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ABSTRACT

Tiffsreviewhas fourparts.In PartI,we describethe reactionsthatproduce

r.eutrinos in the sun and the expected flux of those neutrinos on the earth.

We then discuss the detection of these neutrinos, and how the results obtained

differ from the theoretical expectations, leading to what is known as the solar

neutrino problem. In Part II, we show how neutrino oscillations can provide a

solution to the solar neutrino problem. This includes vacuum oscillations, as

well as matter enhanced oscillations. In Part III, we discr_s the possibility of

time variation of the neutrino flux and how a magnetic moment of the neutrino

can solve the problem. We also discuss particle physics models which can give

rise to the required values of magnetic moments. In Part IV, we present some

concluding remarks and outlook for the recent future.
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Part I

.....The solar neutrino problem

The sun is a huge nuclear reactor where lots of reactions are going on, synthesizing

hydrogen into helium and subsequently to heavier elements ul. In these reactions,

some neutrinos are created, as we describe in more detail below. The physics of the

sun is supposed to be quite well understood to estimate the rate of production of

these neutrinos. We can try to detect these neutrinos on the earth. The experiments

performed so far have detected much less neutrinos than were theoretically expected.

This is called the Solar neutrino problem. There are many other aspects of the

problem which will be elaborated as we go on.

Logically, the problem must be in one of the following aspects: (1) the detec-

tion of neutrinos might be faulty; (2) the calculation of expected neutrino fluxes

might be wrong because of poorly known input parameters and uncertainties in the

calculation with the standard solar model; (3) something might be lacking in our

understanding of the neutrino properties.

Though all these alternatives seemed equally likely at the time the first solar

neutrino experiments were performed, it now seems that the first alternative is ruled

out because since then, other experiments have been performed, employing different

detection t_chniques, aud they also find less neutrinos than expected. As for the

second alternative, all we have to say is that Bahcall and his collaborators have

checked and improved their calculations over the years and their estimates of their

errors have progressively become smaller. Recently, another group has performed

the same calculation [2] and found results close to that of Bahcall and collabora-

tors [3], although their central value is somewhat lower, i.e., closer to the flux seen

in the experiments. There has also been various discussions about modifying the

stand.ard solar model which predict lower values for neutrino flux. We will not

discuss these possibilities here. It has been argued [4] that if the neutrino proper-

ties are described exactly by the standard electroweak model, changes in the solar

model only cannot explain the discrepancy between the rate of neutrinos detected

in different experiments. In this review, we take the other extreme viewpoint, viz.,

assume that the standard solar model is correct, and the calculations of Bahcall's

group [3] are accurate. Thus, there is indL_d a discrepancy between solar model

calculations and experimental observations. The purpose of this review is to discuss

the theoretical ideas put forward to understand this problem by some properties of

_lFora textbook presentationof the solarastrophysics,see Ref. [1].
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neutrinos which are so far untested by laboratory experiments. An outline of the

organization is provided in the abstract.

1 Source of solar neutrinos

The dominant chain of reactions taking place in the sun can be summarized by the

equation:

4p _ 4He + 2e + + 2v_ + 25MEV. (1.1)

This, of course, is not just one simple reaction, but rather takes piace in many

steps, as elaborated later. The energy released manifests mainly as photons, which

undergo many scatterings before they come out of the sun. This is responsible for

the heat and light that we get from the sun. On the other hand, a small part of

the energy is carried by neutrinos. Because of their small scattering cross sections,

the neutrinos come easily out of the sun. Thus, they bring important information
about tl_e solar core.

From Eq. (1.1), one can make a simple estimate for the neutrino flux received

on the earth. The total luminosity of the sun is Lo -- 4 x 1033erg/s. For each

25MEV energy coming cut, two neutrinos are proudced. Thus, the number of

neutrinos produced per second is given by 2L®/25 MeV. Dividing th_ by 47tD2,

where D is the earth-sun distance, 1.5 x 1013cre, we get for the flux a value of about

6 x 10l° cm -2 s-1 . As seen from Table 1, most of this flux is from the pp reaction

where deuterium is produced from two protons.

Table 1 gives the chain of reactions which we summarized in Eq. (1.1). In

the first stage, protons synthesize to deuterium (2H). This occurs in two parallel

reactions, called the pp and the pep reactions by the particles that go into them.

The pp reaction is responsible for most of the neutrinos produced in the sun. Once

deuterium is produced, it quickly synthesizes to 3He, and then two 3He can form

4He by strong interaction. However, in very iew cases, 3He interacts weakly with

protons and produce 4He, producing neutrinos in the process.

When some 4He is produced, heavier nuclei like _Be can be synthesized. Since

4He is a very stable nucleus, the TBe produced finally turns into 4He through several

steps via the production of either 7Li or 8B as shown in Table 1. Notice that the

neutrino from SB have very high energy. As we will see later, this is very important

for the detection of solar neutrinos. Of course, the Hep neutrinos axe also energetic,

but their flux i_ sc small that they can virtually be neglected for our discussion.

There is also the CNO cycle, involving heavier nuclei like various isotopes of

carbon, nitrogen and oxygen (hence the name of the cycle) which produces some
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Table 1: Reactions in the pp chain.

Reactions Name E Flux

ofreaction in MeV (101°cm-2s -1)

Stage 1: p synthesizes to 2H

p • P _ 2H • e+ • Pe pp <_ 0.42 6.0 x (i -4-0.02)

p + e- -t-p --* 2H + v_ pep 1.44 0.014 x (1 -4-0.05)

Stage 2: 2H synthesizes to 3He

2H +p_., 3He +V - _ _

Stage 3: 3He synthesizes to 4He directly

3He -t-3He -,4He + p + p - - -

3He + p--, 4He + e+ + v_ Hep < 1.8.77 8 x 10-7

Stage 4: Synthesis of rBe

3He + 4He --, 7Be + _ - _ _

Stage 5: 7Be turns into 4He

_Be + e- --_ 7Li -t- v_ 7Be 0.861 0.47 x (1 ± 0.15)

_Li + p --* 4He + 4He - - - '

7Be + p _ 8B + "y - _ _

8B -, 8B* + e+ + v_ 8B <_14.06 5.8 X 10-4(1 -4- 0.37)

8B* __,4He + 4He - _ _

Table 2: The CNO cycle.

Reaction E in Flux in

MeV 101° cm -2 S -1

i2C+p _ 13N+,),

13N --, 13C+e ++v_ _1.2 0.06(14-0.50)

13C-}- p -.+ 14N-{-. ),

14N+p _ 150+,),

150 --, 15N+e + +v_ <_1.73 0.05(1 4- 0.58)

15N +p --* 12C +4He

15N + p --* 160 + V

16 0 -}-p --* 17F + "),

I_F --_ 170+e ++v_ <_1.74 5.2 x10-4 (14- 0.46)

p q-170 .-+ 4He q-14N _
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Figure 1: Energy distribution of the flux of solar neutrinos from various reactions./

The fluxes from continuum sources are given in the units of number per cm 2 per!

second per MeV at the mean earth-sun distance. The line fluxes are in number per l

cm _ per second. Solid lines correspond to the pp chain, and dotted lines to the

CNO cycle. Adapted from Ref. [5].



neutrinos. The reactions have been shown in Table 2. For the solar core temper-

ature, this cycle is very weak and produces only about 1.5% of the total neutrino
flux.

2 Detection of solar neutrinos

2.1 Principal techniques t,

All the detection mechanisms proposed so far for solar neutrinos fall in one of the

three categories: (1) Radiochemical, (2) Geochemical, (3) Electron scattering. We

discuss the methods briefly_2, summarizing also the results obtained by using them.

Radiochemical detectors : In this method, the _ from the sun hits a detector

containing some nucleus X which undergoes inverse beta decay:

va + X --* e- + Y. (2.1)

The detector is kept active for a while, and then one looks for the resulting

nucleus Y. The Y nuclei are extracted chemically, and their number gives the

neutrino capture rate. The experiments proposed so far involve various target

materials, as shown in Table 3. Note that the product nuclei are radioactive.

Therefore, one cannot keep on capturing neutrinos for indefinite length of time

before trying to detect the Y nuclei chemically.

The advantage of radiochemical detectors is that one can detect low energy

neutrinos. The threshold, of course, depends on the material. In 71Ga, for

example, the threshold is so low that even the low energy pp neutrinos can be

detected. The disadvantage is that one cannot tell the times of arrival or the

energies of the neutrinos captured.

Geochemical detectors : The basic principle here is the same as that of radio-

chemical detectors. The difference is that the product nuclei have very long

half-life, in the range of 105 to 106 years. In rock samples or natural ore de-

posits, one can look for the product nuclei, and their amount will tell us about

the solar neutrino flux over the last million years or so. The disadvantage of

the method is that one needs a theoretical estimate of how much Y nucleus

was supposed to be present primordiaUy in the rock sample. These estimates

are not very accurate.

_For details and references, see, e.g. the excellent discussion in Bahcall's book [5].
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Table 3: Reactions suitable for radiochemical and geochemical detection of solar

ve's. Ali reactions are of the form ve + X -_ e- + Y for suitable nuclei X and Y
which are listed.

Initial Final Threshold Half-life Capture Rate

Nucleus (X) Nucleus (Y) (in MeV) of Y (in SNU)

37C1 3TAr 0.814 35 days 7.9 -4-2.6

riGa 71Ge 0.233 11.4 days 132 ±2o

7Li 7Be 0.862 53.4 days 51.8 ±16

12_I 127Xe 0.789 36 days _ 80

SlBr 81gr 0.470 2 x 105 years 27.8:t:_

9SMo 9STc 1.68 4 x 10_ years 17.4±_ '5

2°5T1 2°5pb 0.062 N 10 7 years ,,. 263

Electron scattering detectors : In this method, one uses neutrino scattering
with electrons:

v + e --* v + e. (2.2)

The scattered electron is highly peaked in the forward direction. Thus, by

looking at its direction, one can reconstruct the direction of the incoming

neutrino and verify that it really came from the sun. This is one big advan-

tage of the method. In addition, one can make an event by event detection,

ident_g the arrival times and energies of the neutrinos. The disadvantage

is that any incident neutral particle can cause the same kind of signature.

