Decen	gill	ties	•	•	•	•	• •	•	•	39
34	Turbine/Au	wiliary	210n Build	React	or B	uita	ing	Frag	1110	ies	•	•	•	21
5.4	3 A] Dec	arintio	DUITO	ing .	•	•	• •	•	•	•	• •	•	•	53
	3.4.2 Tur	bine Bu	ildina	· Fail		•	•••	•	•	•	•••	•	•	55
	3.4.3 Aux	iliary)	Buildi	ng Fa	ilur.	•	•••	•	•	•	• •	٠	•	54 55
	3.4.4 She	ar Wall	Failu	ing fo	r Fa	c c+_W	· ·	Frci	• + = + i	•	•••	•	•	55
3.5	Crib House	(Intake	e Stru	cture		50-11	236	LINC I	caci	. On	•	•	•	59
	3.5.1 Cri	b House	Descr	iptio	, . n .	•		•	•	•	•••	•	•	59
	3.5.2 Cri	b House	Failu	re .								•	•	62
Section 4	: Componen	t Fragi	lities											65
4.1	Plant-Spec:	ific Cor	nponen	t Dat	a So	irce	s.	•						65
	4.1.1 Pla	nt-Spec	ific S	truct	ural	Fra	qili	ties	-	-		•	-	-
	Der	ived fro	om Ana	lysis	or	Desi	gn R	epor	ts	•				66
3	4.1.2 Plan	nt-Spec:	ific F	uncti	onal	Cap	acit	ies						
	Der	ived fro	om Des	ign R	epor	ts -		•	•	•			•	69
	4.1.3 Frag	gilities	s Base	don	Gene	ric (Code	Spe	cifi	cat	ions			70
4.2	Fragilities	s Derive	ed fro	m Tes	t Dat	ta		•	•	•			•	73
	4.2.1 Frag	gilities	s Deri	ved f	rom ?	rest	s fo	r Hig	gher					
	Seis	smic Zor	nes .	• •	•	•		•	•	•		•	•	73
	4.2.2 Cab	le Tray	Quali	ficat	ion :	rest	s.	•	•	•			•	74
	4.2.3 Frag	gilities	5 Deri	ved f	rom s	SAFE	GUARI) Pro	ogra	m				
	Test	t Data	•••	• •	•	•	• •	•	•	•	• •	•	•	75
	4.2	.3.1 Me	thodo	logy i	A	•	•••	•	•	•	•••	•	•	77
	4.2.	.3.2 Me	ethodo	logy	В	•	• •	•	•	•	•••	•	•	78
4.3	Piping .	••	•••	• •	•	•	• •	•	•	•	•••	•	•	82
4.4	Expert Opin	110n Sur	vey	•••	•	•	• •	•	•	•	•••	•	•	90
4.5	Combination	n of Dat	a.	•••	•	• •	•	•	•	•	•		•	91

~

Section 5: References	93
Appendix A - Summary of Zion Safety-Related Components	97
Appendix B - Reports from the U.S. Army Corps of Engineers SAFEGUARD	
Program Used by the SSMRP in Fragility Development	116
Appendix C - Data Obtained From Expert Opinion Survey	125
Appendix D - Analysis of Expert Opinion Data	154
Appendix E - Equipment Fragility Data Base (UCRL-53038, Rev. 1)	159
Appendix F - Descriptions of Contributors to Final Zion	
Component Fragilities	267

LIST OF FIGURES

1

.

1.	Typical stress-deflection curve showing relationship to acceleration			•	•	25
2.	Construction of upper and lower bounds on fragility curve	•		•	•	28
3.	Fragility curve with combined random and modeling uncertain	nty			•	28
4.	Shear and bending loadings on walls	•	•	•	•	29
5.	Definition of ductility ratio	•	•	•	•	32
6.	Relationship of ductility ratio and ductility factor	•	•	•	•	32
7.	Diesel generator room end walls	•	•	•	•	35
8.	Failure of diesel generator room walls					39
9.	Section of reactor containment building	•	•	•		40
10.	Zion reactor building and internal structure			•	•	41
11.	E-W section of containment building	•	•	•		42
12.	Shear stresses in containment building wall			•		43
13.	Stress distributions in containment building wall		•	•	•	45
14.	Flexural failure of reactor building containment wall .					46
15.	Shear failure of reactor building containment wall	•	•	•		46
16.	Section of containment wall buttress	•	•		•	47
17.	Vertical shear failure at reactor building buttress plates		•	•	•	48
18.	N-S Section of Containment Building	•	•			49
19.	Plan and sections of pressurizer enclosure	•	•	•	•	50
20.	Collapse of reactor building pressurizer enclosure	•	•	•	•	51
21.	Impact between reactor and auxiliary buildings	•	•	•		53
22.	Failure of auxiliary building shear walls due					
	to N-S ground motion			•	•	56
23.	Collapse of masonry walls around control room		•	•	•	58
24.	Failure of auxiliary building shear walls due to					
	E-W ground motion	•	•	•	•	58
25.	Failure of auxiliary building roof diaphragm		•	•	•	59
26.	East-West section of the crib house.	•	•	•		60
27.	Section at the pump suction area of the crib house	•	•	•		61
28.	Pump enclosure roof plan (el. 616 ft 6 in.)	•	•	•	•	61
29.	Failure of crib house pump enclosure roof	•	•	•	•	63
30.	Typical hard mounted spectrum for mechanical					
	equipmenthorizontal spectrum	•	•		•	76
31.	Observed failures	•	•	•	•	81
32.	Risk function	•	•	•	•	82
33.	Cumulative distribution function	•		•	•	82
34.	Fragility comparison for electrical and control equipment			•		83
35.	Master piping fragility curve	•	•	•	•	90

_

LIST OF TABLES

1.	Component items and categories for	fra	igi]	lity	y d	eve	lop	men	t	•	•	•	•	6
2.	Summary of component fragilities	•	•	•	•	•	•	•	•	•	•	•	•	17
3.	Fragilities related to components	•	•	•	•	•	•	•	•	•	•	•	•	20
4.	Final Zion component fragilities	•	•	•	•	•	•	•	•	•	•	•	•	22
5.	Zion concrete compression test resu	lts	3	•	•	•		•	•	•		•	•	31
6.	Fragility description for vessels a	nd	hea	it e	exc	hang	ger	s	٠	•	•	•	•	72
7.	Summary of f factors	•	•	•	•	•	•	•	•	•	•	•	•	79
8.	Pipe fittings and load scale (3) fac	cto	ors	•	•	•	•	•	•	•	•	•	•	85

FOREWORD

The Seismic Safety Margins Research Program (SSMRP) is an NRC-funded, multiyear program conducted by Lawrence Livermore National Laboratory (LLNL). Its goal is to develop a complete, fully coupled analysis procedure (including methods and computer codes) for estimating the risk of an earthquake-caused radioactive release from a commerical nuclear power plant. The analysis procedure is based upon a state-of-the-art evaluation of the current seismic analysis and design process and explicitly includes the uncertainties inherent in such a process. The results will be used to improve seismic licensing requirements for nuclear power plants.

The SSMRP was begun in 1978 when it became evident that an accurate seismic risk analysis must simultaneously consider all the interrelated factors that affect the final probability of radioactive release. In the traditional design procedure, by contrast, each factor is usually analyzed separately. These closely coupled factors are:

- The likelihood and magnitude of an earthquake.
- The transfer of earthquake energy from a fault source to a power plant, a phenomenon that varies greatly with the magnitude of an earthquake.
- Interaction between the soil underlying the power plant and the structural response, a phenomenon that depends on the soil composition under the plant and the location of the fault source relative to the plant.
- Coupled responses of a power plant's buildings and the massive reactor vessels, piping systems, and emergency safety systems within.
- Numerous accident scenarios, which vary according to types of failures assumed and the success or failure of the engineered safety features intended to mitigate the consequences of an accident.

A nuclear power plant is designed to ensure the survival of all buildings and emergency safety systems in a worst-case ("safe shutdown") earthquake. The assumptions underlying this design process are deterministic. In practice, however, these assumptions are clouded by considerable uncertainty. It is not possible, for example, to accurately predict the worst earthquake that will occur at a given site. Soil properties, mechanical properties of buildings, and damping in building and internal structures also vary significantly among plants.

To model and analyze the coupled phenomena that contribute to the total risk of radioactive release, it is therefore necessary to consider all significant sources of uncertainty as well as all significant interactions. Total risk is then obtained by considering the entire spectrum of possible earthquakes and integrating their calculated consequences. In the SSMRP this approach to risk analysis is embodied in the seismic methodology chain, which comprise five steps: determining seismic input characteristics for a site, calculating the effects of soil-structure interaction, calculating major structure response, calculating subsystem response, and calculating probability of failure.

The seismic input consists of the earthquake hazard in the vicinity of a nuclear power station, defined by an estimate of the seismic hazard function (i.e., the relationship between the probability of occurrence and a measure of

the size of an earthquake) and a description of the free-field motion. The soil-structure interaction link in the chain transforms the free-field ground motion into basemat or in-structure response, accounting for the interaction of the soil with the massive, stiff structures present at a nuclear power plant. Determination of the major structure response follows the soilstructure interaction step, where "major structure" commonly denotes a building, but may also include very large components. The final step in the traditional seismic analysis and design process is predicting subsystem structural response. An additional step in the SSMRP is the prediction of failure and subsequent risk of radioactive release.

The goals of the SSMRP were to be achieved in two phases. In Phase I, the overall seismic risk assessment methodology was developed and assembled. The methodology is embodied in three computer codes: HAZARD, SMACS and SEISIM. In addition, extensive data bases on earthquake occurrence models and failure data for nuclear power components were assembled. A pressurized water reactor was selected for demonstration calculations, and fault trees were developed for its essential safety and auxiliary systems. The plant chosen was the Zion nuclear power plant, located on Lake Michigan just east of the town of Zion, Illinois, and about 40 miles north of Chicago. This plant was chosen on the basis of being reasonably typical (in terms of power, systems design and site conditions) of pressurized water reactors in the 1960's era. The limited demonstration calculations (and Phase I) were completed in February, 1981. The goals of Phase II of the SSMRP were to complete the seismic risk methodology development and perform a complete seismic risk assessment of the Zion plant. This risk assessment was not only to compute the frequency of core melt and radioactive release, but also to include an uncertainty analysis on the entire risk assessment process so that confidence bounds on the core melt frequencies could be determined. This report addresses the fragilities development done by the SSMRP, and includes the final results of the efforts of both phases of the Program.

The NRC technical monitors have been J. J. Burns, followed by C. W. Burger, and presently D. J. Guzy. The authors wish to acknowledge the contributions of the members of the Fragility Panel, S. H. Bush, R. P. Kennedy, E. C. Rodabaugh, G. D. Shipway, J. D. Stevenson, J. M. Thomas, and P. P. Zemanick who have reviewed and monitored the Fragilities Development Project since its early stages. The contributions of data and helpful recommendations given by the many persons who participated in the expert opinion survey are also acknowledged.

х

EXECUTIVE SUMMARY

Calculations of the seismic risk of the Zion nuclear power plant have recently been completed using the methodology developed by the Seismic Safety Margins Research Program (SSMRP). These calculations require a knowledge of the probability of failure (fragility) of all safety-related components in the reactor system which actively participate in the hypothesized accident scenarios. This report documents the fragilities used for the Zion risk analysis and the procedures used by the SSMRP in their development.

Component failure is defined as either loss of pressure boundary integrity or loss of operability. Failure (fragility) is characterized by a cumulative distribution function which describes the probability that failure has occurred, given a value of loading. In the context of the SSMRP, loading may be local spectral acceleration, local zero period acceleration or internal force resultant such as moment, depending on the component and failure mode under consideration. Contrary to previous work, fragility is related to the appropriate local response, rather than being related directly to free-field peak acceleration.

As a first step in the determination of fragilities, all components identified in the reactor fault tree analyses were grouped into 37 categories, and fragility functions were determined for each category. For example, all motoroperated valves located on piping with diameters between 2-1/2 and 8 inches were placed into a single category, and similarly all motor control centers were placed into another category. All piping, tees, elbows, butt welds, and reducer sections were placed into one category, and scaling factors (dependent on size, material, and temperature) were utilized to relate the individual piping components to a single master fragility curve.

Fragility functions for the 37 categories were developed based on a combination of design analysis reports, experimental data, and an extensive expert opinion survey. In this survey, questionnaires were sent to over 250 recognized specialists in the nuclear industry (representing nuclear power system vendors, utilities, testing laboratories, nuclear component manufacturers, architect-engineers, and consultants) which resulted in 147 detailed responses covering (to varying degrees) virtually all the 37 categories. The responses to the questionnaires identified various failure modes as well as the failure percentiles as a function of loading.

The experimental data utilized in developing fragility curves were obtained from the results of component manufacturers qualification tests, independent testing lab failure data and data obtained from the U.S. Corps of Engineers SAFEGUARDS Subsystem Hardness Assurance Program. These data were critically examined for applicability and then statistically combined with the expert opinion survey data to produce the final fragility curves for the 37 component categories. HANDBOOK OF NUCLEAR POWER PLANT SEISMIC FRAGILITIES DEVELOPED FOR THE SEISMIC SAFETY MARGINS RESEARCH PROGRAM

SECTION 1: INTRODUCTION

0

The Seismic Safety Margins Research Program (SSMRP) is a U.S. NRC-funded multiyear program conducted by Lawrence Livermore National Laboratory (LLNL). Its goal is to develop a complete fully coupled analysis procedure (including methods and computer codes) for estimating the risk of an earthquake-induced radioactive release from a commercial nuclear power plant. As part of this program, calculations of the seismic risk from a typical commercial nuclear reactor were made.¹ These calculations require a knowledge of the probability of failure (fragility) of safety-related components in the reactor system which actively participate in the hypothesized accident scenarios. This report describes the development of the required fragility relations and the data sources and data reduction techniques upon which they are based.

Failure of components is defined as either loss of functional operability or loss of pressure boundary integrity, as appropriate. Structures are considered to fail functionally when inelastic deformations under seismic load are sufficient to interfere with the operability of safety-related equipment attached to the structure. Failure (fragility) is characterized by a cumulative distribution function which describes the probability that failure has occurred, given a value of loading. In the context of the SSMRP, the loading may be spectral acceleration, zero period acceleration or internal force resultant (such as moment or shear), depending on the component and failure mode under consideration.

This report is organized as follows. Section 2 presents an overview of the fragilities development and includes a summary of component fragilities. Section 3 describes the critical structures and the development of fragility relations for them. Section 4 describes the data sources from which the component fragilities were constructed, and the types of data available from each source. In addition, the statistical data reduction techniques used to reduce and combine the data from the various sources and the weighting scheme used to rank the data are described. Section 5 lists the references cited in the report. Finally, several appendices are included to document the various contributors to the data used in component fragilities development.

SECTION 2: OVERVIEW OF THE FRAGILITIES DEVELOPMENT

Fragility relations are required for both the buildings and the piping and components. Building and major component fragilities are necessarily specific to the plant being analyzed. For the Zion Unit 1 reactor being studied in the SSMRP, fragilities were developed for the reactor containment, turbine, auxiliary, fuel handling and crib house buildings. Development of these fragilities is described in Sec. 3.

The components for which fragility curves must be developed are determined by the depth of detail in the event and fault tree analyses of the reactor system under consideration. For Zion, 7 event trees and 11 fault trees² have been devised to cover all the hypothesized reactor transients and potential modes of release of radioactivity. Taken together, these event and fault trees require the determination of the probability of failure (due to seismic loading) of over 2300 basic events. (A basic event could be failure of a certain valve, for example.) Since it was clearly not feasible to generate fragility curves for thousands of specific components, the first step in the development of the fragility data base was to group all the components identified on the event and fault trees into categories. For example, all motor-operated valves with piping diameters between 2-1/2 and 8 inches were placed in a single category, and similarly all electrical motor control centers were placed in another category. Then a single fragility curve was derived for each category. A detailed review of the components showed that a set of 37 different categories would suffice to cover all the required fragilities. These categories were selected on the basis of equipment functions governing design criteria, method of seismic qualification, and response characteristics. These criteria and other pertinent information for the components that were reviewed are presented in Appendix A. The 37 categories are shown in Table 1, and are described in Sec. 2.2.

2.1 Data Sources for Components

Actual experimental data on failure of components as a function of local base acceleration are scarce. The type of data most commonly available results from qualification tests in which the component is experimentally shown to function as designed for a prescribed acceleration spectrum input. While such data do provide a lower limit to the fragility level, it is difficult to extrapolate from these data to higher response levels. One notable exception to the lack of actual fragility data was the data obtained in the U.S. Army Corps of Engineers SAFEGUARD program. This ll-year program, conducted as part of a missile-site hardening effort, included tests of both mechanical and electrical components. The items tested were off-the-shelf and were typical of components used in commercial reactors in the late 1960s, and some of the results are thus directly applicable to the Zion power plant. Sixty-four test programs involving shaker table tests of approximately 300 items were conducted. Excitation consisted of sine beat pulse tests, selected to fit a prescribed acceleration spectrum. Equipment function was monitored during the Thus these were truly tests of fragility with respect to both test. functional and structural failure. Typically, components were tested to over 15 g peak acceleration. Out of the nearly 300 reports generated in the SAFEGUARD program, 63 were found to be directly applicable to components needed in the SSMRP. In particular, these data were the only data available

Table 1. Component items and categories for fragility development.

Site Specific Components

• Reactor core assembly

. Reactor pressure vessel

- Steam generator
- . Reactor coolant pump

. Pressurizer

Component Categories

Mechanical

- Large horizontal vessel
- Small to medium vessels and heat . exchangers
- . Piping
- Large vertical storage vessels with formed heads
- . Large vertical flat bottom storage tank
- . Miscellaneous small valves

- . Large vertical centrifugal pumps with motor drive
- . Motor-driven pumps and compressors
- . Large motor-operated valves
- . Small motor-operated valves
- . Large hydraulic- and air-actuated valves
- . Large relief, manual, and check valves

Electrical

•	Horizontal motors	•	Auxiliary relay cabinets	•	Invertors
•	Generators	•	Local instruments	•	Cable trays
•	Battery racks		Motor control centers	-	Circuit breakers

- . Motor control centers
- . Switchgear
- Communications equipment •
- . Dry transformers . Control panels and racks
- . Light fixtures
- . Circuit breakers
- . Relays
- . Ceramic insulators

Miscellaneous

- . Air handling units
- . Instrument racks and panels
- . Duct work
- . Hydraulic snubbers and pipe supports

for electrical components, and thus all our electrical component fragilities are derived from this source. The reports utilized for fragilities development are listed in Appendix B.

A second source of information was the design analyses performed by Westinghouse and various component manufacturers for components used in the Zion plant. In these analyses, the component was assumed to be excited by a base acceleration corresponding to a prescribed design spectrum. Then an analytical solution for the stresses or loads in the component was obtained. From these analytical solutions we obtained the acceleration at failure by

15

'A

extrapolating the stresses to our estimate of the ultimate stress capacity using a procedure due to Newmark.³ In this procedure, the acceleration at failure is determined from the relation

$$A_F = A_D F_S F_\mu F_R$$
,

where

The factor accounting for the ultimate load capacity is computed from

$$\mathbf{F}_{\mathbf{S}} = \frac{\sigma_{1\text{im}} - \sigma_{\text{dead}}}{\sigma_{\text{seismic}}}$$

where σ_{dead} is the static load due to weight, pressure, thermal, etc., $\sigma_{seismic}$ is the peak load induced by the seismic excitation, and σ_{lim} is the effective yield stress and depends on the equipment and mode of failure. Typically for ductile failure σ_{lim} is the code allowable yield stress, but for more brittle failure it is the ultimate stress or the average of yield and ultimate. Thus F_S scales the design acceleration to the failure acceleration, assuming all loads (or stresses) are calculated by a linear elastic analysis, since the peak load (or stress) is proportional to peak acceleration.

Before failure occurs, however, a significant amount of inelastic deformation (and hence energy absorption) takes place. In this inelastic response range, the stress increases much more slowly than the peak acceleration. Hence, the actual acceleration at failure is much higher than that predicted by the product A_DF_S alone. This additional acceleration capacity is accounted for by the ductility factor F_{μ} . This ductility factor was introduced by Newmark⁴ and is a function of both the ductility of the component and the component damping. The ductility μ is usually estimated on the basis of engineering judgment and a knowledge of component construction details.

The statistical distribution of the acceleration at failure (the fragility relation) is obtained by assuming that the factors F_S and F_{μ} are lognormally distributed random variables. This choice of distributional form has been found to be appropriate in several studies⁵⁻⁷ and also results in considerable computational convenience. If M_S and M_{μ} denote the median values of F_S and F_{μ} , and if β_S and β_{μ} denote the standard deviations of the natural logarithms of the variables F_S and F_{μ} , then by the multiplicative property of lognormal random variables, the median and log-standard-deviation of the acceleration at failure are given by, respectively,

$$M_A = A_D M_S M_\mu$$

$$= \sqrt{\beta_{\rm S}^2 + \beta_{\mu}^2} \quad .$$

β_A

(1)

These two parameters completely define the distribution of acceleration at failure. Values of the uncertainty in the factors F_S and F_{μ} are estimated from data, analysis, or engineering judgment, depending on the component. While this method of estimating fragility of components is not based directly on failure tests, it does allow an estimate of failure incorporating experimental determination of ultimate strength, weld and connector ductilities, etc., and the choice of the uncertainty factors β_S and β_{μ} may be made so as to reflect our confidence (or lack thereof) in the analysis. This measure of confidence can then be propagated through the entire SSMRP calculational scheme, and its effect on the final prediction of radioactive release probability can be determined.

The final source of information on fragility of components was an expert opinion survey performed in the spring of 1980. In this survey, a carefully worded questionnaire was mailed to several hundred well-known specialists in the nuclear industry. These individuals were selected from the Nuclear Steam Supply System (NSSS) vendors, architect/engineering firms, consultants to the nuclear industry, and from the ranks of colleges and universities. In each case, the individual was asked to respond only for those components for which he felt a high degree of expertise. For each component, the respondent was asked to provide:

- The three lowest (weakest) failure modes.
- The appropriate response quantity for each mode (e.g., peak acceleration, spectral acceleration at some frequency, and damping or force resultant, etc.).
- The response values at 10, 50, and 90% probability of failure.
- The primary source of his information (i.e., experience, test data, etc.).

The expert opinion responses covered virtually every category of component needed for Phase I of the SSMRP, with 147 detailed responses being returned. Comparison of responses from different experts for the same component showed, in general, surprisingly good agreement. Inasmuch as the expert opinion responses were provided for different failure modes and three probability levels, it was necessary to develop a method of statistically combining them into a single fragility relation.

The procedure adopted was based on a combined least squares and nested analysis of variance approach. The equations used are developed in Appendix B and the approach is described in detail by George.⁸ In this approach, each failure mode (for each component) is treated as independent, and a single fragility curve is developed for each mode based on the responses of all experts who identified that particular failure mode. The statistical model used was

$$A_{ijq} = A_q + T_j + E_{ijq}$$

(2)

where i refers to the ith expert, q denotes the fractile level (10, 50, or 90%), and j denotes the group number. Based on our subjective evaluation of the expert opinion responses, we combined different experts' responses into a common group if we had reason to believe that these experts were all referring to the same type of component within the broad category being considered. Thus in Eq. (2), A_{ijq} is the estimate of the fragility for the qth percentile provided by the ith expert in the jth group; T_j is the deviation of the qth percentile (A_q), and E_{ijq} is the variation in the estimate of the qth percentile by the ith expert in the jth group. The use of the nested analysis of variance procedure then allowed us to identify the total variance σ^2 from

$$\sigma^2 = \overset{\wedge 2}{\sigma} + \overset{\wedge 2}{\sigma}_{\rm T}^2 + \overset{\wedge 2}{\sigma}_{\rm E}^2 \quad , \label{eq:sigma_state}$$

where

- $\int_{\sigma}^{\Lambda} 2$ = inherent uncertainty in each individual expert's fragility estimate,
- d_T^2 = uncertainty resulting from the different groups of components within the category,
- Δ_E^2 = uncertainty between experts whose data were combined in the same group.

By this procedure, we can identify whether or not the categories selected (as shown in Table 1) are too broad, for if σ_T^2 is the major contributor to the total variance, then this is an indication that the category should be further subdivided into two or more separate categories.

In the analysis of Eq. (2), a weighted least squares approach was used in estimating σ^2 . The weights were assigned as a product of two factors: a factor for presumed expertise of the specialist providing the opinion and a factor for source of his opinion. In assigning weights, a differentiation between pressure boundary failure and functional failure was made to reflect a lesser degree of confidence in analytical methods for predicting functional failure.

It is at this point that data from the other sources (the SAFEGUARD fragility data and the component design analyses previously described) were incorporated. These additional data were treated as independent expert opinions, with weight factors assigned based on our subjective evaluation of the quality of the data.

The final step in the development of a single fragility curve for a given category was to combine the fragility estimates [obtained from Eq. (2)] for each independent failure mode. This combination of modes was performed using the relation

$$F(r) = 1 - \prod_{i=1}^{n} \left[1 - F_{i}(r) \right] ,$$

where F(r) is the single combined mode fragility curve and $F_i(r)$ are the fragility curves derived for the n failure modes identified for the category. This is the statistical union of failure modes and, in effect, produces an effective fragility curve which is nearly a lower bound.

2.2 Description of Categories

All components are considered to include their supports to the point of interface with the building structure. Electro- or active-mechanical devices such as motor-operated valves, pneumatic- and hydraulic-operated valves and

motor-, turbine-, and diesel-driven pumps include the complete assemblies normally furnished by the component suppliers. Thus, valve operators, pumpmotors and ancillary equipment for cooling and lubrication are included as part of the component category. External control systems, power supplies and connecting electrical cables are not included as part of the component and are considered in separate categories. The categories are described below, based on Ref. 9.

<u>Reactor Core Assembly</u>. This category includes the fuel rods, core support structure, and control rod assemblies, and spacer grids. Crushing of grid spacers or deformation of control rod assemblies might prevent re-insertion of control rods following scram.

<u>Reactor Coolant System Vessels</u>. These categories include the <u>reactor pressure</u> <u>vessel</u>, <u>steam generators</u>, and the <u>pressurizer</u>. The vessels are of heavy wall construction to contain the high pressure in the primary system. A failure of one of the nozzle-to-pipe weld joints could occur in the presence of a large flaw in the weld joint and would result in a LOCA. Another failure mode during an extreme seismic event would be failure of the vessel supports. Steam generator support failure could be especially significant because gross failure of the steam generator supports could cause a LOCA in both the primary and secondary system.

Note that steam generator tube failure is not considered a failure mode since no external loss of coolant results and only partial loss of function could result.

<u>Reactor Coolant Pumps</u>. Pumps are rugged and have performed well in nonnuclear applications in major earthquakes. The main coolant pumps have ancillary equipment for lubricating and cooling bearings and seals. Due to its complexity, failure of ancillary equipment is a likely failure mode. Failure of pump supports is the most important failure mode since it leads to loss of pressure boundary integrity.

<u>Piping</u>. This category includes piping of all sizes, as well as elbows, tees, butt welds, reducer sections, etc. Both stainless steel and carbon steel are considered. A single master fragility curve was developed for this category, and scale factors (dependent on size, material, and temperature) are used to relate the different pipe elements to the master fragility curve.

Large Vertical Storage Vessels with Formed Heads. This category includes the accumulator tanks and the volume control tanks. These vessels are typically low pressure, thin wall construction supported by skirts. They may have nonintegrally reinforced nozzles or nonreinforced fabricated nozzles. Temperatures are usually quite low and loading on the tank supports and nozzles is predominantly from seismic events. Fluid sloshing and fluidstructure interaction, including the effects of the thin wall flexibility, are very important in determining the dynamic response. Critical failure modes are usually tank support failure either due to buckling or anchor bolt failure. Such failure could result in sufficient tank movement to fail the pressure boundary at tank nozzles or at the support to tank interface.

Large Vertical Flat Bottom Storage Tanks. These large flat-bottomed storage tanks are used for holding unpressurized fluids, and include the borated water

storage tanks, and condensate storage tanks. They are typically anchored to the foundation. Fluid sloshing effects are of prime importance in this category also. The most predominant failure mode in such tanks is failure of the anchor bolts, allowing uplift of the tank. The uplift would then result in buckling of the tank wall on the compression side and possible rupture of the wall-to-bottom joint on the tensile side.

Large Horizontal Vessels and Heat Exchangers. This category includes large storage tanks, heat exchangers such as the residual heat exchangers, component cooling water heat exchangers, the pressurizer relief tank, and often diesel oil storage tanks. The designs are characterized by large volume, relatively low pressure, thin wall cylindrical tanks mounted with the cylinder axis in the horizontal position. These tanks are usually supported by two saddles mounted to the floor. The relationship between asymmetric loading from dead weight and seismic acceleration results in a different dynamic response and a different design problem than for large, thin wall, vertical tanks. The effect of fluid sloshing is quite different for horizontal tanks than for vertical tanks.

These vessels are similar in construction to vertical vessels except for the tank support design. The failure modes are the same as for vertical tanks with formed heads. However, the mechanism of a support failure can be quite different. The critical stresses due to a seismic event are usually at the support to tank interface. The failure mode depends much on the details of the interface and could be cracking of the tank wall due to excessive local deformation or could be failure at a nozzle which is induced by tank movement due to support bolt failure.

Small to Medium Vessel and Heat Exchangers. There are numerous small- and medium-sized vessels and heat exhangers in the reactor system, for example, the boron injection tank. They are typically cylindrical in shape, although spherical vessels are occasionally used. Cylindrical vessels may be mounted horizontally or vertically. Supports are typically legs or saddles welded directly to the pressure boundary and bolted to the floor of a building. The least ductile, and hence, most likely points for failure are in the supports at either the support/tank interface or support/building interface. The next most likely failure point is at a nonintegral reinforced or nonreinforced nozzle followed by the butt weld joint at a nozzle to the connecting piping.

Large Vertical Centrifugal Pumps with Motor Drives. These types of pumps are found in the crib house and are used as service water pumps and fire pumps, and in some plants, are used as the condenser coolant pumps located in the intake structure. They typically are supported at a flange at the motor-pump interface and have lengths several times the pump diameter such that they respond to seismic excitation as a flexible cantilever beam. Rupture of support strut connections is a likely failure mode, and since they are quite flexible, vibration-induced distortion could ultimately result in bearing failure and seizure.

Motor-Driven Pumps and Compressors. These medium to small pumps and compressors include the auxiliary feedwater system pumps, residual heat removal pumps, safety injection pumps, centrifugal charging pumps, containment spray and recirculation pumps, and lube oil pumps for the diesels. These pumps are generally mounted separately from their drive motors and the pump and drive motors are skid mounted or mounted directly to the floor. Drive motors are generally in line with the pump shaft. The size of these pumps is generally much less than the large vertical pumps described above.

These pump-motor combinations are usually horizontal floor mounted, compact, and quite rigid assemblies. Consequently, vibration-induced distortion is not expected to be a principal failure mode. The likely failure mode would be support failure due to a combination of inertia loading and pipe reaction loading. Support failure or partial failure could then cause misalignment between the pump and motor drive. A less likely failure mode would be a structural failure of a pump nozzle/pipe interface.

Large Motor-Operated Valves. These remotely actuated valves are used on all the plant piping systems for isolation and flow control, and they appear on the fault trees for all safety systems. They are characterized by a rugged body with an extended yoke structure that supports a motor-gearbox operator assembly. The valves are line mounted and can undergo significant seismic acceleration and displacement such that the motor operator and its connecting electrical leads can experience quite high seismic excitation. The principal mode of failure would be binding due to permanent deformation of the yokeneck-stem assemblies, resulting in full or partial failure to actuate. The next most likely failure mode would be an electrical failure of the operator assembly. A third and much less likely failure mode would be fracture of the pipe-to-valve nozzle joint.

Large Relief and Check Valves. These types of valves are compact, rugged assemblies that should not be as susceptible to seismic loading as the extended motor operator type valve. Binding of check or relief valve mechanical parts could occur during a severe seismic event but, due to the compactness of the designs, the mechanical parts are relatively immune to seismic damage. Another possible failure mode would be an electrical failure of the power actuator if it is present. Degradation of insulation coupled with severe seismic excitation could cause a breakdown in electrical continuity. Pipe-to-valve nozzle joint fracture is a lower probability failure mode and would only occur in the presence of large undetected flaws.

Large Hydraulic- and Air-Actuated Valves. This category includes the mainsteam isolation valves and the power-operated relief valve on the pressurizer, both of which play prominent roles on the event/fault trees. These large valves do not have the massive extended operators found in the large motoroperated valves, and are thus less susceptible to seismic damage. Modes of failure include failure of electrical signal, binding of stem or actuator or failure of air or hydraulic lines.

<u>Small Motor-Operated Valves</u>. These are similar to large motor-operated valves but are for piping of less than 8-in. diam. They have a rugged body with an extended yoke structure that supports a motor-gearbox operator assembly. Because they are line mounted, they are subjected to piping accelerations. The principal mode of failure would be binding due to permanent deformation of the yoke-neck-stem assembly. Electrical failure of the operator is also a possibility. ~5

<u>Miscellaneous Small Valves</u>. This small valve category includes all types of small valves, (manual, air, or hydraulic) except for small motor operated valves. Although some of the larger testing laboratories have the capability

to test complete value assemblies that are much larger, it is common to test only the smaller value assemblies and test only the electrical operators on the larger values, the value itself being qualified for seismic service by analysis.

Since these values are compact and rugged, the potential failure modes are failure of the actuators or the air/hydraulic lines.

<u>Horizontal Motors</u>. This category includes the large-capacity electric-drive motors used for cooling fans and equipment drives and motor-generator sets. They are characterized as rigid, compact rotating electrical machinery. The most likely failure mode during a severe seismic event would be distortion in the motor casing or shaft to the extent that resulting vibration from misalignment would ultimately damage the bearings or windings. A secondary failure mode is considered to be the motor supports at the motor/structure interface. Support damage or failure would result in misalignment with the driven component and severe vibration and bearing damage. A third mode of failure would be bearing failure and immediate seizure. Immediate bearing seizure is a much less probable event, though, than slower bearing deterioration caused by distortion and misalignment.

<u>Generators</u>. These are the large diesel-powered generators used to provide emergency ac power (4160 V) following loss of off-site power. As such, they play a prominent role in the event and fault trees for the electrical power system.

Diesel generator units are complex systems having many potential failure modes. The diesel engines and alternators are of rugged construction and are not considered to be very susceptible to seismic damage. The most probable failure mode in the event of a severe earthquake would be failure of some of the ancillary equipment necessary for the diesel generator to operate. Items such as air supply, fuel and oil lines, filter brackets, local controls, and instrumentation would be the predominant candidates for failure.

Batteries and Battery Racks. These batteries provide emergency dc power and are kept charged by a static charger system. The batteries themselves are mounted on large metal racks. The batteries and chargers are compact units that in themselves are quite rugged. Batteries have proven very reliable when subjected to severe shock loading. The most likely initial failure point would be the battens or the rack-to-building interface. The resulting uplift or shifting could sever the electrical connections.

<u>Switchgear</u>. Switchgear are complex electrical systems consisting of active and passive electrical devices housed in a structural assembly. Included are transformers, relays, breakers, capacitors, buses, etc. Most of the components are compact rigid elements with most of the flexibility being in the supporting structural elements. The functional electrical devices are qualified for seismic service by test, while the support structure is often qualified by analysis. Some of the electrical devices, such as transformers, may be qualified by analysis only, especially if they are large and testing is impractical.

As in any complex subsystem that consists of a number of components of differing response and fragility characteristics, there will be a weak link or links depending upon the combination of response and fragility factors for each of the subsystem elements. The probability model must necessarily group complex subsystems by functions. Hence, the choice of the generic classification for switchgear.

The switchgear of main concern is that associated with the emergency ac power supply (4160 V and 480 V) and not that for distribution of off-site power. These units tend to be smaller than the main power plan switchgear units.

Switchgear that handles emergency ac power are complex electrical assemblies that possess many failure modes. The electrical components are housed in structural cabinets bolted to the building floor or welded to steel channels embedded in the floor. The most likely failure mode is a failure to function for active electrical components of the switchgear, i.e., relays and breakers. The second mode of failure is considered to be equipment supports, either at the switchgear to building interface or the switchgear transformer supports.

Dry Transformers. The transformers of main interest are the 4160/480 V auxiliary transformers and the 480/120 V transformers to the instrument buses on the electric power fault tree. These transformers are compact and rugged. Structural/mounting failures are the failure modes of interest.

<u>Control and Instrument Panels and Racks</u>. These categories of electrical instrumentation and control equipment are characterized as lightweight electrical equipment mounted in panels and racks. Due to the large number of individual items within a rack or panel, the most likely failure mode would be failure to function of an electrical control device or instrument. A second failure mode would be a structural failure of the supporting rack or panel itself. The failure could be at the holddown bolts at the interface of the rack and building structure or could be local failure in which a critical instrument or control device would not be properly supported. A third failure mode could be the electrical leads at the interface point with the racks.

Auxiliary Relay Cabinets. Auxiliary relay cabinets were given a separate category inasmuch as they occur specifically on the fault trees. They are cabinets housing electrical relay and switching gear, including some transformers, and their lowest failure modes are functional. Structural failure of the cabinet or supports is another potential failure mode.

Local Instruments. A specific category was assigned to local instruments. This category is intended to cover process instrumentation (especially pressure and temperature) from sensor, through wiring to gage or dial indicator. The most likely seismic failure mode would be loosening of fasteners. Another potential failure mode is seismic excitation of the pickup leads, which is anticipated to occur at frequencies characteristic of typical earthquake spectra.

15

Motor Control Centers. Like the auxiliary relay cabinets, motor control centers occur specifically and frequently on the fault trees, as potential failure paths for all the emergency safety system pumps and valves. They are included as a separate category so that more refined fragilities may be used in future work should this be required. Failure modes are expected to be similar to those of auxiliary relay cabinets.

Light Fixtures. This category includes the emergency lighting provided in the event of failure of normal lighting systems. Structural or component breakage is considered a likely failure mode.

<u>Communication Equipment</u>. For the fault trees developed, this category is primarily used for annunciators. Failure would most likely occur due to dislodging of components due to seismic excitation.

<u>Inverters</u>. Inverters are passive electrical devices that convert dc power to 125 V ac. They are fairly rugged units and not particularly sensitive to seismic loading. However, with sufficient excitation, electrical component malfunction could occur. Structural failure of internal supports and failure of external supports at the inverter-building interface are also possible failure modes.

<u>Cable Trays</u>. Cable trays are used throughout the plant to support electrical power and instrumentation and control wiring. For purposes of the SSMRP, failure of the cable trays was taken to be equivalent to failure of the wires themselves, although this is certainly a conservative assessment.

Cable trays are usually supported for seismic loading by means of struts and threaded rods. The first mode of failure is considered to be a structural failure of a tray support at a threaded connection (typically threaded rods are used as supports). At Zion however, all safety-related systems were designed with bracing to resist seismic loading. Therefore, the most likely mode of failure for Zion safety-related trays would be in the miscellaneous steel (unistruts) which serves as an interface between the building structure and the cable tray supports. A second mode of failure is considered to be cable damage at termination points due to excessive motion of the cable trays relative to electrical equipment or junction boxes.

<u>Circuit Breakers</u>. Circuit breakers occur throughout the plant electrical system in a wide range of sizes and capacities. Inadvertent opening of these breakers is possible under seismic accelerations. All sizes and types of breakers are included in this category.

<u>Relays</u>. Like circuit breakers, relays occur in virtually every electrical control cabinet in the plant. Relay chatter during seismic excitation is a common occurrence. All sizes and types of relays are included in this category.

<u>Ceramic Insulators</u>. This category covers the ceramic insulators which are used in many applications at the point where off-site power is brought to the switchyard. Their failure is the probable cause of loss of off-site power during an earthquake.

Air Handling Units. This category covers the containment fan cooler system fans. Functional failure of these fans can occur due to rubbing of the fan blades on the fan housing or rubbing of the motor rotor on the motor housing.

Ductwork. Ducting for critical cooling air, exhaust, etc., is considered to possess much lower susceptibility to seismic damage than other more massive passive structural elements. Ducting is light in weight and inertial loading from a seismic event is consequently small. Relative motion between the ducting supports and the equipment with which the ducting interfaces could cause joint leakage. Such leakage might be introduced due to buckling of the thin wall ducts or pulling apart of the joints. The second failure mode to be postulated is local support failure due to excessive motion of the building stucture. A third failure mode would be total severance of a ducting joint. This would require considerable motion of the ducting system. Hydraulic Snubbers and Pipe Supports. Two types of seismic supports are considered: rigid-rod-type supports that carry deadweight of the piping plus vertical seismic response and lateral supports, either rigid or snubbers, which carry seismic load only. Failure would be most likely to occur at a welded connection.

2.3 Summary of Component Fragilities

For Phase I demonstration computations, fragility descriptions consisted of the lognormal parameters of median (m) and beta (β), where β was a single value representing all variability, i.e., including contribution from both randomness and uncertainty. For the final Zion computations the contributions to variability from randomness and uncertainty had to be separated. For most categories of equipment, more than one set of fragilities was available representing different failure modes and/or different sources of data. In some cases, the choice of which to use was obvious, but in others the data were combined to result in one set of values to be used for a category. The fragilities with single-valued betas and associated information are collected in Table 2. Table 3 relates the fragilities to the component with which they were used in SEISIM calculations.

2.3.1 Separation of Uncertainty

In order to construct confidence intervals of release probabilities, component fragilities with separate values of variability of randomness and modeling uncertainty (β_R and β_U) are needed. This separation had been estimated for the fragilities based either on SAFEGUARD test data or design reports (i.e., from NUREG/CR-2405 - hereafter called Type A data). However, the expert opinion data which were used to develop fragilities were not separated, and there was insufficient information from the expert opinion survey to make such a separation. In many cases Type A data and expert opinion data were folded together to yield one resulting fragility with only the total Beta known (i.e., β_T) which is the combination of random and modeling uncertainty.

In order to provide the required separation of variability, we essentially applied the same separation as was determined for the various categories of equipment NUREG/CR-2405, but modified the values to accommodate the additional uncertainty introduced by the expert opinion data.

The following procedure was used for each category of components

Given:	^β TEO	= Total variability from expert opinion or a
		combination of expert opinion and Type A data.
	^β TS	= Total variability from Type A data.
	β _{RS}	= Variability due to randomness only from Type A data.
	^β us	= Variability due to uncertainty only from Type A data.
	^β τ)	
	β _R	Total, random, and modeling uncertainty values
	β _U)	to be used for result.

Category	Fragilit Median	Beta	Load parameter	Frequency (Hz)	Damping % of critical	Failure mode ^a	Key for Table 3
Reactor core assembly	2.06	0.40	Spectral acceleration g	5-15	5	Deformation of guide	A
Reactor pressure vessel	3.83	0.45	Spectral acceleration g	5	5	Fracture of RPV outlet	A
Pressurizer	2.00	0.40	spectral acceleration g	20	5	Failure of support skirt bolting	A
Steam generator	2.45	0.44	spectral acceleration g	5	5	Support failure	B
Reactor coolant pump	2.64	0.44	spectral acceleration g	5	5	Support failure	R
Piping (master fragility)	2.44×10^{6}	0.38	Moment inlb			Plastic collapse	С
Large vertical vessels with formed heads	1.46	0.40	ZPA g	Rigid		Failure of anchor bolts	D
Large vertical tanks with flat bottom	2.01	0.38	ZPA g	Rigid		Failure of anchor bolts	A
Large horizontal vessels	3.91	0.61	Spectral acceleration g	12-20	5	Failure of anchor bolts	A
Small to medium vessels and heat exchangers	1.84	0.51	Spectral acceleration g	20	5	Failure of anchor bolts	E
Large vertical centrifugal pumps with motor drive	2.21	0.39	Spectral acceleration g	5	5	Failure of support	F
Motor-driven pumps and compressors	3.19	0.34	Spectral acceleration g	7	5	Impeller deflection	Α

Table 2. Summary of component fragilities.

2

.

-

-4

Table 2. (Continued)

,

	Fragil	itv	Load	Frequency	Damping % of		Key for
Category	Median	Beta	parameter	(Hz)	critical	Failure mode ^a	Table 3
Large motor-operated valves	4.83	0.65	Piping peak acceleration g	Rigid		Distortion of extended operator	G
Small motor-operated valves	9.84	0.65	Piping peak acceleration g	Rigid		Distortion of extended operator	A
Large hydraulic and air actuated valves	7.61	0.46	Piping peak acceleration g	Rigid		Loss of control air	A
Large relief, manual, and check valves	8.90	0.40	Piping peak acceleration g	Rigid		Internal damage	А
Miscellaneous small valves	12.50	0.54	Piping peak	Rigid	449 644	Internal damage	A
Horizontal motors	12.10	0.41	ZPA g	Rigid		Binding of rotating parts	Н
Generators	0.65	0.40	Spectral acceleration g	22	5	Shutdown valve trip	I
Battery racks	2.29	0.50	ZPA g	Rigid		Failure of battens	J
Switchgear	2.33	0.81	Spectral acceleration g	5-10	5	Spurious operation of a protective relay	K
Dry transformers	2.78	0.41	Spectral acceleration g	10	5	Failure of anchor bolts	L
Control panels and racks	11.50	0.88	Spectral acceleration g	5-10	5	Dislodging or malfunction of components	Α
Auxiliary relay cabinets	7.63	0.82	Spectral acceleration g	5-10	5	Breaker trip	A
Local instruments	7.68	0.40	Spectral acceleration g	5-35	5	Loosening of fasteners	М

ن) هوتي

7-

.

اھ (ط

18

.

Table 2. (Continued)

	Fragil	i +	Tood	Frequence	Damping		Key for	
Category	Median	Beta	parameter	(Hz)	critical	Failure mode ^a	Table 3	
Motor control centers	7.63	0.88	Spectral acceleration g	5-10	5	Breaker trip	A	
Communications equipment	5.00	0.48	Spectral acceleration g	10-50	5	Dislodging of components	A	
Light fixtures	9.20	0.20	Spectral acceleration g	20-30	2	Dislodging of components	A	
Inverters	15.60	0.44	Spectral acceleration g	5-10	5	Relay trip	N	
Cable trays	2.23	0.39	ZPA g	Rigid		Support system failure	0	
Circuit breakers	7.63	0.88	Spectral acceleration g	5-10	5	Breaker trip	Р	
Relays	4.00	0.89	Spectral acceleration g	5-10	5	Relay chatter	A	
Ceramic insulators	0.20	0.40	PGA g	2-8	5	Fracture of porcelain	Q	
Air handling units	2.24	0.41	Spectral acceleration g	5	5	Rubbing of fan on housing	A	
Instrument racks and panels	1.15	0.82	Spectral acceleration g	5-10	5	Relay chatter	A	
Duct work	3.97	0.54	Spectral acceleration g	5-10	7	Structural failure	Α	
Hydraulic snubbers and pipe supports	1.46	0.54	ZPA g	Rigid		Weld failure	A	

1

Only failure mode is listed, although the fragility may be based on a combination of modes. the most likely

÷

2

2

Table 3.	Fragilities related to comp
Key from Table 2	
A	None (i.e., not used)
в	Steam generator and ste
с	Piping and piping compo
D	Tanks in the safety inj control system
Е	Coolers in the reactor water system, and resid
F	Centrifugal pumps
G	Used for all valves
н	Electrical heaters in t
I	Generator, diesel gener the main power and serv
J	Batteries in main elect
к	Relays and protective s
L	Dry transformers and ba
м	Local instruments, incl
N	Inverters in main elect
0	Electrical conductors i power systems
P	Curcuit breakers, contr
Q	Loss of off-site power
R	Reactor coolant pump

ponents.

Component

eam generator tubes

onents

jection system and chemical- and volume-

.

2

1

٩.

۰.

54

containment ventilation system, service Jual heat removal system

the safety injection system

rator, and diesel generator components in vice water systems

trical power system

switchgear

attery chargers

luding sensors, detectors, and controllers

rical power system

in both main power and instrumentation

coller, starters, and switches

and turbine trip

1. If
$$\beta_{TS} < \beta_{TEO}$$

then assume

$$\beta_{\rm R} = \beta_{\rm RS}$$

$$\beta_{\rm U} = \sqrt{\beta_{\rm TEO}^2 - \beta_{\rm RS}^2}$$

$$\beta_{\rm T} = \sqrt{\beta_{\rm R}^2 + \beta_{\rm U}^2} \cdot$$

2. If $\beta_{TS} > \beta_{TEO}$ and $\beta_{TEO} > \beta_{RS}$,

then assume

$$\beta_{R} = \beta_{RS}$$
$$\beta_{U} = \beta_{US}$$
$$\beta_{T} = \sqrt{\beta_{R}^{2} + \beta_{U}^{2}}$$

(i.e., for this case the results are the same as the Type A data.) 3. If β_{TS} > β_{TEO} and β_{TEO} < β_{RS} , then assume

$$\beta_{R} = \beta_{TEO}$$
$$\beta_{U} = \beta_{US}$$
$$\beta_{T} = \sqrt{\beta_{R}^{2} + \beta_{U}^{2}}$$

Table 4 shows the resulting lognormal parameters of the component fragilities. The other data shown on Table 2 is applicable to these results as well as to the fragilities used for demonstration calculations.

All of the fragilities used in SSMRP are developed for local responses.

. Category	Median	β _R	β _U	β _T
Reactor core assembly	2.06	0.24	0.32	0.40
Reactor pressure vessel	3.83	0.23	0.39	0.45
Pressurizer	2.00	0.21	0.34	0.40
Steam generator	2.45	0.24	0.37	0.44
Piping (master fragility)	2.44×10^{6}	0.18	0.33	0.38
Large vertical vessels with formed heads	1.46	0.20	0.35	0.40
Large vertical tanks with flat bottoms	2.01	0.25	0.29	0.38
Large horizontal vessels	3.91	0.30	0.53	0.61
Small medium vessels with heat exchangers	1.84	0.25	0.45	0.51
Reactor coolant pump	2.64	0.24	0.37	0.44
Large vertical centrifugal pumps	2.21	0.22	0.32	0.39
Large vertical pumps	2.21	0.22	0.32	0.39
Motor driven pumps and compressors	3.19	0.21	0.27	0.34
Large motor operated valves (>4 in.)	4.83	0.26	0.60	0.65
Large relief, manual, and check valves	8.90	0.20	0.35	0.40
Miscellaneous small valves	12.50	0.33	0.43	0.54
Horizontal motors	12.10	0.27	0.31	0.41
Generators	0.65	0.25	0.31	0.40
Battery Racks	2.29	0.31	0.39	0.50
Switchgear	2.33	0.47	0.66	0.81
Dry transformers	2.78	0.28	0.30	0.41
Air handling units	2.24	0.27	0.31	0.41
Instrument racks and panels	1.15	0.48	0.66	0.82
Control panels and racks	11.50	0.48	0.74	0.88
Auxiliary relay cabinets	7.63	0.48	0.66	0.82
Local instruments	7.68	0.20	0.35	0.40
Motor control centers	7.63	0.48	0.74	0.88
Condensate storage tank	0.81	0.28	0.30	0.41
Local instruments	7.68	0.20	0.35	0.40
Light fixtures	9.20	0.14	0.14	0.20
Inverters	15.6	0.26	0.35	0.44
Cable trays	2.23	0.34	0.19	0.39
Ducting	3.97	0.29	0.46	0.54
Hydraulic snubbers and pipe supports	1.46	0.22	0.49	0.54
Relays	4.00	0.48	0.75	0.89
Circuit breakers	7.63	0.48	0.74	0.88
Large motor operated valves (rupture)	14.40	0.28	0.56	0.63
Ceramic insulators	0.20	0.25	0.25	0.35

٤.

3

5

Table 4. Final Zion component fragilities.^a

^a All fragilities spec. accel. (g) except piping, which is moment (in.-lb).

SECTION 3: ZION BUILDING FRAGILITIES

As part of determining the risk of radioactive release, it is necessary to determine failure criteria for all critical components in the safety systems. Besides functional failure of these critical components, one must consider the possibility that the buildings enclosing the critical components may fail and secondarily cause component failure. Obviously if a floor slab or wall collapses onto a pump or valve, the latter will in all probability have failed. More likely is the possibility that the walls or floor slabs will be so cracked and spalled that bolts anchoring critical equipment will pull out, and components will then fail by excessive motion. Thus an essential part of developing fragility relations for the Zion plant was the development of failure criteria for those buildings housing critical components.

3.1 Scope

The five structures selected for detailed failure analysis were the reactor containment building, the internal walls and support slabs inside the containment, the turbine building, the auxiliary building and the crib house (intake structure).

Consideration of failure of the containment building is essential due to its role as the final barrier to radioactive release to the atmosphere. Vaportightness of the containment shell is maintained by a 0.25-in.-thick steel liner which is attached to the inside of the containment shell. Functional failure of the containment shell was defined as failure of this steel liner. In addition, pipe restraints for a number of critical piping systems are tied to the containment walls.

The reactor containment building internal structures consist of a 3-ft-thick base slab poured over the foundation slab (which is separated from the containment shell by a cork-filled 1.0-in. gap), the circular ring wall, the fuel handling pool and its supporting walls, the operating floor slab, the biological shield walls surrounding the reactor vessel, and the missile shield walls surrounding the pressurizer. The reactor coolant system (reactor vessel, steam generators, pressurizer, reactor coolant pumps, and primary piping) is located within the ring wall, and lateral support for these components is provided by the ring wall.

The turbine building and the auxiliary building share a long common wall, and even though the auxiliary building is a Seismic Class I structure while the turbine building is not, their structural responses are closely coupled. The auxiliary building houses the majority of the safety system components, the control room, the diesel generators and all components of the on-site emergency power system. In particular, it houses the auxiliary feedwater pumps, the charging pumps, the safety injector pumps, the RHR pumps and the containment spray pumps, plus all the associated heat exchangers. Oil storage tanks for all pumps and the diesel generators are in the auxiliary building, as well as the vast majority of the stepdown transformers, inverters, electrical buses, motor control centers, and instrument panels. In addition, the refueling water storage tanks (RWST), which are the major source of emergency cooling water, share a common wall with the auxiliary building, and thus failure of the auxiliary building walls implies a failure of the RWST.

All the above-mentioned components play important roles in the accident sequences developed for Zion in Project VII. The turbine building contains the turbines, main feedwater pumps (both turbine and motor driven), and the condensers.

The crib house is an open boxlike structure which acts as a reservoir for the circulating water system, and houses the circulating water pumps, the service water pumps, and the fire pumps.

These five structures were identified in a preliminary investigation of the potential structural failure modes of the Zion plant by D.A. Wesley and R.D. Campbell [formerly of EDAC, Inc. and now of Structural Mechanics Associates (SMA)].¹⁰ As part of this preliminary investigation, possible failure modes for these structures were identified. In a follow-on contract, D.A. Wesley and P. Hashimoto of SMA performed detailed analyses of the failure modes of these structures, and generated fragility relations for the most probable failure modes of each building. This work is reported in Ref. 11. This document provides specific details of the buildings design and configuration and the detailed analysis. In the following sections, an overview of the method of generating the building fragilities is presented, and then the most probable failure modes and their corresponding fragility curves are presented and discussed.

3.2 General Approach

Inasmuch as no actual tests to failure of typical power plant buildings exist, it is necessary to base the development of the building fragilities on a comparison of analytically calculated loads with experimentally determined wall, slab, and beam capacities. The starting point for this comparison is to have available a dynamic structural analysis of the building under consideration, which provides accelerations and stress resultants at various points within the structure. This analysis can be based on a design calculation, which is usually based on the response spectra method, or on a time history analysis. From this analysis, we relate the stress resultants in walls, slabs, and beams to the acceleration level at some convenient reference point in the building. The acceleration at failure is then computed using the relation

$$A_F = A F_S F_U F_R$$
,

where

- $A_{\rm F}$ = acceleration at failure,
- A = reference point acceleration for which stress resultants are known,

(3)

- F_S = factor relating the design strength capacity to the actual strength capacity,
- F_{μ} = factor accounting for inelastic energy absorption capability of the structure,
- F_R = factor accounting for conservatisms in the method of analysis from which the acceleration and stress resultants were obtained.

Deflection

Figure 1. Typical stress-deflection curve showing relationship to acceleration.

The strength factor F_S is computed by

$$F_{S} = \frac{\sigma_{lim} - \sigma_{dead}}{\sigma_{seismic}}$$

where σ_{lim} is the limit strength or load capacity, σ_{dead} are the loads or stresses due to weight, thermal or pressure forces, and $\sigma_{seismic}$ are the loads or stresses induced by the seismic excitation. Thus F_S ratios up the acceleration A in Eq. (3) to the actual ultimate capacity, since the loads or stresses are proportional to acceleration in a linear analysis. This is illustrated in Fig. 1 which shows a typical stress-strain curve. Let point A be the calculated stress corresponding to a known acceleration. The factor F_S ratios the acceleration up such that the stress (computed in a linear analysis) equals the limit stress σ_{lim} .

The actual increase in stress with acceleration is (after yield) highly nonlinear, so that in the plastic portion of the stress-strain curve in Fig. 1, the stress actually increases more slowly than the acceleration. This is taken into account by the ductility factor F_{μ} in Eq. (3). The ductility factor F_{μ} provides the ratio between the stress calculated in a linear analysis and the stress calculated from a nonlinear analysis with a given ductility. Thus in our analysis we estimate the ductility which the wall, slab, or beam can reach before failure, and then use the corresponding factor F_{μ} to increase the acceleration capacity.

Finally, if it is felt that the original analysis (from which the relationship between acceleration and stress was obtained) was based on inherently conservative assumptions, the factor F_R is used to increase the acceleration capacity according to our estimate of the degree of conservatism present. The three factors F_S , F_{μ} , and F_R as applied to the Zion structures are discussed in the sections following.

Inasmuch as probabilistic fragility relations are required, it is necessary to include uncertainties in the calculation of the failure acceleration A_F in Eq. (3). It is at this point that the choice of the lognormal distributional

form for all variables plays a significant part.^{*} For if F_S , F_{μ} , and F_R are all lognormal random variables with corresponding medians M_S , M_{μ} , M_R , and corresponding standard deviations of the logarithms β_{S} , β_{u} , and β_{R} , then the acceleration capacity A_F will also have a lognormal distribution with

$$\hat{\mathbf{A}}_{\mathbf{F}} = \mathbf{A} \, \mathbf{M}_{\mathbf{S}} \, \mathbf{M}_{\mu} \, \mathbf{M}_{\mathbf{R}} \tag{4}$$

$$\beta_{\rm F}^2 = \beta_{\rm S}^2 + \beta_{\rm \mu}^2 + \beta_{\rm R}^2$$

for the median and log-standard deviation, respectively. These two parameters completely define the distribution of the acceleration capacity Ar. Thus the acceleration capacity A_F can be written as

$$A_{\mathbf{F}} = A_{\mathbf{F}} \varepsilon , \qquad (6)$$

were ε is a random variable with median of unity and log-standard deviation β_F given by Eq. (5).

3.2.1 Systematic Versus Random Uncertainties

Uncertainty in the calculation of the acceleration capacity can be separated into two categories, random uncertainty and systematic uncertainty. Random uncertainty is that part of the total variance which is due to inherent randomness in the system, which cannot be reduced by additional data or analysis. By contrast, systematic or modeling uncertainty is that part of the total variance which is due to approximations in the analysis. This would include, for example, approximations made in setting up a geometrical set of masses, springs, and dampers to model the actual building or uncertainty in the exact form of a law describing viscous damping effects in structural elements. All these uncertainties could presumably be reduced by use of more accurate mathematical models, more detailed geometrical models, or a better viscous damping law obtained by performing additional experiments to better delineate the form of the damping law. Thus the systematic uncertainties can be reduced or nearly eliminated by additional data or more refined analysis.

It is possible to separate the effects of ramdon versus modeling uncertainties by estimating the variance in the terms F_S , F_v , and F_R separately. Thus we estimate

$$\beta_{S}^{2} = \gamma_{S}^{2} + \delta_{S}^{2}$$
$$\beta_{\mu}^{2} = \gamma_{\mu}^{2} + \delta_{\mu}^{2}$$
$$\beta_{R}^{2} = \gamma_{R}^{2} + \delta_{R}^{2}$$

(5)

^{*} The central limit theorem supports the choice of lognormal distribution since it states that a distribution consisting of products and quotients of distributions of several variables tends to be lognormal even if the individual distributions are not lognormal.

in which the γ s are the variances due to modeling uncertainty and the δ s are the variances due to random uncertainty. Thus, Eq. (6) can be generalized to

$$A_{\rm F} = A_{\rm F} \epsilon_{\rm U} \epsilon_{\rm R} \quad (7)$$

where $\varepsilon_{\mbox{U}}$ is a lognormal random variable with unit median and log-standard deviation

$$\beta_U^2 = \gamma_S^2 + \gamma_\mu^2 + \gamma_R^2$$
 ,

which accounts for all the modeling uncertainty and ϵ_R is a lognormal random variable with unit median and log-standard deviation,

$$\beta_{\rm R}^2 = \delta_{\rm S}^2 + \delta_{\mu}^2 + \delta_{\rm R}^2 \quad , \label{eq:beta_R}$$

which accounts for all the inherent random uncertainty.

The formulation for the acceleration capacity in Eq. (7) allows us to put upper and lower bounds on the location of the median A_F by thinking of the median A_F as a random variable with variance which is the variance to do modeling uncertainties alone. Hence using the lognormal distribution for ε_U we can get upper and lower values of the median corresponding to prescribed probabilities of nonexceedence.

For example it can be shown that the 5 and 95% probability values of the median are given by

$$(A_F)_{5\%} = A_F e^{-1.65\beta} U$$

 $(A_F)_{95\%} = A_F e^{+1.65\beta} U$

These are points m and n shown on Fig. 2. The distribution of ε_U from which they were derived is superimposed on the figure. The shaded areas each represent 10% of the area under the curve. The solid curve is the cumulative distribution function (cdf) of the acceleration capacity with no systematic uncertainty. The dashed bounding curves are the curves which pass through the 5% upper and lower values of the median as computed above. All three curves have the same variance (due to the random uncertainty alone).

Shown in Fig. 3 is a comparison between the three curves in Fig. 2 and the cdf of the A_F based on the total uncertainty which includes both random and modeling uncertainty. The latter curve is flatter than the other three since its variance is larger.

