Greater-confinement disposal of low-level radioactive wastes

PDF Version Also Available for Download.

Description

Low-level radioactive wastes include a broad spectrum of wastes that have different radionuclide concentrations, half-lives, and physical and chemical properties. Standard shallow-land burial practice can provide adequate protection of public health and safety for most low-level wastes, but a small volume fraction (about 1%) containing most of the activity inventory (approx.90%) requires specific measures known as ''greater-confinement disposal'' (GCD). Different site characteristics and different waste characteristics - such as high radionuclide concentrations, long radionuclide half-lives, high radionuclide mobility, and physical or chemical characteristics that present exceptional hazards - lead to different GCD facility design requirements. Facility design alternatives considered for ... continued below

Physical Description

Pages: 8

Creation Information

Trevorrow, L.E.; Gilbert, T.L.; Luner, C.; Merry-Libby, P.A.; Meshkov, N.K. & Yu, C. January 1, 1985.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Low-level radioactive wastes include a broad spectrum of wastes that have different radionuclide concentrations, half-lives, and physical and chemical properties. Standard shallow-land burial practice can provide adequate protection of public health and safety for most low-level wastes, but a small volume fraction (about 1%) containing most of the activity inventory (approx.90%) requires specific measures known as ''greater-confinement disposal'' (GCD). Different site characteristics and different waste characteristics - such as high radionuclide concentrations, long radionuclide half-lives, high radionuclide mobility, and physical or chemical characteristics that present exceptional hazards - lead to different GCD facility design requirements. Facility design alternatives considered for GCD include the augered shaft, deep trench, engineered structure, hydrofracture, improved waste form, and high-integrity container. Selection of an appropriate design must also consider the interplay between basic risk limits for protection of public health and safety, performance characteristics and objectives, costs, waste-acceptance criteria, waste characteristics, and site characteristics. This paper presents an overview of the factors that must be considered in planning the application of methods proposed for providing greater confinement of low-level wastes. 27 refs.

Physical Description

Pages: 8

Notes

NTIS, PC A02/MF A01.

Source

  • International conference on new frontiers for hazardous waste management, Pittsburgh, PA, USA, 15 Sep 1985

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE85010259
  • Report No.: CONF-850960-1
  • Grant Number: W-31-109-ENG-38
  • Office of Scientific & Technical Information Report Number: 5459199
  • Archival Resource Key: ark:/67531/metadc1064797

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1985

Added to The UNT Digital Library

  • Feb. 4, 2018, 10:51 a.m.

Description Last Updated

  • April 18, 2018, 6:59 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Trevorrow, L.E.; Gilbert, T.L.; Luner, C.; Merry-Libby, P.A.; Meshkov, N.K. & Yu, C. Greater-confinement disposal of low-level radioactive wastes, article, January 1, 1985; Illinois. (digital.library.unt.edu/ark:/67531/metadc1064797/: accessed May 24, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.