Thus, one has to subtract the contributions of gamma rays etc. To ensure a

good understanding of the background, the threshold for neutrinos has to be

kept high.

2.2 Active experiments and their results

2.2.1 The 37C1 experiment

For more than two decades, Davis and co-workers have been detecting solar neuti-

nos deep under a mine in South Dakota, USA. Their detector contains 2.2 x 103°

atoms in the form of liquid C2C14. From Table 3, notice that the threshold energy is

0.814 MeV. Thus, the experiment cannot detect any pp neutrino. Since the absorp-

tion cross section rises sharply with energy, the 8B neutrinos contribute most to the
i
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Figure 2: The enerEy distribution of neutrinos captured in various detectors.
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Figure 3: The Davis data.

capture rate. In Fig. 2, we have shown the contribution of neutrinos produced in

different reactions to the capture rate. Theoretical calculations with the standard

solar model yield the following expectations for the total capture rate [3]:

_h_o = (7.09 4- 0.9) SNU. (2.3)

We have put la error bars in the number. The unit SNU is defined to be 1 capture

per 1036 target atom per second. Thus, in their detector, production of a single

3TAr atom per day will correspond to a rate of 5.3 SNU.

The data obtained by Davis' group has been shown in Fig. 3. The mean value

of this data with lcr errors are [7]:

_. = (2.1+0.3)SNU. (2.4)

This means

PDavi. --=CD.vi. _ 0.27 • 0.04. (2.5)
_ Ctheo

The solar neutrino problem is the statement that/_vi. _ 1.
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2.2.2 The Kandokande experiment

The Kamiokande II detector has been operational since 1986. The energy response

for the capture rate is shown in Fig. 2b. Since it detects neutrinos by electron

scattering, a high threshold has to be set to allow an event. In the early runs,

this was set at 9.3MEV. Later, the background calculations were improved and

the threshold was brought down to 7.5MEV. The integrated result from the runs

analyzed so far gives [8]:

_K_m = 0.46 ± O.05(stat) ± O.06(syst). (2.6)
PK_ = _th_o

Thus, the solar neutrino problem is present in this experiment independent of the
Davis result.

2.2.3 The 71Ga, experiment

The low threshold of GalLium makes it a nice detector, since such a detector can

capture many of the neutrinos from the pp reaction. The expected rate is vary high.

The SAGE group is performing this experiment. So fax, they have not found any

positive result [9]. Another detector, GALLEX [10] is coming into operation soon.

Part II

Neutrino oscillation

The basic idea involved in neutrino oscillation can be explained by its analogy

with the more familiar example of spin precession in a transverse magnetic field.

1 whose spins are polarized in the -t-z (orSuppose one produces particles of spin

'up') direction. The beam travels through a region where there is a magnetic field

in the y direction. The 'up' spin is not an eigenstate in this magnetic field. For

this, the beam undergoes precession as it travels. If one looks at the beam artier it

travels some distance, one finds that the beam is a ,_uperposition of up and down

spins.
Let us restate the last sentence in a different way. We started from a spin up

beam, but after it travels some distance, the probability of finding up spin in the

/iii!ii_ii_ii_ii!_beam is less than unity. In other words, there is a "depletion" of up spins. Neutrino
i_'_iii"_:_i_iil;_iliiii__ oscillation explains the depletion of solar v_'s in a similar fashion, i.e., by postulating

_..... the states which are created or detected are not the eigenstates of propagation.

. 13
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3 Vacuum neutrino oscillationsand the solar

neutrino problem

3.1 Hamiltonian formulation of vacuum neutrino oscilla-

tions

The electronneutrino,u_,isthestateproducedina beta-decaywhq3rea positron

(e+) isalsoproduced.The muon neutrino,u_,isthestateproducedinlr+ decay

alongwith/_+.We willcallv_and u_ as "flavorstates".From thesedefinitions,

it is not obvious that these flavor states are physical particles. In general, each of '

them m_a,yh_ superpositions cf different physical particles. In other words, the state
produced in a beta-decay might have some probability of being a particle vi, and

some probability of being v2. Wc will call these states, v_ and u2, as the particle or

physical states. We introduce the notation

u(f) = (v_Iv_ ' u(P) = (v_Iv2 (3.1)

and considerthepossibilitythatV (f)_ V (p). We caIlwrite

_Cf) UvCp) _3.2)

where U is called the mixing matrix. Since by our convention, the states in u (f)

and u (p) axe orthonorma], U must be a unitary matrix. In the sta_xdard _nodel of

electroweak physics, all neutrinos are masL_lessand hence degenerate. In this case,

the matrix U does not have any physical significance. Thus, by introducing the

matrix U, we are assuming that the neutrinos axe not all massless.

If we include the third generation of fermions in this discussion, u (f) should

have also the state v_, and therefore u (p) must have three physical eigenstates. The

mLxing matrix U will be a 3 × 3 matzq.x. But we restrict ourselves to _;wogenerations

for the most part of this article. The reason is: two generations are su_cient for

explaining the theoretical ideas involved in the solution of the solar neutrino puzzle,

and the third generation just makes all the formulas more complicated. Therefore,

we will introduce the ideas with the help of two generations and will discuss the

effects of the third generation later.

We now study the time evolution [11] of a neutrino beam which, in general, is

a superposition of both v_ and v_ - or alternatively, of v_ and v2. The evolution

equation would look particularly simple in the basis u(P):

.d
z_-_u(P)(_)= Hu(P)(t) (3.3)

14
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where H is the Hamiltonian which is diagonal in this basis:

H=( EIO E20), (3.4)

In the solar neutrino problem, we will be dealing with neutrinos whose ener-

gies axe in the MeV range. Direct laboratory experiments put the following upper

bounds on the masses of v_ and vr:

m_ < 12eV, m_o <250keV. (3.5)

Thus, we will assume m_ << E, for a - 1, 2. In this case, one can write

2

m. (3.6)
E_ - _/p2 + m_ ---[pi + 2[p----_"

For the same reason, we can use x, the distance travelled by the neutrino, instead

of the time t as independent variable. The difference between t and x will introduce

higher order corrections in m [pi. Thus, the spatial evolution of the neutrino beam

is governed by the Hamiltonian

/-/
1pl+_,._, o

4 IPl 4 JPl _3. (3.7)
i

Here, q3 is the diagonal Pauli matrix and

- (3.8)

For future purposes, it is better to write down the evolution equation in the flavor

basis. We can do this easily using Eq. (3.2)and remembering that v (p) - Utr (f),

getting

i d
dxx (utp(f)) - tr/utp(f)' (3.9)

which gives the following equation of motion for the flavor states:

idv (f) ---- UHUtv (f) . (3.10)dx

For two Dirac neutrinos,

U= (cos0 sin0). (3.11)- sin 0 cos 0

15
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The Hamiltonian in flavor basis is therefore given by:

H' = UHU t

rn_ +m_ A (-cos28 sin2,) (3.12)
1pl+

• 4lp[ +_ sin20 cos20 '
#

From this, we can deduce the rc!_tion between the diagonalizing angle 8 and the
elements of the matrix H':

2H_2 (3.13)
tan20 = H_2 H_I"

Since H' iq independent of z, we can formally integrate the equation of motion to
obtain the solution

v(f)(z) = exp (-ill'z) v(f)(0). (3.14)

To proceed, we make some simplification in the notation. First, we write [pi simply

as E. The energy eigenvalues would always appear with some subscript, so there

is no chance of confusion. Second, we notice that if there is a term in H' which is

proportional to the unit matrix, it gives an overall phase to the solution. Moreover,

such a term does not affect the mixing angle, as is seen from Eq. (3.13). Thus, such

terms are irrelevant for our purpose aud so we drop them. Effectively then,

H'= A
4-E (al sin 20 - a3 cos 28). (3.15)

Therefore,

Probability of finding a v. or a v_ in an initial v_ beam are given by

= 1 = 20
P_,_ (x) = 1- P_,,, (x). (3.17)

Notice that the probability of finding a v_ is less than unity in general. Pontecorvo

[12] suggested that this might cause the flux depletion observed in solar neutrino

experiments.



3.2 Confronting the solar neutrino data

To use Eq. (3.17) to explain the solar neutrino data, we should put for x the

earth-sun distance, 1.5 X 101_cm. If we knew 0 and A, we could then calculate the

survival probability for neutrinos of any energy E. Since any experiment detects

a spectrum of energies, we need to integrate over that spectrum to find out the

survival probability for the entire beam. Let us use the notation

RA /sin 2 A

where the angular brackets indicate energy averaging. Then, for a real experiment,

the survival probability is given by

P_o -- 1 - n_ sin 2 20. (3.19)

The quantiey R_ is, of course, different from one experiment to another. In Fig. 4,
we have shown how it behaves as a function of A for the three experiments now in

operation [13].

To get an intuitive feeling for these behaviors, first note that

_-
so that, for the earth sun distance,

Now consider, e.g., the Chlorine experiment. To start with, disregard the interme-

diate energy neutrinos coming from 7Br, _3N or 150 decay, or from the pep reaction.

For the high energy neutrinos coming from SB decay, the energy is around 10 MeV.

If A << 10-1° eV 2, the quantity (A/4E)x becomes so small that we hardly have

any oscillation, i.e., R_ -_ 0. On the other extreme, if A >> 10-_° eV 2, the os-

cillations axe so rapid that the effects from different energies average out and we

In the region around 10-1° eV 2 we have to really integrate over theobtain R_ - _.

spectrum which gives the larger wave-like shapes in Fig. 4.
If now we include the effect of the intermediate energy neutrinos as well, we

obtain these spikes of smaller period in A superimposed on the waves of larger

period. Since the energy of intermediate energy neutrinos is around 1 MeV, the

spikes also average out for A >> 10-11 eV2. This explains why the spikes smooth

out towards the right end of Fig. 4a.

Similarly one can understand the R_ values for other experiments as well. Once

these are known, one can use Eq. (3.19) to find out the survival probability for given

17
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values of A and 8, and see which values are consistent with known experimental
data.