Either formulation [Eq. (6) or (7)] can be used, depending on the application. In Phase I of the SSMRP, only the total variance formulation (random plus modeling) was utilized. For Phase II, however, the random and modeling uncertainties will be propagated through the calculational sequence separately, and thus in the developing fragilities, the two types of uncertainty were considered separately.

Figure 2. Construction of upper and lower bounds on fragility curve.

Figure 3. Fragiliity curve with combined random and modeling uncertainty.

3.2.2 The Strength Factor FS

As outlined in the last section, the strength factor is given by

$$F_{S} = \frac{L_{lim} - L_{dead}}{L_{seismic}}$$

in which L_{lim} is the maximum load, shear, or moment associated with the effective yield stress. The terms L_{dead} and $L_{seismic}$ are the calculated static and seismic loads, respectively.

For typical nuclear buildings, shear wall construction is used in which lateral inertia loads due to seismic ground shaking are resisted by reinforced concrete walls. This results in a strong and very stiff structure and the effective yield stress is assumed to equal ultimate. The ultimate capacities of such shear walls depend on the relative ratios of height to width. The two main failure modes (failure due to in-plane shear and failure due to in-plane moments) are shown in Fig. 4. The failure criteria for these two modes are presented below. In evaluating the fragility of the Zion buildings, the shear walls were assumed to have no resistance to out-of-plane bending. Also, failure of the walls due to direct bearing stresses was never a governing factor. Hence no failure criteria were needed for these two modes of failure.

The ultimate shear capacity was taken as

$$V_{ult} = 8.3\sqrt{f_c} - 3.4\sqrt{f_c} \left[\left(\frac{h}{w} - \frac{1}{2}\right) + \frac{N}{4 w/h} \right] + \rho s$$

in which

f = compressive concrete strength, psi,

h = wall height,

w = wall length,

N = normal (bearing) load, lb,

 $f_v = yield strength of reinforcing steel, psi,$

(8)

(9)

(a) Shear loading on wall

(b) Bending moment due to shear loading

Figure 4. Shear and bending loadings on walls.

 $\begin{array}{l} \rho_{se} &= A \ \rho_{h} \ + B \ \rho_{u}, \\ \rho_{h} &= \mbox{ horizontal steel reinforcement ratio,} \\ \rho_{u} &= \mbox{ vertical steel reinforcement ratio,} \\ A \\ B \end{array} \right\} = \mbox{ constants depending on h/w.}$

This expression is based on the experiments of $Barda^{12}$ modified to reflect the data of Refs. 12 through 15 which show the decreasing effect of vertical reinforcing steel with increasing h/w ratios. Using the data of Refs. 12 through 15, the constants A, B were taken as

A = 1	B = O	for $h/w \leq 0.5$
A = 2(1 - h/w)	B = 2(h/w - 1)	for $0.5 < h/w \le 1.0$
A = 0	B = 1	for $1.0 < h/w$

The ultimate moment capacity of shear walls due to in-plane forces was taken as

$$M_{ult} = \frac{A_s f_y W}{2} + \frac{N}{A_s f_y} + \frac{N}{A_s f_y} + A_{ch} f_y + \frac{\beta_1 c}{2}$$

(10)

in which

- c = depth to neutral axis from extreme compression fiber,
- A_c = total distributed steel,
- A = area of chord steel,
- w = wall length,
- f, = steel yield strength,
- N = axial (bearing) load,
- d = distance from the extreme compressive fiber to the centroid of tensile chord steel,
- β_1 = ratio of depth of equivalent rectangular concrete stress block to depth to neutral axis (c).

This equation follows that presented in Ref. 13 modified to account for the presence of chord steel.

The equations for V_{ult} and M_{mult} presented above give the median ultimate capacities. Based on comparing these two equations against data, $^{12-14}$ an estimate was made of their agreement with the data. A log-standard deviation of 0.15 was found for V_{ult} , and a corresponding value of 0.10 was found for M_{ult} .

Both equations involve the reinforcing steel strength f_y and the ultimate shear capacity depends on the concrete compressive strength f_c . Throughout the Zion structures, Grade 60 reinforcing steel was used, and data on yield strength were taken. The resulting median and log-standard deviations were:

No. 3 to No. 11 bars Median $f_y = 66$ ksi $\beta_{fy} = 0.09$ No. 14 and No. 18 Median $f_y = 71$ ksi $\beta_{fy} = 0.11$

Different concrete design strengths were specified for the Zion buildings, and 90-day concrete compression test data were taken, with the results shown in Table 5. Based on these test data and a correction factor to account for the increase of concrete strength with aging, it was found that the ratio of the median compressive strength (including aging effects) to the design compressive strength is 1.3 to 1.4 in the reactor buildings base mats and 1.31 to 1.35 in the containment shells. Corresponding logarithmic standard deviations are approximately 0.10 to 0.11. For the auxiliary building, the ratio of median to design compressive strength is approximately 1.65 with logarithmic standard deviation of 0.13 for the walls and slabs. The crib house was designed with 2500-psi concrete so that the ratio of median to design compressive strength for this building is approximately 1.74, again with a logarithmic standard deviation of 0.12. These increased values of f_C are used in the equation for V_{ult} when computing the median shear strength capacities of walls.

	Design strength (psi)	Average strength (psi)	Standard deviation (psi)	Number of samples
Reactor building base mats (Unit 1)	5000	5948	570	76
Reactor building base mats (Unit 2)	5000	6521	661	92
Reactor containment building (Unit 1)	5500	6812	585	415
Reactor containment building (Unit 2)	5500	6664	617	404
Auxiliary building foundations	4000	6072	427	22
Auxiliary building walls and slabs	4000	6136	704	500
Crib house	3500	5603	606	200

Table 5. Zion concrete compression test results (90-day test).

3.2.3 The Ductility Factor Fu

The ductility factor F_{μ} is the ratio between the acceleration required for the load in an element to reach the ultimate load, as determined from a nonlinear analysis, to the acceleration required for the load in the element to reach the same ultimate load as determined by a linear analysis. Thus,

$$F_{\mu} = \frac{A_{F}}{A_{D}F_{S}}$$

The factor F_{μ} is a measure of the capacity of the element (or structure) to absorb energy inelastically and hence withstand larger accelerations than would be predicted by using a linear analysis.

For Phase I of the SSMRP, no nonlinear analyses were performed. Hence calculations of F_{μ} were based on the work of Newmark on "ductility modified response spectra" as documented in Refs 16 through 18 and Ref. 4. In this work, it was shown that the ductility factor was primarily a function of the ductility ratio, defined as the ratio between the maximum displacement of an elastic-plastic element to the elastic displacement. By analyzing simple onedegree-of-freedom systems with base excitation corresponding to a number of

(11)

Figure 5. Definition of ductility ratio.

different recorded earthquake time histories, it was shown that the ductility factor could be approximated by

$$F_{\mu} = \sqrt{2\mu - 1} , \qquad (12)$$

where μ is the ductility as defined in Fig. 5. Later studies¹⁹ showed that the ductility factor was not sensitive to the particular form of the elasticplastic constitutive law assumed, but did depend on the assumed degree of damping. These studies gave the results shown in Fig. 6.

The relation between F_{μ} and the ductility ratio and damping imposes no limitations on the maximum displacement, but only relates the maximum nonlinear displacement to the acceleration. Actual values of maximum displacement at failure are determined by experiment. Thus, the value of the ductility ratio at failure was taken from data on reinforced concrete walls failing in shear under reversal loading given in Ref. 15. From this data, the median value of ductility at failure was found to be approximately 4, with a log-standard deviation of 0.18. Thus, from Fig. 6, values of the ductility factor F_{μ} can be computed for $\mu = 4$, for any assumed value of structural damping.

3.2.4 The Response Factor F_R

The factor F_R relates acceleration as computed by an approximate or simplified design procedure to the actual acceleration as computed by a detailed finite element response analysis. For the reactor containment, turbine, and the auxiliary buildings, a detailed dynamic analysis was performed as part of the SSMRP, and hence for these buildings the factor F_R is not needed. However, for the crib house, the original design analysis performed by Sargent and Lundy was used, so for the crib house a response factor F_R was computed.

The variables that affect the calculated response of structures to a given seismic event with a given free-field acceleration can be grouped into four categories given by

- Modal response.
- Method of combination of modes.
- Method of combining earthquake components.
- Soil structure interaction effects.

For example, no soil-structure interaction effects were included in the original design analyses of the crib house. The analytical model for this structure assumed fixed base conditions, and did not consider radiation of energy from the structure into the soil. Only material soil damping (corresponding to 5% equivalent viscous damping) was included. Spatial variation of the ground motion over the planar extent of the foundation was not considered. Both of these factors are considered to result in some overestimation of structural response. The combined estimated factor of safety due to soil-structure interaction effects only for the crib house was judged to have a median and logarithmic standard deviation of:

 $F_{\rm R} = 1.2$ $\beta_{\rm R} = 0.15$.

Similarly, contributions to F_R from the other three categories above were computed. Details of these considerations are presented in Ref. 10.

3.2.5 Example of Fragility Development

To illustrate the process of developing fragility curves using the strength and ductility factors just described, the calculations for the fragility curve of the diesel generator room walls in the auxiliary building will be presented.

The loads (shear forces and moments) in all the walls and slabs in the auxiliary building were computed from finite-element time history analyses for a set of earthquakes all scaled to have peak accelerations in the range 0.17 to 0.30 g. Ten different earthquake time histories were used. The most highly stressed walls in the diesel generator rooms were the end walls, having a median shear force of 1430 kips. The acceleration reference point was taken to be at the control room floor slab. The median floor slab east-west acceleration for the 10 time histories was 0.15 g. The factors F_S and F_{μ} are used to scale up this acceleration in order to find the acceleration of the reference point (control room floor slab) corresponding to failure of the diesel generator room shear walls.

The location of the two walls is shown in Fig. 7. The walls are 25-ft high, 42-ft long, and 2-ft thick, with No. 6 high strength steel reinforcement on both sides, spaced 1-ft apart along the wall.

The Strength Factor. The median strength factor F_S (as discussed in Section 3.2.2) is given by

$$F_{S} = \frac{\frac{V_{ult} - V_{dead}}{V_{seismic}}$$

which was approximated as

$$F_{S} = \frac{V_{ult}}{V_{seismic}}$$

since the static loading on shear walls is very small compared to the dynamic seismic loading. The ultimate shear load capacity for a reinforced concrete wall is given by Eq. (9) as

$$V_{ult} = 8.3 \sqrt{f_c} - 3.4 \sqrt{f_c} \left(\frac{h}{w} - \frac{1}{2} + \frac{N}{4} \frac{h}{w}\right) + \rho_{se} f_y .$$
(13)

There is no significant normal load on these walls, so N = 0. The vertical reinforcement ratio is

$$\rho_{se} = \frac{2(0.44 \text{ sq in.})}{(12 \text{ in.})(24 \text{ in.})} = 0.00306$$
 .

Note that in this case the effective steel reinforcement ratio equals the vertical steel reinforcement ratio since no horizontal steel was used. Eq. (13) can be written

$$V_{ult} = V_{cu} + V_{su}$$

where

$$V_{cu} = 8.3 \sqrt{f_c'} - 3.4 \sqrt{f_c'} \left(\frac{h}{w} - \frac{1}{2} + \frac{N}{4} \frac{h}{w}\right) ,$$
$$V_{su} = \rho_{se} f_y .$$

From test data, the median concrete strength for the diesel room walls (taken as 1.65 times the 4000 psi design concrete strength as explained in Section 3.2.2) is

$$f = 6600 \text{ psi}$$
,

(14)

Figure 7. Diesel generator room end walls.

$${}^{\beta}f_{c}^{*} = 0.13$$

and the median steel strength is

$$f_y = 66,000 \text{ psi}$$

 $\beta_{f_y} = 0.09$.

Thus the median concrete shear strength is

$$V_{cu} = 10\sqrt{6600} - 3.4\sqrt{6600} \left(\frac{25}{42}\right) = 648 \text{ psi}$$

and the median steel shear strength is

$$v_{su} = (0.00306) (66,000)$$

= 202 psi .

Hence the median wall shear strength is

$$V_{ult} = V_{cu} + V_{su} = 850 \text{ psi}$$

and hence the median wall shear force capacity becomes

$$L_{ult} = V_{ult} (t) (0.8w) , \qquad (15)$$

$$= 850 (2) (12) (0.8) (42) (12) ,$$

$$= 8230 \text{ kips } .$$

in which 0.8w is the effective wall length as specified in the ACI code. Thus the median strength factor of safety ${\rm F}_{\rm S}$ is

$$F_{s} = \frac{L_{ult}}{L_{seismic}} = \frac{8230}{1430} = 5.8$$

The uncertainty in the ultimate shear load is due to the random uncertainty in the test data for the concrete and steel shear strengths (having log-standard deviations $\beta_{f_c} = 0.13$ and $\beta_{f_g} = 0.09$, respectively), and due to the fact that

the equation for the ultimate strength of shear walls is an approximate model fit to data (i.e., modeling uncertainty of $\beta_U = 0.15$). Thus we model the ultimate load of the wall as having the form

$$L_{ult} = L_{ult} \epsilon_R \epsilon_U$$

in which ϵ_R , ϵ_U are lognormal random variables with medians equal to unity and log-standard deviations β_R , β_U , respectively. From Eq. (14),

$$v_{ult} = v_{cu} + v_{su}$$
 ,

and using the approximation $\beta \cong \sigma/\mu$ it can easily be shown that

in which (\check{V}) denotes the median value. Further, since V is proportional to $\sqrt{f_c}$ it can be shown that

$$\beta_{\rm V_{cu}} = 0.5$$
 $\beta_{\rm cu} = 0.065$;

$$\beta_{V_{ult}} = \sqrt{\frac{[0.065(648)]^2 + [0.09(202)]^2}{(850)^2}} = 0.05$$

and since Lult is proportional to Vult,

$$\beta_{L_{ult}} = \beta_{V_{ult}} = \beta_{R}$$
.

Thus we have characterized the safety factor F_s in lognormal form as having a median value of 5.8, and random and modeling uncertainties of $\beta_R = 0.05$ and $\beta_U = 0.15$, respectively. In Phase I of the SSMRP, the relative effects of random and modeling uncertainties were not considered separately, but were combined to give a total uncertainty

$$\beta_{\rm F_{\rm S}} = \sqrt{\beta_{\rm R}^2 + \beta_{\rm u}^2} = 0.16$$

<u>The Ductility Factor</u>. The ductility factor F_{μ} is taken from Fig. 6 for specified values of the ductility ratio and structural damping. Damping in cracking concrete walls near failure is expected to be large, so a value of 10% damping is assumed.

The system ductility ratio for shear wall failure is normally estimated to be about 2. However, failure of this shear wall is primarily localized because of load redistribution, and nonlinear response of the wall will not significantly deamplify the response of the structure as a whole. Accordingly, a reduced system ductility ratio of 1.2 is estimated.

For μ = 1.2 and 10% damping, the value of F_µ from Fig. 6 is 1.18. The modeling uncertainty inherent in Fig. 6 is estimated to be 0.10 while the random uncertainty is estimated to be 0.05. Hence

$$F_{\mu} = 1.18$$

 $\beta_{\rm R} = 0.05$

$$\beta_{\rm U} = 0.10$$

 $\beta_{\rm F_{\rm S}} = \sqrt{\beta_{\rm R}^2 + \beta_{\rm u}^2} = 0.11$.

Accelerations at Failure. We are now in a position to compute the acceleration at failure using

$$V_{A_{F}}^{\vee} = A F_{S}^{\vee} F_{\mu}^{\vee}$$
,
= (0.15 g)(5.8)(1.18)
= 1.1 g .

The random uncertainty is

$$\beta_{\rm R} = \sqrt{(0.05)^2 + (0.05)^2} = 0.07$$

and the modeling uncertainty is

$$\beta_{\rm U} = \sqrt{(0.015)^2 + (0.1)^2} = 0.18$$

The corresponding fragility curve is plotted in Fig. 8.

This completes the example of the methods used in the development of structural fragilities. These methods were applied to the reactor containment building, auxiliary, turbine buildings, and the crib house. Descriptions of these structures and their resulting fragilities follow.

3.3 Reactor Containment Building Fragilities

The reactor containment buildings for Zion Units 1 and 2 are vertical circular cylinders with shallow domed roofs. They enclose the concrete internal structures, the reactor vessels, and reactor coolant systems. The containment buildings and the concrete internals are supported by independent flat circular foundation slabs which include a sump near the center to house the reactor vessel.

3.3.1 Description

The cylindrical portion of the containment building is prestressed by a posttensioning system that consists of horizontal and vertical unbonded tendons. The horizontal hoop tendons terminate in one of the six equally spaced vertical buttresses that extend from the base slab to above the spring line of the vessel. The dome is prestressed by a three-way posttensioning system. Vertical and circumferential reinforcing steel is placed in the cylinder, and the dome contains radial and circumferential reinforcing steel toward the outside diameter and reinforcing steel in a rectangular grid near the center. The foundation slab is conventionally reinforced with highstrength steel. Other than the vertical containment vessel tendons that extend through the base slab, no prestressing is used for the base slab. The

Figure 8. Failure of diesel generator room walls.

entire structure is lined with 1,4-in. welded steel plate to provide vapor tightness. A vertical section through the containment is shown in Fig. 9. Located within the containment buildings are the concrete internal structures. These structures are conventionally reinforced and support the reactor vessel, the steam supply system, the fuel handling pool, and the polar crane. The concrete internal structure consists of a ring wall, operating floor, fuel handling pool, and the reactor biological shield wall. The ring wall is 3-ft 9-in. thick with an outside diameter of 106 ft and extends upward from the floor slab (elevation 568 ft) to the operating floor (elevation 617 ft). On the operating floor immediately above the ring wall is located the polar crane. Figure 10 shows a vertical section through the internals and containment vessel. Figure 11 shows the location of the major items of equipment, including the reactor vessel, the steam generators, the reactor coolant pumps, and the polar crane.

The only location where the concrete internals are structurally connected to the containment vessel is at the base of the internal structure. One-foot square by 2-in.-deep shear keys connect the ring wall to the 3-ft-thick slab above the liner, and 1-3/8-in.-diam anchor bolts tie the wall into the 9-ftthick foundation slab. This detail is designed to transmit loads from the internals to the foundation directly without affecting the liner.

3.3.2 Failure Modes and Fragilities

Under seismic excitation, the containment building responds like a cantilever beam with a circular cross section, somewhat modified by rocking of the

Figure 9. Section of reactor containment building.

Figure 10. Zion reactor building and internal structure.

3

,

foundations. The spherical dome acts like a concentrated weight on the free end of the beam, adding both concentrated mass and rotary inertia. Because of the large radius-to-wall thickness ratio (approximately 25) the shear stresses in the wall are predominately tangential and axial, as shown in Fig. 12.

Figure 11. E-W section of containment building.

The stress distributions due to ground motion (in one direction) are shown schematically in Fig. 13. The axial bending stress σ_{ZZ} varies linearly across the cross section as long as the response of the structure stays in the elastic range, and local discontinuities are neglected. Due to the lateral inertia loading, both axial and tangential shear stresses are present. The point of maximum shearing stresses is 90° away from the location of the maximum axial bending stress. Figure 13(b) shows the typical shear stress distribution due to bending of a thin tubular beam.

The axial bending stresses are reacted by the concrete in compression, and by the vertical prestressing tendons and vertical steel reinforcement in tension. In the Zion containment structures the tendons are stressed to approximately 60 to 65% of their ultimate strength over the life of the structure. For low levels of seismic excitation, the wall will behave essentially elastically. The concrete is effective in resisting shear and flexural tensile stress in this case. Only after the flexural tensile stress exceeds the prestress and the concrete cracks will the bonded reinforcing steel experience any load. The increase in load in the tendons will be small due to the very small increase in strain compared to the preload strain. This occurs because the strain resulting from a crack width is distributed over the length of the unbonded tendon. As the load is increased and the cracks widen, yielding will occur in the reinforcing steel and liner. When the inertia loads are reversed, buckling of the reinforcing steel and liner can occur and failure of the liner integrity can result since the steel alone must resist the compressive forces. Local spalling of the concrete outside of the reinforcing steel will result in loss of confinement for the steel and accentuate the failure. Based on dynamic loads computed using a beam element finite-element analysis, the median bending stress failure acceleration was determined to be 9.0 g acceleration at the containment ring girder. The associated fragility curve is shown in Fig. 14.

As inelastic response levels are reached, the tangential shear distribution changes. This shear "yielding" occurs due to reduction in dowel stiffness and loss of aggregate interlock as the cracks widen. Any loss of prestress will result in a significant reduction of shear resistance capacity, since only the gravity and vertical response loads are available for aggregate "friction." The <u>tangential shear</u> must then be resisted to a larger extent by the bonded reinforcing steel. The dowel action of the reinforcing steel depends on whether the concrete can confine the steel bars. Failure of dowel action can result from either crushing of the concrete or bond splitting along the bar. Initial consequences of shear type failure will be potential failure of the liner and possibly some pipes. This level of failure is expected to occur when the equivalent elastic response at the location of the containment vessel ring girder reaches a median value of approximately 4 g. The fragility curve for this mode of failure is shown in Fig. 15.

The vertical shear stresses are carried by the horizontal steel reinforcing and by concrete aggregate interlock. The horizontal steel reinforcement, however, does not extend continuously across the buttresses. Here, the concrete segments of the containment wall are separated by steel buttress plates. Shear anchors are provided to transfer the vertical shear across the buttress plates, and frictional forces also serve to transfer the shear across the plates. The friction forces are high because the circumferential prestress tendons overlap at the buttress, thus doubling the compressive preload stress on the buttress plate. However, shear anchors were provided only on one side

(b) Axial and tangential shear stress distribution

Figure 13. Stress distributions in containment building wall.

Figure 14. Flexural failure of reactor building containment wall.

Figure 15. Shear failure of reactor building containment wall.

of the buttress plate as shown in Fig. 16. Thus the buttresses are a site of potential vertical shear failure. Their failure, with corresponding loss of liner integrity is expected to occur at a median acceleration at the ring girder of approximately 4.2 g. The fragility curve for vertical shear failure is shown in Fig. 17.

It should be noted, however, that the addition of other dynamic loads can significantly influence the seismic capacity of the containment vessel. If loss of coolant accident (LOCA) internal pressure is present during the earthquake (or aftershocks), a very substantial amount of the prestress capacity will be required to withstand the pressure loads. Consequently, a much lower strength capacity will be available to withstand the seismic loads. This is true not only for the capacity of the vertical system required to resist flexure and transverse shear but also the horizontal system. Typically, the horizontal preload system does not need to resist large increases in load as the result of flexural loads. However, in the Zion reactor buildings the circumferential preload is required to transfer the VQ/I shear across the vertical buttress plates. In view of the low probability of a concurrent LOCA, however, these effects were not investigated as part of the current study.

The concrete internal walls and supporting structures were also examined for potential failure modes. These concrete structures consist of a ring wall, the reactor biological shield wall, the fuel-handling pool, and the operating

Dimensions in feet and inches

Figure 16. Section of containment wall buttress.

Figure 17. Vertical shear failure at reactor building buttress plates.

floor. The reactor coolant system (which consists of the reactor vessel, the steam generators, the pressurizers, and the reactor coolant pumps) is located within the ring wall and laterally supported by the ring wall and the shield wall. The polar crane is also supported by the ring wall.

A major failure of the concrete internal structure could lead to a total failure of the reactor coolant system due to loss of support for major components or impact on the coolant system with consequent failure of the pressure boundary. Thus, attention was focused on the failure of any structural elements of the concrete internal structures that could lead to such an event.

The controlling seismic failure mode for the internal structures is shear failure. The lowest capacity failure mode for the internal walls is the shear failure of the weld for the 1-3, 8-in.-diam dowels at the interface of the 3-ft and 9-ft slab, and simultaneous shear failure of the vertical portion of the 3-ft-thick slab in the sump. This will result in loss of liner integrity and possibly pipe and conduit failure. The median expected acceleration for shear failure of the concrete internals is approximately 5.0 g at the operating floor elevation.

One of the internal structures was found to have a significantly low failure mode. This was the possible failure of the pressurizer enclosure, a reinforced concrete structure at the operating floor which encloses the portion of the pressurizer above the operating floor (Fig. 18). The pressurizer enclosure

Figure 18. N-S section of containment building.

has l-ft-thick poured-in-place concrete walls on three sides. The walls are approximately 39-ft tall. The fourth wall consists of several pieces of removable concrete panels. The roof is constructed of a l-ft-thick removable concrete slab bolted down to the two walls which are perpendicular to the roof slab span (Fig. 19).

Section B-B

Figure 19. Plan and sections of pressurizer enclosure.

No diaphragm action is provided by the roof slab due to lack of roof connection to the other two walls and the discontinuity at the center of the roof slab. Because of the open section, considerable torsional response results. The failure mode of the wall results mainly from yielding and failure of the wall reinforcing and eventual collapse of the roof and removable panels. This mode of failure is not expected to cause liner damage or result in damage of any of the remainder of the building structure. However, damage to the pressurizer and its associated piping including possible rupture of the reactor coolant pressure boundary should be expected following collapse of the enclosure. The median effective capacity for this structure is approximately 1.2 g at the reactor building operating floor. Figure 20 shows the fragility curve for this failure mode.

3.3.3 Summary of Zion Reactor Building Fragilities

In summary, the three lowest failure modes for the containment shell, internal walls, and internal structures were found to be:

- Collapse of pressurizer roof enclosures, at 1.2-g acceleration of operating floor slab.
- 2. Tangential shear failure at base of containment shell, at 4.0-g acceleration at ring girder.
- 3. Axial shear failure along buttress plates, at 4.2-g acceleration at the ring girder.

Figure 20. Collapse of reactor building pressurizer enclosure.

No examination was made of possible failure modes associated with soil liquefaction, surface faulting, or sliding. A preliminary investigation of the effect of base slab uplift was conducted, however.

When one considers the range of earthquakes for the seismic risk analysis, it is essential to include consideration of phenomenon which may not be of major consequence in the design process. One such consideration is soil-foundation separation or uplift. For structures such as the Zion reactor building, i.e., of large height-to-diameter ratio, overturning moments due to its seismic response lead to a prediction of uplift. Soil-foundation separation, per se, is not critical. The consequences of uplift on structure response are usually a reduction in member load and introduction of additional high frequency response. These effects are generally considered to be of second order, particularly for a seismic risk analysis, and were not explicitly included in our analysis. In addition, the potential exists for large soil pressures to occur due to a redistribution of stress once tension in the soil is predicted. Peak toe pressures may, in fact, increase to the point of exceeding the soil bearing capacity causing failure. A further consequence of uplift itself and potential soil failure is to increase relative displacements between adjacent structures which then causes failure of interconnecting pipes due to the large relative motions. At Zion, large relative displacements would be predicted to occur between the reactor building and the AFT complex. In the SSMRP Phase II analyses, we included basemat uplift as a potential failure mode of interconnecting pipes.

To estimate the excitation levels at which uplift and soil failure occurred, a series of linear analyses was performed using SMACS for the range of earthquakes. A post processing of results combined each horizontal response with the vertical response to determine overturning moments and peak toe pressures. In the SMACS analyses, ensembles of earthquakes represented the seismic input and variations in soil and structure input parameters were included. In the post processing, the effects of dead weight, buoyancy, and an estimate of the position of response distributed to the side soil were taken into account. The results were estimates of overturning moments, peak toe pressures, and vertical displacements based on our linear response calculations. Such an analysis greatly overpredicts peak soil pressure. Several studies^{20,21} have made comparisons between peak toe pressures calculated by linear and nonlinear analyses. Using this data as a basis, the linearly calculated toe pressures were adjusted by nonlinear effects. These scaled values of toe pressures were compared with the ultimate soil capacity of 45 KSF. A median toe pressure of 45 KSF was estimated at a peak horizontal acceleration of the reactor building foundation of 0.70 g.

Although soil failure is not expected to result in failure of the structure directly, the resulting increased relative displacement of the reactor building can lead to impact between the reactor and auxiliary building. In the Zion reactor containment vessels, no tangential (or hoop) reinforcing steel was included on the inside surfaces of the containment shell. Consequently, concrete spalling and subsequent liner damage is expected at relatively low levels of additional displacement once the circumferential prestress is overcome. No impact is expected to occur for reactor building displacements less than approximately 0.8 in. at elevation 642 ft, regardless of phasing. The fragility curves associated with impact between the reactor buildings and auxiliary buildings are shown in Fig. 21.

Figure 21. Impact between reactor and auxiliary buildings.

3.4 Turbine/Auxiliary Building

The turbine/auxiliary building complex of the Zion nuclear power plant consists of the following buildings: turbine building, auxiliary building, fuel handling building and the diesel generator rooms. All four buildings are structurally interconnected at different levels through walls, roofs, and floor slabs. The general layout of the complex is given in Fig. 7.

3.4.1 Description

The turbine building, a 678-ft by 130-ft structure, is symmetrical about an approximate east-west centerline. Most of the turbine building (i.e., turbine and condenser supporting structures) is founded on a reinforced concrete foundation mat with varying thickness. The remainder of the turbine building, which is not located over the foundation mat, is supported by concrete columns which extend downward to the spread footings.

The turbine foundations are massive reinforced concrete space frames that are continuous with the piers of the condenser walls and rise from elevation 592 ft to the main floor of the turbine building at elevation 642 ft. The turbine foundations are isolated from the major turbine building floors at elevations 617 ft and 642 ft by a 1-in. gap.

The ground floor, a 3-ft-thick reinforced concrete slab, is continuous with the floor slab at the same elevation in the auxiliary building. At elevations

617 ft and 642 ft, the floors were constructed of poured-in-place concrete slabs supported by vertical and horizontal braced steel framing. The slabs are continuous, through the steel floor framings and concrete slabs, with the floor slabs at the same elevations in the auxiliary building. The west side vertical braced frame, located between the turbine building and the auxiliary building and diesel generator rooms, is encased in reinforced concrete walls from ground level up to the auxiliary building roof level at elevation 668 ft. The other walls above ground, including the wall above the auxiliary building roof level, are constructed of fluted metal sidings.

The roof was constructed of 3 1/2-in.-thick precast concrete channel slabs covered with 1-in. rigid insulation and is supported by braced steel roof framing. The roof framing consists of steel roof girders, wide flange roof beams, and double-angle diagonal bracings. A minimum of three 7/8-in.diameter bolts and 3/8-in.-thick gusset plates were used for the connections of the diagonal bracings.

The lateral force resisting systems of the turbine building are the steel braced frames along all four sides of the building. Schedule 40 pipes were used as diagonal bracing elements for the braced frames. Fluted metal sidings were attached to the girt system of each vertical braced frame to enclose the turbine building.

The tee-shaped auxiliary and fuel handling building is structurally continuous with the turbine building. A common wall joins the two structures as shown in Fig. 7. Structural connectivity between the two buildings is further provided by continuous floor slabs at various levels. The diesel generator rooms are an integral part of the structural complex. The auxiliary building, the fuel handling building, and the diesel generator rooms were all designed as Class I structures.

Above grade, the lateral force resisting system is a combination of braced structural steel frames and concrete slabs and walls. Vertical braced steel frames were erected on foundaton walls around the periphery of the auxiliary-fuel handling building and diesel generator rooms. Various diameter steel pipe was used for the diagonal bracing. The entire vertical braced frames were then encased in reinforced concrete walls which form the shear wall system. The floors are reinforced concrete slabs supported by horizontal braced steel framing. At places where heavy floor loads were expected, shear studs were used at the top flange of the steel floor beams to achieve a composite action. The roofs of the auxiliary building and diesel generator rooms were constructed of a poured concrete slab supported by braced steel roof framing at elevations 668 ft and 658 ft.

3.4.2 Turbine Building Failure

The turbine, auxiliary, fuel handling and diesel generator buildings form a single combined structure. Failure of one part of the structure, while not necessarily resulting in failure of the entire complex, will at least influence the dynamic response characteristics of the overall building. Since no Seismic Category I equipment is located in the turbine building with the exception of the 48-in.-diameter service water pipes that are embedded in the turbine building base slab, turbine building failure modes were investigated only to the extent they could directly cause damage or failure to Category I structures or equipment.

The lowest potential mode of failure consists of failure of the turbine building roof system. There are two horizontal lateral force resisting systems in the turbine building roof which are effective in collecting and transmitting lateral inertia forces to the vertical shear resisting systems. The first system consists of the precast concrete channel slabs. The second system is the braced steel roof truss. No positive connection of the roof channel slabs to the braced steel roof truss is provided. The roof inertia force is transferred to the vertical resisting systems by the roof channel slabs only through the friction forces developed between the channel slabs and supporting steel members. The channel slabs span in the east-west direction. Thus, under the east-west direction ground excitations, only half of a channel slab weight is effective in producing friction forces and resulting couples to transfer the roof inertia force to the end vertical braced frames. Therefore, the diaphragm capacity of the first horizontal force resisting system is very low, and sliding between adjacent concrete channel slabs and between the slabs and roof beams will occur at low acceleration level. However, sufficient restraint will be provided by the parapet walls to limit motions of the roof slabs and prevent them falling, provided the horizontal roof braced frame remains effective.

The roof braced frame will resist the roof inertia force as soon as sliding begins to occur in the roof channel slabs. The steel roof framing system consists of roof girders, roof beams, and double angle diagonal bracing members. Due to the high aspect ratio (approximately 5) of the turbine building, the roof frame is quite flexible. For north-south response, sliding of the roof slabs is restrained by a parapet wall. Loss of this restraint capacity can be expected at a median acceleration response of the roof of approximately 0.7 g.

For both north-south and east-west excitation, it is expected that virtually all the roof slabs will fall inside the turbine building. This may be expected to result in loss of the turbine units as well as possible loss of equipment which is located under any open hatches or those with light steel gratings under the operating floor. It is not considered possible that falling roof slabs could damage the service water pipes. Although the steel framing in both the roof frame and the vertical braced frames may be expected to be damaged, it is expected to remain standing after loss of the concrete roof slabs. This relatively lightweight structure is then expected to withstand substantially higher excitation levels.

Other modes of failure involving impact between the turbine pedestal and the turbine building floor slabs or shear wall failures at the lower elevations of the turbine building, while resulting in structural damage to the turbine building and equipment within this structure, are not expected to result in damage to any safety-related equipment. Therefore, no fragility curves are provided for any of the turbine building failure modes.

3.4.3 Auxiliary Building Failure

The lowest significant structural failure mode for the auxiliary building consists of failure of the common shear wall between the auxiliary building and the turbine building. At elevations above ground level, structural steel braced frames are encased in the concrete shear walls and floor and roof slabs. With one or two exceptions, no shear connectors or reliable bond

between the steel members and concrete exists. Thus, the concrete and steel tend to behave as a redundant system. Due to its relative flexibility, the steel frame structure carries little load as long as the concrete wall and floor system remains intact. Once failure of the concrete occurs, load is transferred to the braced frame system. However, the capacity of the steel framing is significantly less than that of the concrete so that once failure of the concrete occurs, failure of that part of the structure will rapidly follow provided there is no redundant structure available to carry the redistributed seismic loads.

This failure is expected to initiate at elevation 592 ft where the composite wall construction consisting of braced steel framing with in-fill reinforced concrete panels begins. In this wall, shear studs are welded to the steel column webs to ensure a composite action between the concrete panels and the braced steel frame and to provide the continuity of the concrete shear wall across the columns. After the common shear wall-braced frame fails, the shear load will be redistributed to the remaining shear walls at this story. However, because this wall resists a major portion of the load and contributes significantly to the story shear capacity, it is expected that failure of the remaining shear walls will immediately follow failure of the common wall. The median response acceleration capacity for the common turbine/auxiliary building shear wall is approximately 1.1 g at node 3006, as shown in Fig. 22. (The choice of reference locations is arbitrary since linear analysis was used for response calculations.)

Figure 22. Failure of auxiliary building shear walls due to N-S ground motion.

At very slightly above the same median capacity, failures of the outermost east-west shear walls (column lines 5 and 35) are expected. Failure of these walls is expected to be initiated at elevation 592 ft from north-south excitation. Due to the torsional response in the structure, the east-west shear walls are highly loaded from north-south excitation. There are a number of redundant east-west shear walls between the generator rooms as well as the auxiliary building at column lines 10 and 20 and other locations that can be expected to carry additional loads once the maximum capacity of the outermost walls is reached. Thus, although the outermost walls may be expected to reach their ultimate capacity and experience substantial cracking, the load will be transferred to adjacent walls and collapse of a significant part of the diesel generator rooms is not expected until higher levels of response are reached. There will then be a sequential failure of the shear walls from the extremities of the combined auxiliary building and diesel rooms propagating towards the center of the structure. The fragility curve for the diesel generator building shear walls from north-south excitation logs shown in Fig. 8. The median response acceleration capacity for this mode of failure is expected to be approximately 1.1 g at node 3006. The details of the analysis of this failure mode were presented in Sec. 2.2.3.

A number of concrete block masonry walls are located throughout the auxiliary building. For the most part, these walls are not load-bearing or at most support an unloaded concrete slab. The walls are typically constructed of 1-ft-thick concrete blocks, vertically reinforced and grouted. The evaluation of these walls was conducted using in-structure response spectra generated in the original design analysis scaled up to the response acceleration level required to cause failure. Failure of these walls may be expected to result in loss of function of any attached conduit or equipment but will be quite localized and will not affect any other structural member. The fragility curves associated with masonry walls at elevation 592 ft are shown in Fig. 23. The median response acceleration capacity associated with failure of the walls is approximately 1.7 g at node 3006. Walls at lower elevations may be expected to have higher equivalent ground motion capacity.

3.4.4 Shear Wall Failure for East-West Excitation

The auxiliary building, including the diesel generator rooms and the fuel storage building, has higher seismic capacity to withstand east-west excitation than excitation in the north-south direction. This is because the structure is essentially symmetric about the east-west axis and very little torsional response results for east-west excitation.

Failure from east-west excitation is expected to be initiated in the shear walls along column lines 17 and 23 at elevation 592 ft. Failure of the walls along column lines 17 and 23 may be expected to result in failure of the two 400,000-gal capacity refueling water storage vaults, which may result in flooding of some components in addition to other damage. The fragility curve for failure of the auxiliary building shear wall system for east-west excitation is shown in Fig. 24. The median expected response acceleration capacity for failure due to east-west excitation is approximately 2.7 g at node 3006.

The roof of the auxiliary building is a 21-in.-thick reinforced concrete slab. The lowest capacity failure mode consists of a shear failure of this slab along column line P due to north-south excitation. The roof slab is supported

Figure 23. Collapse of masonry walls around control room.

Figure 24. Failure of auxiliary building shear walls due to E-W ground motion.

on a shelf angle so that only the upper reinforcing steel in the slab is effective. Loss of the roof diaphragm results in the requirement that the concrete walls resist the lateral inertia force in transverse bending.

This capacity is relatively low. Failure of the reinforced concrete walls in bending about the weak axis then leads to the collapse of the roof. The control room equipment at the floor immediately below (elevation 642 ft) will be severely damaged by the collapsed roof. The fragility curve corresponding to this mode of failure is shown in Fig. 25. The median acceleration response capacity is approximately 3.0 g, at node 3006 again assuming no failures associated with the previous failure modes have occurred.

3.5 Crib House (Intake Structure)

The crib house of the Zion Nuclear Power Plant is a partially open, box-like reinforced concrete structure which acts as a reservoir for the circulating water pumps and also houses the circulating water pumps, the service water pumps, and the fire pumps.

3.5.1 Crib House Description

The structure is founded on a rectangular reinforced concrete slab 6-ft thick, 170-ft long in the east-west direction, and 179-ft wide in the north-south direction. The foundation slab is horizontal at elevation 545 ft on the intake end of the structure and slopes gently downward to another horizontal slab at elevation 537 ft under the pump suction area. A vertical section through the crib house is shown in Fig. 26.

Figure 26. East-west section of the crib house.

The circulating water supply flows into the crib house through three 16-ftdiam circular intake pipes which extend approximately 2600 ft out into Lake Michigan. At the back or west end of the crib house, longitudinal walls (Fig. 27) form six cells that channel the flow of water into the pump suction areas. The longitudinal walls span from the foundation slab to the operating floor at elevation 594 ft. Except for one 7-ft-thick wall at the center of the crib house, all the longitudinal walls are 3-ft thick.

The operating floor is a 2-ft-thick reinforced concrete slab that covers the total width and approximately one-half the length of the crib house. The operating floor supports six vertical service water pumps spaced equally across its width, the two fire pumps, and the reinforced concrete pump enclosure. The enclosure was constructed of 18-in.-thick reinforced concrete roof slab and walls. The roof plan of the pump enclosure at elevation 616 ft 6 in. is shown in Fig. 28. Several large openings in the roof slab are shown in the figure.

The circulating water pump room, located under the operating floor and behind the service water pumps, houses six vertical circulating water pumps. The room is enclosed by three foundation walls (4-ft thick), one 4-ft-thick vertical wall, the operating floor, and the floor slab at elevation 552 ft 3 in. The pump floor slab (2-ft 9-in. thick) is supported by short vertical walls below which is located the pump suction area. The circulating water

Figure 27. Section (plan view) at the pump suction area of the crib house.

Dimensions in feet and inches

Figure 28. Pump enclosure roof plan (el. 616 ft 6 in.).

pump drives are located on the operating floor directly over the circulating water pumps.

3.5.2 Crib House Failure

The primary safety-related function of the crib house is to provide a reservoir and to house the service water pumps. Thus, only failures that would interrupt intake and flow of water or cause failure of the service water pumps were considered.

No reanalysis of the crib house was conducted as part of of the SSMRP. The evaluation of the structure fragility levels was based on seismic loads developed by Sargent & Lundy as part of the original design analyses.²² In addition to a consideration of the strength and ductility capacities for the structure, the design loads were modified as discussed in Sec. 3.3 to account for expected structure response. The assumption was made that the loads developed from the Sargent & Lundy model were median-centered based on the assumed input.

The pump enclosure is a 165-ft long by 28-ft wide reinforced concrete box-type structure. The enclosure structure is essentially symmetric about the two orthogonal directions. Thus, no torsion occurs except that resulting from the response of the remaining part of the structure that supports the pump enclosure room. Because of the unusually high aspect ratio of the roof slab, some horizontal response amplification of the roof slab results.

The lowest capacity failure mode results from loss of the roof diaphragm due to east-west response. The roof is somewhat lower in capacity than the north and south shear walls of the pump enclosure room due to the large hatches provided (Fig. 28). Although hatch covers are provided, the shear capacity is reduced. Once the diaphragm capacity is lost, loads are transferred to the north and south walls which must resist the east-west roof inertia loads by out-of-plane bending. The out-of-plane capacity of these walls is substantially less than the roof diaphragm capacity. Consequently, diaphragm failure is expected to be followed essentially at the same time by flexural failure of the north and south walls with rigid body rocking and vertical collapse of the roof structure. Collapse of the roof could result in loss of all the service water pumps.

The fragility curves for the crib house are referenced to free field peak ground acceleration because responses were determined from design calculations. Figure 29 shows the fragility curve for failure of the pump enclosure room roof.

At ground acceleration levels above that required for failure of the pump enclosure roof, failure of various shear walls within the crib house may be expected. Failure of these walls can result from north-south and east-west response depending on the specific shear walls under consideration. Under north-south response, the north-south intake walls are expected to fail at a median ground acceleration capacity of approximately 2.5 g. Failure of the east-west intake walls is expected at a median ground acceleration of approximately 5.4 g. Failure of the intake end of the structure is expected to result in at least partial flow blockage. It is considered unlikely that the blockage would completely prevent flow to the service water pumps. However, the flow could be partially restricted.

Figure 29. Failure of crib house pump enclosure roof.

3

Failure of the guide walls under the pump room (Fig. 27) from north-south response is expected at a median ground acceleration level of approximately 3.9 g. Failure of these walls may be expected to result in loss of the service water pumps and service water pipes located within the structure. It should be noted, however, that the median ground acceleration levels discussed in this section for shear wall failure are considered extremely improbable.

SECTION 4: COMPONENT FRAGILITIES

The 37 categories for reactor system components were described in Sec. 2. Data for computing estimates of fragility for these categories was obtained from a variety of sources including actual fragility data, qualification test data, design calculations, and expert opinion. These data were statistically combined for each category to obtain a single final fragility curve. Section 4.1 describes the fragilities of plant-specific components determined from design reports, Final Safety Analysis Report data, and qualification tests. Section 4.2 describes the fragilities developed from the U.S. Army Corps of Engineers SAFEGUARD program data base. Section 4.3 describes the development of fragilities of piping components using both data and analysis. Section 4.4 describes an extensive expert opinion survey that covered all the categories of equipment. Section 4.5 describes the statistical methods used to combine the data of different types and for different modes of the same piece of equipment and the weighting scheme used to rank the data.

Virtually all of the data used for component fragility development have been stored in a relational data base on the LLNL computer system. This data base and its contents are documented in UCRL-53038, Rev. 1 which is included for reference in this report as Appendix E.

4.1 Plant-Specific Component Data Sources

A number of different sources of information were used in deriving fragilities for plant-specific components, including

- Design reports for specific equipment.
- Zion Final Safety Analysis report.
- High Seismic Zone Qualification reports.
- Specifications for seismic design of equipment.
- Westinghouse topical reports.

Several reports were made available to the Lawrence Livermore National Laboratory for plant-specific equipment through Commonwealth Edison and their architect, engineer and NSSS supplier. For the most part, the design reports for major NSSS items were based on reference design spectra more severe than the Zion spectra and were complete engineering reports that both summarized and provided details of analyses for seismic qualification. Most design reports for non-NSSS items were based on Zion-specific seismic conditions. The Final Safety Analysis Report²³ provided general seismic design criteria and in some instances, summaries of critical stresses, qualification results, etc.

In the case of the reactor protection system electrical and electronic equipment, Westinghouse provided a series of WCAP reports^{24,25} that documented high seismic zone qualification tests on similar or identical equipment to that in the Zion nuclear power plant. The high seismic zone qualification test environment exceeded the Zion seismic environment by a large margin.

Specifications for seismic qualification of equipment were provided to the SSMRP by Sargent & Lundy, the architect-engineer of the Zion plant. In cases where plant-specific qualification reports were not readily available, knowledge of the vendor requirements plus fragility and qualification test data were combined to develop fragility descriptions.
Several reports summarizing equipment damage during major eathquakes were reviewed.²⁶⁻³⁷ Most reports do not provide sufficient information to determine the extent of the loading experienced by equipment during the seismic event. Reference 35 does, however, provide such information and indicates that only insignificant failures were present for equipment that experienced from 0.5 to 1.8 g spectral acceleration, although most equipment was rigid and experienced less than 1.0 g spectral acceleration. This information is comforting in that steam plant power mechanical, electrical, and control equipment have been demonstrated to withstand an earthquake of 2 to 3 times the Zion design basis earthquake, but, since no significant damage was observed on equipment typical of nuclear power plant equipment, fragility descriptions cannot be concluded from the information.

Equipment whose fragilities were derived from the Zion-specific data sources described above can be conveniently discussed under four separate headings.

- 1. Plant specific equipment whose fragility is based on structural failure and for which design report data design reports were available.
- 2. Plant specific equipment whose fragility is based on functional limits and for which design report data design reports were available.
- 3. Structural capacities of equipment derived from knowledge of the design specifications and the strength factors of safety inherent in the governing codes and standards.
- 4. Structural and functional capacities of equipment derived from high seismic zone qualification test data.

In the following, each of these headings is discussed separately, with a brief description of the method and a listing of the components whose fragilities were derived by that method.

4.1.1 Plant-Specific Structural Fragilities Derived from Analysis or Design Reports

Major safety-related equipment items that fail in a structural mode are derived in this section. These items are:

- Reactor vessel.
- Reactor vessel internals.
- Control rod drives.
- Steam generator.
- Pressurizer.
- Reactor coolant pump.
- Safety injection pump.
- Residual heat exchanger.
- Component cooling water heat exchanger.
- Accumulator tank.
- Boron injection tank.
- Main steam isolation valve.
- Large motor-operated valves.
- Small motor-operated valves.
- Condensate storage tank.
- Diesel oil storage tank.
- Buried service water pipe from crib house.
- Buried auxiliary feedwater pipe from condensate storage tank.
- Service water pumps.
- Battery racks.

In development of fragility relationships for these components, the concept of capacity factors and response factors is used. These factors represent factors of conservatism or unconservatism in the design codes, design loading and subsystem response calculations, i.e., they are factors of safety above the original seismic design bases of the equipment. Once the factors of safety are established, the fragility can be derived as the product of these factors times the original seismic design basis acceleration or load.

In deriving response factors and their variabilities the following parameters were considered:

- Qualification method.
- Modeling error (frequency and mode shape).
- Damping.
- Modal response combinations.
- Earthquake component combination.

A detailed presentation of the derivations of these factors and the results used by the SSMRP is presented in Chapter 5 of Ref. 9.

Since the equipment fails in a structural mode, both a strength factor F_S , based on static strength, and a ductility factor F_{μ} , based on inelastic energy absorption, must be considered. The capacity factor F_C is then the product of the strength and ductility factors,

$$\mathbf{F}_{\mathbf{C}} = \mathbf{F}_{\mathbf{S}}\mathbf{F}_{\mathbf{\mu}} \quad . \tag{16}$$

In the case of metal structures, the ultimate load or stress is defined as the ultimate load capacity under static loading, i.e., that load or stress at which the displacement increases without bound for a small additional increase in load. In deriving median capacities, a concerted effort was made to be realistic about capacities and, as such, average material properties were used and larger deformation capability and strain hardening, where feasible, were considered in order to get a best estimate of the median structural capacity.

The strength factor F_S is derived from the equation:

$$F_{s} = \frac{\frac{P_{c}}{P_{D}} - \frac{P_{N}}{P_{D}}}{\frac{P_{T}}{P_{D}} - \frac{P_{N}}{P_{D}}},$$
(17)

where P_C is the median collapse load or stress and is taken as the limit load, P_N is the normal operating load or stress, P_T is the total normal plus seismic load or stress, and P_D is the code design allowable load or stress. This is the same as the equation used in developing the building fragilities except that all terms on the right hand side are divided by P_D , because, in many instances, design reports provided the exact values for use in Eq. (17). Some variability is assigned to each term in this equation to account for the range of material properties and the uncertainty in actual loading. For structures that respond in the amplified response region of the design spectrum, the ductility factor F_{μ} , introduced in Sec. 3.2.3, is applied. The value is taken from the simplified relation

$$F_{\mu} = \sqrt{2\mu - 1}$$

For equipment that is considered rigid, i.e., fails without yielding, the ductility factor is taken as 1.0, i.e., the earthquake loading behaves the same as a static load and no credit can be taken for inelastic energy absorption.

Due to the large number of components whose fragility was derived by this approach, not all derivations are reported in detail. The steam generator capacity calculation presented below is typical of this method of generating fragility descriptions.

Steam Generator. Review of Ref. 38 indicates that for a conservative response spectrum the seismic stresses are less than yield for all components of the steam generator. The steam generator tubes, per Ref. 38, are the most critical item of the steam generator assembly. Based upon the design analysis, the tubes would not yield until the spectral acceleration at the system fundamental frequency was about 5 g's.

Q 4.17-1 from Ref. 23 indicates that the NSSS component supports were limited to yield for normal plus DBE loads. Information from Westinghouse indicated that for Zion the steam generator support columns are the most critically stressed item, with the normal and DBE loads consuming 32 and 38% of the faulted condition allowable, respectively.

The construction material is ASTM A-588 with a 50 ksi minimum yield. Considering the median yield strength to be about 1.25 times the specified minimum, and assuming this to be the limit load, then applying Eq. (17) with the above stated stress levels, the strength factor is computed to be

 $F_{S} = 2.45$.

The variability in this strength factor is due to variability in the yield strength. The yield strength for austenitic stainless steel, specified in the ASME Code, is, per Ref. 39, about 1.65 standard deviations below the average value, corresponding to the 95% nonexceedance value, i.e., 95% of the data fall above the code specified value. Material strengths tend to be more lognormal than normal; thus, it was assumed that the coefficient of variation, from Ref. 39, for yield strength is applicable to a lognormal distribution. Reference 39 indicates that the average yield strength of austenitic stainless steel is about 25% above the code specified value. Considering the average yield strength to be an approximate median value, the logarithmic standard deviation on material strength is computed to be 0.14. The random scatter of yield strength within any given heat is considered to have a logarithmic standard deviation of approximately 0.1 and the uncertainty of the median yield strength from heat to heat, expressed as a logarithmic standard deviation, is considered to be approximately 0.1, thus

 $\beta_{\rm S} = 0.14$,

(18)

 $\beta_{\rm R} = 0.1$, $\beta_{\rm H} = 0.1$.

Reference 4 recommends that for design of members loaded primarily in compression the ductility should range from about 1.5 to 3.0. Since these are design values, 3.0 is considered to be about a median value and 1.5 to be approximately a minus 2 logarithmic standard deviation value.

Applying Eq. (18), the median factor for ductility is

 $F_{11} = 2.24$.

Considering the range of ductility from 1.5 to 3 as representing 2 logarithmic standard deviations and considering the uncertainty in the application of Eq. (18), the variability can be defined as

$$\beta_{\mu} = 0.31$$
 ,
 $\beta_{R} = 0.10$,
 $\beta_{II} = 0.29$.

Combining factors and logarithmic standard deviations, the overall capacity factor is

 $F_{C} = 5.5$, $\beta_{C} = 0.34$, $\beta_{R} = 0.14$, $\beta_{II} = 0.31$.

Multiplying the computed factor times the original design spectral acceleration for the DBE results in a median capacity of 3.3 g S_a at the 5 Hz fundamental NSSS system frequency. The resulting fragility parameter is spectral acceleration at 5 Hz at the steam generator support at elevation 590 ft of the reactor building.

4.1.2 Plant-Specific Functional Capacities Derived from Design Reports

Major equipment items whose failure modes are functional rather than structural, are addressed in this section. Equipment whose fragility was derived based on functional failure derived from design reports are:

• Containment fan coolers.

.

.

- Residual heat removal pumps.
- Centrifugal changing pumps.

In addressing functional failure modes, ductility (i.e., inelastic energy absorption) is not a consideration since the functional limits may be within the realm of subsystem elastic response. As an example, the calculation of the fragility of the residual heat removal (RHR) pumps is presented.

<u>Residual Heat Removal Pumps (RHR)</u> The RHR pumps in Zion were analyzed for seismic loading as part of a system dynamic model that included attached piping. A generic response spectrum was used. The two most critical areas were identified as the pump holddown bolts and the impeller deflection. The minimum factor of safety was associated with impeller deflection.

The calculated deflection was 0.0099 in. and the stated allowable was 0.0105 in. Tolerances are not known; thus, it was assumed that the worst case tolerance stack-up, equivalent to a -3β value, resulted in the minimum allowable deflection of 0.0105 in. Considering the size of the impeller, the method of fabrication of the impeller and pump housing and normal machine shop tolerances, the median clearance is estimated to be 0.0145 in. The resulting median factor on capacity is 1.46 with a logarithmic standard deviation $\beta_{\rm C}$, approximately equal to 0.11. The resulting variability is primarily uncertainty in the actual clearance in each unit with a small contribution due to randomness inherent in the clearance under operating conditions. The estimated variabilities due to randomness and uncertainty are

 $\beta_{\rm R} = 0.05$, $\beta_{\rm U} = 0.10$.

Multiplying the safety factor times the design spectral acceleration, at the equipment fundamental frequency of 7 Hz, results in a median spectral acceleration capacity of 3.2 g. The mounting bolt capacity is much greater, with a median value of 11.7 g spectral acceleration at 7 Hz. Thus, the RHR pump fragility is determined by the deflection of the impeller.

4.1.3 Fragilities Based on Generic Code Specifications

For several components, detailed information on stresses, deflections, bearing loads, etc., was not readily available, and fragility relations had to be derived from a knowledge of design criteria. In this section, the method of developing fragility relations solely from design criteria for equipment whose failure modes are structural is described. This method was used for:

- Large vertical vessels with formed heads.
- Large horizontal vessels and heat exchangers.
- Small-to-medium vessels and heat exchangers.
- Ducting.

This method of deriving fragilities is based on the fact that, during the era in which the Zion plant was designed, the seismic design of passive equipment (i.e., equipment for which structural rather than functional failure is of concern) was based on loads in the equipment support. The ASME code working stress level for carbon steel is the lesser of 5/8 of the yield strength or 1/4 of the ultimate strength. Assuming a common carbon steel such as SA 516-GR 60 an allowable stress of 1/4 of the ultimate stress at operating base earthquake (OBE) accelerations (which for Zion was 0.085 g peak ground acceleration) would be 15 ksi. The median acceleration at failure is computed using the general approach and equations presented in Sec. 3.2.

The equation for computing the strength factor is modified slightly, as follows for convenience:

$$F_{S} = \frac{\sigma_{design}^{\sigma} - \sigma_{design}^{\sigma}}{\sigma_{seismic}^{\sigma}}$$

.

(19)

The typical steel that was assumed (SA 516-GR 60) has a median yield strength of approximately 40 ksi.

The normal stress is considered to range from 5 to 35% of the allowable design stress and the seismic stress may range on the order of 20 to 80% of the allowable stress. These were assumed to be plus or minus 2/3 values on a lognormal distribution. Median values of these ranges are then about 13% for normal stress and 40% for seismic stress. Using Eq. (19) the median strength factor is

$$(F_{\rm S}) = \frac{\frac{40}{15} - 0.13}{0.4} = 6.33$$

The logarithmic standard deviations of each of the variables can be combined by the second moment method (Ref. 40) to develop an approximate variance on the strength factor. The mean and variance of a function of lognormal variables can be derived utilizing the moments (i.e., the mean and variance) of the basic lognormal variables. The resulting equation for the standard deviation of the strength factor is

- 1-

$$\beta = \frac{\left[\left(\sigma_{\lim \beta_{\lim}}^{2} \beta_{\lim}^{2} \right) + \left(\sigma_{\lim - \sigma_{dead}}^{-} \right)^{2} \left(\beta_{seismic} \right)^{2} + \left(\sigma_{dead}^{2} \beta_{dead}^{2} \right) \right]^{1/2}}{\sigma_{\lim - \sigma_{dead}}}$$

The logarithmic standard deviation of the yield strength is known to be about 0.14. If the seismic load range is considered to be a plus or minus 2β range (i.e., a range of 4β), the log-standard deviation is computed by

$$4\beta = \ln 0.8 - \ln 0.2 ,$$

$$\beta = \frac{\ln 0.8 - \ln 0.2}{4} = 0.35$$

Using the same assumptions, the β on the normal load is computed to be approximately 0.5. Applying the second moment theorem to the median values of the variables and their respective uncertainties, the log-standard deviation on strength is computed to be

$$\beta_{s} = \frac{\sqrt{(40)^{2}(0.14)^{2} + (40 - 1.95)^{2}(0.35)^{2} + (1.95)^{2}(0.5)^{2}}}{40 - 1.95}$$

$$\beta_{s} = 0.38 \quad .$$

It remains to consider median and β values for the ductility factor F_{μ} . Values for this factor were taken from Newmark,⁴ who recommended

 $F_{\mu} = 1.41$, $\beta_{\mu} = 0.26$,

.

•

for light equipment and

$$F_{\mu} = 1.73$$
 ,
 $\beta_{\mu} = 0.28$,

for heavy equipment.

The median acceleration at failure can now be computed for any given design acceleration. Since the specified design acceleration varied from building to building and floor to floor, the acceleration capacities would likewise vary. Since the fundamental frequency is not known for the equipment, capacities can be referenced to the zero period acceleration of the applicable floor spectra. Most of the equipment is sufficiently rigid that the fundamental frequency would not coincide with high amplification regions of the response spectra and using the zero period acceleration as the fragility parameter is justified. Table 6 lists the zero period acceleration capacities and variabilities of equipment that fail in a structural mode.

Building and floor	Design	Failure acce	leration (g)
elevation (ft)	ZPA	Light	Heavy
Crib house			
552	0.11	0.98	1.20
594	0.21	1.88	2.30
Auxiliary/turbine building			
642	0.25	2.24	2.74
630	0.20	1.79	2.19
617	0.17	1.52	1.86
592	0.12	1.07	1.32
580	0.10	0.90	1.10
560	0.08	0.72	0.88
542	0.08	0.72	0.88
Containment building			
617	0.13	1.16	1.42
590	0.13	1.16	1.42
582	0.08	0.72	0.88
568	0.08	0.72	0.88
Outdoor equipment	0.08	0.72	0.88

Table 6. Fragility description for vessels and heat exchangers.

4.2 Fragilities Derived from Test Data

Actual testing to failure data (fragility data) is rare. The bulk of the testing performed on nuclear components is for the purpose of qualifying the component to a specified seismic loading level. Four sets of data were utilized in constructing fragility curves for the following items:

- Westinghouse high seismic zone qualification test data was used for developing fragilities for the reactor protection system electrical and electronic equipment, and also for the static inverters.
- A series of dynamic tests on cable tray systems of various configurations was used to generate a generic cable tray fragility relation.
- 3. Data from the U.S. Army SAFEGUARD Missile Site Hardening Program were used to generate fragilities for the following generic categories:
 - Pumps and compressors.
 - Large hydraulic and air-operated valves.
 - Large check, spring, and manual valves.
 - Miscellaneous small valves.
 - Switchgear.
 - Batteries and racks.
 - Transformers.
 - Local instruments.
 - Instrument panels and racks.
 - Auxiliary relay cabinets.
 - Motor control centers.
 - Breakers.
 - Relays.

1

2

• Air handling units.

In these tests, the acceleration levels were increased in steps, and equipment function was monitored. Hence, these were actual fragility tests.

 Although not test data per se, the fragility of the ceramic insulators was determined from a review of insulator failures in six major earthquakes.

Following is a description of each of these tests and the methods used to develop fragility relations from the data. Analysis of these tests was performed by Structural Mechanics Associates, Inc., and complete details are presented in Ref. 36.

4.2.1 Fragilities Derived from Tests for Higher Seismic Zones

Reactor protection system electrical and electronic equipment, plus the static inverters, have been qualified by Westinghouse for high seismic zone environments significantly greater than the Zion seismic environment specified for the auxiliary building at elevation 642 ft. References 22 and 23 document the high seismic zone tests.

Here, a factor of safety need not be derived since the fragility description was derived directly. The fragility parameter is spectral acceleration for a frequency range of 5 to 10 Hz and at a median damping value of 5%.

