LA-9074-MS

$$
1.2358
$$

OO NOT MICROFILM COVER

A Simplified Scaling Model for the $\boldsymbol{\theta}$-Pinch

NOTICE

FORITONS OF THIS REPORT ARE IITIEGIBLE. It has been reproduced from tho best available copy to permit the broadest possible availability.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Edited by Helen M. Sinoradzki

 Photocomposition by Pamela H. Mayne
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United ${ }^{*}$ States Government or any agency thereof.

A Simplified Scaling Model for the θ-Pinch

K. J. Ewing
D. B. Thomson

DISTRREMTIOM OF THIS DOCument is UNLAMEA

PAGES ii to iii

WERE INTENTIONALLY LEFT BLANK

$\therefore 2+x$

CONTENTS

ABSTRACT 1
I. INTRODUCTION 1
II. DESCRIPTION OF THE MODEL AND RESULTING CODE 2
A. General Description 2
B. The \dot{R} Heating Stage 3
C. The Reverse Field Cancellation Stage 4
D. Adiabatic Heating Stage 4
III. COMPARISON WITH EXPERIMENTAL DATA 4
A. Early Laboratory θ-Pinches Used to Determine the Fitting Constant 4
B. Explosive Generator θ-Pinch 6
C. Scyllar θ-Pinch 7
IV. NEW REGIMES 12
A. Drive Field of 550 kG 12
B. Plate Generator Driven $900 \mathrm{kG} \theta$-Pinch 13
V. SUMMARY 14
ACKNOWLEDGMENTS 14
REFERENCES 14
APPENDIX—FORTRAN CODE 17

A SIMPLIFIED SCALING MODEL FOR THE θ-PINCH

by

K. J. Ewing and D. B. Thomson

Abstract

A simple 1D scaling model for the fast θ-pinch was developed and written as a code that would be flexible, inexpensive in computer time, and readily available for use with the Los Alamos explosive-driven high-magnetie-field program. The simplified model uses three successive separate stages: (1) a snowplow-like radial implosion, (2) an idealized resistive annihilation of reverse bias field, and (3) an adiabatic compression stage of a $\beta=1$ plasma for which ideal pressure balance is assumed to hold. The code uses one adjustable fitting constant whose value was first determined by comparison with results from the Los Alamos Scylla III, Scyllacita, and Scylla IA θ-pinches. The code was first written in 1968 and compared with results from the 1967 shot series at Los Alamos using explosive-driven spiral-generator-powered θ-pinches. The code was primarily applied to short-coil ($\sim 25 \mathrm{~cm}$) θ-pinches, so output neutron and x-ray yields were cut off at 2μ s to reduce error from end-loss. More recently, the code has been applied to and compared with results obtained from the Scyllar θ-pinch used for radiation and opacity studies in the mid-1970s. Comparisons of plasma temperature, density, and radius are made at times before the observed onset of instabilities. In general, the code has been able to fit a wide range of the more accurately measured experimental data rather well, predicting measured temperatures to within a factor of 1.6 or better for the applicable laboratory data in the filling density range of 150 to 5000 mtorr. Finally, the code has been used to predict plasma properties that might be achieved with a high-field ($\sim 900-\mathrm{kG}$) θ-pinch that could be driven by plate generators currently in use at Los Alamos.

I. INTRODUCTION

This report summarizes work that was done primarily from 1967 through 1978 to develop and use a simplified one-dimensional model for the fast θ-pinch. In 1967-68, there was an experimental program in Group GMX-6 (now Group M-6) at Los Alamos involving ex-plosive-generator-driven θ-pinch experiments. At that time there was no easily usable theoretical model or code to permit parameter studies and scaling-law calculations that could be compared with experimental results and
used in planning. The model described here was designed (in 1967-68) to fill that need. The resulting code, discussed in this report, is basically algebraic in nature and is not a finite difference, differential equation mathematical treatment. It runs in seconds on a computer rather than hundreds or thousands of seconds. It permits parameter studies using one adjustable scaling constant that is determined from experimental data. We have applied the code to capacitor-bank-driven θ-pinches as well as to explosive-generator-driven experiments. Although the adjustable constant was different for the
two cases, the scaling was successful to first approximation. The code was calibrated with experimental results from standard short-coil laboratory θ-pinches ${ }^{1-4}$ used in the mid-1960s (that is, Scylla III, Scyllacita, and Scylla IA) by the Los Alamos magnetic fusion program. It was then compared with experimental results ${ }^{5-7}$ from the 1967 explosive-generator-driven θ-pinch shot series at Los Alamos, which used Sandia National Laboratory (SNL) Model 106 and 169 generators, and was used to give expectations for θ-pinches driven by the higher current generators then being planned.

Later the code was used for prediction and comparison of plasma conditions obtained with the Scyllar ${ }^{8}$ θ-pinch used in 1971-77 for radiation and opacity experiments in P-Division. Finally, the code has been used to predict conditions that might be achieved with a very high field ($0.9-\mathrm{MG}$) θ-pinch driven by plate generators currently used by Group M-6.

In recent years, a 1D magnetohydrodynamic (MHD) code, RAVEN, ${ }^{9}$ has been developed that treats not only θ-pinches, but also other MHD-driven plasmas (that is, Z-pinches, etc.), much more completely and rigorously. RAVEN solves the basic differential equations involved, allows the various heating mechanisms to overlap, and allows for the proper inclusion of such basic parameters as finite resistivity. The RAVEN code is now expected to predict a θ-pinch much more correctly. However, our code provided a very useful, flexible, and easy-to-use way to predict and compare a very wide variety of experimental θ-pinch results over a number of years; it is being reported on here to summarize these results, comparisons, and predictions. It should provide a useful basis for comparison with the more sophisticated MHD codes. The report also illustrates plasma conditions that could be obtained with short-coil θ-pinches driven by the higher current energy sources now available using plate generator technology.

II. DESCRIPTION OF THE MODEL AND RESULTING CODE

The simplified scaling code was developed in 1967-68. Fitting the code to available experimental data enabled calculation of neutron and x-ray yields that could be expected from scaled-up, higher field, explosive-generator-driven θ-pinch experiments. In particular, the code was geared for easy variation of the input parameters that are thought to be of greatest importance in the plasma compression process, namely, the applied mag-
netic field, the initial coil voltage, the reverse field, the filling pressure, and the initial radius. Detailed theoretical calculations involving these parameters were not otherwise readily available in the range of values most pertinent to a high-field program.

The code itself was written and operated by K. J. Ewing (Los Alamos Group WX-11). All operations involve straightforward algebraic equations. The code is quite simple and versatile, which facilitates more detailed parameter studies. It has recently been added to the Los Alamos Group WX-11 Code Library (K. J. Ewing, " θ-Pinch Code," WX-11, 1981) and is available for general use.

A. General Description

The model used involves the following considerations.
(1) We assume the heating of the plasma takes place in three separate and independent stages:
(a) a rapid radial motion (\hat{R}) snowplow ${ }^{10}$-type stage in which the inward radial motion is converted into kinetic temperature at a time when a dynamic pressure balance is reached.
(b) a reverse field cancellation stage in which conversion of all the reverse field energy into plasma kinetic energy takes place.
(c) a final adiabatic compression stage, during which the plasma is assumed to be a good conductor, β is assumed to be unity, and static pressure balance $B^{2} / 8 \pi=\left(n_{1}+n_{e}\right) k T$ is assumed to hold. A number of calculations were run that deliberately introduced neon (or another appropriate impurity) to augment the x-ray yield. This was done by enhancing the pure bremsstrahlung radiation rate by an arbitrary factor. The temperature was reduced appropriately.
(2) Based on the results of the 1967 ex-plosive-generator-driven θ-pinch shot series, ${ }^{5-7}$ the calculations of plasma properties are usually cut off after $2 \mu \mathrm{~s}$ of B -field rise. It is assumed that end-losses can be neglected up to this time and therefore that only the plasma radius need be considered as a space variable. We thus assume that end-loss and instability will destroy the validity of our model after $2 \mu \mathrm{~s}$. This is obviously an approximation.
(3) We assume collisional equilibrium during the adiabatic compression so that $T_{1}=T_{e}$ throughout. We also assume the plasma is homogeneous within the volume defined by the radius R. All results of calculations presented here have been run for, or normalized
to, a θ-coil length of 25 cm .
(4) The principal variable parameters applied to the problem are the initial coil voltage V_{θ}, the applied magnetic field $B(t)$, the initial ion density n_{0}, the initial plasma radius R_{0}, and the initial reverse field $\left(-B_{0}\right)$. We assume cylindrical symmetry throughout.
(5) During the final adiabatic heating stage, the code prints out the following quantities as a function of time: ion density, plasma radius, plasma temperature, integrated neutron yield, and integrated soft x-ray yield.

The neutron yield is obtained simply by integrating n_{1}^{2} $\langle\sigma v\rangle$, over time and plasma volume, at the ion temperature T_{b}, using the currently available D-D cross sections. We assume the soft x-ray yield is purely bremsstrahlung, $\sim \mathrm{n}_{1}^{2} \sqrt{\mathrm{~T}_{\mathrm{e}}}$. When running the problem with a higher Z seed gas (that is, 2% neon, etc.), the pure bremsstrahlung term is multiplied by an arbitrary factor (50 , for example).

B. The R Heating Stage

In describing the initial \dot{R} heating stage, we assume an initial condition that includes a fully ionized deuterium (or helium) plasma at a specified starting density at a temperature of about 2 eV , or any other value considered appropriate.
The following general quantities are defined:
$\mathrm{t}=\mathrm{time}$,
$\mathrm{R}=$ plasma radius,
$B=$ applied axial magnetic field, as a function of time,
$T=$ plasma temperature (assuming $T_{i}=T_{e}=T$), and
$\mathrm{n}=$ ion density at any time t .
In the \dot{R} heating stage, we assume that an initial applied θ-coil voltage V_{θ} induces an inward radial motion of the plasma with a constant velocity R . From basic pinch theory, ${ }^{10}$ the sheath velocity is proportional to $\sqrt{E} / \rho^{1 / 4}$, so we write
$\dot{\mathrm{R}}^{2}=\mathrm{K}_{1} \mathrm{~V}_{\theta}\left(\frac{100}{\mathrm{P}_{0}}\right)^{1 / 2}$,
where K_{1} is a scaling factor to be determined by experiment and P_{0} is the fill density in mtorr. In this case K_{1} includes the term $1 / 2 \pi \mathrm{R}_{0}$ (because $\mathrm{V}_{\theta}=2 \pi \mathrm{R}_{0} \mathrm{E}_{\theta}$).

The quantities with the subscript s, namely, $\mathrm{R}_{\mathrm{s}}, \mathrm{B}_{\mathrm{s}}, \mathrm{t}_{\mathrm{s}}$, T_{s}, and n_{s}, are the values of these quantities at the end of the \dot{R} heating stage, at which time we set $\vec{R}=0$.

Next we assume that the end of the \mathbf{R} heating stage is brought about by a dynamic pressure balance of the form
$2 n_{s} k T_{s}=\frac{\ddot{B}_{s}^{2}}{8 \pi}+\frac{\rho \mathrm{R}^{2}}{2}$,
where ρ is the mass density of the inward moving sheath [assumed to be $n_{s} x$ (mass/ion)]. The quantity n_{s} is equated to $n_{0}\left(R_{0} / R_{s}\right)^{2}$, which expresses conservation of the total number of particles. We included a dynamic pressure term $\rho \mathrm{R} / 2$ to fit the experimental data during preliminary calculations with the code, from which it had been omitted.

The third basic equation of the $\dot{\mathbf{R}}$ heating stage assumes that the radial directed energy is converted into collisional thermal energy at the time t_{s} when dynamic pressure balance is achieved; therefore, we write
$\mathrm{T}_{\mathrm{s}}=\mathrm{K}_{2} \dot{\mathrm{R}}^{2}\left[1-\left(\frac{\mathbf{R}_{\mathrm{s}}}{\mathrm{R}_{0}}\right)^{2}\right]$.
In Eq. (3) we assume that only those particles actually swept in will have the directed energy, whereas all of the particles must share in the kinetic energy term $\mathrm{n}_{\mathrm{s}} \mathrm{T}_{\mathrm{s}}$. The constant K_{2} is expressed in terms of known quantities (ion mass, etc.) but could, if we desired, include an additional dimensionless fitting factor. In these calculations, all of the fitting is done with the constant K_{1}. Other straightforward relations between the quantities include
$\dot{R}=\frac{\mathbf{R}_{0}-R_{s}}{\mathrm{~T}_{\mathrm{s}}}$
and
$\frac{\mathrm{V}_{\theta}}{\pi \mathrm{R}_{0}^{2}}=\frac{\mathrm{B}_{\mathrm{s}}}{\mathrm{t}_{\mathrm{s}}}$.
Equation (5) assumes that
$\frac{B_{s}}{t_{s}} \cong\left(\frac{d B}{d t}\right)_{t=0}$
over the small time interval t_{s}.
We now have five equations with five unknowns: $\hat{R}, \mathrm{t}_{\mathrm{s}}$, R_{s}, B_{s}, and T_{s}. These equations are solved simultaneously for each chosen value of K_{1} for any given set of parameters.

Note that the code makes no attempt to define the temperature T for $0<\mathrm{t}<\mathrm{t}_{\mathrm{s}}$.

C. The Reverse Field Cancellation Stage

The reverse field ($-\mathrm{B}_{0}$) has been ignored during the \mathbf{R} heating stage, but we assume that all of the initial reverse field is trapped within the plasma area πR^{2}, and that at the time t_{s}, all this energy of density
$\frac{1}{8 \pi}\left[\mathrm{~B}_{0}\left(\frac{\mathrm{R}_{0}}{\mathrm{R}_{\mathrm{s}}}\right)^{2}\right]^{2}$
is converted into particle kinetic energy and added to $2 n_{s} T_{s}$ to give $2 n_{s} T_{s}^{b}$. If the reverse field pressure is greater than $2 n_{s} T_{s}$, it is set equal to $2 n_{s} T_{s}$. Otherwise, it is treated as it was above. The value $2 \mathrm{n}_{\mathrm{s}} \mathrm{T}_{\mathrm{s}}^{\mathrm{b}}$ requires a new magnetic field for static pressure balance, and the code lets time run from $t=t_{s^{\prime}}$ to $t=t_{s^{\prime}}$ to let this pressure balance occur. During this time, we let the plasma radius expand at the rate $|\dot{R}|, B$ increase as the given $B(t)$, n decrease as $\left(R_{s} / R\right)^{2}$, and T_{s}^{b} decrease adiabatically as $\mathrm{V}^{-2 / 3}$ until $\mathrm{B}_{\mathrm{s}}^{2} / 8 \pi=2 \mathrm{n}_{\mathrm{s}^{\prime}} \mathrm{kT}_{\mathrm{s}^{\prime}}$. The idealized $\beta=1$ assumption used in the code was suggested by results ${ }^{2}$ from Scylla III experiments that showed $\beta=0.85$ for higher filling pressures (~ 100 mtorr) with reverse bias field. The $\beta=1$ assumption represents an upper limit that one may achieve for a variety of θ-pinch parameters during the magnetic confinement stages.

D. Adiabatic Heating Stage

The quantities $B_{s^{\prime}}, T_{s^{\prime}}, n_{s^{\prime}}$, and $R_{s^{\prime}}$ now form the initial condition for adiabatic heating caused by further build-up of the applied magnetic field pressure. The adiabatic heating formulas are well known ($\gamma=5 / 3$ for a monatomic gas) and may be stated simply as
$\frac{T}{T_{s^{\prime}}}=\left(\frac{B}{B_{s^{\prime}}}\right)^{4 / 5}$ to get $T(t)$,
$\frac{n}{n_{s^{\prime}}}=\left(\frac{B}{B_{s^{\prime}}}\right)^{6 / 5}$ to get $n(t)$, and
$\frac{R}{R_{s^{\prime}}}=\left(\frac{B_{s^{\prime}}}{B}\right)^{3 / 5}$ to get $R(t)$ and the volume.

