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ABSTRACT

Recent progress in pairing corrections for exciton state-density formulas used in pre-
compound nuclear reaction theories is reviewed. These correction factors are, strictly
speaking, dependent on the nuclear excitation energy U and the exciton number n. A sim-
ple formula for (U, n)-dependent pairing corrections has been derived, based on the BCS
pairing equations for constant single-particle spacing, for the exciton state-density formula
for one kind of Fermion. It has been shown that the constant-pairing-energy correction
used in standard state-density formulas, such as UQ in Gilbert and Cameron, is a limiting
case of the general (U, n)-dependent results. Spin cutoff factors with pairing effects were
also obtained using the same theory and parameterized into an explicit (U, n)-dependent
function, thereby defining a simple exciton level-density formula for applications in quan-
tum mechanical precompound theories. Preliminary results from extending such simple
pairing-interaction representations to level-density formulas for two kinds of Fermions are
summarized. The results show that the ratios in the exciton level densities in the one-
Fermion and two-Fermion approaches vary with both U and n, thus likely leading to
differences in calculated compound to precompound ratios. However, the differences in
the spin cutoff factors in the two cases are found to be rather small.
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1. INTRODUCTION

Total and exciton level density formulas are used in modern Hauser-Feshbach codes to
calculate compound and precompound reaction cross sections. Pairing interaction effects
are reasonably understood for the former but not for the latter. The purpose of this paper
is to review the progress in the (U,n)-dependent pairing correction for the exciton level-
density formula for one-kind of Fermion (Sections 2 and 3) and report on some preliminary
work by the author for two kinds of Fermions (Sections 4 to 8). It is important to note in the
very beginning that the standard Fermi-gas level density formula used in Hauser-Feshbach
model codes and used for extracting the level-spacing values from neutron resonance data
is for two kinds of Fermions. To be consistent, the two-Fermion formulas should also be
used for calculating the precompound effects in such codes.

2. PAIRING CORRECTIONS IN THE ONE-FERMION FORMULAS

The total state density in the one-Fermion formulation is given by1

where the subscript " 1 " indicates the one-Fermion formulation in which neutrons and pro-
tons are not distinguished and occupy the same set of single particle states; the parameter
a is related to the single-particle state density g by a = Tr2g/6; and the effective excita-
tion energy U* is given by U" = U — UQ, where U is the excitation energy and UQ is a
constant-pairing-energy correction, such as tabulated by Gilbert and Cameron.2

The corresponding exciton state density has the same form as the Williams formula3

and is given by

where p is the particle number, h is the hole number, and n is the exciton number equaling
p + h. The quantity Ai is a correction factor for the Pauli exclusion principle, modified
for pairing effects.4'5 The pairing correction Pi(U,n) is that suggested by Ignatyuk and
Sokolov6 and is given by

P1(U,n) = l[AZ-A2(U,n)), (3)

where Ao is the ground-state pairing gap. In Eq. (3) the quantity A(U, n) is the excited-
state pairing gap calculated from the pairing theory7 using Ao and g as input parameters.
The values of A(U, n) have been obtained and parameterized4 for everyday use as a simple
function of U, n, Ao, and g. Depending upon the values of U and n, the pairing correction
Pi(U, n) has values lying between 0 and Uo. Eq. (2) with the new (17, n)-dependent pairing
correction was validated in Ref. 4 by comparing with the exciton state densities calculated
directly from the BCS equations by Morreto7. The conventional correction factor for the



Pauli exclusion principle was modified in Ref. 4 to account for the pairing effects and was
further improved by Kalbach5.

It has been shown4 that the pairing correction UQ for the total state density is equal to
the value of Pi(U,n) evaluated along the most probable exciton number, fi,for U > 3.lbU0.
For a fixed U, A(U, n) - 0 if n > n, therefore,

gAl. (4)

This relation provides a means of calculating Ao from a given Uo, which is well un-
derstood. It has further been shown that even for U < 3.15Uo, Eq. (4) is still adequate
because this low excitation-energy range has mostly discrete levels. Therefore, the pairing
correction P\(JJ, n) is completely defined by the two parameters g and Uo, and the pairing
correction Uo used in Eq. (1) and the pairing correction Pi(U,n) used in Eq. (2) are
consistent.