Testing was conducted using the sine beat method to excite a single axis at a time. The input level varied with frequency, but in the predominant frequency

range of the electrical equipment cabinets (5 to 10 Hz), the input acceleration was 1.5 g. Ten sine waves per beat were typically used in the sine beat testing, wherein the sine waves would increase in amplitude for 5 cycles then decrease for the remaining 5 cycles. Median damping, as suggested by Ref. 38, is about 5%. This is further verified by examining response to similar equipment tested in the SAFEGUARD program.⁴¹ At 5% damping, the 10-cycle input has an amplification factor of about 7.6, resulting in approximately an 11.4 g response, i.e., the response spectrum from 5 to 10 Hz has a spectral accleration of 11.4 g. ŝ

No failures were observed at this test level. In the case of the static inverter, when the input acceleration was increased by a factor of $\sqrt{2}$ a minor malfunction was observed. Other equipment was not tested at higher levels so that a fragility level was not experimentally determined.

A single qualification test does not provide much insight into fragility levels; however, when a number of different items of the same generic type survive a qualification level, then there is reason to believe that the qualification level is in the lower tail of the fragility curve, but the exact fragility level is still indeterminate. Engineering judgments as to the median fragility and its variability must, therefore, be made.

Since a $\sqrt{2}$ increase in one test article caused minor malfunctions, where several test articles functioned without incident at the specified test level, it was assumed that the specified spectral acceleration of 11.4 g was about minus one logarithmic standard deviation below the median and that the median is approximately $\sqrt{2}$ above the specified test level of 11.4 g spectral acceleration. The fragility level was then established at 16.1 g spectral acceleration with a logarithmic standard deviation of 0.35. The contribution to the variability due to randomness, β_R , is estimated to be about 0.2 with the uncertainty, β_{II} , equal to about 0.29.

4.2.2 Cable Tray Qualification Tests

ξ.

Reference 42 reports results of extensive dynamic testing conducted on cable tray systems. Some general conclusions regarding cable tray capacities are reached in the paper that indicate large seismic capacities. The large capacities result, in a significant part, to the large amount of damping measured in cable tray systems.

The cable tray tests were conducted on a biaxial shake table. Regulatory Guide 1.60 spectral shapes were used in synthesizing the time history inputs. In some 2,000 tests at ZPA input levels of 1 to 3 g, no functional failures or complete structural failures occurred in strut-supported cable tray systems. Rod-supported systems had significantly lower capacity; however, in accordance with Zion specifications for cable tray systems, all safety-related systems were designed with bracing to resist seismic loading, such that the rodsupported cable tray system tests are not considered applicable to Zion safetyrelated systems. Rod-supported trays do exist in the plant but, as previously stated, they are not safety related and are not considered in this analysis.

Assuming conservatively that 3 g ZPA is the approximate median capacity and the 1 g lower test level to be about a -2β value, the computed logarithmic standard deviation on capacity is about 0.55 which is about what would be

expected for such a generic treatment of capacity. Most of the critical cable systems are in the cable spreading room which is located fairly high in the auxiliary building at elevation 630 ft. The ZPA for the DBE at elevation 630 ft is about 0.36 g, resulting in a capacity factor of about 8.33. The logarithmic standard deviation on that factor is about 0.55, of which β_R is estimated to be 0.3, with β_U 0.46. The fragility parameter specified for cable trays will be the zero period acceleration at the floor level under consideration.

4.2.3 Fragilities Derived from SAFEGUARD Program Test Data

In the SAFEGUARD program, a comprehensive series of tests was undertaken to demonstrate reliability of power and process equipment used in hardened radar installations. Reference 41 summarizes the results of this program. References 43 and 44 portray the methodology utilized to assure reliability of the equipment when subjected to severe ground shocks due to nuclear weapons effects.

In the SAFEGUARD program, off-the-shelf equipment was procured rather than specially engineered equipment qualified for shock and vibration environments. The equipment was very similar to that installed in nuclear power plants and was procured in the same time frame as the Zion equipment. Consequently, the test performance of SAFEGUARD equipment should be indicative of the balance of nuclear power plant equipment purchased approximately 10 years ago. Some 400 component and system tests were conducted in support of the qualification of some 30,000 critical items in the SAFEGUARD installation. The program plan and methodology for assuring reliability of untested equipment are contained in Ref. 45.

Initially, in the SAFEGUARD program, fragility testing was conducted for selected equipment items. This proved to be very costly and further testing was restricted to go, no-go qualification testing. Thus, the resulting data base consists predominantly of shock test results of equipment for which no permanent functional failure occurred. In many of the tests, electrical malfunctions occurred that were only temporary or intermittent. In many cases, at the shock test levels applied, structural damage or functional anomalies noted would appear to be near the fragility level. In other cases, however, no evidence of damage or functional anomalies was present.

In the SAFEGUARD test program, items were excited on a shaker table to a prescribed spectrum corresponding to in-structure response spectra at various equipment locations. The tests were single-directional, and the maximum acceleration level was approached in (typically) four steps. The prescribed spectra were not typical of earthquake spectra in that the test spectra emphasized the high frequency, high-spectral acceleration response typical of blast loading. Maximum acceleration levels were typically up to 15 or 20 g. Figure 30 illustrates a typical test spectrum. Note that it contains very little input below 5 Hz. Thus, the resulting shock test data are not applicable to (nor were they used for) equipment whose lowest natural frequency is near or below 5 Hz.

After examination of the data base, it was concluded that two separate methodologies should be applied to develop fragility relationships for generic classes of equipment. For equipment that is not complex, and for which the

4)

76

3

vł.

(þ.

generic test data generally indicated no functional anomalies, a pseudoprobabilistic methodology developed by the U.S. Corps of Engineers was applied. This methodology requires detailed comparisons between construction details of the items tested and the item whose fragility level is being sought. This approach could be used for a number of items of interest to the SSMRP.

For complex electrical and control equipment, such detailed comparisons of Zion equipment construction features to the tested equipment were not feasible within the resources of the SSMRP. Thus, a different methodology was devised to utilize the test data to develop fragility descriptions. The tests of electrical instrumentation and control equipment often resulted in functional anomalies, such as relay chatter and breaker trip, which were common to many generic classes of equipment. The data were, consequently, used to develop fragility descriptions by failure mode, which can be combined for several generic classes of equipment. For purposes of abbreviated reference to the applicable methodology, the application of the Corps of Engineers methodology is referred to as Method A and the development of fragility descriptions by failure mode is referred to as Method B.

Fragility descriptions for the following generic categories of equipment were developed by the methods indicated.

Method A

Large hydraulic and air-operated valves Large check and spring relief valves Small miscellaneous valves Batteries Transformers Local instruments Air conditioning and air handling units Pumps and compressors Method B

Switchgear Instrument panels and racks Control panel and racks Relay cabinets Motor control centers Breaker panels

ŝ

4.2.3.1 Methodology A

7

The objective of the SAFEGUARDS program was to assure a 97.7% or greater probability of survival for the anticipated blast shock environment. This was quantitatively evaluated by computing the ratio

$$H_{v} = \frac{f_{1} \cdot f_{2} \cdot f_{3} \cdot f_{4}}{\bigvee_{E}^{V} + 3\sigma_{p}}$$

in which (E + $3\sigma_E$) is the 3σ upper limit to the anticipated blast shock environment and the achieved lower test level is the lowest level of acceleration at which failure was found in the tested piece of equipment. The scaling factors based on engineering judgment, defined as

f₁ = Achieved lower acceleration level of test.

 f_2 = Similarity of component to be qualified to tested component.

- f_4 = Performance of tested component.

Based on unpublished data, it was concluded that if the H_v ratio was greater than 1, the desired probability of survival requirement was met. Detailed procedures were presented for quantifying the scaling factors and their upper 3σ limits.⁴⁵

The numerator in the H_v ratio is thus a measure of fragility, and this was used for Phase I of the SSMRP. The results for the equipment whose fragility was defined by this method are presented in Table 7. For more details, the reader is referred to Kennedy.⁹

4.2.3.2 Methodology B

This methodology was utilized to analyze the test results for electrical equipment, including relays, circuit breakers, switchgear, etc. This was necessitated because failure of these components was observed to be predominantly functional, and for some components, failure was intermittent. That is, the unit might fail to function at one acceleration level, but then function properly at the next higher acceleration level.

The predominant failure modes observed in all electrical and control equipment were relay chatter and breaker trip. Neither of these failure modes results, in all cases, in failure of the equipment to perform its intended function. Relay chatter is a functional failure mode that is self-correcting after the vibratory earthquake motion ceases. In this case, the function of the system is interrupted for a few seconds. Relay or breaker trip is a functional failure mode that requires manual or remote electrical reset and can potentially interrupt function for minutes or hours.

The general trend of the shock test results on electrical and control equipment was to experience relay chatter at the lower test levels on some equipment but not all. There was an order of magnitude in the relay chatter threshold over the range of equipment tested. Breaker trip resulted in many tests but usually at higher acceleration levels than relay chatter.

The relay chatter and breaker trip test results were, unfortunately, not completely logical. Frequently, functional failures would occur at one test level but not at twice that level. This behavior prevents direct calculations of cumulative failure distributions. Since the failure modes of relay chatter and breaker trip were common to several generic categories of equipment, it was decided to combine all test data to increase the data base and result in more representative cumulative distribution functions for failure modes common to several generic.

In addition, fragility relationships for permanent structural damage failure modes were developed for individual generic categories of equipment. Thus, three failure modes were then available for each generic category of electrical and control equipment: relay chatter, breaker trip, and structural failure.

In applying the Corps of Engineers test results to develop generic fragility relationships for electrical and control equipment by failure modes, it must

.4 %

Table 7. Summary of f factors.

Generic category		f ₁ Upper	f2 Upper	f ₃ Upper	f ₄ Upper	Upper bound of fragility $f_1 \cdot f_2 \cdot f_3 \cdot f_4_0$	f ₁ Lower	f _{2Lower}	f _{3Lower}	f ₄ Lower	Lower bound of fragility f ₁ •f •f 31 •f 1L 2L 3L •f
1.	Large hydraulic and air-operated valves	26.8	1.1	2.0	1.15	67.8	6.4	0.85	0.7	1.0	3.8
2.	Large check and spring relief valves	30.0	1.1	2.0	1.15	75.9	6.0	0.85	0.7	1.0	3.6
3.	Small miscellaneous valves	30.0	1.1	2.0	1.15	75.9	6.0	0.85	0.7	1.0	3.6
4.	Batteries	5.36	1.15	1.0	1.0	6.2	5.36	0.85	1.0	0.5	2.3
5.	Transformers	13.34	1.10	1.2	1.0	17.6	6.63	0.85	0.8	0.9	4.1
6.	Local instruments	32.8	1.15	2.0	1.0	75.4	4.7	0.85	0.7	1.0	2.8
7.	Air conditioning and air handling units (structural failure)	10.66	1.3	1.2	1.0	16.6	6.7	0.75	0.8	0.71	2.9
8.	Air conditioning and air handling units (fan failure)	28.8	1.1	1.2	1.0	38.0	13.4	0.9	0.8	0.7	6.8
9.	Pumps and compressors	30.0	1.2	1.2	1.0	43.2	17.4	0.8	0.8	0.9	10.0

.

Note 1: fl = achieved test level (acceleration, g). Note 2: The upper and lower bounds on fragility are taken at ±3σ limits based on unpublished SAFEGUARD program data.

be kept in mind that the equipment was subjected to predetermined levels of shock spectra and the percentage of component failures for different failure modes was observed for each shock spectrum level. It should also be borne in mind that, in most cases, permanent damage did not occur and that higher test levels could be achieved on the same equipment. Finally, the test shock spectra were usually flat over a wide frequency range so that spectral acceleration at the estimated fundamental frequency of the equipment is the fragility parameter of interest.

The unconditional probabilities of failure may be computed by introducing the idea of a "hazard" or "risk" function. If f(x) is the probability density function (pdf) of failure at acceleration level x, and

$$F(x) = \int_0^x f(\xi) d\xi$$

is the cumulative distribution function (cdf) of failure, then the risk (hazard) function is defined as

$$\lambda(x) = \frac{f(x)}{1 - F(x)}$$
, (20)

and inversely

$$F(x) = 1 - \exp\left[-\int_0^x \lambda(\xi) d\xi\right] .$$
 (21)

By definition, $\lambda(x) dx$ is the probability of failure in the interval x to x + dx, given that the equipment is operable up to level x.

Because of the intermittent nature of the failures observed, the percentage of units failing at each test level cannot strictly be identified with $\lambda(x)$. However, as an engineering approximation, it was assumed that $\lambda(x)$ could be derived from the percentage of failure data, and that the two were proportional to one another for all acceleration levels. The unknown constant of proportionality is found using the fact that, at the lowest test level at which a failure occurs, the cdf of failure F(x) equals the observed percentage of failure at that level.

To illustrate this process, consider the data from a four-level test of a single piece of equipment:

Level	Acceleration (g)	Ratio of failures
1	1.65	0.33
2	3.32	0.00
3	4.97	0.00
4	6.63	0.30

Figure 31. Observed failures.

This data is plotted in Fig. 31, and are assumed to vary linearly between the data points. Since λ (x) is assumed proportional to the percentage of failure, we can write

$$\lambda(\mathbf{x}) = C \phi(\mathbf{x}) ,$$

where $\phi(x)$ is the observed ratio of failures (percentage of items failing) and C is an unknown constant of proportionality. In the <u>first interval</u> then,

$$\lambda(\mathbf{x}) = C\left(\frac{0.33}{1.65}\right)\mathbf{x} ,$$

where x is the acceleration. Substituting this into Eq. (21) gives

$$F(x) = 1 - \exp\left[-C\left(\frac{0.33}{1.65}\right)\frac{x^2}{2}\right]$$
, (22)

which is only valid in the first acceleration interval. Then, within the resolution of the data,

$$F(1.65) = \phi(1.65)$$
,

and hence one can solve Eq. (22) directly for C giving C = 1.47. This constant of proportionality is assumed to hold for all acceleration levels, so $\lambda(x)$ is as shown in Fig. 32.

Finally, using $\lambda(x)$ and Eq. (21), one can directly compute F(x) for all higher test accelerations. F(x) is then the desired fragility curve, and for this case is as shown in Fig. 33.

This process was repeated for 16 sets of data on relay chatter, and for 17 sets of data on breaker trip, and the resulting cdf's were then averaged and put in lognormal distributional form to obtain final fragility functions for relay chatter and breaker trip, respectively. These two fragility curves are shown in

Figure 32. Risk function.

Fig. 34. The structural failure fragility curve (which could be derived by standard methods) is also shown on this figure.

4.3 Piping

The generic category for piping includes not only straight pipe but also elbows, miters, butt welds, and both reinforced and unreinforced branches. Carbon steel and stainless steel are typically used, so both of these materials were considered. Pipe operating temperatures vary from ambient to 600°F in normal operation. Because of these widely varying conditions, sizes, and configurations, it was decided not to develop separate fragility curves for each possible combination, but instead to develop a single master fragility curve for one piping component, and then relate the fragility of all other piping components to the master curve by means of scaling factors dependent on size, configurations, material, and temperature. The independent variable is taken as the moment in the pipe. Thus

$$\binom{M_{Fail}}{i^{th}}_{i^{th}} \xrightarrow{Component} = \frac{1}{\beta_{i}} \binom{M_{Fail}}{Fail}_{Reference Component}$$
(23)

Figure 33. Cumulative distribution function.

Figure 34. Fragility comparison for electrical and control equipment.

where β_i is the scale factor. Thus, in application it is only necessary to multiply the computed moment for any component by its scale factor, and then use the master fragility curve to compute the probability of failure using the scaled moment.

Development of these fragility curves was based on available data and use of scaling relations (based on theoretical considerations) to relate piping configurations of different sizes to those for which data is available. For straight pipe and butt welds, scaling was based on the equation for plastic collapse moment, derived from limit analysis,

$$M = K Z \sigma_v$$
,

where K is the shape factor, 2 is the section modulus, and σ_y is the yield stress. The shape factor K is determined from experiment or can be estimated analytically from the cross-section geometry and material constitutive relations. From test data (Refs. 46-52) covering a wide range of diameter to thickness ratios, a median value of K = 1.5 was determined. Values for K ranged from 1.4 to greater than 2.8 depending upon the diameter to thickness ratio, material, strain hardening exponent, and definition of collapse with 1.5 being a representative value. The median value of σ_y was estimated as 1.25 times the code specified yield stress. Thus, scaling was performed using

$$M_{A} = M_{B} \frac{Z_{A}}{Z_{B}} \frac{\sigma_{Y}(A)}{\sigma_{Y}(B)} , \qquad (24)$$

where A and B refer to two different sizes of the same configuration. This relationship assumes elastic, perfectly plastic behavior and does not consider buckling and dynamic effects.

For elbows, branches, tees, and miters, scaling was performed using ASME Section III Code stress intensification factors. For these factors,

$$M = \frac{Z \sigma}{i} ,$$

where i is the stress intensification factor. Rewriting this as a scaling relation yields

$$M_{A} = M_{B} \left(\frac{i_{B}}{i_{A}}\right) \left(\frac{z_{A}}{z_{B}}\right) \left(\frac{\sigma_{y}(A)}{\sigma_{y}(B)}\right) .$$

In this case, the reference moment M_B was experimentally determined. Stress intensification factors were taken directly from ASME Section III tables.

Once static collapse moments are obtained from data or analysis and by use of Eqs. (24) and (25), the dynamic collapse moment is obtained by multiplying the static moments by the previously defined ductility factor F_{μ} [see Eq. (12)]. Based on a review of data reported in Refs. 53 and 54, a ductility factor of 3 was found to be appropriate for straight pipe and elbows, while a factor of 2 was determined for butt welds, tees, and miters.

Finally, the dynamic collapse moments were related to the collapse moment of one single component to determine the β_i factors using Eq. (23). The reference component was taken to be a butt weld in a 6-in. Schedule 160 carbon steel pipe. A listing of all the derived β factors is presented in Table 8. For complete details, see Kennedy.⁹

Capacity of Reference Pipe Element

A 6-in. Schedule 160 carbon steel butt weld pipe joint was selected as the basis for the master fragility relationship. Base material was considered to be A-106 B at room temperature with a code specified yield strength of 35 ksi and a specified ultimate strength of 60 ksi. The specified strengths are considered to be 95% nonexceedance values corresponding to 1.65 standard deviations below the average strengths. Average strength is not specified in the ASME code but is typically about 25% above the specified value (Ref. 38).

A lognormal representation of material strength was assumed. If the median yield strength is approximately 25% above the code specified strength and the code specified strength is a 95% nonexceedance value, the logarithmic standard deviation is about 0.14.

In developing the range of strength for the reference pipe element an analytical limit type analysis procedure was utilized to develop upper and lower values of moment capacity accounting for strain-hardening affects and accounting for a low probability that a large flaw could exist.

The upper value of moment capacity was developed based upon a procedure in the Zion FSAR amendments, Q 4-45-3, wherein the limit moment capacity is derived from integration of the stress field over the pipe cross section, assuming the outer fibers to be at the material ultimate strength with the neutral axis at the material yield strength. The derived upper value limit moment capacity is 1.65×10^6 in.-lb. This value is considered to be approximately one logarithmic standard deviation above the median.

A lower bound capacity was derived by a limit analysis procedure documented in Appendix B of Ref. 55. A through-wall elliptical flaw of length equal to six times the wall thickness was assumed. A new neutral axis was derived for the

(25)

	Material	(°F)	Unreinforced ^a branches		Elbows	Miters	pipe	welds	branch	ies Ceu
			F _{PR}	F PB					FPR	F _{PB}
160	Stainless steel	300	Ац	NA	492	NA	298	480	NA	NA
160	Stainless steel	300	NA	NA	259	NA	157	254	NA	NΔ
160	Stainless steel	300	NA	MA	138	NA	83.5	135	NA	NA
160 40	Stainless steel Stainless steel	300 500	NA NA	NA NA	27.7 107	N A NA	43.5 37.5	27.0 60.4	NA NA	NA NA
160 160 160 160	Carbon steel Carbon steel Stainless steel Carbon steel	Ambient 140 300 556	NA NA NA NA	NA NA NA NA	4.8 4.93 9.85 6.24	NA NA NA NA	3.83 3.96 5.95 4.99	6.19 6.39 9.62 8.05	NA NA NA NA	NA NA NA NA
160 160 160 160	Stainless steel Stainless steel Stainless steel Stainless steel	300 300 300 .300	9.62 9.62 10.0 10.0	480 254 27.0 10.0	NA NA NA NA	NA MA NA NA	NA NA NA	NA NA NA NA	9.62 9.62 9.62 9.62	480 254 27.0 9.62
40s 40s 120 120 120 160 160	Stainless steel Stainless steel Stainless steel Carbon steel Stainless steel Stainless steel Stainless steel Stainless steel	200 300 500 140 300 535 300 535	NA NA NA NA NA NA NA	NA NA NA NA NA NA	15.81 17.65 20.54 3.35 6.47 7.72 4.87 5.97	NA NA NA NA MA NA	5.12 5.69 6.60 2.26 3.27 3.90 2.83 3.47	8.25 9.19 10.63 3.63 5.27 6.31 4.57 5.60	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA
160 160 160 160 40s 120 120	Stainless steel Stainless steel Stainless steel Stainless steel Stainless steel Carbon steel Stainless steel	300 300 300 500 140 300	4.57 4.57 5.15 5.15 21.0 4.74 6.72	254 135 27.0 9.64 21.0 4.74 6.72	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	4.57 4.57 4.57 4.57 10.63 3.63 5.27	254 135 27.0 9.62 10.63 3.63 5.27
	160 160 160 160 160 160 160 160	160Stainless steel160Stainless steel160Stainless steel160Stainless steel40Stainless steel160Carbon steel160Carbon steel160Stainless steel120Carbon steel120Stainless steel160Stainless steel160Sta	160 Stainless steel 300 160 Carbon steel Ambient 160 Carbon steel 140 160 Stainless steel 300 120 Carbon steel 140 120 Stainless steel 300 120 Stainless steel 300 160 Stainless steel 300 160 Stainless steel	F_{pR} I60 Stainless steel 300 NA 160 Carbon steel Ambient NA 160 Carbon steel 140 NA 160 Stainless steel 300 NA 160 Stainless steel 300 NA 160 Stainless steel 300 9.62 160 Stainless steel 300 9.62 160 Stainless steel 300 10.0 160 Stainless steel 300 10.0 160 Stainless steel 300 NA 40s Stainless steel 300 NA 40s Stainless steel 300 NA 120 Carbon steel 140 NA 120 Stainless steel 300 NA <tr< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></tr<>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

.

Table 8. Pipe fittings and load scale (β) factors.

Table 8. (Continued).

Size (in.)	Schedule	Material	Temperature (^O F)	Unreinf branc	orced ^a hes	Elbows	Miters	Straight pipe	Butt welds	Reinfo branc	rced hes
<u></u>			·	F PR	F PB				<u> </u>	FPR	F _{PB}
6	120	Carbon steel	Ambient	NA	NA	1.27	NA	0.76	1.24	NA	NA
6	40	Carbon steel	Ambient	NA	NA	3.77	NA	1.40	2.26	NA	NA
6	120	Carbon steel	140	NA	NA	1.30	NA	0.791	1.27	NA	NA
6	160	Carbon steel	Ambient	NA	NA	0.86	NA	0.63 *	1.0	NA	NA
6x6x3	160	Carbon steel	Ambient	1.22	6.19	NA	NA	NA	NA	1.0	6.19
6x6x4	120	Carbon steel	140	1.85	8.21	NA	NA	NA	NA	1.27	3.63
6x 6x 6	120	Carbon steel	Ambient	1.28	1.28	NA	NA	NA	NA	1.0	1.0
8	40	Carbon steel	Ambient	NA	NA	2.09	NA	0.71	1.15	NA	NA
8	40s	Stainless steel	. 200	NA	NA	3.92	NA	0.993	1,60	NA	NA
8	40s	Stainless steel	300	NA	NA	4.36	NA	1.11	1.78	NA	NA
8	40s	Stainless steel	350	NA	NA	4.47	NA	1.13	1.73	NA	NA
8	40s	Stainless steel	400	NA	NA	- 4.58	NA	1.16	1.87	NA	NA
8	40s	Stainless steel	500	NA	NA	5.04	NA	1.28	2.05	MA	NA
8	140	Stainless steel	535	NA	NA	1.16	NA	0.571	0.919	NA	NA
8	160	Stainless steel	535	NA	NA	0.99	NA	0.54	0.87	NA	NA
8	160	Stainless stee	L 595	NA	NA	1.03	NA	0.56	0.91	NA	NA
8x8x2	40s	Stainless steel	L 500	2.05	72.4	NA	NA	NA	NA	2.05	60.4
8x8x4	40s	Stainless stee	L 500	5.2	19.7	NA	NA	NA	NA	2.05	10.63
8x8x8	40s	Stainless steel	L 400	4.84	4.84	NA	NA	NA	NA	1.87	1.87
8 x8x8	40s	Stainless stee	1 500	5.2	5.2	NА	NA	NA	NA	2.05	2.05
10	40	Carbon steel	Ambient	NA	NA	1.26	2.21	0.401	0.647	NA	NA
10	40s	Stainless stee	400	NA	NA	2.74	NA	0.654	1.05	NA	NA
10	160	Stainless steel	L 535	NA	NA	0.510	0 NA	0.272	0.438	NA	NA
10x10x8	40s `	Stainless stee	L 400	2.89	4.54	NA	NA	NA	NA	1.05	1.87
10x10x10	40s	Stainless steel	400	2.89	2.89	NA	NA	NA	NA	1.05	1.05
12	SW	Carbon steel	Ambient	NA	NA	0.95	l na	0.274	0.441	NA	NA
12	40s	Stainless steel	200	NA	NA	1,78	NA	0.384	0.620	NA	NA
12	40s	Stainless stee	1 300	NA	NA	1.98	NA	0.426	0.688	NA	NA
12	40s	Stainless stee	1 500	NA	NA	2.30	NA	0.495	0.799	NA	NA
12	40	Stainless stee	1 400	NA	NA	1.83	NA	0.416	0.671	NA	NA

ú

Ţ

r e

Table 8. (Continued).

Size (in.)	Schedule	Material	Temperature ([°] F)	Unreinfo branc	orced ^a hes	Elbows	Miters	Straight pipe	Butt welds	Reinfor branch	rced hes
	· · · · · ·			FPR	F PB					F PR	F _{PB}
12x12x8	40	Stainless steel	400	1.92	4.27	NA	NA	NA	NA	0.67	1.87
12x12x12x12	40	Stainless steel	400	1.92	1.92	NA	NA	NA	NA	0.67	0.67
14	tn=0.375	Carbon steel	Ambient	NA	NA	0.837	1.47	0.226	0.365	NA	NA
14	40	Carbon steel	Ambient	NA	NA	0.64	NA	0.197	0.31	NA	NA
14	40	Stainless steel	400	NA	NA	1.42	NA	0.319	0.515	NA	NA
14	160	Stainless steel	400	NA	NA	0.226	NA	0.115	0.186	NA	NA
14	160	Stainless steel	595	NA	NA	0.255	NA	0.131	0.211	NA	NA
14x14x12	40	Stainless steel	400	1.51	1.81	NA	NA	NA	NA	0.515	0.671
14x14x14	tn≈0.375	Carbon steel	Ambient	1.18	1.18	NA	NA	NA	NA	0.365	0.365
14x14x14	40	Carbon steel	Ambient	1.02	1.02	NA	NA	NA	NA	0.31	0.31
14x14x14	160	Stainless steel	400	0.237	0.237	NA	NA	NA	NA	0.186	0.186
16	120	Carbon_steel	140	NA	NA	0.109	NA	0.061	0.099	NA	NA
16	120	Carbon steel	556	NA	NA	0,137	NA	0.077	0.124	NA	NA
16x16x3	Run=120 Branch=160	Carbon steel	556	0.124	8.05	NA	NA	NA	NA	0.124	8.05
18	SW	Carbon steel	Ambient	NA	NA	0.593	NA	0.135	0.217	NA	NA
18	SW	Stainless steel	200	NA	NA	1.11	NA	0.189	0.304	NA	NA
18	SW	Stainless steel	300	NA	NA	1,24	NA	0.209	0.339	NA	NA
18	SW	Stainless steel	500	NA	NA	1.43	NA	0.244	0.394	NA	NA
18	40	Stainless steel	400	NA	NA	0.671	NA	0.151	0.244	NA	NA
18x18x14	40	Stainless steel	400	0.711	1.17	NA	NA	NA	NA	0.244	0.515
20	SW	Carbon steel	Ambient	NA	NA	0.517	NA	0.110	0.176	NA	NA
20	SW	Stainless steel	200	NA	NΔ	0.966	NA	0.153	0,247	NA	NA
20	SW	Stainless steel	300	NA	NA	1.07	NA	0.170	0.274	NA	NA
20	SW	Stainless steel	500	NA	NA	1.24	NA	0.198	0.318	NA	NA
20	tn=0.500	Carbon steel	Ambient	NA	NA	0.317	NA	0.083	0.134	NA	NA
24	SW	Carbon steel	Ambient	NA	NA	0.403	NA	0.075	0.122	NA	NA
27-1/2	tn=2.38 in.	Stainless steel	535	NA	NA	0.032	NA	0.013	0.021	NA	NA

Table 8. (Continued).

Size (in.)	Temperature Unreinforced ^a (in.) Schedule Material (^O F) branches		erced ^a les	Elpows	Miters	Straight pipe	Butt welds	Reinforced branches			
				F _{PR}	F PB					FPR	F _{PB}
27-1/2x27-1/2x4	tr=2.38 in. tb=0.438 in.	Stainless steel	535	0.021	6.32	NA	NA	NA	NA	0.021	5.60
27-1/2x27-1/2x8	tr=2.38 in. tb=0.812 in.	Stainless steel	535	0.021	0.92	NA	NA	NA	NA	0.021	0.87
27-1/2x27-1/2x10	tr=2.38 in.	Stainless steel	535	0.034	0.438	NA	NA	NA	NA	0.021	0.438
29	tn=2.50 in.	Stainless steel	595	NA	NA	0.029	NA	0.012	0.019	NA	NA
29x29x8	tr=2.50 in.	Stainless steel	595	0.0199	0.949	NA	NA	NA	NA	0.019	0.91
29x29x14	tr=2.50 in. tb=1.406 in.	Stainless steel	595	0.0302	0.212	NA	NA	NA	NA	0.019	0.212
.30	tn=0.500 in.	Carbon steel	Ambient	NA	NA	0.184	NA	0.036	0.058	NA	NA
30x30x20	tr=0.500 in. tb=0.375 in.	Carbon steel	Ambient	0.261	0.589	NA	NA	NA	NA	0.058	0.176
31	tn=2.66 in.	Stainless steel	530	NA	NA	0.023	NA	0.0093	0.015	NA	NA
36	tn=0.500 in.	Carbon steel	Ambient	NA	NA	NA	0.255	0.023	0.040	NA	NA
36x36x36	tn=0.500 in.	Carbon steel	Ambient	0.203	0.203	NA	NA	NA	NA	NA	NA
48	tn=0.625 in.	Carbon steel	Ambient	NA	NA	NA	0.12	0.014	0.023	NA	NA
48x48x20 48x48x30	t=0.625 in. tr=0.625 in. tb=0.500 in.	Carbon steel Carbon steel	Ambient Ambient	0.0957 0.0957	0.557 0.247	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
48x48x48	tr=0.625 in. tb=0.500 in.	Carbon steel	Ambient	0.0957	0,095	7 NA	NA	MA	NA	NA	NA

 ${}^{a}_{F_{pR}}$ = scale factor for run; F_{pB} = scale factor for branch.

4)

 \mathbf{i}

flawed pipe and the limit moment was calculated assuming an elasticperfectly plastic model with a flow stress equal to a specified fraction of the sum of the yield and ultimate strengths. The derived lower bound moment capacity was 9.5 $\times 10^5$ in.-lb. Since the existence of a flaw of the size assumed has a very low probability of occurrence, the lower value is considered to be a minus 3 logarithmic standard deviation value, which corresponds to about a 10^{-3} probability of occurrence.

With the establishment of the upper and lower bound values, and assuming the properties of the lognormal distribution, the medium moment capacity for static loading was computed to be 1.41 10^6 in.-lb. Combining the variance of the strength due to the failure model with the variance of the material properties, the logarithmic standard deviation on strength is computed to be 0.22. The random portion of this is due to random variations in material properties and is considered to be approximately 0.1 with the uncertainty equal to 0.20.

The static capacity was then modified for ductility. For heavy wall steel piping elements loaded primarily in bending, ductility is considered to range from 1 to 5, where the low value of 1.0 represents reduced ductility for the flawed condition. A ductility of 5 corresponds to about 1% primary strain observed at instability in limit moment tests of some piping fittings.⁵⁶ The associated ductility factors from Eq. (12) are 1.0 and 3.0. Assuming these factors to represent approximately a plus or minus two logarithmic standard deviation range, the median ductility factor was computed to be 1.73 with the logarithmic standard deviation equal to 0.27. The random portion is due to the randomness of the material and weld joint ductility factor due to the uncertainty portion equal to 0.22. In addition, there is a dispersion on this ductility factor due to the uncertainty in the use of Eq. (12). The coefficient of variation, which is approximately the same as the logarithmic standard deviation, is estimated to be approximately 0.15 which is considered to be all uncertainty.

The median capacity of the reference pipe element, modified for ductility, is the ductility factor times the median static capacity or

$$M = 2.44 \times 10^{6} \text{ in.-lb}$$

The overall variabilities, expressed as logarithmic standard deviations representing randomness and uncertainty, are obtained from the square root of the sum of the squares of the variabilities on individual variables contributing to the overall capacity:

$$\beta_{\rm R} = 0.18$$
 ,
 $\beta_{\rm H} = 0.33$.

The total uncertainty is thus

$$\beta = \sqrt{\beta_R^2 + \beta_U^2} = 0.376$$

A plot of the resulting fragility curve is shown in Fig. 35. This was used as the master fragility curve from which all other piping fragilities could be determined by use of the β factors in Table 6.

Figure 35. Master piping fragility curve.

4.4 Expert Opinion Survey

Data for use in determining the strengths at failure of nuclear power plant components exposed to seismic excitations are very scarce. To date, no nuclear plant has been exposed to a major seismic disturbance. Non-nuclear plants have experienced earthquakes and some data, useful mainly for fragility verification purposes have been gathered, ⁵⁷ but for in situ performance of nuclear components there are no data at all. Also, seismic qualification of nuclear power plant components was not emphasized in the nuclear industry until about 1973. Components are still only qualified to a given excitation level by testing or by analytical methods. Determining the excitation that will cause failure of the component is not normally done.

Because of the lack of data, the SSMRP resorted to solicitation of expert opinion. It was recognized that many firms had tested their components to failure, but held the resulting information as proprietary and therefore not available directly. However, it was believed that individuals would respond to a questionnaire provided that their anonymity was protected and the response to the questionnaire was to be treated as opinion.

Forty manufacturers had supplied components to the Zion plant. Of the 40, 38 were still in business and were asked to participate in the survey. All but two Zion component suppliers agreed to participate. In addition, all organizations possessing an ASME nuclear N stamp were contacted. The solicitation included both domestic and foreign suppliers of nuclear equipment; however, the bulk of the contacts were made with domestic organizations. Companies involved in the construction of nuclear plants and in the design of plant-related systems were also contacted. Altogether, over 600 individuals considered to be experts in the fragility of electrical and mechanical nuclear components were identified and categorized as follows:

- 1. Zion-specific component manufacturers.
- 2. Component manufacturers.
- 3. Test laboratories.

- 4. Consulting firms.
- 5. Architect/engineering firms.
- 6. Reactor designers.
- 7. Military experts.

л

8. University professors.

Approximately 400 of these individuals were contacted by telephone and their participation solicited. Of the 400 individuals contacted 253 agreed to participate.

The questionnaire that was mailed to each individual who agreed to participate asked for specific details regarding the following general categories of information:

- 1. Identification and description of specific (or generic) component to which the answers were directed.
- 2. Normal operating environment.
- 3. Seismic qualification details.
- 4. Failure modes (the three most likely were requested).
- Fragility parameters, seismic capacities (10th, 50th, and 90th percentiles), confidence levels, and sources of information for each failure mode.
- 6. Similarity of non-nuclear equipment.
- 7. Equipment design era.
- 8. Expertise of respondent.

From the solicitation, 147 questionnaires were returned. A number of these contained only qualitative information which could not be used to construct a fragility description. These questionnaires described the environment to which components could be expected to be subjected or in some cases described the modes of component failure without giving a quantitative description. A total of 88 questionnaires were used to construct the analytical fragility descriptions. The results of the survey are contained in tables in Appendix A.

The tables show the estimates of seismic capacity, the appropriate parameter of response, and other pertinent information for each failure mode within each generic equipment category. The weighting factor assigned to each set of estimates for purposes of combining data is also indicated.

4.5 Combination of Data

It was assumed in the development of the SSMRP methodology that a single fragility curve of normal or lognormal distribution can appropriately represent each generic category of components for a particular failure mode. In general, however, there were multiple opinions and, or data for each failure mode, and since the various sets of opinion or data could be based on quite different components (because of size, manufacturing processes, design, etc.) within a single generic category, it was necessary to provide for subgrouping of similar components within a category for each mode. The procedure adopted, as discussed briefly in Sec. 2.1, was based on a combined least squares and nested analysis of variance approach. The equations used are developed in Appendix B and the approach is described in detail in Ref. 8.

In the analysis, a weight was applied to the expert opinion responses as a product of two factors: a factor for presumed expertise of the specialist

providing the opinion, and a factor for the source of his opinion. The factors for expertise are listed in the following table.

Factor for source of expertise

Source	Weight
Zion manufacturers Component manufacturers Test laboratories Consulting firms Architect, engineers Reactor designers	3
Military experts	2
University professors	1

The second factor relates to the basis of response. Thus, if a respondent was in possession of test data and used it as the basis for his response it was considered better than an analytical method or pure opinion. Analytical methods were considered superior to pure opinion. Additionally, a different weighting was applied for pressure boundary failures and for functional failures. The factors for source of opinion are shown on the following table.

Factors for source of data

	Pressure boundary	Functional fragility
Source Test	fragility weight	weight
Test	4.0	4.0
Analysis	3.0	2.0
Expert opinion	1.0	1.0

Analysis was weighted more heavily in the case of pressure boundary failure than for functional failure because it is believed that analysis more accurately predicts pressure boundary failures than functional failures.

The factors were combined multiplicatively and normalized to a maximum value of 3.0. When data from other sources were combined with expert opinion, they were treated as independent expert opinions, with weights assigned based on subjective evaluation of the quality of the data. When site-specific data was used it was assigned a weight of 3.0. The specific combinations of data used for each component category are documented in Appendix F.

SECTION 5: REFERENCES

- Bohn, M. P., et al., Application of the SSMRP Methodology to the Seismic Risk at the Zion Nuclear Power Plant, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-53483, NUREG/CR-3428 (1983).
- 2. Wells, J. E., L. L. George, and G. E. Cummings, <u>Seismic Safety Margin</u> <u>Research Program, Phase I, Final Report Systems Analysis, Project VII,</u> Lawrence Livermore National Laboratory, Livermore, CA, UCRL-53021, Vol. 8, NUREG/CR-2015, Vol. 8 (1982).
- Newmark, N. M. and C. A. Cornell, "On the Seismic Reliability of Nuclear Power Plants," <u>ANS Topical Meeting on Probabilistic Reactor Safety</u>, Newport Beach, CA (May 1978).
- Newmark, N. M., "Inelastic Design of Nuclear Reactor Structures and Its Implications on Design of Critical Equipment," SMIRT Paper K 4/1, <u>1977</u> SMIRT Conf., San Francisco, CA.
- 5. Kennedy, R. P., <u>A Statistical Analysis of the Shear Strength of</u> <u>Reinforced Concrete Beams</u>, Technical Report No. 78, Department of Civil Engineering, Stanford University, Stanford, CA (1967).
- Freudenthal, A. M., J. M. Garrelts, and A. Shinozuka, "The Analysis of Structural Safety," <u>J. of the Structural Division</u>, ASCE, ST1, February 1966, pp. 267-325.
- 7. Walser, A., "Concrete and Steel Specimen Test Data From the Zion Reactor," provided by Sargent & Lundy.
- George, L. L. and R. W. Mensing, "Using Subjective Percentiles and Test Data for Estimating Fragility Functions," paper presented at <u>DOE</u> <u>Statistical Symp.</u>, October 29-31, 1981, Berkeley, CA.
- 9. Kennedy, R. P., et al., <u>Subsystem Fragility--Seismic Safety Margins</u> <u>Research Program (Phase I)</u>, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-15407, NUREG/CR-2405 (1981).
- 10. Campbell, R. D. and D. A. Wesley, <u>Potential Seismic Structural Failure</u> <u>Modes Associated with the Zion Nuclear Plant</u>, Seismic Safety Margin Program, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-15140, NUREG/CR-1704 (1979).
- 11. Wesley, D. A. and P. S. Hashimoto, <u>Seismic Structural Fragility</u> <u>Investigation for the Zion Nuclear Power Plant</u>, Seismic Safety Margins Research Program (Phase I), Lawrence Livermore National Laboratory, Livermore, CA, UCRL-15380, NUREG/CR-2330 (1981).
- Barda, F., J. M. Hanson, and L. W. G. Corley, "Shear Strength of Low-rise Walls with Boundary Elements," ACI, Detroit, MI (1976).
- Shiga, T., A. Shibata, and J. Tabahashi, "Experimental Study on Dynamic Properties of Reinforced Concrete Shear Walls," <u>5th World Conference on</u> <u>Earthquake Engineering, Rome, Italy, 1973.</u>
- Cardenas, A. E., et al., "Design Provisions for Shear Walls," <u>ACI</u> <u>Journal</u>, Vol. 70, No. 3, March, 1973.
- 15. Oesterle, R. G., et al., <u>Earthquake Resistant Structural Walls Tests of</u> <u>Isolated Walls - Phase II</u>, Construction Technology Laboratories (Division of PCA), Skokie, IL, October 1979.
- 16. Veletsos, A. S. and N. M. Newmark, "Effect of Inelastic Behavior on the Response of Simple Systems to Earthquake Motions," <u>Proc. 2nd World Conf.</u> on Earthquake Engineering, Tokyo, Japan, 1960, pp. 895-912.
- Newmark, N. M. and W. J. Hall, "Building Practices for Disaster Mitigation," in <u>Procedures and Criteria for Earthquake Resistant Design</u>, National Bureau of Standards, Washington, D.C., Building Science Series 46, Vol. 1, February 1973, pp. 209-236.

- Newmark, N. M., "A Response Spectrum Approach for Inelastic Seismic Design of Nuclear Reactor Facilities," <u>Trans. 3rd Intern. Conf. on</u> <u>Structural Mechanics in Reactor Technology</u>, London, paper K5/1,1 Vol. 4, Part K, 1975.
- 19. Ridell, R. and N. M. Newmark, <u>Statistical Analysis of the Response of Nonlinear Systems Subjected to Earthquakes</u>, Department of Civil Engineering Report UILU 79-2016, Urbana, IL (1979).
- 20. Kennedy, R. P., et al., "Effect of Nonlinear Soil-Structure Interactions due to Base Slab Uplift on the Seismic Response of a High-Temperature Gas Cooled Reactor (HTGR)," <u>Nuclear Engineering and Design 38</u> (1976), pp. 323-355.
- Wolf, J. P. and P. E. Skrikerud, "Seismic Excitation with Large Overturning Moments: Tensile Capacity, Projecting Basemat or Lifting Off," <u>Nuclear Engineering and Design</u> <u>50</u> (1978), pp. 305-321.
- 22. "Seismic Analysis of the Zion Crib House," Sargent & Lundy, Engineers, Chicago, IL, April 1968.
- 23. Final Safety Analysis Report (FSAR), Zion Station, Commonwealth Edision Company.
- 24. WCAP 7821, Seismic Testing of Electrical and Control Equipment (High Seismic Plants), Westinghouse Electric Corporation, Nuclear Energy Systems, December 1971. (Main Report Plus Supplement 2, Addenda 1, Supplement 4, and Supplement 5.)
- WCAP 8201, <u>Seismic Testing of Electrical and Control Equipment</u> (PG&E Plants), Westinghouse Electric Corporation, Nuclear Energy Systems, May 13, 1973.
- 26. San Fernando, California, Earthquake of February 9, 1971, Volume II, Utilities, Transportation, and Sociological Aspects, Neil A. Benfer, Terry L. Coffman, Eds. (U.S. Department of Commerce, Washington, D.C., 1973.)
- 27. EERI Reconnaissance Report of the Miyagi-Ken-Oki, Japan Earthquake, June 12, 1978, Ed: Peter I. Yanev, December 1978.
- 28. Miller, R. K. and S. F. Felszeghy, <u>Engineering Fractures of the Santa</u> <u>Barbara Earthquake of August 12, 1978</u>, EERI Report, UCSB-ME-7802, December 1978.
- 29. Jennings, T. C., Engineering Fractures of the San Fernando Earthquake of February 9, 1971, EERI-71-02, report by California Institute of Technology, June 1, 1971.
- Marsh, R. O. and P. I. Yanev, <u>Managua, Nicaragua Earthquake, December 23,</u> 1972, Summary Report, EERC 705.355 M25, 1973.
- 31. Eckel, E. B., Effects of the Earthquake of March 27, 1964, on Air and Water Transport, Communications, and Utilities Systems in South-Central Alaska, Geological Survey Professional Paper 545-B (1967), for sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.
- 32. Stratta, J. L., et al., <u>Reconnaissance Report: Mindanao, Philippines</u> <u>Earthquake, August 17, 1976</u>, by the EERI Reconnaissance Team, August 1977.
- 33. <u>The Guatemala Earthquake of February 4, 1976</u>, by the EERI Reconnaissance Team, March 1976, Vol. 10, No. 2B.
- Earthquake in Romania, by the EERI Reconnaissance Team, Vol. 11, No. 3B, May 1977.
- 35. The Oroville Earthquake, by the EERI Team, Vol. 9 No. 5B, September 1975.
- 36. The Liu, Turkey, Earthquake of September 6, 1975, by the EERI Reconnaissance Team, Vol. 9, No. 6B, November 1975.

- 37. Response of El Centro Steam Plant Equipment During the October 15, 1979 Imperial Valley Earthquake, Lawrence Livermore National Laboratory, Livermore, CA, NUREG/CR-1665, UCRL-53005.
- WTD-SM-74-097, 51 Series Steam Generator, <u>Generic Seismic Analysis</u>, Westinghouse Electric Corp., Nuclear Energy Systems, Large Components Division, Tampa, FL, Dec. 1974.
- 39. ASTM DS-5S2, "An Evaluation of the Yield, Tensile, Creep and Rupture Strengths of Wrought 304, 316, 321 and 347 Stainless Steels at Elevated Temperatures," American Society of Testing Materials.
- 40. Alfredo H. Ang and Wilson H. Tang, <u>Probability Concepts in Engineering</u> Planning and Design (John Wiley and Sons, Inc., 1975).
- 41. Subsystem Hardness Assurance Report, U.S. Army Corps of Engineers, Huntsville Division, HNDDSP-72-156-ED-R (1975), Vols. I and II.
- 42. Koss, P., "Seismic Testing of Electrical Cable Support Systems," Bechtel Power Corporation, Los Angeles Power Division, presented at the Structural Engineers of California Conference, San Diego, CA, 1979.
- 43. Subsystem Hardness Assurance Analysis, U.S. Army Corps of Engineers, Huntsville Division, HNDDSP-73-161-ED-R (1975), Vols. I and II.
- 44. <u>Hardness Program-Non-Emp. Test Specification and Procedure</u>, Electric Motor Control Center Fragility Test, U.S. Army Corps of Engineers, Huntsville Division, HNDDSP-72-74-ED-R (1972).
- 45. <u>Shock Test Program Plan</u>, Management and Technical Plan, U.S. Army Corps of Engineers, Huntsville Division, HNDDSP-72-151-ED-R (1973), Vol. I.
- 46. Gerber, T. L., "Plastic Deformation of Piping Due to Pipe-Whip Loading," ASME Paper No. 74-NE-1.
- 47. Franzen, W. E. and W. F. Stokey, "The Elastic-Plastic Behavior of Stainless Steel Tubing Subjected to Bending, Pressure and Torsion," Second International Conference on Pressure Vessel Technology, San Antonio, TX, 1973, published by ASME, New York.
- 48. Del Puglia, A. and G. Nerli, "Experimental Research on Elasto-Plastic Behavior and Collapse Load of Statically Indeterminate Space Tubular Beams," 2nd International Conference on Structural Mechanics in Reactor Technology, Berlin, Germany, 1973, Vol. 2, Part F.
- Sherman, D. R. and A. M. Glass, "Ultimate Bending Capacity of Circular Tubes," Proc. Offshore Technology Conference, Dallas, TX, 1974, OTC Paper No. 2119.
- 50. Jirsa, J. O., F. H. Lee, and J. C. Wilhoit, "Ovaling of Pipelines Under Pure Bending," Proc. Offshore Technology Conference, Dallas, TX, 1972, OTC Paper No. 1569.
- 51. Sorenson, J. E., R. E. Mesloh, E. Rybicki, A. T. Hopper, and T. J. Atterbury, "Buckling Strength of Offshore Pipelines," Battelle-Columbus Labs. Report to the Offshore Pipeline Group, July 13, 1970.
- 52. Schroeder, J. and P. Tugcu, "Plastic Stability of Pipes and Tees Exposed to External Couples," to be published as a Welding Research Council Bulletin.
- 53. Schroeder, J., "Limited Couples Acting on Branch of ANSI B 16.9 Tees," final report submitted to the Pressure Vessel Research Committee, Subcommittee on Piping, Pumps and Valves, November 1979.
- 54. Greenstreet, W. L., "Experimental Study of Plastic Responses of Pipe Elbows," ORNL/NUREG-24, February 1978.
- 55. <u>Integrity of the Primary Pipeline Systems of Westinghouse Nuclear Power</u> <u>Plants During Postulated Seismic Events</u>, Westinghouse Electric Company, March 1978, WCAP 9283.

- 56. Kennedy, R. P., et al., "Subsystem Fragility Seismic Safety Margins Research Program (Phase I)," Lawrence Livermore National Laboratory, Livermore, California, UCRL-15407, NUREG/CR-2405, October 1981.
- 57. Swan, S. W. and P. I. Yanev, "An Evaluation of the Response of Equipment at the El Centro Steam Plant to the October 15, 1979 Imperial Valley, California Earthquake," Lawrence Livermore National Laboratory, Livermore, CA, UCRL-15494 (1982).

APPENDIX A SUMMARY OF ZION SAFETY-RELATED COMPONENTS

For the study of the Zion Nuclear Power Plant the SSMRP developed 7 event trees and 11 fault trees to cover all the hypothesized reactor transients and potential modes of release of radioactivity. Taken together, these event and fault trees require the determination of the probability of failure (due to seismic loading) of over 2300 basic events. (A basic event could be failure of a certain valve, for example). Since it was clearly not feasible to generate fragility curves for thousands of specific components, the first step in the development of the fragility data base was to group all the components identified on the event and fault trees into categories.

Equipment functions, governing design criteria, method of seismic qualification and response characteristics were used as the basis of determining categories. These criteria and other pertinent information for the components that were reviewed in the effort to set categories are presented in the following tables.

97

Summary of Zion safety-related components.

					· · · · · · · · · · · · · · · · · · ·	<u> </u>			
P&I ID number	Component	Description	Location	Pipe run	Manufacturer	Function	Seismic qual. method	Acceptance criteria	Dynamic response determination
FW004	Aux. feedwater pump	Turbine, 990 GPM	Aux. bldg. (22, G-H) elev. 579		Pacific Pumps	Active	Static analysis	ASME boiler and pressure vessel code	Design analysis extrapolation
FW005	Aux. feedwater pump	Motor, 495 GPM	Aux. bldg. (22-23, G-H) elev. 579		Pacific Pumps	Active	Static analysis	ASME boiler and pressure vessel code and 1967 UBC	Design analysis extrapolation
FW006	Aux. feedwater pump	Motor, 495 GPM	Aux. bldg. (22-23, G-H) elev. 579		Pacific Pumps	Active	: Static analysis	ASME boiler and pressure vessel code and 1967 UBC	Design analysis extrapolation
S0001	Secondary storage tank	500,000 gal	Outside E-9			Passive	Dynamic analysis		Design analysis extrapolation
CD0101	Valve, gate	20", manual	Outside sec. storage tank			Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation
CD0369	Valve, gate	18", manual	Turbine bldg.			Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation
FW0075	Valve, gate	10", MOV	Aux. bldg. 22-23, G-H) elev. 585		W. M. Powell Co.	Active	Static analysis	1971 ASME Section III boiler and pressure vessel code	Design analysis extrapolation
FW0074	Valve, gate	6", MOV	Aux. bldg. (22-23, G-H) elev. 585		W. M. Powell Co.	Active	Static analysis (valve) test (motor operator)	ASME draft/ANSI	Design analysis extrapolation
FW0076	Valve, gate	6", MOV	Aux. bldg. (22-23, G-H) elev. 585		W. M. Powell Co.	Active	Static analysis (valve) test (motor operator)	ASME draft/ANSI	Design analysis extrapolation
FW0031	Valve, check	6", manual	Aux. bldg. (22-23, G-H) elev. 584		Chapman Valve	Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation
FW0034	Valve, globe	6", manual	Aux. bldg. (22-23, G-H) elev. 584		W. M. Powell Co.	Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation
FW0032	Valve, check	4", manual	Aux. bldg. (22-23, G-H) elev. 581		Chapman Valve	Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation
FW0035	Valve, globe	4", manual	Aux. bldg. (22-23, G-H) elev. 584		W. M. Powell Co.	Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation

Frequencies	Fragility mode	Fragility parameter
33 HZ	Pedestal attach bolts	Spectral acceleration
33 Hz	Pedestal attach bolts	Spectral acceleration
33 Hz	Pedestal attach bolts	Spectral acceleration
		Spectral acceleration
Rigid	Functional	Spectral acceleration
Rigid	Functional	Spectral acceleration
33 Hz	Bending stress in bonnet neck	Spectral acceleration
Rigid	Functional	Spectral acceleration
Rigid	Functional	Spectral acceleration
Rigiđ	Functional	Spectral acceleration
Rigid	Functional	Spectral acceleration
Rigid	Functional	Spectral acceleration
Rigid	Functional	Spectral acceleration

an in the second

.

٠

¥

-

P&I ID number	Component	Description	Location	Pipe run	Manufacturer	Function	Seismic qual. method	Acceptance criteria	Dynamic response determination	Frequencies	Fragility mode	Fragility parameter
FW0037	Valve, gate	4", manual	Aux. bldg. (22-23, G-H) elev. 584		W. M. Powell Co.	Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
FW0033	Valve, check	4" manual	Aux. bldg. (23-24, G-H) elev. 581		Chapman Valve	Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
FW0036	Valve, globe	4", manual	Aux. bldg. (23-24, G-H) elev. 581		W. M. Powell Co.	Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleratior
FW0038	Valve, gate	4", manual	Aux. bldg. (23-24, G-H) elev. 581		W. M. Powell Co.	Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleratior
FW85H	Valve, globe	6", pneumatic/ Diaphragm	Aux. bldg. (23, P-R) elev. 600			Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral · acceleration

Summary of Zion safety-related components (continued).

.

2

Summary of Zion safety-related components (continued).

							· · · · · · · · · · · · · · · · · · ·		
P&I ID number	Component	Description	Location	Pipe run	Manufacturer Functi		Seismic qual. method	Acceptance criteria	Dynamic response determination
FW0050	Valve, globe	6", MOV	Aux. bldg. (23, P-R) elev. 500		W. M. Powell Co.	Active	Static analysis (valve) test (operator)	ASME draft, ANSI	Design analysis
FW85G	Valve, globe	3", pneumatic/ diaphragm operator	Aux. bldg. (23-24, P-R) elev. 600			Active	Static analysis	ASME draft, ANSI	Design analysis
FW0051	Valve, globe	6", MOV	Aux. bldg. (23-24, P-R) elev. 600		W. M. Powell Co.	Active	Static analysis (valve) test (operator)	ASME draft, ANSI	Design analysis
FW85F	Valve, globe	3", pneumatic/ diaphragm operator	Aux. bldg. (23, P-R) elev. 583			Active	Static analysis	ASME draft, ANSI	Design analysis
FW0052	Valve, globe	3", MOV	Aux. bldg. (23-24, P-R) elev. 583		W.M. Powell Co.	Active	Static analysis (valve) test (operator)	ASME draft, ANSI	Design analysis
FW85E	Valve, globe	3", pneumatic/ diaphragm operator	Aux. bldg. (23-24, P-R) elev. 583			Active	Static analysis	ASME draft, ANSI	Design analysis
FW0053	Valve, globe	з", моv	Aux. bldg. 23-24, P-R) elev. 583		W. M. Powell Co.	Active	Static analysis (valve) test (operator)	ASME draft, ANSI	Design analysis
FW85D	Valve	3", pneumatic/ diaphragm operator	Aux. bldg. (23, P-R) elev. 576			Active	Static analysis	ASME draft, ANSI	Design analysis
FW0054	Valve, globe	3", моч	Aux. bldg. (23, P-R) elev. 576		W. M. Powell Co.	Active	Static analysis (valve) test (operator)	ASME draft, ANSI	Design analysis
FW85C	Valve, globe	3", pneumatic/ diaphragm operator	Aux. bldg. (23-24, P-R) elev. 581			Active	Static analysis	ASME draft, ANSI	Design analysis
FW0055	Valve	3", MOV	Aux. bldg. (23-24, P-R) elev. 581		W. M. Powell Co.	Active	Static analysis (valve) test (operator)	ASME draft, ANSI	Design analysis
FW0068	Valve, check	3"	Containment bldg. (30-31, M-N) elev. 581		Chapman Valve	Active	Static analysis	ASME draft,ANSI	Design analysis

.

.

•

₩1

-

Frequencies	Fragility mode	Fragility parameter				
Rigid	Functional	Spectral acceleration				
Rigid	Functional	Spectral acceleration				
Rigid	Functional	Spectral acceleration				
Rigid	Functional	Spectral acceleration				
Rigid	Functional	Spectral acceleration				
Rigid	Functional	Spectral acceleration				
Rigid	Functional	Spectral acceleration				
Rigid	Functional	Spectral acceleration				
Rigid	Functional	Spectral acceleration				
Rigid	Functional	Spectral acceleration				
Rigid	Functional	Spectral acceleration				
Rigid	Functional	Spectral acceleration				

1. 4.5

 \mathbf{O}

4

P&I ID number	Component	Description	Location	Pipe run	Manufacturer	Function	Seismic qual. method	Acceptance criteria	Dynamic response determination	Frequencies	Fragility mode	Fragility parameter
FW85B	Valve, globe	3", pneumatic/ diaphragm operator	Aux. bldg. (23, P-R) elev. 596			Active	Static analysis	ASME draft, ANSI	Design analysis 	Rigid	Functional	Spectral acceleration
FW0056	Valve, globe	3", MOV	Aux. bldg. (23, P-R) elev. 596		W. M. Powell Co.	Active	Static analysis (valve) test (operator)	ASME draft, ANSI	Design analysis	Rigid	Functional	Spectral acceleration
FW85A	Valve, globe	3", pneumatic/ diaphragm operator	Aux. bldg. (23-24, P-R) elev. 596			Active	Static analysis	ASME draft, ANSI	Design analysis	Rigid	Functional	Spectral acceleration
FW0057	Valve, globe	3", MOV	Aux. bldg. (23-24, P-R) elev. 596		W. M. Powell Co.	Active	Static analysis (valve) test (operator)	ASME draft, ANSI	Design analysis	Rigid	Functional	Spectral acceleration

(

,
P&I ID number	Component	Description	Location	Pipe run	Manufacturer	Function	Seismic qual. method	Acceptance criteria	Dynamic response determination	Frequencies	Fragility mode	Fragility parameter
15W001	Service water pump	24", vane 22,000 GPM	Crib house elev. 590 (108, BB-CC)	lSW138-24" Xl-N	Layne-Bowler Inc.	Active	Static analysis	ASME boiler and pressure vessel code	Design analysis extrapolation	4.3 Hz	Tensile & shear in pump column walls	Spectral acceleration
1 SW002	Service water pump	24", vane 22,000 GPM	Crib house elev. 590 (110, BB-CC)	lSW127-24" X1-N	Layne-Bowler Inc.	Active	Static analysis	ASME boiler and pressure vessel code	Design analysis extrapolation	4.3 Hz	Tensile & shear in pump column walls	Spectral acceleration
1SW033	Service water pump	24", vane 22,000 GPM	Crib house elev. 590 (112, BB-CC)	lSW136-24" X1-N	Layne-Bowler Inc.	Active	Static analysis	ASME boiler and pressure vessel code	Design analysis extrapolation	4.3 Hz	Tensile & shear in pump column walls	Spectral acceleration
15W004	Strainer	36", mech. restriction	Crib house elev. 590 (109-110, BB-CC)	15W140-36" X1-N	Layne-Bowler Inc.	Passive	Static analysis	ASME boiler and pressure vessel code	Design analysis extrapolation	Rigid	Support structure	Spectral acceleration
1SW005	Strainer	36", mech. restriction	Crib house elev. 590 (111-112, BB-CC)	lSW139-36" X1-N	Layne-Bowler Inc.	Fassive	Static analysis	ASME boiler and pressure vessel code	Design analysis extrapolation	Rigid	Support structure	Spectral acceleration
1SW0002	Butterfly valve	24", manual	Crib house elev. 603 (112, BB-CC)	lSW136-24" X1-N	Henry Pratt Co.	Active	Static analysis	1968 ASME draft code for nuclear components	Design analysis extrapolation	33 Hz	Functional: bending in disc or shaft	Spectral acceleration
1SW0005	Butterfly valve	24", manual	Crib house elev. 603 (110, BB-CC)	1SW137-24" X1-N	Henry Pratt Co.	Active	Static analysis	1968 ASME draft code for nuclear components	Design analysis extrapolation	33 Hz	Functional: bending in disc or shaft	Spectral acceleration
1SW0008	Butterfly valve	24", manual	Crib house elev. 603 (108, BB-CC)	15W138-24" X1-N	Henry Pratt Co.	Active	Static analysis	1968 ASME draft code for nuclear components	Design analysis extrapolation	33 Hz	Functional: bending in disc or shaft	Spectral acceleration
1SW0001	Valve, check	24"	Crib house elev. 600 (112, BB-CC)	lSW136-24" X1-N	Mission Man. Corp.	Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral
1SW0004	Valve, check	24"	Crib house elev. 600 (110, BB-CC)	1SW137-24" X1-N	Mission Man. Corp.	Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral
1SW0007	Valve, check	24"	Crib house elev. 600 (108, BB-CC)	1SW138-24" X1-N	Mission Man. Corp.	Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral
lSW0003	Butterfly valve	36", manual	Crib house elev. 603 (110-111, BB-CC)	1SW139-36" X1-N	Henry Pratt Co.	Active	Static analysis	1968 ASME draft pump and valve code	Design analysis extrapolation	33 Hz	Functional: bending in disc or shaft	Spectral
1SW0006	Butterfly valve	36", manual	Crib house elev. 603 108-109, BB-CC)	lSW140-36" Xl-N	Henry Pratt Co.	Active	Static analysis	1968 ASME draft pump and valve code	Design analysis extrapolation	33 Hz	Functional: bending in disc or shaft	Spectral

2

.