The code now calculates and prints out T, n, and R as a function of time and gives the integrated neutron yield and soft x-ray yield as discussed above. The code
calculates the adiabatic heating in small time increments ($\Delta \mathrm{t}$), typically $0.03 \mu \mathrm{~s}$ per increment. At the end of each Δt, the soft x-ray emission rate per cubic centimeter is multiplied by Δt, and this incremental energy loss is subtracted from $\left(n_{\hat{e}}+n_{\hat{i}}\right) k T$ by reducing $k T$. Then the adiabatic heating is applied for the next time increment and the process is repeated. The result is that when the radiation emission rate is substantial, the temperature drops to lower values and the density increases to higher values than those obtained from pure adiabatic compression alone. The high radiation rates also have the effect of reducing the plasma radius to provide the higher densities required to maintain $\beta=1$ pressure balance.

The code is written in mks and these formulas are written in cgs. The basic difference is that cgs formulas use terminology involving $1 / 8 \pi$ and mks formulas use 2 μ_{0}. Those who read the code in the Appendix will notice this. Figure 1 shows the equations and illustrates the model.

The equation for pressure balance for deuterium as discussed previously in Sec. II. A is $\mathrm{B}^{2} / 8 \pi=2 \mathrm{n}_{\mathrm{e}} \mathrm{kT}_{\mathrm{e}}$.in cgs units, because $n_{e}=n_{1}$ and $T_{e}=T_{1}$ (assumed). If we use fully ionized helium, $B^{2} / 8 \pi=\left(2 n_{1}+n_{1}\right) k T_{i}=3 n_{1} k T_{e}$. If we use helium with 2% neon, $B^{2} / 8 \pi=\left(2.14 n_{1}+n_{\nu}\right) k T_{1}$ as discussed in Sec. III. C. Figure 2 plots the pressure balance equation for deuterium and shows magnetic field versus electron density with temperature as a parameter. If the deuterium graph is used for pure helium, it will give the correct answer for an electron density $2 / 3=0.667$ times the correct helium electron density. For helium with 2% neon, the factor is $2 / 3.14=0.637$. In using the code as written, one must specify either the "deuterium deck" or the "hclium deck" to assure that the correct ion masses are used for the input parameters. The code can be modified easily for any other desired ion mass.

All our work with Scyllar, discussed in Sec. III. C, would appear, if plotted, in the lower left-hand region of Fig. 2. We discuss some work in Sec. IV called "New Regimes"; this data if plotted would appear in the middle of Fig. 2. The upper right-hand corner has not been studied experimentally with θ-pinches.

III. COMPARISON WITH EXPERIMENTAL DATA

A. Early Laboratory θ-Pinches Used to Determine the Fitting Constant

For purposes of testing the applicability of our scaling model, as represented by Eqs. (1)-(8), we used the

SIMPLIFIED θ - PINCH MODEL

Fig. 1. Schematic diagram of simplified θ-pinch scaling model.

Fig. 2. Family of pressure balance curves for $\beta=1$ deuterium plasma.
experimental results from Scylla III, ${ }^{1,2}$ Scyllacita, ${ }^{3}$ and Scylla IA. ${ }^{4}$ These three θ-pinch experiments involved similar coil dimensions (length $\sim 19-25 \mathrm{~cm}$, i.d. $\sim 7-8 \mathrm{~cm}$), similar ceramic discharge tubes, and similar $\dot{B}_{\mathbf{z}}$ preionization. The compression field risetimes were short in all three cases (1.75 to $3.0 \mu \mathrm{~s}$). The maximum values of V_{θ} ranged from ~ 18 to 55 kV and peak fields ranged from 50 kG to $\sim 125 \mathrm{kG}$. For all three machines, first-half-cycle data are available. Laboratory data has shown that the containment times in these experiments ranged from 2.0 to $3.0 \mu \mathrm{~s}$ and that the neutron yield rate half-widths do not exceed $2.0 \mu \mathrm{~s}$.

These experiments can thus be compared with each other for purposes of comparing results of calculations of our code as a function of the principal scaling parameters $\mathrm{V}_{\theta}, \mathrm{B}(\mathrm{t}), \mathrm{n}_{0}$, and ($-\mathrm{B}_{0}$).

In using the code, we looked for a value of the fitting constant K_{1} [Eq. (1)] that resulted in a best fit of the observed neutron yields over the range of values of B and V_{θ}.

After making a number of runs with the code, we concluded that the laboratory data ${ }^{1-4}$ were best fit (as illustrated in Fig. 3) for a fitting constant, $\mathrm{K}=8 \times 10^{5}$, in the units used in the code. As explained previously, these units are mks rather than cgs. The calculated cases 1,2 , and 3 use the value of $K_{1}=8 \times 10^{5}$. The experimental yields for these cases represent the optimum (warmed-up tube) yield for each θ-pinch device. Figure 3 shows that our code tends to slightly underestimate the neutron yield for each case. This may occur because the code keeps $T_{i}=T_{e}$, although in practice $T_{i}>T_{e}$ for the same pressure balance. In general, we believe the scaling shown by the calculated cases 1, 2, and 3 in Fig. 3 fits the data rather well. Not shown in Fig. 3 are the cases for the Los Alamos Group GMX-6 Bank B θ-pinch ${ }^{11}$ for which the first half-cycle measured T_{e} was $\sim 285 \mathrm{eV}$, and the code-predicted value was $\sim 240 \mathrm{eV}$ at $60 \mu \mathrm{~m}$. In addition, the observed T_{e} was $\sim 60 \mathrm{eV}$, and the code-predicted value was 90 eV at $400 \mu \mathrm{~m}$. These calculations also used the same value of $\mathrm{K}_{1}=8 \times 10^{5}$ and predicted negligible (or zero) neutron yields, as observed, on first half-cycle. Also not shown are the rather good comparisons of the code-predicted variation of the normalized neutron yields with the observed variations as a function of reverse field and main bank voltage for Scyllacita data. ${ }^{3}$

Fig. 3. Plot of neutron yield vs magnetic field by scaling model calculation compared with experimental results for Scyllacita, Scylla III, and Scylla IA. The fitting constant is $K_{1}=8 \times 10^{5}$.

B. Explosive Generator θ-Pinch

Figure 4 shows how K_{1} was determined from the firing-point data from the 1967 explosive-generator-driven θ-pinch shot series. ${ }^{5-7}$ The best yielding shots, involving the standard $25-\mathrm{cm}$ coil length, are included. A value of $\mathrm{K}_{1}=5 \times 10^{5}$ fits the high-yield case for Model 169 (shot 9) and is bracketed by the two good Model 106 yields (shots 2 and 5). Thus a value of $\mathrm{K}_{1}=5 \times 10^{5}$ is chosen to fit the firing-point data.

The fact that a somewhat lower value of K_{1} appears to fitthe firing-point data than that which fits the laboratory data is not unreasonable because the discharge tubes used for explosive shots were never thoroughly conditioned. There is ample available evidence that warm-up

Fig. 4. Plot of neutron yield vs fitting constant for θ-pinch driven by Model 106 and 169 generators.
and tube conditioning play a vital role in observed neutron production. The available evidence indicates that tube-wall conditioning affects the formation of the initial \dot{R} sheath, whose behavior, according to Eq. (1), is described in part by K_{1}.

Figure 4 also shows the calculations of yield vs K_{1} for a case in which the Model 169 optimum current risetime, achieved on shot 7 in a $35-\mathrm{cm}$ coil, is assumed to give 172 kG in $2 \mu \mathrm{~s}$ with a $25-\mathrm{cm}$ coil. No experimental data point to compare with this particular case was fired during the 1967 series, but the curve plotted in Fig. 4 shows dramatically how yield varies with K_{1}. Because by Eq. (1), $\mathbf{R}^{2}=\mathrm{K}_{1} \mathrm{~V}_{0}$, if one lets K_{1} stay fixed, then yield vs $\mathrm{V}_{\boldsymbol{\theta}}$ would have the same shape as the curves in Fig. 4; one can see the importance of V_{θ} at the lower values. One can also see that as V_{θ} increases for a given B-field and coil diameter, the increase in yield begins to saturate and eventually peak B -field becomes the limiting factor.

C. Scyllar θ-Pinch

Scyllar was a θ-pinch used for a variety of experiments including radiation studies, opacities, and atomic processes in high-temperature plasmas. It is described in detail in Refs. 8 and 12. Scyllar results are given in Refs. 8 and 12-18. As described in Ref. 8, the θ-pinch was driven by an axial field of $\sim 90 \mathrm{kG}$, with a risetime (quarter period) of $3.0 \mu \mathrm{~s}$ in a $25-\mathrm{cm}$-long, $8.2-\mathrm{cm}$-i.d. θ-coil. The energy for the θ-pinch was a low-inductance, high-energy ($\sim 180 \mathrm{~kJ}$) capacitor bank consisting of 54 capacitors ($60 \mathrm{kV}, 1.8 \mu \mathrm{~F}$), each switched with a low-inductance four-electrode spark gap. In the feasibility experiments, ${ }^{8}$ the θ-pinch typically was operated with gas fills of 1-2 torr of deuterium or helium and seeded with a few percent neon or other high- \mathbf{Z} element. The emission spectra were observed with vacuum ultraviolet (VUV) spectrometers as a function of the seed element and pinch conditions. This Scylla-like θ-pinch was called Scyllar to indicate the radiation studies for which it was intended.

In the earlier experiments, ${ }^{8,12,13}$ a pulsed linear discharge of $\sim 20 \mathrm{kA}$ was used for preionization and applied $\sim 37 \mu \mathrm{~s}$ before the start of the main axial drive field. Ceramic discharge tubes were used with the linear discharge preionization because the thin-walled ($2-\mathrm{mm}$) quartz tubes we tried first often cracked or broke. In later experiments, ${ }^{14-18}$ preionization was obtained with a B_{z} discharge from two capacitors ($0.75 \mu \mathrm{f}, 50 \mathrm{kV}$ each) into the main θ-coil about $30 \mu \mathrm{~s}$ ahead of the main drive field. With this preionization and with a crowbar applied to the main bank current at the peak of the first quarter cycle, thick-walled ($4-\mathrm{mm}$) quartz tubes could be used without breakage for hundreds of shots using the full bank. [We used the quartz tubes successfully for thousands of shots in other experiments where operation with only one-third the bank was required at lower fill densities (≤ 150 mtorr).]
Scyllar was used for a variety of experiments involving radiation studies and atomic processes. When it was operated with 18 capacitors (one-third bank), several thousand shots of plasma data were obtained yearly with a minimum of bank maintenance. For this case, the axial drive field rose to 45 kG with a quarter period of $2.0 \mu \mathrm{~s}$ (crowbarred at peak current) in the standard θ-coil (25 cm long, 8.2 cm i.d.) with the vacuum LOS radial viewing port. Figure 5 shows a photograph of Scyllar

Fig. 5. Photograph of Scyllar θ-pinch.
after it was moved to a dedicated building, SM-316, in 1973.

Because the Scyllar plasma was diagnosed in considerable detail over a wide range of filling pressures and other conditions, we use these results to compare with calculations from our scaling model.

In the first ${ }^{8}$ Scyllar experiments, a pure deuterium fill gas was used over a wide range of filling densities to check the general operation of the θ-pinch. Full bank operation $(90 \mathrm{kG})$ and a bias field of -1.5 kG were used. The two-foil soft x -ray technique was used ${ }^{8}$ to measure the electron temperature. Figure 6 shows the measured values of T_{e} vs filling pressure over a range of pure deuterium filling pressures of 100 to ~ 1700 mtorr. We measured temperature values of $\sim 600 \mathrm{eV}$ to $\sim 40 \mathrm{eV}$. The smooth curves represent theoretical predictions of T_{e} vs filling pressure computed with this code. Code calculations are given for the assumption that the radiation loss is bremsstrahlung of pure deuterium $\left(D_{2} \times\right.$ 1) and for radiation enhancement of arbitrary amounts, that is, $D_{2} \times 50, D_{2} \times 100$, etc., as is expected with high-Z seeding or with impurities. The case $\mathrm{D}_{2} \times 50$ means, for example, that the deuterium bremsstrahlung radiation is enhanced by a factor of 50 . The scaling model appeared to provide a rough guide to the variation of T_{e} vs filling pressure for deuterium.

The data for helium-base gas fill from the eight papers ${ }^{8,12-18}$ are summarized in Table I. Experimental initial gas pressures range from 5000 to $16 \mu \mathrm{~m}$, more than two orders of magnitude. The measured electron temperatures vary from 9.4 to 415 eV . The measured electron densities vary from $30.0 \times 10^{17} \mathrm{~cm}^{-3}$ to $0.21 \times 10^{17} \mathrm{~cm}^{-3}$. The low-density plasmas have the high electron temperatures and vice versa. The θ-pinch was a dynamic process with a useful lifetime of about $1-3 \mu \mathrm{~s}$ in these experiments. Instabilities generally terminated the useful plasma lifetime. The time at which the experimental data was recorded varied, and considerable variations in experimental parameters occur as a function of time.

The electron temperature and density were measured in the experiments. The ratios of calculated to experimental values are given in Table I as a measure of the quality of the code. The code assumes that the electron temperature is equal to ion temperature. This is not true, especially for low-density plasmas. The approximation becomes better as the plasma density increases. The comparison of calculation with experiment generally is better above 100 mtorr. Allowing for the simplicity and ideal assumptions of our θ-pinch model, we consider that agreement within a factor of 2 with experiment is reasonable.

Fig. 6. Plot of electron temperature vs deuterium filling pressure for Scyllar at 90 kG (full bank). The bias field was -1.5 kG . Smooth curves are scaling model calculations, and plotted points are measured temperature at about 1.6μ s using the two-foil soft x-ray technique.

The conservation of mass equation in the calculation uses ion density because ions are so much heavier than electrons. Electron density is a derivative number. Pure fully ionized helium contains two electrons per ion. Using 2% neon adds electrons to the plasma, and we calculated 0.02 times 7 electrons/neon ion equal to 0.14 . Thus, the calculations for helium with 2% neon have 2.14 electrons per ion (using Ne VIII as the predominant neon ion stage.)

In the calculations with the helium code used in Table I , we arbitrarily used $\mathrm{K}_{1}=10.5 \times 10^{5}$ for the fitting constant. This value appeared to fit the data as well as or a little better than the value $\mathrm{K}_{1}=8 \times 10^{5}$ used for the deuterium data, but no attempt has been made to optimize the K_{1} value (probably $K_{1} \sim 9 \times 10^{5}$) for the Scyllar helium data.

Table II gives numerical counts of the data points as a measure of the comparison between the calculations in Table I and the experiment.

The probability is about two-thirds that a particular calculation will match experiment within a factor of 2 either way over the total range of the experimental data. One can say approximately that the standard deviation is thus a factor of 2 . For filling densities $\geqq 150$ mtorr, the measured and calculated electron temperatures agree to within a factor of 1.6 or better. A number of calculations
are plotted in Figs. 7-11 to give visual comparison with typical experimental data. Table III lists the individual cases that are plotted in Figs. 7-11. We can make several observations or comments.
(1) The experimental temperature data in Fig. 10 probably represent scatter rather than a systematic shape. The code predicts both the radius and approximate temperature rather well considering the expected effects of finite resistivity at $\mathrm{T}_{\mathrm{e}} \sim 10$ eV .
(2) The experimental time history of the radius in Fig. 11 varies from the calculation and probably represents a physical reality that is not in the code. The gas pressure initially is $1000 \mu \mathrm{~m}$. The code assumes that the gas behaves smoothly and uniformly as the plasma compresses, but we expect that the effect of shock waves will produce results not accounted for in our simple model. Also, the code assumes ideal electrical conductivity, whereas in fact we have a resistive plasma with finite sheath thickness, particularly at the lower temperature ($\leqq 25 \mathrm{eV}$).

Considering the ideal assumptions, the code has served as a rather useful guide for expected θ-pinch behavior over a wide range of experiments.