For the Chlorine experiment, this is straightforward. From Eq. (2.5), we can

say

0.19 < P_v_ < 0.35 (3.22)

at the 2_ level_ i.e._ at the 95_ confidence level. For the Kamiolmnde experiment,

there is one important point to remember. The flux that Kamiokande detects is not

merely the v_-flux. If v_ oscillates to v_ (or v_), the v_ will aiso interact with the

detector electrons via neutral current. At the energies relevant for the experiment_

v_e scattering cross section is about one-seventh of the u_e cross section. Thus,
what Kamiokande detects is

i (3.23)- +

Since P_ = 1 - P_o_o,one can write

1 (7P_,m- i) (3.24)-
f

The result of Eq. (2.6), which gives PK_ -- 0.46 ± 0.08 after adding the two errors,

gives

0.18 < Pv_v_< 0.55 (3.25)

at 95% confidence level, lt is this range that has to be compared with the expression

Eq. (3.19).

The plots [13,14,6] of allowed regions in the parameter space of A vs 0 has been

shown in Fig;. 5. In fact, since it is sin 228 that appears in Eq. (3.19), it is convenient

to use sin 2 28 directly as the x-axis variable. As seen from the plot, some small

regions of the parameter space are allowed by known data. The region has a very

small value of A, far smaller than any values explored in terrestrial experiments H3.

We will show next that solar matter can enhance neutrino oscillations so that a

much larger region of the parameter space becomes acceptable.

4 Neutrino oscillation in uniform matter

In the previous discussion, we assumed that the neutrino travels through the vac-

uum, which is a good approximation to the path between the sun and the earth.

_3Asummaryof terrestrialsearchesof neutrinooscillationparametersis givenin AppendixA.
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Figure 5: The regions of the parameter space of A vs sin 2 28 allowed by both

Chlorine and Kamiokande data. The dashed lines correspond to Kamiokande limits

and the solid lines to Chlorine experimental limits at 95% confidence level. Adapted

from P f. [6].

But the neutrinos are produced mostly deep inside the sun, and first they have to

pass through the solar material to get out of the sun. Oscillations in the sun, or in

any material medium, can be quite different from oscillations in the vacuum. The

basic reason for this, as pointed out by Wolfenstein [15], is that interactions in a

medium modify the dispersion relation of particles travelling through°

We are very familiar with this phenomenon for the photons. They are massless

in the vacuum so that their dispersion relation is simply E = IPl. In a medium,

however, the dispersion relation is more complicated, which can be interpreted by

saying that the photon develops an effective mass. Because of this, it does not travel

with speed c in a medium.

Dispersion relations essentially give the energy of a particle in terms of its mo-

mentum. Thus, in quantum mechanical language, a different dispersion relation

signifies a different Hamiltonian of the system, which gives a different time evolu-

tion of any wave function. For a neutrino beam travelling through the solar material,

the evolution is different from that of the same beam travelling in the vacuum.

Solar medium, of course, is non-uniform. Before getting into a d_scussion of

neutrino propagation in such a medium, let us take the simpler case of a neutrino

beam travelling through a medium of uniform density. Interactions in the medium

affect the dispersion relation of the neutrino. To quantify it, we consider neutrino

scattering in matter H4.Solar matter consists of electrons, protons, and neutrons. Of

these, the electron neutrino can have charged current interactions with the electron

_4Here we follow the derivation of Ref. [15]. A fleld-thoeretical derivation is given in Appendix B.
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only. The v_, on the other haud, could participate in charged current interactions

only if muons were present but the solar core temperatures are not high enough for

that condition to be satisfied. Hence, so far as the solar interior is concerned, the

charged current contributions affect only v_. The effective Lagrangian for such an
interaction is

4C_F _L(Pl)_AVeL(P2)_ (_eL(P3)"_AeL(P4)} "

_ (4.1)

where the second form is obtained via Fierz transformation. For forward scattering

where p2 = p3 = p, the 4-momentum oftheneutrinodoesnot change.Looking

atsucha case,itwould be impossibletoknow thata scatteringphenomenon took

placeat all.We would rathersimplythinkthattheneutrinoispropagatingwith

4-momentum p. Therefore,thisgivesthefollowingcontributiontothepropagation

ofthev_:

/2

averaging the electron field bilinear over the background.

The solar core temperature is much smaller than the electron mass, so we can

consider the electrons to be non-relativistic. It is easy to see, from the explicit forms

of the Dirac spinors, that the various averages turn out to be as follows:

, (e_ _ e) ~ spin
(_7_e) "_ velocity

(_7oe) -- n_. (4.3)

Since spin and velocity are negligible for a collection of non-relativistic particles,

the only appreciable contribution to the effective Lagrangian from charged current

interactions is given by

V_GFn_ _eL"_OPeL• (4.4)

Next, we consider neutral current contributions. The effective interaction is

where f stands for electrons, protons, and neutrons. The symbol v can be either

v_ or v,, since both have equal neutral current interactions. Contribution to for-

ward propagation can be determined in exactly the same way as in the case of
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charged current interaction. One obtains the following contribution to the effective

Lagrangian:

In this equation, I3/L denotes the third component of weak isospin for the fermion

f, and Qf is the electric charge of the same. For electron, proton and neutron, the

values of these quantities are sm follows:

I3L Q

-i/2 -i (4.7)
p i/2 i
.-i/2 0

From this, we see that in Eq. (4.6), the electron and proton contributions cancel in

a neutral medium where n_ -- hp. The neutral current term is thus given by:

. ). (4.8)

The charged and neutral current contributions, taken together, add terms of the

form _7°Vv to the effective Lagrangian. The value of V is different for v_ and vr:

V_°- V_GF(no 1_ __)
1 (4.9)

The meaning of such terms is understood if we write down the Dirac equation:

"y°E - "y. p - m -- v°V. (4.10)

Rearranging the terms as

-y°(E - V) = '7. p + m (4.11)
i

and squaring both sides, we finally obtain

Thus, V just adds to the energy for a given momentum. In this sense, V can be

called the potential energy.

Evolution equation in matter is therefore given by

i---drC0= YvCfl (.4.13)dr,
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where ,

H= H' + v@G_(no 1 _ ,
0 --:7_GF.nr_

H _ being the vacuum part, given in Eq. (3.12). Thus,

"H = E-4- m_ 4-m 2 _/,_GFn,_-4- 1 --24E _-_M , (4.15)

where E, as before, is a shorthand for the magnitude of the 3-momentum of the

neutrino beam, and

1 (-Acos2O+2A Asin20) (4.16)_2 = 2 A sin20 ,xcos20 '

where for the sake of convenience, we defined

A = 2V_GFn_E. (4,17)

The effective mixing angle in matter, _', would accordingly be given by
_ ,

tan20 -- 2/-/12 _ Asin 20 (4.18)
H22 - H11 A cos 20 - A'

and the stationary eigenstates axe

P_ = v_cosO-v, sinO

P2 = v_sin 0 + v, cos 0". (4.19)

Notice an interesting featu.re of the eige_tates:, As an example, consider that the
vacuum mixing angle 0 is small. Then, for n_ --, 0, 8-* 0, so that v1 _- v_. On

lr

the other hand for n_ --, oo, 0 --, 7, so that v1 _- v,. In other words, the lower

mass eigenstate is almost purely v_ if matter density is vanishing, and is almost

purely v, if matter density if infinite. As we will see, tl_ fact has very important

consequences.

The energy-momentum relation in matter is given by the eigenvalues of the

matrix H, which are

- _ _ (4.20)E_ = E- GFn_ + 2-E '

where

_2 1[ ] (4.21)_,_= _ (_+_ +AlTJ(__o_20-A)_+ _ _m_2o .
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Figure6: Effectiveener_esofneutrinosina medium. The quantityA ispropor-

tionalto the number density of the electrons. The solid lines are the energies for

the physical eigenstates, the dashed ones are expectation values of energy for the
flavor states. The scale on the vertical axis is arbitrary. We u_ed 0 = 0.1 for the

plot.
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These eigenvalues have been plotted in Fig. 6 as functions of A. The figure alsoi

shows the diagonal elements of the matrix H, which are the expe_tation values of
energy for the states v_ and v r. From the figure, it is easily seen that ]_1 is close to

//_ / for low densities, whereas it is close to/]_/for high densities. This brings
out the fact that _1 is mainly v_ at low densities and mainly v r at high densities,

The opposite is true for _2.

If a medium has a density given by A -- A cos 20, the two diagonal elements are

equal. In this case, Eq. (4.18) shows that the effective mixing angle is 7/4, which is

to say that the states v_ and v_ are maximally mixed in th_ eigenstates. The nature

of this maximal mixing is best understood if3 from Eq. (4.18), we write down the

expression for sin 2 20:

A2 sin 2 20 (4.22)
sin220 = (Acos20 - A)2+ A2sin220'

To appreciate the physical significance of the left hand side, we need to look back

at Eq. (3.17), which gives the survival and conversion probabilites of a v_ beam

travelling through the vacuum. The corresponding probabilities for a '_,eam trav-

elling through a uniform medium can be obtained by replacing 0 by 0 and A by

the effective mass difference in the medium. Taking the average of the z-dependent

term, we obtain

1

1 - P_o - P_ - _ sin2 20". (4.23)

Thus, the left hand side of Eq. (4.22) is proportional to the conversion probability.

The right hand side shows that, as a function of A, the conversion probability has

the following kind of behavior:

constant

(A- An) 2 + p2 (4.24)

This is exactly the expression for a Breit-Wigner resonance of width P centered at

An.

Thus, the import of Eq. (4.22) can be summarized as follows: the conversion

probability, as a function of A, reaches a resonance at

An - A cos 28 (4.25)

with width

P -- A sin 20. (4.26)
L
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Figure 7: The plot of sin 2 20 shows the resonant shape. We used 0 = 0.1 for the

plot.

Mikheyev and Smirnov [16] first realized the importance of the presence of such a

resonance in the context of the solar neutrino puzzle. This is the subject we discuss

next _5.

5 Resonant neutrino conversion

5.1 Motion of neutrinos in non-uniform matter

The crucial observation of Mildaeyev and Smirnov [16] is that the neutrinos produced

' I" "I deep in the sun will,in general, pass through a region of resonant density on their
\'_ way out of the sun. To see how this affects neutrino propagation, we first have to

_'_

!' derive the evolution equation for matter with non-uniform density, as in the sun.