.

.

.

P&I ID number	Component	Description	Location	Pipe run	Manufacturer	Function	Seismic qual. method	Acceptance criteria	Dynamic response determination	Frequencies	Fragility mode	Fragility parameter
1SW0017	Butterfly valve	36", manual	Crib house elev. 596 (112, BB-CC)	15W139-36" X1-N	Henry Pratt Co.	Active	Static analysis	1968 ASME draft pump and valve code	Design analysis extrapolation	33 Hz	Functional: bending in disc or shaft	Spectral
1SW0018	Butterfly valve	36" manual	Crib house elev. 596 (110, BB-CC)	1SW140-36" X1-N	Henry Pratt Co.	Active	Static analysis	1968 ASME draft pump and valve code	Design analysis extrapolation	33 Hz	Functional: bending in disc or shaft	Spectral
OMOVSW0003	Butterfly valve	48", elec. motor	Crib house elev. 579 (107-108, BB-CC)	OSW012-48" X1-N	Henry Pratt Co.	Active	Static analysis (test operator)	1968 ASME draft code for nuclear components	Design analysis extrapolation	33 Hz	Functional: bending in disc or shaft	Spectral
OSW0670	Valve, gate	8 "		OSW098-8" X1-N	Henry Pratt Co.	Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral
1MOVSW0107	Valve, gate	8", elec. motor operated	Aux. bldg. elev. 585 (22-23, G-H)	lSW154-8" Xl-N	W. M. Powell Co.	Active	Static analysis (test operator)	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral
1MOVSW0106	Valve, gate	8", elec. motor operated	Aux. bldg. elev. 585 (22-23, G-H).	15W154-8" X1-N	W. M. Powell Co.	Active	Static analysis (test operator)	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral

.

.

P&I ID number	Component	Description	Location	Pipe run	Manufacturer	Function	Seismic qual. method	Dynamic Acceptance criteria	response determination	Frequencies	Fragility mode	Fragility parameter
2MOV5W0001	Gate valve	20", Electric motor operator	Aux. bldg.	25W003-20" X1-N	W. M. Powell Co.	Active	Static analysis (valve) test (operator)	ASME draft/ANSI	Design analysis extrapolation	30.3 Hz	Bending at base of yoke arms	Spectral acceleration
1MOVSW0002	Gate valve	20", Electric motor operator	Aux. bldg. elev. 572 (20-22, G-H)	1SW003-20" X1-N	W. M. Powell Co.	Active	Static analysis (valve) test (operator)	ASME draft/ANSI	Design analysis extrapolation	30.3 Hz	Bending at base of yoke arms	Spectral acceleration
1SW0179	Gate valve	8", manual	Aux. bldg.	1SW205-8" X1-N		Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1MOVSW0102	Gate valve	8", electric motor operator	Aux. bldg.	1SW205-8" X1-N		Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1MOVSW0101	Gate valve	8", electric motor operator	Aux. bldg.	1SW102-8" X1-N		Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1MOVSW0104	Gate valve	8", electric motor operator	Aux. bldg.	1SW102-8" X1-N		Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1MOVSW0103	Gate valve	8", electric motor operator	Aux. bldg.	1SW145-8" X1-N		Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1MOVSW0105	Gate valve	8", electric motor operator	Aux. bldg.	1SW145-8" X1-N		Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1SW0439	Gate valve	10", manual	Aux. bldg.	1SW100-10" X1-N		Actíve	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1RH001	Pump	Centrifugal, 3000 GPM	Aux. bldg. elev. 542 (22, L-M)	lRH013-14" L-R lRH001-10" L-R	Ingersoll-Rand Company	Active	Static analysis	ASME draft + pump + valve code	Design analysis extrapolation		Functional	Spectral acceleration
lRH002	Pump	Centrifugal, 3000 GPM	Aux. bldg. elev. 542 (22, L-M)	1RH014-14" L-R 1RH002-10" L-R	Ingersoll-Rand Company	Active	Static analysis	ASME draft + pump + valve code	Design analysis extrapolation		Functional	Spectral acceleration
1RH003	Heat exchanger	Vertical shell and tube	Aux. bldg. elev. 563 (20-21, L~M)	1RH007-10" L-R 1RH001-10" L-R	Engineers and Fabricators	Passive	Static analysis	ASME Sect. VIII	Design analysis extrapolation		Support structure	Spectral acceleration
1RH004	Heat exchanger	Vertical shell and tube	Aux. bldg. elev. 563 (20-21, L-M)	lRH008-10" L-R lRH002-10" L-R	Engineers and Fabricators	Passive	Static analysis	ASME Sect. VIII	Design analysis extrapolation		Support structure	Spectral acceleration
1RH8749A	Check valve	8 "	Containment elev. 586 (28-29)	1R0007-8" E-R		Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration

۲

.

x

.

.

٦

P&I ID number	Component	Description	Location	Pipe run	Manufacturer	Function	Seismic qual. method	Dynamic Acceptance criteria	response determination	Frequencies	Fragility mode	Fragility parameter
1MOVRH9000	Gate valve	12", electric motor operator	Aux. bldg. elev. 580 (23-23, P-R)	lRH006-12" L-R		Active	Static analysis (valve) test (operator)	ASME draft/ANSI	Design analysis extrapolation	Rigiđ	Functional	Spectral acceleration
1MOVRH8702	Gate valve	l4", Electric motor operator	Containment elev. 579 (2-7)	1RH015-14" E-R	Copes-Vulcan, Inc.	Active	Static analysis (valve) test (operator)	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1MOVRH8701	Gate valve	l4", electric motor operator	Containment elev. 579 (2-5, 2-6)	1RH015-14" E-R	Copes-Vulcan, Inc.	Active	Static analysis (valve) test (operator)	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1MOVRH8700A	Gate valve	14", electric motor operator	Aux. bldg. elev. 546 (21-23, L-M)	lRH015-14" E-R	Darling Valve Company	Active	Static analysis (valve) test (operator)	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleratior

1

1

.

÷

4

Summary of Zion safety-related components (continued).

V

P&I ID number	Component	Description	Location	Pipe run	Manufacturer	Function	Seismic qual. method	Acceptance criteria	Dynamic response determination	Frequencies	Fragility mode	Fragility parameter
1RH8730A	Check valve	10"	Aux. bldg. elev. 548 (21-23, K-L)	lRH001-10" L-R	Aloyco, Inc.	Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
LRH8728A	Gate valve	l0", manual	Aux. bldg. elev. 553 (20-21, L-M)	1RH001-10" L-R	Darling Valve Company	Active	Static analysis	ASME boiler and pressure vessel code: Sect. VIII	Design analysis extrapolation	33 Hz	Bolt failure yoke to bonnet	Spectral acceleration
lRH8724A	Gate valve	10", manual	Aux. bldg. elev. 553 (20-21, L-M)	lRH001-10" L-R	Darling Valve Company	Active	Static analysis	ASME boiler and pressure vessel code: Sect. VIII	Design analysis extrapolation	33 Hz	Bolt failure yoke to bonnet	Spectral acceleration
lrhhov606	Butterfly control valve	10", pneumatic, diaphragm operator	Aux. bldg. elev. 554 (20-21, L-M)	lRH007-10" L-R	Continental Equipment Co.	Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1MOVRH8716A	Gate valve	8", electric motor operator	Aux. bldg. elev. 557 (20-21, L-M)	lRH009-8" L-R	Darling Valve Company	Active	Static analysis (valve) test (operator)	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
lRHHCV618	Butterfly control valve	8", pneumatic, diaphragm operator	Aux. bldg. elev. 555 (20-21, L-M)	lRH005-8" L-R	Continental Equipment Co.	Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
LMOVRH8716C	Gate valve	8", electric motor operator	Aux. bldg. elev. 557 (20-21, L-M)	lRH010-8" L-R	Darling Valve Company	Active	Static analysis (valve) test (operator)	ASME draft/ANSI	Design analysis	Rigid	Functional	Spectral acceleration
1MOVRH8716B	Gate valve	8", electric motor operator	Aux. bldg. elev. 557 (20-21, L-M)	lRH010-8" L-R	Darling Valve Company	Active	Static analysis (valve) test (operator)	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
lRHHCV607	Butterfly control valve	10", pneumatic, diaphragm operator	Aux. bldg. elev. 554 (20-21, L-M)	lRH008-10" L-R	Continental Equipment Co.	Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1RH8724B	Gate valve	lo", manual	Aux. bldg. elev. 554 (20-21, L-M)	lRH002-10" L-R	Darling Valve Company	Active	Static analysis	ASME boiler and pressure vessel code: Sect. VIII	Design analysis extrapolation	33 Hz	Bolt failure yoke to bonnet	Spectral acceleration
1RH8728B	Gate valve	l0", manual	Aux. bldg. elev. 553 (20-21, L-M)	lRH002-10" L-R	Darling Valve Company	Active	Static analysis	ASME boiler and pressure vessel code: Sect. VIII	Design analysis extrapolation	33 Hz	Bolt failure yoke to bonnet	Spectral acceleration
1RH8730B	Check valve	10"	Aux. bldg. elev. 546 (21-23, M-N)	lRH002-10" L-R	Aloyco, Inc.	Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1RH8726B	Gate valve	8", manual	Aux. bldg. elev. 553 (20-21, L-M)	1RH004-8" L-R	Darling Valve Company	Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration

*

.

...

Summary of	Zion sarety-re	lated components	(Continued).			- <u></u>		`	1			
P&I ID number	Component	Description	Location	Pipe run	Manufacturer	Function	Seismic qual. method	Acceptance criteria	Dynamic response determination	Frequencies	Fragility mode	Fragility parameter
1MOVRA9700B	Gate valve	14", electric motor operated	Aux. bldg. elev. 546 (21-23, L-M)	1RH014=14" L-R	Darling Valve Company	Active	Static analysis (valve) test (operator)	ASME draft/ASNI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
S1002	Boron injection tank	Vertical, skirt mounted	Outside containment (23-24, R) elev. 592	lSI078-4" E-R lSI083-4" E-R		Passive	Dynamic analysis	ASME Sect. VIII	Design analysis extrapolation	Rigid	Support structure	Spectral acceleration
151005	Accumulator tank lA	Liquid pressurized	Containment bldg. (25-26) elev. 568	151036-10" L-N	Delta Southern Company	Passive	Dynamic analysis	ASME Sect. VIII	Design analysis extrapolation		Support structure	Spectral acceleration
1518949D	Check valve	8 "	Containment bldg. (Zl-Z2) elev. 585	lSI125-8" El-R	Copes-Vulcan, Inc.	Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1518924	Diaphragm valve	4", manual	Aux. bldg. elev. 569 (23-25, L-M)	lSIl20-4" AA-R	Gulf Energy & Environmental Systems	Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1SI87 35	Gate valve	8", manual		lSI003-8" L-R		Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1MOVS18804A	Gate valve	8", motor operator	Aux. bldg. elev. 556 (23-25, L-M)	15I001-8" L-R	Darling Valve Company	Active	Static analysis	ASME boiler and pressure vessel code: Sect. VIII	Design analysis extrapolation	Rigiđ	Bolt failure yoke to bonnet	Spectral acceleration

.

Sala martine and

ĸ

.

2-

P&I ID number	Component	Description	Location	Pipe run	Manufacturer	Function	Seismic qual. method	Acceptance criteria	Dynamic response determination	Frequencies	Fragility mode	Fragility parameter
1518948A	Check valve	10"	Containment bldg. (25-26) elev. 587	15I036-10" E-R	Darling Valve Company	Active	Static analysis	ASME draft, ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1SI8956A	Check valve	10"		lSI036-10" E-R	Darling Valve Company	Active	Static analysis	ASME draft, ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1MOVSI8406A	Gate valve	10", electric motor operated	Containment bldg. (26-27) elev. 576	15I036-10" E-R		Active	Static analysis (valve) test (operator)	ASME draft,ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1MOVS18809A	Needle valve, motor operator	10", electric motor operator	Aux. bldg. elev. 593 (23-25, P-R)	lSI004-10" L-R	Velan Engineering	Active	Static analysis (valve) test (operator)	ASME draft, ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1MOVS18809B	Needle valve, motor operator	10", electric motor operator	Aux. bldg. elev. 592 (23-25, P-R)	lSI005-10" L-R	Velan Engineering	Active	Static analysis (valve) test (operator)	ASME draft, ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
lSI8957B	Check valve	10"	Containment elev, 591 (Z4-Z5)	1SI005-10" L-R	Darling Valve Company	Active	Static analysis	ASME draft, ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
SI9002C	Check valve	8 "	Containment elev. 572 (Z4-Z5)	15I123-8" E-R	Darling Valve Company	Active	Static analysis	ASME draft, ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
SI9002D	Check valve	8 "	Containment elev. 574	lSI124-8" E-R	Darling Valve Company	Active	Static analysis	ASME draft, ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1519001C	Check valve	8"	Containment elev. 581 (214-215)	151123-8" E-R	Darling Valve Company	Active	Static analysis	ASME draft, ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1SI9001D	Check valve	8"	Containment elev. 582 (Z5-Z6)	1SI124-8" E-R	Darling Valve Company	Active	Static analysis	ASME draft, ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1MOVSI8811B	Gate valve	18", electric motor operator	Aux. bldg. elev. 557 (25-27, M-N)	1SI008-18" AA-R		Active	Static analysis (valve) test (operator)	ASME draft, ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1MOVSI8811A	Gate valve	18", electric motor operator	Aux. bldg. elev. 557 (25-27, M-N)	lSI007-18" AA-R		Açtive	Static analysis (valve) test (operator)	ASME draft, ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1MOVSI8812B	Gate valve	l2", electric motor operator	Aux. bldg. elev. 568 (23-24, M-N)	lSI006-12" AA-R	Darling Valve Company	Active	Static analysis (valve) test (operator)	ASME draft, ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1MOVSI8812A	Gate valve	l2", electric motor operator	Aux. bldg. elev. 559 (23-24, M-MN)	lSI006-12" AA-R	Darling Valve Company	Active	Static analysis (valve) test (operator)	ASME draft, ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration

108

.

~

My. and

 \bigcirc

κ.

-

P&I ID number	Component	Description	Location	Pipe run	Manufacturer	Function	Seismic qual. method	Acceptance criteria	Dynamic response determination	Frequencies	Fragility mode	Fragility parameter
1518958	Check valve	12"	Aux. bldg. elev. 556 (21-23, M-N)	15I006-12" AA-R		Passive	Static analysis	ASME draft, ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1MOVSI9010A	Gate valve, motor operator	4", electric motor operator	Aux. bldg. elev. 568 (23-24, K-L)	lSI075-4" E-R	Darling Valve Company	Active	Static analysis (valve) test (operator)	ASME draft, ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1MOVSI9010B	Gate valve, motor operator	4", electric motor operator	Aux. bldg. elev. 568 (24-26, K-L)	lSI007-4" E-R	Darling Valve Company	Active	Static analysis (valve) test (operator)	ASME draft, ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1MOVSI8601A	Gate valve, motor operator	4", electric motor operator		15I089-4" E-R		Active	Static analysis (valve) test (operator)	ASME draft, ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1MOVSI8601B	Gate valve, motor operator	4", electric motor operator		lSI087-4" E-R		Active	Static analysis (valve) test (operator)	ASME draft, ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1MOVSI8807A	Gate valve, motor operator	4", electric motor operator	Aux. bldg. elev. 511 (23-25, L-M)	lSIl2l-4" AA-R	Darling Valve Company	Active	Static analysis (valve) test (operator)	ASME draft, ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1MOVSI8807A	Gate valve, motor operator	4", electric motor operator	Aux. bldg. elev. 569 (23-25, L-M)	lSIl20-4" AA-R	Darling Valve Company	Active	Static analysis (valve) test (operator)	ASME draft, ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration

1

Summary of Zion safety-related components (continued).

er. Samme

P&I ID number	Component	Description	Location	Pipe run	Manufacturer	Function	Seismic qual. method	Acceptance criteria	Dynamic response determination	Frequencies	Fragility mode	Fragility parameter
1MOVCS0050	Gate valve	8", motor operator		lSI002-8" L-R		Active	Static analysis (valve) test (operator)	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1MOVCS0049	Gate valve	8", motor operator		lSI001-8" L-R		Active	Static analysis (valve) test (operator)	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1VC8546	Check valve	8"		1VC122-8" AA-R		Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1MOV-VC-LCV 112-E	Gate valve	8", motor . operator		1VC121-8" AA-R		Active	Static analysis (valve) test (operator)	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1MOV-VC-LCV 112-D	Gate valve	8", motor operator		lVC121-8" AA-R		Active	Static analysis (valve) test (operator)	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
VC8481B	Check valve	4 "		1V077-4" E-R		Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid .	Functional	Spectral acceleration
VC8481A	Check valve	4 "		1VCO78-4" E-R		Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1VC8387B	Globe valve	3"		1VC256-3" E-R		Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1VC8485B	Gate valve	4 "		1VC073-4" E-R		Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1VC8485A	Gate valve	4 "		1VC078-4" E-R		Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1VC8483B	Globe valve	4 "		1VC073-4" E-R		Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
WCFCV0121	Globe valve	4 "		1VC073-4" E-R		Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1VC8483A	Globe valve	4 n		1VC073-4" E-R		Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1VC8387A	Globe valve	3"		1VC255-3" E-R		Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1VC8365	Globe valve	3"		lVC079-3" E-R		Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration

 \mathcal{D}

a.

_

4

.

•

P&I ID number	Component	Description	Location	Pipe run	Manufacturer	Function	Seismic qual. method	Acceptance criteria
lVC8401	Check valve	3"		1VC079-3" E-R		Active	Static analysis	ASME draft/ANSI
1MOV-VC 8106	Gate valve	3", motor operator		1VC073-3" E-R		Active	Static analysis (valve) test (operator)	ASME boiler and pressure vessel code Sect. VIII and App. II
1MOV-VC 8105	Gate valve	3", motor operator		1VC073-3" E-R		Active	Static analysis (valve) test (operator)	ASME boiler and pressure vessel code Sect. VIII

Summary of Zion safety-related components (continued).

-

.

.

,

Dynamic response determination Frequencies Fragility parameter Design analysis extrapolation Rigid Functional Spectral acceleration Design analysis Rigid Yoke bolting Spectral extrapolation acceleration Design analysis Rigid Yoke bolting Spectral extrapolation acceleration				
Dynamic response Fragility Fragility determination Frequencies mode parameter Design analysis Rigid Functional Spectral extrapolation Spectral acceleration Design analysis Rigid Yoke bolting Spectral extrapolation Rigid Yoke bolting Spectral extrapolation Rigid Yoke bolting Spectral extrapolation				
Design analysis Rigid Functional Spectral extrapolation Rigid Yoke bolting Spectral extrapolation acceleration Design analysis Rigid Yoke bolting Spectral extrapolation acceleration	Dynamic response determination	Frequencies	Fragility mode	Fragility parameter
Design analysis Rigid Yoke bolting Spectral extrapolation acceleration Design analysis Rigid Yoke bolting Spectral extrapolation acceleration	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
Design analysis Rigid Yoke bolting Spectral extrapolation acceleration	Design analysis extrapolation	Rigid	Yoke bolting	Spectral acceleration
	Design analysis extrapolation	Rigiđ	Yoke bolting	Spectral acceleration
	- - - - -			
			•	
			an in the second	
	-		• •	

1.10

and App. II

,

P&I ID number	Component	Description	Location	Pipe run	Manufacturer	Function	Seismic qual. method	Acceptance criteria	Dynamic response determination	Frequencies	Fragility mode	Fragility parameter
1vc006	Charging pump 1A	Centrifugal	Aux. bldg. (23-24, K-1) elev. 579	lVC091-6" AA-R lVC077-4" E-R		Active	Static analysis	ASME code Section VIII	Design analysis extrapolation	33 Hz	Functional	Spectral acceleration
1VC007	Charging pump lB	Centrifugal	Aux. bldg. (24-25, K-1) elev. 579	1VC092-6" AA-R 1VC078-4" E-R		Active	Static analysis	ASME code Section VIII	Design analysis extrapolation	33 Hz	Functional	Spectral acceleration
1VC008	Charging pump 1C	Reciprocating	Aux. bldg. (25-26, K-1) elev. 579	1VC093-4" AA-R 1VC079-3" E-R		Active	Static analysis	ASME code Section VIII	Design analysis extrapolation	33 Hz	Functional	Spectral acceleration
1VC8402B	Globe valve	3", manual		1VC091-3E-R		Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1VCHCV- 182	Globe valve	3", hydraulic operator		1VC091-3E-R		Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1VC8402A	Globe valve	3", manual		1VCO91-3E-R		Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleration
1VC011- 3E-R	Globe valve	3", manual		1VCO91-3E-R		Active	Static analysis	ASME draft/ANSI	Design analysis extrapolation	Rigiđ	Functional	Spectral acceleration
		Nuclea	ar Steam Supply S	ystem								
1RC001	Reactor vessel		Containment bldg. 560-600		Combustion Engineering	Passive	Dynamic analysis	ASME code Section III	Reanalysis	8 Hz	Structural at outlet nozzle	Bending moment at outlet nozzles
1RC110	Reactor coolant pump	1A	Containment bldg. 26 elev. 580-600	lRC002-31" E-1R lR003-27.5" E-1R	Westinghouse	Passive	Dynamic analysis	ASME code Section III	Reanalysis	low 4 Hz	Structural	Spectral acceleration
1RC210	Reactor coolant pump	1C	Containment bldg. Zll elev. 580-600	lRC034-31" E-lR lRC035-27" E-lR	Westinghouse	Passive	Dynamic analysis	ASME code Section III	Reanalysis	low 4 Hz	Structural	Spectral acceleration
1RC310	Reactor coolant pump	10	Containment bldg. z15 elev. 580-600	1RC069-31" E-1R 1RC070-27.5" E-1R	Westinghouse	Passive	Dynamic analysis	ASME code Section III	Reanalysis	low 4 Hz	Structural	Spectral acceleration
1RC410	Reactor coolant pump	lB	Containment bldg. 23 elev. 580-600	lRCl21-31" E-lR lRCl22-27.5" E-lR	Westinghouse	Passive	Dynamic analysis	ASME code Section III	Reanalysis	low 4 Hz	Structural	Spectral acceleration
1RC100	Steam generator	1A	Containment bldg. 28 elev. 584-655	lRC001-29" E-1R lRC002-31" E-1R	Westinghouse	Passive	Dynamic response spectrum analysi:	ASME boiler and s pressure vessel code, Sect. III	Reanalysis	10 Hz tubes	Bending stress in the tubes	Spectral acceleration
1RC200	Steam generator	10	Containment bldg. ZlO elev. 584-655	lRC033-29" E-1R lRC034-31" E-1R	Westinghouse	Passive	Dynamic response spectrum analysi:	ASME boiler and s pressure vessel code, Sect. III	Reanalysis	10 Hz tubes	Bending stress in the tubes	Spectral acceleration

5

and the second second

Summary of Zion safety-related components (continued).

P&I ID number	Component	Description	Location	Pipe run	Manufacturer	Function	Seismic qual. method	Acceptance criteria	Dynamic response determination	Frequencies	Fragility mode	Fragility parameter
1RC300	Steam generator	1D	Containment bldg. 216 elev. 584-655	lRC068-29" E-1R lRC069-31" E-1R	Westinghouse	Passive	Dynamic response spectrum analysis	ASME boiler and pressure vessel code, Sect. III	Reanalysis	10 Hz tubes	Bending stress in the tubes	Spectral acceleration
1RC400	Steam generator	18	Containment bldg. Zl elev. 584-655	lRC110-29" E-1R lRC121-31" E-1R	Westinghouse	Passive	Dynamic response spectrum analysis	ASME boiler and pressure vessel code, Sect. III	Reanalysis	10 Hz tubes	Bending stress in the tubes	Spectral acceleration
1RC002	Pressurizer	1800 ft ³	Containment bldg. 22 elev. 580-647	lRC140-14" E-1R lRC142-4" E-1R	Westinghouse	Passive	Dynamic response spectrum analysis	1971 ASME boiler and pressure vessel code, Section III	Reanalysis	.7 Hz (sloshing) 27 Hz (heater) Rigid (vessel)	Support skirt structure	Bending moment at base of support skirt
1MPVRC- 8001C	Gate valve	29", motor operator	Containment bldg.	1RC068-29" E-1R		Active	Static analysis (valve) test (operator)	Draft ASME code/ANSI	Reanalysis	Rigid	Functional	Spectral acceleration
1MOVR- 8001B	Gate valve	29", motor operator	Containment bldg.	1RC033-29" E-1R	. 1	Active	Static analysis (valve) test (operator)	Draft ASME code/ANSI	Reanalysis	Rigid	Functional	Spectral acceleration
1MOVRC- 8001A	Gate valve	29", motor operator	Containment bldg.	1RC001-29" E-1R		Active	Static analysis (valve) test (operator)	Draft ASME code/ANSI	Reanalysis	Rigid	Functional	Spectral acceleration
1MOVRC- 8001D	Gate valve	29", motor operator	Containment bldg.	1RC110-29" E-1R		Active	Static analysis (valve) test (operator)	Draft ASME code/ANSI	Reanalysis	Rigid	Functional	Spectral . acceleration

.

1

:

-

. 4

,

°&I ID number	Component	Description	Location	Pipe run	Manufacturer	Function	Seismic qual. method	Acceptance criteria	Dynamic response determination	Frequencies	Fragility mode	Fragility parameter
MOVRC- 002A	Gate valve	27.5", motor operator	Containment	lRC003-27.5" E-lR		Active	Static analysis (valve) test (operator)	Draft ASME Code, ANSI	Reanalysis	Rigid	Functional	Spectral acceleration
MOVRC- 002B	Gate valve	27.5", motor operator	Containment bldg.	lRC035-27.5" E-lR		Active	Static analysis (valve) test (operator)	Draft ASME Code, ANSI	Reanalysis	Rigid	Functional	Spectral acceleratior
MOVRC- 002C	Gate valve	27.5", motor operator	Containment bldg.	1RC070-27.5" E-1R		Active	Static analysis (valve) test (operator)	Draft ASME Code, ANSI	Reanalysis	Rigid	Functional	Spectral acceleration
MOVRC- 8002D	Gate valve	27.5", motor operator	Containment bldg.	lRCl22-27.5" E-1R		Active	Static analysis (valve) test (operator)	Draft ASME Code, ANSI	Reanalysis	Rigid	Functional	Spectral acceleration
.RC0022	Gate valve	4", manual	Containment	lRC142-4" E-1R		Active	Static analysis	Draft ASME Code, ANSI	Reanalysis	Rigid	Functional	Spectral acceleration
PVC-RC07	Globe control valve	4"	Containment bldg.	1RC142-4" E-1R		Active	Static analysis	Draft ASME Code, ANSI	Reanalysis	Rigid	Functional	Spectral acceleration
RC0023	Gate valve	4", manual	Containment bldg	lRCl42-4" E-lR		Active	Static analysis	Draft ASME Code, ANSI	Reanalysis	Rigid	Functional	Spectral acceleration
LRC0020	Gate valve	4", manual	Containment bldg.	lRCl41-4" E-lR		Active	Static analysis	Draft ASME Code, ANSI	Reanalysis	Rigid	Functional	Spectral acceleration
PCV-RC06	Globe control valve	4"	Containment bldg.	lRCl4l-4" E-lR		Active	Static analysis	Draft ASME Code, ANSI	Reanalysis	Rigid	Functional	Spectral acceleration
RC0021	Gate valve	4", manual	Containment bldg.	lR141-4" E-1R		Active	Static analysis	Draft ASME Code, ANSI	Reanalysis	Rigid	Functional	Spectral acceleration
RC0021	Gate valve	4", manual	Containment bldg.	lRC141-4" E-1R		Active	Static analysis	Draft ASME Code, ANSI	Design analysis extrapolation	Rigid	Functional	Spectral acceleratio:
RC8010A RC8010B RC8010C	Pressurizer relief valve	6"	Containment bldg. at top of pressurizer	lRCl57-6" E-lR lRCl56-6" E-lR lRCl55-6" E-lR								
		Miscellane	ous Electrical C	Components								
	Diesel generator system		Diesel,Gener- ator bldg. (29-35,G-J) elev.592	NA	Cooper-Bessemer	Active	Test and static analysis	Functional & 90% of yield for structural fail- ure modes	Design analysis extrapolation	5 Hz (control panel)	Tripping of relays	Spectral acceleratio
	Diesel generator oil storage tank	50,000 gal	Diesel, Gener- ator bldg. (31-35, G-J) elev. 560	NA		Passive	Analysis	API code	Design analysis extrapolation			Spectral acceleratio

P&I ID number	Component	Description	Location	Pipe run	Manufacturer	Function	Seismic qual. method	Acceptance criteria	Dynamic response determination	Frequencies	Fragility mode	Fragility parameter
	Motor control centers & 1&C panels		Aux. bldg. (17-23, G-J) elev. 642	NA		Active	Test	Function	Design analysis extrapolation		Functional	Spectral acceleration
	Switchgear	4160	Aux. bldg. (31-34, G-H) elev. 617 (31-34, G-J) elev. 642	NA		Active	Test	Function	Design analysis extrapolation		Functional	Spectral acceleration
	Switchgear	480	Aux. bldg. (31-34, H) elev. 617	NA		Active	Test	Function	Design analysis extrapolation		Functional	Spectral acceleration
	Battery racks		Aux. bldg. (25-29, K-L) elev. 642	NA		Passive	Static analysis (rocks) test (chargers)	AISC code	Design analysis extrapolation	15 to 20	Anchor bolting	Spectral acceleration
	Battery charger (static)	s	Aux. bldg. (25-29, K-L) elev. 642	NA		Passive	Test		Design analysis extrapolation	33 Hz	Functional failure	Spectral acceleration
	Cable tray		Throughout plant	NA		Passive	No qualification specified	AISC code	Design analysis extrapolation	Low frequencies 4 to 10 Hz	Structural	Spectral acceleration
	Aux. relay cabinets		Aux. bldg. elev. 642	NA		Active	Test	Functionability	Design analysis extrapolation	5 - 15 Hz	Function	Spectral acceleration
	Breaker panels		Aux. bldg. elev. 642	NA		Active	Test	Functionability	Design analysis extrapolation	5 – 15 Hz	Function	Spectral acceleration
	Local instruments		All locations	NA		Active	Test	Functionability	Design analysis extrapolation	5 - 15 Hz	Function	Spectral acceleration

\$

Summary of Zion safety-related components (continued).

A December

2

The major source of actual experimental data on failure of components as a function of local base acceleration found by the Seismic Safety Margins Research Program (SSMRP) for use in developing component fragility functions for the Zion Nuclear Power Plant was the data obtained in the U.S. Army Corps of Engineers SAFEGUARD program. This ll-year program, conducted as part of a missile-site hardening effort, included tests of both mechanical and electrical components. The items tested were off-the-shelf and were typical of components used in commercial reactors in the late 1960s, and some of the results are thus directly applicable to the Zion power plant. Sixty-four test programs involving shaker table tests of approximately 300 items were conducted. Excitation consisted of sine beat pulse tests, selected to fit a prescribed acceleration spectrum. Equipment function was monitored during the test. Thus these were truly tests of fragility with respect to both functional and structural failure. Typically, components were tested to over 15 g peak acceleration. Out of the nearly 300 reports generated in the SAFEGUARD program, 63 were found to be directly applicable to components needed in the SSMRP.

The following tables list the reports used by the SSMRP and indicate the component categories applicable to each report.

APPENDIX B REPORTS FROM THE U. S. ARMY CORPS OF ENGINEERS SAFEGUARD PROGRAM USED BY THE SSMRP IN FRAGILITY DEVELOPMENT

U. S. Army Corps of Engineers Huntsville subsystem hardness reports used by SSMRP for fragilities development.

4

4

÷

Report No.	Huntsville subsystem hardness report	Applicable* categories
1	"A Quasi-Probabilistic Method for Evaluation Conser- vatism in the Design of Protective Facilities," Document Nos. SAF-102, SAF-103, SAF-105, Prepared by RMP, issued date 3-1-75	NA
2	"Screening of M/C Subsystem Equipment for Hardness Testing," Document Nos. PAR-CRI-A&W-94, (Vol. II) Prepared by A&W, issued date 6-72	NA
3	"Screening of M/C Subsystem Equipment for Hardness Testing," Document Nos. PAR-CRI-A&W-94, (Vol. III Part 1) Prepared by A&W, issued date 6-72	NA
4	"Screening of M/C Subsystem equipment for Hardness Testing," Document Nos. PAR-CRI-A&W-94, (Vol. III Part 2) Prepared by A&W, issued date 6-72	NA
5	"Shock Test Program, Air Handling Unit (H06AU), For Safeguard TSE Systems and Equipment," Document Nos. HNDSP-74-325-ED-R, Prepared by CERL, issued date 12-31-74	#29
6	"Shock Test Program, Piping Segment (P02PC), For Safeguard TSE Systems Equipment." Chilled Water Segment Digital Rock Coding Segment Compressed Air Segment, Document Nos. HNDSP-74-326-ED-R, Prepared by CERL, issued date 12-31-74	#12, 17, 25
7	Shock Test Program, Piping Segment (P39PC), For Safeguard TSE Systems and Equipment." Chilled Water Circulating System, Document Nos. HNDSP-74-327-ED-R, Prepared by CERL, issued data 12-31-74	#12, 17, 2 5
8	"Shock Test Program, Piping Segment (P30PC) For Safeguard TSE Systems and Equipment." Cooled Water Circulating System, Document Nos. HNDSP-74-328-ED-R Prepared by CERL, issued date 12-31-74	#12, 17, 2 5
9	"Shock Test Program Gas Turbo-Generator Assembly (E01GT), For Safeguard TSE Systems and Equipment," Document Nos. HNDSP-74-329-ED-R, Prepared by CERL, issued date 12-31-74	NA
10	"Unit Substation (E05SS), (A), Motor Control Center," Document Nos. HNDSP-74-331-ED-R, Prepared by CERL, issued date 12-31-74	#26

U. S. Army Corps of Engineers Huntsville subsystem hardness reports used by SSMRP for fragilities development. (continued)

Report No.	Huntsville subsystem hardness report	Applicable* categories
11	"Unit Substation (E05SS) (B), Voltage Regulator, Circuit Breaker," Document Nos. HNDSP-74-332-ED-R, Prepared by CERL, issued data 12-31-74	# 22, 28
12	"Unit Substation (El2SS) Motor Control Center," Westinghouse, 2 Cabinets with motor starters, Document Nos. HNDSP-74-333-ED-R, Prepared by CERL, issued date 12-31-74	#26
13	"Unit Substation (E16SS) Transformers," Document Nos. HNDSP-74-334-ED-R, Prepared by CER1, issued date 12-31-74	#21
14	"Unit Substation (E27SS), Circuit Breaker," Document Nos. HNDSP-74-335-ED-R, Prepared by CERL, issued date 12-31-74	#29
15	"Unit Substation (E29SS), Circuit Breaker," Document Nos. HNDSP-74-336-ED-R, Prepared by CERL, issued date 12-31-74	#29
16	"Shock Test Program, Motor Generator Set (E03GM), For Safeguard TSE Systems and Equipment," Document Nos. HNDSP-74-337-ED-R, Prepared by CERL, issued date 12-31-74	#18, 23
17	"Shock Test Program, Motor Generator Set (El2GM), For Safeguard TSE Systems and Equipment," Document Nos. HNDSP-74-338-ED-R, Prepared by CERL, issued date 12-31-74	#18, 23, 26
18	"Shock Test Program, Air Conditioner Test For Safe- guard TSE Systems and Equipment," Document Nos. HNDDSP-71-58-Ed-R, Prepared by Wyle, issued date 5-15-72	. #30
19	"Shock Test Program, Station Battery System For Safeguard TSE Systems and Equipment," AC Switchboard Document Nos. HNDDSP-72-69-ED-R, Prepared by Wyle, issued date 8-18-72	#19
20	"Shock Test Program - Electrical Panelboards Test - For Safeguard TSE Systems and Equipment," Document Nos. HNDDSP-72-64-ED-R, Prepared by Wyle, issued date 9-30-72	#24, 29

U. S. Army Corps of Engineers Huntsville subsystem hardness reports used by SSMRP for fragilities development. (continued)

٨

đ

Report No.	Huntsville subsystem hardness report	Applicable* categories
21	"Shock Test Program - Water Purification Units - For Safeguard TSE Systems and Equipment," Document Nos. HNDDSP-72-70-ED-R, Prepared by Wyle, issued date 4-73	NA
22	"Shock Test Program, Water Chiller For Safeguard TSE Systems and Equipment," Document Nos. HNDSP-73-95- ED-R, Prepared by Wyle, issued data 4-1-73	NA
23	"Shock Test Program - Heat Exchanger - For Safeguard TSE systems and Equipment," Document Nos. HNDSP-73- 85-ED-R, Prepared by Wyle, issued data 4-30-73	# 9
24	"Shock Test Program - Centrifugal Axial Fans - For Safeguard TSE Systems and Equipment," Document Nos. HNDSP-73-87-Ed-R, Prepared by Wyle, issued date 4-30-73	#30
25	"Shock Test Program - Waste Disposal Pumps - For Safeguard TSE Systems and Equipment," Document Nos. HNDSP-73-88-ED-R, Prepared by Wyle, issued date 4-30-73	#12, 23
26	"Shock Test Program, Monitoring and Control Components For Safeguard TSE Systems and Equipment," Valves & Transmitting Devices, Document Nos. HNDDSP-73-302-ED-R, Prepared by Wyle, issued data 12-31-73	#14, 1 7
27	"Shock Test Program, Metal-Clad Switchgear For Safe- guard TSE Systems and Equipment," Document Nos. HNDSP-73-305-ED-R, Book 1 & 2, Prepared by Wyle, issued date 12-31-73 (27-1 Volume #1, 27-2 Volume #2)	#20
28	"Shock Test Program Piping Segments For Safeguard TSE Systems and Equipment," Document Nos. HNDSP-74- 306-ED-R, Prepared by Wyle, issued date 3-31-74	#5, 12, 17, 25
29	"Shock Test Program 660-Ton Chiller Components For Safeguard TSE Systems and Equipment," Document Nos. HNDSP-74-308-ED-R, Prepared by Wyle, issued date 5-1-74	#9, 17, 2 5
30	"Shock Test Program Air Compressor Control Panel - Drive Motor For Safeguard TSE Systems and Equipment," Document Nos. HNDSP-74-309-ED-R, Prepared by Wyle, issued date 5-1-74	#12, 23, 26

Report Applicable* No. Huntsville subsystem hardness report categories 31 "Shock Test Program, Switchgear Cabinet, Transfer #20 Function Tests," Document Nos. HNDSP-73-91-ED-R, Prepared by Wyle, issued date 4-15-73 32 "Shock Test Program, Generator Control Panel, For #23 Safeguard TSE Systems and Equipment," Document Nos. HNDSP-74-310-ED-R, Prepared by Wyle, issued date 6-1-74 33 "Shock Test Program, Generator Neutral Breaker, For #20 Safeguard TSE Systems and Equipment," Document Nos. HNDSP-74-312-ED-R, Prepared by Wyle, issued date 7-15-74 34 "Shock Test Program Electric Motor Control Centers #26 (E52MC) (E87MC) For Safeguard TSE Systems and Equipment," Document Nos. HNDSP-74-315-ED-R, Prepared by Wyle, issued date 7-1-74 35 "Shock Test Program Instrument Air Dryer For #17 Safeguard TSE Systems and Equipment," Document Nos. HNDSP-74-316-ED-R, Prepared by Wyle, issued date 9-30-74 36 "Shock Test Program Monitor and Control Components #17, 22, 25 For Safeguard TSE Systems and Equipment," Document Nos. HNDSP-74-320-ED-R, Prepared by Wyle, issued date 12-31-74 37 "Shock Test Program, Thermo Water Valve, For Safe-#17 guard TSE Systems and Equipment," Document Nos. HNDSP-74-321-ED-R, Prepared by Wyle, issued date 10-1-74 38 "Shock Test Program, Temperature Switch (I58TS), For NA Safeguard TSE Systems and Equipment," Document Nos. HNDSP-74-322-ED-R, Prepared by Wyle, issued date 9-20-74 39 "Shock Test Program, Generator Static Exciter/ #20 Regulator, For Safeguard TSE Systems and Equipment," Document Nos. HNDSP-74-323-ED-R, Prepared by Wyle, issued data 9-1-74

U. S. Army Corps of Engineers Huntsville subsystem hardness reports used by SSMRP for fragilities development. (continued)

U. S. Army Corps of Engineers Huntsville subsystem hardness reports used by SSMRP for fragilities development. (continued)

· 5-

e

.

÷

Report No.	Huntsville subsystem hardness report	Applicable* categories
40	"Shock Test Program, Diesel Engine Components and M&C Components, For Safeguard TSE Systems and Equipment," Fuel Pump, Control Cabinet, Regulators, Governors, & Transmitters, Document Nos. HNDSP-74-324- ED-R, Vol. I, Prepared by Westinghouse, issued date 12-31-74	#18, 23
41	"Shock Test Program, Diesel Engine Components and M&C Components, For Safeguard TSE Systems and Equipment," Fuel Pump, Control Cabinet, Regulators, Governors, & Transmitters, Document Nos. HNDSP-74-324- ED-R, Vol. II, Prepared by Westinghouse, issued date 12-31-74	#18, 23
42	"Shock Test Program Compressor Control Oil Shutdown Switch For Safeguard TSE Systems and Equipment," Document Nos. HNDSP-74-340-ED-R, Prepared by Wyle, issued date 11-15-74	# 25
43	"Shock Test Program Pressure Control <u>Valve</u> (P83VE) For Safeguard TSE Systems and Equipment," Document Nos. HNDSP-74-342-Ed-R, Prepared by Wyle, issued date 11-20-74	#17
44	"Shock Test Program Heat Sensing Device Assembly For Safeguard TSE Systems and Equipment," Document Nos. HNDSP-74-345-Ed-R, Prepared by Wyle, issued date 11-27-74	#23, 25
45	"Shock Test Program Relay Fragility Test For Safeguard TSE Systems and Equipment," Document Nos. HNDSP-71-57- ED-R, Prepared by Wyle, issued date 5-15-72	NA
46	"Electric Motor Control Center Fragility Test ITC (E89MC)," Document Nos. HNDDSP-72-73-ED-R, Prepared by The Boeing Co., issued date 11-6-72	#26
47	"Electric Motor Control Center Fragility Test ITC (E06MC)," Document Nos. HNDDSP-72-71-ED-R, Prepared by The Boeing Co., issued date 3-30-73	#26
48	"Electric Motor Control Center Fragility Test ITC (E52MC)," Document Nos. HNDDSP-72-74-ED-R, Prepared by The Boeing Co., issued date 11-20-72	#26

Report Applicable* NO. Huntsville subsystem hardness report categories 49 "Shock Test Program, Air Conditioning CBR Filters," NA Document Nos. HNDSP-73-86-ED-R, Prepared by Wyle, issued date 4-30-73 50 "Safeguard Vibration Testing and Analysis Report of #20, 26 Tactical Support Equipment Final Report Data Supplement," Document Nos. 56137-15-745, Prepared by GE, issued date 9-25-70 51 "Summary of Simulated Nuclear Weapons Effects Tests #12, 21, 24, 26, 29 on Six Selected Mission-Critical Items of Safeguard Facility Equipment," Document Nos. SAF-10, Prepared by RMP, issued date 8-8-69 52 "Electrical Components," Relays & Circuit Breakers, NA Vol. I, Document Nos. HNDSR-75-349-ED-R, Vol. I & Vol. II, Prepared by Wyle, issued date 7-1-75 "Electrical Components," Relays & Circuit Breakers, NA 53 Vol. II, Document Nos. HNDSR-75-349-ED-R, Vol. I & Vol. II, Prepared by Wyle, issued date 7-1-75 54 "Fragility Testing - Electric Motor Control Centers #26 (ITC'S E06MC, E52MC, E87MC, and E89MC)," Document Nos. HNDSP-73-159-ED-R, Vol. I & Vol. II, Prepared by The Boeing Company, issued date 3-30-73 (54-1 Volume #1, 54-2 Volume #2) 55 "Qualification Tests For Spring Isolators 92095-1 NA through 6," Document Nos. WD-92095-1 through 6, Prepared by Barry Controls, issued date 11-71 56 "Review of Parb Shock Isolation Platform," NA Document Nos. PAR-CRI-A&W-112, Prepared by A&W, issued date 12-72 57 "Heat Exchanger Subsystem Hardness Assurance NA Analysis (SHAA)," Document Nos. TM-39, Prepared by The Boeing Co., issued date 3-1-73 58 "Shock Test Program, Dynamic Analysis - Diesel Engine #18 Generator, For Safeguard TSE Systems and Equipment," Document Nos. HNDTR-73-12-ED-R, Prepared by AA, issued date 12-32-73

U. S. Army Corps of Engineers Huntsville subsystem hardness reports used by SSMRP for fragilities development. (continued)

Applicable* Report No. Huntsville subsystem hardness report categories "Shock Test Program Dynamic Analysis of Motor-Generator #18 59 Set For Safeguard TSE Systems and Equipment," Document Nos. HNDSP-74-344-ED-R, Prepared by USAEDH, issued date 12-31-74 "Electric Motor Control Center Fragility Test ITC 60 #26 (E87MC)," Document Nos. HNDDSP-72-72-ED-R, Prepared by The Boeing Co., issued date 3-30-73 61 "Unit Substation (E04SS), Switch, Transformer, Voltage #21, 29 Regulator, Circuit Breaker," Document Nos. HNDSP-74-329-ED-R, Prepared by CERL, issued date 12-31-74 62 "Hardness Program - Non-Emp Subsystem Hardness NA Assurance Report," Executive Summary, Volume #1 & Volume #2, Document Nos. HNDDSP-72-156-ED-R, Prepared by The Boeing Co., issued date 6-75 63 "Hardness Program - Non-Emp Subsystem Hardness NA Assurance Analysis For Safeguard TSE Ground Facilities," Volume #2, Document Nos. HNDSP-73-161-ED-R, Prepared by The Boeing Co., issued date 6-1-75

U. S. Army Corps of Engineers Huntsville subsystem hardness reports used by SSMRP for fragilities development. (continued)

5

* Consult the Table of Component Categories to define these group numbers.

Table of Component Categories.

والا ويعادمهم

Category number	Category description	Category number	Category description
1	Reactor Coolant System Class I Vessels and	16	Small Motor operated valves < 10"
	Supports	17	Small Misc. Valves
2	Main Coolant Pumps		<u><</u> 8"
3	NSSS Piping	18	Emergency AC Power Units (4160 V Diesel Generator)
4	Large Diameter Piping, 8" and Greater	19	Emergency DC Power (Batteries and Racks)
5	Intermediate Diameter Piping, 2-1/2" - 8"	20	Switchgear (Includes Trans- former, Breakers & Busses)
6	Large Vertical Storage Vessels with Formed Heads	21	Transformers (Non ESF-ESF Transformers are in switchgear)
7	Large Flat Bottom	·	Switchigeury
	Storage Tanks	22	Instrument Panels and Racks
8	Large Horizontal Vessels (Pressurizer Relief Tank)	23	Control Panels and Racks
		24	Auxiliary Relay Cabinets
9	Small - Medium Vessels and Heat Exchangers	25	Local Instruments (Misc. Pressure and Temperature
10	Buried Pipe (Service Water)		Sensors)
11	Large Vertical Centri-	26	Motor Control Center
	fugal Pumps with Motor Drive (Service Water	27	Static Invertors
	Pumps)	28	Cable Trays
12	Small - Medium Horiz. & Vertical Motor, Turbine	29	Breaker Panels
	& Diesel Driven Pumps & Compressors	30	Air Conditioning and Air Handling Power Units
13	Large Motor Operated Valves > 10"	31	Ducting
		32	Control Rods & Drives
14	Large Hydraulic and Pneumatic Valves <u>></u> 10"	33	Computers
15	Large Check, Spring Relief & Manual Valves	34	Offsite Power (Ceramic Insulators)

APPENDIX C DATA OBTAINED FROM EXPERT OPINION SURVEY

As part of the effort to develop component fragility descriptions for use in the SSMRP, Phase I calculations, an extensive expert opinions survey was performed. In this survey, a carefully worded questionnaire was mailed to several hundred well-known specialists in the nuclear industry. These individuals were selected from the NSSS vendors, architect/engineering firms, consultants to the nuclear industry and from the ranks of colleges and universities. In each case, the individual was asked to respond only for those components for which he felt a high degree of expertise. For each component, the respondent was asked to provide:

• The three lowest (weakest) failure modes.

.

- The appropriate response quantity for each mode (e.g., peak acceleration, spectral acceleration at some frequency and damping or force resultant, etc.).
- The response values at 10, 50, and 90% probability of failure.
- The primary source of his information (i.e., experience, test data, etc.).

The responses covered virtually every category of component needed for Phase I of the SSMRP, with 147 detailed responses being returned. Comparison of responses from different experts for the same component showed, in general, suprisingly good agreement.

The following tables summarize the data obtained from the survey.

Category 1. Reactor Core Assembly.

			Response	Percentiles .				
Respondent	Wt.	Failure Modes	Parameter	10%	50%	90%	Basis for Response	Comments
Consulting Firm (3201031916)	1.50	Binding of control rods due to seismically induced deformations.	Spectral acceleration.	2.0 g	3.0 g	10.0 g	Analytical methods, expert opinions.	Predominant frequencies: Mode #1, 3 Hz; Mode #2, 3 Hz; and Mode #3, 5 Hz.
	1.50	Deformation of guide tubes due to seismic	Spectral acceleration.	3.0 g	4.0 g	15.0 g	Analytical methods, expert opinions.	Percentiles include LOCA.
	1.50	impact of fuel bundle. Failure of core support structure due to inertia load of fuel.	Spectral acceleration.	3.0 g	5.0 g	20.0 g	Analytical methods, expert opinions.	<pre>FWR, all modes. Functional Failure: all modes. Fragility parameter: acceleration at core support attachment to reactor vessel.</pre>
Professor (4101022009)	1.00	Interference between moving parts within unit.	Spectral displacement.	0.5 in.	0.7 in.	1.0 in.	Extrapolation from test observation.	Predominant frequency, 3-5 Hz. BWR, Functional Failure.
Consulting Firm (3201041907)	1.50	Binding of control rods due to seismic induced deformation.	Spectral acceleration.	2.0 g	2.5 g	7.0 g	Expert opinion, analytical methods.	All modes: predominant frequency, Mode #1, 3 Hz; Mode #2, 3 Hz; Mode #3, 5 Hz.
	1.50	Deformation of guide tubes due to seismic impact of bundles.	Spectral acceleration.	2.0 g	3.0 g	10.0 g	Expert opinion, analytical methods.	All modal percentiles include LOCA.
	1.50	Failure of core support structure due to inertia load of fuel.	Spectral acceleration.	3.0 g	4.0 g	12.0 g	Expert opinion, analytical methods.	BWR, all modes. Functional failure; all modes.
								*Acceleration induced displacement
Consulting Firm (3201012005)	1.50	Slow SCRAM time of control rods.	Spectral acceleration.	0.33 g	0.36 g	0.45 g	Expert opinion.	Predominant frequency given for Mode \$1 only and it is 4-10 Hz.
	1.50	Plastic distortion which prevents full rod	Spectral acceleration.	0.39 g	0 .4 5 g	0.76 g	Expert opinion.	BWR, all modes.
	1.50	Lifting fuel and disarranging core configuration	Spectral acceleration.		2,0 g		Expert opinion.	Functional Failure: all modes

.

8}

1

Þ

0

Category 2: Pressurizers and Steam Generators.

			Response	Percentiles						
Respondent	Wt.	Failure Modes	Parameter	10%	50%	90%	Basis for Response	Comments		
Consulting Firm (3202071913)	2.25	Failure of anchor bolts.	Spectral acceleration.	2.0 g	3.0 g	5.0 g	Analytical methods, expert opinion.	Pressurizer. Both modes: predominant frequency, 7.0 Hz.		
	2.25	Buckling of support skirt.	Spectral acceleration	4.0 g	5.0 g	8.0 g	Analytical methods, expert opinion	Percentiles include LOCA.		
_								Press. Bound. Fail; all modes.		
Consulting Firm (3202061910)	2.25	Failure of connection between support leg and steam generator body.	Spectral acceleration.	2.0 g	3.0 g	4.0 g	Analytical methods, expert opinion.	Steam Generator. All modes: predominant frequency, 7.5 Hz.		
	2.25	Failure of steam generator leg embedment in contain- ment floor.	Spectral acceleration.	3.0 g	4.0 g	5.0 g	Analytical methods, expert opinion.	All modes: vertical direction.		
	2.25	Buckling of steam generator leg.	Spectral acceleration.	3.0 g/	4.0 g	5.0 g	Analytical methods, expert opinion.	Press. Bound. Fail; all modes.		
Consulting Firm (3202022002)	1.50	Nozzles.	Forces.	3.0	5.0	7.0	Expert opinion weighted by exposure to analysis.	Steam Generator. All modes: percentiles are factors times SSE.		
	1.50	Supports.	Acceleration.	5.0	7.0	9.0	Expert opinion weighted by exposure to analysis.	Predominant frequencies: Mode #1 10-30 Hz		
	1.50	Tubing.	Spectral acceleration.	7.0	10.0	13.0	Expert opinion weighted by exposure to analysis.	Mode #2 Rigid Mode #3 20-100 Hz		
								Press. Bound. Fail; all modes.		
Consulting Firm (3202011108)	0.75	Rupture at primary inlet or outlet nozzle, rupture at feedwater nozzle.	Spectral and moments forces.	1.5	1.8	2.5	Expert opinion.	Steam Generator. Both modes: predominant frequency, 10-15 Hz.		
	0.75	Failure of tubes in bundle, particularly when other factors which are detrimental, such as tube denting, exist.	Spectral acceleration.	4.5 g	6.0 g	7.5g.	Expert opinion.	<pre>Press. Bound. Fail; all modes.</pre>		

Category 2: Reactor Vessel.

肟

ġ,

		Failure Modes	Response	Percentiles						
Respondent	Wt.		Parameter	10%	50%	90%	Basis for Response	Comments		
Consulting Firm (3202032004)	2.25	Buckling due to horizontal acceleration.	Spectral acceleration.	1.65	2.00	2.25	Analytical methods.	Percentiles: factor times SSE Pool type reactor vessel (liquid sodium).		
	2.25	Stress intensity at vessel support.	Spectral acceleration.	4.5	6.0	10.0	Analytical methods.	Predominant frequencies,		
	2.25	Nozzle rupture.	Nozzle loads.		~-			Mode #2 7.5 Hz Mode #3		
								Press. Bound. Fail: all modes.		
Consulting Firm (3202051909)	2.25	Failure of skirt anchor bolts.	Spectral acceleration.	3.0 g	4.0 g	6.0 g	Analytical methods.	All modes: predominant frequencies, Mark II 9-15 Hz, Mark III 3-5 Hz. (Mark II &		
	2.25	Buckling of skirt.	Spectral acceleration.	4.0 g	5.0 g	8.0 g	Analytical methods.	III refer to GE BWR contain- ments) Press. Bound. Fail: all modes.		
Consulting Firm (3202041908)	2.25	Excessive support deformation resulting in attached pipe failure.	Spectral acceleration.	3.0 g	4.0 g	5.0 g	Analytical methods.	Percentiles include effects of LOCA. Predominant frequency, 15 Hz. Press. Bound. Failure.		

•)

6)

Ø

(**b**

Category 3: Primary Coolant Piping.

			Response	Percentiles						
Respondent	Wt.	Failure Modes	Parameter	10%	50%	90%	Basis for Response	Comments		
Reactor Designer (1303022601)	0.75	Failure at welded joints, especially at nozzles.	Spectral acceleration.	2.0	3.0	4.0	Expert opinion.	All modes: predominant frequency, 25-50 Hz.		
	0.75	Ductile rupture due to hanger/snubber failure.	Spectral acceleration.	2.0	3.0	4.0	Expert opinion.	All percentiles are factor times SSE.		
	0.75	Elbow collapse due to excessive forces.	Spectral acceleration.	3.0	4.0	5.0	Expert opinion.	Press. Bound. Fail; all modes.		
Consulting Firm (3203032006)	3.00	Pipe support rupture or collapse.	Percent of allow- able per ASME eq. (9).	300%	400%	500%	Test data and expert opinion.	All modes: predominant frequency, 5-25 Hz.		
	3.00	Excessive pipe deformation.	Percent of allow- able per ASME eq. (9).	500%	700%	1200%	Test data and expert opinion.	BWR piping. Press. Bound. Fail; all modes.		
	3.00	Opening a crack in an unflawed pipe.	Percent of allow- able per ASME eq. (9).	700%	1000%	1500%	Test data and expert opinion.			
Consulting Firm (3203051914)	1.50	Rupture at connections to components due to compo- nent support failure.	Spectral acceleration.	2.0 g	3.0 g	4.0 g	Analysis methods and expert opinion.	All modes: predominant frequency, 4.5 Hz.		
	1.50	Rupture at connections to components due to pipe overstress.	Spectral acceleration.	5.0 g	8.0 g	12.0 g	Analysis methods and expert opinion.	Press. Bound. Fail; all modes.		
Consulting Firm (3203042012)	2.40	Pipe yielding.	Acceleration of attached components.				Analysis methods and field observation.	Predominant frequency, 4-30 Hz.		
	2.40	Crack propagation resulting in a small leak.	Acceleration of attached components.				Analysis methods and field observation.	Press. Bound. Fail; all modes.		
Reactor Designer (1303010502)	0.75	Tensile failure in support anchor bolts allowing more pipe motion.	Acceleration of pipe, load in supports, relative displacement.	1.5	3.0	4.0	Expert opinion.	Percentiles: factor times SSE. Predominant frequencies		
	3.00	Local failure of small pipe at connection to	Acceleration.	3.0	5.0	6.0	Test data and expert opinion.	Modes #1 and #2, 8-30 Hz.; Mode #3, 2-5 Hz.		
	3.00	targe pipe. Gross failure due to large displacements after supports fail.	Acceleration.	4.0	7.0	8.0	Test data and expert opinion.	rress. dound. raii; all modes.		

Category 4: Large Piping.

#}

			Response	Per	ccentile	5		
Respondent	Wt.	Failure Modes	Parameter	108	50%	90%	Basis for Response	Comments
Manufacturer (1205060235)	2.25	Joint leakage.	Displacement.				Analytical methods, expert opinion.	Press. Bound. Fail; all modes.
	2.25	Pipe support rupture.	Force.				Analytical methods, expert opinion.	
	2.25	Pipe failure.	Force.				Analytical methods, expert opinion.	
Consulting Firm (3204032013)	3.0	Yielding.	Moment capacity.	1.2	2.0	2.4	Test data, analytical methods, field experience.	Fragility parameter is yield moment.
	3.0	Small leak or branch connections breaking.	Incompatible design details.				Test data, analytical methods, field experience.	Predominant frequencies are greater than 2 Hz. Press. Bound. Fail; all
X	3.0	Large crack resulting in leak or severance.	Incompatible design details.				Test data, analytical methods, field experience.	modes.
Consulting Firm (3204041915)	2.25	Rupture at nozzle connection due to failure of component support.	Spectral acceleration.	2.5 g	3.0 g	5.0 g	Analytical methods.	All modes: predominant frequency, 4-8 Hz.
	2.25	Failure of pipe supports.	Spectral acceleration.	4.0 g	5.0 g	7.0 g	Analytical methods.	Press. Bound. Fail; all modes.
	2.25	Overstress of pipe.	Spectral acceleration.	5.0 g	8.0 g	10.0 g	Analytical methods.	
Consulting Firm (3204011109)	2.25	Rupture at nozzle/equip- ment connections.	Moments at nozzle.	1.5	1.8	2.5	Analytical methods, expert opinion.	Predominant frequency, 10-30 Hz. Fragility parameter is yield moment times percentile
					·			factor. Press. Bound. Fail; all modes.
Consulting Firm (3204020302)	3.0	Failure of the connection at the building interface.	Percent of yield moment.	120%	200%	400%	Expert opinion, analytical methods, field experience.	Predominant frequency, all modes 2-10 Hz.
	3.0	Failure of field welds.	Percent of yield moment.	240%	400%	800%	Expert opinion, analytical methods, field experience.	Press. Bound. Fail; all modes.

130

り **ii** -

Category 5: Intermediate Piping.

			Response Parameter	Percentiles				
Respondent	Wt.	Failure Modes		10%	50%	90%	Basis for Response	Comments
Manufacturer (1204050236)	2.25	Joint leakage.	Displacement.	- -			Analytical methods, expert opinion.	Press. Bound. Fail; all modes.
	2.25	Pipe support rupture.	Force.				Analytical methods, expert opinion.	
	2.25	Pipe failure.	Force.				Analytical methods, expert opinion.	
Consulting Firm (3205051916)	2.25	Rupture at nozzle connection due to failure of component.	Spectral acceleration.	2.0 g	3.0 g	4. 0 g	Analytical methods, expert opinion.	All modes: predominant frequency, 4-10 Hz.
	2.25	Failure of pipe supports.	Spectral acceleration.	3.0 g	4.0 g	6.0 g	Analytical methods, expert opinion.	Press. Bound. Fail; all modes.
	2.25	Overstress of pipe.	Spectral acceleration.	5.0 g	6.0 g	8.0 g	Analytical methods, expert opinion.	
Consulting Firm (3205011110)	0.75	Rupture at nozzle/equip- ment connections.	Moments at nozzles.	1.5	1.8	2.5	Opinion based on design experience.	Predominant frequencies 10-30 Hz. Press. Bound. Fail; all
nodes.								Percentiles: factor time yield moment.
						<u></u>		· · · · · · · · · · · · · · · · · · ·
Consulting Firm (3205020303)	3.0	Failure of the connection at the building interface.	Percent of yield moment.	120%	200%	400%	Expert opinion, analytical methods, field observation.	All modes: predominant frequency, 2-10 Hz.
	3.0	Failure of the field welds.	Percent of yield moment.	240%	400%	800%	Expert opinion, analytical methods, field observation.	Press. Bound. Fail; all modes.
	3.0	Failure of the field welds.	Percent of yield moment.	240%	400%	800%	Expert opinion, analytical methods, field observation.	modes.