Table I. Comparison of Electron Temperatures. Calculations ${ }^{\mathrm{a}}$ vs Experimental Measurements (Scyllar)

$\begin{aligned} & \mathbf{B}_{\text {max }} \\ & (\mathrm{kG}) \end{aligned}$		Fill Press (mtorr)	Species	$\begin{gathered} \mathbf{t} \\ (\mu \mathrm{s}) \end{gathered}$	$\begin{gathered} \left.\mathrm{T}_{(\mathrm{exp})}\right) \\ (\mathrm{eV}) \end{gathered}$	$\begin{gathered} \left.\mathrm{T}_{\text {(code) }}\right) \\ (\mathrm{eV}) \end{gathered}$	$\frac{T_{\mathrm{code}}}{\mathrm{~T}_{\mathrm{exo}}}$	$\begin{gathered} \mathrm{n}_{\text {e(exp) }} \\ \times 10^{17} \mathrm{~cm}^{-3} \end{gathered}$	$\begin{gathered} \mathbf{n}_{\text {(code) }} \\ \times 10^{17} \mathrm{~cm}^{-3} \end{gathered}$	$\frac{n_{\text {(code) }}}{n_{\text {exp }}}$	Ref.
45	2	16	$\mathrm{He}+2 \% \mathrm{Ne}$	1.0	215	606	2.83	0.25	0.28	1.12	18
45	2	16	$\mathrm{He}+2 \% \mathrm{Ne}$	1.5	370	748	2.03	0.27	0.39	1.45	18
45	2	16	$\mathrm{He}+2 \% \mathrm{Ne}$	2.0	240	793	3.31	0.45	0.43	0.96	18
45	2	16	$\mathrm{He}+2 \% \mathrm{Ne}$	2.5	220	745	3.39	0.40	0.40	1.00	18
								1.90		0.24	
45	2	20	$\mathrm{He}+2 \% \mathrm{Ne}$	1.4	415	621	1.50	1.02	0.45	0.44	15
								1.15		0.30	15
45	2	20	$\mathbf{H e}+2 \% \mathrm{Ne}$	1.04	225	530	2.36	0.70	0.34	0.49	
								0.58		0.36	15
45	2	20	$\mathrm{He}+2 \% \mathrm{Ne}$	0.66	165	390	2.37	0.35	0.21	0.60	
								0.25		0.44	
45	2	20	$\mathrm{He}+2 \% \mathrm{Ne}$	0.38	145	260	1.79	0.21	0.11	0.52	15
45	2	150	$\mathrm{He}+2 \% \mathrm{Ne}$	1.00	130	122	0.94	1.00	1.39	1.39	16
45	2	400	$\mathrm{He}+2 \% \mathrm{Ne}$	0.55	34	41	1.21	1.46	1.43	0.98	13
90	3	780	$\mathrm{He}+2 \% \mathrm{Ne}$	0.80	45	50	1.11	6.2(5)	4.32	0.70	12
90	3	1000	$\mathrm{He}+2 \% \mathrm{Ne}$	0.58	25	34	1.36	9.0	3.50	0.39	17
90	3	1040	Pure He	1.0	33	53	1.61	7.4	6.2	0.84	8
90	3	1040	Pure He	1.8	45	78	1.73	7.4	5.6	0.76	8
90	3	2000	Pure He	1.0	30	34	1.13	7.4	9.6	1.30	8
								22.		0.30	
45	2	3000	Pure He	0.7	9.4	13.5	1.44	15.	6.6	0.44	14
								27.		0.29	
45	2	3000	Pure He	0.8	. 14.7	14.8	1.01	18.	7.8	0.43	14
								17.		0.52	
45	2	3000	Pure He	0.9	12.1	16.0	1.32	12.	8.8	0.73	14
								30.		0.35	
45	2	5000	Pure He	0.8	16.4	10.8	0.66	26.	10.6	0.41	14
								26.		0.46	
45	2	5000	Pure He	0.9	15.4	11.7	0.76	24.	12.0	0.50	14
								22.		0.61	
45	2	5000	Pure He	1.0	19.9	12.4	0.62	16.	13.4	0.84	14
								18.		0.82	
45	2	5000	Pure He	1.1	18.8	13.2	0.70	12.	14.8	1.23	14
${ }^{8} \mathrm{~K}=10.5 \times 10^{5}$.											

TABLE II. Data Comparisons

	that compare within a factor of 2	that compare greater or less than a factor of 2	Totals
Number of	16	6	22
Electron Temperatures	15	8	23
Electron Densities	31	14	$45 / 45$
Totals			

TABLE III.	List of Figures Comparing Theory and Experiments for Scyllar θ-Pinch	
Figure No.	$\mathrm{n}_{\grave{e}}$	Reference
7	high	12
8	low	16
9	medium	13
10	high	14
11	high	17

Fig. 7. Plasma temperature and radius vs time for Scyllar operated at 90 kG with a fill of helium $+2 \%$ neon at 780 mtorr. The smooth curves are code calculations. Plotted points are experimental values.

Fig. 8. Plasma temperature and radius vs time for Scyllar operated at 45 kG with a fill of helium $+2 \%$ neon at 150 mtorr. The smooth curves are the code calculations. Plotted points are experimental values.

Fig. 9. Plasma temperature and radius vs time for Scyllar operated at 45 kG with a fill of helium $+2 \%$ neon at 400 mtorr. The smooth curves are code calculations. Plotted points are experimental values.

Fig. 10. Plasma temperature and radius vs time for Scyllar operated at 45 kG with a fill of helium at 3 torr. The smooth curves are code calculations. Plotted points are experimental values.

Fig. 11. Plasma temperature and radius vs time for Scyllar operated at 90 kG with a fill of helium $+2 \%$ neon at 1.0 torr. The smooth curves are code calculations. Plotted points are experimental values.

IV. NEW REGIMES

A. Drive Field of 550 kG

Calculations were made in 1968-69 for a family of explosive-spiral-generator-driven θ-pinches for which the drive field was assumed to go from 0 to 550 kG in $2 \mu \mathrm{~s}$. Figure 12 shows plots of plasma temperature and radiation yield as a function of filling pressure for several choices of reverse field and enhanced radiation rates. For the calculations in Fig. 12, $\mathrm{V}_{\boldsymbol{\theta}}$ was assumed to be 100 kV , the tube i.d. was 6.5 cm , and the fitting constant (K) was 5×10^{5}. Figure 12 illustrates that higher fields should make possible emission of a given yield of
radiation at higher plasma temperatures. For example, at $3000 \mu \mathrm{~m}$, with a radiation enhancement factor of 50 , the radiation yield is 21 kJ with a plasma temperature of 300 eV . The electron density will be $\sim 10^{19} \mathrm{~cm}^{-3}$. There are several cases for which, at a plasma temperature of 50 eV , the radiation yield is as high as 50 kJ . The drive conditions given for Fig. 12 represent a significant extrapolation from experiments previously performed.

We originally expected to develop an explosive-driven generator that would achieve these conditions ($B=550$ kG , risetime $\cong 2.0 \mu \mathrm{~s}$, and $\mathrm{V}_{\theta}=100 \mathrm{kV}$) from experience gained with the SNL Dual Model 169 generator system, which consisted of two single Model 169 generators operated in series. After several tests, this system was abandoned in 1968 because of internal high-voltage breakdown problems.

Fig. 12. Plasma temperature and soft x-ray yield calculated as a function of deuterium filling pressure for the case of a θ-pinch driven by an explosive generator expected to create a $550-\mathrm{kG}$ field in a 25 -cm-long θ-coil switched with a V_{θ} of 100 kV .

B. Plate Generator Driven $900 \mathrm{kG} \boldsymbol{\theta}$-Pinch

In the mid-1970s, explosive-driven high-current plate generators were developed ${ }^{19}$ extensively at Los Alamos in Group M-6. Such plate generators ${ }^{19.20}$ are generally less complex, involve less high explosive, and reach the desired high multimegaampere currents more readily than spiral generators of the type used in the 1967 shot series (Sec. III. B). Úsing a typical plate generator output, we calculated a field vs time dependence (Ref. 21) for a θ-coil 25.4 cm long and 7.6 cm i.d. This $B(t)$ curve is shown in Fig. 13. The generator output is switched into the θ-coil $2 \mu \mathrm{~s}$ before generator burnout. At switch time, V_{θ} is about 50 kV , and the B -field rises from 0 to 900 kG in $2 \mu \mathrm{~s}$.

Figure 14 shows the ion temperature and plasma radius predicted by the θ-pinch scaling model for the case of deuterium fill of 50 mtorr and a bias field of -2 kG , using the drive field system of Fig. 13. A value of $K_{1}=8 \times 10^{5}$ is used, assuming optimum warm-up. In the case of Fig. 14, the code predicts a temperature of 10 keV at $2.0 \mu \mathrm{~s}$, a density of $\sim 9 . \times 10^{17}$ ion cm^{-3}, and an integrated DD neutron yield of 3×10^{11} neutrons. If the

Fig. 13. Magnetic field vs time in a θ-coil ($\mathrm{L}=25.4 \mathrm{~cm}$, i.d. $=7.62 \mathrm{~cm}$) calculated from plate generator data. The calculation gives a switch voltage $\mathrm{V}_{\theta}=50 \mathrm{kV}$ for this case.

Fig. 14. Plasma temperature and radius vs time calculation for a θ-pinch driven by the magnetic field system of Fig. 13. The curves are calculated with the scaling model code using a fill of deuterium at 50 mtorr.
generator plates are widened to make higher currents possible so that the $B(t)$ and V_{θ} of Fig. 13 would be reached in a $1-\mathrm{m}$-long coil, plasma containment could be extended to 3 or $4 \mu \mathrm{~s}$, and a neutron yield of $\sim 3 \times 10^{13}$ (DD) could result. If a deuterium tritium mixture were used, a neutron yield of $\sim 3 \times 10^{15}$ would be predicted. This case would fall short of energy breakeven by a factor of $S 100$ because of the large ratio of (field volume)/(plasma volume), but it would make possible a study of fusion conditions.

If the field system of Fig. 13 is used with a high-pressure deuterium fill using a high- Z seed gas, radiation and atomic properties of highly stripped high-Z atoms may be studied, as they were with Scyllar. As an example, Fig. 15 shows the code predictions for the case of a fill gas 1.0 torr deuterium with a small percentage of seed gas in a $25-\mathrm{cm}$-long θ-coil. In Fig. 15, an electron temperature of 1.0 keV is reached at a density of $\sim 10^{19}$ ions cm^{-3}. The plasma radiates $10-20 \mathrm{~kJ}$ of soft x rays.

A principal impediment to achieving the maximum conditions of Fig. 15 might be the effect of instabilities as observed at $\sim 1.0 \mu \mathrm{~s}$ on Scyllar ${ }^{8,14}$ at high helium fill pressures. Further study is needed to determine the range of parameters, including fill gas and seed species, for stability for high-density regimes such as those represented by Fig. 15.

If achieved, the plasma of Fig. 15, for example, could be used for opacity ${ }^{17}$ studies if sufficient diagnostics are applied. Ionization rates, ${ }^{13}$ line broadening, ${ }^{14}$ and other ${ }^{18}$

Fig. 15. Plasma temperature and radius vs time calculated for a θ-pinch driven by the magnetic field system of Fig. 13. The curves are calculated with the code using a fill of deuterium at 1.0 torr.
atomic properties might also be studied in a definitive way at unique conditions with such a plasma, taking advantage of the relatively homogeneous temperature and density generally obtainable with θ-pinch plasmas. The plate generator could make achievement of these unique conditions relatively inexpensive per shot.

V. SUMMARY

A simple θ-pinch scaling model has been written into an inexpensive computer code and used to calculate plasma radius, temperature, density, neutron yields, and radiation rates for a large variety of short-coil ($\ell \cong 25$ $\mathrm{cm}) \theta$-pinches used at Los Alamos over the past two decades.

The model assumes that the effects of $\mathrm{V}_{\boldsymbol{\theta}}$ drive voltage, reverse field cancellation, and adiabatic compression may be separated and treated in a simple way. End-losses are neglected for $2 \mu \mathrm{~s}$. A $\beta=1$ plasma and perfect conductivity are assumed.

The one scaling constant in the code was calibrated using results from Scylla III, Scyllacita, and Scylla IA, and compared with results from the ex-plosive-generator-driven θ-pinch shot series conducted in 1967 at Los Alamos using the SNL Model 106 and 169 generators. Code calculations and comparisons are then given with results obtained in 1971-77 with the Scyllar θ-pinch as used for studies of opacities and atomic
properties. The Scyllar comparisons are made over a wide range of operating conditions for extensively diagnosed plasmas. The simple scaling model code generally predicted temperatures, densities, and/or neutron yields correctly within a factor of 2 or better within its range of validity for all of these experiments, using one scaling constant value ($\mathrm{K}=8$) for all deuterium laboratory data, $K=10.5$ for helium data, and a reduced value ($K=5$) for explosive firing-point data.

Finally, typical conditions are calculated that might be achieved in similar θ-pinches driven to 900 kG in $2 \mu \mathrm{~s}$ by explosive-driven plate generators recently developed within the Los Alamos high-magnetic-field program. These cases represent regimes of plasma temperatures and densities [$10 \mathrm{keV}, 10^{18} \mathrm{~cm}^{-3}$) and ($1 \mathrm{keV}, 10^{19} \mathrm{~cm}^{-3}$)] much higher than those studied in any previous θ-pinch experiments.

ACKNOWLEDGMENTS

The support, encouragement, and helpful suggestions of C. M. Fowler throughout the entire course of this work are greatly appreciated. The contributions of L. A. Jones and E. Källne to the Scyllar diagnostics were invaluable. Discussions over the years with G. A. Sawyer, W. E. Quinn, and other members of the Los Alamos CTR program have been most helpful.

