Particle identification at an asymmetric B Factory

PDF Version Also Available for Download.

Description

Particle identification systems are an important component of any detector at a high-luminosity, asymmetric B Factory. In particular, excellent hadron identification is required to probe CP violation in B{sup 0} decays to CP eigenstates. The particle identification systems discussed below also provide help in separating leptons from hadrons at low momenta. We begin this chapter with a discussion of the physics motivation for providing particle identification, the inherent limitations due to interactions and decays in flight, and the requirements for hermiticity and angular coverage. A special feature of an asymmetric B Factory is the resulting asymmetry in the momentum distribution ... continued below

Physical Description

Pages: (108 p)

Creation Information

Coyle, P.; Eigen, G.; Hitlin, D.; Oddone, P.; Ratcliff, B.; Roe, N. et al. September 1, 1991.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Particle identification systems are an important component of any detector at a high-luminosity, asymmetric B Factory. In particular, excellent hadron identification is required to probe CP violation in B{sup 0} decays to CP eigenstates. The particle identification systems discussed below also provide help in separating leptons from hadrons at low momenta. We begin this chapter with a discussion of the physics motivation for providing particle identification, the inherent limitations due to interactions and decays in flight, and the requirements for hermiticity and angular coverage. A special feature of an asymmetric B Factory is the resulting asymmetry in the momentum distribution as a function of polar angle; this will also be quantified and discussed. In the next section the three primary candidates, time-of-flight (TOF), energy loss (dE/dx), and Cerenkov counters, both ring-imaging and threshold, will be briefly described and evaluated. Following this, one of the candidates, a long-drift Cerenkov ring-imaging device, is described in detail to provide a reference design. Design considerations for a fast RICH are then described. A detailed discussion of aerogel threshold counter designs and associated R D conclude the chapter. 56 refs., 64 figs., 13 tabs.

Physical Description

Pages: (108 p)

Notes

OSTI; NTIS; INIS; GPO Dep.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE91018878
  • Report No.: SLAC-PUB-5594
  • Grant Number: AC03-76SF00515
  • DOI: 10.2172/5309775 | External Link
  • Office of Scientific & Technical Information Report Number: 5309775
  • Archival Resource Key: ark:/67531/metadc1064735

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 1991

Added to The UNT Digital Library

  • Feb. 4, 2018, 10:51 a.m.

Description Last Updated

  • May 25, 2018, 1:11 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Coyle, P.; Eigen, G.; Hitlin, D.; Oddone, P.; Ratcliff, B.; Roe, N. et al. Particle identification at an asymmetric B Factory, report, September 1, 1991; Menlo Park, California. (https://digital.library.unt.edu/ark:/67531/metadc1064735/: accessed March 22, 2019), University of North Texas Libraries, Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.