...

Category 6: Small Pipes.

Respondent	Wt.	Failure Modes	Response Parameter	Pe:	centiles 50%	90%	Basis for Response	Comments
Consulting Firm (3206022011)	3.0	Small leak.	Thermal transient + seismic.				Expert opinion, analytical methods, field experience.	Predominant frequencies greater than 2 Hz.
	3.0	Yielding.					Expert opinion, analytical methods, field experience.	Press. Bound. Fail; all modes.
Consulting Firm (3205051916)	2.25	Rupture at nozzle connection due to failure of component support.	Spectral acceleration.	2.0 g	3.0 g	4.0 g	Analytical methods, expert opinion.	All modes: predominant frequency, 4-10 Hz.
	2.25	Failure of pipe supports.	Spectral acceleration.	3.0 g	4. 0 g	6. 0 g	Analytical methods, expert opinion.	Press. Bound. Fail; all modes.
	2.25	Overstress of pipe.	Spectral acceleration.	5.0 g	6.0 g	8.0 g	Analytical methods, expert opinion.	
Consulting Firm (3206010304)	3.0	Failure of the connection at the building interface.	Percent of yield moment.	120%	200%	400%	Expert opinion, analytical methods, field observation.	All modes: predominant frequency, 2-10 Hz.
	3.0	Failure of field welds.	Percent of yield moment.	240%	400%	800%	Expert opinion, analytical methods, field observation.	Press. Bound. Fail; all modes.

Category 7: Large Vertical Storage Vessels with Formed Heads.

			Response	Percentiles				
Respondent	Wt.	Failure Modes	Parameter	10%	50%	90%	Basis for Response	Comments
Consulting Firm (3207012010)	2.25	Local plastic deformation of vessel in vicinity of support locations.	Ultimate load capacity of support structure.				Analytical methods.	Predominant frequency, Mode #1, 6 Hz.
	3.0	Small leak in vessel at nozzle attachment.	Moment from pipe with existing crack.	1.5	2.4	12.0	Field data.	Percentiles: factor times yield moment.
Consulting Firm (3207021918)	2.25	Rupture of anchor bolts.	Spectral acceleration.	1.0 g	1.5 g	3.0 g	Analytical methods.	All modes: predominant frequency, 4 -10 Hz.
	2.25	Buckling of support skirt or legs.	Spectral acceleration.	1.5 g	2.0 g	5.0 g	Analytical methods.	

132

وَهُ هُوَ

ø

Category 8: Large Vertical Storage Tanks--Flat Bottom.

			Response	Percentiles				
Respondent	Wt.	Failure Modes	Parameter	10%	50%	90%	Basis for Response	Comments
Consulting Firm (3208021917)	1.50	Rupture of anchor bolts.	Spectral acceleration.	1.5 g	2.0 g	3.0 g	Analytical methods.	All modes: predominant frequency, 3-8 Hz.
	1.50	Buckling of tank wall.	Spectral acceleration.	2.3 g	3.0 g	5.0 g	Analytical methods.	
	1.50	Tensile rupture of tank wall.	Spectral acceleration.	3.75 g	5.0 g	8.0 g	Analytical methods.	
Manufacturer (1208011905)	0.75	Gross structural buckling.	Force.				Expert opinion.	
	0.75	Local structural buckling.					Expert opinion.	
	0.75	Fatigue.					Expert opinion.	
Category 9: Larg	je Horiz	ontal Vessels.	· · · · ·					
			Response	Percentiles				
Respondent.	Wt.	Failure Modes	Parameter	10%	50%	90%	Basis for Response	Comments
Consulting Firm (3239011112)	1.50	Support system failure (bolts).	Maximum floor acceleration between 12 and 20 Hz : 1.6 g.	1.9 g	2.72 g	3.6 g	Analytical methods, expert opinion.	Predominant frequency: 12 to 20 Hz. Diesel fuel tank.
Consulting Firm (3209011111)	1.50	Support failure (bolts)	Maximum horizontal floor acceleration 3.5 g.	4. 0 g	6.0 g	8.0 g	Analytical methods, expert opinion.	Predominant frequency: greater than 12 Hz.

Category 10: Horizontal Tanks, Small Vessels and Heat Exchangers.

\$,

e, 1

Respondent	Wt.	Failure Modes	Response Parameter	Pe 10%	<u>rcentile</u> 50%	s 90%	Basis for Response	Comments
Consulting Firm (3209021919)	2.25	Rupture of anchor bolts.	Spectral acceleration.	1.5 g	2.0 3	3.0 g	Analytical methods.	Both modes: predominant frequency 15-30 Hz.
	2.25	Yielding of support saddles.	Spectral acceleration.	2.5 g	3.0 g	4.5 g	Analytical methods.	Horizontal tanks and heat exchangers.
Consulting Firm (3210021118)	2.25	Structural failure.	Maximum horizontal acceleration.	8.0 g	13.0 g	20.0 g	Analytical methods, expert opinion.	Predominant frequency: greater than 20 Hz. Small vessels.
Military Expert (5110040228)	2.0		Acceleration.				Test data.	Huntsville data. Heat exchangers.
Consulting Firm (3210031119)	2.25	Support failure.	Floor spectral acceleration.	1.3 g	2.0 g	3•.5 g	Analytical methods, expert opinion.	Predominant frequency: 25-45 Hz. Small-Medium heat exchangers.
Category 11: Bur	ied Pip	e.	·					
Respondent	Wt.	Failure Modes	Response	Pe	rcentile 50%	90%	Basis for Response	Comments
Consulting Firm (3211010301)	3.0	Failure at connection to building interface.	Ground acceleration.	1.50	3.00	4.00	Expert opinion, analytical methods, field experience.	Percentiles in terms of peak ground acceleration.
	3.0	Failure at coupling.	Ground acceleration.	2.50	4.00	8.00	Expert opinion, analytical methods, field experience.	
		·····						
Category 12: Rea	actor Co	olant Pump (PWR).				<u> </u>		
			Response	Pe	ercentil	25		
Respondent	Wt.	Failure Modes	Parameter	10%	50%	90%	Basis for Response	Comments
Consulting Firm (3212011911)	1.5	Failure of connection to support legs.	Spectral acceleration.	2.5 g	3.0 g	6.0 g	Analytical methods.	Both modes, predominant frequencies: 4.5 Hz.
	1.5	Buckling of support leg.	Spectral	4.0 9	5.0 g	10.0 g	Analytical methods.	Percentiles include LOCA.

¢.

è5

acceleration.

ø

.

Category 13: Large Vertical Centrifugal Pumps.

Respondent	Wt.	Failure Modes	Response Parameter	P	ercentil 50%	es 90%	Basis for Response	Comments
Consulting Firm (3249011912	1.5	Rupture of connections to support struts.	Spectral acceleration*	2.0 g	3.0 g	4.0 g	Analytical methods.	Predominant frequency 4.5 Hz., all modes.
	1.5	Tensile failure of support struts.	Spectral acceleration*	4.0 g	5.0 g	6.0 g	Analytical methods.	

*Questionnaire does not explicitly say spectral acceleration.

.))

Category 14: Large Vertical Pumps.

			Response	Pe	rcentile	3		
Respondent	Wt.	Failure Modes	Parameter	10%	50%	908	Basis for Response	Comments
Consulting Firm (3215011302)	2.25	Failure of hold down bolts.	Nozzle loads: 30% of Y.S. of attached pipe.		50%		Some test data, analytical methods.	Percentile: 50% of Y.S. Percentile: 50% of Y.S.
	2.25	Overstress at nozzle.	Nozzle loads: 30% of Y.S. of attached pipe.		50%		Some test data, analytical methods.	Percentile: factor times SSE.
	2.25	Rotor seizure.	Seismic loads.		2.0		Some test data, analytical methods.	
Consulting Firm (3213011920)	2.25	Rupture of anchor bolts due to large moments from vertical intake column.	Acceleration.	1.5 g	2.0 g	4. 0 g	Analytical methods.	Both modes: predominant frequency, 3 Hz.
	2.25	Rupture of vertical intake column.	Acceleration.	3.0 g	4. 0 g	8.0 g	Analytical methods.	Percentile 90 is tentative.
Manufacturer (1248021403)	2.25	Internal rotor seizure.	Floor spectral acceleration.	1.5	2.0	2.5	Analytical methods, expert opinion.	Percentile: factor times SSE.
	2.25	Failure of motor support structure or bolting at motor.	Floor spectral acceleration.	2.0	2.5	3.0	Analytical methods, expert opinion.	+33 Hz for modes #1 and #2.
	2.25	Internal seizure due to loss of fluid.	Piping rupture.				Expert opinion.	Failure in this mode depends On associated piping system.

Category 15: Centrifugal Pump, Compressors.

,

			Response	Percentiles				
Respondent	Wt.	Failure Modes	Parameter	10%	50%	908	Basis for Response	Comments
Manufacturer (1215041401)	2.25	Internal seizure of rotor.	Connecting pipe forces and moments.	1.3	1.5	2.0	Analytical methods, expert opinion.	All modes: predominant frequency, rigid.
	2.25	Failure of drive shaft couplings.	Connecting pipe forces and moments.	1.5	2.0	2.5	Analytical methods, expert opinion.	Percentiles: factor times SSE specified loads.
	2.25	Break of hold down boltsshear pins.	Connecting pipe forces and moments.	2.0	2.5	3.0	Analytical methods, expert opinion.	
Consulting Firm (3215011302)	3.0	Hold down bolts break.	Nozzle loads: 30% Y.S.		50%		Some test data, analytical methods.	All modes: frequencies; Horizontal 33 Hz. Vertical 1-33 Hz.
	3.0	Overstress at nozzle.	Nozzle loads: 30% Y.S.		50%	-	Some test data, analytical methods.	Percentages: Percent of
	3.0	Rotor seizure.	Seismic loads.		2.0		Some test data, analytical methods.	Percentiles for Mode #3: factor times SSE loads
Manufacturer (1215051803)	2.25	System inlet, outlet nozzlė connections.	Floor spectral acceleration.				Analytical methods, field observation.	This questionnaire included a detailed description of design and gualification
	2.25	Anchor bolt loosening.	Floor spectral acceleration.			:	Field observation.	procedure.
	3.0	Malfunction of system valves.	Floor spectral acceleration.				Some test data.	

() .w.

Category 16: LMOV's.

			Response	Percentiles				
Respondent	Wt.	Failure Modes	Parameter	10%	50%	908	Basis for Response	Comments
Manufacturer (1217032001)	3.0	Actuator components fail and jam.	Spectral accelera- tion at valve/ actuator interface.	9.0 g	15.0 g	18.0 g	Test data, analytical methods, expert opinion.	All modes: predominant frequency, rigid.
	3.0	Electrical failure in actuator.	Spectral accelera- tion at valve/ actuator interface.	9.0 g	15.0 g	18.0 g	Test data, analytical methods, expert opinion.	Ball valve with actuator and
	3.0	Failure of major actuator/ valve component.	Spectral accelera- tion at valve/ actuator interface.	9.0 g	15.0 g	18.0 g	Test data, analytical methods, expert opinion.	logic cabinet.
Consulting Firm (3216031116)	3.0	Structural failure.	Seismic acceleration at valve/pipe inter- face.	5.0 g	15.0 g	40.0 g	Test data, analytical methods, expert opinion.	Predominant frequency >15 Hz. to rigid.
Consulting Firm (3217011116)	3.0	Structural failure.	Acceleration of pipe.	50.0 g	80.0 g	120.0 g	Test data, analytical methods, expert opinion.	Predominant frequency, rigid.
Consulting Firm	3.0	Failure of structural members.	Seismic acceleration at valve pipe inter- face.	8.0 g	20.0 g	40.0 g	Test data, analytical methods, expert opinion.	Predominant frequency >20 Hz. to rigid.
Zion Manufacturer	3.0	Binding of stem.						Gate valve.
(1116061601)	3.0	Buckling of stem.						
	3.0	Permanent bending of yoke.						
Manufacturer (1216070234)	3.0	Excessive leakage.	Spectral acceleration.				Test data, analytical methods, expert opinion.	Predominant frequency: Mode #1, rigid; Mode #2, 25-30 Hz; Mode #3, 25-30 Hz.
	3.0	Changes in the normal stroking durations.	Spectral acceleration.				Test data, analytical methods, expert opinion.	Globe and butterfly valves.
	3.0	Loosening of bolted parts.	Spectral acceleration.				Test data, analytical methods, expert opinion.	
Category 16: LMOV's. (Continued.)

۶.

			Response	Pe	rcentile	s		Comments
Respondent	Wt.	Failure Modes	Parameter	108	50%	908	Basis for Response	
Zion Manufacturer (1116050201)	3.0	Loss of electrical con- trols or an electrical component.	Input acceleration.	7.5 g	9.0 g	12.0 g	Test data.	
	0.75	Loss of pipe anchorage.	Pipe displacement.	6.75 g	1 7.5 g	j 12.0 g	Expert opinion.	Gate and globe valves. Predominant frequency: Mode
	3.00	Mechanical binding of the valve.	Spectral acceler- ation.	8.25 g	10.5 c	13.5 g	Test data, analytical methods.	#1, above 33 Hz; Mode #2, 8-20 Hz; Mode #3, above 27 Hz.
Reactor Designer (1316022602)	3.00	Stem and bonnet failure due to overturning moment on operator mass.	Spectral acceleration.	9.0 g	12.0 g	18.0 g	Test data, analytical methods, expert opinion.	Predominant frequency: Mode #1, 10-20 Hz; Mode #2, 30-50 Hz; Mode #3, 30-50 Hz.
	3.00	Functional failure of internals.	Spectral acceleration.	15.0 g	18.0 g	24.0 g	Test data, analytical methods, expert opinion.	
	3.00	Breaks at weld ends	Spectral acceleration.	12.0 g	18.0g	2 4. 0 g	Test data, analytical methods, expert opinion.	
Consulting Firm (3216031922)	2.25	Deformation of valve stem or yoke.	Spectral acceleration.	6.0 g	8.0 g	12.0 g	Expert opinion.	All modes, predominant frequencies 2-10 Hz.
	2.25	Rupture of pipe support at nozzle.	Spectral acceleration.	8•0 g	10.0 g	15.0 g	Expert opinion.	
Manufacturer (1216091804)	2.25	Loss of control air.	Acceleration.	5.0 g	8.0 g	11.0 g		Butterfly valve. Predominant frequency: rigid.

138

n

0

......

Category 17: Large Relief and Check Valves.

.....

			Response	F	Percentil	es		Comments
Respondent	Wt.	Failure Modes	Parameter	10%	50%	908	Sasis for Response	
Consulting Firm (3216011102)	3.00	Fracture of valve actuator top cover at connection to valve body.	Spectral acceleration.	8.0 g	15.0 g	25.0 g	Test data, expert opinion.	Predominant frequency: Mode #1, valve actuator, 27.7 Hz; Mode #2, spring mechanism 10-12 Hz.
	3.00	Failure of spring mechanism due to excessive plastic deformation.	Spectral acceleration.	15.0 g	20.0 g	30.0 g	Test data, expert opinion.	Ruggles-Klingeman Trip valve.
Zion Manufacturer (1117020202)	2.25	Disc becomes disengaged.	Spectral acceleration.	7.5 g	9.0 g	10.5 g	Analytical methods.	Predominant frequencies both modes: rijid.
	2.25	Disc becomes bound.	Spectral acceleration.	11.25 🤤	12.0 g	15.0 g	Analytical methods.	

			Response		Percentil	00		
Respondent	Wt.	Failure Modes	Parameter	10%	50%	90%	Sasis for Response	Comments
Test Laboratory (3118021106)	3.0	Leakage.	Spectral acceleration.	10.0 g	12.0 g	15.0 g	Test data.	Predominant frequencies are 20-35 Hz (all modes).
	3.0	Gauling of stem.	Spectral acceleration.	12.0 g	15.0 g	20.0 g	Test data.	Damping is 5%.
	3.0	Structural fatigue at neck.	Spectral acceleration.	12.0 g	15.0 g	20.0 g	Test data.	
Manufacturer (1218031001)	3.0	Bending of valve yoke and operator support structure.	Spectral acceleration.				Test data, analytical methods.	Valves should withstand up to 12.0 g without failure.
	3.0	Bending of valve stem.	Spectral acceleration.				Test data, analytical methods.	Gate, globe and check valves.
	3.0	Failure of auxiliary support structure.	Spectral acceleration.				Test data, analytical methods.	
Zion Manufacturer (1118050203)	1.50	Loss of valve controls.	Input acceleration.	9.0 g	10.5 g	11.25 g	Analytical methods.	
	1.50	Loss of pipe anchorage.	Pipe displacement.	10.5 g	12.0 g	13.5 g	Analytical methods.	Predominant frequency: rigid, all modes.
	1.50	Mechanical binding of valve parts.	Input acceleration spectrum.	10.5 g	12.0 g	14.25 g	Analytical methods.	Gate, globe and check valves.
Consulting Firm (3218041115)	3.00	Structure failure.	Acceleration of pipe.	10.0 g	18.0 g	30.0 g	Test data, analytical methods, expert opinion.	Predominant frequencies are: 28 Hz. to rigid.
Consulting Firm (3218011101)	3.0	Failure of valve actuator.	Spectral acceleration.	11.5 g	15.0 g	25.0 g	Test data, expert opinion.	Predominant frequencies are:
	3.0	Internal damage.	Spectral acceleration.	15.0 g	30.0 g	50.0 g	Test data, expert opinion.	Mode #1, $25-50$ Hz, Mode #2, >50 Hz, Mode #3, >50 Hz.
	3.0	Fracture of valve body.	Spectral acceleration.	20.0 g	50 g	100.0 g	Test data, expert opinion.	
Manufacturer (1218062007)		Piping (valve support).	Acceleration.			~~	Test data, analytical methods, expert opinion.	The mean value is an estimate for mode #2.
	3.0	Top structure of valve.	Acceleration.	12.0 g	18.0 3	24.0 3	Test data, analytical methods, expert opinion.	

63

۶

Category 18: Miscellaneous Small Valves.

140

()

Category 18: Miscellaneous Small Valves (Continued.)

Respondent			Response	I	Percentil	es		
	WC.	Fallure Modes	Parameter	10%	50%	90%	Basis for Response	Comments
	3.0	Valve body.	Piping loads.	4.0		8.0	Test data, analytical methods, expert opinion.	Percentiles: factors times the piping load
Test Laboratory (3118070403)	3.0	Internal seat leakage.	Spectral acceleration.	6.6 g	7.8 g	10.8 g	Test data, expert opinion.	Predominant frequencies: Mode #1: 12 to 15 Hz.
	3.0	Operator accessory malfunction.	Spectral acceleration.	9.0 g	10.2 g	12.0 g	Test data, expert opinion.	Mode #2: 17 to 21 Hz. Mode #3: 27 to 35 Hz.
	3.0	Operator malfunction.	Spectral acceleration.	12.0 g	15.0 g	18.0 g	Test data, expert opinion.	
Manufacturer (1218081802)	1.5	Stem binding.	Acceleration.	6.0 g	7.5 g	8.5 g	Analytical methods.	Predominant frequency is + 40 Hz. to 140 Hz.
		Seal weld.		'				Globe valve.
		Bellows.						

Category 19: Fans, Motor Generators, Electric Motors.

Respondent	Wt.	Failure Modes	Response Parameter	F	Percentil 50%	es 90%	Basis for Response	Comments
Consulting Firm (3219041921)	1.50	Binding of rotating parts.	Acceleration.	8.0 g	12.0 g	20.0 g	Analytical methods, expert opinion.	Predominant frequencies are ◆33 Hz.
	1.50	Rupture of anchor bolts.	Acceleration.	15.0 g	20.0 g	30.0 g	Analytical methods, expert opinion.	

Category 20: Generators.

			Response	Р	ercentil	es		
Respondent	Wt.	Failure Modes	Parameter	10%	50%	90%	Basis for Response	Comments
Professor (4120042009)	1.0	Connection between control panel and engine.	Spectral acceleration.	4.0 g	8.0 g	10.0 g	Proof test data, expert opinion.	Predominant response frequencies: 1st mode 7.0 Hz to 20.6 Hz, 20d mode 8.2 Hz to
	1.0	Oil level regulator.	Spectral acceleration.	4. 0 g	8.0 g	10.0 g	Proof test data, expert opinion.	Diesel generators.
		······				· · · · · · · · · · · · · · · · · · ·		
Consulting Firm (3220051923)	0.75	Malfunction of control system.	Acceleration.	3.0 g	5.0 g	8.0 g	Expert opinion.	Predominant response frequencies: +15 Hz.
	0.75	Rupture of attached oil lines.	Acceleration.	5.0 g	8.0 g	10.0 g	Expert opinion.	Diesel generators.
Consulting Firm (3220011114)	2.25	Crankshaft lock up.	Floor acceleration.	7 .4 g	10.0 g	15.0 g	Analytical methods, expert opinion.	Predominant response frequencies: 15 Hz.
	2.25	Anchor bolt failure.	Floor acceleration.	3.0 g	6.0 g	10.0 g	Analytical methods, expert opinion.	Diesel generators.
Professor	1.0	Radiator.	Acceleration.				Test data, expert	Emergency AC power unit,
(4120021801)							opinion.	diesel driven generator. Predominant frequencies:
	1.0	Exhaust system.	Acceleration.				Test data, expert opinion.	Mode #1 7.5 Hz Mode #2 5-15 Hz Mode #3 Rigid.
	1.0	Anchorage.	Acceleration.				Test data, expert opinion.	

a 🐙

•

Category 21: Batteries.

			Response	P	ercentile	es		
Respondent	Wt.	Failure Modes	Parameter	10%	50%	90%	Basis for Response	Comments
Consulting Firm (3221041923)	2.25	Failure of battens.	Acceleration.	1.5 g	2.0 g	4.0 g	Analytical methods.	Predominant frequency is >25 Hz.
	2.25	Longitudinal failure of frame.	Acceleration.	3.0 g	4.0 g	8.0 g	Analytical methods.	Battery racks.
Test Laboratory (3121011902)	3.0	Support stand failure.	Acceleration.	15.0 g	20.0 g	30.0 g	Test experience.	Predominant frequency is >15 Hz.
	3.0	Case breakage due to bad stand.	Acceleration.	15.0 g	20.0 g	30.0 g	Test experience.	DC power batteries.
	3.0	Case breakage with good stand.	Acceleration.	25.0 g	30.0 g	35.0 g	Test experience.	
Military Expert (5121030209)	2.0	Rack failure, structural relay chatter, invertor shutdown.	Acceleration.				Test data.	Huntsville data.

Category 22: Switchgear.

		Response	P	ercentil	es			
Wt.	Failure Modes	Parameter	10%	50%	90%	Basis for Response	Comments	
3.00	Spurious operation of a protective relay.	Spectral acceleration.	1.5 g	2.5 g	4. 0 g	Test data and expert opinion.	Frequencies: Side to side = $6-11$ Hz. Front to back = $16-20$ Hz	
3.00	Structural failure.	Spectral acceleration.	2.0 g	3.5 g	4. 0 g	Test data and expert opinion.	Vertical = >30 Hz.	
	<u> </u>		·					
0.25	Contact alignment.	Spectral acceleration.		2.0 g		Expert opinion.	Frequency: Mode #2 only. Horizontal = 5.6 Hz, 10.6 Hz,	
1.00	Support anchorage of unit.	Spectral acceleration.	<2.0 g	2.0 g	4.0 g	Test data and expert opinion.	Hz (y). Vertical = rigid.	
3.0	Spurious operation of a protective relay.	Spectral acceleration.	1.0 g	2.0 g	3.0 g	Test data.	36" Wide Metalclad Switchgear.	
3.0	Structural failure.	Spectral acceleration.	2.0 g	3.0 g	3.5 g	Test data.	·	
3.00	Fracture of porcelain insulator columns.	Spectral acceleration.	2.0 g	3.0 g	4. 75 g	Test data, analysis methods, expert opinion.	Frequencies: 1st Mode = 1.5-4.0 Hz, 2nd Mode = 4.5-8.0 Hz.	
2.0	Chattering of contacts, dropping out.	Undamped spectral acceleration.	~-			Test data.	Huntsville data. Metalclad Switchgear.	
3.00	Chatter of contacts.	Acceleration.	10.0 g	15.0 g	25.0 g	Test data, experience.	Predominant frequencies for all modes >15 Hz.	
3.00	Structural anchoring of cabinet base.	Acceleration.	15.0 g	20.0 g	30.0 g	Test data, experience.	Response is with damping of 5%.	
3.00	Structural mounting of components in cabinet.	Acceleration.	20.0 g	25.0 g	30.0 g	Test data, experience.		
3.0	Spurious operation of a protective relay.	Acceleration.	1.5 g	3.0 g	5.0 g	Test data, expert opinion.	Power Vac Metalclad Switchgear.	
3.0	Structural failure.	Acceleration.	3.0 g	5.0 g	>6.0 g	Test data, expert opinion.	Predominant frequencies: Side to side = 6-ll Hz Front to back = 16-20 Hz Vertical = >30 Hz.	
	<pre>wt. 3.00 3.00 0.25 1.00 3.0 3.0 3.0 3.00 3.00 3.00 3.00 3.</pre>	 Wt. Failure Modes 3.00 Spurious operation of a protective relay. 3.00 Structural failure. 0.25 Contact alignment. 1.00 Support anchorage of unit. 3.0 Spurious operation of a protective relay. 3.0 Structural failure. 3.00 Fracture of porcelain insulator columns. 2.0 Chattering of contacts, dropping out. 3.00 Structural anchoring of cabinet base. 3.00 Structural mounting of components in cabinet. 3.0 Spurious operation of a protective relay. 3.0 Structural mounting of components in cabinet. 3.0 Spurious operation of a protective relay. 3.0 Structural mounting of components in cabinet. 3.0 Spurious operation of a protective relay. 3.0 Structural failure. 	Wt.Failure ModesResponse Parameter3.00Spurious operation of a protective relay.Spectral acceleration.3.00Structural failure.Spectral acceleration.0.25Contact alignment.Spectral acceleration.1.00Support anchorage of unit.Spectral acceleration.3.0Spurious operation of a protective relay.Spectral acceleration.3.0Spurious operation of a protective relay.Spectral acceleration.3.0Structural failure.Spectral acceleration.3.00Fracture of porcelain insulator columns.Spectral acceleration.3.00Chattering of contacts, dropping out.Undamped spectral acceleration.3.00Chatter of contacts. cabinet base.Acceleration.3.00Structural anchoring of cabinet base.Acceleration.3.00Structural mounting of protective relay.Acceleration.3.0Spurious operation of a protective relay.Acceleration.3.0Structural failure.Acceleration.	Wt.Failure ModesResponse ParameterFeilure Modes3.00Spurious operation of a protective relay.Spectral acceleration.1.5 g acceleration.3.00Structural failure.Spectral acceleration.2.0 g acceleration.0.25Contact alignment.Spectral acceleration acceleration.1.00Support anchorage of unit.Spectral acceleration acceleration.3.0Spurious operation of a protective relay.Spectral acceleration.1.0 g acceleration.3.0Structural failure.Spectral acceleration.2.0 g acceleration.3.00Fracture of porcelain insulator columns.Spectral acceleration.2.0 g acceleration.3.00Chattering of contacts, dropping out.Undamped spectral acceleration acceleration.3.00Structural anchoring of cabinet base.Acceleration.10.0 g 3.00 g3.00Structural mounting of components in cabinet.Acceleration.15.0 g acceleration.3.0Spurious operation of a protective relay.Acceleration.1.5 g acceleration.3.0Spurious operation of a protective relay.Acceleration.1.5 g3.0Spurious operation of a protective relay.Acceleration.3.0 g	Wt.Failure ModesResponse ParameterPercentil 10%3.00Spurious operation of a protective relay.Spectral acceleration.1.5 g2.5 g3.00Structural failure.Spectral acceleration.2.0 g3.5 g0.25Contact alignment.Spectral acceleration2.0 g1.00Support anchorage of unit.Spectral acceleration2.0 g3.0Spurious operation of a protective relay.Spectral acceleration.1.0 g2.0 g3.0Structural failure.Spectral acceleration.1.0 g2.0 g3.0Structural failure.Spectral acceleration.2.0 g3.0 g3.00Fracture of porcelain insulator columns.Spectral acceleration.2.0 g3.0 g3.00Chatter of contacts. dropping out.Undamped spectral acceleration3.00Chatter of contacts. contacts.Acceleration.15.0 g20.0 g3.00Structural anchoring of cabinet base.Acceleration.15.0 g20.0 g3.00Structural mounting of components in cabinet.Acceleration.1.5 g3.0 g3.0Spurious operation of a protective relay.Acceleration.1.5 g3.0 g3.0Structural failure.Acceleration.1.5 g3.0 g3.0Structural failure.Acceleration.3.0 g5.0 g	Wt.Pailure ModesResponse ParameterPercentiles3.00Spurious operation of a protective relay.Spectral acceleration.1.5 g2.5 g4.0 g3.00Structural failure.Spectral acceleration.2.0 g3.5 g4.0 g0.25Contact alignment.Spectral acceleration2.0 g1.00Support anchorage of unit.Spectral acceleration2.0 g4.0 g3.0Spurious operation of a protective relay.Spectral acceleration2.0 g3.0 g3.0Spurious operation of a protective relay.Spectral acceleration.1.0 g2.0 g3.0 g3.0Structural failure.Spectral acceleration.2.0 g3.0 g3.5 g3.00Fracture of porcelain insulator columns.Spectral acceleration3.00Chatter of contacts. dropping out.Mcaleration.10.0 g15.0 g25.0 g3.00Structural anchoring of cabinet base.Acceleration.15.0 g20.0 g30.0 g3.00Structural mounting of components in cabinet.Acceleration.1.5 g3.0 g5.0 g3.0Structural failure.Acceleration.1.5 g3.0 g5.0 g5.0 g3.0Structural failure.Acceleration.1.5 g3.0 g5.0 g5.0 g	Wt.Pailure ModesResponse ParameterPercentiles 10%Soft90%Basis for Response3.00Spurious operation of a protective relay.Spectral acceleration.1.5 g2.5 g4.0 gTest data and expert opinion.3.00Structural failure.Spectral acceleration.2.0 g3.5 g4.0 gTest data and expert opinion.0.25Contact alignment.Spectral acceleration2.0 gExpert opinion.1.00Support anchorage of unit.Spectral acceleration2.0 g4.0 gTest data and expert opinion.3.0Spurious operation of a protective relay.Spectral acceleration.1.0 g2.0 g3.0 gTest data.3.0Structural failure.Spectral acceleration.2.0 g3.0 gTest data.3.00Fracture of porcelain insulator columns.Spectral acceleration.2.0 g3.0 g4.75 gTest data.3.00Chatter of contacts. dropping out.Modeped spectral accelerationTest data.3.00Chatter of contacts. dropping out.Acceleration.10.0 g15.0 g25.0 gTest data, experience.3.00Structural anchoring of cabinet base.Acceleration.10.0 g15.0 g25.0 gTest data, experience.3.00Structural anchoring of cabinet base.Acceleration.15.0 g30.0 gTest data, experience.3.00Structural anchoring of cabinet base.Ac	

41

*

s) in

Category 23: Dry Transformers.

Rescondent			Response	Pe	ercentil	es		
Respondent	Wt.	Failure Modes	Parameter	10%	50%	90%	Basis for Response	Comments
Consulting Firm (3223021105)	1.5	Cooler unit pipe failure with loss of transformer oil.	Spectral acceleration.	1.5 g	2.5 g	4.0 g	Analytical methods, expert opinion.	Fragility parameter at floor to transformer interface.
	1.5	Internal structural failure, short of electrical connection.	Spectral acceleration.	2.0 g	4. 0 g	8.0 g	Analytical methods, expert opinion.	Predominant frequencies: Cooler unit: 7.5, 7.7 Hz Internal Structure: 7.2, 7.6 Hz.
	1.5	Pailure of porcelain HV bushings on top of transformer.	Spectral acceleration.	2.5 g	5.0 g	10.0 g	Analytical methods, expert opinion.	HV Porcelain: 8.1, 10.8 Hz.
Consulting Firm (3223051924)	1.5	Rupture of anchor bolts.	Spectral acceleration.	2.0 9	3.0 g	5.0 g	Analytical methods.	Predominant frequency for all modes: +10 Hz.
	1.5	Failure of support frame.	Spectral acceleration.	4.0 g	5.0 g	8.0 g	Analytical methods.	
	1.5	Electrical malfunction.	Spectral acceleration.	4. 0 g	5.0 g	8.0 g	Analytical methods.	

Category 24: Air Handling Units.

		Response Perc	ercentil	.es				
Respondent	Wt.	Failure Modes	Parameter	10%	50%	90%	Basis for Response	Comments
Consulting Firm (3219021113)	1.50	Structural failure.	Floor acceleration.	4.0 g	6.0 g	10.0 g	Design analysis and expert opinion.	Predominant response frequency is 21 Hz. HVAC fans.
Military Expert (5146010226)	2.0	Threaded connections to tank fail.	Undamped floor acceleration.				Test data.	Air compressors, storage tanks, instrument air dryers
	2.0	Shock activates shutdown devices.	Undamped floor acceleration.	·			Test d ata.	Huntsville data.

Category 25: Filtering Equipment.

a,

			Response	P	ercentil	es		
Respondent	Wt.	Failure Modes	Parameter	10%	50%	908	Basis for Response	Comments
Military Expert (5145010225)	2.0	Temporary shutdown due to tripping devices.	Undamped spectral acceleration.				Test data.	Water chillers.
	2.0	Failure of structural welds.	Undamped spectral acceleration.				Test data.	Huntsville data.
Military Expert (5125010233)	2.0	Filters fall out of rack.	Undamped spectral acceleration.				Test data.	Air conditioning, chemical and biological filters.
								Huntsville data.
Military Expert (5144010224)	2.0	Possible failure of support legs.	Undamped spectral acceleration.				Test data.	Water purification units. Huntsville data.
Category 26: Ins	strument	Panels and Racks.	· · · · · · · · · · · · · · · · · · ·					
			Resconse		ercentil	es		
Respondent	Wt.	Failure Modes	Parameter	10%	50%	90%	Basis for Response	Comments
Consulting Firm	3.0	Instrument failure.	Floor acceleration.	1.5	2.0	3.0	Test data.	Predominant frequencies: Mode # 1, rigid
(3220022003)	3.0	Weld failure.	Floor acceleration.	3.0	5.0	8.0	Test data.	Mode #2, ll Hz. Percentiles are factors time SSE. Instrument racks.

Category 27: Control Panels and Racks.

Possandant W			Response	F	Percentiles			
Respondent	Wt.	Failure Modes	Parameter	10%	50%	90%	Basis for Response	Comments
Reactor Designer (1327022001)	3.00	Relay chatter.	Floor acceleration.	3.0 g	5.0 g	8.0 g	Expert opinion.	Predominant response frequency 20 to 33 Hz.
Test Laboratory (3126011903)	3.00	Chatter of contacts.	Acceleration.	12.0 g	15.0 g	25.0 g	Test data, experience.	Predominant frequency for all modes >12 Hz.
	3.00	Structural mounting of components.	Acceleration.	20.0 g	25.0 g	30.0 g	Test data, experience.	These modes of failure also apply to breaker panels,
	3.00	Structural mounting of Cabinets.	Acceleration.	20.0 g	25.0 g	35.0 g	Test data, experience.	auxiliary relay panels, instrument racks and diesel generators.
Test Laboratory (3127031901)	3.00	Component malfunction.	Acceleration.	12.0 g	20.0 g	30.0 g	Test data, experience.	Predominant frequency is >20 Hz. Structural failure unlikely with modern design.

ا يو).

Category 30: Local Instruments.

			Response	I	Percentil	es		
Respondent	Wt.	Failure Modes	Parameter	10%	50%	90%	Basis for Response	Comments
Test Laboratory (3130011107)	3.0	Relay chatter.	Acceleration response spectrum.	6.0 g	10.0 g	12.0 g	Test data.	Predominant response frequency is 5-35 Hz.
	3.0	Loosening of fasteners.	Acceleration response spectrum.	8.0 g	10.0 g	15.0 g	🕐 Test data.	all failure modes.
	3.0	Base structural fatigue.	Acceleration response spectrum.	8.0 g	10.0 g	15.0 g	Test data.	
Military Expert (5130040222)	2.0	Leakage at threaded connections.	Undamped spectral acceleration.				Test data.	Device is an "indicator." Huntsville data.
Test Laboratory (3130020401)	3.0	Signal drift.	Acceleration response spectrum.	9.0	12.0	15.0	Test data.	Predominant frequencies: Mode #1, 10-15 Hz.
	3.0	Contact chatter.	Acceleration response spectrum.	10.2	13.2	18.0	Test data.	Mode #2, 29-30 Hz. Mode #3, not given.
	3.0	Set point drift.	Acceleration response spectrum.	10.8	18.0	24.0	Test data.	
Military Expert (5130050223)	3.0	. 	Undamped acceleration spectra.	· ·			Test data.	Heat sensing device. Response based on Huntsville data.
Military Expert (5130030219)	3.0	Reduction in function.	Undamped acceleration spectra.				Test data.	All modes: Monitoring and control devices.
	3.0	Loss of function.	Undamped acceleration spectra.			*	Test data.	Response based on Huntsville data.
	3.0	Support failure.	Undamped acceleration spectra.				Test data.	

			Response	Р	ercentil	es		
Respondent	Wt.	Failure Modes	Parameter	10%	50%	90%	Basis for Response	Comments
Test Laboratory	3.0	Chatter of contacts.	Spectral acceleration.	10.0 g	15.0 g	25.0 g	Test data, expert opinion.	Damping is 5% for all modes.
(3122031904) (3131011904)	3.0	Structural anchoring of cabinet base.	Spectral acceleration.	15.0 g	20.0 g	30.0 g	Test data, expert opinion.	Predominant frequency for all modes +15 Hz.
	3.0	Structural mounting of component in cabinet.	Spectral acceleration.	20.0 g	25.0 g	30.0 g	Test data, expert opinion.	
Military Expert (5132030213)	2.0	Relay chatter.	Spectral acceleration.				Test data.	Response based on Huntsville data. Predominant frequency: 1.25-500 Hz.
Category 33: Lic	ght Fix	tures.						
			Response	F	Percentil	es		
Respondent	Wt.	Failure Modes	Parameter	10%	50%	908	Basis for Response	Comments
Test Laboratory (3133030402)	3.0	Dislodging of air duct blanking clips.	Spectral acceleration.	7.2 g	9.0 g	12.0 g	Test data.	
	3.0	Lamp breakage.	Spectral acceleration.				Test data.	Respondent is not clear in answers to questionnaire.
Military Expert (5133040206)	3.0	Sheet metal failures.	Undamped spectral acceleration.				Test data.	Response based on Huntsville data.

\$J

.

Lategory Jo: Lable Ira

			Response	Pe	ercentil	es		
Respondent	Wt.	Failure Modes	Parameter	10%	50%	90%	Basis for Response	Comments
Consulting Firm (3236010305) (3237020306)	3.0	Failure of the connection at the building interface.	Spectral acceleration.	120	200	350	Analytical methods, expert opinion, field observation.	Predominant response frequency is 1~5 Hz for all modes. Percentiles are percentages of design SSE spectrum.
	3.0	Failure of the field welds.	Spectral acceleration.	200	300	600	Analytical methods, expert opinion, field observation.	
Consulting Firm	1.5	Failure of supports.	Spectral acceleration.	2.0 g	3.0 g	5.0 g	Analytical methods.	Predominant response frequency is 5-10 Hz for all
(3230021923)	1.5	Rupture of parts between supports.	Spectral acceleration.	4.0 g	5.0 g	10.0 g	Analytical methods.	modes.

ø

s 43

Category 37: Ducting.

Respondent	Wt.	Failure Modes	Response Parameter	<u>F</u> 10%	ercentil 50%	es 90%	Basis for Response	Comments	
Utility (2137051404)	3.0	Corner tearing.	Floor spectral acceleration.	5.0 g	7.0 g	10.0 g	Test data.	Predominant frequency for response 8.5-11.0 Hz. Damping at 7%.	
	3.0	Support failure.	Spectral acceleration.	8.0 g	10.0 g	16.0 g	Test data.	WWO ducto	
	3.0	Joint separation.	Spectral acceleration.	8.0 g	10.0 g	16.0 g	Test data.	nvac ducts.	
Consulting Firm (3237061926)	1.5	Support failure.	Spectral acceleration.	3.0 g	4. 0 g	6.0 g	Analytical methods.	Predominant frequency for response 5-10 Hz, all modes.	
(0201002140)	1.5	Rupture of duct between supports.	Spectral acceleration.	5.0 g	6.0 g	10.0 g	Analytical methods.	-	
Consulting Firm (3237021119)	1.5	Joint separation.	Ceiling acceleration or differential displacement.	2.0 g	4.0 g	10.0 g	Analytical methods and expert opinion.	Predominant frequency for response 10 Hz, all modes.	
	1.5	Duct anchor and support failure.	Ceiling acceleration.	2.5 g	5.0 g	12.0 g	Analytical methods and expert opinion.		
	1.5	Gross bending firm.	Ceiling acceleration.	5.0 g	10.0 g	15.0 g	Analytical methods and expert opinion.		
Architect Engineer	3.0	Corner crippling.	Applicable parameter.	2.0	2.5	3.0	Test data and analytical methods.	Predominant frequency for response 15-20 Hz, all modes	
(813/041201)	3.0	Duct support fail.	Applicable parameter.	2.2	3.0	3.5	Test data and analytical methods.		
	3.0	Duct rupture.	Applicable parameter.	2.5	3.3	4.0	Test data and analytical methods.	A fragility curve was included with this questionnaire.	

Category 38: Hydraulic Snubbers.

			Response	P	ercentile	28	·	
Respondent	Wt.	Failure Modes	Parameter	10%	50%	90%	Basis for Response	Comments
Reactor Designer (1337010501)	0.75	Loss of function due to leakage or air in cylinder before the seismic event occurs.	Vibration load during normal operation.				Expert opinion.	Impossible to quantify percentiles, Mode #1 Predominant frequency: Mode #1, 20-40 Hz.
	0.75	Failure at embedment to clevis juncture because of undersized welds or poor welds.	High load due to accelera- tion caused forces.	1.2	1.5	1.8	Expert opinion.	These numbers are the multi- plicative factors of the unit rated load, for Modes #2 and #3.
	0.75	Tensile failure in piston rod at thread root diameter or in clamp bolts.	High load due to accelera- tion caused forces.	1.6	2.0	2.8	Expert opinion.	

Category 41: Circuit Breakers.

			Response	Pe	rcentile	S		
Respondent	Wt.	Failure Modes	Parameter	10%	50%	90%	Basis for Response	Comments
Consulting Firm (3222021104)	3.0	Rupture of gasket seals, venting of conducting gas.	Spectral acceleration.	0.75 g	1.0 g	2.0 g	Test data, analytical methods, expert opinion.	In-situ testing. Fragility parameter at circuit breaker footing. These are switch- vard circuit breakers.
	3.0	Fracture of porcelain insulation columns, loss of breaker.	Spectral acceleration.	1.00 g	1.25 g	2.25 g	Test data, analytical methods, expert opinion.	Torsional failure. Modes of vibration: 1st 2.4-3.4 Hz, 2nd 7.8-12.2 Hz.
								Air blast circuit breakers.
Military Expert (5141010215)	2.0	Contact chatter.	Spectral undamped acceleration.				Test data.	This is a different type of Circuit breaker than the above. See Huntsville data.

1)

152

4.

6

*

Category 48: Recombiners.

			Response	Pe	ercentil	.es				
Respondent	Wt.	Failure Modes	Parameter	10%	50%	908	Basis for Response	Comments		
Manufacturer (1205040404)	3.0	Pipe Deformation.	Floor response spectrum.	7.0 g	8.0 g	10.0 g	Testing, analytical methods.	The tests were not taken t failure.		
	3.0	Recombiner anchorage.	Floor response spectrum.					Predominant frequencies: Mode #1, 9.5 Hz, Mode #2, 21.5 Hz.		

Category 49: Ceramic Insulators.

			Response	F	Percentil	96		
Respondent	Wt.	Failure Modes	Parameter	10%	50%	90%	Basis for Response	Comments
	3.0	Fracture of porcelain insulation.	Base acceleration.	0.40 g	0.58 g	0.75 g	Actual field data.	
	3.0	Fracture of porcelain insulation.	Base acceleration.	0.11 g	0.25 g	0.28 g	Actual field data.	These are Japanese compo- nents which are more brittle than American or French.

Category 50: Spent Fuel Racks.

Respondent	Wt.	Failure Modes	Response Parameter	Pe	rcentile 50%	908	Basis for Response	Comments
Professor (Consultant) (4150011120)	0.75	Destruction of shear connection between modules.	Floor spectral acceleration.	0.15 g	0.28 g	0.50 g	Analytical methods.	Respondent indicated good confidence in response. Predominant frequency: 7-8 Hz.

APPENDIX D ANALYSIS OF EXPERT OPINION DATA

As part of the effort to develop component fragility descriptions for use in the SSMRP, Phase I calculations, an extensive expert opinions survey was performed. In this survey, a carefully worded questionnaire was mailed to several hundred well-known specialists in the nuclear industry. These individuals were selected from the NSSS vendors, architect/engineering firms, consultants to the nuclear industry and from the ranks of colleges and universities. In each case, the individual was asked to respond only for those components for which he felt a high degree of expertise. For each component, the respondent was asked to provide:

- The three lowest (weakest) failure modes.
- The appropriate response quantity for each mode (e.g., peak acceleration, spectral acceleration at some frequency and damping or force resultant, etc.).
- The response values at 10, 50, and 90% probability of failure.
- The primary source of his information (i.e., experience, test data, etc.).

The responses covered virtually every category of component needed for Phase I of the SSMRP, with 147 detailed responses being returned. Comparison of responses from different experts for the same component showed, in general, suprisingly good agreement. Inasmuch as the expert opinion responses were provided at three probability levels, it was necessary to develop a method of statistically combining them.

The procedure adopted was based on a combined least squares and nested analysis of variance approach.*

It was assumed that a single fragility curve of normal or lognormal distribution can approximately represent each generic component for a particular failure mode. Since the various sets of expert opinion data could be based on quite different components (because of size, manufacturing

*The statistical analysis methods used were selected and developed for this application by R. W. Mensing and L. L. George. A complete presentation of their methods is found in Ref. 8.

techniques, design, etc.) within a single generic category, it was necessary to provide for subgrouping of similar components within a category for each mode. For each failure mode, the model for the qth percentile estimate provided by the jth expert in the ith group is

$$x_{ijq} = \mu + Z_q \sigma + T_i + E_{ijq}$$
,
 $i = 1, \dots, I$,
 $j = 1, \dots, N_i$; $\sum_{i=1}^{I} N_i = N$

,

q = 10, 50, 90 indicating 10th, 50th, and 90th percentile estimates, where

 μ , σ are the mean and standard deviations to be estimated.

- T_i is the deviation of qth percentile for ith group from overall qth percentile ($\mu + Z_q \sigma$). The T_i 's are assumed to be independent, identically distributed (IID) random variables with zero mean and standard deviation, σ_T .
- E_{ijq} is the variation in estimate of qth percentile given by jth expert in ith group. E_{ijq} 's are assumed to be IID random variables with zero mean and standard deviation, σ_{E} .
- Z is the value of the standardized normal cumulative distribution function at the qth percentile.

The parameters to be estimated are μ , σ , σ_E , and σ_T as just defined. We assume the weights assigned to each expert opinion to be w_{ij} for the jth expert in the ith group.

1. To estimate (μ, σ) , minimize

$$ss(\mu, \sigma) = \sum_{i} \sum_{j} w_{ij} \sum_{q} (x_{ijq} - \mu - Z_{q}\sigma)^{2}$$

with respect to ($\mu,\ \sigma)$ resulting in

$$\hat{\mu} = \frac{1}{3} \sum_{q} \sum_{i} \sum_{j} w_{ij} x_{ijq} ,$$

$$\hat{\sigma} = \frac{1}{2Z_{90}} \left[\sum_{i} \sum_{j} w_{ij} (x_{ij90} - x_{ij10}) \right] .$$

2. Estimation of $\boldsymbol{\sigma}_{T}$ and $\boldsymbol{\sigma}_{E}$ is based on finding unbiased estimators.

Define the estimators as follows:

$$SSE = \sum_{q} \sum_{i} \sum_{j} w_{ij} (x_{ijq} - \hat{\mu} - Z_q \hat{\sigma})^2 ,$$

$$SST = \sum_{q} \sum_{i} \sum_{j} w_{ij} (x_{ijq} - \bar{x}_{i,q})^2 ,$$

where

$$\bar{x}_{i,q} = \frac{1}{w_i} \sum_{j} w_{ij} x_{ijq} ,$$
$$w_{i,} = \sum_{j} w_{ij} ,$$

$$SSM = \sum_{q} \sum_{i} \sum_{j} w_{ij} (\bar{x} \cdot q - \mu - Z_{q} \hat{\sigma})^{2},$$

where

$$\bar{\mathbf{x}}_{\ldots q} = \sum_{i} \sum_{j} \mathbf{w}_{ij} \mathbf{x}_{iq}$$
 .

The expectations for SSE, SST, and SSM are then

$$E[SSM] = \sigma_E^2 \sum_{i} \sum_{j} w_{ij}^2 . \qquad (1)$$

$$E[SST] = 3\sigma_{E}^{2} \left(1 - \sum_{i} \frac{\sum_{j} w_{ij}^{2}}{w_{i.}}\right).$$
(2)

$$E[SSE] = 3(\sigma_{T}^{2} + \sigma_{E}^{2}) - 2\sigma_{E}^{2} \sum_{i} \sum_{j} w_{ij}^{2} - 3\sigma_{T}^{2} \sum_{i} w_{i}^{2} .$$
(3)

Solving Eq. (2) for σ_{E}^{2} and replacing E[SST] with SST ,

$$\hat{\sigma}_{E}^{2} = \frac{SST/3}{\sum_{i=1}^{N} \sum_{w_{ij}}^{w_{ij}}}$$
(4)

Similarly, from Eq. (1)

$$\hat{\sigma}_{E}^{2} = \frac{\text{SSM}}{\sum_{i} \sum_{j} w_{ij}^{2}}$$
(5)

Solving Eq. (3) for $\sigma_{\rm T}^2$ yields

$$\sigma_{\rm T}^2 = \frac{E[SSE] - 3\sigma_{\rm E}^2 + 2\sigma_{\rm E}^2 \sum_{\rm i} \sum_{\rm j} w_{\rm ij}^2}{3(1 - \sum_{\rm i} w_{\rm i}^2)} .$$
(6)

Thus, we have two estimates for σ_T^2 :

$$\hat{\sigma}_{T}^{2} = \frac{SSE - 3\hat{\sigma}_{E}^{2} + 2\sigma_{E}^{2}\sum_{i}\sum_{j}w_{ij}^{2}}{3(1 - \sum_{i}w_{i}^{2})} \qquad (7)$$

$$\hat{\sigma}_{T}^{2} = \frac{SSE - 3\hat{\sigma}_{E}^{2} + 2\sigma_{E}^{2}\sum_{i}\sum_{j}w_{ij}^{2}}{3(1 - \sum_{i}w_{i}^{2})} \qquad (8)$$

If data for more than one failure mode is available for analysis, the fragilities of the individual modes are combined to yield the union of these modes, i.e.,

$$F_{\text{TOTAL}} = [1 - (1 - F_1) (1 - F_2) \dots (1 - F_N)]$$

Ť

APPENDIX E EQUIPMENT FRAGILITY DATA BASE

ABSTRACT

Part of the effort of the Seismic Safety Margins Research Program (SSMRP) has been directed at generating a fragility data base for equipment used in control and safety systems in commercial nuclear power plants. Component fragility data have been compiled in various forms, depending on their content, intended use, and level of reduction. The data are stored in a relational data base on the LLNL CDC 7600 computers; this provides easy accessibility for LLNL computer users. This report describes the present structure of the data base and presents its contents through the use of tables. This report is a revision of an earlier one of the same name and number (UCRL-53038). Additional data have been included and the presentation has been revised to enhance its usability.

CONTENTS

Abst	raci	t.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	159
Exec	uti	ve Su	imma	iry	•	•	•	•	•	•	•	•	•	•	•	•	•	٠		•	•	•	161
1.0	In	trodu	cti	on	•	•	•	•	•	•	•	•	•	•	•	•		•		•	•	•	162
2.0	Da	ta So	ourc	es	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	163
2	.1	Expe	rt	Opin	ion	Sou	irc	es	•	•	•	•		•	•	•	•	•	•	•	•	•	163
2	.2	Anal	ysi	.s an	d To	est	Da	ta	Sour	ces	5	•	•		•	•	•	•	•	•	•	•	163
3.0	Dat	ta An	aly	sis	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	164
3	.1	Expe	rt	Opin	ion	Ana	aly	sis	•	•	•	•	•	•	•	•	•	•	•	•	•	•	164
3	.2	Othe	r A	naly	sis		•	•	•		•	•		•	•	•	•	•	•	•	•	•	167
3	.3	Exan	ple	of	Com	oin:	ing	Da	ta	•	•	•	•	•		•	•	•	•	•	•	•	168
4.0	Loa	ad Sc	ale	Fac	tors	s fo	or 1	Pip	ing	Ele	emer	nts		•	•	•	•	•	•	•	•	•	173
5.0	Sur	nmary	of	Fra	gil:	itie	es	•	•	•	•	•	•	•	•	•	•	•	•	•	•		174
6.0	Dat	ta Ba	se	Desc	rip	ior	2	•	•	•	•	•		•	•	•	•	•	•	•	•	•	212
6	.1	Rela	tio	nal	Str	lcti	ıre		•	•	•	•		•	•	•	•	•	•	•	•		212
6	.2	Data	Ta	bles		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	213
7.0	Cor	npute	r F	iles		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	265
8.0	Ref	Eeren	ces				•		•		•					•	•	•	•	•	•	•	266

EXECUTIVE SUMMARY

This report describes a relational data base, which consists of seismic fragility descriptions for nuclear power plant equipment and data from which many of the fragilities were developed. The fragilities stem primarily from three sources:

- 1. Design analysis reports from manufacturers of components for the Zion Nuclear Power Plant.
- Experimental data obtained from the results of component manufacturers' qualification tests, failure data testing by independent laboratories, and data obtained from the U.S. Army Corps of Engineers SAFEGUARD Subsystem Hardness Assurance Program.
- 3. The results of an extensive expert opinion survey conducted by the Seismic Safety Margins Research Program (SSMRP).

The basic data resulting from the expert opinion survey, including 10th, 50th, and 90th percentile estimates of probability of failure for many categories of equipment and a variety of failure modes are included. Also included are the results of combining both individual opinions within a failure mode and various failure modes within categories. The statistical methods used in making these combinations are discussed.

Since the process of adding to the data base and statistically combining these data is continuing, the listings of data included represent the status of the contents of the data base at this report date and may be upgraded by new data at any time.

1.0 INTRODUCTION

One of the primary objectives of the SSMRP is to develop both a methodology and mathematical models that realistically predict the probability of radioactive releases from seismically induced events in nuclear power plants. The Fragilities Development Project¹ was established to help meet this objective. Research in the project centers on the development of power plant structure and component fragility in probabilistic terms. A complete presentation of the sources of data and methodology used by the SSMRP for fragilities development is included in Ref. 1.

Approximately 50 generic categories of mechanical and electrical components were originally identified for this purpose. Of this number, 37 were chosen for subsequent fragility development. The fragilities developed for these categories are based on site-specific data and design reports from the Zion Nuclear Power Plant, the U.S. Army Corps of Engineers Safeguard Program, and the results of an extensive expert opinion survey conducted by the SSMRP. This data base consists of a variety of information, all related in some way to the development of the fragilities for these categories of components.

The data base was structured on LLNL's CDC 7600 computers through the use of the FRAMIS data base management system, and while access to the data is most conveniently accomplished by using FRAMIS, it can also be accomplished with the tables in this report. FRAMIS is documented in Refs. 2 and 3.

Some of the data have been grouped into tables that were structured for convenience in the fragility data reduction process. Other tables were structured simply to allow convenient storage of information. FRAMIS allows easy regrouping of data into virtually any format that the user may find useful. This data base is continuing to expand as new data are collected.

2.0 DATA SOURCES

For various reasons, actual fragility data for mechanical and electrical components are very scarce. Consequently, the SSMRP conducted an extensive expert opinion survey that yielded probabilistic information for several of the component categories. In addition, data and design reports from the Zion Nuclear Power Plant and data from the U.S. Army Corps of Engineers Safeguard Program were used.

2.1 EXPERT OPINION SOURCES

Approximately 50 generic component categories were identified for fragility determination. Experts were asked to identify modes of failure and estimate 10th, 50th, and 90th percentile values for component strength at failure by these modes as a function of an appropriate fragility parameter (usually spectral acceleration). Each set of opinion data was evaluated using several criteria, including source (i.e., manufacturer, test laboratory, professor, etc.), basis (i.e., test, analysis, etc.), and the expert's own evaluation of level of his expertise. Weighting factors reflecting the degree of confidence in the experts' opinions were then applied to each set of estimates.

Thus, for a particular generic category of component and a particular failure mode, one set of data consists of one expert opinion of the 10th, 50th, and 90th percentile values of strength at failure and a subjective weighting factor.

The information obtained in the survey and the results of various levels of reduction of the data are included in this data base.

2.2 ANALYSIS AND TEST DATA SOURCES

Data and design reports from the Zion Nuclear Power Plant and data from the U.S. Army Corps of Engineers Safeguard Program were compiled and reduced for the SSMRP by Structural Mechanics Associates (SMA).⁴ Selected data from Ref. 4 are included in this data base. Modifications of these data (as described in Section 3.2 of this report) are also included.

3.0 DATA ANALYSIS

3.1 EXPERT OPINION ANALYSIS

It was assumed that a single fragility curve of normal or lognormal distribution can approximately represent each generic component for a particular failure mode. Since the various sets of expert opinion data could be based on quite different components (because of size, manufacturing techniques, design, etc.) within a single generic category, it was necessary to provide for subgrouping of similar components within a category for each mode.* For each failure mode, the model for the qth percentile estimate provided by the jth expert in the ith group is:

$$x_{ijq} = \mu + Z_q \sigma + T_i + E_{ijq}$$
,
 $i = 1, ..., I$,
 $j = 1, ..., N_i$; $\sum_{i=1}^{I} N_i = N$,

q = 10, 50, 90 indicating 10th, 50th, and 90th percentile estimates

where

- μ , σ are the mean and standard deviations to be estimated.
- T_i is the deviation of qth percentile for ith group from overall qth percentile (μ + $Z_{q\sigma}$). The T_i 's are assumed to be independent, identically distributed (IID) random variables with zero mean and standard deviation, σ_{T} .
- E_{ijq} is the variation in estimate of qth percentile given by jth expert in ith group. E_{ijq} 's are assumed to be IID random variables with zero mean and standard deviation, σ_E .
- Z_q is the value of the standardized normal cumulative distribution function at the qth percentile.

The parameters to be estimated are μ , σ , σ_E and σ_T as just defined. We assume the weights assigned to each expert opinion to be w_{ij} for the jth expert in the ith group.

^{*} The statistical analysis methods used were selected and developed for this application by R. W. Mensing and L. L. George. A more complete presentation of the methods can be found in Ref. 5.

1. To estimate (μ , σ), minimize

$$ss(\mu, \sigma) = \sum_{i} \sum_{j} w_{ij} \sum_{q} (x_{ijq} - \mu - z_{q}\sigma)^2$$

with respect to (μ , σ) resulting in:

$$^{\Lambda}_{\mu} = \frac{1}{3} \sum_{q} \sum_{i} \sum_{j} w_{ij} x_{ijq}$$

$$\hat{\sigma} = \frac{1}{2Z_{90}} \left[\sum_{i} \sum_{j} w_{ij} (x_{ij90} - x_{ij10}) \right] .$$

2. Estimation of σ_{T} and σ_{E} is based on finding unbiased estimators.

,

Define the estimators as follows:

$$SSE = \sum_{q} \sum_{i} \sum_{j} w_{ij} (x_{ijq} - \hat{\mu} - z_{q}\hat{\sigma})^{2} ,$$

$$SST = \sum_{q} \sum_{i} \sum_{j} w_{ij} (x_{ijq} - \bar{x}_{i,q})^{2} ,$$

where

$$\begin{split} & \bar{\mathbf{x}}_{i,q} = \frac{1}{\mathbf{w}_{i,}} \sum_{j} \mathbf{w}_{ij} \mathbf{x}_{ijq} , \\ & \mathbf{w}_{i,} = \sum_{j} \mathbf{w}_{ij} , \\ & \text{ssm} = \sum_{q} \sum_{i} \sum_{j} \mathbf{w}_{ij} (\bar{\mathbf{x}}_{..q} - \hat{\mathbf{\mu}} - \mathbf{z}_{q}\hat{\sigma})^{2} , \end{split}$$

where

$$\bar{x}_{...q} = \sum_{i} \sum_{j} w_{ij} x_{iq}$$
.