REFERENCES

1. E. M. Little and W. E. Quinn, "Effects of Added Hexapole Magnetic Fields and Preionization in Theta Pinch Experiments," Phys. Fluids 6, 875 (1963).
2. G. A. Sawyer, V. A. Finlayson, F. C. Jahoda, and K. S. Thomas, "Measurement of $\beta, \mathrm{n}, \mathrm{T}_{1}$ in High and Low Pressure Theta-Pinch Operations," Phys. Fluids 10, 1564 (1967).
3. D. B. Thomson, R. S. Caird, K. J. Ewing, V. A. Finlayson, C. M. Fowler, W. B. Garn, E. L. Kemp, R. W. Kewish, Jr., G. A. Sawyer, and J. L. Tuck, "Characteristics of the Scyllacita θ-Pinch," Los Alamos Scientific Laboratory report LA-3863-MS (June 1968).
4. Val A. Finlayson, "Characteristics of the Scylla IA θ-Pinch with Crowbar," Los Alamos Scientific Laboratory report LA-4042 (December 1968).
5. D. B. Thomson, R. S. Caird, K. J. Ewing, C. M. Fowler, W. B. Garn, J. C. Crawford, and R. A. Damerow, "An Explosive Generator Powered θ-Pinch," in "Proceedings of APS Topical Conference on Pulsed High-Density Plasma, Los Alamos, New Mexico, September 19-22, 1967," Los Alamos Scientific Laboratory report LA-3770 (September 1967).
6. R. A. Damerow, J. C. Crawford, C. M. Fowler, R. S. Caird, K. J. Ewing, W. B. Garn, and D. B. Thomson, "Use of Explosive Generators to Power the θ-Pinch," Sandia Corporation Research report 69-51 (1969).
7. R. A. Damerow, J. C. Crawford, D. B. Thomson, R. S. Caird, K. J. Ewing, W. B. Garn, and C. M. Fowler, "Use of Explosive Generators to Power the θ-Pinch" in "Proceedings of Symposium on Engineering Problems of Fusion Research, April 8-11, 1969," Los Alamos Scientific Laboratory report LA-4250 (January 1970).
8. D. B. Thomson, A. G. Bailey, and R. Engleman, Jr., "Vacuum Ultraviolet Emission from a Neon-Seeded Theta Pinch," Los Alamos Scientific Laboratory report LA-5466-MS (March 1974).
9. Thomas A. Oliphant, "RAVEN Physics Manual," Los Alamos National Laboratory report LA-8802-M (June 1981).
10. S. Glasstone and R. H. Lovberg, Controlled Thermonuclear Reactions (D. Van Nostrand Co., Inc., Princeton, New Jersey, 1960), Chap. 7.
11. C. M. Fowler, R. S. Caird, W. B. Garn, and D. B. Thomson, "Plasma Studies, First Half-Cycle Heating," in "High Magnetic Field Program Section, GMX-6 Progress Report GMX-6-533," W. E. Deal, Ed. (March 1963).
12. D. B. Thomson, L. A. Jones, A. G. Bailey, and R. Engleman, Jr., "Characteristics of High-Density
θ-Pinches Seeded with Selected High-Z Elements," in Pulsed High Beta Plasmas, D. E. Evans, Ed. (Pergamon Press, New York, 1976).
13. D. B. Thomson and R. C. McBroom, "Observation of Theta-Pinch Electron Densities by Holographic Interferometry and by He II Line Profiles," Bull. Am. Phys. Soc. Ser. II 19, No. 9, 975 (1974), Paper 8G7.
14. L. A. Jones, E. Källne, and D. B. Thomson, "High Density Measurements of the Stark Broadened Profile of the He (II) 4686 A Line," J. Quant. Spectrosc. Radiat. Transfer 17, 175-180 (1977).
15. L. A. Jones, E. Källne, and D. B. Thomson, "Measurement of the Total Collisional Ionization Rates of Ne VI, VII, and VIII," J. Phys. B: Atom. Molec. Phys. 10, 187-195 (1977).
16. D. B. Thomson and E. Källne, "Time-Resolved VUV Spectra from High-Lying Levels of Ne VIII in a Theta Pinch," Bull. Am. Phys. Soc. Ser. II 21, No. 9, 1118 (October 1976), Paper 5S4 (LA-UR 76-1787).
17. D. B. Thomson, "An Opacity Test Using a Neon-Seeded Theta Pinch," Los Alamos Scientific Laboratory report LA-7684-MS (February 1980).
18. R. U. Datla, L. A. Jones, and D. B. Thomson, "Temperature Diagnostics Using Lithium-Like Satellites," Los Alamos Scientific Laboratory report LA-8324-MS (October 1980).
19. R. S. Caird, D. J. Erickson, W. B. Garn, and C. M. Fowler, "Explosive Magnetic Flux Compression Plate Generators as Fast High-Energy Power Sources," Proc. IEEE Int. Pulsed Power Conf., 1976 (IEEE, New York, 1976), Paper III D-3.
20. R. S. Caird, C. M. Fowler, D. J. Erickson, B. L. Freeman, and W. B. Garn, "A Survey of Recent Work on Explosive-Driven Magnetic Filux Compression Generators," Proc. 2nd Int. Conf. Energy Storage Compression Switching, Venice, Italy, 1978, Paper I-1.
21. C. M. Fowler, R. S. Caird, D. J. Erickson, B. L. Freeman, D. B. Thomson, and W. B. Garn, "Flux Compression Generators as Plasma Compression

Power Sources," Proc. 2nd Int. Conf. Energy Storage Compression Switching, Venice, Italy, 1978, Paper I-2 (to be published), (LA-UR-79-1064).

APPENDIX

FORTRAN CODE

Los Alamos Identification

No. LP-1356

Deuterium

```
algebraic solotion of theta pinch EQuatIONS
OSING THONSONS THEORY. THE INPOT DATA
is the voltage polse, t日e maximom hagnetic
fiELD AND ITS TIME TO mAXImum ASSOBING
SINUSOIDAL. THE PLASAA IS DEUTERIUM HITH GAMBA=1.667
AHD THE MOLECDLAR GEIGHT=4.0U3
C6 IS THE EXTRA IONIZED PARTICLES ADDED TO THE
PURE GAS. C6=1 IS ONE MORE EIECTRCN DUE TO
IMPURITIES. CG FEACTICNAL IS PERMISSIBLE.
THE NEOTRON AHD XRAY YIELD IS CALCOLATED PER METER ADIABATIC CALC
THE EXPERIMENTAL HEUTRCN YIELD IS THE MEASURED YIELD FOR THE
LENGTH OP THE TOBE. STATISTICS ARE DONE MITH YIELD$LBNGTH CALC.
    THE INITIAL PRESSURE,
TEMPERATURE (K), EADIUS ARE BEQUIRED. ALl
UNITS ARE GKS EXCEPT POR IMITIAL PRESSURE IN BICRONS.
100 MICRONS EQUAL 100 GIILITOR OR 100 ET
TMC ONDETEBMINED
CONSTANTS C4=1. INITIAIIY ANE C5 to
BE DETERMINED FROM EXPERIMENTAL DATA.
REVEBSE field put in if negative then oses second halp cycle
    OPERATION AND REVB(J) IS SET EQUAL TO ZERO.
READ IN EXXBA INITIAIIY NEGATIVE
exXfa IS gray augaENIEL yIELD
                                    FORMDLAS
    TEST FOBMULA CONSTANT
        1 C5*VIGETA/EMOIES**1.5 4.0E-07 LON
        2 C55*VTHETA**2/FEOLES**3 6.5E-23 ERRATIC
    3 C555*VTHETA
    C 55*RR*VTHETA/EHOLES
    C55*RH*VTHETA/SCET (EMOLES)
    5.35E&05 LON
    3.33EE01 LOW
    C55*KR*VIHET.h*SQRT (EHOLES)
    6.0EE12 LOW
    C55*RK*VTHET后*FEOLES
        6.0E&16 LOH
            C555*VTAETA* (SQRT(100./PO(J)))
        IF TEST1=1 USES BSS=CONST7*T
        IF TEST1=2 USES BSS=EMAX(J)*SIN (OMEGA*T)
        field CauSed by generatob SPIral
        IY TEST1=3 0SES DSS*EHAR(J)/TAO(I)*SQRT(T*(2.0*TAO (J)-T))
        FyELD CAUSED BY GENERATOR PLATE
If TEST1=4 OSES BSS=BMAX{J)* (T/TAU(J))**2.0
        IP TEST2=1 GO PROA REVERSE PIELD ABSORPTION DIRECTLY TO
                ADIABATIC COMPRESSION.
        IF TEST2=2 GO FROM FEVEESE FIELD ABSORPTION TO AN EXPANSION
                        phase dntil presstre balance and then go to
                ADIABATIC COMPRESSION.
        If TESTJ=1 REVERSE FIELD PRESSURE IS FORCED TO be EQUAL to
                plasMa pfesSore at secord ppesSure balance during
                IMPlosicN
        If TEST3=2 TUIAL REVERSE FIELD RRESSURE USED J.N ENRBGI
                CAICULATICNS. NO REDUCTION IN PRESSORE
IP TEST4=1 PRESSURE TEST DURING IMFLOSION DOES HOT INVOLVE
    REVERSE FIEIL, CNIY GAS PRESSURE.
IP TEST4=2 RESISTIEG PGESSURE DORING IMPLOSICN IS THR SOB OP
```

```
C
gas pressore ayd reverse field pressure.
    Ngative SIg& On \nablatheta(J) GEANS the machine USES vthett
    VTbETA(J) READ IF FIXED POINT IN KILOVOLTS. EL(J) BRAD IN PIXED
    POINT IN CENTIMETERS. RDOT READ IN FIXED PCINT AS KILOMETERS
        peg Second. ELECTRON aND ION te&peratures bear in fixed point
        IN vOLTS. RO READ IN FIXED PCINT AS TENTHS OF BILIIMETEE.
        QUARTER PERIOD AND CCATAINMENT TIME READ IN SHAKES
        In the debugging print tesi=hagnetic pressure-gas pressure
        DIMENSION LABI(7), LABEI (40), EO (40), EL (40), PO (40),TO(40),
        IVTHETA(40), YIELD(40), BRAX(40),TAU(40),YIELDC (40).
        2 YIELDE(40),IRDCTE(40), IRDOIC (40),TCONTA(40), REVB(40)
    3.ITELEC (40),ITION(40),IT7(40),IDUARY(40),IPOC(40),IREVB(40).
    4TPLOT (200), RPLOT (200), TEMPP(200), LABEL 1(8), LABEL2(8), IXRAY(40) .
    5IRR(40)
                                    ,DENS 1(40),DENS2(40).ENUT 1(40).
    6ENOT2(40), IRAY11(40), XRAY12(40),ITP1 (40),ITP2(40),DENS3(40),
    7ENUT3(40), XRAY13(40),ITP3(40),IBMAX(40)
        data label1/48h Plasma Radios (CA) vS. tIme (SHAKES),/
        data label2/48H flasma tebp (KEV) vS. tIme (SHaKES) /
    READ(10,5)N.(LABL(I) . I= 1,7)
5 FOBMAT(I5,7A10)
    READ(10,4)ITEST,ITEST1,ITEST2,ITEST3,ITEST4, EXXRA
4 FORMAT (5I5,1P1E10.5)
    DO 13 J=1,N
    READ(10,6)IABPL(J),IRO .IEL,IPO,ITO,I ELEC,I ION,IRDOT,IVTH.
    IYIELD(J), BMAR(J),REVE(J),ITAU,ITCNTA,IDUMMY(J)
G FORMAT(1A10,15,14,I5. 5I 4,1P3E7.2,2I4,I7)
    TAU(J)=ITAU
    TAU(J)=TAU(J)*1.0E-08
    TCONTA(J)=ITCNTA
    TCONTA(J)=TCONTA(J)*1.0F-08
    vtheta(J)=Ivta
    VTHETA(J)=\nablaTHETA (J)*1000.
    EL (J)=IEL
    EL (J)=EL(J) *. 01
    BO(J)=IRO
    RO (J)=RO(J)*.0001
    IRDCTE(J)=IRDOT
    ITELEC(J)=IELEC
    ITION(J)=IION
    IPOO(J)=IPO
    PO(J)=IPO
    TO (J)=ITO
    IT7(J)=0
    IREVB(J)=REVB(J)*(-10000.)
    IBMAX(J)=BBAX(J)*10000.
13 CONIINUE
    T=0.0
    8 READ(10,7)C4,C5,C55,C555
    1,C6
7 FORMAT(1P5E10.5)
    IF(EOF,10)14.15
14 STOP
15 DO 1000 J=1,N
```

```
        EEVTRG=&1.0
        IF(EXXRA.GT.O.O)EXXRA=-EXXRA
        VTHTST=-1.0
        ANGIES=0.0
        NTEST=0
        T1=-1.0
        T2=-1.0
        T5=-1.0
        T3=-1.0
        T4=1.0
        CALL PRINT1(T1,T2,T3,T4,IREVB,IPOO,DENS1,DENS2, ENOT1,ENOT2,
        1XFAY11,XRAY12,ITP1,ITP2,DENS, IRAY,TS,ENEOTS,J,N,DENS3,ENUT3,
    2XAAY13.ITP3,T5,IBEAX)
    17 URITE(9,9)(LAEL(I).I=1,7)
    9 FORMAT(1H1,7A10)
        HRITE (9,2)
    2 FOFMAT (1HO.16HGAS IS [EOTERIUM)
        MRITE(9, 3)ITEST,ITEST1,ITEST2,ITEST3.ITEST4
    3 FORHAT(1H0,5X,5HTEST=,I5,5X,6HTEST1=,I5,5X,6HTEST2=,I 5,5X,6HTEST3=
    1.I5,5X,6HTEST4=.I5)
        HRITE(9,100)
    100 FOKMAT(1H0, 14X,2HC4, 14X,2HC5, 13X,3HC55, 12X,4HC555, 12X,4HTIME,
    1,8X,8HADDITIVE)
        WRITE (9,10)C4,C5,C55,C555,T
    1.C6
    10 FOKMAT(1H, 1P6F16.5)
        MRITE(9,101)
    101 FORMAT11H0,6X,4HEXPT, 7X,6HRALIUS,7x,6HLENSTH,
    17K.6UINIT P.7X,6HINIT T.8X.5HVOLTS.5X,8HNEUTRONS.
    28X,5HFIELD,9X,4HTIME)
        HRITE(9,1 1) LABEL(J), RC (J), EL (J), PO(J),TO(J),VTHETA (J) .
    1YIELD(J), BUAX(J),TAU(J)
    11 PORMAT(1H, 1A10,1P8E13_4)
        RR=FO(J) * RO(J)
        KRR=RF*RO(J)
        OMEGA=1.5707963/TAU(J)
        IF(ITEST1.EQ.3)GO TO 137
        VTHETI=OMEGA*BMAX(J)*3.14159*RR
        MRITE (9, 16) VTHETT
    16 FOR&AT (1H0, 69HVOLTAGE SPIKE CALCOLATED PROM THE ASSUMED SINIISOIDAL
    1 UKIVING FIRLD IS,IP1E1G_5)
        IF(\nablaTHETA(J).LT.O.0) VIHETA(J)=VTHETT
    137 P1=PO(J)/7.5
        V1=3.1415y*RR
        EMOLES=P1*V 1/(8314.*TC(J))
        YIELDE(J) =YIELD(J)
        YIELDC(J)=0.0
        P6=0.0
        CONST=C4*1.5*8314.*E.MCIES
C PULIY IONIZFD DEOTERIUM IS 4 PARTICLES
    FOUR=4.0&C6
    CONST 1=8314./3.14159*ERCLES*FOUR
    CONST7=VTHE゙TA(J)/(3. 14159*IN)
    TEST=0.0
    WRTTF(9, 102)
102 FORMAT(1U0,8X,8HPRESSURE, 10X,6HVOLUME, 11X,5HHOLES,
```

```
    15X,11GNEUTRONS .5X.11HCONTAINMENT,7X,9HREV FIFID)
    URITE (9, 12) P1, V1, EMOLES,YIELDE(J) ,TCCNTA (J), REVE(J)
    12 FORMAT(1H.,1P6E16.5)
    MRITE(9,21)
    21 FORMAT(1H0,30X,18HINITIAL CONDITIONS)
    ISTS=0
    RDOT=0.0
    BS=0.0
    PDYNA=0.0
    TS=TO(J)
    TSKEV=TS/11.6EE06
    RS=RO(J)
    IF(REVB(J).GT-O_O)GO TO 22
    EREVB=0.0
    PREVB=0.0
    GO TO 23
22 PBEVB=3.98EE05*REVB(J) *REVB(J)
    EREVB=PREVB*3.14159*RR
    VREVB=0.0
23 ELEFT=TS*CONST
    UN-ICNIZED CONDITIONS
    PEQST=CONST1*TS/RR*. 25
    IP=1
    TPLOT (IP) =ISTS
    RPLCT (IP)=ES*100.
    TEMPP(IP)=TSKEV
    URITE(9,105)
    FLDP=3.98E& 05*BS*BS
    BT=PEQST
    WFITE(9,26) FLDP,RS,ISTS,BS,PCYNA,TSKEV,ERPVB,PREVB,ELEFT, PEQST
    CALL RATIO(RS,ET,TS, EMCIES,BS)
    WRITE(9,120)
    120 FOFMAT(1H0, 30X.50HCONDITICNS AT PREHEAT AND INITIAL PRESSURE BALAN
    1CE)
    fuliy IONIZED GAS-dEUTEFIOM
    CONST=1.5*8314.*EMOLES*C4*POUR
    #RITE(9,105)
    DUMMY=IDUMMY(J)
    IF(DUMMY.EQ.0.0) DOMMP=2.0
    TSKEV=DUMMY*.001
    TS=ISKEV*11.6EE06
    PEQST=CONST 1*TS/RR
    T=4-0*TAU (J)
    BSS=SQRT(PEQST/3.98EE05)
    BMAI=EMAX (J)
    TA1=TAU(J)
    CaLl SHAFE(ITEST1,BSS,CONST7,BMAT,TA1,T,OMEGA)
123 ISTS=T*1.0EE08
    BS=ESS
    EINIT=TS*CONST
    ELEFT=EINIT
    IP=2
```

