A15 multifilamentary superconductors by the infiltration process

PDF Version Also Available for Download.

Description

The inherent brittleness of the A15 compounds, and the requirement for a filamentary morphology, led to a heavy reliance on a powder approach for the preparation of superconducting tapes and wires. The quench-age technique, a non-powder process, was employed for the niobium-aluminum system, following the special features of the equilibrium phase diagram. The powder approach proved particularly effective for binaries, such as Nb-Sn, and for the ternaries Nb(Al,Ge) and Nb(Al,Si). Two variations of the powder process were assessed. One involved the use of precompounded powder of the desired stoichiometry but required simultaneous application of heat and pressure. The second variation ... continued below

Physical Description

Pages: 27

Creation Information

Pickus, M.R.; Holthuis, J.T. & Rosen, M. May 1, 1980.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

  • Lawrence Berkeley Laboratory
    Publisher Info: California Univ., Berkeley (USA). Lawrence Berkeley Lab.
    Place of Publication: Berkeley, California

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The inherent brittleness of the A15 compounds, and the requirement for a filamentary morphology, led to a heavy reliance on a powder approach for the preparation of superconducting tapes and wires. The quench-age technique, a non-powder process, was employed for the niobium-aluminum system, following the special features of the equilibrium phase diagram. The powder approach proved particularly effective for binaries, such as Nb-Sn, and for the ternaries Nb(Al,Ge) and Nb(Al,Si). Two variations of the powder process were assessed. One involved the use of precompounded powder of the desired stoichiometry but required simultaneous application of heat and pressure. The second variation was the infiltration process. This process involves the preparation of a ductile niobium matrix containing a controlled network of interconnected pores which are subsequently infiltrated with liquid metals (Sn) or low melting-point eutectics (e.g., Al-Ge, Al-Si). The composite is then subjected to a thermomechanical treatment to form a multiply connected array of A15 filaments in a niobium matrix. Multifilamentary conductors, based on Nb/sub 3/Sn, Nb/sub 3/Al, Nb/sub 3/ (Al,Ge) and Nb/sub 3/ (Al,Si), were readily obtained. Nb/sub 3/Sn conductors made by the infiltration process exhibit a critical temperature (Tc) of 18.1 K and a critical current carrying capacity (I/sub c/) of 8 x 10/sup 4/ amp.cm/sup -2/ at 12 Tesla.

Physical Description

Pages: 27

Notes

NTIS, PC A03/MF A01.

Source

  • International cryogenic materials conference, Upton, NY, USA, 28 May 1980

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBL-10761
  • Report No.: CONF-800587-5
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 5217163
  • Archival Resource Key: ark:/67531/metadc1064875

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 1980

Added to The UNT Digital Library

  • Feb. 4, 2018, 10:51 a.m.

Description Last Updated

  • April 24, 2018, 3:36 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Pickus, M.R.; Holthuis, J.T. & Rosen, M. A15 multifilamentary superconductors by the infiltration process, article, May 1, 1980; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc1064875/: accessed October 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.