The expectations for SSE, SST and SSM are then

$$E[SSM] = \sigma_E^2 \sum_{i} \sum_{j} w_{ij}^2$$
(1)

$$E[SST] = 3\sigma_{E}^{2} \left(1 - \sum_{i} \frac{\sum_{j} w_{ij}^{2}}{w_{i.}}\right).$$
(2)

$$E[SSE] = 3(\sigma_{T_2}^2 + \sigma_E^2) - 2\sigma_E^2 \sum_{i} \sum_{j} w_{ij}^2 - 3\sigma_T^2 \sum_{i} w_i^2 .$$
(3)

(4)

(5)

ĩ

Solving Eq. (2) for σ^2 and replacing E[SST] with SST,

$$\hat{\sigma}_{E}^{2} = \frac{\frac{\text{SST}/3}{\sum_{i} w_{ij}^{2}}}{1 - \sum_{i} \frac{\frac{\sum_{j} w_{ij}^{2}}{w_{ij}}}{w_{i}}} .$$

Similarly from Eq. (1):

$$\overset{\&2}{\sigma_{E}} = \frac{\text{SSM}}{\sum_{i} \sum_{j} w_{ij}^{2}}$$

Solving Eq. (3) for $\sigma_{\rm T}^2$ yields

$$\sigma_{\rm T}^2 = \frac{E[SSE] - 3\sigma_{\rm E}^2 + 2\sigma_{\rm E}^2 \sum_{\rm i} \sum_{\rm j} w_{\rm ij}^2}{3(1 - \sum_{\rm i} w_{\rm i}^2)}.$$
 (6)

Thus, we have two estimates for $\sigma_{\rm T}^2$

$$\hat{\sigma}_{T}^{2} = \frac{SSE - 3\hat{\sigma}_{E}^{2} + 2\sigma_{E}^{2} \sum_{i} \sum_{j} w_{ij}^{2}}{3(1 - \sum_{i} w_{i}^{2})}$$
(7)

$$\hat{\sigma}_{T}^{2} = \frac{SSE - 3\sigma_{E}^{2} + 2\hat{\sigma}_{E}^{2} \sum_{i} \sum_{j} w_{ij}^{2}}{3(1 - \sum_{i} w_{i}^{2})} .$$
(7)

If data for more than one failure mode is available for analysis, the fragilities of the individual modes are combined to yield the union of these modes, i.e.,

$$F_{\text{TOTAL}} = [1 - (1 - F_1) (1 - F_2) \dots (1 - F_N)]$$

The application of these statistical methods to the expert opinion data was accomplished through the use of the Fortran program, FRAGSTAT, which is documented in Ref. 6.

3.2 OTHER ANALYSIS

Reference 4 contains fragilities with lognormal distribution only. For consistency and comparison purposes, it was desirable to have both normal and lognormal data; therefore, a procedure for fitting the lognormal data to result in a suitable normal distribution was needed. The following criteria were used:

- a. The statistical mean of the normal distribution was assumed to be the same as the median of the lognormal distributions, i.e., $\mu = m$.
- b. The standard deviation of the normal distribution was assumed to be

$$\sigma_{\rm N} = \frac{{\rm x}_{50} - {\rm x}_{10}}{{\rm z}_{50} - {\rm z}_{10}} = \frac{{\rm x}_{50} - {\rm x}_{10}}{1.28}$$

where

 X_{50} = the fragility parameter at 50% probability of failure,

 X_{10} = the fragility parameter at 10% probability of failure,

- Z_{50} = the value of the standardized normal cumulative distribution function at 50th percentile,
- z_{10} = the value of the standardized normal cumulative distribution function at 10th percentile.
- c. The value of the fragility parameter at 90% probability of failure is then given by

$$x_{90} = x_{50} + (z_{50} - z_{10}) \sigma_N = x_{50} + 1.28 \sigma_N$$
.

3.3 EXAMPLE OF COMBINING DATA

To illustrate the procedure used in combining data from several sources to develop a single fragility, consider, for example, the category of small miscellaneous valves (Category 18). There are 15 sets of expert opinion data for Category 18 (OPNO 132 through OPNO 146 in the data base table OPINION).* The first 10 sets will suffice to illustrate the procedure. A portion of the data for these opinions follows:

		Percei	ntile Est	Imates	
OPNO	Weight	10%	50%	908	Failure Mode
132	3.0	10.00	12.00	15.00	Leakage
133	3.0	6.60	7.80	10.80	Internal seat leakage
134	3.0	12.00	15.00	20.00	Gauling of stem
135	1.5	6.00	7.50	8.50	Stem binding
136	3.0	15.00	30.00	50.00	Internal damage
137	1.5	10.50	12.00	14.25	Mechanical binding of the valve
138	3.0	10.00	18.00	30.00	Structural failure
139	3.0	12.00	15.00	20.00	Structural fatigue at neck
140	3.0	12.00	18.00	24.00	Top structure of valve
141	3.0	20.00	50.00	100.00	Fracture of valve body

* The data base tables are all listed in Section 6.2.

The fragility parameter for each is spectral acceleration (g).

The failure mode description of the first two sets clearly calls for them to be grouped together as one mode.

The next four (134-137) are similar in failure mode, each indicating a functional problem, and in addition 134 and 135 are probably the same failure mode. Therefore, 134 through 137 will contribute to the same failure but a further subgrouping of 134 and 135 is indicated.

The last four sets all indicate structural failure, and in addition 139 and 140 are for the same location on the valve. Therefore, 138 through 141 will contribute to the same failure mode and further subgrouping of 139 and 140 is indicated. The following summarizes the grouping to be used:

OPNO	Group	Subgroup	Failure Mode		
132	1	1	Leakage		
133	1	1	Leakage		
134	2	1	Functional Failure		
135	2	1	Functional Failure		
136	2	2	Functional Failure		
137	2	3	Functional Failure		
120	2	1	Chauchural Railura		
138	3	1	Structural Failure		
139	3	2	Structural Failure		
140	3	2	Structural Failure		
141	3	3	Structural Failure		

Applying the analysis described in Section 3.1 leads to the following lognormal results.

	Individual		Mode		Total	
OPNO	<u>m</u>	β	m	β	<u>m</u> ́	β
132 133	12.1 8.2	0.159 }	10.0	0.329	8.5	0.339
134 135 136 137	15.3 7.3 28.2 12.2	0.201 0.142 0.476 0.120	15.9	0.620		
138 139 140 141	17.5 15.3 17.3 46.4	0.430 0.201 0.275 0.635	21.6	0.714		

Thus, for this particular grouping of data, a resulting single distribution for fragility of \tilde{M} = 8.5 g, β = 0.339 is obtained.

Figure 1 shows the results of combining the groupings of expert opinion data to result in one fragility curve for the functional failure mode. The influence of the high weight factor assigned to OPNO 136 can be seen in the tendency of the result toward higher fragility levels.

Figure 2 shows the results of combining the three failure modes to result in one fragility curve for the category. Here the mode of lowest fragility dominates the result. This will be true in every case of combining modes since the result is computed by the union of the individual modes.

Other groupings might be considered than the preceding ones. For example, leakage might not be considered a failure mode of concern, and in that case OPNO's 132 and 133 would not be used. Data from sources other than expert opinion can be included in the groupings by first determining from the cumulative distribution function the 10th, 50th and 90th percentile values of spectral acceleration (or appropriate parameter), assigning a weight factor, and then treating the data in the same manner as expert opinion.

SPECTRAL ACCELERATION (GS)

CUMULATIVE DISTRIBUTION FUNCTION

SPECTRAL ACCELERATION (GS)

Figure 2. Results of combining modes.

4.0 LOAD SCALE FACTORS FOR PIPING ELEMENTS

The development of fragilities for the piping systems at Zion presented a different kind of problem than other categories of equipment, since fragility descriptions were needed for virtually every conceivable combination of piping elements. The approach taken was to avoid developing separate fragilities for each combination by relating individual pipe element fragilities to a master pipe element fragility by means of a load scale factor, F_D , defined as

$$F_{p} = \frac{Capacity of reference pipe element}{Capacity of pipe element under consideration}$$

These factors were computed for several sizes and schedules of pipe elements, including straight pipe, butt welds, elbows, miter joints, and branch connections. The development of the load scale factors is discussed in detail in Ref. 4. The data base contains the resulting load scale factors together with the related piping element parameters. They can be found in this report in tables in Section 6.2.
5.0 SUMMARY OF FRAGILITIES

Section 6.0 of this report deals with the details of the data base structure and content. The results of the various groups of data tend to be obscurred by the number and details of the individual data sets, and since the results of the groupings may be the only material of interest to some readers, they have been extracted and are presented in this section. The following tables are computer listings produced from the contents of the data base through the use of the relational capabilities of the FRAMIS data base manager. Each table represents one category of equipment and each set of results consists of the lognormal distribution parameters (median and beta), the failure mode description, associated notes, and group identifier that can be used to obtain further information from the data base tables presented in Section 6.2.

	1	CATEGOR	Y: 1.0	REACTOR CON	RE ASSEMBLY	
	GROUP	MEDIAN	DETA	FRAG. PARAM.	FAILURE MODE	NOTES
	GRPOIA	3.916	. 708	SP ACCEL G	BINDING OF CONTROL RODS DUE TO SEISMICAL Ly induced deformations	PREDOMINANT FREQUENCIES MODE #1,3HZ; MODE #2,3 HZ; AND MODE #3,5 HZ. PRECENTILES INCLUDE LOCA. PWR, ALL MODES. FUNCTIONAL FAILURE FRAGILITY PARAMETER ACCELERATION AT CORE SUPPORT ATTACHMENT TO REACTOR VESSEL.
	GRPO1B	5.646	.757	SP ACCEL G	DEFORMATION OF GUIDE TUBES DUE TO SEISMI C IMPACT OF FUEL BUNDLE	PREDOMINANT FREQUENCIES MODE #1,3HZ; MODE #2,3 HZ; AND MODE #3,5 HZ. PRECENTILES INCLUDE LOCA. PWR, ALL MODES. FUNCTIONAL FAILURE FRAGILITY PARAMETER ACCELERATION AT CORE SUPPORT ATTACHMENT TO REACTOR VESSEL.
, 1	GI(PO1C	6.693	. 823	SP ACCEL G	FAILURE OF CORE SUPPORT STRUCTURE DUE TO INERTIA LOAD OF FUEL	PREDOMINANT FREQUENCIES MODE #1,3HZ; MODE #2,3 HZ; AND MODE #3,5 HZ. PRECENTILES INCLUDE LOCA. PWR, ALL MODES. FUNCTIONAL FAILURE FRAGILITY PARAMETER ACCELERATION AT CORE SUPPORT ATTACHMENT TO REACTOR VESSEL.
	SMA01	2.746	. 369	SP ACCEL G	DEFOR. OF GUIDE TUBES / GUIDE PLATE WELD	FREQUENCY 5-15 HZ , 5% DAMPING
	SMA02	5.989	. 339	SP ACCEL G	CONTROL ROD HOUSING DEFORMATION	FREQUENCY 6 HZ , 5% DAMPING
	RESOIA	2.056	, 396	×		GRPMODE LISTS GROUPS INCLUDED IN RESOLA

्रम् सम्

	1	CATEGÓR	Y: 2.1	REACTOR PRE	ESSURE VESSEL		
	GROUP	MEDIAN	BETA	FRAG. PARAM	FAILURE MODE		NOTES
	GRP02A	4.162	, 275	SP ACCEL G	BUCKLING OF SKIRT		ALL MODES: PREDOMINANT FREQUENCIES,
							MARK II 9-15 HZ,MARK III 3-5 HZ. MARK II & III REFER TO GE BWR CONTAIN- MENTS PRESS BOUND FAIL. ALL MODES.
	GRP02B	5.430	. 289	SP ACCEL G	FAILURE OF SKIRT ANC	HOR BOLTS	ALL MODES: PREDOMINANT FREQUENCIES,
-							MARK II 9-15 HZ,MARK III 3-5 HZ, MARK II & III REFER TO GE BWR CONTAIN- MENTS PRESS BOUND FAIL ALL MODES.
	GRP02C	6.462	, 325	SP ACCEL G	STRESS INTENSITY AT	VESSEL SUPPORT	POOL TYPE REACTOR VESSEL (LIQ. SODIUM)
							PREDOMINANT FREQUENCIES, MODE # 1-7 HZ MODE #2-7.5 HZ MODES #3 PRESS. BOUND FAIL; ALL MODES.
176	RES02A	3,833	. 230				GRPMODE LISTS GROUPS INCLUDED IN RESO2A

ź

•

₽i

	ف		(₹	
1 GROUP	CATEGORY MEDIAN	: 2.2 BETA	PRESSURIZER FRAG. PARAM. FAILURE MODE	NOTES
GRP02D	3, 108	.361	SP ACCEL & FAILURE OF SKIRT ANCHOR BOLTS	
	0.,00		A ROLL OF TATLORE OF SKIRT ANOHOR DOLLS	BOTH MODES PREDOMINANT FREQUENCY, 7.0 HZ. PERCENTILES INCLUDE LOCA, PRESS, BOUND. FAIL; ALL MODES.
GRP02E	5.430	. 289	SP ACCEL G BUCKLING OF SKIRT	PRESSURIZER. BOTH MODES PREDOMINANT FREQUENCY, 7.0 HZ. PERCENTILES INCLUDE LOCA. PRESS, BOUND. FAIL; ALL MODES.
SMA05	2.000	. 398	SP ACCEL G SUPPORT SKIRT BOLTING	FREQUENCY 18-22 HZ , 5% DAMPING

GRPMODE LISTS GROUPS INCLUDED IN RESO2B

177

RES02B

3.022 .333

	1	CATEGOR	Y: 2.3	STEAM GENER	RATOR	
	GROUP	MEDIAN	BETA	FRAG. PARAM.	FAILURE MODE	NOTES
	GRP02F	1,891	. 208	SP MOMENTS	RUPTURE AT PRIMARY INLET OR OUTLET NOZZL E, RUPTURE AT FEEDWATER NOZZLE	STEAM GENERATOR. BOTH MODES: PREDOMINANT FREQUENCY, 10-15 HZ. MODE #1 FACTORS TIME SY (SY FROM PRESS. BOUND. FAIL; ALL MODES.
	GRP02G	4,716	. 339	FORCES	NOZZLE FAILURE	STEAM GENERATOR ALL MODES: PREDOMINANT FREQUENCIES:MODES # 1 10-30 MODES # 2 RIGID MODES # 3 20-100 HZ. PRESS, BOUND, FAIL: ALL MODES.
	GRP02H	3.896	, 201	SP ACCEL G	FAILURE OF STEAM GENERATOR LEG IMDEDMENT IN CONTAINMENT FLOOR	STEAM GENERATOR ALL MODES: PREDOMINANT FREQUENCY 7.5 HZ ALL MODES: VERTICAL DIRECTION ACCELERATION PRESS. BOUND. FAIL; ALL MODES.
178	GRP021	2.836	. 275	SP ACCEL G	FAILURE OF CONNECTION BETWEEN SUPPORT LE G AND STEAM GENERATOR BODY	STEAM GENERATOR . ALL MODES: PREDOMINANT FREQUENCY 7.5 HZ ALL MODES: VERTICAL DIRECTION ACCELERATION PRESS. BOUND. FAIL; ALL MODES.
<u>م</u>	GRP02J	8.166	. 422	SP ACCEL G	TUBING FAILURE	STEAM GENERATOR ALL MODES: PREDONINANT FREQUENCIES:MODES # 1 10-30 MODES # 2 RIGID MODES # 3 20-100 HZ. PRESS. BOUND. FAIL; ALL MODES.
	SMA04 RES020 RES02D RES02E	3.287 1.890 4.718 2.445	. 440 . 203 . 339 . 263	SP ACCEL G	SUPPORT COLUMN FAILURE	FREQUENCY 5 HZ , (NSSS SYSTEM) , 5% DAMP FREQUENCY 5 HZ , (NSSS SYSTEM) , 5% DAMP GRPMODE LISTS GROUPS INCLUDED IN RESO2C GRPMODE LISTS GROUPS INCLUDED IN RESO2E GRPMODE LISTS GROUPS INCLUDED IN RESO2E

v

•

• •

1	CATEGOR	₹Y: 3.0	D PRIMARY CO	GLANT PIPING		
GROUP	MEDIAN	BETA	FRAG, PARAM	. FAILURE MODE	NOTES	
CRP03A	202.350	. 406	МОМ ЕТ-КІР	RUPTURE AT CONNECTIONS TO COMPONENTS DUE TO COMPONENT SUPPORT FAILURE	MASTER PIPING CURVE	
RESO3A	201.000	, 406			GRPMODE LISTS GROUPS INCLUDE	ED IN RESOGA

• •

C · ·

1	CATEGOR	Y: 7.0	LARGE VERT	ICAL STORAGE VESSELS WITH FORMED HEADS	
GROUP	MEDIAN	BETA	FRAG. PARAM	. FAILURE MODE	NOTES
GRP07A	1.650	. 445	SP ACCEL G	RUPTURE OF ANCHOR BOLTS	ALL MODES: PREDOMINANT FREQUENCY 4-10 HZ
GRP07B	2.467	. 536	SP ACCEL G	BUCKLING OF SUPPORT SKIRT OR LEGS	PREDOM. FREQ. 4-10 HZ
SMAOG	21.977	, 407	SP ACCEL G	SUPPORT SKIRT COLLAPSE	FREQUENCY 20.7 HZ , 5% DAMPING
SMA07	7,925	.519	SP ACCEL G	PLASTIC BUCKLING OF SHELL	FREQUENCY 6.3 HZ , 5% DAMPING
RES07A	1.459	. 399		· · ·	GRPMODE LISTS GROUPS INCLUDED IN RESO7A

. **4**, 9

1	CATEGOR	Y: 8.0	LARGE VERT	ICAL STORAGE TANKS WITH FLAT BOTTOMS	
GROUP	MEDIAN	BETA	FRAG. PARAM	. FAILURE MODE	NOTES
GRP08A	2.079	. 275	SP ACCEL G	RUPTURE OF ANCHOR BOLTS	ALL MODES: PREDOMINANT FREQUENCY 3-8 HZ.
GRP08B	3.254	.319	SP ACCEL G	BUCKLING OF TANK WALL	ALL MODES: PREDOMINANT FREQUENCY 3-8 HZ.
GRP08C	5,312	, 305	SP ACCEL G	TENSILE RUPTURE OF TANK WALL	ALL MODES: PREDOMINANT FREQUENCY 3-8 HZ.
SMA08	. 828	. 389	PK GD AC G	BUCKLING OF TANK WALLS AT BASE	RIGID TANK + SLOSH
SMA09	3.597	. 436	PK GD AC-6	BENDING OF VERTICAL STIFFNER	RIGID TANK + SLÖSH
RES03A	2.013	. 254			GRPHODE LISTS GROUPS INCLUDED IN RESOBA

>

*

 \mathbf{C}

PAGE

1

¢4

•	CATEGOR	XY: 9.0	LARGE HORIZONTAL VESSELS			
GROUP	MEDIAN	BETA	FRAG, PARAM. FAILURE MODE	NOTES		
GRP09A	3,912	. 609	FLOOR AC G SUPPORT SYSTEM FAILURE (BOLTS)	PREDOMINANT FREQUENCY: 12 TO 20 HZ.		
				DIESEL FUEL TANK.		
RESORA	3 910	609		GRPMODE LISTS GROUPS INCLUDED IN RESO9A		

RI

182

PAGE

J.

ij.

1	CATEGOR	XY: 10.0	SMALL-MEDI	UM VESSELS AND HEAT EXCHAN	SERS
GROUP	MEDIAN	BETA	FRAG. PARAM	I. FAILURE MODE	NOTES
GRP10A	2.079	. 275	ACCEL G	RUPTURE OF ANCHOR BOLTS	BOTH MODES: PREDOMINANT FREQUENCY 15-30 HORIZONTAL TANK AND HEAT EXCHANGERS.
GRP10B	12.769	. 359	ACCEL G	STRUCTURAL FAILURE	PREDOMINANT FREQUENCY: GREATER THEN 20 F SMALL VESSELS.
GRP10C	2.599	, 452	ACCEL G	SUPPORT FAILURE	BOTH MODES: PREDOMINANT FREQUENCY 15-30 Horizontal tank and heat exchangers.
SMA10	7.925	. 599	SP ACCEL G	SUPPORT FAILURE	FREQUENCY 6.9 HZ , 5% DAMPING
SMAII	7.171	, 516	PK ACCEL G	SUPPORT LEG FAILURE	FREQUENCY 12.8 HZ , 5% DAMPING
RESIOA	1.841	, 275			GRPMODE LISTS GROUPS INCLUDED IN RESIDA

. . .

	CATEGOR	Y: 11.0	BURIED PIPE
GROUP	MEDIAN	BETA	FRAG. PARAM. FAILURE MODE
SMA12	1.399	. 601	PK GD AC G BUCKLING AND FRACTURE
SMA13	1.399	, 601	PK OD AC G BUCKLING AND FRACTURE
RES11A	201.000	. 406	

NOTES

ZION BURIED PIPE

ZION BURIED PIPE

GRPMODE LISTS GROUPS INCLUDED IN RESILA

ø

1

184

نو .

	CATEGOR	$(1 \cdot 12.0)$	REACTOR COU	JLANT FUMP	
GROUP	MEDIAN	BETA	FRAG. PARAM.	FAILURE MODE	NOTES
GRP12A	3.557	. 401	SP ACCEL G	FAILURE OF CONNECTION TO SUPPORT LEGS	BOTH MODES, PREDOMINANT FREQUENCIES: 4. PERCENTILES INCLUDE LOCA.
GRP12B	5.847	. 406	SP ACCEL G	BUCKILING OF SUPPORT LEG	BOTH MODES,PREDOMINANT FREQUENCIES: 4. PERCENTILES INCLUDE LOCA.
SMA14	3.287	. 440	SP ACCEL G	SUPPORT COLUMN BOLTING	FREQUENCY 5 HZ , (NSSS SYSTEM) , 5% DA
RES12A	2,640	. 336			GRPMODE LISTS GROUPS INCLUDED IN RESI2

{**a**t

Şb

۵. این

	1	CATEGOR	Y: 13.0	LARGE VERTICAL	CENTRIFUGAL PUMPS WITH MOTOR DRIVE	
	GROUP	MEDIAN	BETA	FRAG. PARAM.	FAILURE MODE	NOTES
-	GRP13A	2.883	. 275	SP ACCEL G RUF	TURE OF CONNECTIONS TO SUPPORT STRUTS	PREDOMINANT FREQUENCY 4.5 HZ. ALL MODES.
	GRP13B	4.933	, 159	SP ACCEL G TEN	SILE FAILURE OF SUPPORT STRUTS	PREDOMINANT FREQUENCY 4.5 HZ. ALL MODES.
	SMA 15	3.490	. 342	SP ACCEL G BEN	IDING OF PUMP CASING	FREQUENCY 7 HZ , 5% DAMPING
	RES13A	2.868	. 269			GRPMODE LISTS GROUPS INCLUDED IN RESI3A

PAGE

-1

1	CATEGOR	Y: 14.0	LARGE VERT	ICAL PUMPS	
GROUP	MEDIAN	BETA	FRAG. PARAM	. FAILURE MODE	NOTES
GRP14A	2.289	. 417	SP ACCEL G	RUPTURE OF ANCHOR BOLTS DUE TO LARGE MOM ENTS FROM VERTICAL INTAKE COLUMN	BOTH MODES: PREDOMINANT FREQUENCY, 3HZ. PERCENTILE 90 IS TENTATIVE
GRP14B	4.577	. 417	SP ACCEL G	RUPTURE OF VERTICAL INTAKE COLUMN	BOTH MODES: PREDOMINANT FREQUENCY, 3HZ.
RES14A	2.207	. 387			GRPMODE LISTS GROUPS INCLUDED IN RES14A

🔶 👘 👘

1	CATEGOR	Y: 15.0	MOTOR DRIVEN COMPRESSORS AND PUMPS	
GROUP	MEDIAN	BETA	FRAG. PARAM. FAILURE MODE	NOTES
SMA 1 6	3.190	. 338	ACCEL G IMPELLER DEFLECTION	FREQUENCY 7 HZ , 5% DAMPING FREQUENCY 7 HZ , 5% DAMPING
SMA17	11.705	. 419	ACCEL G MOUNTING BOLT FAILURE	FREQUENCY 7 HZ , 5% DAMPING Frequency 7 Hz , 5% Damping
SMA18	4.665	. 413	Z PRD AC G FLANGE BENDING	ZION SAFETY INJECTION PUMP , RIGID
SMA19	7.171	. 278	Z PRD AC G SHAFT BENDING	ZION SAFETY INJECTION PUMP, RIGID
SMA20	8.248	. 318	Z PRD AC G THRUST BEARING FAILURE	ZION CENTR. CHARGING PUMP, RIGID
SMA21	39.646	. 304	Z PRD AC G SHAFT DEFLECTION	ZION CENTR. CHARGING PUMP, RIGID
SMA22	32.460	. 408	Z PRD AC G GENERIC FUNCTION	GENERIC PUMPS & COMPR., RIGID
RES15A	4.315	, 340		GRPMODE LISTS GROUPS INCLUDED IN RESI5A
RES15B	3,185	, 337		GRPMODE LISTS GROUPS INCLUDED IN RESISB

PAGE

÷

1	CATEGOR	Y: 16.0	LARGE MOTO	R OPERATED VALVES (> 41N.)	
CROUP	MEDIAN	BETA	FRAG. PARAM	. FAILURE MODE	NOTES
GRP16A	17.305	. 275	SP ACCEL G	BREAKS AT WELD ENDS	PREDOMINANT FREQUENCY: MODE #1, 10-20 HZ. MODE #2, 30-50 HZ. MODE #3, 30-50HZ.
GRP 1 GB	10.623	. 257	SP ACCEL G	RUPTURE OF PIPE SUPPORT AT NOZZLE	ALL MODES: PREDOMINANT FREQUENCIES 2-10 HZ.
GRP16C	7.606	.314	SP ACCEL G	LOSS OF CONTROL AIR	BUTTERFLY VALVE PREDOMINANT FREQUENCY: RIGID.
GRP16D	11,190	, 358	SP ACCEL G	ELECTRICAL FAILURE IN ACTUATOR	ALL MODES, PREDOMINANT FREQUENCY RIGID. Ball valve with actuator and logic cabinet
GRP16G	10.591	, 476	PK ACCEL G	FRACTURE OF VALVE ACTUATOR TOP COVER AT CONNECTION TO VALVE BODY	PREDOMINANT FREQUENCY: MODE #1 VALVE ACTUATOR 27.7 HZ. MODE " SPRING MECHANISM 10-12 HZ. RUGGLES KLINGEMAN TRIP VALVE.
GRP16H	7.029	. 271	PK ACCEL G	FAILURE OF SPRING MECHANISM DUE TO EXCES SIVE PLASTIC DEFORMATION	PREDOMINANT FREQUENCY: MODE 401 VALVE ACTUATOR 27.7 HZ. NODE " SFRING MECHANISM 10-12 HZ. RUGOLES KLINGEMAN TRIP VALVE.
SMA23	7.588	,646	PK ACCEL G	DISTORTION OF EXTENDED OPERATOR STRUCTUR E	RIGID
SMA24	7.316	.350	SP ACCEL G	OIL RESERVOIR HOLD DOWN BOLTS	RIGID
SMA25	43.816	. 468	Z PD PK AC	GENERIC FUNCTION	RIGID
RES16A RES16B	4.829 7.606	.317 .315			GRPMODE LISTS GROUPS INCLUDED IN RESIGA GRPMODE LISTS GROUPS INCLUDED IN RESIGB

,

at also C

C · ·

	CATEGOR	Y: 17.0	LARGE RELIE	F AND CHECK VALVES (> 4IN.)		
GROUP	MEDIAN	BETA	FRAG. PARAM.	FAILURE MODE	NOTES	
GRP17C	8.917	, 132	SP ACCEL G	DISC BECOMES DISENGAGED	PREDOMINANT	FREQUENCIES
					BOTH MODES:	RIGID
RP17D	12.654	. 130	SP ACCEL G	DISC BECOMES BOUND	PREDOMINANT	FREQUENCIES
					BOTH MODES:	RIGID
SMA26	47.465	. 474	SP ACCEL G	GENERIC FUNCTION	RIGID	`
					RIGID	
RES17A	8,900	. 130			GRPMODE LIST	S GROUPS INCLUDED IN RES17A

۵. ا

v t

C ' '

l	CATEGORY:	18.0 SMALL MISCELLANEOUS VALVES (< 41N.)	
GROUP	MEDIAN B	ETA FRAG. PARAM. FAILURE MODE	NOTES
GRP13B	15,95 9	.620 SP ACCEL G INTERNAL DAMAGE	PREDOMINANT FREQUENCIES ARE 20-30 HZ. Damping is 5%
GRP18C	21,563	.714 SP ACELL G STRUCTURAL FATIGUE	PREDOMINANT FREQUENCIES ARE 20-30 HZ.
RES13A	12,466	. 544	DAMPING IS 5% GRPMODE LISTS GROUPS INCLUDED IN RES18A

, .

1	CATEGOR	Y: 19.0	HORIZONTAL	MOTORS	MODE	NOTES
GROUP	MEDIAN	BETA	FRAG. PARAM	I. FAILORE		
GRP19A	12.429	.360	ACCEL G	BINDING OF F	ROTATING PARTS	PREDUNINANT FREQUENCIES ARE > 33 HZ.
GRP 19B	20.801	. 275	ACCEL G	RUPTURE OF A	ANCHOR BOLTS	PREDOMINANT FREQUENCIES ARE > 33 HZ.
RES19A	12.078	. 325				GRPMODE LISTS GROUPS INCLUDED IN RES19A

.

æ9

ŧ

-

Ň

4)

ò	` •	

·		1 GROUP	CATEGORY MEDIAN	(: 20.0 BETA	GENERATORS FRAG. PARAM	FAILURE MODE	NOTES
		GRP20A	5.948	. 441	SP ACCEL G	CONTROL FAILURE	PREDOMINANT RESPONSE FREQUENCIES: 1ST MODE 7.0 TO 20.6 HZ. 2ND MODE 8.3 TO 13.8 HZ. DIESEL GENERATORS.
		GRP20B	5.948	. 441	SP ACCEL G	OIL LEVEL REGULATOR	PREDOMINANT RESPONSE FREQUENCIES: 1ST MODE 7.0 TO 20.6 HZ. 2ND MODE 8.3 TO 13.8 HZ. DIESEL GENERATORS.
		GRP20C	5.646	. 476	SP ACCEL G	ANCHOR BOLT FAILURE	PREDOMINANT RESPONSE FREQUENCIES: 15 HZ. DIESEL GENERATORS.
		CRP20D	10,350	. 279	SP ACCEL G	CRANKSHAFT LOCK UP	PREDOMINANT RESPONSE FREQUENCIES: 15 HZ. DIESEL GENERATORS.
	19	SMA28	. 931	, 354	SP ACCEL G	RELAY CHATTER	FREQUENCY 30 HZ , 5% DAMPING
	33	SMA29	1,960	.361	SP ACCEL G	FAILED RELAY	FREQUENCY 11 HZ , 5% DAMPING
		SMA30	. 735	. 397	SP ACCEL G	VALVE TRIP	FREQUENCY 22 HZ , 5% DAMPING
		SMA31	8.935	. 546	SP ACCEL G	STRUCTURAL	RIGID
		RES20A	. 651	. 330			GRPMODE LISTS GROUPS INCLUDED IN RES20A

1	CATEGOR	Y: 21.0	BATTERIES		
GROUP	MEDIAN	BETA	FRAG. PARAM.	FAILURE MODE	NOTES
GRP21A	2.289	. 417	ACCEL G	FAILURE OF BATTENS	PREDOMINANT FREQUENCY IS >25 HZ. Battery racks
GRP21B	20.801	. 275	ACCEL G	CASE BREAKAGE DUE TO A BAD STAND	PREDOMINANT FREQUENCY >15 HZ. DC POWER BATTERIES.
SMA32	17.116	. 484	SP ACCEL G	ANCHOR BOLTS	FREQUENCY 8 HZ , 5% DAMPING
SMA33	5,259	. 385	SP ACCEL G	CASE CRACKING & PLATE FAILURE	FREQUENCY 8 HZ , 5% DAMPING
RES21A	2.287	. 418			GRPMODE LISTS GROUPS INCLUDED IN RES21A

....

-345

Ð

6	Se

I	CATEGOR	XY: 22.0	SWITCHGEAR		
GROUP	MEDIAN	BETA	FRAG. PARAM	FAILURE MODE	NOTES
GRP22A	2.330	, 486	SP ACCEL G	SPURIOUS OPERATION OF A PROTECTIVE RELAY	FREQUENCIES:
					SIDE TO SIDE = 6-11 HZ. FRONT TO BACK = 16-20 HZ. VERTICAL = >30 HZ. 26" WIDE METALCLAD SWITCHGEAR.
SMA34	2.588	1.510	SP ACCEL G	RELAY CHATTER	FREQUENCY 5-10 HZ , 5% DAMPING
SMA35	9 .58 3	.818	SP ACCEL G	BREAKER TRIP	FREQUENCY 5-10 HZ , 5% DAMPING
SMA36	18,174	. 881	SP ACCEL G	STRUCTURAL	FREQUENCY 5-10 HZ , 5% DAMPING
RES22A	2.330	, 486			GRPMODE LISTS GROUPS INCLUDED IN RES22/

1405 (A)

تے .

.

1	CATEGOR	Y: 23.0	DRY TRANSF	DRMERS		
GROUP	MEDIAN	BETA	FRAG. PARAM	. FAILURE MODE		NOTES
GRP23A	4.660	. 503	SP ACCEL G	INTERNAL STRUCTURAL FAILURE, SHOR ECTRICAL CONNECTION	RT OF EL	FRAGILITY PARAMETER AT FLOOR TO TRANSFORMER INTERFACE PREDOMINANT FREQUENCIES: COOLER UNIT: 7.5, 7.7 HZ. INTERNAL STRUCTURE: 7.2, 7.6 HZ. HV PORCELAIN: 8.1, 10.8 HZ.
GRP23B	9.526	. 680	SP ACCEL G	FAILURE OF SUPPORT FRAME		PREDOMINANT FREQUENCY FOR ALL MODES: >10 HZ.
GRP23C	3.108	. 351	SP ACCEL G	RUPTURE OF ANCHOR BOLTS		PREDOMINANT FREQUENCY FOR ALL MODES: >10 HZ.
SMA37	13.330	. 408	SP ACCEL G	STRUCTURAL		FREQUENCY 5-10 HZ , 5% DAMPING
RES23A	2.780	. 327			•	GRPMODE LISTS GROUPS INCLUDED IN RES23A

, » **@**

.

u)

.

e

1	CATEGOR	Y: 24.0	ALR HANDLI	NG UNITS	
GROUP	MEDIAN	BETA	FRAG. PARAM	FAILURE MODE	NOTES
GRP2/1A	6.215	. 360	FLOOR AC G	STRUCTURAL FAILURE	PREDOMINANT RESPONSE FREQUENCY
					IS 21 HZ. HVAC FANS.
SMA38	2.746	. 410	SP ACCEL G	RUBBING OF FAN ON HOUSING	FREQUENCY 4.3 HZ , 5% DAMPING
SMA39	2.945	. 416	SP ACCEL G	RUBBING OF MOTOR ROTOR ON HOUSING	FREQUENCY 4.3 HZ , 5% DAMPING
SMA40	11.822	. 424	SP ACCEL G	GENERIC FUNCTION	FREQUENCY 10-30 HZ , 5% DAMPING
					FREQUENCY 10-30 HZ , 5% DAMPING
RES24A	2.238	. 337			GRPMODE LISTS GROUPS INCLUDED IN RES24A

Эж (ь) **С**

I

I		CATEGOR	Y: 26.0	INSTRUMENT	PANELS AND RACKS	
GE		NEDIAN	BETA	FRAG. PARAM	FAILURE MODE	NOTES
GF	RP26A	2.079	. 275	ACCEL G	INSTRUMENT FAILURE	PREDOMINANT FREQUENCIES:
						MODE #1 RIGID HODE #2 11 HZ. FERCENTILES ARE FACTORS TIMES SSE. INSTRUMENT RACKS.
GF	7P26B	4.933	. 383	ACCEL G	WELD FAILURE	PREDOMINANT FREQUENCIES:
						NODE #1 RIGID MODE #2 11 HZ. PERCENTILES ARE FACTORS TIMES SSE. INSTRUMENT RACKS.
SI	1A-11	2,588	1.510	SP ACCEL G	RELAY CHATTER	FREQ 5-10 HZ , 5% DAMPING
SM	1A42	9,583	.818	SP ACCEL G	BREAKER TRIP	FREQ 5-10 HZ , 5% DAMPING
						FREQ 5-10 HZ , 5% DAMPING
198	1A43	18.174	. 881	SP ACCEL G	STRUCTURAL	FREQ 5-10 HZ , 5% DAMPING
RE	ES26A	1.151	. 759			GRPMODE LISTS GROUPS INCLUDED IN RES26

1	CATEGOR	Y: 27.0	CONTROL PAN	ELS AND RACKS	
GROUP	MEDIAN	BETA	FRAG. PARAM.	FAILURE MODE	NOTES
				CONDOMENT MALEUNICTION	PREDOMINANT FREQUENCY IS
GRP27B	16.827	. 407	SP AUGEL G	COMPONENT MALFONCTION	>20 HZ. STRUCTURAL FAILURE UNLIKELY WITH MODERN DESIGN.
GRP27C	25.972	. 223	SP ACCEL G	STRUCTURAL MOUNTING OF CAR	INETS PREDOMINANT FREQUENCY FOR ALL
					MODES >12 HZ. THESE MODES OF FAILURE ALSO APPLY TO BREAKER PANELS, AUXILLARY RELAY PANELS, INSTRUMENT RACKS AND DIESEL GENERATORS.
GRP27D	24.655	.159	SP ACCEL G	STRUCTURAL MOUNTING OF CO	PREDOMINANT FREQUENCY FOR ALL
					MODES >12 HZ. THESE MODES OF FAILURE ALSO APPLY TO BREAKER PANELS, AUXILIARY RELAY PANELS, INSTRUMENT RACKS AND DIESEL GENERATORS.
SMA44	15.643	. 436	SP ACCEL G	ELECTRICAL MALFUNCTION	FREQUENCY 5-10 HZ , 5% DAMPING
SMA46	9,583	, 818	SP ACCEL G	BREAKER TRIP	FREQUENCY 5-10 HZ , 5% DAMPING
SMA47	18,174	. 881	SP ACCEL G	STRUCTURAL	FREQUENCY 5-10 HZ , 5% DAMPING
RES27A	11.460	, 499			GRPMODE LISTS GROUPS INCLUDED IN RES27A

,

the state of the s

• •

	1	CATEGORY	: 30.0	LOCAL INST	RUMENTS	
	GROUP	MEDIAN	BETA	FRAG. PARAM	FAILURE MODE	NOTES
	GRP30A	8.962	. 302	SP ACCEL G	RELAY CHATTER	PREDOMINANT RESPONSE FREQUENCY IS 5 - 35 HZ DAMPING IS 5%. THIS APPLIES TO ALL FAILURE MODES.
	GRP30B	10.623	. 257	SP ACCEL G	LOOSENING OF FASTENERS	PREDOMINANT RESPONSE FREQUENCY IS 5 - 35 HZ DAMPING IS 5%. THIS APPLIES TO ALL FAILURE MODES.
	GRP30C	10.623	. 257	SP ACCEL G	BASE STRUCTURAL FATIGUE	PREDOMINANT RESPONSE FREQUENCY IS 5 - 35 HZ DAMPING IS 5%. THIS APPLIES TO ALL FAILURE MODES.
200	GRP30D	11.740	. 201	SP ACCEL G	SIGNAL DRIFT	PREDOMINANT FREQUENCIES MODE #1 10-15 HZ MODE #2 29-30 HZ MODE #3 NOT GIVEN
-	GRP30E	13.437	, 223	SP ACCEL G	CONTACT CHATTER	PREDOMINANT FREQUENCIES MODE #1 10-15 HZ. MODE #2 29-30 HZ. MODE #3 NOT GIVEN
	GRP30F	16.710	, 325	SP ACCEL G	SET POINT DRIFT	PREDOMINANT FREQUENCIES MODE #1 10-15 HZ. MODE #2 29-30 HZ. MODE #3 NOT GIVEN
	SMA48	47.465	. 474	Z PRD AC G	ELECTRICAL FUNCTION	RIGID
•	RES30A	7.683	, 203			GRPMODE LISTS GROUPS INCLUDED IN RESSOA

Ð

G.

æ

Ē

0	1

GROUP	MEDIAN	BETA	FRAG. PARAM	. FAILURE MODE	NOTES
GRP31A	15.534	. 361	SP ACCEL G	CHATTER OF CONTACTS	DAMPING IS 5% FOR ALL MODES. Predominant frequency for All modes >15 HZ.
GRP31B	20.801	. 275	SP ACCEL G	STRUCTURAL ANCHORING OF CABINET BASE	DAMPING IS 5% FOR ALL MODES. PREDGMINANT FREQUENCY FOR ALL MODES >15 HZ.
GRP310	24.655	. 159	SP ACCEL G	STRUCTURAL MOUNTING OF COMPONENT IN CABI NET	DAMPING IS 5% FOR ALL MODES. PREDOMINANT FREQUENCY FOR ALL MODES >15 HZ.
SMA49	2,588	1.510	SP ACCEL G	RELAY CHATTER	FREQUENCY 5-10 HZ , 5% DAMPING
SMA50	9.583	.818	SP ACCEL G	BREAKER TRIP	FREQUENCY 5-10 HZ , 5% DAMPING
SMA51	13.174	. 831	SP ACCEL G	STRUCTURAL	FREQUENCY 5-10 HZ , 5% DAMPING
RES31A	14.331	. 291			GRPMODE LISTS GROUPS INCLUDED IN RES31/

in C

1	CATEGOR	Y: 33.0	LIGHT FIXTL	RES	
GROUP	MEDIAN	BETA	FRAG. PARAM.	FAILURE MODE	NOTES
GRP33A	9,193	. 201	SP ACCEL G	DISLODGING OF AIR DUCT BLANKING CLIPS	FREQ. 4.5-6.5 HZ , DAMP 2%
RES33A	9.196	. 201			GRPMODE LISTS GROUPS INCLUDED I

62

2)

IN RES33A

1	CATEGO	RY: 35.0	INVERTERS	
GROUP	MEDIAN	BETA	FRAG. PARAM.	FAILURE MODE

HOTES

SMA52 15.643 ,436 SP ACCEL G RELAY TRIP

FREQUENCY 5-10 HZ , 5% DAMPING

GROUP	CATEGOR MEDIAN	99: 36.0 BETA	CABLE TRAY	S FAILURE MODE	NOTES
GRP26A	3,108	, 360	SP ACCEL G	FAILURE OF SUPPORTS	PREDOMINANT RESPONSE FREQUENCY IS 5-10 HZ. FOR ALL MODES.
GRP36B	5.847	. 406	SP ACCEL G	RUPTURE OF PARTS BETWEEN SUPPORTS	PREDOMINANT RESPONSE FREQUENCY IS 5-10 HZ. FOR ALL MODES.
SMA53	2,829	,570	Z PD PK AC	CABLE SUPPORT SYSTEM	REFERENCED TO ZPA
RESSGA	2.229	. 392			GRPMODE LISTS GROUPS INCLUDED IN RES36A

•

.

)>

~

	1 GROUP	CATEGORY MEDIAN	: 37.0 BETA	DUCTING FRAG, PARAM	. FAILURE MODE	NOTES
	GRP37A	7.050	. 271	SP ACCEL G	CORNER TEARING	PREDOMINANT FREQUENCY FOR Response 8.5 - 11.0 HZ. Damping at 7% Hvac ducts.
	GRP37B	7.142	, 677	SP ACCEL G	SUPPORT FAILURE	PREDOMINANT FREQUENCY FOR RESPONSE 8.5 - 11.0 HZ. DAMPING AT 7% HVAC DUCTS.
	GRP37C	7.980	. 806	SP ACCEL G	JOINT SEPARTION	PREDOMINANT FREQUENCY FOR RESPONSE 8.5 - 11.0 HZ. DAMPING AT 7% HVAC DUCTS.
	GRP37D	6.693	. 302	SP ACCEL G	RUPTURE OF DUCT BETWEEN SUPPORTS	PREDOMINANT FREQUENCY FOR Response 5 - 10 Hz. All Modes
205	GRP37E	9.033	. 445	SP ACCEL G	GROSS BENDING FIRM	PREDOMINANT FREQUENCY FOR Response to Hz. All Modes. GRENODE LISTS GROUPS INCLUDED IN RES374

	I	CATEGOR	Y: 39.0	SWITCHYARD	EQUIPMENT	
	GROUP	MEDIAN	BETA	FRAG. PARAM	FAILURE MODE	NOTES
	GRP39A	. 766	.517	Z PRD ACCE	PORCELAIN FRACTURE	FREQUENCIES
						151 MODE = 1.5-4.0 HZ. 2ND MODE = 4.5-3.0 HZ.
	CRP39B	.317	. 449	Z PRD ACCE	A B CIRCUIT BREAKER FAILURE	IN-SITU TESTING. FRAGILITY
						PARAMETER AT CIRCUIT BREAKER FOOTING. THESE ARE SWITCHYARD CIRCUIT BREAKERS. TORSIGHAL FAILURE. MODES OF VIBRATION: 1ST 2.4 - 3.4 HZ. 2ND 7.3 - 12.2 HZ. AIR BLAST CIRCUIT BREAKERS.
	GRP39C	.914	.610	Z PRD ACCE	H V TRANSFORMER STRUCTURAL FAILURE	FRAGILITY PARAMETER AT FLOOR
20			:	:		TO TRANSFORMER INTERFACE PREDONINANT FREQUENCIES: CODLER UNIT: 7.5, 7.7 HZ. INTERNAL STRUCTURE: 7.2, 7.6 HZ. HV PORCELAIN: 8.1, 10.8 HZ.
σ	RES39A	. 298	. 416			GRPHODE LISTS GROUPS INCLUDED IN RES39A

¥Ì

•

6)

<u>)</u>,

.h

 · •	. *	54	.: "	Ō.	REE	AY	S

•	DETA	FRAG. PARAM.	FAILURE MODE
 • • · · · •			

GREADA 5.669 1.164 SP ACCEL G RELAY CHATTER

SHA 45	2.588	1.510	SP ACCEL	G	RELAY	CHATTER
SQ 1 11 11 10				~		

RES40A 3.990 .893

NOTES

PREDOMINANT RESPONSE FREQUENCY 20 TO 33 HZ.

5-10 HZ , 5% DAMPING

GRPHODE LISTS GROUPS INCLUDED IN RES40A

1	CATEGOR	Y: 41.0	CIRCUIT BR	EAKERS
GROUP	HEDIAN	BETA	FRAG. PARAM	. FAILURE MODE
SMA54	2.588	1,510	SP ACCEL G	RELAY CHATTER
SHA55	9.583	. 818	SP ACCEL G	RELAY TRIP
SHA56	18.174	, 881	SP ACCEL G	STRUCTURAL
SMA57	9,583	. 818	SP ACCEL G	BREAKER TRIP
SMA58	18.174	, 881	SP ACCEL G	STRUCTURAL
ries41A	7.630	.710		

5-10 HZ , 5% DAMPING FREQUENCY 5-10 HZ , 5% DAMPING GREMODE LISTS GROUPS INCLUDED IN RES41A

NOTES

I	CATECOR	Y: 48.0	RECO	MBINER	5
CROUP	MEDIAN	BETA	FRAG.	PARAM	. FAILURE MODE
GRP48A	8,240	.144	FLOOR	AC G	PIPE DEFORMATION

RES43A 8.243 .144

NOTES

THE TEST WERE NOT TAKEN TO

FAILURE. PREDOMINANT FREQUENCIES: MODE ©1 9.5 HZ. MODE ©2 21.5 HZ.

GRPMODE LISTS GROUPS INCLUDED IN RES48A

de.
1	CATEGOR	XY: 49.0	CERAMIC II	NSULATORS	
GROUP	MEDIAN	BETA	FRAG. PARA	1. FAILURE MODE	NOTES
CRP49A	. 332	. 807	BASE ACCEL	FRACTURE OF PORCELAIN INSULATION	FREQ. 1-4 HZ
SMA59	4,998	, 3 53	PK GD AC G	FRACT OF INSULATORS	REFERENCED TO ZPA
RES49A	, 332	. 807			GRPMODE LISTS GROUPS INCLUDED IN RES49.

, »

C	,è	ζ μ	

CROUP	CATEGOR	Y: 50.0 BETA	D SPENT FUEL FRAG. PARAM	FAILURE MODE
GRP50A RES50A	. 276 . 276	. 471 . 471	FLOOR AC G	DESTRUCTION OF SHEAR CONNECTION BETWEEN

:

(#

NOTES

FREQ. 7-8 HZ

.

GRPHODE LISTS GROUPS INCLUDED IN RESSOA

.

211

6.0 DATA BASE DESCRIPTION

In its current structure, the data base consists of 12 tables. Some of the data have been grouped into tables that were structured for convenience in the fragility data reduction process. Others were structured to allow convenient storage of information. The data base was structured on LLNL's CDC 7600 computers through the use of the FRAMIS data base management system, and while access to the data is most conveniently accomplished through FRAMIS, it can be accomplished with the tables in this report as illustrated below.

6.1 RELATIONAL STRUCTURE

Each of the 12 tables contains not only lists of data, but also entities that allow relationships to be constructed between tables. For example, many of the tables contain an appropriate category number along with each set of This allows relationships to be constructed between all of the tables data. that contain category numbers. These relationships can be used to build new tables representing compilations or subsets of the other tables. It is also possible to relate data from tables that do not contain common entities if an intermediate table containing an entity common to both is available. For example, the fragilities in table RESULTS* can be related to the expert opinions in table OPINION by first relating RESULTS to GRPMODE using entity RESNO, then relating GRPMODE to GRPDEF using the entity GRPNO, and finally relating GRPDEF to OPINION using the entity OPNO. Applying this procedure to RESOLA (the first entry in table RESULTS) shows that three expert opinions (and two calculated fragilities) were used in the development of RESOLA. The 10th, 50th, and 90th percentile opinions (along with other information) for each can be found in table OPINION using the pertinent value of OPNO. Relational operations such as these are quickly and easily accomplished using FRAMIS.

* See Section 6.2 for descriptions and contents of individual tables.

6.2 DATA TABLES

Computer listings of the data tables that comprise the data base are presented in alphabetical order in this section along with explanations of the contents of each. The name assigned to each column of data and the data type are included in each description since this information is useful when using FRAMIS.

A. BRANCH

Table BRANCH contains load scale factors for branch connections of various representative pipes (see Table PIPE for other pipe elements). It consists of 10 columns as follows:

Column No.	Column name	Type	Contents
1	LINE	Integer	A reference line number.
2	SIZER	Floating	The nominal diameter of the pipe run (in.).
3	SIZEB	Floating	The nominal diameter of the pipe branch. (in.)
4	SCHED	Character	The pipe schedule.
5	MAT	Character	Material: SS = stainless steel; CS = carbon steel.
6	TEMP	Floating	Temperature (°F)
7	FUPR	Floating	Unreinforced branch; scale factor for run.
8	FUPB	Floating	Unreinforced branch; scale factor for branch.
9	FRPR	Floating	Reinforced branch; scale factor for run.
10	FRPB	Floating	Reinforced branch; scale factor for branch.

BRANC

)

B. CATEGORY

.

Table CATEGORY relates the descriptions of the generic categories of components to the numbers used to identify data for these categories. It consists of three columns of data as follows:

Column No.	Column name	Type	Contents
1	CATNO	Floating	A floating point number unique to this particular description. (Note: CATNO is a subgrouping of CAT.)
2	САТ	Integer	An integer number unique to a class of generic components.
3	DES	Character	The description of the generic category or specific component represented uniquely by CATNO and generically by CAT.

CATEGORY

CATNO CAT	DESCRIPTION
CATNO CAT 1.0 1 2.0 2 2.1 2 2.2 2 3.0 3 4.0 4 5.0 5 6.0 6 7.0 7 8.0 8 9.0 9 10.0 10 11 12 13.0 13 14.0 14 15.0 15 16.0 16 17.0 17 18.0 18 19.0 20 223.0 22 23.0 23 24.0 24 25.0 23 24.0 24 25.0 33 24.0 24 25.0 35 36.0 36 37.0 37 38.0 38 39.1 39 39.2 39 39.3 39 39.3 39	DESCRIPTION REACTOR CORE ASSEMBLY REACTOR COOLANT SYSTEM VESSELS REACTOR PRESSURE VESSEL PRESSURIZER STEAM GENERATOR PRIMARY COOLANT PIPING LARGE PIPING (> 21N. < D < \$1N.) SMALL PIPES (< 21N.) INTERMEDIATE PIPING (21N. < D < \$1N.) SMALL PIPES (< 21N.) LARGE VERTICAL STORAGE VESSELS WITH FORMED HEADS LARGE VERTICAL STORAGE TANKS WITH FLAT BOTTOMS LARGE VERTICAL STORAGE TANKS WITH FLAT BOTTOMS LARGE VERTICAL STORAGE TANKS WITH FLAT BOTTOMS LARGE VERTICAL CONTAL VESSELS SMALL-MEDIUM VESSELS AND HEAT EXCHANGERS BURIED PIPE REACTOR COOLANT PUMP LARGE VERTICAL CONTRESSONS AND PUMPS UARGE VERTICAL CONTRESSONS AND PUMPS LARGE VERTICAL CONTRESSONS AND PUMPS LARGE RELIEF AND CHECK VALVES (> 41N.) SMALL MISCELLANEOUS VALVES (> 41N.) SMALL MISCELLANEOUS VALVES (< 41N.) HORIZONTAL MOTORS GENERATORS BATTERIES SWITCHGEAR DRY TRANSFORMERS AIR HANDLING UNITS INSTRUMENT PANELS AND RACKS CONTROL PANELS AND RACKS CONTROL PANELS AND RACKS MOTOR CONTROL CENTERS LOCAL INSTRUMENTS MOTOR CONTROL CENTERS LOCAL INSTRUMENTS MOTOR CONTROL CENTERS LOCAL INSTRUMENTS MOTOR CONTROL CENTERS LOCAL INSTRUMENTS MOTOR CONTROL CENTERS LIGHT FIXTURES COMMUNICATIONS EQUIPMENT INVERTERS SWITCHYARD EQUIPMENT INVERTERS SWITCHYARD EQUIPMENT INVERTERS SWITCHYARD EQUIPMENT INVERTERS CABLE TRAYS DUCTING HYDRAULIC SNUBBERS SWITCHYARD EQUIPMENT INVERTERS CABLE TRAYS DUCTING HYDRAULIC SNUBBERS SWITCHYARD EQUIPMENT INVERTERS CABLE TRAYS DUCTING HYDRAULIC SNUBBERS SWITCHYARD EQUIPMENT INVERTERS COMMUNICATIONS FORMERS HYDRAULIC SNUBBERS SWITCHYARD EQUIPMENT INVERTERS COMMUNICATIONS FORMERS HYDRAULIC SNUBBERS SWITCHYARD EQUIPMENT RELAYS CIRCUIT BREAKERS PEOMINERS
40.0 40 41.0 41 48.0 48 49.0 49 50.0 50	RELAYS CIRCUIT BREAKERS RECOMBINERS CERAMIC INSULATORS SPENT FUEL RACKS

\$

٠

C. GRPDEF

5

Table GRPDEF identifies the data used as input to program FRAGSTAT, which resulted in the data contained in Table GRPMODE. It consists of three columns as follows:

Column No.	<u>Column name</u>	Туре	Contents
1	GRPNO	Character	An identifying code relating to a particular set of failure mode data (see Table GRPMODE).
2	EXPLAN	Character	A worded explanation of the data used in the computation of the associated GRPNO set of failure mode data. Usually a list (by OPNO) of those particular sets of expert opinions input to FRAGSTAT for one failure mode (See Tables GRPMODE and OPINION).

GRPDEF

GRPNO	ØPNØ	EXPLAN
GRP01A GRP01B GRP01D GRP01D GRP02B GRP02C GRP02C GRP02E GRP02E GRP02E GRP02E GRP02I	1 23 300 20 17 11 27 24 13	OPNO 1 ALONE OPNO 2 ALONE OPNO 3 ALONE SMANO 1 ALONE SMANO 2 ALONE OPNO 20 ALONE OPNO 19 ALONE OPNO 17 ALONE OPNO 11 ALONE OPNO 27 ALONE OPNO 24 ALONE OPNO 14 ALONE OPNO 13 ALONE
GRPO2J GRPO2J GRPO2K	26 28 300	OPNO 26 AND 28 AS INDIVIDUAL SUBGROUPS OPNO 26 AND 28 AS INDIVIDUAL SUBGROUPS SMANO 60 ALONE
GRPOBA GRPOBA GRPO5A	35 300 300	MASTER PIPING CURVE MASTER PIPING CURVE MASTER PIPING CURVE
GCP06A GRP07A OKP07B GRP08A GRP08B GRP08C	300 75 76 77 78 79	MASTER PIPING CURVE OPNO 75 ALONE OPNO 76 ALONE OPNO 77 ALONE OPNO 78 ALONE OPNO 78 ALONE OPNO 79 ALONE
GRP09A GRP09A GRP10A	83 84 85	OPNO 83 AND 84 AS INDIVIDUAL SUBGROUPS OPNO 83 AND 84 AS INDIVIDUAL SUBGROUPS OPNO 85 ALONE
GRP10C GRP10C GRP10C GRP10D GRP12A GRP12B GRP12B GRP13B GRP13B GRP14A CRP14B	86 89 300 300 93 300 95 99 100	OPNO 87 ALONE OPNO 86 AND 89 AS INDIVIDUAL SUBGROUPS OPNO 86 AND 89 AS INDIVIDUAL SUBGROUPS SMANO 10 ALONE MASTER PIPING CURVE OPNO 92 ALONE OPNO 93 ALONE OPNO 94 ALONE OPNO 95 ALONE OPNO 95 ALONE OPNO 99 ALONE OPNO 100 ALONE
GEP 158 GEP 158 GEP 158 GEP 158 GEP 158 GEP 158 GEP 158 GEP 158 GEP 168 GEP 158 GEP 15	300 300 300 300 300 124 123 122 122 125 300	SMAND 18 ALONE SMAND 19 ALONE SMAND 20 ALONE SMAND 21 ALONE SMAND 16 ALONE SMAND 16 ALONE OPHO 124 ALONE OPHO 124 ALONE OPHO 123 ALONE OPHO 125 AND 121 AS INDIVIDUAL SUBGROUPS OPHO 125 AND 121 AS INDIVIDUAL SUBGROUPS SMAND 23 ALONE

-

GRPNÖ	OPNO	EXPLAN ,
GRP16G GRP17D GRP17D GRP18A GRP18B GRP18B GRP18B GRP18B GRP18C GRP18C GRP18C GRP18C GRP18C GRP18C	GRPNO OPNO GRP16G 128 GRP16H 129 GRP17D 130 GRP18A 132 GRP18B 134 GRP18B 135 GRP18B 136 GRP18B 136 GRP18B 137 GRP18B 136 GRP18B 136 GRP18B 137 GRP18B 136 GRP18B 137 GRP18B 137 GRP18B 136 GRP18B 137 GRP18B 137 GRP18B 137 GRP18C 139 GRP18C 139 GRP20A 140 GRP20B 151 GRP20C 153 GRP20B 155 GRP20C 300 GRP20A 150 GRP20A 150 GRP20A 150 GRP20A 150 GRP20A 150 </td <td>OPNO128ALONEOPNO129ALONEOPNO130ALONEOPNO131ALONEOPNO132ANDOPNO132AND133ASONESUBGROUPOPNO134AND135ASONESUBGRPAAND134AND135ASOPNO134AND135ASONESUBGRPAAND136AND137ASINDIVIDUALSUBGRPSOPNO134AND135ASOPNO134AND135ASONESUBGRPAOPNO134AND135ASOPNO134AND135ASONESUBGRPAAND136AND137ASINDIVIDUALSUBGRPSOPNO139AND140ASONESUBGRPAAND139AND140ASOPNO139AND140ASONESUBGRPAAND138AND141ASOPNO139AND140ASONESUBGRPSOPNO147ALONEOPNO147ALONEOPNO147<tr< td=""></tr<></td>	OPNO128ALONEOPNO129ALONEOPNO130ALONEOPNO131ALONEOPNO132ANDOPNO132AND133ASONESUBGROUPOPNO134AND135ASONESUBGRPAAND134AND135ASOPNO134AND135ASONESUBGRPAAND136AND137ASINDIVIDUALSUBGRPSOPNO134AND135ASOPNO134AND135ASONESUBGRPAOPNO134AND135ASOPNO134AND135ASONESUBGRPAAND136AND137ASINDIVIDUALSUBGRPSOPNO139AND140ASONESUBGRPAAND139AND140ASOPNO139AND140ASONESUBGRPAAND138AND141ASOPNO139AND140ASONESUBGRPSOPNO147ALONEOPNO147ALONEOPNO147 <tr< td=""></tr<>
GRPP20A GRPP20B GRPP20B GRPP20B GRPP20D GRPP20D GRPP20D GRPP20D GRPP20D GRPP20D GRPP20D GRPP20D GRPP20D GRPP21D GRPP22A GRPP2A GRPP22A GRPP22A GRPP22A GRPP22A GRPP22A GRPP22A GRPPA GRPPA GRPA GR		OPNO 148 ALONE OPNO 149 AND 150 AS ONE SUBGROUP OPNO 149 AND 150 AS ONE SUBGROUP OPNO 151 AND 155 AS ONE SUBGROUP OPNO 153 ALONE OPNO 154 ALONE SMANO 28 ALONE SMANO 29 ALONE SMANO 30 ALONE SMANO 30 ALONE OPNO 156 ALONE OPNO 156 ALONE SMANO 32 ALONE SMANO 32 ALONE SMANO 32 ALONE SMANO 32 ALONE OPNO 161, 165, AND 171 AS ONE SUBGROUP OPNO 161, 165, AND 171 AS ONE SUBGROUP
GRPP238 GRPP244 GRPP2244 GRPP2244 GRPP2244 GRPP2244 GRPP2246 GRPP2266 GRPP2266 GRPP2266 GRPP2266 GRPP2266 GRPP2275 GRPP2275 GRPP2275 GRPP2275 GRPP2275 GRPP2275 GRPP2200 GRPP200 GRPP00 GRPP00 GRPP200 GRPP00 GRPP00 GRPP00 GRPP00 GRPP00 GRPP00 GRPP00 GRPP00 GRPP00 GRPP00 GRPP00 GRPP00 GRPP00 GRPP00 GRPP00 GRP0	177 2276 179 300 300 180 181 300 181 300 185 186 187 188 300 189 199 191 192	OPNO 177 AND 225 AS INDIVIDUAL SUBGROUPS OPNO 176 ALONE OFNO 179 ALONE SMANO 38 ALONE SMANO 39 ALONE SMANO 40 ALONE OPNO 180 ALONE OPNO 181 ALONE SMANO 41 ALONE SMANO 41 ALONE SMANO 42 ALONE SMANO 42 ALONE OPNO 185 AND 186 AS INDIVIDUAL SUPGROUPS OPNO 185 AND 186 AS INDIVIDUAL SUBGROUPS OPNO 187 ALONE OPNO 188 ALONE SMANO 56 ALONE OPNO 190 ALONE OPNO 191 ALONE OPNO 191 ALONE OPNO 192 ALONE

C

*

GRPNØ	ØPNØ	EXPLAN
GRP30F GRP31A GRP31B GRP31C GRP33A GRP36A GRP36B GRP37A GRP37B	194 198 200 201 206 207 300 208 208	ÖPNÖ 194 ALÖNE ÖPNÖ 198 ALÖNE ÖPNÖ 199 ALÖNE ÖPNÖ 200 ALÖNE ÖPNÖ 201 ALÖNE ÖPNÖ 206 ALÖNE SMANÖ 53 ALÖNE ÖPNÖ 208 ALÖNE
GRP37B GRP37B GRP37C GRP37C GRP37C GRP37D GRP37E GRP39A	209 211 214 213 213 212 215 167	OPNO 209, 211 AND 214 AS INDIVIDUAL SUBGROUPS OPNO 209, 211 AND 214 AS INDIVIDUAL SUBGROUPS OPNO 209, 211 AND 214 AS INDIVIDUAL SUBGROUPS OPNO 210 AND 213 AS INDIVIDUAL SUBGROUPS OPNO 210 AND 213 AS INDIVIDUAL SUBGROUPS OPNO 212 ALONE OPNO 215 ALONE
GRP39B GRP39B GRP39C GRP39C GRP39C GRP40A GRP40A GRP40B GRP41A	221 222 173 174 175 182 183 300 300	OPNO 221 AND 222 AS INDIVIDUAL SUBGROUPS OPNO 221 AND 222 AS INDIVIDUAL SUBGROUPS OPNO 173, 174, AND 175 AS INDIVIDUAL SUBGROUPS OPNO 173, 174, AND 175 AS INDIVIDUAL SUBGROUPS OPNO 173, 174, AND 175 AS INDIVIDUAL SUBGROUPS OPNO 182,183 AND SMA45 AS INDIVIDUAL SUBGROUPS OPNO 182,183 AND SMA45 AS INDIVIDUAL SUBGROUPS SMANO 55 ALONE SMANO 55 ALONE
GRP41B GRP48A GRP49A GRP49A GRP50A	300 223 226 227 224	SMANO 56 ALONE OPNO 223 ALONE OPNO 226 AND 227 AS INDIVIDUAL SUBGROUPS OPNO 226 AND 227 AS INDIVIDUAL SUBGROUPS OPNO 224 ALONE

D. GRPFAIL

Table GRPFAIL lists the predominant failure mode for the various groupings of data that are presented in Table GRPMODE. It consists of two columns as follows:

Column No.	<u>Column name</u>	Туре	Contents
1	GRPNO	Character	An identifying code unique to this particular set of data and relatable to other tables.
2	MODE	Character	A description of the predominant failure mode for this particular set of data.