TPLCT (IP) =ISTS
RPLCT (IP) $=$ BS $* 100$.
TEMFP (IP) =TSKEV
$B T=P E Q S T$
FLDP=3. $98 E E 05 * B S * B S$
WEITE (9.26) PLDP, RS, ISTS,BS,PCYNA, TSKEV, EREVB,PREVB, RLEFT, PEQST CALL RATIO (RS, BT, TS, EHCIES,BS)
IF (ITEST.EQ.1) GO TO 110
IF (ITEST. EQ. 2) GO TO 111
IF (ITEST. EQ. 3) GO TO 113
IP(ITEST.EQ.4) GO TO 114
IF (ITEST. EQ-5) GO TO 115
IP(ITEST. EQ.6) GO TO 116
IF (ITEST.EQ.7) GO TO 117
IP (ITEST.EQ.8) GO TO 118
110 EDOTSQ=C5*VTAETA(J)/(EMOLES*SCRT(EMOLES))
GO TO 112
111 EDOTSQ=C55*VTHETA (J) **2/EMOLES**3
GO To 112
113 RDOTSQ $=$ C5 55* VTHETA (J)
GO TO 112
114 KDOTSQ=C55*RR*VTHETA (J)/EHOLES
Go 10112
115 FDOTSQ=C55*VTHETA(J)/SCRT(EMCLES)
Go To 112
116 RDOTSQ=C55*VTHETA (J) *SCRT (EMCLES) *RR
GO TO 112
117 RDCTSQ=C55*VTHETA (J) *FAOLES*RR
GO TO 112
c
118 RDOTSQ=C555*VTHETA(J)* (SGRT(100./PO(J)))
GO TC 112
112 RDOT=SQRT (RDUISQ)
IREOTC (J) =RDCT*. 001
WRITE $(9,28)$ RDOT
28 FORMAT (IHO, 39 HIMPLOSICN AND EXPLOSION VELOCITY EQUALS, 1P1E16.3)
HOLECULAR HEIGHT OF DEUTERIUM
CONST2=EMOLES*4.03*RDCTSQ
$\mathrm{HS}=\mathrm{HU}(\mathrm{J})$
DELTAT=RO (J) *. 002 /RDCT
IF (REVB(J).GE.0.0)GC TC 27
REVTRG=-1.0
REVE(J) $=0.0$
27 T=TEDELTAT
RS=RS-RDOT*DELTAT
TA1=TAO (J)
BMA1=EBAX (J)
CALL PIELD(ITEST1, CONST7, T, OBEGA,TA1, BSS, BMA1)
62 PLEFT=3.98EE05*BSS*ESS
BSSE=FEVB (J)*RE/(RS*ES)
PREVB=3.98EEUS*BSSE*BSSE
PDYNA $=$-5*CONST2/(3.14159*RS*RS)
PLEFT=PLEFTEPDYNA
IF (ITEST4.EQ.2) PLEFT=FIEFT-PBEVB

```
    ELEPT=(1.0-RS*RS/RR)*CCNST2&EINIT
18 TS=ELEPT/CONST
    IP(TS.LE.TO(J))IS=TO(J)
    PEQST=CONST1*IS/(RS*RS)
    TEST=PLEFT-PEQST
    IF(RS.LT.0.0)GO TO 8
    IF(VTHTST.GT.0.0)GO TO 109
    IP(TEST.LT.O.0)GO TO 27
    VTHTST=&1.0
    yRITE(9,108)
108 POBHAT(1HO, 30X,53HCONDITIONS AT PIRST PRESSURE BALANCE DORING IMPL
    10SICN)
    WRITE(9.105)
    BS=ESS
    ISTS=T*1.0E&08
    TSKEV=TS/11.6E&06
    BSSH=REVB(J)*RR/(RS*FS)
    VREVB=3.14159*RS*RS
    PREVB=3.98E&05*BSSR*BSSR
    EREVB=PREVB*VREVB
    IP=3
    TPLOT(IP)=ISTS
    RPLCT(IP)=RS*100.
    TEMPP(IP) =TSKEV
    BT=PECST
    FLDP=3.98E&05*BS*BS
    MEITE (9,26) FLDE,RS,ISIS,BS,PIYNA,TSKEV,EREVB,PREVB,ELEFT,PEQST
    CALL RATIO(RS,BT,TS, EMOIES,BS)
    GO IO 27
109 IH(TEST.GT.0.0)GO TO 27
    BS=BSS
    IF(ITEST3.EQ.2)GO TO 93
    IF(PREVB.GT.PEQST)GO IC 94
    GO TU }9
34 URITE(9.91) PEEVB,PEQST
91 FORMAT (1H0, 30X, 38HHEVERSE FIELD PRFSSURE DECREASED PROM.
    11P1E16.5.5X,2HTO,1P1E16.5)
    PREVB=PEQST
93 VREVB=3.14159*RS*ES
    EREVB=PREVB*3.14159*RS*FS
    STS=T
    ISTS=STS*1.0EE08
    TSKEV=TS/11.6E&06
    GRITE (9, 104)
104 FOEMAT(1HO, 30X,54RCONDITICNS AT SECOND PRESSORE BALANCE DURING IMP
    1 LOSICN)
    #RITE(9,105)
105 FORMAT(1H,4X,8HBG FLD P,6X,6HRADIUS,2X,4HTIME,3X,9HMAG FIELD,
    11X,11F DYNAMIC P.7X,5HT REV,2X,10HR FLD ENGY,5X.7HR FLD P,
    22X,10日SHOCK ENGY,5X,7HP EQ SI)
    IP=4
    TPLCT(IP) =ISTS
    RPLOT(IP)=RS*100.
    TEMFP(IP) =TSKEV
```

```
    BT=PEQST
    FLDP=3. 98 E&05*BS*BS
    WRITE (9, 26) FLDP, KS,ISTS,BS,PIYNA,TSKEV, EREVB, PREVB, EL, PFT,PEQST
    CALL RATIO(SS,BT,TS,FMCIES,BS)
26 FORMAT(1H,IP2E12.3.IE,1P7E12.3)
    IF(BEVTFG.LT.0.0) GO TC 20
    IF(ITEST2.EQ.1)WRITE (9,106)
    IF(ITEST2.EO-2)UFITE (9,G8)
106 FOKMAT(1H0, 30X,51HCONDITICNS APTPR ABSORPTION OP REVERSE FIELD ENE
    1 KGY)
98 FORMAT (1HO, 30X,63HCONDITIONS IMMEDIATELY APTER ABSORPTION OF REVER
    1SE FIELD ENERGY)
        ESAVE=ELEFT
71 ELEFT=ESAVEEFREVB
    TS=ELEPT/CONST
    PDYNA=0.0
    RDOT=0.0
    PEQST=CONST1*TS/(RS*RS)
    BSI=SQRT (PFQST/3.98E&05)
    IF(ITEST2.EQ.2)GO TU 12t
    IF(BST.GT.BSS)ESS=BST
    T=2.0*TAU(J)
    BMA1=EMAX(J)
    TA1=TAU(J)
    CALL SHAPE(ITEST1,BSS,CCNST7,BMA1,TA1,T,OMEGA)
126 PLEFT=PEQST
    BS=BSS
    STS=T
    ISTS=STS*1.0EE08
    TSKEV=TS/11.6EEO6
    WKITE(9,105)
    IP=5
    TPLOT (IP) =ISTS
    PPLCT (IP) =RS*100.
    TEMFP(IP)=TSKEV
    PREVB=0.0
    EREVB=0.0
    BT=PEQST
    FLDP=3.98E&0 5*ES*BS
    WRITE(9,26) FLDP,RS,ISTS,BS,PIYNA,TSREV, EREVB,PREVE,ELEPT,PEQST
    CAIL FATIO(RS,BT,TS,EMCIES,BS)
    IF(ITEST2.EQ. 2)GO TO S7
    IFF(ES.GT.BNAX(J))GU IC B
    IF(STS.GT.TAU(J))GO TO E
    GOT040
97 KRITE (9.99)
99 FOFMAT (1HO, 30X,49HCONDITICNS AT PRESSURE BALANCE APTER PIRST GOUNC
    1E)
        DELTAT=DELTAT*.10
        RDOT=IRDOTC (J)*1000
        WRITE(9.28) RDCT
86 VRAT=VREVB/(3.14159*RS*ES)
    PP=PEQST*VRAT**1.667
    PE=3.98E&05*BSS*BSS
```

```
    IF(EP.LT.PB)GO TO }9
    RS=RS&RDOT*DEITAT
    T=TEDELTAT
    TA1=TAU(J)
    BMA1= EMAX (J)
    CALL FIELD(ITEST1,CCNST7,T,OMEGA,TA1,BSS,EEA1)
    GO TO 86
90 ISIS=T*1.OE&08
    BS=ESS
    PDYNA=0.0
    TS=TS*VRAT**.667
    TSKEV=TS/11.6E&06
    PEQST=PEQST*VRAT**1.667
    ELEPT=TS*CONST
    URITE(9.105)
    IP=6
    TPLCT(IP) =ISTS
    KPLCT (IP) =RS*100.
    TEMFP(IP)=TSREV
    BT = PEQST
    PLDP=3.98EE05*BS*BS
    NRITE(9,26) FIDP,RS,ISTS,ES,PIYNA,TSKEV,EREVB,PREVB,ELEFT,PEQST
    CALL RATIO(RS,BT,TS,EMOIES,BS)
    GO TO 40
20 MRITE(9.19)
19 FOEMAT (1HO,43HSECOND HAIF CYCLE CALCULATION DOES NOT UORK)
40 GRITE(9.41)
4) FORMAT(1H0,30X,29HADIAEATIC COMPEESSION FOLLCHS)
    BMA1=BMAX(J)
    TAI=TAU{J}
    CALI SHAPE(ITEST1,BSS,CCNST7,BHA1,TA1,T,OMEGA)
    BT=3.98E& 05*BS*BS
    CALL RATIO(RS, RT,TS,EBCIES)
134 IEXXRA=-EXXRA
    HRITE(9,95) IEXTEA
95 POKMAT (1HO. 30X,37HAUGMENIED XRAY YIELD BY A FACTOR OF .I10)
    DELTAT=.01*TAU(J)
50 TA1=TAU(J)
    BMA1= BMAX (J)
    CALL FIELD(ITEST1,CCNSI7,T,OHEGA,TA1,BSS,BKA1)
136 CALL PLASM(KS,BSS,TS,EXXPA,DELTAT,T,ENEOTS,XRAY,IR,DENS,
    1FOU K)
    YIEIDC(J)=ENEOTS
    IXEAY(J)= XRAY*(-1-)
    IRR (J)=IR
    T=TEDELTAT
    TSKEV=TS/11.6EEO6
    ISTS=T*1.0E&08
    IP=IPE1
    TPLCT (IP) =ISTS
    RPLCT (IP)=KS*100.
    TEMPP(IP)=TSKEV
    IF(T.GE.TCONTA(J))GO TO 1006
    IF(T2.LT.0.0)GO TO 1220
```

```
        IF(T5.LT.0.0) GO TO 1230
        IF(I3.LT.O.0)GO TO 1222
        GO TO 1225
1220 IF(T.GT.6.0E-07) GO TO 1221
        GO IO 1225
1221 CALI PEINT1(T1.T2,T3,T4,IREVB,IPOO,DENST,DENS2, ENUTY,ENOT2,
    1XRAY11, XRAY12,ITP1,ITP2,DENS,XRAY,TS,ENEUTS,J, &, DENS3, ENOT3.
    2XHAY13.ITP3.T5.IBMAX)
        GO TO 1225
1230 IF(T.GT.1.00E-06)GO TC 1231
        GO TO 1225
1231 CALI PEINT1\T1,T2,T3,T4,IREVB,IPOO,DENS1,DENS2, ENTT1, ENUT2,
    1 XRAY11, XRAY12,ITP1,ITP2,DENS, ZRAY,TS,ENEUTS,J,N, DENS3, ENUT3.
    2XRAY13.ITP3.T5,IBMAX)
        GO TO 1225
1222 IF(T.GT.1.98E-06)GO TO 1223
        GO IO 1225
1223 CALL PRINT1(T1,T2,T3,T4,IREVB,IPOO,DENS1, DENS2, ENUT1, ENOT2,
    1XFAY11, XRAY12,ITP1,ITP2.DENS,XBAY,TS,ENEUTS.J.N,DENS3,ENOT3.
    2XRAY13.ITP3.T5.IBMAX)
        GO IO 1225
1225 IF(I.GE.TCOMIA(J))GO TO 1006
        GOTC50
1006 EE'GCL=3.98E&05*BSS*BSS*3.14159*RS*RS/(8314.*TS)
    TOTAL=CONST*TS
        FATIO=EEMOL/EMCLES
        IT7(J)=TS/11.6EE03
        WRITE(9,53) EEMOL, PATIO,TCTAL
    53 FCREAT(1H0,6HMOLES=,1P1E16.5,5X,6HRATIO=,1P1E16.5,5X,
    122HTOTAL INTERNAL ENEAGY=,1P1E16.5)
        CALI SPLOT(1,IP,TPLOT,FELOT,42,1)
        CALL LINCNT (1)
        URITE(12,25)IPPC,IRO,IVIH, BMAX(J),ITAU, REVB(J), IEXXRA
    1.ITESI,ITEST1,ITEST2,ITEST3.ITEST4
        URITE(12, 24)C555, LABEL (J)
        CALL WLCH(244,25,48, IABEL9,1)
        CALL WLCV (40,722,25, LABEL1,1)
        CALI WLCH(440, 1002,15,1ABEL1(4),1)
        CAIL ADV(1)
    25 PORMAT(1H, 1X,9HPRESSURE=,I6,1X,7HRADIUS=,I5,1X,7HVTHETA=,I5,1X,
        15HBBAX=,1YiE!I.3,1X,11HQTR PEGIOD=,I5, 1X,10HREV FIELDF,1P1F11.3.
        21X,6HEXXRA=.I3,1X,5I1)
    24 FORMAT(1H, 1X,2HC=,1P1E10.2,1A10)
        CALI SPLOT(1,IP,TPLOT,TEMPP,42,1)
        CALI LINCNT(1)
        WFITE(12,25)IPC,IRO, IVTH, EAAX(J),ITAU,REVB(J).IEXXRA
    1.ITEST.ITEST1,ITEST2.ITEST3,ITEST4
        HRITE(12.24) C555, LABEL (J)