3. SPIN CUTOFF FACTORS IN THE ONE-FERMION FORMULATION

The spin distribution formula corresponding to Eq. (1) is given by2'6

where J is the total spin quantum number and 02(U) is the spin cutoff factor given by:

(6)

where (m2) is the mean square of the projections of spins of the single particles and holes
on the z axis of the nucleus. The pairing effects enter into the spin distributions through
the constant-pairing-energy correction Uo in Eq. (6).

The particle-hole spin distribution for one kind of Fermion is given by6

where the spin cutoff factor, through which the pairing effects enter, is given by

a2(U, n) = 2g{m2) I f(e)[l - f(e)] de , (8)

and

1 + expfl

with
(10)

This spin cutoff factor was derived on the basis of the uniform pairing model6 for an
even-even nucleus; thus p = h = n/2. The quantity e is the single-particle energy, f is



the Lagrange multiplier constraining the excited system to a fixed value of n, and T is the
thermodynamical temperature. The values of A, f, and T can be obtained numerically
from the pairing equations for each combination of g, Ao, U, and n. Thus the (U, in-
dependence in <T2(U, n) of Eq. (8) is implicit in the functions A, f, and T. The pairing
equations used are those used previously for obtaining the one-Fermion pairing correction4

and the numerical results for a2(U,n) have been calculated and parameterized8 as an
explicit function of (U, n) for easy application of this advanced formula.

The product of Eqs. (1) and (5) defines the total level-density formula in the one-
Fermion approach:

Pl(U,J) = ui(U)R(U,J). (11)

Similarly, the product of Eqs. (2) and (7) defines the exciton level-density formula for
one kind of Fermion:

pi(n, U, J) = Wl(p, h, U) R(n, U, J) . (12)

It has been shown that the two spin cutoff factors in R(U, J) and R(n, U, J) are related
by7

a\U) = <T2(U, n) = g (m2) [(U - tfo)/a]1/2 • (13)

Therefore, <T2(U) is a limiting case of cr2(U,n) and both are consistently defined by
the same three parameters, g, UQ, and (m2).

4. PAIRING INTERACTION PROBLEMS IN THE TWO-FERMION CASE

The two-Fermion total state-density formula, most commonly used in Hauser-Feshbach
codes, is given by2

where the subscript "2" indicates the two-Fermion formulation in which neutrons and
protons occupy separate sets of single particle states.

Equation (14) was derived under the assumptions that gK = gv = g/2, where gv and gv

are constants. The quantities g* and gv are, respectively, single-proton and single-neutron
state densities. Making the same assumptions as for Eq. (14) and introducing the pairing
correction Pi into the two-Fermion exciton state-density formula of Williams,3 we have

f ^ ^ _ 1}, , (15)
where n is the exciton number equaling px+h*+pv + hv, pv is the proton-particle number,
hv the proton-hole number, pv the neutron-particle number, hv the neutron-hole number.
The quaritity A% is the correction factor for the Pauli exclusion principle and is a simple
extension of that for one kind of Fermion modified by pairing effects5.



UUo =0 and P2 = 0, Eqs. (14) and (15) are based on the same assumptions and are
consistent in principle. In fact, it can be shown numerically that if Uo = 0 and P2 = 0,

hK,pv,hv,U) , (16)

within 10%. This small difference is due to different simplifications in deriving Eq. (14)
and Eq. (15).

The spin distribution for the total state-density formula for two kinds of Fermions
corresponding to Eq. (14) has the same form as that for one kind of Fermion given by
Eq. (5). The product of Eqs. (14) and (5) defines the total level-density formula in the
two-Fermion formulation:

p2(U,J)=u2(U)R(U,J). (17)

The spin distribution formula for the exciton state-density formula for two kinds of
Fermions corresponding to Eq. (15) is obtained by replacing n by (nr,n,,) in the one-
Fermion formula, Eq. (7), and is given by

where nff = pK + hK, nv — pv+hv, and (T2(y,nff,nv) is the spin cutoff factor to be obtained
in this paper.