GRPFAIL

GRPNO	MÖDE
GRP01A	BINDING OF CONTROL RODS DUE TO SEISMICALLY INDUCED DEFORMATIONS
GRP01B	DEFORMATION OF GUIDE TUBES DUE TO SEISMIC IMPACT OF FUEL BUNDLE
GRP01C	FAILURE OF CORE SUPPORT STRUCTURE DUE TO INERTIA LOAD OF FUEL
GRP01D	DEFOR. OF GUIDE TUBES / GUIDE PLATE WELD
GRP01E	CONTROL ROD HOUSING DEFORMATION
GRP02A	BUCKLING OF SKIPT
GRP02B	FAILURE OF SKIRT ANCHOR BOLTS
GRP02C	STRESS INTENSITY AT VESSEL SUPPORT
GRP02D	FAILURE OF SKIRT ANCHOR BOLTS
GRP02F	BUCKLING OF SKIRT ANCHOR BOLTS
GRP02F	RUPTURE AT PRIMARY INLET OR OUTLET NOZZLE, RUPTURE AT FEEDWATER NOZZLE
GRP02G	NOZZLE FAILURE
GRP02H	FAILURE OF STEAM GENERATOR LEG IMBEDMENT IN CONTAINMENT FLOOR
GRP02I	FAILURE OF CONNECTION BETWEEN SUPPORT LEG AND STEAM GENERATOR BODY
GRP02J	TUBING FAILURE
GRP02K	PRESSURE BOUNDARY FAILURE
GRP03A	RUPTURE AT CONNECTIONS TO COMPONENTS DUE TO COMPONENT SUPPORT FAILURE
GRP03B	RUPTURE AT CONNECTIONS TO COMPONENTS DUE TO PIFF OVERSTRESS
GRP03B	PUPTURE AT CONNECTIONS TO COMPONENTS DUE TO PIFF OVERSTRESS
GRP07B	BUCKLING OF ANCHOR BULLS
GRP08A	RUPTURE OF ANCHOR BOLTS
GRP08B	BUCKLING OF TANK WALL
GRP03C	TENSILE RUPTURE OF TANK WALL
GRP09A	SUPPORT SYSTEM FAILURE (BOLTS)
GRP10B GRP10C	SUPPORT FAILURE
GRP10D	SUPPORT FAILURE
GRP12A	FAILURE OF CONNECTION TO SUPPORT LEGS
GRP12B	BUCKLING OF SUPPORT LEG
GRP13A	RUPTURE OF CONNECTIONS TO SUPPORT STRUTS
GRP13B	TENSILE FAILURE OF SUPPORT STRUTS
GRP14A	RUPTURE OF ANCHOR BOLTS DUE TO LARGE MOMENTS FROM VERTICAL INTAKE COLUMN
GRP14B	Rupture of vertical intake column
GRP15A	Flange Bending
GRP15B	SHAFT BENDING
GRP15C	THRUST BEARING FAILURE
GRP15D	SHAFT DEFLECTION
GRP15E	GENERIC FUNCTION
GRP15F	Impeller deflection
GRP15G	Mounting Bolt Failure
GRP16A	BREAKS AT WELD ENDS
GRP16B	Rupture of Pipe Support at Nozzle
GRP16C	Loss of control air
GRP16D	ELECTRICAL FAILURE IN ACTUATOR
GRP16E	OPERATOR DISTORTION
GRP16E	OLL RESERVOIR HOLD DOWN BOLTS
GRP16G	FRACTURE OF VALVE ACTUATOR TOP COVER AT CONNECTION TO VALVE BODY
GRP16H	FAILURE OF SPRING MECHANISM DUE TO EXCESSIVE PLASTIC DEFORMATION
GRP17C	DISC RECOMES DISENGAGED
GRP17D	DISC BECOMES BOUND
GRP17E	GENERIC FUNCTION
GRP18B	INTERNAL DAMAGE

æ

•

GRANO	MØDE
GRP18C GRP19A GGRP20A GGRP20B GGRP20D GGRP20D GGRP20D GGRP20D GGRP20D GGRP20D GGRP20D GGRP20A GGRP21C GGRP21C GGRP222A	MODE STRUCTURAL FATIGUE BINDING OF ROTATING PARTS RUPTURE OF ANCHOR BOLTS CONTROL FAILURE OIL LEVEL REGULATOR ANCHOR BOLT FAILURE CRANKSHAFT LOCK UP RELAY CHATTER FAILED RELAY VALVE TRIP STRUCTURAL FAILURE FAILURE OF BATTENS CASE BREAKAGE DUE TO A BAD STAND RUPTURE OF ANCHOR BOLTS SPURIOUS OPERATION OF A PROTECTIVE RELAY INTERNAL STRUCTURAL CONNECTION
GRP23A GRP23B	INTERNAL STRUCTURAL FAILURE, SHORT OF ELECTRICAL CONNECTION FAILURE OF SUPFORT FRAME
GRP23C	RUPTURE OF ANCHOR BOLTS
GRP24B	RUBBING OF FAN ON HOUSING
GRP24D	GENERIC FUNCTION
GRP26A GRP26B	INSTRUMENT FAILURE WELD FAILURE
GRP26C	RELAY CHATTER
GRP26E	STRUCTURAL FAILURE
GRP27B GRP27C	STRUCTURAL MOUNTING OF CABINETS
GRP27D	STRUCTURAL MOUNTING OF COMPONENTS
GRP30A	RELAY CHATTER
GRP30B GRP30C	BASE STRUCTURAL FATIGUE
GRP30D GRP30F	SIGNAL DRIFT CONTACT CHATTER
GRP30F	SET POINT DRIFT
GRP31A GRP31B	STRUCTURAL ANCHORING OF CABINET BASE
GRP31C GRP33A	DISLODGING OF AIR DUCT BLANKING CLIPS
GRP36A	FAILURE OF SUPPORTS DUPTURE OF PARTS BETWEEN SUPPORTS
GRP36C	CABLE SUPPORT SYSTEM
GRP37A GRP37B	CORNER TEARING SUPPORT FAILURE
GRP37C	JOINT SEPARTION
GRP37D GRP37E	GROSS BENDING FIRM
GRP39A	PORCELAIN FRACIURE
GRP39C	H V TRANSFORMER STRUCTURAL FAILURE
GRP40A GRP40B	RELAY CHATTER RELAY TRIP
GRP41A	BREAKER TRIP

- -

GRPNO	MODE
GRPNO GRP41B GRP48A GRP49A GRP49A SMA01 SMA02 SMA03 SMA03 SMA05 SMA05 SMA05 SMA05 SMA05 SMA05 SMA06 SMA11 SMA12 SMA12 SMA14 SMA14 SMA15 SMA14 SMA15 SMA12 SMA22 SMA223 SMA226 SMA226 SMA234 SMA334 SMA334 SMA334 SMA334 SMA335 SMA335 SMA335 SMA336 SMA336 SMA336 SMA336 SMA336 SMA337 SMA336 SMA337 SMA336 SMA337 SMA336 SMA337 SMA337 SMA336 SMA337 SMA337 SMA337 SMA336 SMA337 SMA336 SMA337 SMA336 SMA337 SMA337 SMA336 SMA336 SMA337 SMA336 SMA336 SMA336 SMA337 SMA336 SMA337 SMA336 SMA336 SMA336 SMA336 SMA336 SMA336 SMA347 SMA47 SMA47	MODE STRUCTURAL FAILURE PIPE DEFORMATION FRACTURE OF PORCELAIN INSULATION DESTRUCTION OF SHEAR CONNECTION BETWEEN MODULES DEFOR, OF GUIDE TUBES / GUIDE PLATE WELD CONTROL ROD HOUSING DEFORMATION FRACTURE OF RPV CUTPUT NOZZLE SAFE END SUPPORT COLUMN FAILURE SUPPORT SKIRT BOLTING BUCKLING OF TANK WALLS AT BASE BENDING OF VERTICAL STIFFNER SUPPORT LEG FAILURE BUCKLING AND FRACTURE BUCKLING AND FRACTURE BUCKLING AND FRACTURE BUCKLING AND FRACTURE SUPPORT COLUMN BOLTING BENDING OF PUMP CASING IMPELLER DEFLECTION MOUNTING BOLT FAILURE SHAFT DEFLECTION MOUNTING OF EXTENDED OPERATOR STRUCTURE OIL RESERVOIR HOLD DOWN BOLTS GENERIC FUNCTION GENERIC FUNCTION GENERIC FUNCTION RELAY CHATTER FAILED RELAY VALVE TRIP STRUCTURAL ANCHOR BOLTS CASE CRACKING & PLATE FAILURE REAKER TRIP STRUCTURAL RUBBING OF FOOTOR ROTOR ON HOUSING GENERIC FUNCTION RELAY CHATTER BEAKER TRIP STRUCTURAL RUBBING OF FAN ON HOUSING GENERIC FUNCTION RELAY CHATTER BEAKER TRIP STRUCTURAL RUBBING OF FOOTOR ROTOR ON HOUSING GENERIC FUNCTION RELAY CHATTER BEAKER TRIP STRUCTURAL STRUCTURAL BEAKER TRIP STRUCTURAL BEAKER TRIP STRUCTURAL BEAKER TRIP STRUCTURAL BEAKER TRIP STRUCTURAL BEAKER TRIP STRUCTURAL STRUCTURA
SHA49 SMA50 SMA51	SREAT CHATTER BREAKER TRIP STRUCTURAL

Ŧ

٠,

-

SMA52 RELAY TRIP SMA53 CABLE SUPPORT SYSTEM SMA54 RELAY CHATTER	GRPNØ	MODE
SMA55RELAY TRIPSMA56STRUCTURALSMA57BREAKER TRIPSMA58STRUCTURALSMA59FRACT OF INSULATORSSMA60OPERATOR DISTORTIONSMA61RELAY TRIPSMA62BREAKER TRIPSMA62BREAKER TRIP	SMA52 SMA53 SMA54 SMA55 SMA55 SMA557 SMA58 SMA59 SMA60 SMA61 SMA62 SMA62	RELAY TRIP CABLE SUPPORT SYSTEM RELAY CHATTER RELAY TRIP STRUCTURAL BREAKER TRIP STRUCTURAL FRACT OF INSULATORS OPERATOR DISTORTION RELAY TRIP BREAKER TRIP ERACTURE OF INSULATORS

E. GRPMODE

Table GRPMODE relates the grouping of data which brought about the resulting fragility data presented in Table RESULTS. Each row of data in the table contains the fragility data for a single failure mode, usually resulting from computations by program FRAGSTAT. It consists of seven columns as follows:

З.

۰,

Column No.	Column name	Type	Contents
1	GRPNO	Character	An identifying code unique to this particular set of data for a particular failure mode.
2	RESNO	Character	An identifying code relating this set of data to the final resulting fragility data (see Table RESULTS).
3	NMEAN	Floating	The statistical mean of the data assuming normal distribution.
4	NSIGMA	Floating	The standard deviation of the data assuming normal distribution.
5	LNMEAN	Floating	The statistical mean of the natural logs of the data (i.e., assuming lognormal distribution).
6	LNS I GMA	Floating	The standard deviations of the natural logs of the data (i.e., assuming lognormal distributions).
7	PARAM	Character	The fragility parameter.

GRPMODE

ö.

4

i

.

GRPNÖ	RESNO	NMEAN	NS I GMA	LNMEAN	LNSIGMA	PARAM
GRP01A GRP01B GRP02B GRP02B GRP02B GRP02B GRP02C GRP0C GRP0C GRP0C GRP0C GRP10C GRP10C GRP12C GRP2C G GRP2C G GRP2C G G G G G G G G G G G G G G G G G G G	RESO1A RESO1A RESO1A RESO1A RESO2A RESO2A RESO2A RESO2A RESO22E RESO22	$\begin{array}{c} 5.000\\ 7.333\\ 9.333\\ 4.333\\ 5.667\\ 6.833\\ 3.333\\ 5.667\\ 1.933\\ 5.667\\ 1.933\\ 5.667\\ 1.933\\ 5.667\\ 1.933\\ 2.0000\\ 220.000\\ $	$\begin{array}{c} 3.971\\ 6.201\\ 1.763\\ 2.763\\ 1.763\\ 2.763\\ 1.7623\\ 1.7623\\ 1.7623\\ 1.7623\\ 1.7623\\ 1.781\\ 0.5540\\ 0.7810$	$\begin{array}{c} 1 & 365 \\ 1 & 731 \\ 1 & 901 \\ 1 & 426 \\ 1 & 692 \\ 1 & 692 \\ 1 & 634 \\ 1 & 692 \\ 0 & 637 \\ 1 & 5560 \\ 1 & 060 \\ 2 & 100 \\ 5 & 310 \\ 5 & 310 \\ 5 & 310 \\ 5 & 310 \\ 5 & 310 \\ 5 & 310 \\ 5 & 310 \\ 5 & 310 \\ 0 & 9732 \\ 1 & 180 \\ 0 & 732 \\ 1 & 180 \\ 1 & 674 \\ 2 & 555 \\ 1 & 266 \\ 1 & 598 \\ 1 & 525 \\ 1 & 598 \\ 1 & 501 \\ 2 & 360 \\ 1 & 598 \\ 2 & 302 \\ 2 & 315 \\ 1 & 733$	$\begin{array}{c} 0.708\\ 0.757\\ 0.823\\ 0.2325\\ 0.2325\\ 0.2325\\ 0.2326\\ 0.2239\\ 0.3261\\ 0.2275\\ 0.4206\\ 0.4066\\ 0.4406\\ 0.4406\\ 0.4405\\ 0.2319\\ 0.2359\\ 0.$	SP ACCCELL GG SP ACCCELL GTS GG SPP ACCCELL GTS SP

÷

'37'

e**t**

GRP20C RES23A 3.333 1.241 1.134 0.351 SP ACCEL 0 GRE21A RES24A 6.667 2.482 1.827 0.350 SP ACCEL 0	~
GRUPSEA PLODIT AC GRUPSEA RESSEA 5.333 1.935 1.596 0.376 ACCEL G GRUPSEA RESSEA 5.333 1.935 1.596 0.367 GAS ACCEL G GRUPSEA RESSEXA 18.183 7.203 2.623 0.407 ASP ACCEL G GRUPSEA RESSEXA 26.667 6.205 3.257 0.159 SP ACCEL G GRUPSEA RESSEAA 1.000 2.996 2.1983 0.3037 SP ACCEL G GRUPSEC RESSEAA 1.000 2.996 2.6813 0.227 SP ACCEL G GRUPSEA SP ACCEL G GRUPSEA	00000000000000000000000000000000000000

چ

.∦F

(4)

le .

GRPNO	RESNO	NMEAN	NSIGMA	LNMEAN	LNSIGMA	PARAM
SMA42	RES26A	9.630	4.880	2.260	0.818	SP ACCEL G
SMA43 SMA44	RES2GA	18.300 15.700	9,640 5,240	2,900 2,750	0.881 0.436	SP ACCEL G SP ACCEL G
SHA45	RES40A	2.590	1.730	0.951	1.510	SP ACCEL G
SHA53 SHA57	RES41A	2.820 9.630	4,830	2,260	0.570	SP ACCEL G
SMA58	RES41A	18.300	9.640	2,900	0.881	SP ACCEL G

F. GRPNOTES

Table GRPNOTES contains qualifying comments pertinent to the various groupings of data in GRPMODE. Information such as predominant frequencies and specific equipment identification is included here. It consists of four columns of data as follows:

F

Column No.	Column name	Туре	Contents
1	CATNO	Floating	A floating point number unique to a particular description of generic category or component description (see Table CATEGORY).
2	GRPNO .	Character	An identifying code unique to a particular set of data for a particular failure mode (see Table GRPMODE).
3	LINE	Integer	A line number used for sorting and editing.
4	NOTE	Character	Qualifying comments.

GRPNOTES

.

۹

٢

۶

CATNO	GRPNO	LINE	NOTE
1.0	GRP01A	1	PREDOMINANT FREQUENCIES MODE #1,3HZ; MODE #2,3 HZ; AND MODE #3,5 HZ. PRECENTILES INCLUDE LOCA. PWR, ALL MODES. FUNCTIONAL FAILURE FRAGILITY PARAMETER ACCELERATION AT CORE SUPPORT ATTACHMENT
1.0	GRP01B	1	TO REACTOR VESSEL. PREDOMINANT FREQUENCIES MODE #1,3HZ; MODE #2,3 HZ; AND HODE #3,5 HZ. PRECENTILES INCLUDE LOCA. PWR, ALL MODES. FUNCTIONAL FAILURE FRAGILITY PARAMETER ACCELERATION
1.0	GRP01C	1	AT CORE SUPPORT ATTACHMENT TO REACTOR VESSEL. PREDOMINANT FREQUENCIES MODE 01,3HZ; MODE #2,3 HZ; AND HODE 03,5 HZ. PRECENTILES INCLUDE LOCA. PWR, ALL MODES, FUNCTIONAL FAILURE FRAGULITY PARAMETER ACCELERATION
1.0 1.0 2.1	SMAO1 SMAO2 GRPO2A	131 131 32	AT CORE SUPPORT ATTACHMENT TO REACTOR VESSEL. FREQUENCY 5-13 HZ, 5% DAMPING FREQUENCY 6 HZ, 5% DAMPING ALL MODES: PREDOMINALLY FREQUENCIES, MARK 11 9-15 HZ, MARK 111 3-5 HZ. MARK 11 & 111 REFER TO GE BWR CONTAIN- MENTS PRESS BOUND FAIL.
2.1	GRP02B	32	ALL MODES: ALL MODES: PREDOMINANT FREQUENCIES, MARK II 9-15 H7, MARK III 3-5 HZ. MARK II & III REFER TO WE OWR CONTAIN- MENTS PRESS BOUND FAIL.
2.1	GRP02C	26	ALL MODES. POOL TYPE REACTOR VESSEL (LIQ. SUDIUM) PREDOMINANT FREQUENCIES, MODE # 1-7 HZ MODE #2-7.5 HZ MODES #3
2.1 2.2	SMAO3 GRPO2D	44 42	PRESS. BOUND FAIL; ALL MODES. FREQUENCY 5 HZ , (NS3S SYSTEM) PRESSURIZER. BOTH MODES PREDOMINANT FREQUENCY, 7 0 HZ.
2.2	GRP02E	42	PERCENTILES INCLUDE LOCA. PRESS, BOUND. FAIL; ALL MODES. PRESSURIZER. BOTH MODES PREDOMINANT FREQUENCY, 7 0 HZ.
2,2 2,3	SMA05 GRP02F	131 60	PÉRCENTILES INCLUDE LOCA. PRESS, BOUND, FAIL; ALL HODES. FREQUENCY 13-22 HZ, 3% DAMPING STEAM GENERATOR, BOTH MODES: PREDOMINANT FREQUENCY, 10-15 HZ.

. .

CATNO	GRPNØ	LINE	NOTE
2.3	GRP02G	54	MÖDE #1 FACTORS TIME SY (SY FRÖM PRESS. BOUND. FAIL; ALL MODES. STEAM GENERATOR ALL MODES: PREDOMINANT FREQUENCIES:MODES # 1 10-30 MODES # 2 RIGID
2.3	GRP02H	48	MODES # 3 20-100 HZ. PRESS. BOUND. FAIL; ALL MODES. STEAM GENERATOR. ALL MODES: PREDOMINANT FREQUENCY 7.5 HZ
2.3	GRP021	48	DIRECTION ACCELERATION PRESS. BOUND. FAIL; ALL MODES. STEAM GENERATOR ALL MODES: PREDOMINANT FREQUENCY 7.5 HZ ALL MODES: VERTICAL
2.3	GRP02J	54	DIRECTION ACCELERATION PRESS. BOUND. FAIL; ALL MODES. STEAM GENERATOR ALL MODES: PREDOMINANT FREQUENCIES:MODES # 1 10-30 MODES # 2 RIGID MODES # 3 20-100 HZ.
2.3 2.3 3.0 4.0 5.0	SMAO4 SMA14 GRPO3A GRPO4A GRPO5A	44 44 1 1	PRESS. BOUND. FAIL; ALL MODES. FREQUENCY 5 HZ , (NSSS SYSTEM) , 5% DAMP FREQUENCY 5 HZ , (NSSS SYSTEM) , 5% DAMP MASTER PIPING CURVE MASTER PIPING CURVE MASTER PIPING CURVE
6.0 7.0 7.0 7.0	GRP06A GRP07A GRP07B SMA06 SMA07	1 119 131 131	MASTER PIPING CURVE ALL MODES: PREDØMINANT FREQUENCY 4-10 HZ PREDØM. FREQ. 4-10 HZ FREQUENCY 20.7 HZ, 5% DAMPING FREQUENCY 6.3 HZ, 5% DAMPING
8.0 8.0 8.0 8.0	GRP08A GRP08B GRP08C SMA08 SMA09	121 121 121 44 44	ALL MODES: PREDOMINANT FREQUENCY 3-8 HZ. ALL MODES: PREDOMINANT FREQUENCY 3-3 HZ. ALL MODES: PREDOMINANT FREQUENCY 3-8 HZ. RIGID TANK + SLOSH RIGID TANK + SLOSH
9.0	GRPUGA	123	DIESEL FUEL TANK. BOTH MODES: PREDOMINANT EPEOLENCY 15-20
10.0	GRP10B	131	HORIZONTAL TANK AND HEAT EXCHANGERS. PREDOMINANT EREQUENCE: GREATER THEN 20 H
10.0	GRP10C	128	SMALL VESSELS. BOTH MODES: PREDOMINANT FREQUENCY 15-30
10,0 10.0 10.0 11.0 11.0	SMA10 SMA11 SMA15 GRP11A SMA12 SMA12	131 131 131 144	HORIZONTAL TANK AND HEAT EXCHANGERS. FREQUENCY 6.9 HZ, 5% DAMPING FREQUENCY 12.8 HZ, 5% DAMPING FREQUENCY 7 HZ, 5% DAMPING MASTER PIPING CURVE ZION BURIED PIPE
12.0	GRP12A	140	BOTH MODES, PREDOMINANT FREQUENCIES: 4.5 PERCENTLIES INCLUDE LODA
12.0	GRP12B	140	BOTH MODES, PREDOMINANT (REQUENCIES: 4.5

CATNO	GRPNO	LINE	NOTE
13.0 13.0 14.0	GRP13A GRP13B GRP14A	143 143 149	PREDOMINANT FREQUENCY 4.5 HZ. ALL MODES. PREDOMINANT FREQUENCY 4.5 HZ. ALL MODES. BOTH MODES: PREDOMINANT FREQUENCY. 3HZ.
14.0	GRP14B	149	PERCENTILE 90 IS TENTATIVE BOTH_MODES: PREDOMINANT FREQUENCY, 3HZ.
15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	SMA16 SMA17 SMA18 SMA19 SMA20 SMA21 SMA22 GRP16A	44 44 44 44 44 44 44 184	PERCENTILE 90 IS TENTATIVE FREQUENCY 7 HZ , 5% DAMPING FREQUENCY 7 HZ , 5% DAMPING ZION SAFETY INJECTION PUMP, RIGID ZION SAFETY INJECTION PUMP, RIGID ZION CENTR. CHARGING PUMP, RIGID ZION CENTR. CHARGING PUMP, RIGID GENERIC PUMPS & COMPR., RIGID PREDUMINANT FREQUENCY: MODE #1, 10-20 HZ. MODE #2, 30-50 HZ.
16.0	GRP16B	189	ALL MODES: PREDMINANT
16.0	GRP16C	192	BUTTERFLY VALVE PREDOMINANT FREQUENCY:
16.0	GRP16D	168	ALL MODES. PREDOMINANT FREQUENCY RIGID. BALL VALVE WITH ACTUATOR AND
16.0	GRP16G	195	PREDOMINANT FREQUENCY: MODE #1 VALVE ACTUATOR 27.7 HZ. MODE "SPRING MECHANISM 10-12 HZ. PUGG "S PRING MECHANISM 10-12 HZ.
16.0	GRP16H	195	PREDOMINANT FREQUENCY: MODE #1 VALVE ACTUATOR 27.7 HZ. MODE "SPRING MECHANISM 10-12 HZ.
16.0 16.0 16.0 17.0	SMA23 SMA24 SMA25 GRP17C	44 44 200 200	RIGID RIGID RIGID PREDOMINANT FREQUENCIES BOTH MODES: RIGID PREDOMINANT FREQUENCIES
17.0	CMADE	200	BOTH MODES: RIGID
18.0	GRP18A	205	PREDOMINANT FREQUENCIES ARE 20-30 HZ.
18.0	GRP18B	205	PREDOMINANT FREQUENCIES ARE 20-30 HZ.
18.0	GRP18C	205	PREDOMINANT FREQUENCIES ARE 20-30 HZ.
18.0 19.0	SMA27 GRP19A	44 230	RIGID PREDOMINANT FREQUENCIES ARE
19.0	GRP19B	230	PREDOMINANT FREQUENCIES ARE
20.0	GRP20A	233	PREDOMINANT RESPONSE FREQUENCIES: 1ST MODE 7.0 TO 20.6 HZ. 2ND MODE 8.3 TO 13.8 HZ. DIESEL GENERATORS.

*

CATNO	GRPNŐ	LINE	NOTE
20.0	GRP20B	233	PREDOMINANT RESPONSE FREQUENCIES: 1ST MODE 7.0 TO 20.6 HZ. 2ND MODE 8.3 TO 13.8 HZ.
20.0	GRP20C	241	DIESEL GENERATORS, PREDOMINANT RESPONSE FREQUENCIES: 15 HZ.
20.0	GRP20D	241	PREDOMINANT RESPONSE FREQUENCIES: 15 HZ.
20.0 20.0 20.0 20.0 21.0	SMA28 SMA29 SMA30 SMA31 GRP21A	44 44 44 244	FREQUENCY 30 HZ , 5% DAMPING FREQUENCY 11 HZ , 5% DAMPING FREQUENCY 22 HZ , 5% DAMPING RIGID PREDOMINANT FREQUENCY 1S >25 HZ
21.0	GRP21B	247	PREDOMINANT FREQUENCY >15 HZ.
21.0 21.0 22.0	SMA32 SMA33 GRP22A	44 44 250	FREQUENCY 8 HZ , 5% DAMPING FREQUENCY 8 HZ , 5% DAMPING FREQUENCIES: SIDE TO SIDE = 6-11 HZ, FRONT TO BACK = 16-20 HZ. VERTICAL = >30 HZ.
22.0 22.0 22.0 23.0 23.0	SMA34 SMA35 SMA36 GRP23A	44 44 20	26" WIDE METALCLAD SWITCHGEAN FREQUENCY 5-10 HZ , 5% DAMPING FREQUENCY 5-10 HZ , 5% DAMPING FRAGILITY PARAMETER AT FLOOR TO TRANSFORMER INTERFACE PREDOMINANT FREQUENCIES: COOLER UNIT: 7.5, 7.7 HZ INTERNAL STRUCTURE: 7.2, 7.6 HZ
23.0	GRP23B	27	PREDOMINANT FREQUENCY FOR ALL
23.0	GRP23C	27	PREDOMINANT FREQUENCY FOR ALL MODES: >10 HZ.
23.0 24.0	SMA37 GRP24A	44 30	FREQUENCY 5-10 HZ 5% DAMPING PREDOMINANT RESPONSE FREQUENCY
24.0 24.0 24.0 26.0	SMA38 SMA39 SMA40 GRP26A	44 44 33	FREQUENCY 4.3 HZ, 5% DAMPING FREQUENCY 4.3 HZ, 5% DAMPING FREQUENCY 4.3 HZ, 5% DAMPING FREQUENCY 10-30 HZ, 5% DAMPING PREDOMINANT FREQUENCIES: MODE #1 RIGID
26.0	GRP26B	33	MODE #2 11 HZ. PERCENTILES ARE FACTORS TIMES SSE. INSTRUMENT RACKS. PREDOMINANT FREQUENCIES: MODE #1 RIGID MODE #2 11 HZ. PERCENTLES ARE FACTORS TIMES
26.0 26.0	SMA41 SMA42 SMA43	44 44 44	SSE, INSTRUMENT RACKS. FREQ 5-10 HZ , 5% DAMPING FREQ 5-10 HZ , 5% DAMPING FREQ 5-10 HZ , 5% DAMPING FREQ 5-10 HZ , 5% DAMPING

Ŀ

CATNU	GRPNO	LINE	NATE
27.0	GRP27B	50	PREDOMINANT FREQUENCY IS
27.0	GRP27C	42	>20 HZ: STRUCTURAL FAILURE UNLIKELY WITH MODERN DESIGN. PREDOMINANT FREQUENCY FOR ALL MODES >12 HZ.
27.0	GRP27D	42	THESE MODES OF FAILURE ALSO APPLY TO BREAKER PANELS, AUXILIARY RELAY PANELS, INSTRUMENT RACKS AND DIESEL GENERATORS. PREDOMINANT FREQUENCY FOR ALL MODES >12 HZ. THESE MODES OF FAILURE ALSO APPLY TO BREAKER PANELS,
			INSTRUMENT RACKS AND DIESEL GENERATORS.
27.0 27.0 27.0 30.0	SMA44 SMA46 SMA47 GRP30A	44 44 44 54	FREQUENCY 5-10 HZ , 5% DAMPING FREQUENCY 5-10 HZ , 5% DAMPING FREQUENCY 5-10 HZ , 5% DAMPING PREDOMINANT RESPONSE FREQUENCY
			IS 5 - 35 HZ DAMPING IS 5%. THIS APPLIES TO
30.0	GRP30B	54	PREDOMINANT RESPONSE FREQUENCY
30.0	GRP30C	54	DAMPING IS 5%, THIS APPLIES TO ALL FAILURE MODES, PREDOMINANT RESPONSE FREQUENCY 15,5 - 35 HZ
30.0	GRP30D	59	DAMPING IS 5%. THIS APPLIES TO ALL FAILURE MODES. PREDOMINANT FREQUENCIES MODE #1 10-15 HZ.
30.0	GRP30E	59	MODE #2 29-30 HZ. MODE #3 NOT GIVEN PREDOMINANT FREQUENCIES MODE #1 10-15 HZ.
30.0	GRP30F	59	MODE #2 29-30 HZ. MODE #3 NOT GIVEN PREDOMINANT FREQUENCIES MODE #1 10-15 HZ. MODE #2 29-30 HZ.
30.0 31.0	SMA48 GRP31A	4 4 69	MODE #3 NOT GIVEN RIGID DAMPING IS 5% FOR ALL MODES. PREDOMINANT FREQUENCY FOR
31.0	GRP31B	69	ALL MODES >15 HZ. DAMPING IS 5% FOR ALL MODES. PREDOMINANT FREQUENCY FOR
31.0	GRP31C	69	ALL MODES >15 HZ. DAMPING IS 5% FOR ALL MODES. PREDOMINANT FREQUENCY FOR
31.0	SMA49	44	FREQUENCY 5-10 HZ , 5% DAMPING

٤.

CAINO	GRPNO	LINE	NOTE
31.0 31.0 33.0 35.0 36.0	SMA50 SMA51 GRP33A SMA52 GRP36A	44 44 1 44 87	FREQUENCY 5-10 HZ , 5% DAMPING FREQUENCY 5-10 HZ , 5% DAMPING FREQ. 4.5-6.5 HZ , DAMP 2% FREQUENCY 5-10 HZ , 5% DAMPING PREDOMINANT RESPONSE FREQUENCY
36.0	GRP36B	87	PREDOMINANT RESPONSE FREQUENCY
36.0 37.0	SMA53 GRP37A	44 90	REFERENCED TO ZPA PREDOMINANT FREQUENCY FOR RESPONSE 8.5 - 11.0 HZ. DAMPING AT 7%
37.0	GRP37B	90	HVAC DUCTS PREDOMINANT FREQUENCY FOR RESPONSE 8 5 - 11.0 HZ. DAMPING AT 7%
37.0	GRP37C	90	PREDOMINANT FREQUENCY FOR RESPONSE 8.5 - 11.0 HZ. DAMPING AT 7%
37.0	GRP37C	95	PREDOMINANT FREQUENCY FOR
37.0	GRP37E	98	PREDOMINANT FREQUENCY FOR
39.0	GRP39A	7	FREQUENCIES: 1ST MODE = $1.5-4.0$ HZ. 2ND MODE = $4.5-8.0$ HZ.
39.0	GRP39B	111	IN-SITU TESTING, FRAGILITY PARAMETER AT CIRCUIT BREAKER FOOTING, THESE ARE SWITCHYARD CIRCUIT BREAKERS, TORSIONAL FAILURE, MODES OF VIBRATION: 1ST 2, 4 - 3,4 HZ. 2ND 7,8 - 12,2 HZ.
39.0	GRP39C	20	FRAGILITY PARAMETER AT FLOOR TO TRANSFORMER INTERFACE PREDOMINANT FREQUENCIES: COOLER UNIT: 7.5, 7.7 HZ. INTERNAL STRUCTURE: 7.2, 7.6 HZ. HV PORCELAIN: 8.1, 10.3 HZ.
40.0	GRP40A	39	PREDOMINANT RESPONSE FREQUENCY
40.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0	SMA 45 SMA 54 SMA 55 SMA 56 SMA 57 SMA 53 GRP 48A	44 44 45 44 44 14 121	5-10 HZ, 5% DAMPING 5-10 HZ, 5% DAMPING FREQUENCY 5-10 HZ, 5% DAMPING FALLURE. PREDOMINANT FREQUENCIES: MODE #1 9.5 HZ.

CATNO	GRPNŐ	LINE	NOTE
49.0 49.0 50.0	GRP49A SMA59 GRP50A	1 44 1	MÖDE #2 21.5 HZ. FREQ. 1-4 HZ REFERENCED TO ZPA FREQ. 7-8 HZ

G. GRPRES

Table GRPRES contains the lognormal results for each failure mode in each generic category along with other pertinent information. It consists of seven columns as follows:

Column No.	Column name	Туре	Contents
1	CATNO	Floating	A floating point number unique to a particular description of generic category or component descriptions (see Table CATEGORY).
2	DES	Character	The description of the generic category or specific component (see Table CATEGORY).
3	GRPNO	Character	An identifying code unique to a particular set of data for a particular failure mode (see Table GRPMODE).
4	MEDIAN	Floating	The median of the data assuming lognormal distribution.
5	BETA	Floating	The standard deviation of the natural logs of the data.
6	PARAM	Character	The fragility parameter.
7	MODE	Character	A description of the failure mode.

GRPRES

CATNO	DES	GRPNO	MEDIAN	BETA	PARAM	NODE
1.0	REACTOR CORE ASSEMBLY	GRP01A	3.916	0.708	SP ACCEL G	BINDING OF CONTROL RODS DUE TO SEISMICAL
1.0	REACTOR CORE ASSEMBLY	GRP01B	5.646	0.757	SP ACCEL G	DEFORMATION OF GUIDE TUBES DUE TO SEISMI
1.0	REACTOR CORE ASSEMBLY	GRPOIC	6.693	0.823	SP ACCEL G	FAILURE OF CORE SUPPORT STRUCTURE DUE TO
1.0	REACTOR CORE ASSEMBLY	SMA01	2.746	0,369	SP ACCEL G	DEFOR. OF GUIDE TUBES / GUIDE PLATE WELD
1.0	REACTOR CORE ASSEMBLY	SMA02	5.989	0.339	SP ACCEL G	CONTROL ROD HOUSING DEFORMATION
2.1	REACTOR PRESSURE VESSEL	GRPOZA	4.162	0.275	SP ACCEL G	BUCKLING OF SKIRT
2.1	REACTOR PRESSURE VESSEL	GRP02B	5.430	0.289	SP ACCEL G	FAILURE OF SKIRT ANCHOR BOLTS
2.1	REACTOR PRESSURE VESSEL	GRP02C	6.462	0.325	SP ACCEL G	STRESS INTENSITY AT VESSEL SUPPORT
2.2	PRESSURIZER	GRP02D	3.108	0.361	SP ACCEL G	FAILURE OF SKIRT ANCHOR BOLTS
2.2	PRESSURIZER	GRP02E	5.430	0.289	SP ACCEL G	BUCKLING OF SKIRT
2.2	PRESSURIZER	SMA05	2.000	0.398	SP ACCEL G	SUPPORT SKIRT BOLTING
2.3	STEAM GENERATOR	GRP02F	1.891	0.208	SP MOMENTS	RUPTURE AT PRIMARY INLET OR OUTLET NOZZL
2.3	STEAM GENERATOR	GRP02G	4.716	0.339	FORCES	NOZZLE FAILURE
2.3	STEAM GENERATOR	GRP02H	3.896	0.201	SP ACCEL G	FAILURE OF STEAM GENERATOR LEG IMBEDMENT
2.3	STEAM GENERATOR	GRP021	2.886	0.275	SP ACCEL G	FAILURE OF CONNECTION BETWEEN SUPPORT LE
2.3	STEAM GENERATOR	GRP02J	8.166	0.422	SP ACCEL G	TUBING FAILURE
2.3	SIEAM GENERATOR	SMA04	3.287	0,440	SP ACCEL G	SUPPORT COLUMN FAILURE
2.3	STEAM GENERATOR	SMA04	3.287	0.440	SP ACCEL G	SUPPORT COLUMN FAILURE
3.0	PRIMARY COOLANT PIPING	GRP03A	202.350	0.406	MOM FT-KIP	RUPTURE AT CONNECTIONS TO COMPONENTS DUE
7.0	 LARGE VERTICAL STORAGE VESSELS WITH FORMED HEADS 	GRP07A	1.650	0.445	SP ACCEL G	RUPTURE OF ANCHOR BOLTS
7.0	LARGE VERTICAL STORAGE VESSELS WITH FORMED HEADS	GRP07B	2.467	0.536	SP ACCEL G	BUCKLING OF SUPPORT SKIRT OR LEGS
7.0	LARGE VERTICAL STORAGE VESSELS WITH FORMED HEADS	SMA06	21.977	0.407	SP ACCEL G	SUPPORT SKIRT COLLAPSE
7.0	LARGE VERTICAL STORAGE VESSELS WITH FORMED HEADS	SMA07	7.925	0.519	SP ACCEL G	PLASTIC BUCKLING OF SHELL
8.0	LARGE VERTICAL STORAGE TANKS W ITH FLAT BOTTOMS	GRP08A	2.079	0.275	SP ACCEL G	RUPTURE OF ANCHOR BOLTS
0,3	LARDE VERTICAL STORAGE TANKS W ITH FLAT BOTTOMS	GRP08B	3.254	0.319	SP ACCEL G	BUCKLING OF TANK WALL
8.0	LARGE VERTICAL STORAGE TANKS W TTH FLAT BOTTOMS	GRP08C	5.312	0.305	SP ACCEL G	TENSILE RUPTURE OF TANK WALL
8.0	LARGE VERTICAL STORAGE TANKS W TTH FLAT BOTTOMS	SMA08	0.828	0.389	PK GD AC G	BUCKLING OF TANK WALLS AT BASE

به ا

æ.

٠

ب

1 CATNO	DES	GRPNÖ	MEDIAN	BETA	PARAM	MODE
8.0	LARGE VERTICAL STORAGE TANKS W	SMA09	3.597	0.436	PK GD AC G	BENDING OF VERTICAL STIFFNER
9.0	LARGE HORTZONDAL VESSELS	GRP09A	3.912	0,609	FLOOR AC G	SUPPORT SYSTEM FAILURE (BOLTS)
10.0	MALL-MEDIUM VESSELS AND HEAT	GRF10A	2.079	0.275	ACCEL G	RUPTURE OF ANCHOR BOLTS
10.0	EXCHARGERS Shall-Medium vessels and heat -	GRP10B	12.769	0.359	ACCEL G	STRUCTURAL FAILURE
10.0	CHALLERDIUM VESSELS AND HEAT	GRP10C	2.599	0.452	ACCEL G	SUPPORT FAILURE
10.0	EXCHAPDERS SMALL BEDIUM VESSELS AND HEAT	SMA10	7.925	0.599	SP ACCEL G	SUPPORT FAILURE
10.0	FACHANGERS SMALL HEDIUM VESSELS AND HEAT	SMA11	7.171	0.516	PK ACCEL G	SUPPORT LEG FAILURE
11.0	BURIED PIPE	SMA12	1.399	0.601	PK GD AC G	BUCKLING AND FRACTURE
11.0	BURIED PIPE	SMA13	1.399	0.601	PK GD AC G	BUCKLING AND FRACTURE
ن 12	REACTOR COOLANT PUMP	GRP12A	3,557	0.401	SP ACCEL G	FAILURE OF CONNECTION TO SUPPORT LEGS
12.0	REACTOR COOLANT PUMP	GRP12B	5,847	0.406	SP ACCEL G	BUCKLING OF SUPPORT LEG
12.0	REACTUR COOLANT PUMP	SMA14	3,287	0.440	SP ACCEL G	SUPPORT COLUMN BOLTING
12.0	REACTOR COOLANT PUMP	SMA14	3,287	0.440	SP ACCEL G	SUPPORT COLUMN BOLTING
13.0	LARGE VERTICAL CENTRIFUGAL PUM	GRP13A	2.883	0.275	SP ACCEL G	RUPTURE OF CONNECTIONS TO SUPPORT STRUTS
13.0	LARGE VERTICAL CENTRIFUGAL PUM	GRP13B	4,933	0.159	SP ACCEL G	TENSILE FAILURE OF SUPPORT STRUTS
13.0	LARGE VERTICAL CENTRIFUGAL PUM	SMA15	3.490	0.342	SP ACCEL G	BENDING OF PUMP CASING
14.0	LARGE VERTICAL PUMPS	GRP14A	2.289	0.417	SP ACCEL G	RUPTURE OF ANCHOR BOLTS DUE TO LARGE MOM ENTS FROM VERTICAL INTAKE COLUMN
14.0	LARGE VERTICAL PUMPS	GRP14B	4.577	0.417	SP ACCEL G	RUPTURE OF VERTICAL INTAKE COLUMN
15.0	MOTOR DRIVEN COMPRESSORS AND P	SMA16	3.190	0,338	ACCEL G	IMPELLER DEFLECTION
15.0	MOTOR DRIVEN COMPRESSORS AND P	SMA16	3.190	0,33 8	SP ACCEL G	IMPELLER DEFLECTION
15.0	MOTOR DRIVEN COMPRESSORS AND P	SMA17	11.705	0.419	SP ACCEL G	MOUNTING BOLT FAILURE
15.0	MOTOR DRIVEN COMPRESSORS AND P	SMA17	11.705	0.419	ACCEL G	MOUNTING BOLT FAILURE
15.0	MOTOR DRIVEN COMPRESSORS AND P	SMA 18	4.665	0.413	Z PRD AC G	FLANGE BENDING
15.0	HOTOR DRIVEN COMPRESSORS AND P	SMA19	7.171	0.278	Z PRD AC G	SHAFT BENDING
15.0	MOTOR DRIVEN COMPRESSORS AND P	SMA20	8.248	0.318	Z PRD AC G	THRUST BEARING FAILURE
15.0	MOTOR DRIVEN COMPRESSORS AND P	SMA21	39.646	0.304	Z PRD AC G	SHAFT DEFLECTION
15.0	MOTOR DRIVEN COMPRESSORS AND P UMPS	SMA22	32.460	0.40 8	Z PRD AC G	GENERIC FUNCTION

240

ъř

.

1						
CATNO	DES	GRPNO	MEDIAN	BETA	PARAM	MODE
16.0	LARGE MOTOR OPERATED VALVES (> 41N.)	GRP16A	17.305	0.275	SP ACCEL G	BREAKS AT WELD ENDS
16.0	LARGE MOTOR OPERATED VALVES (GRP16B	10.623	0.257	SP ACCEL G	RUPTURE OF PIRE SUPPORT AT NOZZLE
16.0	LARGE MOTOR OPERATED VALVES (GRP16C	7.606	0.314	SP ACCEL G	LOSS OF CONTROL AIR
16.0	LARGE NOTOR OPERATED VALVES (GRP16D	11.190	0.358	SP ACCEL G	ELECTRICAL FAILURE IN ACTUATOR
16.0	LARGE MOTOR OPERATED VALVES (GRP16G	10.591	0.476	PK ACCEL G	FRACTURE OF VALVE ACTUATOR TOP COVER AT
16.0	LARGE MOTOR OPERATED VALVES (GRP16H	7.029	0.271	PK ACCEL G	CONNECTION TO VALVE BODY FAILURE OF SPRING MECHANISM DUE TO EXCES
16.0	LARGE MOTOR OPERATED VALVES (SMA23	7.538	0.646	SP ACCEL G	SIVE PLASTIC DEFORMATION DISTORTION OF EXTENDED OPERATOR STRUCTUR
16.0	LARGE MOTOR OPERATED VALVES (SMA23	7.538	0.646	PK ACCEL G	E DISTORTION OF EXTENDED OPERATOR STRUCTUR
16.0	LARGE MOTOR OPERATED VALVES (SMA24	7.316	0.350	SP ACCEL G	E OIL RESERVOIR HOLD DOWN BOLTS
16.0	LARGE MOTOR OPERATED VALVES (SMA25	43.816	0.468	Z PD PK AC	GENERIC FUNCTION
17.0	LARGE RELIEF AND CHECK VALVES	GRP17C	8.917	0.132	SP ACCEL G	DISC BECOMES DISENGAGED
17.0	LARGE RELIEF AND CHECK VALVES	GRP17D	12.654	0.130	SP ACCEL G	DISC BECOMES BOUND
17.0	LARGE RELIEF AND CHECK VALVES	SMA26	47.465	0.474	Z PD PK AC	GENERIC FUNCTION
17.0	LARGE RELIEF AND CHECK VALVES	SMA26	47.465	0.474	SP ACCEL G	GENERIC FUNCTION
17.0	LARGE RELIEF AND CHECK VALVES	SMA60	9,875	0,650	Z PD PK AC	OPERATOR DISTORTION
18.0	SMÁLL MIŚCELLANEGUS VALVES (<	GRP18B	15.959	0.620	SP ACCEL G	INTERNAL DAMAGE
18.0	SMALL MISCELLANEOUS VALVES (<	GRP18C	21.563	0.714	SP ACELL G	STRUCTURAL FATIGUE
19.0	HORIZONTAL MOTORS	GRP19A	12.429	0.360	ACCEL G	BINDING OF ROTATING PARTS
19.0	HORIZONTAL MOTORS	GRP198	20.801	0,275	ACCEL G	RUPTURE OF ANCHOR BOLTS
20.0	GEMERATORS	GRP20A	5.948	0,441	SP ACCEL G	CONTROL FAILURE
20.0	GENERATORS	GRP20B	5.948	0.441	SP ACCEL G	OH, LEVEL REGULATOR
20.0	GENERATORS	GRP20C	5.646	0.476	SP ACCEL G	ANCHOR BOLT FAILURE
20.0	GENERATORS	GRP20D	10.350	0,279	SP ACCEL G	CRANKSHAFT LOCK UP
20.0	GENERATORS	SMA28	0.931	0.354	SP ACCEL G	RELAY CHATTER
20.0	GENERATORS	SMA29	1.960	0.361	SP ACCEL G	FALLED RELAY
20.0	GENERATORS	SMA29	1.960	0,361	SP ACCEL G	FAILED RELAY
20.0	GENERATORS	SMA30	0.735	0,397	SP ACCEL G	VALVE TRIP

• •

C

*

•

L CATNO	DES	GRPNÖ	MEDIAN	BETA	PARAM	MODE
20.0	GEMERATORS	SMA31	8.935	0.546	SP ACCEL G	STRUCTURAL
21.0	BATTERIES	GRP21A	2.289	0.417	ACCEL G	FAILURE OF BATTENS
21.0	BATTERIES	GRP21B	20.801	0.275	ACCEL G	CASE BREAKAGE DUE TO A BAD STAND
21.0	BATTERIES	SMA32	17.116	0.484	SP ACCEL G	ANCHOR BOLTS
21.0	BATTERIES	SMA33	5.259	0.385	SP ACCEL G	CASE CRACKING & PLATE FAILURE
22.0	SWITCHGEAR	GRP22A	2.330	0.486	SP ACCEL G	SPURIOUS OPERATION OF A PROTECTIVE RELAY
22.0	SWITCHGEAR	SMA34	2.588	1.510	SP ACCEL G	RELAY CHATTER
22.0	SWITCHGEAR	SMA35	9.583	0.818	SP ACCEL G	BREAKER TRIP
22.0	SWITCHGEAR	SMA36	18.174	0.881	SP ACCEL G	STRUCTURAL
23.0	DRY TRANSFORMERS	GRP23A	4.660	0.503	SP ACCEL G	INTERNAL STRUCTURAL FAILURE, SHORT OF EL
23.0	DRY TRANSFORMERS	GRP23B	9.526	0.680	SP ACCEL G	FAILURE OF SUPPORT FRAME
23.0	DRY TRANSFORMERS	GRP23C	3.108	0,351	SP ACCEL G	RUPTURE OF ANCHOR BOLTS
23.0	DRY TRANSFORMERS	SMA37	13.330	0.408	SP ACCEL G	STRUCTURAL
24.0	AIR HANDLING UNITS	GRP24A	6.215	0.360	FLOOR AC G	STRUCTURAL FAILURE
24.0	AIR HANDLING UNITS	SMA38	2.746	0.410	SP ACCEL G	RUBBING OF FAN ON HOUSING
24.0	AIR HANDLING UNITS	SMA39	2.945	0.416	SP ACCEL G	RUBBING OF MOTOR ROTOR ON HOUSING
24.0	AIR HANDLING UNITS	SMA40	11.822	0.424	SP ACCEL G	GENERIC FUNCTION
24.0	AIR HANDLING UNITS	SMA40	11.822	0.424	SP ACCEL G	GENERIC FUNCTION
26.0	INSTRUMENT PANELS AND RACKS	GRP26A	2.079	0.275	ACCEL G	INSTRUMENT FAILURE
26.0	INSTRUMENT PANELS AND RACKS	GRP26B	4,933	0.383	ACCEL G	WELD FAILURE
26.0	INSTRUMENT PANELS AND RACKS	SMA41	2.588	1.510	SP ACCEL G	RELAY CHATTER
26.0	INSTRUMENT PANELS AND RACKS	SMA42	9.583	0,818	SP ACCEL G	BREAKER TRIP
26,0	INSTRUMENT PANELS AND RACKS	SMA42	9.583	0,818	SP ACCEL G	BREAKER TRIP
26.0	INSTRUMENT PANELS AND RACKS	SMA43	18.174	0.881	SP ACCEL G	STRUCTURAL
27.0	CONTROL PANELS AND RACKS	GRP27B	16.827	0.407	SP ACCEL G	COMPGNENT MALFUNCTION
27.0	CONTROL PANELS AND RACKS	GRP27C	25,972	0.223	SP ACCEL G	STRUCTURAL MOUNTING OF CABINETS
27.0	CONTROL PANELS AND RACKS	GRP27D	24.655	0.159	SP ACCEL G	STRUCTURAL MOUNTING OF COMPONENTS

\$7

242

₽J

1 CATNO	DES	GRPNŐ	MEDIAN	BETA	PARAM	MODE
27.0	CONTROL PANELS AND RACKS	SMA44	15.643	0.436	SP ACCEL G	ELECTRICAL MALFUNCTION
27.0	CONTROL PANELS AND RACKS	SMA46	9,583	0.818	SP ACCEL G	BREAKER TRIP
27.0	CONTROL PANELS AND RACKS	SMA47	18,174	0,881	SP ACCEL G	STRUCTURAL
28.0	AUXILIARY RELAY CABINETS	SMA61	7.614	0.710	SP ACCEL G	RELAY TRIP
30.0	LOCAL INSTRUMENTS	GRP30A	8.962	0.302	SP ACCEL G	RELAY CHATTER
30.0	LOCAL INSTRUMENTS	GRP30B	10.623	0.257	SP ACCEL G	LOOSENING OF FASTENERS
30.0	LOCAL INSTRUMENTS	GRP30C	10,623	0.257	SP ACCEL G	BASE STRUCTURAL FATIGUE
30.0	LOCAL INSTRUMENTS	GRP30D	11.740	0.201	SP ACCEL G	SIGNAL DRIFT
30.0	D LOCAL INSTRUMENTS	GRP30E	13.437	0.223	SP ACCEL G	CONTACT CHATTER
30.0	D LOCAL INSTRUMENTS	GRP30F	16.710	0.325	SP ACCEL G	SET POINT DRIFT
30.0	D LOCAL INSTRUMENTS	SMA48	47.465	0.474	Z PRD AC G	ELECTRICAL FUNCTION
31.0	D MOTOR CONTROL CENTERS	GRP31A	15.534	0.361	SP ACCEL G	CHATTER OF CONTACTS
31.0	D MOTOR CONTROL CENTERS	GRP31B	20.801	0.275	SP_ACCEL G	STRUCTURAL ANCHORING OF CABINET BASE
31.0	O MOTOR CONTROL CENTERS	GRP31C	24.655	0.159	SP ACCEL G	STRUCTURAL MOUNTING OF COMPONENT IN CABI
31.4	O MOTOR CONTROL CENTERS	SMA49	2,588	1.510	SP ACCEL G	RELAY CHATTER
31.0	O MOTOR CONTROL CENTERS	SMA50	9.583	0.818	SP ACCEL G	BREAKER TRIP
31.	O MOTOR CONTROL CENTERS	SMA51	18.174	0.881	SP ACCEL G	STRUCTURAL
31.	O MOTOR CONTROL CENTERS	SMA62	7.614	0.710	SP ACCEL G	BREAKER TRIP
33.	O LIGHT FIXTURES	GRP33A	9.198	0.201	SP ACCEL G	DISLODGING OF AIR DUCT BLANKING CLIPS
35.	0 INVERTERS	SMA52	15.643	0.436	SP ACCEL G	RELAY TRIP
36.	O CABLE TRAYS	GRP36A	3.108	0.360	SP ACCEL G	FAILURE OF SUPPORTS
36.	O CABLE TRAYS	GRP36B	5.847	0.406	SP ACCEL G	RUPTURE OF PARTS BETWEEN SUPPORTS
36.	O CABLE TRAYS	SMA53	2.829	0.570	Z PD PK AC	CABLE SUPPORT SYSTEM
37.	O DUCTING	GRP37A	7.050	0.271	SP ACCEL G	CORNER TEARING
37.	O DUCTING	GRP37B	7.142	0.677	SP ACCEL G	SUPPORT FAILURE
37.	O DUCTING	GRP37C	7.980	0.806	SP ACCEL G	JOINT SEPARTION
37,	0 DUCTING	GRP37D	6.693	0.302	SP ACCEL G	RUPTURE OF DUCT BETWEEN SUPPORTS

• • •

C

• •

CATNO	DES	GRPNØ	MEDIAN	BETA	PARAM	MODE
37.0	DUCTING	GRP37E	9.088	0.445	SP ACCEL G	GROSS BENDING FIRM
39.0	SWITCHYARD EQUIPMENT	GRP39A	0.766	0.517	Z PRD ACCE	PORCELAIN FRACTURE
39.0	SWITCHYARD EQUIPMENT	GRP39B	0.317	0.449	Z PRD ACCE	A B CIRCUIT BREAKER FAILURE
39.0	SWITCHYARD EQUIPMENT	GRP39C	0.914	0.610	Z PRD ACCE	H V TRANSFORMER STRUCTURAL FAILURE
40.0	RELAYS	GRP40A	5.669	1,164	SP ACCEL G	RELAY CHATTER
40.0	RELAYS	SMA45	2.588	1.510	SP ACCEL G	RELAY CHATTER
41.0	CIRCUIT BREAKERS	SMA54	2.588	1.510	SP ACCEL G	RELAY CHATTER
41.0	CIRCUIT BREAKERS	SMA55	9.583	0,818	SP ACCEL G	RELAY TRIP
41.0	CIRCUIT BREAKERS	SMA56	18.174	0,881	SP ACCEL G	STRUCTURAL
41.0	CIRCUIT BREAKERS	SMA57	9.583	0.818	SP ACCEL G	BREAKER TRIP
41.0	CIRCUIT BREAKERS	SMA57	9.583	0.818	SP ACCEL G	BREAKER TRIP
41.0	CIRCUIT BREAKERS	SMA58	18.174	0,881	SP ACCEL G	STRUCTURAL
48.0	RECOMBINERS	GRP48A	8.240	0.144	FLOOR AC G	PIPE DEFORMATION
49.0	CERAMIC INSULATORS	GRP49A	0.332	0.807	BASE ACCEL	FRACTURE OF PORCELAIN INSULATION
49.0	CERAMIC INSULATORS	SMA59	4.998	0.353	PK GD AC G	FRACT OF INSULATORS
49.0	CERAMIC INSULATORS	SMA63	0.200	0.353	PK GD AC G	FRACTURE OF INSULATORS
50. 0	SPENT FUEL RACKS	GRP50A	0.276	0.471	FLOOR AC G	DESTRUCTION OF SHEAR CONNECTION BETWEEN Modules

.

• .

#/

÷.

H. OPINION

٥.

ź.