        CALL MLCH {244,25,48, IABEL2,1)
        CALL WLCV (40,722,25, LAEEL2,1)
        CALL WLCY(440,1002,15,1ABEL2(4),1)
        CALI ADV (1)
        GO TO 1000
1000 CONIINUE
```

```
    WRITE(9.9)(LABL(I),I=1,7)
    WRITE(9,95) IEXXRA
    URITE (9,3)ITEST,ITEST1,ITEST2,ITEST3.ITEST4
    MRITE(9.101)
    HRITE(9,11) LABEL(1), RC(1),EL (1),PO(1),TO(1),VTHETA (1),YIELD(1).
    1BMAX(1).,TAU(1)
    GRITE(9.100)
    URITE(9,10)C4.C5,C55,C555.T
    T1=1.0
    T2=1.0
    T5=1.0
    T3=1.0
    T4=-1.0
    CALL PRINT14T1,T2.T3.T4,IREVB,IPOO,DENS1,DENS2, ENUT1,ENUT2.
    1XRAY11, XRAY12,ITP1,ITE2,DENS,XRAY,TS,EMEUTS.J,N,DENS3,ENOT3,
    2XRAY13,ITP3,T5,IEGAX)
    SUM=0.0
    SUMSQ=0.0
    WRITE(9,1002)
1002 FOFSAT(1H0,7x,5HEXPER, 2&, 10HCALCULATED, 2X, 10HDIFPRRENCE,7X,5HRATIO
    1,11X,4HEXFT,1X,5HEXP V,1X,5HCAL V,1X,5HP MIC,1X,5HREV B,2X,4HXRAY.
    21x,5HRATIO,2x,4HT EL,1X,5HT TON, 2x,4HCALC)
    DO1001J=1,N
    YIELDC(J)=YIELDC(J)*EI (J)
    DELTA =YIELDE(J)-YIELLC(J)
    DIVIDE = FIELDC(J)/YIEIDE(J)
    HRITE(9.1003)YIELDE(J),YIEIDC(J),DELTA ,DIVIDE ,LABEL(J).
    1 IBDOTE(J).IRDOTC(J),IFOO(J),IREVB(J),IXRAY(J),IRR(J),ITELEC(J).
    2ITION(J),IT7(J)
1003 FORMAT(1H,1P4E12.3,5X.1A10,916)
    SUM=SUMEDIVIDE
    SUMSQ=SUMSQEDIVIDE *LIVIDE
1001 CONTINUE
    EN=N
    SUMSQ=SQRT(SUHSQ/EN)
    SUM=SUM/EN
    #RITE(9,1004)
1004 PORKAT(1H0,9X,7HAVERAGE,9X.7HSTD DEV)
    GRITE(9,1005) SUM,SUMSC
1005 furmai(1H . 1P2E16.5)
    GO TO }
    END
    SUBROUTINE PLASM{RPLAS,ESS,TfLAS,EXXRA,DELTAT,T,ENEOTS, XRAY,IR,
    1DENS,FOUR)
        P3= NUBBER OP HOLES
        GAS CONST=8314. IN.GKS
        HEAT CAPACITY=3/2R FER MOLE
        FULLY IONIZED DEUTERIUM IS FOUR PARTICLES PER mOLE OF
        U&-IONIZED GAS. ONLY TUC PARTICLES BADE HASS, ELECTBONS NEGLIG
        LENS IS ION DENSITY
        THERE ARE 11.6EE06 KELVIN IN OME KEV
        [EOTERIUM CROSS SECIIONS
        PRINT PIELD IN KIICGAUSS
    IF(EXYBA.GT.O.O)GO TO 10
```

```
    EXXRA=ABS (EXXRA)
    VOL=3.14159*RPIAS*RPLAS
    VOL1=VOL
    TPLAS2=TPLAS
    PPLAS=3.98E&05*BSS*BSS
    P3=PPLAS*VOL/(8314.*IPIAS)
    CONST=1.5*8314.*P3
    CONST 3=1. 3E-20*.50*1.35
    CONST4=P3*6.023E& 26*2.0/POUR
    CONST5=5. 35E-31*1.0E-12*1.OE&O6
    PDV 1=0.0
    XRAY=0.0
    ENEJTS=0.0
    WRITE(9.51)
    S1 FORAAT(1HO, 1X,4HTIME, 2X,3HPLD,4X,8HION DENS,6X,6HRADIOS,2X, 3HV/V,7
    1X,5HT KEV, 2X, 3HT/T,4X,8HNEOTEONS,7X,5HXRAYS, 2X, 3HX/E,5X,7HENGY CR,
    26X,5HTOTAL, 5X, 4HPDV1)
    EL I = 1.0
10 VOL=3.14159*RPLAS*RPIAS
        PPLAS=3.98EE05*BSS*BSS
        DENS=CONST4/VOL
        DENSQ=DENS*DENS
        TPLAS4=TPLAS
        TPLAS=(PPLAS*VOL/(83 14.*P3) &TPLAS)/2.0
        TPLAS1=TPLAS/11.EEEOE
        TPLAS 3=TPIAS {**-33333
        EN EUTS=ENEUTS&CONST3*DENSQ*EXP(-18.76/TPLAS3)
    1*DELTAT*VOL/(IPLAS3*TPLAS3)*ELL
    XRAY1=EXXRA*CCNST5*DENSC*SQRI(TPLAS1)
    1*DELTAT*VOL*ELL
    TOTAL=CCNST*TPIAS
    XRAY= XRAY-XRAY!
    PDV=-XRAY1-CONST*(TPLAS-TPLAS4)
    PDV1= PDV1EPDV
    RPLAS=RPLAS&PDV/(6.284*FPIAS*RPLAS)
    IT=T*1. OE&O8
    IF(RPLAS.LT-0.0)GO TO 53
    IBSS=BSS*10.
    IV=VCI/VOL1*100.
    IS=TPIAS/TPLAS2*100.
    IR=-XEAY* 100./TOTAL
    ECK=TOTAL-XRAYEPDV1
    WRITE(9,52)IT,IBSS,DENS,RPLAS,IV,TPLAS1,IS,ENEOTS,
    1XRAY,IR,ECK,TOTAL,PDV1
52 FOKMAT(1H.2I5,1P2E12.3,I5,1P1E12.3,I5,1P2E12.3.
    1I5, 1P1E14.5,1P2ES.1)
    GO IO 55
53 MRIIE(9,54) RPLAS
54 FORMAT(1H0, 30X,31HPLASHA RADIUS HAS GONE NEGATIVE,1P1E16.5)
    T=T*1.0EE10
55 RETURN
    END
    SUBROUTINE RATIO(RS,BT,TS,EMCLES,BS)
                            EETA SHOULD BE ONE. FOF DEUTERIUM HOLES RATIC SHOOLD BE 4.
```

```
    C IF THE GAS IS PULIY ICNIZFD
    134 P1=3.14159*RS*FS
        P2=ET
        P 3=P1*P2/(8314.*TS)
        RATIO=P3/EMOLES
        IF(BT*BS.EQ.O.O)GO TO 108
        BETA=P2/(3.98E&O5*BS*ES)
        GO TO 109
    108 BETA=0.0
    109 凹RITE (9, 107)
    107 FORMAT(1H0,8X,8HPRESSURE,10X,6HVOLOBE, 11X,5HHOLES,11X,5HRATIO,12X.
        14HBETA)
        URITE(9,42)P2,P1,P3,RATIO, BETA
    42 FORMAT(1H.1P5E16.5)
        WRIIE (9,106)
    106 FORMAT(1H 46FP EQ ST MEST EQUAL MG FLD P POR BETA TO BE 1.0)
        RETURN
        END
        SUBROUTINE SHAEE(ITESI1,BSS, CONST7,BHA1,TA1,T,OREGA)
        ANGIES=BSS/B#A1
        IF(ANGLES.GE. 1.0) GO TC 70
        IP(ITFST1.EQ.1)GO TO 124
        IF(ITEST1.EQ.2)GO TO 125
        IP(ITEST1.EQ.3)GO TO 12E
        IF(ITEST1.EQ.4)GO TO 127
    124 T= ESS/CONST7
        GO TO 73
    125 ANGLEC=SQRT(1.0-ANGLES*ANGIES)
        ANGLE=ATAN(ANGLES/ANGIFC)
        T=A NGLE/OMEGA
        GO TO }7
    126 T=TA1*(1.0-SQAI(1.0-ANGIES*A NGLES))
        GO TO 73
    127 T=TA1*SQRT(ANGLES)
        GO TO 73
        HRITE(9.72)
    72 FOBMAT(1HO,30X,20HERRGR IN CALCOLATICN)
    WEITE(9.31)
    31 FORMAT(1HO,28HNO FORTHER SCLUTION POSSIBLE)
        T=TA1*1.01
    73 RETUAN
        END
        SUBROUTINE PIELD(ITESI1,CCNSI7.T.OMEGA,TA9,BSS,BMA1)
C CROUBAR MUST OCCUR INSIEE ADIABATIC COMPRESSION
C FOR OFTIONS 3 AND 4.
C FIELD IS ETHETA*TIME
C FIELD CAOSEI BY CAEACITOR BANK
        IP(ITEST1.EQ. 2)GO TO &8
            FIFLD CAUSED BY GENEEATOR SPIRAL
        IF (INEST1.EQ.3)GO TO 87
            FIELD CAUSED BY GENERATOR PLATE
        IF(ITEST1.EQ.4)GO TO 90
    89 BSS=CONST7*T
```

```
        GO IO 86
    88 BSS=BMA 1*SIN(CMEGA*T)
    GO IO 86
    87 IF(I.GE.TA1)GO TO 91
    BSS=BMA1/TA 1*SQRT (T* (2.0*TAT-T))
    GO T0 86
    90 IF(T.GE.TA1)GO TO 91
    BSS=BMA 1* (T/TA1)**2.0
    86 RETURN
    91 BSS=BMA1
        GO IO }8
        END
        SUBROUTINE PRINT1(T1,T2,T3,T4,IREVB,IPOO,DENS1,DENS2, ENOT1, ENUT2,
    1 XRAY11. XRAY12,ITP1.ITP2.DENS, XRAY,TS,ENEOTS,J.G,DENS3,ENUT3,
    2XRAY13,TTF3,T5,IBMAX)
    DIUENSION IREVB(40), IFOC(40), DENS 1 (40), DENS2(40), ENUT 1 (40),
    1ENUT2(40), IRAY11(40), &FAY12(40),ITP1(40),ITP2(40), DENS3(40), ENUT3
    2(40), XRAY 13(40),ITP3(40).IBMAX(40)
    T1 CONTROLS INITIALIZING
    T2 STORES FIRST SET CF fata at 0.6 MICROSECOND
    T5 STORES TGIRD SET OF DATA AT 1.00 MICROSECONDS
    T3 STORES SECOND SET OF dATA AT 2.0 mICROSECCNDS
    T4 CONTROLS ODIPOT PRINIING
    IF(T1.LT.O.0)GC TO 1200
    IF(I2.LT.0.0)GO TO 1201
    IF(15.LT.0.0)GO TO 1210
    IF(I3.LT.0.0) GO TO 1202
    IF(T4.L.T.0.0)GO TO 1203
    GO T0 1205
1200 T1=1.0
    DENS1(J)=0.0
    DENS2 (J) =0.0
    DENS3(J) =0.0
    ENUT1(J)=0.0
    ENUT2(J)=0.0
    ENUI3 (J)=0.0
    XRAY11(J)=0.0
    XRAY12(J)=0.0
    XRAY13(J)=0.0
    ITP1(J)=0.0
    ITP2(J)=0.0
    ITP3(J)=0.0
    GO IO 1205
1201 T2=1.0
    DENS1(J)=DENS
    ENUT1(J)= ENEOTS
    XRAY11(J)=XRAY
    ITP1(J)=TS/11.6EE03
    GO TO 1205
1210 T5=1.0
    DENS3(J)=DENS
    ENOTS (J)= ENEUTS
    XRAY13(J)=XRAY
    ITP3(J)=TS/11.6EE03
```

```
    GO TO 1205
1202 T3=1.0
    DENS2(J)=DENS
    ENOT2(J)= ENEOTS
    XRAY12(J)=ERAY
    IT P2(J)=TS/11.6E& 03
    GO TO 1205
1203 T4 = 1.0
    MRITE(9,1204)
1204 PORMAT (1H0,5X,33HSUKEARY TABLE AT 0.6 mICROSECCNDS)
    MRITE(9,1206)
1206 FOBMAT (1H0,4X,8HPRESSURE, 1x,11RREOERSE PLD, 1X,11HION DENSITY,
    14X,8HNEUTRONS, 7X,5HXRAYS,5X,7HTEMP EV, 3X,9HDRIVE PLD)
    GRITE(9.1207)(IFOO(J).IEEVE(J).DENS1(J).ENOT1(J),XRAY11(J),
    IITPI(J),IBMAX(J),J=1,&)
1207 FORMAT(1H . 2I12,1P3E12.4.2I12)
        #RITE(9,1211)
1211 FORMAT(1H0,5X,34HSUMGARy TABIE AT 1.00 mICROSECONDS)
        \RITE (9,1206)
        WRITE(9,1207)(IPOO(J),IREVB(J),DENS3(J),ENOT 3(J), .XRAY13(J),
    1ITP3(J),IBHAX(J),J=1,N)
        HRITE(9,1208)
1208 FORMAT (1 H0,5x.33 HSUMHAEY TABLE AT 2.0 mICROSECCNDS)
        WRITE (9,1206)
        HRITE(9,1207) (IPOO(J), IEEVB(J) ,DENS2 (J), ENOT2(J) ,XPAY12(J),
    1ITP2(J),IBMAX(J),J=1,N)
1205 RETORN
    END
```