_ We start with the equation for the flavor states

This isthe same as F.x:I. (4.15),exceptthatwe omittedthe unitmatrixterms

' because they do not affect the probabilities.
But

_,(f)= Or(p) (5.2)

where U is a matrix similar to that in Eq. (3.11), with the angle 0 replaced by O, the

effective mixing angle in matter. We can therefore rewrite the evolution equation

as:

i d (0p(p) 0p(p).

_SFor an earlier review of neutrino csclUatton in matter, see Ref. [1_,
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In taking the derivative, we must remember that, in non-uniform matter, 0 and

consequently U are different at different positions. Hence,

iu (5.4)2E '

Using the unitarity of the matrix U, we then obtain the evolution equation for the _
basis states in _(P): t

The term _M:U is obtained for uniform matter as well, and gives, apart from

terms proportional to the unit matrix, the instantaneous eigenvalues _ and _ in

the diagonal entries. The other term can be calculated by using the explicit form

of U from Eq. (3.11). This gives [18]

• = (5.o)

P2 _i d_ _ v2

Note that if dO/dx = 0, Yl and _2 are stationary eigenstates indeed. This was the
result obtained for a uniform medium. For non-uniform medium like that of the

sun, we will have to solve this equation to find different probabilities.

5.2 Adiabatic solution

In one situation, the solution of Eq. (5.6) is easy to find. This is the case when

dO/dx is small, so that we can use the adiabatic approximation. Later, we will

quantify how small dO/dx has to be for this. Here, we will assume that, the relevant

condition is satisfied, so that adiabatic condition prevails [19,18]. In that case, vi

traverses as Yl, although this means a different superposition of v_ and v, at different

points. The same is tree for v2. This can suppress the flux.

Consider an illustrative example. Suppose Ao --, oo (i.e., n_ --, oo), where

the subscript _0', from now on, will indicate the quantities at the point where the

neutrino is created..From Eq. (4.18) and Eq. (4.19), we then get

0--_, i.e., v_"'v-2. (5.7)

This P2 beam traverses outside the sun, where A = 0. There,

v2 = v_sin0 + v_cos0. (5.8)
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Probability of finding v_ in this beam is givenby [<v_I vs>[2. Putting the superscript

'(ad)' to remind ourselves that we are dealing vn'th the adiabatic solution, we can
write

Pv ad) = sin s 8 for Ao --, oo. (5.9)

We started with a beam which was almost purely v_. After it came out of the

sun, we see that the probability of finding v_ in that same beam is sin s _. If 0 is

small, this can mean a tremendous suppression. This is the main essence of the

resonant neutrino oscillation effect, which is usually called the Mikheyev-Smirnov-

Wolfenstein (MSW) effect by the authors of the pioneering papers [15,16].

In general, at the point of creation, the effective mixing angle is not Ir/2, but

has some value 0o. In that case,

Thus, there is a probability cos s 00 that the neutrino is produced as _._,. If that

happens, it travels outside the sun as vi where it can be detected as a v_ with a

probability cos s 0. This contributes a term cos2 _0 cos2 0 to the sm._dval probability

P_v_. Alternatively, the neutrino might be producedas v2, which has a probability

sin2 00. In this case, the probability that it is detected as v_ is sin _"0. Adding these

two cases, we then obtain the total survival probability:

Pvad) "- cos_'0"ocos20 + sins0"osins0
/Jd

= _ I (i- cos2_o)(I- cos20)i(i+ (i+ o 2O)+4
i 1 -

= _ + _ cos20o cos20. (5.11)

The probability of conversion to v_ is consequently given by

p(_d)= 1- p(ad) _. 1 1 -
_. -_'_ 2 2 cos 200 cos 20. (5.12)

It is worth mentioning here that we have made an implicit assumption in deriving

these probabilities. More rigorously, for the detection of v_ at a distance x from the

point of production, we can write

P = =

, (5.13)
V

by introducing the complete set of states v_.The rightmost and the leftmost inner

products give the mixing matrix elements at the points of production and detection.

| _',_
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The middle matrix element gives a phase corresponding to the adlabatic propagation

of the states v_, which is

So we get

P.(_)(x) = e_f d_''_'' cos0ocos0+e_fe_'E2sin00sin01_¢ts e

- _ (/; - )]-- _ 1 + cos 280 cos 20 + sin 280 sin 28 cos dx t(E2 - _) (5.15)

The values of F-aand/_1 depend on the 3-momentum of the neutrino beam. In Eq.

(5.11) and Eq. (5.12), we assumed that the cosine of the energy integral vanishes

when one sums over the range of neutrino momenta detected in an experiment. From

the discussion in Sec. 3.2 about Fig. 4, this can be seen to imply that A >> 10-l° eV2.

As we will see later, the solutions we obtain are consistent with this condition.

5.3 Non-adiabatic effects

Non-adiabatic effects induce transition between the states Ul and v2. Later, we will

show that for realistic parameters, such effects are important only around the res-

onance region [20]. For other regions, the adiabatic approximation can be used. In

the resonance region, one tries to solve the propagation equation exactly, assuming

some simplified form of density variation that can be approximately valid in that

region. From this, one finds the probability that in this region, transition from one

eigenstate to another has taken place. We call this probability X. Suppose a v_

produced in the sun was going to survive as a v_ if the conditions were adiabatic,

i.e., if there were no jlunp between the states ul and P2. In the non-adiabatic case,

it would still survive as a v_ provided no jump took place, a phenomenon whose

probability is 1 - X. On the other hand, situations that would have ended in a v,

in the adiabatic case, might yield a v_ in the non-adiabatic case if a jump occurs.

Therefore, taking non-adiabatic effects into account, we get [21]

P_,_,_ -- (1 - X) p(_t) + X-p(,,d)

= _1[1+(1- 2x)¢o 2o¢o  0] 0.1 )2

where the adiabatic probabilities were taken from Eq. (5.11) and Eq. (5.12). Later,

we will find X in terms of the fundamental parameters A and 8. Once that is known,

Eq. (5.16) gives an analytic formula for determining the survival probability of a

v_ travelling outwards in the sun.
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There is one situation where the expression for the survival probability is some-

what more involved. Consider, for this, a neutrino produced in the far half of the

sun. There is a certain probability that will travel towards the earth. If it does, it

will pass through the core region. If it is created far enough out in the sun where

the density is lower than the resonance density, it crosses the resonance region once

while coming towards the core. After that, it crosses the resonance region again

on its way out. We can use reasoning similar to that in the previous case to find

the survival probability in this case [22] Here, P(_)needs to be multiplied by the• ble _¢

probability that the neutrino either performs no jump near both resonance regions,

or that it jumps to the other level in the first resonance region but jumps back in

the second region. Similarly p.(_d) will be multiplied by the probability that theVe _

neutrino jumps near one resonance region but does not jump near the other one.

Thus,

P_,vo = [(1 - X) 2 + X 2] _P(_d)_,v,+ 2X (1 - X)_P(_d)_o_,

= _1[1+(1- 2x) co   o o 20].2

Thus, F-xi. (5.16) and Eq. (5.17) give us analytic expressions for the survival proba-

bility in the general case provided we can express X as a function of the parameters

of the problem. To proceed further, we need to find what X is. This is what we do
next.

5.4 The adiabaticity parameter

Recall the form for the hamiltonian matrix in Eq. (5.6). The adiabatic solutions

were obtained by assuming 0 to be a slowly varying parameter. Let us now try to

quantify this statement, which will also lead to a plausible expression for X.

Simply stated, adiabaticity condition means that the off-diagonal terms in the

matrix of Eq. (5.6) are much smaller than the diagonal terms. However, in writing

the evolution equation, we omitted unit matrix terms at our will. Such terms would

change the diagonal elements, but will keep their difference unchanged. Thus, in

diagonal terms, the only physically meaningful quantity is the difference. Therefore,

the adiabaticity condition is

-
dxx << 2E "

Using the expression for 0 in Eq. (4.18), we get

d_ = V_GFE" hsin20 . dn___ (5.19)
dx (A cos 20 - A) 2 + A2 sin 2 20 dx
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The mass-square eigenvalues were given in Eq. (4.21). Using them, we reduce the

adiabaticity condition in Eq. (5.18) to the form

dno [(A cos 28 - A) _ + A_ _m_ 20] _ . (5.20)
<< 2V_GFE 2. A Sin 20

Recalling the expression for the effective mixing angle in Eq. (4.22), this can be

rewritten as

_(=)> 1 (5.21)

where the quantity

(A/E)__m_20 1 (5.22)_(=)-_v_ ' _i__2_"_Idol

Can be called the "adiabaticity parameter". It depends on the position through

and dn_ / dx.

If the density is very high at some point, 9 --, _r/2 so that -y becomes high. If

matter density is vanishing somewhere, 0 --, 8, so that once again -y is large unless

9 itself is close to _r/4. In Fig. 8, we plot -y(x) for various values of A/E and 8,

assuming that the density profile of the sun is given by [23]

(5.23)_o(r)=98.8_o_Xn iYb/ '

where z = r/P_, a = 11.1, b = 0.15, and n_vo is the convenient unit of Avogadro

number of particles in 1 cm3:

n_vo= 6.03 × 1023/cm 3 . (5.24)

This is a very good fit, as can be seen from Fig. 9.

From Eq. (5.22), it is obvious that the adiabaticity condition is hardest to

satisfy at the resonance point, since sin 28~is maximum there. In fact, in all cases

shown in Fig. 8, the regions far from the resonance point can always be treated

adiabatically [20]. The jump probability X introduced earlier thus depends only on
the conditions near the resonance. Let us call by the symbol "YRthe value of 7(x)

at resonance. It can be obtained from Eq. (5.22) by putting sin 28 -- 1 and can be

simplified by using the expression for resonant density

A cos 28 (5.25)
nn = 2vr_ GFE
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Figure 8" The solid lines give the _tiabaticity parameter _(x) as a function of
the distance from the solar core, for various values of the parameter _/E. The

vacuum mixing angle 0 has been taken to be 0.1. The height of dashed lines are

proportional to the value-, of sin220 for a neutrino produced at the solar core, with

the peak indicating the resonance point. Note different scale for the top graph.
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Figure 9: The dots are obtained from solar model calculations. The solid line is the

fit from Sq. (5.23). The dashed line is the fit of Eq. (6.1).

which follows from Eq. (4.25) and the definition of A. Thus, we obtain

A sin 228 1

_'R -- .... ld [ . (5.26)E cos 28 _lnn_R

Of course, ff 7R >> 1, the propagation is adiabatic everywhere. If, on the other

hand, 7R is close to or smaller than unity, X is appreciable.