The product of Eqs. (15) and (18) defines the exciton level-density formula in the
two-Fermion formulation:

p2(p*>K,pv,hv,U,J) = W2(p*,h*,P»,K>U)R(nx,nu,U,J) . (19)

We now face the questions of (1) what is the value of P2, (2) whether the two pairing
correction factors Uo and P2 can be related in a consistent manner, (3) what is the value
of (T2{Utnr,nv), and (4) whether the two spin cutoff factors <?2(U) and a2{U,n1nny) can
also be related consistently. The goal for the remainder of this paper is to answer these
four questions.

5. PAIRING CORRECTIONS IN THE TWO-FERMION FORMULAS

We begin with the assumption that there is no pairing interaction between the protons
and the neutrons, then

P2(U,n7t,nv) = Px{yK,nv) + Pl(yv,nv) , (20)

where

Pi(Vw,n,) = ^ [ A L - Al{U.,nw)] , (21)



Pi(Uv,nv) = j[&L - &l(Uv,nv)} , (22)

and U = U* + Uv, n = nK + nv, nT = p* + hK, and nv = pu + hv. In Eq. (20), the
dependence of P2 on UT and l/v is implicit since their values can be obtained from U, nT,
and nv, as shown in Sect. 6.

The problem now is to find Aw and A,,. To find the solution, we must deal with the
pairing theory for two kinds of Fermions.

For a nucleus described by constant single-particle state densities gv and gv, and
constant pairing strengths G> and (?„, the system of equations is given by9

S 1

o
, (23)

= gv i +- tanh[(£?v - t,)/2T\de, , (24)

Jo &v

i+«p[(jBj-6r)/nf (25)

(26)

U. = -g. Jj §- tanh[(£?, - i,)/2T\d€, - | ^ + 9-fS* + \9lt A0
2
ff , (27)

4 £ 5' + A
7 ^ A o , , (28)

17 = ^ + ^ , (29)

where

£,, = ( 4 + A * ) 1 / 2 , (30)

^ = (el + A2)1/2 . (31)

The quantities EK and S v are, respectively, the quasi-proton and the quasi-neutron
energies, while eT and €„ are the single-particle energies for protons and neutrons, respec-
tively. In Eqs. (23) to (29), the known quantities are gnjgv, Ao*, AOJ/, n^n,, , and U, the
quantities to be solved are An,Av,^,^v,Un,Uv, and T. The quantities £n and £„ are
Lagrange multipliers constraining the excited system to fixed values of nff and nv, and T
is the thermodynamical temperature. The quantities GK and Gv are related to Ao* and
AOv, respectively, by Eqs. (23) and (24) at the ground-state conditions: T = 0, £* = 0,
£„ = 0, AT = Aow, and Av = Aoi,. The integration limit S has no effect on the solutions
provided S is much greater than AOJT> Ao?, and T,



Equations (23) to (29) can be solved for the seven unknown quantities for each needed
combination of the seven input quantities by a numerical iteration technique similar to that
used for the one-Fermion case.4 However, the time-consuming nature of the present problem
is many times worse. In the one-Fermion case, it is possible to factor out g and Ao, so the
input combinations involve only U and n. But in the present case, nothing can be factored
out and a numerical iteration has to be made for solutions for each needed combination
of the seven input quantities. The possible combinations of the seven input quantities
can be so large that the resulting computational costs could prevent this advanced theory
from being used at all. For this reason, we seek approximate solutions, described in the
following section, that can be easily used and still achieve our goal stated above.

6. APPROXIMATIONS FOR THE PAIRING CORRECTIONS
IN THE TWO-FERMION FORMULATION

If Aox = Aot/ (mean-gap approximation), approximate values of A* and Av can be
obtained from the existing results of the one-Fermion case given in Sect. 2 without having
to solve Eqs. (23) to (29). In this section, we describe how these approximate results can
be obtained and examine their uncertainties.