Helium

```
ALGEBRAIC SULUTION OF THETA EINCH EQUATIONS
USING THOMSONS THEORY. TRE INPUT DATA
IS THE VOLINGE PULSE, THE MAXIMUM BAGNETIC
FIELD ANS ITS IIME TO MAXIMUM ASSUMING
SINUSUIDAL. THE YIASMA IS HELIUM HITH GAMAA= 1.667
AND THE MOLECULAE HEIGHI=4.0026
CG IS THE LXTRA ICNIZED PARTICLES ADLED TO THE
PUEE GAS. CG=1 IS ONE MORE EIECTRON DUE TO
IMPUEITIES. C6 FRACTICNAL IS PERMISSIBLE.
THE XRAY YIELD IS CALCULATED PER METER.
                                    THE INITIAL PRESSURE,
TEMPERATURE(K), FADIUS ARE REQUIRED. ALL
UNITS ARE MKS EXCEPT FOR INITIAL PRESSURE IN MICRONS.
100 MICRONS EQUAL 100 MILLITOR OR 100 MT
THO UNDETERMINED
CONSTANTS C4=1. INITIALIY AND C5 TO
BE DETEEMINED FROM EXPERIUENTAL DATA.
REVERSE FIELD PUT IN IF NEGATIVE THEN USES SECOND HALF CYCLE
    OPERATION AND REVB(J) IS SET EQUAL TO ZERO.
READ IN EXXRA INITIALIY NEGATIVE
EXXRA IS XRAY AUGMENTEL YIELD
                                    FORMULAS
    TEST FCRMULA
    C55*VTHETA**2/E MOLES**3
    C555*VTHETA
    C55*RR*VTHETA/EMCLES
    C55*RR*VTHETA/SCRT (EMOLFS)
    C55*ER*VTHETA*SQET(EMOLES)
    C55*FR*VTHETA*EMCLES
        C555*VTHFTA* (SQRT(100./PO(J)))
    IF TEST1=1 USES BSS=CONST7*T
    IF TESTY=2 USES BSS=EMAX (J)*SIN (OMEGA*T)
    FIELD CAJSEL BY GENERATCR SPIRAI
    IF TEST1=3 USES BSS=BMAX(J)/TAU(J)*SQRT (T*(2.0*TAU (J) -T))
    FIELD CAUSED BY GENFEATCH PLATE
IF TEST 1=4 USES BSS=BMAX(J)* (T/TAD(J))**2.0
    IF TEST2=1 GO FEOM FEVERSF PIELD ABSORPTICN LIRECTLY TO
            ADIABATIC COFPRESSION.
    IF TES'L2=2 GC FROM FEVEKSE FIELD ABSOKPTICN TO AN EXPANSION
                                    PHASE UNTIL PRFSSURE BALANCF. AND THEN GO TO
            ADIABATIC CCKPRESSION.
    IF TEST3=1 EEVERSE EIELI PRESSURE IS FORCED TO BF EQUAL TO
                ELASMA PEESSURE AT SECCND PEESSURE BALANCE DURING
                IMPLOSICN
    IF TEST3=2 TOTAL. REVERSE EIELD PRESSUHE USED IN ENERGY
                CALCULATICNS. NO REDUCTION ÏN PRESSURE.
    IP TEST4=1 PEESSURE TEST DURING IMPLCSICN DOES NOT INVOLVE
                KEVERSE FIEIL, CNIY GAS DRESSURE.
    IH TEST4=2 RESISTING PRESSUPE DURING TMPIOSICN IS THE SUM DF
        GAS PRESSURE AND PEVERSE FIELD PRESSURF.
```



```
        VTHIST=-1.0
        ANGIES=0.0
        #TEST=0
        T1=-1.0
        T2=-1.0
        T5=-1.0
        T3=-1.0
        T4=1.0
        CALL PRINT1(T1,T2.T3,T4,IREVB,IPOO,DENS1,DENS2, ENOT1, ENUT2,
        1XRAY11, XRAY12,ITP1,ITTZ,DENS,XRAY,TS,ENEOTS,J, H,DENS3,ENUT3.
        2XRAY13.ITP3.T5.IBMAX)
    17 KRITE(9,9)(IABI(I),I=1,7)
    GORMAT(1H1,7A10)
        GRITE(9,2)
    2 FORMAT(1H0,16HGAS IS HEIIUM )
        WRITE (9,3)ITEST,ITEST1,ITEST2,ITEST3,ITEST4
    3 FOKMAT(1110,5X,5HTEST=,I5,5X,6HTEST1=,I5,5X,6HTEST2=,I5,5X,6HTEST3=
        1,I5,5x,6HTEST4=,I5)
        WRITE(9,100)
100 FOFMAT(1HO,14X,2FC4,14X,2HC5,13X,3HC55,12X,4HC555, 12X,4HTIME,
    1,8X,8HADDITIVE)
        WRITE(9,10)C4,C5,C55,C555,T
    1,C6
    10 FORMAT(1H, 1P6E16.5)
        GRITE(9,101)
101 FOEMAT(1H0,6X,4HEXPT,7X,6HRADIUS,7X,6HLENGTH,
    17X,6HINIT P,7X.5HINIT I,8X,5HVOLTS,5X,8ENEUTRONS,
    28X,5HFIELD,9X,4तTIME)
        &PITE(9.11) LABEL(J), RO(J),EL(J),PO(J),TO(J),VTHETA (J) .
    IYIELD(J), BMAX(J),TAU (J)
    11 FOamat(1H , 1%10,1P8E13.4)
        PR=FO (J) * RO (J)
        GRR=RR*RO (J)
        OMEGA=1.5707963/TAU(J)
        IP(I'EST1.EQ.3)GO TO 137
        VTHETT=O:IEGA*BMAX(J)*3.14159*RR
        URITE (9,16) VTRETT
    16 FORMAT(1HO,69HVOLTAGE SPIKE CALCULATED PROA THE ASSUMED SINUSOIDAL
    1 DhIVING FIELD IS,1P1F1G.5)
        IF(VIMETA(J).LI-O.0) VIHETA (J)=VTHETT
    137 P1=FO(J)/7.5
        V1=3.14159*FR
        EMOLZS=P{*V 1/(831.4.*TC (J))
        YIELDE(J)=YIELD(J)
        YIEIDC(J) =0.0
        Po=0.0
        CONST=C4*1.5*8314.*EMC1FS
C FULLY IONIZED HEIIUR IS 3 PARTICLES
    THRE[m3.0&C6
    CONST1=8314./3.14159*FMCLFS*THREE
    CONST7=VTHETA(J!/(3.14159*RR)
    TESI=0.0
    MFITE(9.102)
102 FOKMAT(1H0,8X, BIIPRESSURE, 10X,6HVCLUME, 11X,5HMOLES,
```

```
        15X.11HNEUTRONS .5X,11HCONTAINAENT,7X,9HREV PIELD)
            WRITE(9. 12) P1,V1, EMOLES,YIELDE(J),TCONTA (J) ,REVE(J)
    12 FO&AAT(1H,1P6E16.5)
        HEITE(9.21)
    21 FORAAT(1HO,30X,18HINITIAL CONDITIONS)
    ISTS=0
    RDOT=0.0
    BS}=0.
    PDYNA=0.0
    TS=TO(J)
    TSKE\nabla=TS/11.6EE06
    RS=FO(J)
    IF(REVB(J)-GT.0.0)GO IC 22
    EREVB=0.0
    PREVB=0.0
    GO TO 23
    22 PREVB=3.98E&05*REVB(J) *REVB(J)
        EREVB=PREVB*3.14159*太K
        VREVB=0.0
23 ELEFT=TS*CONSI
    UN-IONIZED CONDITIONS
    PEQST=CONST 1*IS/RR*.333333
    IP=1
    TPLCT(IP)=ISTS
    RPLCT(IP)=RS*100.
    TEMPP(IP)=T SKEV
    MRITE(9.105)
    FLDP=3.98E&05*BS*BS
    BT=FEQST
    WRITE(9,26) PLDP,ES,ISTS,BS,PIYNA,TSKEV,EREVB,PFEVB,ELEFT,PEQST
    CALL RATIO(RS,BT,TS, EHCIES,BS)
    WRITE(9.120)
    120 FORMAT(1HO, 30Y.50HCONDITIONS AT PREHEAT AND INITIAL PRESSURE BALAN
    1CE)
C FULLY IONIZED GAS-HELIUM
    CONST=1.5*8314.*EMOLES*C4*THREE
    #BITE(9.105)
    DUGMY=IDUMMY(J)
    IF(DUMMY.EQ.O.O) DUMMY=2.0
    TSKEV=DOMYY*.001
    TS=ISKEV*11.6EE06
    PEQST=CONST 1*IS/ER
    T=4.0*TAO(J)
    BSS=SQRT(PEQST/3.98E&O5)
    BMA1= BMAX (J)
    TA1=TAU(J)
    CALL SHAPE(ITEST1,BSS,CCNST7,BMA1,TA1,T,OMEGA)
123 ISTS=T*1.OE&08
    BS=ESS
    EINIT=TS*CONST
    ELEFT=EINIT
    IP=2
    TPLOT (IP) =ISTS
    RPLCI (IP) =RS*100.
```

```
        TEMFP(IP)=TSKEV
        BT=FEQST
        FLDP=3.98EE 05*BS*BS
        WRITE(9,26) PLDP,RS,ISTS,BS,PIYNA,TSKEV,EREVB,PREVB,RLEFT,PEQST
        CALI FATIO(RS,BT,TS, EMCIES,BS)
        IP(ITEST.EQ.1)GO TO 110
        IF(ITEST.FQ.2)GO TO 111
        IP(ITEST.EQ.3)GO TO 113
        IF(ITEST.EQ.4)GO TO 114
        IP(ITEST.EQ.5)GO TO 115
        IP(ITEST.EQ.6)GO TO 116
        IF(ITEST.EQ.7)GO TO 117
        IF(ITFST.EQ.8)GO TO 11E
    110 RDOTSQ=C5*VTHETA(J)/(EMCLES*SQRT(EHOLES))
    GO TO 112
    111 RDOTSQ=C55*VTHETA (J) **2/EMOLES**3
    GO TO 112
    113 RDOISQ=C555*VTHETA(J)
    GO TO 112
    114 RDOTSQ=C55*RR*VTHETA (J)/EMOLES
    GO TO 112
    115 RDOTSQ=C55*VTHETA(J)/SQFT(EMCIES)
    GO TC 112
    116 RDOTSQ=C55*VTHETA(J)*SGRT(EMCLES)*RR
    GO TO 112
    117 HDOTSQ=C55* VTHETA (J)*EMCLES*RR
    GO TO 112
    THIS EQUATION HAS EXPFFIMENTAL VAIIDITY
    118 RDOTSQ=C555*VTHETA(J)* (SCRT(100_/PO(J)))
    GO IO }11
    112 RDOT=SQRT (RDOTSQ)
        IRDOTC(J)=&DOT*.001
        HRITE(9,28) RDOT
    28 FORMAT(1H0,39HIMPLOSICN AND EXPlOSICN VELOCITY EQOALS,1P1E16.3)
    MOLECOLAR WEIGHT OP EEIIUM
    CONST2=EMOLES*4.0026*RLCTSQ
    RS=FO(J)
    DELTAT=RO(J)*.002/RDOT
    IF(FEVB(J).GE.O.0)GO IC 27
    EEV:IRG=-1.0
    REVE(J)=0.0
    27 T=TEDELTAT
    RS=RS-RDOI*DELTAT
    TA 1=TAU(J)
    BMA1= FMAX (J)
    CALL PIELD(ITESI1,CONSI7,T,OHEGA,TA1,BSS,BMA1)
    62 PLEFT=3.98EE05*BSS*BSS
    BSSE=REVB(J)*RE/(RS*RS)
    YEEVB=3.98EEOS*BSSR*BSSF
    PDYNA=.5*CONST2/(3.14159*RS*RS)
    PLEFT=PLEFTEPDYNA
    IF(ITEST4.EQ. 2)PIEFT=PLFFT-PGEVB
    ELEFT=(1.0-RS*RS/RR) *CCNST 2EEINIT
    18 TS=FI.EPT/CONST
```

```
    IF(TS.IE.TO(J))TS=TO(J)
    PEQST=CONST 1*TS/(RS*RS)
    TEST=PLEFT-PEQST
    IF(RS.LT.0.0)GO TO B
    IP(VTHTST.GT.0.0)GO TC 109
    IF(TEST.LT.0.0)GO TO 27
    VTHTST=&1.0
    URITE(9,108)
108 FORHAT(1H0,30x,53HCONDITIONS AT FIRST PRESSORE EALANCE DORING IMPL
    10SICN)
        QRITE(9,105)
    BS=BSS
    ISTS=T*1.0EE08
    TSKEV=TS/11.6EEOG
    BSSE=REVB(J)*RF/(RS*RS)
    VREVB=3.14159*RS*RS
    PREVB=3-98EE05*ESSE*BSSE
    ERFVB=PGEVB*VREVB
    IP=3
    TPLCT(IP)=ISTS
    RPLCT (IP)=RS*100.
    TEMFP(IP)=TSKEV
    B'=PEQST
    FLDF=3.98EE05*BS*BS
    MRITE(9,26) FLDP,RS,ISIS,BS,PCYNA,TSREV,EREVE,PREVB,ELEFT,PEQST
    CALL EATIO(RS,BT,TS,EMCIES,BS)
    GO 10 27
109 IF(IEST.GT.0.0)GO TO 27
    BS=ESS
    IP(ITEST3.EQ.2)GO TO 93
    IF(PREVB.GT.PEQST)GO IC 94
    GO TO 93
94 ERITE(9,91) PKEVB,PEQST
91 PORMAT(1H0.30X.38HREVERSE FIELD PRESSDRE DECREASED FROM.
    11P1P.16-5,5X,2HTO,1P1F1(_5)
    PREVB=PEQST
93 VREVB=3.14159*FS*RS
    EREVB=PEEVB*3.14159*RS*FS
    SIS=T
    ISTS=STS* 1.0EE08
    TSKEV=TS/11.6EE06
    WRITE(9,104)
104 FORMAT(1H0,30X,54 HCONDIIIONS AT SECOND PRESSURE BALANCE DURING IMP
    1LOSICN)
        #RITE(9.105)
105 FORHAT(1H . 4X,8HHG FID F,6X,6HRADIUS,2X,4HTIME,3X,9HMAG FIELD,
    11X,11H DYNAMIC P,7X,5HI KEV,2X,10HR FLD ENGY,5X,7HB FLD P,
    22x,10HSHOCK ENGY,5X,7HP EQ ST)
        IP=4
        TPLOT(IP) =I STS
        BPICT (IP)=RS*100.
        TESPP(IP)=TSKEV
        BT=PEQST
        FLDP=3.98E&05*BS*BS
```

```
    WRITE(9, 26) PLDP,BS,ISTS,BS,PIYNA,TSKEV,EREVB,PRFVB,ELEFT,PEQST
    CALL RATIO(RS,BT,IS,FMCIES,BS)
26 FOBKAT (1H,1P2E12-3,I6,1P7E12.3)
    IP(REVTRG.LT.0.O)GO TC }2
    IF (ITEST2.EQ. 1) WRITE (S.106)
    IP(ITEST2_EQ_ 2) WRITE(C.98)
106 FORMAT/1HO, 30X.51HCONDITIONS AFTER ABSORPTICN OF REVERSE PIELD ENE
    1 RG Y)
98 FORMAT(1HO, 30X,63HCONDITIONS IMAEDIATELY APTER ABSORPTION OF REVER
    1SE FIELD ENERGY)
        ESAVE=ELEFT
71 EL EFT=ESAVE&EREVE
    TS=ELEPT/CCNST
    PDYNA=0.0
    RDOT=0.0
    PEQST=CONST 1*TS/(RS*ES)
    BST=SQRT (PEQST/3.98E&05)
    IF(ITEST2.EQ-2)GO TO 126
    IF(BST.GT.BSS)ESS=BST
    T=2.0*TAU(J)
    BMA1=BMAX(J)
    TA1=TAU(J)
    CALL SHAPE(ITEST1,BSS,CONST7, BHA1,TA1,T,OMEGA)
126 FLEFT=PEQST
    BS=ESS
    STS=T
    ISIS=STS*1.0E&08
    ISKEV=TS/11.6EE06
    URIIE(9,105)
    IP=5
    TPLOT(IP)=ISTS
    FPLCT(IP)=RS*100.
    TEHPP(IP)=TSKEV
    PREVB=0.0
    EREVB=0.0
    BT=FEQST
    FLDP=3.98E&05*RS*BS
    #RITE (9,26) PLDP,RS,ISIS,BS,PIYNA,TSKEV,EREVB,PREVB, ELEPT,PEQST
    CALL RATIO(RS,BT,TS;FMCIES;BS)
    IF(ITEST2.EQ.2)GO TO S7
    IF(ES.GI. HAAX(Jj)GOU TC 8
    IF(STS.GT.TAU(J))GO TC E
    GOTC40
97 HRITE(9.99)
99 FOKMAT (1HO, 30X,49HCONDITICNS AT PRESSURE EALANCE APTER FIRST BOUNC
    1 E)
        DELTAT=DELTAT*.10
        BDOT=IRDOTC (J) $1000
        HRITE(9,28) KDCT
86 VRAT=VREVB/(3.14159*RS*RS)
    PP=PEQST*VRAT**1.667
    PB=3.98EE05*BSS*BSS
    IP(PP.LT.PB)GC TO 90
    RS=BSEBDOT*DELTAT
```

```
    T=TEDELTAT
    TA1=TAO(J)
    BMA1=BMAX(J)
    CALL FIELD(ITEST1,CONST7.T,O&EGA,TA1,BSS, EMA1)
    GO TO 86
90 ISIS=T*1. OE&08
    BS=BSS
    PDYNA=0.0
    TS=TS*VRAT***.667
    TSKEV=TS/11.6EEOÉ
    PEQST=PEQST*VRAT**1.6E7
    ELEFT=TS*CONST
    WRITE(9,105)
    IP=6
    TPLOT (IP) =ISTS
    RPLCT(IP)=RS*100.
    TEMPP(IP) =TSKEV
    BT=PEQST
    FLDP=3.98EE05*BS*BS
    WRITE(9,26) PLDP,RS,ISTS,BS,PIYNA,TSKEV,EREVB,PRFVB,ELEFT,PEQST
    CALL FATIO(RS,ET.TS,EMOLES,BS)