Intuitively, it is clear that X should be larger for higher values of E, which

means that more energetic neutrinos should jump more readily. As E _ 0, X

should vanish. Also, X cannot be a polynomial in E since the level crossing is

essentially a non-perturbative effect. These considerations indicate a solution of
the form

t

X -- exp (-_RF) (5.27)

where the quantity F is independent of E and depends on how n_ varies with x

near resonance. If the variation is linear, for example, F is a constant, as we show

in the next section where we outline the derivation of the expression for X.

5.5 Evaluation of the jumping probabilityt

5.5.1 The semi-classical approach
r

The non-adiabatic transition probability between two states was calculated inde-

pendently by Landau [24], Zener [25] and Stfickelberg [26] in the context of atomic

physics problems, and was applied to the present case by Parke [21] and by Haxton

[27]. To find the leading behavior in the semiclassical approximation, we can use

Landau's method of complex trajectory [28]. This method gives

InX = --21113 [_'_1 (_;1,_;*) + a2 (_;., _2)] ,' (5.28)
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where $1 (tl, t,), for example, denotes the action for the motion of the neutrino beam

in state ul from some initial time tl to a transition time t, which will be specified

shortly. After the time t,, one uses the action in state v2 upto some final time t2

when the neutrino beam goes out of the non-adiabatic region. The imaginary parts

of the action remains unaffected if we take tl -- t2 = tR, tR being the time at which

the neutrino beam crosses the resonance point. Thus,

=-2i et -
where E_ axe the energy eigenvalues in the medium, given in Eq. (4.20). We change

the integration variable from t to A. This gives

1 /a _. ,dAx = - _ _m _ (dA/_)v/(A_o_2O- A)_+ _ _m_20, (5.a0)
where we replaced dA/dt by dA/dx since we have been using t and x interchangeably.

The lower limit of this integral is An - A cos 28. The upper limit, A,, is the value

of A at the _%ransition point" mentioned earlier. In Landau's method, this is the

value of A for which the two eigenvalues coincide, i.e., E1 = Ea. From Fig. 6, we

see that this does not happen for any real value of A. Indeed from Eq. (4.20) and

Eq. (4.21) we get

A, = &e _2_° (5.31)

which is complex. Thus, the integration of Eq. (5.30) has to be done for complex

values of A. This is why this method is called the method of complex trajectories.

To evaluate the integral, one needs to know how A behaves as a function of x

in the resonance region. If the variation is linear, dA/dx is constant and we can

take it outside the integral. If its value is positive, we use the positive exponent

in Eq. (5.31) so that lnX is negative. If dA/dx is negative, we use the negative

exponent in Eq. (5.31). In either case, changing the integration variable from A to

a = (A- A cos 28)/A sin 28, we get

A 2sin228 fi A 2sin228 _"

ln X- E[dA/dxiR Im Jo davfl "{"a2- E [dA/dxlR "-4 (5.32)

Recalling that AR = A cos 28, we can also write it as

A sin 2 28 1 lr

'1 I '_ (5.33)laX = E cos28 _¥ inA R

This shows that in Eq. (5.27), we should take F = _, i.e.,
?r

x = _p(-_). (5.33)
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The result, of course, depends on the assumption of linear variation of A near

the resonace, which might seem a little drastic. For an exponential fall-off in the

solar density new the resonance, one obtains [29] F : ¼(1 - tan 20). This is of

particular interest since the solar density has indeed an exponential variation for a

large region in the sun. However, for most values of interest, the difference between

the exponential and the linear case is insignificant. Thus, in what follows, we will

stick to the simpler form F : _

5.5.2 The extreme non-adiabatic limit

Landau's method described above is a semiclassical one, and gives the leading term

in the limit of large values of the exponent. When "Vn is very small (<< 1), the

expression for X given in Eq. (5.34) is unsatisfactory.

The limitation of Eq. (5.34) can be understood from a simple example [30].

Consider a neutrino beam travelling through the boundary of a uniform medium

into the vacuum. The propagation is obviously adiabatic in _the medium as well

as in the vacuum, since both have uniform density. But at the boundary, there is

an abrupt density change so that dr_/d_ --, oo, which means, through Eq. (5.22),

-y --* 0, i.e., the situation is highly non-adiabatic. Denoting a point deep inside

the medium by z and another fm' outside by _/, we can write down the crossing

probability X as

X = I<_(y) l_(_)>[ _
!

x , (5.35)

where x' is a point just inside the medium and 7/' is just outside the medium, on two

sides of the boundary plane. The flavor states are continuous across the boundary,

i.e., (ue(_)lvt(a;')) -- 1. Using the mixing matrix in matter and in the vacuum and

neglecting all interference terms, we then obtain

x = sm o). (5.36)

If, for example, the medium is very dense, 0 --, 7r/2 so that

X - cos20. (5.37)

Thisisnot the limitwe obtainfromEq. (5.27),which givesX --_i as"Yn--_0.

The difference is significant if 0 is not small. To convince oneself that it is Eq.
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(5.37) which gives the correct result and not Eq. (5.27), we plug in the expression

for X into the expression for survival probability in Eq. (5.16). This gives_ using
,

=
1

P_,,_,,,= 1 .,--_ sin 2 20. (5.38)

This is the energy-averaged survival probability in the vacuum, as obtained in Eq.

(4.23). This is the expected result since, with 0 = _r/2, there is no oscillation in

the medium as can be seen by putting the mixing angel to be equal to Ir/2 in Eq.

(3.17). Therefore, oscillation occur only after the beam escapes into the vacuum,

and therefore the vacuum remflt is expected.

Having becoming convinced of the limitation of the exponential form for X in Eq.

(5.27), we look for a better formula. This can be obtained by exact solutions of the

propagation equation. For this, one usually uses the flavor states directly. Starting

from Eq. (4.13), one can write down the two first order differential equations for v_

and v_. Eliminating v_ from these equations, one gets
e

+ + + - Y,,Y. + =0, (5.39)

recalling, from Eq. (4.16), that only the Hll element is x-dependent. We now use
a new variable

which differs from the old variable only by a phase and therefore does not affect the

probabilities. In terms of this new variable, the equation becomes [22,31]

_i, + i(H22 - Y,,)h, + Y_2a, = 0. (5.41)

This equation needs to be solved, putting in the x-dependence of Hl l. Once this is

done, the survival probability at a distance x is given by la_(x)12.

In principle, if Eq. (5.41) could be solved for the density profile of the sun,

one could obtain an exact answer for the survival probabilities of solar neutrinos.

This, however, cannot be done because the solar density profile has a complicated

shape. So, one solves Eq. (5.41) only near the resonance region and finds the jump

probability X exactly, which is given by 1- la, I_. Once this is done, one can use

Eq. (5.16) or Eq. (5.17) to find the survival probability after the entire journey

through the sun.

The exact solution of Eq. (5.41) was first done for a linear variation of density

[21], but since has been performed for a number of other density profiles [32,33,34,
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35,36,30 ]. Ali of these solutions give the form

X = , (5.42)

where F is to be calculated by using Landau's method. Note that for 7R -* 0, this

gives the correct limit of Eq. (5.37). Since this form works with all known solutions,

it has been conjectured [30] that it works irrespective of the nature of the density
variation.

5.6 Solution summary

Let us, at this point, summarize the solution of the evolution equation of the neu-

trino beam given in Eq. (5.6). The probability that a v_ survives as a vo is given

by

where _0 is the effective mixing angle at the point where the neutrino is produced,

givenby
sin 20

AE COS20- 2V_GFno '

no being the number density of electrons at the point of production. As for the

jumping probability X, we will use the simplest expression

X=exp(_4 A sin220 1 ) (5.45).... I I 'E cos 20 _lnn_R

which is valid if the density variation is linear near the resonance.

In order to calculate P_ for neutrinos of a given energy, we thus need two

kinds of information. First, we need to know the electron density profile of the

sun so that we know no once we know where the neutrino is produced. The profile

willalsogiveus thequantityI_ Inn_ fattheresonancepoint,which appearsinthe
expression for X. Secondly, we need the parameters specifying the particle physics

aspects of the problem, viz., the mixing angle 0 and the mass square difference A.

In keeping with the spirit of the approach taken here, we will assume that we

know the density profile very well and will try to see if the observed solar neutrino

fluxes tell us something about the particle physics parameters _ and A.
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6 Resonant neutrino oscillation confronts the so-

lar neutrino data

6.1 A simplified example

To get a simple feeling for the solutions, we make two simplifying assumptions as
follows.

1. All neutrinos are produced at a point where the electron number density is

98.Sn_vo, which is the core denb_ty according to solar model calculations.

2, At the point of resonance, [_ ln n,{ = IOR_ 1, independent of where the reso-
nance took place in the sun.

The first assumption is reasonable since most neutrinos are produced near the core

where the temperature is high. As for the second, we note that the density profile

= (6.1)
I

isingood agreementwithastrophysicalcalculationseverywhereexcepttheinner

15% oftheradialdistaucefromthe solarcore,asseenfromFig.9.Thus, aslong

astheresonancedoesnotoccurdeepinsidethesun,thesecondassumptionsdoes

not leadtoa drasticsimplificationoftherealproblem.

We nextnotethatinEq. (5.43)throughEq. (5.44),the particlephysicspa-

rameterA alwaysappearsinthecombinationAlE. Thus,todiscussthesolutions,

itisbetterto considerAlE asa singleparameter.InFig.10,we show thenature

ofvariationofthe survivalprobabilityPr,v,withA/E forvariousvaluesofthe

vacuum mixingangle8.

The natureofthesecurvescan be summarizedasfollows.For highwlues of

AlE, the probabilityofsurvivalishigh.As AlE decreases,therecomes a point

where theprobabilitystartstofalluntilitreachesa flatbasin,ltstaystherefora

whileuntil,forevenlowervaluesofAlE, itrisesagainand reachesa plateau.