It is seen in Eqs. (23) to (28) that the same temperature T appears. In other words,
the proton system and the neutron system axe excited isothermally or the two points
(Ure^n^) and {Uv,nv) must fall on the same T curve in an isothermal plot on the (U,n)
plane. If it is assumed that Ao» = Ao* (remember g* = gv was assumed in the beginning),
the same plot applies to both the proton system and the neutron system. If we can find
an approximate solution for UK and Uv from given U,n* and nv, satisfying the isothermal
requirement, then Eqs. (23) to (28) can be separated into two sets of 3 equations, each set
representing an independent one-Fermion system. Therefore, the results given above for
the one-Fermion system can be used for each of these two systems.

The following simple procedures define VT and Uv to approximately 10% of the exact
values except for energies near the threshold:

U«=n*U/n, (32)

and
Uv = nvU/n , (33)

that give U = U* + UU.
For each Uw obtained from Eq. (32), Eqs. (23), (25), and (27) can be solved for

A * , ^ , and T from given gn,Aoit, and n* in the same manner as in the one-Fermion
model. Similarly, the neutron system can be solved from Eqs. (24), (26), and (28). Each
system of equations is identical to that already solved for in Ref. 4 and needs not be
repeated. The formula for A(U, n) given in Ref. 4 can be applied for AK(UT, nx) and
&v(Uv,nv) which, in turn, define the pairing correction P2(U,nv,nv) by Eqs. (20), (21),
and (22).

Detailed examination of this approximation showed that the average error in Pi due
to our simplified approach in determining UK and Uv is about 2% except for energies near



the threshold. The reason this error is so small is partly due to the compensating nature
in the errors of U* and Uv.

Similar to the one-Fermion case, the pairing correction J7o for the total state density
is related to PTAJJ^ nT,nv) by

Uo = P2(U,n*,K). (34)

From Eqs. (20), (21), (22), and (34), and noting that Aw = 0 at hn and A,, = 0 at nv, we
have

A2
Qx = Al=4Uo/g, (35)

which says that the ground-state pairing gaps in the proton system and the neutron system
are both equal to that of the one-Fermion system if the same input values of g and UQ axe
used. This feature is not surprising since the condensation energies UQK = J ^ ^ A Q , for the
proton system and UQV = \g»&%v for the neutron system are each one-half of Uo = \g&l,
the condensation energy of the one-Fermion system.

Therefore, the pairing correction P2(U, nK,nv) in the mean-gap approximation de-
pends on only two parameters, g and UQ. The fact the pairing-corrected two-Fermion
particle-hole state-density formula in the present approach can be consistently defined by
the same two parameters as in the total state-density formula is the most desirable feature
of the mean-gap approximation. For even-even and odd-odd nuclides, Ao* and AQV are
generally not very different, the mean-gap approximation is expected to be reasonable.
The approximation could be poor for an odd-A nuclide for which Ao* and AOl/ can be
quite different. In this case, exact solution of the pairing equations may be necessary and
has to be done with numerical iterations for large combinations of g*, gv, Ao*, Aov, n*-, nv,
and U. Therefore, the simplicity offered in the mean-gap approximation remains appealing
even in the odd-A case.

We have now answered the first two questions posed at the end of Sect. 4, and turn
to the remaining two questions.