    GO TO 40
20 WRITE(9.19)
19 FORMAT(1H0.43HSECOND BALF CYCLE CALCULATION DOES NOT HOKK)
40 HRITE(9,41)
4) FORMAT(1HO,30X.29HADIAEATIC COMPRESSION FOLLOWS)
    EMA 1=BMAX (J)
    TA\=TAO(J)
    CALI SHAPE(ITEST1,BSS,CCNST7.BMA1,TA1,T,OMEGA)
    BT=3.98EE 05*BS*BS
    CALL RATIO(RS,ET,TS,EBCIES)
134 IEXXBA=-EXXKA
    #RITE(9,95) IEXXRA
95 FORMAT(1HO, 30X.37HAUGEENTED XRAY YIEID BY A FACTOR OP .I 10)
    DELTAT=-01*TAU(J)
50 TA1=TAU(J)
    BMA1=EMAX(J)
    CALL FIELD(ITEST1,CONST7,T,OMEGA,TA1,BSS,BMA1)
136 CALL PLASM(RS,ESS,TS,EXXRA,DELTAT,T,ENEOTS,XRAY,IR,DENS,
    1THREE)
    YIELDC(J)=ENEUTS
    IXRAY(J)= XRAY*(-1.)
    IRR(J)=IR
    T=TEDELTAT
    TSKFV=TS/11.6EE06
    ISTS=T*1. OEEO8
    IP=IPE1
    TPLCT(IP) =ISTS
    RPLCT(IP)=RS*100.
    TEMPP(IP)=TSKEV
    IF(I.GE.TCONTA(J))GO TC }100
    IF(T2.LT.0.0)GO TO 122C
    IF(T5.LT.0.0)GO TO 1230
    IF(T3.LT.0.0)GO TO }122
```

```
        GO TO 1225
1220 IF(T.GT.6.0EE07) GO TO 1221
        GO TO 1225
1221 CALL PRINT1(T1.T2,T3,T4,IREVB,TPOO,DENS1,DENS2, ENUT1, RNUT2.
    1XRAY11, XRAY12,ITP1,ITP2,DENS,XRAY,TS,ENEUTS,J,N,DENS3, ENUT3,
    2XRAY13.ITP3,T5,IBMAXI
        GO TO 1225
1230 IP(T.GT_1.00E-06)GO TO 1231
        GO TO 1225
1231 CALL PEINT1(T1,T2,T3,T4,IREVB,IPOO,DENS1,DENS2, ENUT1,ENTT2,
    IXRAY11. XRAY12,ITP1,ITP2,DENS,XRAY,TS,ENEUTS,J.N,DENS3, ENUT3,
    2XRAY13,ITP3,T5,I BMAX)
        GO TO 1225
1222 IF(T.GT.1.98E-06)GO TO 1223
        GO IO 1225
1223 CALL PRIET1<T1,T2,T3,T4,IREVB,IPOO,DENS1,DENS2,ENUT1,E&OT2,
    1 XRAY11, XRAY12,ITP1,ITP2,DENS,XRAY,TS,ENEUTS,N,N,DENS3, ENUT3.
    2XRAY13.ITP3,T5,IBMAX)
        GO TO 1225
1225 IF(T.GE_TCONTA(J))GO TO 1006
        GOTO50
1006 EEMCL=3.98E&05*BSS*BSS*3.14159*RS*RS/(8314.*TS)
        TOTAL=CONST*TS
        RATIO=EEMOL/EMOLES
        IT7(J)=TS/11.6E&03
        HRITE(9.53) EEMOL, RATIC.TOTAL
    53 POFKAT(1H0,6HMOLES=, 1P1E16.5,5X,6HRATIO=,1P1E16.5,5X,
    122HTOTAL INTEFNAL ENEFGY=, 1P 1E16.5)
        CALI SPLOT(1,IP,TPLOT,FFLCT,42,1)
        CALI LINCNT(1)
        HRITE(12, 25)IPO, IRO, IVIH, BUAX(J),ITAD, EEVB(J), IEXXRA
        1.ITEST,ITEST1,ITEST2.ITEST3,ITEST4
        GRITE(12, 24)C555, LABEL (J)
        CALI NLCH (244, 25,48., IABEL1,1)
        CALL HLCV (40, 722,25,LABEL1,1)
        CALL WLCH (440,1002,15,IABEL1(4),1)
        CALI ADV(1)
    25 FORMAT(1H, 1X,9HPGESSURE=.IG,1&,7MRADIOS=,I5, 1X,7HVTHETA=,I5, 1X,
        15HEMAX=, 1P1E11.3,1X,11HCTR PEFICD=,I5,1X,10HREV FIELD=, 1P1E11.3.
        21X,6GEXXFA=,I3,1X,5I1)
    24 FOFMAT(1H, 1X,2HC=,1P1E10.2,1A10)
        CALL SPLOT(1,IP,TPLOT,IEMPP,42,1)
        CALI LINCN'(1)
        URITE(12, 25)IPO,IRO, IVIH, BMAX(J),ITAU,REVB(J), IEXXRA
        1.ITEST,ITEST1,ITEST2,ITEST3,ITEST4
        HRITE(12, 24)C555, LABEL (J)
        CAII WICH (244,25,48, LAEEL2,1)
        CALL WLCV (40,722,25,1AEEL2,1)
        CALI WLCH (440, 1002,15, IABEL2 (4),.1)
        CALL ADV(1)
        GO TO 1000
1000 EONTINUE
    \RITE(9,9)(IABL(I).I=1,7)
    URIIE(9,95) IE&XRA
```

```
        URITE(9,3)ITEST,ITEST1,ITEST2,ITEST3,ITEST4
        MRITE(9,101)
        WBITE(9,11)LABEL(1),RO(1),EL (1),PO(1).TO(1),VTHETA (1),YIELD(1).
    1BMAX(1),TAD(1)
    WRITE(9,100)
    URITE (9,10)C4,C5,C55,C555,T
    T1=1.0
    T2=1.0
    T5=1.0
    T3=1.0
    T4=-1.0
    CALL PRINT1(T1,T2,T3,T4,IREVB,IPOO,DENS1,DENS2, ENOT1,ENDT2.
    1XRAY11,XRAY12,ITF1,ITE2,DENS,XRAY,TS,ENEUTS,J,N,DEAS3,ENUT3,
    2XRAY13,ITP3,T5,IBMAX)
    SUM=0.0
        SOMSQ=0.0
        yRITE(9,1002)
1002 FORMAT(1H0,7X,5HEXPER.2X.10HCALCOLATED, 2X,10HDIFFERENCE,7X,5HPATIO
    1,11X,4HEXPT.1X,5HEIP V,1X,5HCAL V.1X.5HP MIC.1X,5HREV B,2X,4HXRAY,
    21X,5HRATIO,2X,4日T EL, 1X,5HT ION,2X,4HCALC)
        DO 1001J=1,N
        YIEIDC(J) =YIELDC (J) *EL (J)
        DELTA =YIELDE(J)-YIEILCC(J)
        DIVIDE =YIEIDC(J)/YIEIDE(J)
        GRITE(9.1003) YIELDE(J),YIELDC(J),DELTA .DIVIDE ,LABEL(J),
    I IRDOTE(J),IRDOTC (J),IFOO (J),IREVB(J),IXBAY(J),IRR(J),ITELEC(J).
    2ITICN(J).II7(J)
1003 FORMAT(1H,1P4E12.3, SX,1A10,9I6)
    SUA=SUMEDIVIDE
    SUMSQ=SUMSQEDIVIDE *IIVIDE
1001 CONTINOE
    EN = N
    SUMSQ=SQRT(SOHSQ/EN)
    SUM=SUM/EN
    URITE(9,1004)
1004 FOGHAT(1H0,9x,7HAVERAGE,9X,7HSTD DEV)
    URITE(9,1005)SUR,SUHSC
1005 FORMAT(1H , 1P2E16.5)
    GO IO }
    END
    SUBEOOTINE PLASM(RPLAS, ESS,TPLAS,EXXRA,DELTAT,T,ENEOTS,YRAY,IR.
    TDENS,THREE)
C
C
GAS CONST=8314. IN MKS
            HEAT CAPACITY=3/2R PFR MOLE
    PULIY IONIZED GELIOX IS 3 PARTICLES PER BOLE OF UN-IONIZED GAS.
    ONLY ONE PABTICLE HAS aASS,ELECTRONS NEGLIGABLE.
            DENS IS ION DENSITY
            THERE ARE 11.6EEO6 KELVIN IN ONE KEV
            HELIUM CROSS SECTIONS
            PBINT FIELD IN KILCGAOSS
        IP(EXXRA.GT.0.0)GO TO 10
        EXXRA=ABS (EXXRA)
        \nablaOL=3.14159*RPLAS*RPIAS
```

```
    VOL1=VOL
    TPLAS2=TPIAS
    PPLAS=3.98E&05*BSS*BSS
    P3=PPLAS*VOL/(E314.*TPIAS)
    CONST=1.5*8314.*P3
    CONST4=P3*6.023EE 26*1.0/THREE
    CONST5=5.35E-31*2.0*4.0*1.0E-12*1.0EE06
    PDV 1=0.0
    IRAY=0.0
    ENEUTS=0.0
    MRITE(9.51)
    51 FORMAT(1H0,1X,4HTIME,2X,3HPLD,4X,8HION DENS,6X,6HRADIOS,2X,3HV/V,7
        1X,5HT KEV,2X,3HT/T,4X,8HNEDTRONS,7X,5HXRAYS, 2X, 3HX/E,5X,7HENGY CK,
        26X,5HTOTAL,5X,4HYDV1)
            ELI=1.0
    10 VOL=3.14159*RPLAS*RPLAS
        PPLAS=3.98E&05*BSS*BSS
        DENS=CONST4/VOL
        DENSQ=DENS*DRNS
        TPLAS4=TPLAS
        TPLAS=(PPLAS*VOL/(8314.*P3)ETPLAS)/2.0
        TPLAS1=TPLAS/11.68E06
        TPLAS3=TPLAS1**.33333
        XRAY1=EXXRA*CONST5*DENSC*SQRT(TPLAS1)
    1*dELTTAT*VOL*ELL
        TOTAL=CONST*TPIAS
        XRAY=XRAY-XRAYY
        PjV =-XRAY 1-CONST*(TPLAS-TPIAS4)
        PDV1=PDV1EPDV
        RPLAS=RPLASEPDV/(6.284*FPIAS*EPLAS)
        IT=T*1.0E&08
        IF (BPLAS.LT.O.0)GO TO 53
        IBSS=BSS*10.
        IV=VOL/VOI1*100.
        IS=IPLAS/TPLAS2*100.
        IR=-XRAY* 100./TOTAL
        ECK=TCTAL-XRAYEPDVI
        GRITE (9.52)IT,IBSS,DENS,RPLAS,IV,TPLAS1,IS, ENEOTS,
    1XRAY,IR,ECK,TOTAL,PDV1
```



```
    1I5,1P1E14.5.1P2E9.1)
        GO TO 55
    53 MRIIE(9,54) RPLAS
    54 FORMAT(1H0,30X,31HPLASBA RADIUS HAS GONE NEGATIVE,1P1E16.5)
        T=T*1.0EE10
    55 RETURN
        END
        SUBROUTINE RATIO(RS,ET,TS, EHClES,BS)
C RF,TA SHOITD BE ONE. FCR HELIUM MOLES RATIO SHOULD BE 3.
C IF THE GAS IS FULIY IONIZED
134 P1=3.14159*RS*RS
    F2=ET
    P3=P1*P2/(8314.*T S)
    RATIO=P3/EMOLES
```

```
        IF(ET*BS.EQ.0.0)GO TO 108
        BETA=P2/(3.98EE05*BS*ES)
        GO TO 109
    108 BETA=0.0
    109 ERITE(9.107)
    107 FORMAT(1H0,8X,8HPRESSURE,10X,6HVOLUBE,11X,5HBOLES,11X,5HRATIO,12X,
        14HBETA)
        WRITE(9,42)P2,P1,P3, RATIO,BETA
    42 FORGAT(1H,1P5E16.5)
        MRITE(9,106)
    106 FORAAT(1H ,46HP EQ ST ROST ECOAL GG FLD P POR PETA TO BE 1.0)
        RETORN
        END
        SOBEOUTINE SHAPE(ITEST1.BSS, CONST7,BMA1,TA1,T,OMEGA)
        ANGLES=BSS/BMA1
        IF(AHGLES.GE. 1.0)GO TO 70
        IF(ITEST1.EQ.1)GO TO 124
        IF (ITEST1.EQ.2)GO TO 125
        IP(ITEST1.EQ.3)GO TO 126
        IF(ITEST1.EQ.4)GO TO 127
    124 T=BSS/CONST7
        GO TO }7
    125 ANGLEC=SQRT(1.0-ANGLES*ANGIES)
        ANGLE=atan(ANGLES/ANGLFC)
        T=ANGIE/OMEGA
        GO TC 73
    126 T=TA1*(1.0-SQRT(1.0-ANGIES*ANGLES))
    GO TO 73
    127 T=TA1*SQRT(ANGIES)
        Go TO 73
    70 WRITE (9.72)
    72 FORKAT(1H0,30X,20HERRCR IN CALCJLATICN)
    30 wRITE(9,31)
    31 FORHAT(1HO,28HNO PORTGER SOLOTION POSSIBLE)
        T=TA1*1.01
    73 RETURN
        END
        SUBROUTINE FIELD (ITEST1,CONST7,T,OHEGA,TA1,BSS,BMA 1)
    CROWBAR MOST OCCOR INSIDE ADIABATIC COMPRESSION
C FOR OPTIONS 3 AND 4.
C FIELD IS ETAETA*TIME
    IP(ITEST1.EQ-1)GO TO &9
            fIfLD CAUSRD BI CAFACITOR BANK
        IF(ITFST1.PQ. 2)GO TO 8&
            fiELD CAUSED BY GEMEFATOR SPIRAL
        IP(ITEST1.EQ. 3)GO TO ET
            fiELD CaUSED By Generator plate
        IF(ITEST1.EQ.4)GO TC 90
    89 BSS=CONST7*T
    GO IO 86
    88 BSS=BMA1*SIN (CHEGA*T)
        GO TO 86
    87 IP(T.GE_TA1)GO^TO 91
        BSS=BMA1/TA1*SQRT (T* (2.0*TA1-T))
```

```
    GO T0 86
    90 IF(I.GE.TA1)GO TO 91
    BSS=BMA1* (T/TA1)**2.0
    8G RETORN
    91 BSS=BMA }
        GO 10 }8
        END
        SUBROUTINE PRINT1(T1,T2,T3,T4,IREVB,IPOO,DENS1,DENS2, ENOT1, ENOT2,
    1XRAY11, XRAY12,ITF1,ITP2,DENS,XRAY,TS,ENEUTS,J,N,DENS3, ENOT3.
    2YRAY13.ITP3.T5,IBMAX
    DIMENSION IREVB(40), IFGC(40),DENS1 (40),DENS2 (40), ENOT 1 (40),
    1ENUT2(40), XRAY11(40), XFAY12(40),ITP1(40),ITP2(40), DENS3(40), ENUTY
    2(40), XRAY 13(40),ITP3(40).IEMAX(40)
    T1 CONTROLS INITIALIZING
    t2 StCRES fifSt SEt OF fata at 0.6 microseccmd
    T5 STORES THIRD SET OF LATA AT 1.00 HICROSECCNDS
    t3 StORES SECOND SET CF DATA AT 2.0 BICROSECONDS
    T4 CONTROLS OOTPUT PRINIING
    IF(T1.LT.0.0)GO TO 1200
    IF(T2.LT.0.0)GC TO 1201
    IF(15.LT.0.0) GO TO 1210
    IF(73.LT.0.0)GO TO 1202
    IF(T4.LT.O.0)GO TO }120
    GO TO 1205
1200 T1=1.0
    DENS1(J)=0.0
    LENS2(J)=0.0
    DENS3(J) =0.0
    ENUT1 (J) =0.0
    ENUT2(J)=0.0
    ENUT3(J)-0.0
    XRAY11(J)=0.0
    XRAY12(J)=0.0
    XRAY13(J)=0.0
    ITP1(J)=0.0
    ITP2(T) =0.0
    IT P3(J)=0.0
    GO TO 1205
1201 T2=1.0
    DENST(J)= DENS
    ENUZ1(J)=FNEUTS
    XRAY11(J)=XRAY
    ITP1(J)=TS/11.6EE03
    GO TO 1205
1210 T5=1.0
    DENS3(J)= DENS
    ENUT3(J) = ENPUTS
    XRAY13(J)=XRAY
    ITP3(J)=TS/11.6EE03
    GO TO 1205
1202 T3=1.0
    DENS2(J)= DENS
    ENUT2(J)=ENEUIS
    XRAY1Z(J)=XFAY
```

```
        ITP2(J)=TS/11.6EE03
        GO TO 1205
1203 T4=1.0
    GRITE(9,1204)
1204 FORRAT (1HO.5X.33HSUMMARY TABLE AT 0.6 RICROSECCMDS)
MRIIE (9,1206)
1206 FOBMAT (1H0,4X,8HPRESSORE,1X,11HREVERSE PLD,1X,11HION DENSITY.
    14X,8HNEUTRONS,7X,5HXRAYS,5X,7HTEMP EV, 3X,9HDEIVE FLD)
    GRITE(9.1207)(IPOO(J),IBEVB(J),DENS1(J),ENOT1(J),XRAY11(J).,
    1ITP1(J),IBMAX(J),J=1,N)
1207 FORMAT(1H , 2I 12,1P3E12-4,2I12)
    URITE(9,1211)
1211 FORMAT(1H0,5X,34HSUMMARY TAELE ATT 1.00 mICROSECCNDS)
    URITE(9,1206)
    URITE(9,1207)(IPOO(J),IREVB(J),DENS3(J),ENUT 3(J),XRAY13(J).
    1ITP3(J),IEMAX(J),J=1,N)
    URITE(9.1208)
1208 FUFMAT (1H0,5X,33HSUMYARY TABLE AT 2.0 MICROSRCONDS)
    WEITE(9.1206)
    #RITE(9,1207)(IPOO(J),IRPVB(J),DENS2(J),ENDT2(J),XRAY12(J).
    IITP2(J),IBEAX(J),J=1,N).
1205 RETURN
    END
```


\dagger Add $\$ 1.00$ for each additional 25 -page increment or portion thereof from 601 pages up.

Los Allamos