The key tothe understandingofthisnatureofvariationliesinEq. (5.44)and

Eq. (5.45).We saidbeforethatatresonance,theeffectivemixinganglebecomes

7r/4.Outsidethesun,i.e.,inthevacuum,the mixingangleis8 < Ir/4.Thus,the

neutrinoswillundergotheresonBz_eif,at the pointofproduction,the effective

mixing angleexceedsIr/4.In thatcase,on itsway out ofthe core,itwillpass

throughthepointwhere 0 = Ir/4and finallywillcome outwithevenlowervalueof

themixingangle,viz.,0.Thus,resonanceconversionoccursprovided0o> _r/4,or,
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Figure 10: The survival probability as a function of A/E for various values of the

vacuum mixing angle 6. The vertical scale runs from 0 to 1 for each graph. The

vertical dashed line for each graph corresponds to the value of A/E which gives

X - 0.05. We assumed that the electron number density at the point of neutrino

production is no = 98.8 n_vo. For 0 = 0.5, the short dashes indicate the probability

obtained by using F = _(1 - tan 2 0) in Eq. (5.27). For other values of 0 shown
is not appeciable on the scale of thehere, the distinction between this and F =

plot.
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from Eq. (5.44), if

cos20 < 2v_GF_o - 1.5 x 10-_ eV. (6.2)

The other important point to understand in the curves of Fig. 10 is the importance

of non-adiabatic effects. Obviously, such effects are small as long as X << ½, as

is seen from Eq, (5,43). Let us say the non-adiabatic effects are "important" if

X > 0.05. For a linear variation of density near the resonance, this occurs when

7R < 3.8, where 7R has been defined in Eq. (5.26). With our parametrization of

thequantityI_ Inn_[, thisgives

A sin_ 20
< 10-14 eV, (6.3)E cos 20

using P_ = 7 x 10 l° cre. In all the plots of Fig. 10, we have marked the value of

A/E corresponding to the equality sign in the last equation. The non-adiabatic

effects are important to the left of this mark.

At the right end of the plots of Fig, 10, the value of A/E is so large that neither

the resonance condition Eq. (6.2), nor the non-adiabaticity condition, Eq. (6.3), is

satisfied. Thus, X _ 0 and from Eq. (5.44), 0o _ 0, so that P_o_o_ 1-(1 -t-cos2 20),

which is the average survival probability in the vacuum. As A/E decreases, at

some point it satisfies Eq. (6.2). For values of 0 << 1, this occurs when A/E =

1.5 x 10-11 eV. Around this point, the survival probability drops down because of

resonant conversion of v_ into u_. The range of values of A/E over which this fall

takes place, is determined by the width of the resonance given in Eq. (4.26). It is

clear from the plots that this width increases with increasing 0, as expected from

Eq. (4.26). For _/E substantially smaller than the resonant value the adiabatic

survival probability is just sin 20, as argued in Eq. (5.9). This corresponds to the

basins in the plots.

If there were no non-adiabatic effects, the survival probability would have stayed

in that basin for all lower values of A/E. However, at some point depending on

the value of 0, non-adiabatic effects become important, which results in a higher

probability of survival. The onset of this effect, as shown in Eq. (6.3), occurs

for lower and lower values of A/E for higher and higher values of 0. In the plot

corresponding to 0 = 0.01, this onset occurs before the adiabatic basin is reached,

so that the probability never goes down to sin _ 0_ in contrast the other cases shown.

We now represent the solutions in a different way which would be more useful

later. Consider, for example, neutrinos of a fixed energy, and suppose we know

expelimentaUy that their survival probability is between 0.19 and 0.35. We want

to find out which values of A and 0 will be consistent with this range of survival
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Figure 11: The dashed lines show the allowed region of the parameter space if,

for E - 5MEV, one finds 0.19 < Pv_, < 0.35. The dotted line is the same for

E --- 10 MeV ff 0.18 < P_,_o < 0.55. The shaded region is allowed by both the

conditions.
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probability. For 0 = 0.01 in Fig. 10, we find an almost continuous region around the

lowest point. As we go to the higher value 8 - 0.05, we find two clearly different

regions of solutions - one in the adiabatic region and the other in the non-adiabatic

region, separated by the basin where the survival probability is lower than the

values specified in the range. As 8 becomes larger, the adiabatic solution occurs

still roughly at the same value of A/E, but the non-adiabatic solution recedes

further owing to a broader basin. The basin, for increasing values of 8, becomes

more and more shallow. For 8 = 0.5, we see that even the whole basin is within the

specified range of probabilities, so we obtaiu a large band of values of A/E for that

value of 8. Putting in the value of E, we can mark the allowed region in a plot of

8 vs A This plot for E - 5 MeV has been shown in dashed lines in Fig. 11. Note

that the horizontal axis of this plot is not 8 but the combination sin 2 28/cos 28 that

appears in the expression for X. The advantage of using thh_ as the independent

variable will be explained later.

As the figure shows, the contour corresponding to a certai_n survival probabil-

ity is roughly a triangular region in the plot. The upper and lower limits of the

survival probability thus select out a triangular band-shaped region. With just one

experiment, this is the best one can do to determine A and 8.

But now suppose we make another experiment with E = 10 MeV and obtain that

the survival probability lies between 0.18 and 0.55. This will shmilarly correspond

to a similar region in the parameter space, which has been show_ by a dotted line.

Combining this result with the previous one, we can narrow down the range of

allowed solutions considerably. For example, the figure shows that the horizontal

parts of the solution are eliminated since they do not overlap. The vertical and

the diagonal branches are also narrower in the overlap region than in either of the

individual plots.

This procedure can be continued if one has more data at different energies. The

solution space can be restricted by the overlap of all the data available.

The simple example shown here is very close to the actual calculations done

for solar neutrinos. In fact, to make the example realistic, we have chosen the

ranges of survival probability corresponding to the dashed and the dotted lines to

be equal to the probabilities observed in Chlorine and Kamiokande experiments at

the 95% confidence level. The fact that we took E - 5 MeV for the dashed lines and

E -- 10 Me+_:for the dotted ones is reminiscent of the fact that v t an average, the

Kamiokande detector detects higher energy neutrinos than the Chlorine detector.

That is why most of the features of the solution obtained here are similar to those

obtained by elaborate analysis, which we discuss next.



6.2 The full analysis

The full calculation of survival probabilities for solar v_'s involves two levels of

complication which were left out in the simplified example given above. First, the

solar neutrino flux is not monochromatic, so one has to integrate over the energy

response. For different experiments, these responses were plotted in Fig. 2. Second,

in the simpler example we assumed all neutrinos are produced at the center. In

the detailed calculation, one has to take account of the distribution of the point of

production of the neutrino. We would also like to use the better density profile of

Eq. (5.23) rather thanEq. (6.1).

The distribution of production point of neutrinos is obtained directly from the

solar model calculations. One important point to remember here is that some

neutrinos are created in the far half of the sun, and they undergo level crossing

twice. For such neutrinos, one must use Eq. (5.17) to determine the survival

probabilities.

Results of numerical integrations [6,37,38,39] over energy and production point

have been shown in Fig. 12. Qualitatively, the shape of the parameter space allowed

by Chlorine and Kamiokande data is similar to the shape of the allowed regions of

Fig. 11. For each experiment, there is a horizontal, a vertical and diagonal region.

Let us try to have some intuitive feeling for these branches of solutions.

Resonant conversion occurs provided 0-0> lr/4, or, from Eq. (5.44), provided

A cos 20 < Ao, (6.4)

where

Ao = 2v/2GfnoE = 1.5 x 10- eV2' _ ___11V_V 98.8n_vo '
(8.5)

Consider now the horizontal branch [19]. As explained in connection with Fig. 10,

this branch represents adiabatic neutrino propagation. Since 0 << 1 for the most

part here, we can write the resonance condition as

)A<1.5X10 -5 eV2. 1MeV 98.8navo '

For a given value of A, if this condition is satisfied for some value of E, all neutrinos

with that energy are converted. Only low energy neutrinos survive.

Next, consider the vertical branch. This is also adiabatic. Here the resonance

condition is satisfied for almost all relevant energies because either A is small or

cos 20 small, or both. All neutrinos survive with probability sin_0 irrespective of

E. Allowed range of 0 co_'responds to _¢in20 being the observed probability.
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Figure 12: The dashed lines show the allowed region of the parameter space if

0.19 < P_._. < 0.35 for the energy response of the Chlorine experiment as shown in

Fig. 2. The dotted line is the same for 0.18 < P_v. < 0.55 where the Kamiokande

energy response has been used. The shaded region is allowed by both the conditions.
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The diagonal branch [31,40,41] is non-adiabatic. To understand why this portion

is almost straight, recall the expression of survival probability from Eq. (5.43). If

the density of production is high, 0o - Ir/2. If, moreover, 0 << 1, then we obtain

Pv_v, _ X. Contours of constant Pv, v. are then contours of constant X to a good

approximation. But from Eq. (5.34), log X c_ "YR,so that we need lines for constant

VR. Recalling the expression for VR in Eq. (5.26), we see that for a fixed energy,

equal Pv._ lines give A sin 220/cos 20 = constant. These are diagonal straight lines

in a log-log plot if we plot A vs sin 2 20/cos 20. This is the reason for taking this

combination as the independent variable in the plot rather than plotting 0 directly.

Another advantage of this variable is that it expands the region near 0 = lr/4, so

that the vertical branch solution can be read clearly from the graph.

Note that the energy distributions have different characters for the three

branches. In the horizontal branch, the low energy neutrinos survive, the high

energy ones axe converted. In the vertical branch, the conversion probability is

independent of energy. In the non-adiabatic branch, the low energy neutrinos are

predominantly converted, high energ_r ones survive.

From this, it is not hard to see _hy the horizontal branch solution is ruled out

when we take both Davis and Kamiokande results into account [42]. The average

energy of detected neutrinos is higher in Kamiokande experiment. If the horizontal

branch solution were correct, they should have seen a larger suppression in flux than

the Davis experiment. The results, however, do not indicate that.

Once enough data is available to know the energy distribution of the neutrinos

detected, one can ascertain from any single experiment which branch does the solu-

tion lie in. Since chemical detectors cannot detect the energy of the neutrinos, they

are unsuitable for this purpose. Kamiokaade can decide this issue with more data.