7. PARTICLE-HOLE SPIN CUTOFF FACTORS
IN THE TWO-FERMION FORMULAS

The particle-hole spin cutoff factor appearing in Eq. (18) for two kinds of Fermions
is by definition the sum of the two one-Fermion components:

<T2(U,n,,nv) = <72(l7w,nn) + a2(Uv,nv) , (36)

where

a (U,t n.) = 2g*(ml) f /(«.) [1 - /(e,)] A , , (37)
Jo

\UV,nv) = 2gv{ml) f°° /(«„) [1 - /(«,)] de, , (38)
./o

8



and

( 3 9 )

The system of seven pairing equations given by Eqs. (23) to (29) must be solved for
the seven variables, which, in turn, can be used in Eqs. (36) to (40) to calculate rigorously
the two-Fermion spin cutoff factors. This calculation, as discussed above, is prohibitively
tedious. Reasonably good results can be obtained by using the same approximations as
used for the pairing corrections, namely, by using the mean-gap approximation and the
approximation for [7* and Uv given in Eqs. (32) and (33). This way the parameterized
function8 for the spin cutoff factors for one kind of Fermion can be used to replace Eqs.
(37) and (38). Thus we have answered the third question posed at the end of Sect. 4.

Combining Eqs. (13) and (36), we have

o\U, n., hv) = ffw (ml) [(p, - UoJ/a*)1'2 + gv (m
2) \{UV - VQ,)Ml* , (41)

and recalling g* = gv = g/2, UOT - UOv = U0/2, and setting U* ~UV = U/2, (ml) =
{ml) = (m2), we have

(42)

Therefore, cr2(U) is again a limiting case of <r2(U,nr,nv) as in the one-Fermion case,
however, this occurs at the additional conditions: UK = Uv and (ml) = (ml) = (m2).
This is the answer for the fourth question posed at the end of Sect. 4.

Both the exciton level densities and the spin cutoff factors calculated for the one-
Fermion and the two-Fermion formulations are further clarified by numerical examples in
the next section.

8. ILLUSTRATIONS

Several interesting points, difficult to visualize from the formulas, can be made using
numerical examples.

41 Ca, 94Nb, and 241Pu with realistic parameters were chosen for computational tests.
All results show that the consistency relation, Eq. (16), relating the total and exciton
state-density formulas, holds within 10% for U > 3.l5Uo using the constant-pairing-energy
correction Uo for the left side and the generalized pairing correction factor P2(Z7, n*,nv) for
the right side. When u2 on both sides of Eq. (16) is replaced by p2, the approximation still
holds. For U < 3.15t7o, the agreement in not as good because the constant-pairing-energy
correction Uo is invalid at low energies as shown previously.4

The exciton level density for n = 2 is the most dominant component for calculating
the precompound reaction cross sections while the total level density accounts for com-
pound reaction. The level densities and the spin cutoff factors for these two components



are illustrated for 41Ca using the parameters 5=3.937 MeV"1 and C7O=1.S3 MeV. The
parameter {m2) and {m2) were set equal to (m2) taken from Ref. 10 to be 0.24A2/3 where
A is the mass of the nuclide. The conclusions drawn below for 41Ca are also valid for 94Nb
and 241Pu.

Figure 1 compares p\(n = 2,U) in the one-Fermion formula with P2(p* = l,hr =
1,P* = 0,hv = 0,U) + p2(p* = 0,hn = 0,pv = l,ku = 1,77) for 41Ca. These were
obtained from Eqs. (12) and (19), respectively, by summing over J. For simplicity, these
two components are labeled in Fig. 1 as pi(n = 2) and p2(n = 2). Similarly, pi(&\\ n) and
P2(aU ") , obtained by the additional summation over n, are shown. The "all n" component
can be regarded through Eq. (16) as the total level density. The one-Fermion densities are
larger, as expected.

Figure 2 shows the ratios px{n = 2)//>2(n = 2) and pi(all n)//32(all n). The former is
nearly constant in U while the latter increases with increasing U. This is an interesting
result for the following reason. In Hauser-Feshbach codes, it is a common practice to use
the two-Fermion level-density formula given in Eq. (17) for the compound part, while the
one-Fermion exciton level-density formula of Eq. (12) for the precompound effects. This
is simply because the two-Fermion exciton level-density formula of Eq. (17) is complicated
and the (U, n)-dependent pairing correction and spin cutoff factor (subject of this paper)
in the formula have not been implemented. Therefore, a popular approach11 in Hauser-
Feshbach codes with precompound effects is to normalize P2(all n) to pi(all n) at each
energy U. This normalization would make the U-dependence in pi{n = 2) incorrect. Con-
sequently, the major achievement of the present work is to make all level-density formulas
consistent. No normalization is needed and the consistent formulation of compound and
precompound reactions with angular momentum conservation12 can be fully realized.