2

Table OPINION contains most elements of the expert opinion data used by the SSMRP in computing component fragilities. This table was structured for convenient input into program FRAGSTAT (Ref. 6). It consists of eight columns of data as follows:

Column No.	Column name	Туре	Contents
1	OPNO	Integer	A unique number assigned to each expert opinion.
2	IDENT	Character	A ten character code assigned to the expert to preserve anonymity.
3	CAT	Floating	An integer identifying the generic category of component (see Table CATEGORY).
4	WEIGHT	Floating	The subjective weighting factor applied to the data.
5	TEN	Floating	The estimated 10th percentile probability of failure value of fragility parameter.
6	FIFTY	Floating	The estimated 50th percentile probability of failure value of fragility parameter.
7	NINETY	Floating	The estimated 90th percentile probability of failure value of fragility parameter.
8	MODE	Character	A description of the failure mode.
OPINION

OPNO	IDENT	CAT	WEIGHT	TEN	FIFTY	NINETY PARAM	MODE
1234567890123456789011567890123456012345678901234567890 1111111111222456789012335556012345678901234567890	3201031916 3201031916 3201031916 3201031916 4101022009 3201041907 3201041907 3201012005 3201012005 32020112005 3202071913 3202071913 3202071913 3202051910 3202051910 3202051910 3202051910 3202032004 3202022002 3202020202 3202022002 3202022002 3202022002 3202022002 3202022002 3202022002 3202022002 3202022002 3202022002 3202022002 3202022002 3202022002 3202022002 3202022002 3202022002 3202022002 32020202 3202022002 3202022002 32020202002 32020202002 32020202002 320202002 32020202002 32020202002 32020202002 320202002 320202002 32020202002 320202002 320202002 320202002 320202002 320202002 3202002 3202002 3200202002 3203032006 3204032013 3204032013 3204032013 3204032013 3204032013 3204020302 12040020302 1204050236 120505051916	++++++++++ +++NUNNNNNNNNNNNNNNNNNNNNNN	1.5500000000000000000000000000000000000	$\begin{array}{c} 2 & 0 & 0 \\ 3 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 3 & 0 \\ 0 & 3 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0$	$\begin{array}{c} 3.000\\ 4.000\\ 5.000\\ 7.00\\ 2.500\\ 4.000\\ 0.3000\\ 4.000\\ 5.000\\ 4.000\\ 4.000\\ 4.000\\ 4.000\\ 4.000\\ 4.000\\ 4.000\\ 4.000\\ 4.000\\ 4.000\\ 4.000\\ 4.000\\ 4.000\\ 4.000\\ 5.000\\ 4.000\\ 5.000\\ 4.000\\ 5.000\\ 4.000\\ 5.000\\ 5.000\\ 4.000\\ 5.000\\ 5.000\\ 6.000\\ 5.000\\ 6.000\\ 5.000\\ 6.000\\ 5.000\\ 6.000\\ 5.000\\ 6.000\\ 5.000\\ 6.000\\ 5.000\\ 6.000\\ 5.000\\ 6.000\\ 5.000\\ 6.000\\ 5.000\\ 6.000\\ 6.000\\ 5.000\\ 6.000\\ 6.000\\ 5.000\\ 6.$	10.000 SP ACCEL G 15.000 SP ACCEL G 20.000 SP ACCEL G 7.000 SP ACCEL G 1.000 SP ACCEL G 12.000 SP ACCEL G 12.000 SP ACCEL G 0.450 SP ACCEL G 0.450 SP ACCEL G 0.760 SP ACCEL G 0.760 SP ACCEL G 3.000 SP ACCEL G 4.000 SP ACCEL G 5.000 SP ACCEL G 5.000 SP ACCEL G 6.750 SP ACCEL G 0.000 SP ACCEL G 6.750 SP ACCEL G 3.000 SP ACCEL G 5.000 SP ACCEL G 6.750 SP ACCEL G 5.000 SP ACCEL G 6.000 SP ACCEL G 5.000 SP ACCEL G 4.000 SP ACCEL G 5.000 SP ACCEL G 6.000 ACCEL G 6.000 ACCEL G 0. SP ACCEL	BINDING OF CONTROL RODS DEFORMATION OF GUIDE TUBES FAILURE OF CORE SUPPORT STRUCTURE INTERFERENCE BETWEEN MOVING PARTS WITHIN UNIT BINDING OF CONTROL ROUS DEFORMATION OF GUIDE TUBES FAILURE OF CORE SUPPORT STRUCTURE SLOW SCRAFTIME OF CONTROL RODS LIFTING FUEL AND DISAMANGING CORE CONFIGURATION PLASTIC DISTORTION PREVENTING FULL FOD INSERTION PLASTIC DISTORTION PREVENTING FULL FOD INSERTION PAILURE OF SKIRT ANCHOR BOLTS BUCKLING OF SKIRT ANCHOR BOLTS BUCKLING OF STEAM CHEREATOR LEG BUCKLING OF STEAM CHEREATOR LEG BUCKLING OF SKIRT ANCHOR BOLTS BUCKLING OF SKIRT ANCHOR BOLTS BUCKLING OF SKIRT ATTACHED PIPE FAILURE DUE TO SUPPORT DEFORMATION NOZZLE RUPTURE FAILURE OF SKIRT ANCHOR BOLTS BUCKLING OF SKIRT ATTACHED PIPE FAILURE DUE TO SUPPORT DEFORMATION NOZZLES SUPPORTS TUBING RUPTURE AT PRIMARY INLET OR OUTLET NUZZLE FAILURE OF TUBES IN BUNDLE FAILURE OF TREE FOR DIGINTS, ESPECIALLY AT NOZZLES DUCTILE RUPTURE DUE TO HANGER/SNUBBER FAILURE EBOW COLLAPSE DUE TO HANGER/SNUBBER FAILURE ELBOW COLLAPSE DUE TO EXCESSIVE FORCES PIPE SUPPORT RUPTURE UR COLLAPSE EXCESSIVE PIPE DEFORMIATION OPENING A CRACK IN AN UNFLAWED PIPE SUPPORT FAILURE RUPTURE AT CONNECTIONS DUE TO PIPE OVERSTRESS PIPE YIELDING CRACK PROPAGATION RESULTING IN A SMALL LEAK ANCHOR BOLT FAILURE PIPE SUPPORT RUPTURE PIPE ALLURE YUELDING SMALL LEAK OR BRANCH CONNECTIONS BREAKING LARGE CRACK RESULTING IN LEAK OR SEVERANCE RUPTURE AT NOZZLE CONN. DUE TO SUPPORT FAIL. FAILURE OF FIPE RUPORTS OVERSTRESS OF PIPE RUPTURE AT NOZZLE/EQUIPMENT CONNECTIONS FAILURE OF CONNECTION AT BUILDING INTERFACE FAILURE OF CONNECTION AT BUILDING INTERFACE FAILURE O

246

ALC: NO PROPERTY OF

A

•7

•

	IDENT	CAT	WEIGHT	TEN	FIFTY	NINETY	PARAM	MODE
6123456678901223456789012345679012234567890123345678901234567890111111111111111111111111111111111111	$\begin{array}{l} 3205051916\\ 3205051916\\ 3205020303\\ 3205020303\\ 3205020303\\ 3205022011\\ 3205051916\\ 3205051916\\ 3205051916\\ 3205051916\\ 3205051916\\ 3205051916\\ 3205012010\\ 3207012010\\ 3207012010\\ 3207012010\\ 3207021918\\ 3207021918\\ 3207021918\\ 3208021917\\$	5555566666667777888888899000011222334444444455555555566666	2550 2550 2550 2550 2550 2550 2550 2550	$\begin{array}{c} 3.000\\ 5.500\\ 1.5200\\ 2.400\\ 0.5000\\ 1.5200\\ 2.400\\ 0.5000\\ 1.5000\\ 1.5000\\ 1.5500\\ 0.5$	4.000 6.800 2.000 4.000 0.2000 4.000 0.2000 4.000 2.0000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.00000 2.00000 2.00000 2.000000 2.000000 2.0000000000		SP ACCEL G SP ACCEL G MMENTT SF ACCEL G SP ACCEL S SP ACCEL S SP ACCEL G SP ACCEL S SP A	FAILURE OF PIPE SUPPORTS OVERSTRESS OF PIPE MORMENT AT NOZZIES FAILURE OF FONHECTION AT BUILDING INTERFACE FAILURE OF FIELD WELDS SMALL LEAK YIELDING RUPTURE AT NOZZIE CONN. DUE TO SUPPORT FAIL. FAILURE OF FIELD WELDS OVERSTRESS OF PIPE FAILURE OF CONNECTION AT BUILDING INTERFACE FAILURE OF FONIATION OF VESSEL NEAR SUPPORT LOC. SMALL LEAK IN VESSEL AT NOZZLE ATTACHMENT RUPTURE OF ANCHOR POLTS BUCKLING OF SUPPORT SKIRT OR LEGS RUPTURE OF ANCHOR POLTS BUCKLING OF ANCHOR POLTS BUCKLING OF TANK WALL TENSILE RUPTURE OF TANK WALL GROSS STRUCTURAL BUCKLING FAILURE OF ANCHOR BOLTS BUCKLING OF SUPPORT SAIDLES SUPPORT FAILURE (BOLTS) SUPPORT FAILURE (BOLTS) SUPPORT FAILURE (BOLTS) SUPPORT FAILURE CONNECTION TO BUILDING INTERFACE FAILURE OF CONNECTION TO BUILDING INTERFACE FAILURE AT CONNECTION TO BUILDING INTERFACE FAILURE AT CONNECTION TO BUILDING INTERFACE FAILURE AT CONNECTION TO SUPPORT SERV FAILURE OF CONNECTION TO SUPPORT SUPPORT SERVER BUCKLING OF SUPPORT SADDLES SUPPORT FAILURE SUPPORT FAILURE SUPPORT FAILURE FOR CONNECTION TO SUPPORT STRUTS TENSILE FAILURE OF SUPPORT STRUTS FAILURE OF CONNECTION TO SUPPORT STRUTS FAILURE OF SUPPORT STRUTS FAILURE OF SUPPORT STRUTS FAILURE OF HOLD DOWN BOLTS OVERSTRESS AT NOZZLE ROTOR SEIZURE RUPTURE OF SUPPORT STRUCTURE OR BOLTING INTERNAL ROTOR SEIZURE RUPTURE OF SUPPORT STRUCTURE OR BOLTING INTERNAL SEIZURE DUE 100 FOOR FAILURE OF SUPPORT STRUCTURE OR BOLTING INTERNAL SEIZURE DUE 100 FOOR FAILURE OF SUPPORT STRUCTURE OR BOLTING INTERNAL SEIZURE DUE 100 FOOR FAILURE OF SUPPORT STRUCTURE OR BOLTING INTERNAL SEIZURE DUE 100 FOOR FAILURE OF SUPPORT STRUCTURE OR BOLTING INTERNAL SEIZURE DUE 100 SOF FLUID INTERNAL SEIZURE DUE 100 SOF FLUID INTERNAL SEIZURE TO DUELTS SUECK OVERSTRESS AT NOZZLE ROTOR SEIZURE STRUCTURAL FAILURE STRUCTURAL FAILURE STRUCTURAL FAILURE STRUCTURAL FAILURE STRUCTURAL FAILURE STRUCTURAL FAILURE STRUCTURAL FAILURE STRUCTURAL FAILURE STRUCTURAL FAILURE STRUCTURAL FAILURE

na a companya na tana kanana kananan da pananan kananan kananan kananan kananan kananan kanana kanana kanana ka

.

صديق بيديد الد

(

9**6** - 6**9**

1	OPNO	LDENT	CAT	WEIGHT	TEN	FIFTY	NINETY	PARAM	MEINE
	OPNO 117 118 119 120 121 122 123 124 125 126	LDENT 1116050201 1316022602 3216031922 1217032001 1116050201 1216091804 3216031922 1316022602 1217032001	CAT 16 16 16 16 16 16 16 16 16	WEIGHT 3.000 2.250 3.000 2.250 2.250 2.250 2.250 3.000 3.000 3.000	TEN 8.250 15.000 9.000 7.500 5.000 8.000 12.000 9.000 9.000	F1FTY 10.500 18.000 15.000 9.000 8.000 10.000 18.000 15.000	N1NETY 13.500 24.000 12.000 18.000 11.000 15.000 24.000 18.000 18.000	PARAM SP ACCEL G SP ACCEL G	MODE MECHANICAL BINDING OF THE VALVE FUNCTIONAL FAILURE OF INTERNALS DEFORMATION OF VALVE SIEM OR YOKE ACTUATOR COMPONENTS FAIL AND JAM LOSS OF ELECTRICAL CONTROLS OR ELECTRICAL COMPONEN LOSS OF CONTROL AIR RUPTURE OF PIPE SUPPORT AT NOZZLE BREAKS AT WELD ENDS ELECTRICAL FAILURE IN ACTUATOR FAILURE OF MAIDS ACTUATOR
	127 1289 1331 1323 1334 13356 1338 1336 1338 1330 141	1116050201 3216011102 1117020202 3118021106 3118070403 3118021106 1218081802 3218011101 1118050203 3218041115 3118021106 1218062007 3218011101	16 16 167 188 188 188 188 188 188 188 188 188 18	$\begin{array}{c} 0.750\\ 3.000\\ 2.250\\ 2.250\\ 3.000\\ 3.000\\ 3.000\\ 3.000\\ 1.500\\ 3.000\\ 3.$	6:750 6:000 7:500 11:250 10:000 6:600 12:000 10:500 10:500 10:000 12:000 20:000	$\begin{array}{c} 7.500\\ 10.000\\ 9.000\\ 12.000\\ 12.000\\ 7.800\\ 15.000\\ 7.500\\ 30.000\\ 15.000\\ 15.000\\ 15.000\\ 18.000\\ 18.000\\ 15.000\\ 50.000 \end{array}$	$\begin{array}{c} 12,000\\ 20,000\\ 10,000\\ 15,000\\ 15,000\\ 15,000\\ 10,800\\ 20,000\\ 8,500\\ 50,000\\ 20,000\\ 14,250\\ 30,000\\ 20,000\\ 24,000\\ 100,000\end{array}$	SP ACCEL G SP ACCEL G	LOSS OF PIPE ANCHORAGE FRACTURE OF ACTUATUR COVER AT VALVE BODY FAILURE OF SPRING MECHANISM DISC BECOMES DISENGAGED DISC BECOMES BOUND LEAKAGE INTERNAL SEAT LEAKAGE GAULING OF STEM STEM BINDING INTERNAL DAMAGE MECHANICAL BINDING OF THE VALVE STRUCTURAL FAILURE STRUCTURAL FAILURE STRUCTURAL FAILURE STRUCTURAL FAILURE FRACTURE OF VALVE
	142 143 144 145 147 147 147 153 155 155 155 157	3118070403 1118050203 3218011101 3118070403 3219041921 4120042009 3220051923 4120042009 3220051923 4120042009 3220051923 4120042009 3220051923 3220011114 3220051923 3221041923	18888990000011	3.000 1.500 3.000 1.500 1.500 1.500 1.500 1.500 1.500 2.250 0.750 2.250 0.250 2.250 2.250 2.250	9.000 10.500 9.000 8.000 12.000 8.000 12.000 3.000 4.000 3.000 7.400 5.000 1.500 3.000	10.200 12.000 10.500 15.000 12.000 20.000 8.000 5.000 8.000 10.000 8.000 10.000 8.000 4.000	12,000 13,500 11,250 20,000 18,000 20,000 10,000 10,000 10,000 15,000 10,000 4,000 8,000	SP ACCEL G SP ACCEL G ACCEL G FLOOR AC G ACCEL G ACCEL G ACCEL G	OPERATOR ACCESSORY MALFUNCTION LOSS OF PIPE ANCHORAGE LOSS OF VALVE CONTROLS FAILURE OF VALVE CONTROLS FAILURE OF VALVE ACTUATOR OPERATOR MALFUNCTION BINDING OF ROTATING PARTS RUPTURE OF ANCHOR BOLTS CONNECTION DETWEEN CONTROL PANEL AND ENGINE MALFUNCTION OF CONTROL SYSTEM OIL LEVEL REGULATOR ANCHOR BOLT FAILURE CRANKSHAFT LOCK UP RUPTURE OF ATTACHED OIL LINES FAILURE OF BATTENS LONGITUDINAL FAILURE OF ERAME
	158 159 160 162 163 164 166 166 166 166 169 171 172	3121011902 3121011902 3121011902 1322050602 4122050602 4122082008 1322040601 1322040601 1322040601 3122031904 3122031904 3122031904 3122031904 1322060602 1322060602	211222222222222222222222222222222222222	3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000	$\begin{array}{c} 15.000\\ 15.000\\ 25.000\\ 2.000\\ 0.\\ 2.000\\ 1.000\\ 2.000\\ 1.000\\ 2.000\\ 1.000\\ 15.000\\ 20.000\\ 15.000\\ 20.000\\ 1.500\\ 3.000 \end{array}$	$\begin{array}{c} 20, 000\\ 20, 000\\ 30, 000\\ 2, 500\\ 3, 500\\ 2, 000\\ 2, 000\\ 2, 000\\ 2, 000\\ 2, 000\\ 3, 000\\ 3, 000\\ 15, 000\\ 25, 000\\ 3, 000\\ 5, 000\\ 5, 000 \end{array}$	$\begin{array}{c} 30, 000\\ 30, 000\\ 35, 000\\ 4, 000\\ 4, 000\\ 0, \\ 4, 000\\ 3, 500\\ 3, 500\\ 3, 500\\ 3, 500\\ 3, 500\\ 3, 500\\ 3, 500\\ 30, 000\\ 30, 000\\ 30, 000\\ 5, 000\\ 6, 000\\ \end{array}$	ACCEL G ACCEL G ACCEL G SP ACCEL G	SUPPORT STAND FAILURE CASE BREAKAGE DUE TO A BAD STAND CASE BREAKAGE WITH GOOD STAND SPURIOUS OPERATION OF A PROTECTIVE RELAY STRUCTURAL FAILURE CONTACT ALLIGNMENT SUPPORT ANCHORAGE OF UNIT SPURIOUS OPERATION OF A PROTECTIVE RELAY STRUCTURAL FAILURE FRACTURE OF PORCELAIN INSULATOR COLUMNS CHATTER OF CONTACTS STRUCTURAL ANCHORING OF COMPONENTS IN CABINET SPURIOUS OPERATION OF A PROTECTIVE RELAY STRUCTURAL MOUNTING OF COMPONENTS IN CABINET SPURIOUS OPERATION OF A PROTECTIVE RELAY

19.2

248

`*****:

۹,

1 OPNO	IDENT	CAT	WEIGHT	TEN	FIFTY	NINETY	PARAM	MODE
174 1776 1777 180 1823 1856 1889 1912 1990 1234 1890 1180 1885 1889 11912 1990 1234 1890 1123 180 1812 1812 1885 1889 1912 1990 1234 1900 1234 1800 1123 1812 1812 1885 1889 1912 1990 1234 1990 1234 1990 1234 1990 1234 1990 1234 1990 1234 1990 1234 1990 1234 1990 1234 1990 1234 1990 1234 1190 11123 1186 1186 1186 1187 1191 1191 1193 1190 11123 1190 11123 1110 111111111111111111111111111111	3223021105 3223021105 3223051924 3223051924 3223051924 3223051924 3223051924 3223051924 3226022003 3226022003 3226022003 3226022003 3127031901 3127031901 3126011903 3126011903 3126011903 3130011107 3130011107 3130020401 3237021925 3237021105 3237021105 3237021105 322021105 322021105 322021105 322021105	9999333466007777700000011136666667777777777778889986039452499	$\begin{array}{c} 1.500\\ 1.500\\ 1.500\\ 1.500\\ 1.500\\ 1.500\\ 1.500\\ 3.000\\ 3.$	$\begin{array}{c} 0.400\\ 0.500\\ 0.6000\\ 4.000\\ 4.000\\ 4.000\\ 4.000\\ 1.500\\ 3.000\\ 12.000\\ 12.000\\ 0.000\\ 12.000\\ 0.000\\ 12.000\\ 0.000\\ 12.000\\ 0.000\\ 12.000\\ 0.000\\ 12.000\\ 0.000\\ 12.000\\ 0.000\\ 12.000\\ 0.000\\ 12.000\\ 0.000\\ 12.000\\ 0.000\\ 0.000\\ 1.5.000\\ 0.$	$\begin{array}{c} 0.600\\ 1.250\\ 3.000\\ 5.000\\ 5.000\\ 5.000\\ 2.5000\\ 15.000\\ 2.5000\\ 15.000\\ 2.5000\\ 15.000\\ 2.5000\\ 10.000\\ 15.000\\ 2.5000\\ 10.000\\ 10.000\\ 10.000\\ 10.000\\ 2.5000\\ 2.000\\ 3.000\\ 3.000\\ 5.000\\ 10.000\\ 3.000\\ 10.000\\ 10.000\\ 3.000\\ 10.$	$\begin{array}{c} 1.000\\ 2.500\\ 3.000\\ 5.000\\ 8.000\\ 5.000\\ 8.000\\ 10.000\\ 3.000\\ 8.000\\ 25.000\\ 15.000\\ $	SP ACCELL G G G G G G G G G G G G G G G G G G	COOLER UNIT PIPE FAILURE AND OIL LOSS INTERNAL STRUCTURAL FAILURE FAILURE OF ANCIDA BOLTS FAILURE OF ANCIDA BOLTS RUPTURE OF ANCIDA BOLTS FAILURE OF SUPPORT FRAME ELECTRICAL MALFUNCTION STRUCTURAL MALFUNCTION STRUCTURAL MOUNTING OF CABINETS COMPONENT MALFUNCTION STRUCTURAL MOUNTING OF CABINETS RELAY CHATTER CHATTER OF CONTACTS COMPONENT MALFUNCTION STRUCTURAL MOUNTING OF CABINETS RELAY CHATTER LOOSENING OF FASTENERS BASE STRUCTURAL FATIGUE SIGNAL DRIFT CONTACT CHATTER EDOSENING OF FASTENERS BASE STRUCTURAL ANCHORING OF CABINET BASE STRUCTURAL ANCHORING OF CABINET BASE STRUCTURAL ANCHORING OF CABINET BASE STRUCTURAL ANCHORING OF COMPONENT IN CABINET DISLOGING OF AIR DUCT BLANKING CLIPS FAILURE AT CONNECTION TO BUILDING INTERFACE FAILURE AT CONNECTION TO BUILDING INTERFACE FAILURE AT CONNECTION TO BUILDING INTERFACE FAILURE OF FIELD WELDS FAILURE OF FIELD WELDS RUUPTURE OF PARTS BETWEEN SUPPORTS CORNER TEARING SUPPORT FAILURE JOINT SEPARTION SUPPORT FAILURE MUTURE OF BUPORT FAILURE GOOSS BENDING FIRM CORNER CRIPPLING DUCT ANCHOR AND SUPPORT FAILURE GOOSS BENDING FIRM CORNER CRIPPLING DUCT RUPPORT FAILURE WELD FAILURE AT CONNECTION TO CLEVIS JUNCTURE TENSILE FAILURE AT MOBENERS SUPPORTS OGNNER CRIPPLING DUCT ANCHOR AND SUPPORT FAILURE GOOSS BENDING FIRM CORNER CRIPPLING DUCT RUPPORT FAILURE WELD FAILURE AT EMBEDMENT TO CLEVIS JUNCTURE TENSILE FAILURE AT E

.

a**s**

I. OPNOTES

Table OPNOTES contains additional information related to various expert opinions, such as the predominant frequencies related to the estimated spectral accelerations, limitations in the application of the estimates, etc. It consists of four columns as follows:

Column No.	<u>Column name</u>	Туре	Contents
1	LINE	Integer	A reference line number.
2	IDENT	Character	A ten character code identifying the particular expert (see Table OPINION).
3	САТ	Integer	An integer identifying the generic category of component (see Table CATEGORY).
4	NOTE	Character	The notes pertinent to the identified expert opinion.

\$

¥,

OPNOTES

•

LINE	IDENT	CAT	NOTE
1	3201031916	1	PREDOMINANT FREQUENCIES MODE #1,3HZ; MODE #2,3 HZ; AND MODE #3,5 HZ. PRECENTILES INCLUDE LOCA. PWR, ALL MODES. FUNCTIONAL FAILURE ALL MODES. FRAGILITY PARAMETER ACCELERATION AT CORE SUPPORT ATTACHMENT
10	4101022009	1	TO REACTOR VESSEL. Predominant frequency, 3-5 HZ;
13	3201041907	1	BWR, FUNCTIONAL FAILURE. ALL MODES: PREDOMINANT FREQUENCY MODES #1,3 HZ; MODES #2,3 HZ; MODES # 3,5 HZ. ALL MODES PRECENTILES INCLUDE LOCA.
21	3201012005	1	BWR, ALL MODES. FUNCTIONAL FAILURE ; ALL MODES ACCELERATION INDUCED DISPLACEMENTS PREDOMINANT FREQUENCY GIVEN FOR MODE #1 ONLY AND IT IS 4-10 HZ. BWR ALL MODES
26	3202032004	2	FUNCTIONAL FAILURE ALL MODES. POOL TYPE REACTOR VESSEL (LIG. SODIUM) PREDOMINANT FREQUENCIES, MODE # 1-7 HZ MODE #2-7.5 HZ
32	3202051909	2	MODES #3 PRESS. BOUND FAIL; ALL MODES. ALL MODES: PREDOMINANT FREQUENCIES, MARK II 9-15 HZ,MARK III 3-5 HZ. MARK II & III REFER TO GE BWR CONTAIN- MENTS PRESS COUND FAIL.
38	3202041908	2	ALL MODES. PERCENTILES INCLUDE EFFECTS OF ALL LOCA. PREDOMINANT FREQUENCY 15 HZ.
42	3202071913	2	PRESS. BOOND. FATEBRE. PRESSURIZER. BOTH MODES PREDOMINANT FREQUENCY, 7.0 HZ.
48	3202061910	2	PERCENTILES INCLUDE LOCA. PRESS, BOUND. FAIL; ALL MODES. STEAM GENERATOR. ALL MODES: PREDOMINANT FREQUENCY 7.5 HZ ALL MODES: VERTICAL DIRECTION ACCELERATION
54	3202022002	2	PRESS. BOUND. FAIL; ALL MODES. STEAM GENERATOR ALL MODES: PREDOMINANT FREQUENCIES: MODES # 1 10-30 HZ MODES # 2 RIGID MODES # 3 20-100 HZ
60	3202011108	2	PRESS. BOUND, FAIL; ALL MODES. STEAM GENERATOR, BOTH MODES: PREDOMINANT FREDUCIOY, 10-13 HZ. MODE #1 FACTORS TIME BY (SY FROM
66	1303022601	3	ALL MODES: PREDOMINANT FREEDENCY 25-50 HZ ALL PERCENTILES ARE FACTOR TIME SSE

LINE	IDENT	САТ	NOTE
70	3203032006	3	PRESS. BOUND. FAIL; ALL MODES. ALL MODES: PREDOMINANT FREQUENCY 5-25 HZ. BWR PIPING PRESS. BOUND. FAIL; ALL MODES.
77	1303010502	3	* OF ALLOWABLE PER ASME CODE SEC III EQ. 9 PERCENTILES: FACTOR TIMES SSE PREDOMINANT FREQUENCIES MODES#1 AND #2, 8-30 HZ.; MODE #3, 2-5 HZ.
83	320403201 3	4	PRESS. BOUND. FAIL; ALL MODES. FRAGILITY PARAMETER IS VIELD MOMENT
86	3204041915	4	ALL MODES: PREDOMINANT FREQUENCY, 4-8 HZ.
89	3204011109	4	PRESS. BOUND. FAIL; ALL MODES. PREDOMINANT FREQUENCY, 10-30 HZ. FRAGILITY PARAMETER IS YIELD MOMENT TIMES PERCENTILE FACTOR. PRESS. BOUND. FAIL;
94	3204020302	4	ALL MODES. PREDOMINANT FREQUENCY, ALL MODES 2-10 HZ. PRESS. BOUND. FAIL; ALL MODES.
98	320505191 6	5	ALL MODES: PREDOMINANT FREQUENCY, 4-10 HZ.
101	3205011110	5	PRESS. BOUND. FAIL; ALL MODES. PREDOMINANT FREQUENCY 10-30 HZ. PRESS. BOUND. FAIL; ALL MODES.
105	3205020303	5	PERCENTILES; FACTOR TIMES YIELD MOMENT. ALL MODES: PREDOMINANT FREQUENCY 2-10 HZ. PRESS, BOUND, FAIL; ALL MODES.
109	3205051916	6	ALL MODES: PREDOMINANT FREQUENCY 4-10 HZ.
112	3206010304	6	PRESS BOUND, FAIL; ALL MODES. ALL MODES: PREDOMINANT FREQUENCY 2-10 HZ. PRESS BOUNDS, FAIL; ALL MODES.
116	3207012010	7	% OF YIELD MOMENT PREDOMINANT FREQUENCY MODE #1, 6 HZ. PERCENTLISS FACTOR THATS YIELD MOMENT
119 121 1 23	3207021918 3208021917 3239011112	7 8 9	ALL MODES: PREDOMINANT FREQUENCY 4-10 HZ. ALL MODES: PREDOMINANT FREQUENCY 3-8 HZ. PREDOMINANT FREQUENCY: 12 TO 20 HZ.
126 128	3209011111 3209021919	9 10	PREDOMINANT FREQUENCY: GREATER THEN 12 HZ. BOTH MODES: PREDOMINANT FREQUENCY 15-30 HZ.
131	3210021118	10	PREDOMINANT FREQUENCY: GREATER THEN 20 HZ.
134	3210031119	10	SMALL VESSELS. PREDOMINANT FREQUENCY: 25-35 HZ. SMALL MEDIUM HEAT EXCHANGERS
137	3211010301	11	PERCENTILES IN TERMS OF PEAK GROUND
140	3212011911	12	BOTH MODES, PREDOMINANT FREQUENCIES: 4.5 HZ.
143 145	3249011912 3215011302	13 14	PERCENTILES INCLUDE LOCA. PREDOMIMANT FREQUENCY 4.5 HZ. ALL MODES. PERCENTILE: 50% OF Y. S. PERCENTILE: 50% OF Y. S.
149	3213011920	14	PERCENTILE: FACTOR TIMES SSE BOTH MODES: PREDOMINANT EDECHENCY 347

.

.

LINE	IDENT	CAT	NOTE
152	1248021403	14	PERCENTILE 90 IS TENTATIVE PERCENTILE: FACTOR TIMES SSE PREDOMINANT FREQUENCY >33 HZ. FOR MODES #1 AND #2.
158	1215041401	15	ASSOCIATED PIPING SYSTEM ALL MODES: PREDOMINANT FREQUENCY RIGID. PERCENTILES: FACTOR TIMES SSE
162	3215011302	15	SPECIFIED LOADS ALL MODES: FREQUENCIES, HORIZONTAL 33 HZ. VERTICAL 1-33 HZ. PERCENTAGES REPERTED NOZZLE LOADS
168	1217032001	16	PERCENTILES FOR MODE #3: FACTOR TIMES SSE LOADS. ALL MODES. PREDOMINANT FREQUENCY RIGID. BALL VALVE WITH ACTUATOR AND
172	3216031116	16	PREDOMINANT FREQUENCY > 15HZ.
175 177 179	3217011116 3216041117 1116050201	16 16 16	TO RIGID. PREDOMINANT FREQUENCY, RIGID. PREDOMINANT FREQUENCY > 20 HZ. GATE AND GLOBE VALVES. PREDOMINANT FREQUENCY: MODE
184	1316022602	16	#1 ABOVE 33 HZ.; MODE #2 8-20 HZ. MODE #3 ABOVE 27 HZ. PREDOMINANT FREQUENCY: MODE #1, 10-20 HZ. MODE #2, 30-50 HZ.
189	3216031922	16	MODE #3, 30-50HZ. ALL MODES: PREDOMINANT
192	1216091804	16	FREQUENCIES 2-10 HZ. BUTTERFLY VALVE PREDOMINANT FREQUENCY:
195	3216011102	16	RIGID. PREDOMINANT FREQUENCY: MODE #1 VALVE ACTUATOR 27.7 HZ. MODE " SPRING MECHANISM 10-12 HZ
200	1117020202	17	RUGGLES KLINGEMAN TRIP VALVE. PREDOMINANT FREQUENCIES
205	3118021106	18	PREDOMINANT FREQUENCIES ARE 20-30 HZ.
208	1118050203	18	AVERAGE AVERAGE CAPACITY 8-10 G'S. PREDOMINANT FREQUENCY: RIGID ALL MODES.
213	3218041115	18	GATE, GLONE AND CHECK VALVES. PREDOMINANT FREQUENCIES ARE >20 HZ.
216	3218011101	18	PREDOMINANT FREQUENCIES ARE MODE #1 25-50 HZ. MODE #2 > 50 HZ.
221	3118070403	18	MODE #3 > 50 HZ. PREDOMINANT FREQUENCIES MODE #1 12 TO 15 HZ. MODE #2 17 TO 21 HZ. MODE #3 27 TO 35 HZ.

.

3

B

è

LINE	IDENT	CAT	NOTE
226	1218081802	18	PREDOMINANT FREQUENCY IS
230	3219041921	19	PREDOMINANT FREQUENCIES ARE
233	4120042009	20	> 33 HZ. PREDOMINANT RESPONSE FREQUENCIES: 1ST MODE 7.0 TO 20.6 HZ. 2ND MODE 8.3 TO 13.8 HZ.
238	3220051923	20	PREDOMINANT RESPONSE FREQUENCIES: >15 HZ.
241	322 0011114	20	PREDOMINANT RESPONSE FREQUENCIES: 15 HZ.
244	3221041923	21	PREDOMINANT FREQUENCY IS >25 HZ.
247	3121011902	21	PREDOMINANT FREQUENCY >15 HZ.
250	1322050602	22	FREQUENCIES: SIDE TO SIDE = 6-11 HZ. FRONT TO BACK = 16-20 HZ. VERTICAL = >30 HZ.
0	4122082008	22	FREQUENCY: HORIZONAL ■ 5.6 HZ. 10.6 HZ. 16.5 HZ. (X) AND 7.8 HZ. 22.9 HZ.
5 7	1322040601 3222011103	22 39	36" WIDE METALCLAD SWI,TCHGEAR. FREQUENCIES: 1ST MODE = 1.5-4.0 HZ.
10	3122031904	22	PREDOMINANT FREQUENCIES FOR ALL Modes >15 HZ.
14	1322060602	22	POWER VAC METALCLAD SWITCHGEAR. PREDOMINANT FREQUENCIES SIDE TO SIDE = 6 - 11 HZ. FRONT TO BACK = 16 - 20 HZ.
20	3223021105	39	VERTICAL PARAMETER AT FLOOR FRAGILITY PARAMETER AT FLOOR TO TRANSFORMER INTERFACE PREDOMINANT FREQUENCIES: COOLER UNIT: 7.5, 7.7 HZ. INTERNAL STRUCTURE: 7.2, 7.6 HZ.
27	3223051924	23	PREDOMINANT FREQUENCY FOR ALL
30	3219021113	24	PREDOMINANT RESPONSE FREQUENCY
33	3226022003	26	PREDOMINANT FREQUENCIES: MODE #1 RIGID MODE #2 11 HZ. PERCENTILES ARE FACTORS TIMES
39	1327022001	27	SSE, INSTRUMENT RACKS PREDOMINANT RESPONSE FREQUENCY

LINE	IDENT	CAT	NOTE
42	3126011903	27	PREDOMINANT FREQUENCY FOR ALL MODES >12 HZ. THESE MODES OF FAILURE ALSO APPLY TO BREAKER PANELS, AUXILIARY RELAY PANELS, INSTRUMENT RACKS AND DIESEL
50	3127031901	27	GENERATORS. PREDOMINANT FREQUENCY IS >20 HZ. STRUCTURAL FAILURE
54	3130011107	30	DNLIKELY WITH MODERN DESIGN. PREDOMINANT RESPONSE FREQUENCY IS 5 - 35 HZ DAMPING IS 5%. THIS APPLIES TO
59	3130020401	30	ALL FAILURE MODES. PREDOMINANT FREQUENCIES MODE #1 10-15 HZ. MODE #2 29-30 HZ.
65	3122031904	31	MODE #3 NOT GIVEN DAMPING IS 5% FOR ALL MODES. PREDOMINANT FREQUENCY FOR ALL MODES > 15 HZ
69	3131011904	31	DAMPING IS 5% FOR ALL MODES. PREDOMINANT FREQUENCY FOR ALL MODES 215 HZ
77	3236010305	36	PREDOMINANT RESPONSE FREQUENCY IS 1-5 HZ, FOR ALL MODES PERCENTILES ARE PERCENTAGES DESIGN SSE SPECTRUM
82	3237020306	36	PREDOMINANT RESPONSE FREQUENCY IS 1-5 HZ. FOR ALL MODES PERCENTILES ARE PERCENTAGES OF DESIGN SSE SPECTRUM
87	3236021925	36	PREDOMINANT RESPONSE FREQUENCY
90	2137051404	37	PREDOMINANT FREQUENCY FOR RESPONSE 8.5 - 11.0 HZ. DAMPING AT 7%
95	3237061926	37	PREDOMINANT FREQUENCY FOR
98	3237021119	37	PREDOMINANT FREQUENCY FOR
101	6137041201	37	PREDOMINANT FREQUENCY FOR RESPONSE 15 - 20 HZ, ALL MODES. PERCENTILES: FACTOR TIMES SSE. A FRAGILITY CURVE WAS INCLUDED WITH THIS QUESTIONAIRE.
107	1337010501	38	THESE NUMBERS ARE THE MULTIPLICATIVE FACTOR OF THE UNIT RATED LOAD.
111	3222021104	39	IN-SITU TESTING, FRAGILITY PARAMETER AT CIRCUIT BREAKER FOOTING, THESE ARE SWITCHYARD CIRCUIT BREAKERS, TORSIONAL FAILURE, MODES OF

LINE	IDENT	CAT	NOTE
121	1205040404	48	VIBRATION: 1ST 2.4 - 3.4 HZ. 2ND 7.8 - 12.2 HZ. AIR BLAST CIRCUIT BREAKERS. THE TEST WERE NOT TAKEN TO FAILURE. PREDOMINANT FREQUENCIES:
127	4150011120	50	MODE #1 9.372. MODE #2 21.5 HZ. RESPONDENT INDICATED GOOD CONFIDENCE IN RESPONSE. PREDOMINANT FREQUENCY: 7 - 8 HZ.
131	BLANK	1	

J. <u>PIPE</u>

8

Table PIPE contains load scale factors for various pipe elements other than branches. (See Table BRANCH for branch elements.) It consists of nine columns as follows:

Column No.	Column name	Туре	Contents
1	LINE	Integer	A reference line number.
2	SIZE	Floating	The nominal pipe diameter (in.).
3	SCHED	Character	The pipe schedule.
4	МАТ	Character	Material: SS = Stainless Steel, CS = Carbon Steel.
5	TEMP	Floating	Temperature (°F).
6	ELBOW	Floating	Scale factor for elbow.
7	MITER	Floating	Scale factor for miter joint.
8	RUN	Floating	Scale factor for pipe run.
9	WELD	Floating	Scale factor for butt weld.

ł

ł

LINE	SIZE	SCHED	MAT	TEMP	ELBOW	MITER	RUN	WELD
123456789012345678901222288828888888888888888888888888888	0012223333344444444666688888888888888888888	1600 1000 1600 1000	ຘຘຨຘຘຨຬຬຨຬຨຬຨຬຨຬຨຬຨຬຨຬຨຬຨຬຨຬຨຬຨຬຨຬຨຬຨຬຨ	3333511352035000000000000000000000000000	9538774496574777069267451011200112100100000111914372742 953877449657036745131023445401902755880344236149149143727742 923877449657036745131023445401902755880344236149149143727742 921111123674513102344545101120011200100000111100000110 11200011200011000000110000001100000011000000		00000000000000000000000000000000000000	00000099255933717046705083752715544290771291022049485723 00000419925593564512111111111200000100000000000000000000

PIPE

ø.

4

\$

ř

LINE	SIZE SC	HED	MAT	TEMP	ELBØW	MITER	RUN	WELD
56	24.00	SW	cs	100.	0.40	o.	0.08	0.12
57	27.50 TN	=2.38	SS	535.	0.03	I 0.	0.01	0.02
58	29.00 TN	= 2.5	ŠŠ	595.	0.03	i Ö.	0.01	0.02
59	30.00 TN	= .5	CS	100.	0.18	0.	0.04	0.06
60	31 00 TN	=2.66	ŚŚ	530.	0.02	0.	0.01	0.02
61	36.00 TN	= .5	ĊŚ	100.	Ó.	0.26	0.03	0.04
62	AR OO TH	- 625	ČS.	100	Ó	0 12	0 01	0 02

.

K. RESULTS

Table RESULTS contains the descriptions of the fragility data for generic categories which result from certain groupings and subsequent reduction of expert opinions and other data as computed by program FRAGSTAT. It consists of eight columns of data as follows:

Column No.	Column name	Туре	Contents
1	RESNO	Character	An identifying code unique to this particular set of data.
2	CATNO	Floating	A floating point number unique to a particular description of generic category or component description (see Table CATEGORY).
3	NMEAN	Floating	The statistical mean of the data assuming normal distribution.
4	NSIGMA	Floating	The standard deviation of the data assuming normal distribution.
5	LNMEAN	Floating	The statistical mean of the natural logs of the data (i.e., assuming lognormal distribution).
6	LNSIGMA	Floating	The standard deviation of the natural logs of the data (i.e., assuming lognormal distribution).
7	MEDIAN	Floating	The median of the data assuming lognormal distributions.
8	BETA	Floating	Same as LNSIGMA, repeated for convenience in data extraction.

۰,

æ.,

RESNO	CATNO	NMEAN	NSIGMA	LNMEAN	LNSIGMA	MEDIAN	BETA
RESNO RESO1A RESO2A RESO2B RESO2C RESO2D RESO2D RESO3A RESO5A RESO5A RESO5A RESO5A RESO7A	CATNO 1.0 2.2 2.3 2.3 2.3 2.3 4.0 5.0 5.0 9.0 10.0 12.0 13.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 16.0 15.	NMEAN 1.578 3.835 3.197 1.933 5.000 2.424 220.000 220.000 220.000 220.000 220.000 220.000 220.000 220.000 220.000 2.515 2.038 4.370 1.908 220.000 2.626 2.995 2.300 4.464 3.186 4.832	NS IGMA 2.848 1.168 1.176 0.423 1.562 0.991 89.140 89.140 89.140 0.928 0.619 2.645 0.668 89.140 1.150 0.766 1.154 1.369 0.886 2.081	LNMEAN 0.721 1.344 1.100 0.637 1.551 0.894 5.310 5.310 5.310 5.310 5.310 0.700 1.364 0.610 5.310 0.971 1.054 0.971 1.052 1.462 1.575	LNSIGMA 0.396 0.230 0.333 0.208 0.339 0.263 0.406 0.406 0.406 0.406 0.406 0.399 0.254 0.609 0.254 0.609 0.275 0.406 0.336 0.336 0.387 0.340 0.337 0.340 0.337 0.317	MEDIAN 2.056 3.833 3.022 1.890 4.718 2.445 201.000 201.000 201.000 201.000 201.000 1.459 2.013 3.910 1.841 201.000 2.640 2.868 2.207 4.315 3.185 4.829	BETA 0.396 0.230 0.333 0.208 0.263 0.406 0.406 0.406 0.406 0.406 0.254 0.609 0.275 0.406 0.336 0.269 0.275 0.406 0.336 0.269 0.387 0.387 0.317
RES16B RES17A	16.0 17.0	8,000 8,960	2.347 1.200	2.029 2.190	0.315 0.130	7.606 8.900	0.315 0.130
RES18A RES19A	18.0 19.0	11.193 12.598	16.768 4.613	2.523 2.472	0.544 0.325	12.466 12.078	0 544 0 325
RES20A RES21A	20.0 21.0	0.658 2.486	0.228	-0.430 0.827	0.330	0.651	0.330
RES22A	22.0	2.610	1.240	0.846	0.486	2.330	0.486
RES23A RES24A	23.0 24.0	2,800	1.480 0.766	1.020	0.327	2.780	0.327
RES26A	26.0	1.631	1.107	0.141	0.759	1.151	0.759
RES27A	27.0	13.550	6.430	2,440	0.499	11,460	0.499
RES31A	31.0	15 228	5.105	2.662	0.203	14,331	0 203
RES33A	33.0	9.400	1.938	2.219	0.201	9,196	0.201
RES36A RES37A	36.0	2,290	1.014	0.802	0.392	2.229	0.392
RESSIGA	39.0	0.285	0.214	-1.210	0.416	0.298	0,416
RES40A	40.0	5.700	5.770	1.380	0.893	3.990	0.893
RES41A RES485	41.0	8,500	4.950	2.030	0.710	7.630	0.710
RES49A	49.0	0,395	0.282	-1,102	0.144	0.243	0.144
RES50A	50 0	0.310	0.142	-1.288	0.471	0.276	0,471

€#

L. SMADATA

Table SMADATA contains fragility information derived from data presented in Ref. 4. The calculation of the values in this table is discussed in Sec. 3.2. It consists of eight columns as follows:

Column No.	<u>Column name</u>	Туре	Contents
1	GRPNO	Integer	A unique number assigned to each set of data in the table.
2	CATNO	Floating	A floating point number unique to a particular category of component (see Table CATEGORY).
3	САТ	Integer	An integer unique to a class of generic components (see Table CATEGORY).
4	NMEAN	Floating	The statistical mean of the data assuming normal distribution.
5	NSIGMA	Floating	The standard deviation of the data assuming normal distribution.
6	LNEAN	Floating	The statistical mean of the natural logs of the data (i.e., assuming lognormal distribution).
7	LNSIGMA	Floating	The standard deviation of the natural logs of the data (i.e., assuming lognormal distribution).
8	PARAM	Character	The fragility parameter.

尒

ê,

GRPNO	CATNO	CAT	NMEAN	NSIGMA	LNMEAN	LNSIGMA	PARAM
SSMAA0056789011234567890112345678901123456789011234567890112345678901123456789011234567890123456789011234556	013200000000000000000000000000000000000	1122778800111235555555666780000112222344466667077011156111	$\begin{array}{c} 2&6&3&2&0\\ 2&7&8&3&7&7&7&1\\ 1&1&3&3&3&1&4&7&8&9&2&7&7&9&9&7&9&1&2&9&9&2&3&3&5&6&3&0&9&3&3&3&3&3&3&3&3&3&3&3&3&3&3&3&3&3$	$0 \begin{array}{c} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	1.11032012093312166471882986677194656091875605560656054560 1.1203201210011121591642988806318692950049297929892970929 2.99709 2.99709200000000000000000000000000000000	74401294020000000000000000000000000000000	GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG

ŧ

•

SMADATA

GRPNŐ	CATNO	CAT	NMEAN	NS I GMA	LNMEAN	LNSIGMA	PARAM
SMA57 SMA58 SMA59 SMA60 SMA61 SMA62	41.0 41.0 49.0 17.0 28.0 31.0	41 49 17 28 31 49	9.63 18.30 9.84 8.50 8.50 0.20	4.88 9.0566 5.955 4.00 0.0550 0.0550 0.0550 0.0550 0.05500000000	2.26 2.90 1.61 2.29 2.03 2.03 -1.61	0,82 0,88 0,35 0,65 0,71 0,71 0,35	SP ACCEL G SP ACCEL G PK GD AC G Z PD PK AC SP ACCEL G SP ACCEL G PK GD AC G

7.0 COMPUTER FILES

All of the files used in the data base and several useful data reduction and manipulation files have been grouped together into a file library in the LLNL Computer Center. This library permits easy storage, access, and maintenance of the files, and reduction or analysis of the data. Access information and explanations of the functions of the files in the library can be obtained from the SSMRP at LLNL.

.

8.0 REFERENCES

것 모양 여행 소리가 있는 것을 받았다.

- 1. Bohn, M. P., L. E. Cover, R. G. Wong, V. N. Vagliente, R. D. Campbell, and D. A. Wesley, <u>Seismic Safety Margins Research Program Phase I Final Report</u> - Fragilities Development (Project VI), Lawrence Livermore National Laboratory, Livermore, CA, UCRL-53021, Vol. 7 (1982).
- Dittli, A. L., <u>Introduction to FRAMIS A Tutorial</u>, Lawrence Livermore National Laboratory, Livermore, CA, UCID-30173 (1979).
- 3. Jones, S. E., et al., <u>Framis Reference Manual</u>, Lawrence Livermore National Laboratory, Livermore, CA, UCID-30176 (1980).
- 4. Kennedy, R. P. and R. C. Campbell, <u>Seismic Safety Margins Research Program</u> (Phase I) Subsystem Fragility, Structural Mechanics Associates, Newport Beach, CA, SMA 12205.06.01 (1979).
- 5. George, L. L. and R. W. Mensing, <u>Using Subjective Percentiles and Test</u> <u>Data for Estimating Fragility Functions</u>, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-84157 (1981).
- Cover, L. E., <u>FRAGSTAT A Computer Code for Analysis of Expert Opinion</u> <u>Fragility Data</u>, Lawrence Livermore National Laboratory, Livermore, CA, UCID-19146 (1982).

APPENDIX F DESCRIPTIONS OF CONTRIBUTORS TO FINAL ZION COMPONENT FRAGILITIES

The following documents the component fragilities as developed for the final Zion analysis and describes specifically the contributing data used to develop them. Not all of the fragilities presented here were actually used in the final analysis. The information presented here can be determined (except for the separation of random and modeling variability) from the Equipment Fragility Data Base Report (UCRL-53038, Rev. 1) (Appendix E in this report) but the process is rather cumbersome. The process used in making the separation of variability is documented in the final Zion report,* and it is not repeated here.

In the actual development, whenever expert opinion was used it was in the form of percentile data, and whenever expert opinions and other data were combined using the program FRAGSTAT** the non-expert opinion data were converted to equivalent percentiles for input to the program. To avoid the confusion of mixing l0th, 50th, and 90th percentile data with median and beta data, the equivalent median and beta are shown in each case.

 * M. P. Bohn, et al., Application of the SSMRP Methodology to the Seismic Probabilistic Risk Analysis at the Zion Nuclear Power Plant, UCRL-53483 (1983).
 ** L. E. Cover, FRAGSTAT - A Computer Code for Analysis of Expert Opinion Fragility Data, Lawrence Livermore National Laboratory, Livermore, CA, UCID-19146 (1982).

Component Fragilities Developed by the Seismic Safety Margins Research Program

Reactor Core Assembly

= 5%

Damping

Median = 2.06
Beta (T) = .40
Beta (R) = .24
Beta (U) = .32
Parameter = spectral acceleration (g)
Frequency = 6 Hz

Predominant failure mode = deformation of quide tubes

Five individual fragilities were combined for this category.

			Reference**		
Source*	Median	Beta	OPNO	GRPNO	
E.O.	3.92	.71	1		
E.O.	5.65	.76	2		
E.O.	6.69	.82	3		
D.D.	6.00	.24		SMA01	
D.D.	2.75	.24		SMA02	

Reactor Pressure Vessel

Median = 3.83 Beta (T) = .45 Beta (R) = .23 Beta (U) = .39

Parameter = spectral acceleration (g) Frequency = 5 Hz Damping = 5%

Predominant failure mode = fracture of RPV outlet nozzle

* E.O. = expert opinion

D.D. = design data from NUREG, CR-2405

SG = SAFEGARD data from NUREG, CR-2405

** These identifiers can be used to locate the specific data entries in the Equipment Fragility Data Base report (UCRL-53038, Rev. 1) (Appendix E). Where more than one value of OPNO is given for one source, it means that expert opinions were combined as one failure mode.

Three individual fragilities were combined for this category.

			Reference		
Source	Median	Beta	OPNO	GRPNO	
E.O.	4.16	.27	20		
Ε.Ο.	5.43	.29	19		
Ε.Ο.	6.46	.32	17		

Pressurizer

ý

Median = 2.00 Beta (T) = .40 Beta (R) = .21 Beta (U) = .34 Parameter = spectral acceleration (g) Frequency = 18-22 Hz Damping = 5%

Predominant failure mode = failure of support skirt bolting

The source of this fragility is design data and it was calculated from capacities in NUREG/CR-2405 (GRPNO = SMA05).

Steam Generator

Median = 2.45 Beta (T) = .44 Beta (R) = .24 Beta (U) = .37

Parameter = spectral acceleration (g)
Frequency = 5-8 Hz
Damping = 5%

Predominant failure mode = support failure

Four individual fragilities were combined for this category.

			Reference		
Source	Median	Beta	OPNO GRPNO		
БO	2 01	20	14		
E.O.	3.91	.20	14		
E.O.	2.88	.28	13		
E.O.	8.20	.42	26 & 28		
D.D.	3.30	.44	SMA04		

Piping (Master Fragility)

Median = 2.44 x 10⁶ Beta (T) = .38 Beta (R) = .18 Beta (U) = .33

Parameter = Moment (in.-lb)

Predominant failure mode = plastic collapse

This fragility was derived from test data and analysis and was calculated from capacities in NUREG/CR-2405 (GRPNO = GRPO3A).

Large Vertical Vessels with Formed Heads

Median = 1.46 Beta (T) = .40 Beta (R) = .20 Beta (U) = .35

Parameter = zero period accleration (g) Frequency = assumed rigid with slosh

Predominant failure mode = failure of anchor bolts

Two individual fragilities were combined for this category.

			Reference		
Source	Median	Beta	OPNO	GRPNO	
E.O.	1.65	.44	75		
Ε.Ο.	2.46	.54	76		

Large Vertical Tanks with Flat Bottoms

Median = 2.01 Beta (T) = .38 Beta (R) = .25 Beta (U) = .29

Parameter = zero period acceleration (g) Frequency = assumed rigid with slosh

Predominant failure mode = fracture of anchor bolts

Three individual fragilities were combined for this category.

			Reference		
Source	Median	Beta	OPNO	GRPNO	
E.O.	2.08	.28	77		
E.O.	3.26	.31	78		
E.O.	5.31	.31	79		

Large Horizontal Vessels Median = 3.91 Beta (T) = .61 Beta (R) = .30 Beta (U) = .53 Parameter = spectral acceleration (g) Frequency = 12-20 Hz Damping = 5% Predominant failure mode = failure of anchor bolts Two expert opinions were combined as one failure mode to develop this fragility (OPNO's = 83 & 84).

Small Medium Vessels and Heat Exchangers

Median = 1.84 Beta (T) = .51 Beta (R) = .25 Beta (U) = .45

Parameter = spectral acceleration (g) Frequency = 10-30 Hz Damping = 5%

Predominant failure mode = failure of anchor bolts

Four individual fragilities were combined in this category.

			Reference	
Source	Median	Beta	OPNO	GRPNO
E.O.	2.08	.28	85	
E.O.	12.77	.36	87	
Ε.Ο.	2.60	.45	86 & 89	
D.D.	7.92	.60		SMA10

Reactor Coolant Pump

Median = 2.64 Beta (T) = .44 Beta (R) = .24 Beta (U) = .37 Parameter = spectral acceleration (g) Frequency = 5 Hz Damping = 5%

Predominant failure mode = support failure

Three individual fragilities were combined for this category.

		Reference	
Median	Beta	OPNO	GRPNO
3.56	.40	92	
5.78	.41	93	
3.29	.44		SMA14
	<u>Median</u> 3.56 5.78 3.29	MedianBeta3.56.405.78.413.29.44	Median Beta OPNO 3.56 .40 92 5.78 .41 93 3.29 .44

Large Vertical Pumps

Median = 2.21
Beta (T) = .39
Beta (R) = .22
Beta (U) = .32
Parameter = spectral acceleration (g)
Frequency = 5 Hz

Damping = 5%

Predominant failure mode = failure of support connections

Two individual fragilities were combined for this category.

			Reference	
Source	Median	Beta	OPNO	GRPNO
E.O.	2.29	.42	99	
E.O.	4.58	.42	100	

Motor Driven Pumps and Compressors

Median = 3.19Beta (T) = .34 Beta (R) = .21 Beta (U) = .27 Parameter = spectral acceleration (g) Frequency = 7 Hz

Damping = 5%

Predominant failure mode = impeller deflection

Two individual fragilities were combined for this category.

			Refere	ence
Source	Median	Beta	OPNO	GRPNO
D.D.	3.19	.34		SMA16
D.D.	11.70	.42		SMA17

\$

Large Motor Operated Valves (>4 in.)

Median = 4.83 Beta (T) = .65 Beta (R) = .26 Beta (U) = .60

Parameter = piping peak acceleration (g)
Frequency = rigid

Predominant failure mode = distortion of extended operator

For a failure mode of "distortion of extended operator," seven individual fragilities were combined.

		Reference	
Median	Beta	OPNO	GRPNO
17.29	.28	124	
10.59	.26	123	
11.19	.36	125 & 121	
10.59	.48	128	
7.03	.27	129	
7.54	•65		SMA23
7.31	.35		SMA24
	<u>Median</u> 17.29 10.59 11.19 10.59 7.03 7.54 7.31	MedianBeta17.29.2810.59.2611.19.3610.59.487.03.277.54.657.31.35	Median Beta OPNO 17.29 .28 124 10.59 .26 123 11.19 .36 125 & 121 10.59 .48 128 7.03 .27 129 7.54 .65 .35

Large Motor Operated Valves (>4 in.)

Median = 14.40 Beta (T) = .63 Beta (R) = .28 Beta (U) = .56

Parameter = piping peak acceleration (g) Frequency = 15 Hz

Predominant failure mode = structural failure

For a failure mode of "structural failure" one expert opinion was used (OPNO=114). This was the lowest (i.e., most conservative) structural failure estimate given by the experts.

Large Hydraulic and Air Actuated Valves

Median = 7.61
Beta (T) = .46
Beta (R) = .31
Beta (U) = .34
Parameter = piping peak acceleration (g)
Frequency = rigid

Predominant failure mode = loss of control air

One expert opinion (OPNO=122) was used for this category.

Large Relief, Manual, and Check Valves

Median = 8.90Beta (T) = .40 Beta (R) = .20 Beta (U) = .35 Parameter = piping peak acceleration (g)

Frequency = rigid

Predominant failure mode = internal damage

Three individual fragilities were combined for this category.

			Refer	ence
Source	Median	Beta	OPNO	GRPNO
E.O.	8.92	.13	130	
E.O.	12.70	.13	131	
S.G.	47.50	.47		SMA26

Misc. Small Valves

Median = 12.50 Beta (T) = .54 Beta (R) = .33 Beta (U) = .43

Parameter = piping peak acceleration (g)
Frequency = rigid

Predominant failure mode = internal damage

Two individual fragilities were combined for this category. Note that each of these utilized four different expert opinions in their development.

Source	Median Beta	Beta	<u>Reference</u> OPNO GRPNO
E.O.	16.00	.62	133, 135, 136, 137
E.O.	21.60	.71	138, 139, 140, 141

Small Motor Operated Valves (<4 in.)

Median = 9.84Beta (T) = .65 Beta (R) = .26 Beta (U) = .60 Parameter = piping peak acceleration (g) Frequency = rigid

Predominant failure mode = distortion of extended operator

The source of this fragility is SAFEGARD data and it was calculated from capacities in NUREG/CR-2405 (GRPNO=SMA60). Note: This GRPNO was added to the fragility data base after publication of UCRL-53038, Rev. 1 (Appendix E).

Horizontal Motors

Median = 12.10 Beta (T) = .41 Beta (R) = .27 Beta (U) = .31

Parameter = zero period acceleration (g)
Frequency = rigid

Predominant failure mode = binding of rotating parts

Two individual fragilities were combined for this category.

			Refere	ence
Source	Median	Beta	OPNO	GRPNO
E.O.	12.40	.36	147	
E.O.	20.80	.28	148	

Generators

Median = .65
Beta (T) = .40
Beta (R) = .25
Beta (U) = .31
Parameter = spectral acceleration (g)
Frequency = 22 Hz
Damping = 5%

Predominant failure mode = shutdown valve trip

Eight individual fragilities were combined for this category.

			Reference
Source	Median	Beta	OPNO GRPNO
E.O.	5.95	.44	149 & 150
E.O.	5.95	.44	151 & 155
E.O.	5.65	.48	153
E.O.	10.40	.28	154
S.G.	.93	.35	SMA28
S.G.	1.96	.36	SMA29

S.G.	.74	.40	SMA30
S.G.	8.94	.55	SMA31

Battery Racks

Median = 2.29 Beta (T) = .50 Beta (R) = .31 Beta (U) = .39

Parameter = zero period acceleration (g) Frequency = rigid

Predominant failure mode = failure of battens

Three individual fragilities were combined for this category.

			Reference	
Source	Median	Beta	OPNO	GRPNO
E.O.	2.30	.42	156	
E.O.	20.80	.28	159	
D.D.	17.10	.48		SMA32

- -

Switchgear

Median = 2.33 Beta (T) = .81 Beta (R) = .47 Beta (U) = .66

Parameter = spectral acceleration (g) Frequency = 5-10 Hz Damping = 5%

Predominant failure mode = spurious operation of a protective relay

Three expert opinions (OPNO's = 161, 165, 171) of the same failure mode were combined for this category.

Dry Transformers

Median = 2.78 Beta (T) = .41 Beta (R) = .28 Beta (U) = .30 Parameter = spectral acceleration (g) Frequency = 10 HzDamping = 5% Predominant failure mode = failure of anchor bolts

Three individual fragilities were combined for this category.

			Reference	
Source	Median	Beta	<u>OPNO</u>	RPNO
E.O.	4.66	• 50	178	
Ε.Ο.	9.53	.68	177 & 225	
Ε.Ο.	3.11	.35	176	

Air Handling Units

Median = 2.24 Beta (T) = .41 Beta (R) = .27 Beta (U) = .31

2

Ļ

5

Parameter = spectral acceleration (g) Frequency = 5 Hz Damping = 5%

Predominant failure mode = rubbing of fan on housing

Four individual fragilities were combined for this category.

			Reference	
Source	Median	Beta	OPNO	GRPNO
E.O.	6.22	.36	179	
S.G.	2.75	.41		SMA38
S.G.	2.94	.42		SMA39
S.G.	11.80	.42		SMA40

Instrument Racks and Panels

Median = 1.15
Beta (T) = .82
Beta (R) = .48
Beta (U) = .66
Parameter = spectral acceleration (g)
Frequency = 5-10 Hz
.Damping = 5%

Predominant failure mode = relay chatter

Predominant failure mode = dislodging of components

One expert opinion was used for this fragility (OPNO = 201).

```
Communication Equipment
```

```
Median = 5.00
Beta (T) = .48
Beta (R) = .33
Beta (U) = .35
```

```
Parameter = spectral acceleration (g)
Frequency = 10-50 Hz
Damping = 5%
```

Predominant failure mode = dislodging of components

Source: expert opinion.

Inverters

Median = 15.60Beta (T) = .44 Beta (R) = .26 Beta (U) = .35

Parameter = spectral acceleration (g) Frequency = 5-10 Hz Damping = 5%

Predominant failure mode = relay trip

The source of this fragility is SAFEGARD data and it was calculated from capacities in NUREG/CR-2405 (GRPNO = SMA52).

Cable Trays

Median = 2.23 Beta (T) = .39 Beta (R) = .34 Beta (U) = .19

Parameter = zero period acceleration (g) Frequency = rigid

Predominant failure mode = support system failure

Three individual fragilities were combined for this category.

			Reference	
Source	Median	Beta	OPNO	GRPNO
E.O.	3.11	• 36	206	
E.O.	5.85	.41	207	
S.G. & D.D.	2.83	• 57		SMA53

Ducting

Median = 3.97Beta (T) = .54Beta (R) = .29Beta (U) = .46Parameter = spectral acceleration (g) Frequency = 5-10 Hz Damping = 7%

Predominant failure mode = structural failure

Five individual fragilities were combined for this category.

			Reference	
Source	Median	Beta	OPNO GRPNO	
E.O.	7.05	.27	208	
E.O.	7.14	.68	209, 211, 214	
Ε.Ο.	7.98	.81	210, 213	
E.O.	6.79	.30	212	
E.O.	9.09	.44	215	

Hydraulic Snubbers and Pipe Supports

Median = 1.46 Beta (T) = .54 Beta (R) = .22 Beta (U) = .49

Parameter = rated load

Predominant failure mode = weld failure

Source: expert opinion.

Relays

ŝ

Median = 4.00 Beta (T) = .89 Beta (R) = .48 Beta (U) = .75

Parameter = spectral acceleration (g) Frequency = 5-10 Hz Damping = 5%

Predominant failure mode = relay chatter

Two individual fragilities were combined for this category.

Source		Beta	Reference	
	Median		OPNO	GRPNO
E.O.	5.67	1.16	182	
S.G.	2.59	1.51		SMA45

Circuit Breakers

Median = 7.63 Beta (T) = .88 Beta (R) = .48 Beta (U) = .74

Parameter = spectral acceleration (g) Frequency = 5-10 Hz Damping = 5%

Predominant failure mode = breaker trip

Two individual fragilities were combined for this category.

Source	Median	Beta	Reference	
			OPNO	GRPNO
S.G.	9.58	.82		SMA55
S.G.	18.17	.88		SMA56

Ceramic Insulators

Median = .20 Beta (T) = .35 Beta (R) = .25 Beta (U) = .25

Parameter = peak ground acceleration (g) Frequency = 2-8 Hz Damping = 5%

Predominant failure mode = fracture of porcelain

The source of this fragility is expert opinion verified by actual earthquake data (GRPNO = SMA63).

RMD/yh/dlk