In fact, even with the present data, they argue that they see more depletion in the

lower energy sector, so that the horizontal branch is ruled out without any input

from other experiments [43]. The situation will be more Clearwhen they have more
statistics.

7 Variations on the theme t

'/'.1 What if ve oscillates to a sterile neutrino?

So fax, we have assumed that v_ oscillates to v_. This assumption is not supported

by any experiment. Ali we know, from Davis as well as Kamiokande experiments,

is that the v_'s axe converted to something- but we do not know what.
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Figure 13: The allowed region of the parameter space if u_ oscillates to a sterile

neutrino. The shaded regions are allowed by both Chlorine and Kamiokande data.

For 71Ga detector, the standard solar model rate is taken to be 132 SNU.

If v_ oscillates not to v, but to vT, all the above analysis remain unchanged -

because v, and vr have same interactions in a medium which contains electrons but

not muons or taons. However, in many extensions of the standard model including

most grand unified models, there exist additional neutral fermion fields. In general,

v_ mixes with them and therefore can oscillate into them. What happens, for

_ example, if v_ oscillates to one such neutrino u8 which is sterile, i.e., has no weak
interactions?

If we want to find the solution by vacuum oscillations, the only difference is

that, since the sterile neutrinos are not detected by the Kamiokande experiment,

we should use PK_, = P_ rather than Eq. (3.23). Thus, at the 95% confidence

level, we should impose

0.30< Pr,v,< 0.62 (7.1)

instead of the limits in Eq. (3.25). This results in a somewhat smaller allowed
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region [13].

In case of the matter enhanced oscillation as well, the change is formally simple.

When we Considered v_ oscillating to v_, we needed the effective hamiltonian for

the v_-v_ system, which was given in Eq. (4.14). Recall that in that equation, H _
is the hamiltonian in the vacuum, which has the same form if we considered the

v_-v_ system as well. Among the terms coming from matter contributions, the term

proportional to n_ comes from charged current interactions, and will be unchanged

in the v_-v_ case as well. However, in Eq. (4.14), the neutral current contriubitons

affect both v_ and v_ equally. If we consider the v_-v_ system, v_ will not have this

term since, being sterile, it does not have weak interactions. Of course, v_ will have

the neutral current term as before. Thus, we have

"H= H ' + ( _/'_GFKO 0)0 " (7.2)

where

1

n' = n_ - in,. (7.3)

The analysis is exactly similar, except n_ has to be replaced by K everywhere. The

solution space changes [23], as shown in Fig. 13. To show the difference clearly, we

have presented the calculations for a n Ga detector as well.

7.2 Solution with more than two generations of neutrinos

It is straightforward to generalize the formulas obtained for the two generation case

to include the effects of extra generations. For the vacuum oscillation case, we can

write any flavor state in general as

I"_) = _ U_. I"_), (7.4)

where the index a runs over all the mass eigenstates. If one creates a beam of v_ at

t = 0, its time evolution will be given by

I_(_))- _ _-'_o_u_.I_.), (7.5)

The probability of finding the flavor state vr, in this state is given by

P_,,v,,Ct) - I(v_' Iv_(O)l_

I * * I= _ _:_u_,o_:_u_,__o_[(E.-E_)t- _o_,_], (':._)
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where

, ,

UsingtheapproximationE_ >>m_ asbefore,we can useEq. (3.6)towrite[11,44]

(7.S)
_,_, \ 2E _1

where

2
= -

As in the case with two generations, there are some allowed regions where the

A-values are around 10-l° eV 2. But, with three generations, some new type of

solutions are also possible.

For this, consider that we are in a range of values of A_ where (A_/2E) x _ 1

for typical energies of solar neutrinos. The energy averaging then completely washes

out the terms with _ _ _ and we get

- Iu,,o,l'. ('Z.lO)
Ot

To proceed, let us parametrize the elements of the mixing matrix by

Uel = COS 01, U_2 = sin01 COS 02, Ue3 "-" sin01 sin02 . (7.11)

Then,

P,.,., = cos4 8, + sin481(cos4e2+ sin482). (7.12)

-- 1 here we can get P_,v. as low asUnlike the 2-generation case where P_o_ >_ _,
1- This can be consistent with the 2a survival probabflites found in Chlorine and3'

Kamiokande experiments, as given in Eq. (3.22) and EQ. (3.25). The solution for

the angles is shown in Fig. 14. The values of the mass square differences have to be

much larger than 10-1° eV2 and are bounded from above by terrestrial limits given

in Appendix A.

It is easy to calculate the corresponding probabilities if we take matter effects

into account as long as the propagation is adiabatic. Following the arguments

leading to Eq. (5.11), we get

- EIo,oI=I,,ol= (v3)tVll
Ot

where 0 is the effective mixing matrix at the point where the neutrino is produced.

This looks deceptively simple. The cumbersome part involves the determination of

48

1
II
II



0.8

_ 0.6

'_ 0.4 0.39

0.2

0 ' 14 ' 'o 0.2 o 0.6 0.8 {

sin2O 1

Figure 14: Vacuum oscillation solutions for the solar neutrino problem with

three generations of neutrinos. The mass square differences are assumed to be
>> 10-l° eV 2. The inside of the inner and outer curves are consistent with the data

at the 2_ and 3_ levels respectively.

the elements of U in terms of the density of the medium and energy of the neutrinos.

The exact analysis for the three generation case [45,46] is quite complicated since

it involves the solution of a cubic equation. Some approximate solution techniques

have also been tried [47,48,49,50,51,52,53,54,55,56], which give more intuitive feeling
for the solution.

From the discussion of the two generation case, it is obvious that two resonances

will occur in the three generation case. In a diagram like Fig. 6, these resonances

take place when (Evo) crosses <Ev,> and (Ev_) respectively. When the two crossings
are fairly far apart, the two resonances can be treated independently of each other.

But even then, confrontation of the data is quite involved for many reasons. The

solution space is much bigger since it involves two mass squared differences As1

and A31,aswell as three mixing angles. In general, even CP-violating phases can

appear in the mixing matrix, making the problem more frustrating. Moreover, the

results of two experiments might not be correlated in the sense that one of them

might show a depletion in flux because of u_'s converting to _,'s, whereas the other

one might show a depletion because of u_'s converting to u_%.

Non-adiabatic effects will make the problem further complicated. They intro-

duce transitions between different stationary states. If we denote the transition
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probability from a state _ to a state _ by X_ then

x,.,.,,=  1o,o[21u,, lxo .
a J3

For N generations, there are at most (N- 1)2 _ndependent quanti¢ies X_ since they

must satisfy the relations X_ X_ = 1 and _ X_ = 1 which follow from unitarity.

However_ the quantities X_ cannot be calculated analytically in general. Some

conj ect ares have been made in the case where the resonances are well separated

Part III

Neutrino magnetic moment
It has been argued from time to time _6that the neutrino flux detected in the Chlorine

experiment has shown some anticorrelation with sunspot activity. This is shown in

Fig. 15, where we have plotted the Chlorine data alongwith the number of sunspots.

Notice that the scale of sunspot numbers is reversed, so a correlation on this figure

implies an anticorrelation in the physical quantities.

If this anticorrelation is believed to be real, perhaps the most reasonable ex-

planation of the solar neutrino problem would involve a magnetic moment of the

electron neutrino [59,60,61]. Qualitatively, the idea is as follows. Sunspot activity

is related to magnetic field in the sun. If the magnetic field is large, sunspot activity

is high. On the other hand, if neutrinos have a magnetic moment, they will undergo

spin precession in a magnetic field. The neutrinos produced in the nuclear reactions

are left handed. As they travel through a transverse magnetic field, they can precess

to a right handed neutrino which has hardly any interaction and therefore cannot

be detected. At the time of high sunspot activity, the magnetic field is larger, and

so the probability of precession to a right handed neutrino is also larger. In other

words, the probability of detecting a solar neutrino is smaller at the time of high

sunspot activity since the left handed component in the neutrino beam is smaller.

This results in an' anticorrelation of neutrino flux and sunspot number.

In this part of this article, we will discuss the theoretical ramifications of the

aforesaid anticorrelation, assuming that it really exists. As for this assumption we

need to point out that although Fig. 15 indicates some anticorrelation, it is not

clear whether it is statistically significant. Moreover, one needs to remember that

_eFora recentanalysisand older references,see e.g. Ref. [58].
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Figure 15: The continuous line denotes the number of sunspots, and the circles are
the mean values of the 3TArproduced in the Chlorine detector. The graph indicates
some anticorrelation. Note the inverted scale for sunspot numbers.
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the figure shows only data from the Davis experiment, The Kamiokande data is

fairly fiat, Between 1988 and 1990 when the solar neutrino flux detected in the

Chlorine experiment dropped nearly by a factor of 4, the Kamiokande result varied

by i0% at most. In some sense, this difference in behaviour is also a puzzle of the

solar neutrinos, and some explanations have been suggested, as we will discuss iu

Sec. 12. For the most part, we will be concerned with the depletion of flux at the

time of high sunspot activity.

8 Kinematics of neutrino propagation in mag-
netic field

8.1 Spin precession

In quantum field theory, magnetic moment interaction between two fermion fields

¢ and ¢' is given by #¢_.\p¢'F _p, where F _p is the electromagnetic field tensor. If

and ¢_ are same fields, the interaction reduces to # (s / . B in the non-relativistlc

approximation, where B is the magnetic field and (s) is the expectation value of

spin. This identifies # as the magnetic moment of the particle. When ¢ and ¢_

represent different fields, the coefficient ft in that case is called a transition magnetic
moment.

In a background field/F _p), the effect of magnetic moment ft is to add a term

ft¢o'_p¢ I (F_P / to the free Lagrangian of a particle. This term connects opposite
chlralities since

Thus, these terms are similar to the mass terms in the sense that they contain no

interaction or derivatives and they connect opposite ohiralities.

Consider [60,61] the system of a left handed neutrino vL and a right handed one,

vR. To keep the discussion general, we do not even assume that their masses are
- ' Iequal we denote the masses by mL and mR respective y, In a magnetic field B,

the evolution equation of this system is governed by the equation:

d = ipl+
i_ vR ftB m_/2 [pi vR

= ftB -ALn/4E + (unitmatrixterms) v_ (8,2)

where
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and as usual we have denoted IPl by E.