Figure 3 shows the spin cutoff factors for n = 2 and "all n". For simplicity, the
component <r2(U,n = 2) is labeled <72(n = 2) and the average of <T2(U, nn = 2,nv = 0)
and a2(U,nn = Q,nv = 2) is labeled cr|(n = 2), and similarly for the "all n" components.
The latter were obtained by averaging Eq. (7) over all n and averaging Eq. (36) over
all allowed combinations of n* and nv using the respective state densities as weighting
functions. These factors in the one-Fermion and the two-Fermion formulations are quite
close, differing by less than 2% for n = 2 and less than 10% for "all n". The reason for this
agreement, for n=2, can be seen from Fig. 3 of Ref. 4 in which is shown that for a fixed
small n the spin cutoff factor is nearly independent of energy and its value is proportional
to g. For the "all n" components, the similarity in the the spin cutoff factors of the two
approaches can be understood from the following reasons: (1) Fig. 3 of Ref. 4 shows that
the largest spin cutoff factor among all n for a fixed U is near n, (2) the state densities
(the weighting functions) are also the largest near n, and (3) the spin cutoff factors at rl
in the one-Fermion formulation and at (n*,nu) in the two-Fermion formulation, given by
Eqs. (13) and (42) respectively, are both equal to cr2(U).

9. CONCLUSIONS

It has been shown that the total state-density formula for two kinds of Fermions, Eq.
(14), with pairing correction factor £7o, and the particle-hole state-density formula, Eq.

10



(15), with pairing correction factor P2(U,nn,nu), can be calculated approximately but
consistently by the same two parameters, namely, the single-particle state density g and
the constant-pairing-energy correction UQ. Although the pairing correction P2 depends on
the excitation energy U, the proton exciton number nK, and the neutron exciton number
nv, it has been shown that a good approximation to P2 can be derived from g and UQ
as well. Simultaneously, the spin cutoff factors in the two-Fermion formulation have been
derived, defining the corresponding particle-hole level-density formula. It has been shown
that consistency between the one-Fermion and the two-Fermion level-density formulas can-
not be obtained by normalizations at each U because all results are also n-dependent. In
particular, normalization at each U of the one-Fermion "all n" component to the corre-
sponding two-Fermion component would make the {/-dependence in the n = 2 component
in the two-Fermion level density incorrect. On the other hand, numerical results have
shown that the spin cutoff factors in the one-Fermion and the two-Fermion formulations
agree within 10% and probably need not be distinguished.
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Fig. 1. Comparison of the one-Fermion and two-Fermion level densities calculated
for 41 Ca with a consistent pairing interaction theory. Subcripts 1 and 2 denote the one-
Fermion and the two-Fermion cases, respectively. Two exciton components, n=2 and "all
n", are shown. The "all n" component is obtained by summing the exciton level densities
over all of the allowed exciton numbers.
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Fig. 2. Ratios of the one-Fermion to two-Fennion level densities calculated for 41Ca
as showr. in Fig. 1. The ratio for the n=2 component, important for the precompound part
of the cross-section calculation, is nearly flat in excitation energy. The ratio for the "all n"
component, important for the compound part, increases with increasing excitation energy.
This means that the compound to precompound ratios calculated by the one-Fermion and
two-Fennion reaction theories will be different in absolute magnitudes and in their energy
dependence.
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Fig. 3. Comparison of the one-Fermion and two-Fermion spin cutoff factors calculated
for 41Ca with a consistent pairing interaction theory. The n=2 components in the two
different approaches are nearly identical and are nearly independent of excitation energy.
The "all n" component increases with increasing excitation energy. The differences between
the one-Fermion and the two-Fermion "all n" components remain small.