As in the case of the oscillation formal_m, we can omit terms proportional to

the unit matrix in the harrdltonian without affecting any probabilities. Thus, we
write

For a uniform magnetic field, this equation can be formally integrated and one
obtains the solution;

i &z,n
_Bcr_) sin n_ (8,5)- _ + ]k,,R(o)/

where

r£ - (_B)2+ (A_,R/4E)2, (8,6)

If we produce a beam of VL at x = 0 and let it travel through the magnetic field, the

spin direction of the beam would undergo a precession. The probability of finding

a UL in this beam at the point x is given by

= I(vL(,)IvL(O))I
i ALI_ sin ax

= cos _ R 4E

= cos_f_ + cos2/3sin2£x, (8.7)

In the last step, we have introduced the angle/5, which is defined by

_,B (8.8)
tan/_ -- ALn/4E '

Spin precession is efficient when/5 > 1, i.e,, when

ALn5 4E_B. (8.9)

Let us try to estimate how large the right hand side can be. The magnetic moment

is an effective neutrino-photon coupling through which the neutrinos can interact

with electrons. Laboratory measurements on neutrino-electron scatter_g puts the

bound I#1 _ 10-1°#B' For solar neutrinos, the energy is of order 10 MeV or less. The

magnetic field in the sun is not well-known at all. Educated guesses give B ,._ 103

to 104 Gauss. Using these values, we obtain [61]
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For a single Dirac neutrino, this is trivially satisfied in the vacuum since _LR = 0,

The problem then reduces to the canonical problem of spin precession treated in

any elementary textbook of quantum mcchanics. The present situation is a little bit

different since the magnetic field exists not in the vacuum but in the solar material.

So, the masses relevant for this problem are not the masses in the vacuum, but

rather the effective masses inside the medium. As described in Sec. 4) the effective

masses receive contributions due to interactions in the medium. Borrowing the

results proved in that context, we write

m_ = m 2 + 2V_GFE(n_ 1

where m is the vacuum mass. Nc,te that for vR, this is the same as the effective

mass since vR does not have weak interactions. Thus, ALR = 2V_GFE(n_ 1-- _nn))

and putting it in Eq. (8.9), we obtain for energies in the 1 to 10 MeV range,

1

n_ - .;nn _ 1022cm -a (8.12)
,1

This is possible in the outer part of the sun (convective zone).

8.2 Spin-flavor oscillations and resonancet

Relaxation of the upper bound on ALR (or consequently, on densities) can be ob-
tained if more than one flavor is considered. Consider two Dirac neutrinos. In the

flavor states, we now will have to include the right handed fields also to see the

effect of the magnetic field. Thus,

V (f) = /2#L (8.13)
Yen

v,R

The evolution equation is given by

'/dl/¢f)-- _'_V(f) (8.14)dm

where [62,63]

I -4-_gc°s20+ Vvo _--sin20 "_B #_,B I4E

sin 20 _ cos 20 + V.,, #,_B #,_,B
' 7"t= 4E 4E . (8.15)
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Figure 16: The expectation values of the mass squared operator for different flavor

states. The crossings on this plot denote resonances. The vertical scale is arbitrary.

We have, of course, taken the liberty of omittlng a term proportional to the unit

matrix. The quantity A here is the mass square difference of the two physical Dirac

neutrinos in the vacuum, and 0 is the vacuum mixing angle. The various magnetic

moments have been represented by the quantities #_, where _, g = # or e. Final/},,

V_ and V_, are the potentials felt by left handed u_ and v_, which were given in Eq.

(4.9). Thus the upper left 2 x 2 block of the matrix }/is the same as the Hamiltonian
discussed in the context of neutrino oscillation in matter. The lower 2 x 2 block

has no matter contribution since the right handed neutrinos have no interaction

with matter. If the neutrinos are Majorana particles rather than Dirac ones, the

Mght handed objects would really be the right handed antineutrinos, so that even
the lower block will have matter corrections.

In Fig. 16, we have shown the plot of diagonal elements of _ assuming n_ _ _n_,

which is approximately valid everywhere in the sun except the inner 20% of the

radius. From the plot, we see two crossings of diagonal elements, which axe the

regions where resonances occur. Thus, the U_L-u_Rresonance occurs when

= A--(I+cos2O)4E

which gives the condition

1 A COS 2 _ (8.17)- = 2GFE "
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On 'the other hand, the V,L-U_L resonance (or the usual MSW) resonance, occurs
when

A cos28

(no)= 2vGE" (s.ls)
For0 << 1 thetwo resonancesareclosesinceinthesun,n, <<n_.Becauseofthis,

onecannotusetheanalyticsolutionsobtainedinPartIIfora singleresonance.To

proceed,one can make some simplifyingassumptions.For example,ifthemixing

angle9 iszero,and ifthemagneticmoments arepurelytransitional(i.e.,#_ =

#,_ = 0), the 4 × 4 matrix of Eq. (8.15) decomposes _to two 2× 2 blocks. The
block involving V,L Can then be analyzed [64,65] in much the same way as the MSW

solution was analyzed. Of course, to do this, one has to make some plausible guesses
i

about the nature of variation of "themagnetic field inside the sun. The experimental

limits on survival probability will select out regions in the parameter space of A vs

the transition magnetic moment. From such analysis, one finds that it is possible

to have solutions for A as high as 10 .4 eV2.

In the general case when the mixing does not vanish, the only recourse is nu-

merical solutions. For various acceptable values of the vacuum mixing angle 8, the

magnetic field B and the magnetic moments, numerical solutions were performed

[62,63]. They also show that values of ALR as high as 10.-4eV 2 can be acceptable.

But for large A, the resonance occurs in the radiation zone (further inside). This

may not be related to sunspot activities. So let us, for the moment, stick to the

single flavor case discussed earlier.

8.3 How large a magnetic moment do we need?

For the single flavor case, we recall the solutio_ of the evolution equation in Eq.

(8.5). Using it, we found in Eq. (8.7) the probability of finding a UL after a VL

beam travels through a distance x. Equivalently, we can write down the expression

for the probability of finding a vR in that beam:

P_,._R(x)--1- P_,._L(x)= sin2/_sin2ftx. (8.19)

To obtainsubstantialflip,one not onlyneeds/_> I but alsoRx _ 1. So far,we

havediscussedtheconsequencesofthecondition/3> I and foundthatALR hasto

be small.Becauseofthat,ft_ #B, sothatthesecondconditionreads#Bx _ 1.

Usingthee¢lacatedguessthatB ,._103to 104Gauss intheconvectivezonewhose

widthisx N 2 × 101°cre,we obtain

__(0.ito1.0)× i0-_°_,. (8.20)
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Previously, we mentioned the neutrino-electron scattering puts upper bounds of

order 10-1°#s on neutrino magnetic moment. Here, we see that the magnetic

moment cannot be far from that upper bound if it has to provide the solution of the

solar neutrino puzzle. The question to ask then is: could neutrinos have magnetic

moment in this range for viable models of particle interactions? .....

Before entering into a discussion of this question in the rest of this part of the

article, we want to emphasize that the estimate of Eq. (8.20) has been based on a

specific estimate of the magnetic field. The magnetic fileds inside the sun are not

very well known. It has been argued that at the time of sunspot activities, the field

becomes as strong as l0 s Gauss at some places [66]. If such a strong field exists over

a large region, we can obtain substantial spin flip with a magnetic moment much

smaller that what is specified in Eq. (8.20). It has also been argued [67] that apart

from the dynamical factor appearing in the neutrino propagation, which was shown

in Eq. (8.5), there can also be topological Berry phases, which can make the spin

precession more efficient so that magnetic moments as small as _ 10-13#B may be

sufficent to solve the solar neutrino problem.

Thus, the magnitude of the magnetic moment needed to solve the problem can

be debated upon. But in any case, the value that emerges is orders of magnitude

larger than what one would expect from the most obvious extension of the standard

model, which we discuss in Sec. 9.1. It is in this spirit that we approach the problem.

9 Easy models for neutrino magnetic moment

9.1 The simplest attempt

In the standard model, all neutrinos are massless. There is no right handed neutrino

field. Because of this, neutrinos cannot have any magnetic moment as well. Thus,

a neutrino magnetic moment calls for going beyond the standard model.

The simplest way to accommodate a neutrino magnetic moment is to add, to

each generation of fermions of the standard moeld, a right handed neutrino field vR.

Such a state would be a singlet of the gauge group SU(2)L x U(1)y, and therefore

will not have any gauge interaction. However, they will have Yukawa couplings of
the form

-£_ - hCL_L'R + h.c. (9.1)

where eL denotes the doublet of left-handed leptons, and _ is the Higgs doublet.

We have suppressed the generation indices in the above equation.
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Figure 17: 1-loop diagrams mediated by W-bosons which give rise to magnetic
moments of neutrinos.

The Yukawa coupling given above produces neutrino mass rn_ when _odevelops
f,

a vacuum expectation value. The magnetic moment arises at 1-loop through the

diagrams shown in Fig. i7. It is easy to make a rough order-of-magnitude estimate of

the magnetic moment generated by these diagrams. The loop integration typically

comes with a factor of order 1/81r 2. The photon coupling would contribute a factor

e. The couplings and propagators of W give the Fermi constant GF. And then, it

is also clear that the magnetic moment will have a factor of m_. This is because

the vR does not have any interaction with the W. Thus, the only way to have the

vR on the outer line of the diagram is by having vR changing the chirality through

the mass to VL, which participates in weak interactions. Taking all these factors

together, we conclude

#_ ,_ _-_fieGFm,,. (9.2)

Detailed calculation supports this estimate and gives [68]

_ - 8v_lr-----_eGpm_3 × 10-19_B. .
(9.3)

Since the ve mass cannot be larger than about 12eV, we cannot get a magnetic mo-

ment much higher than about 10-1S#B in this model. Compared to this benchmark

value, we need a huge magnetic moment, as we menioned earlier.

9.2 Naive Higgs models

To show that it is not impossible to cook up models with large magnetic moments,

we add to the particle content of the standard model not just the right handed

neutrinos vR but also a charged scalar field h+ which is a singlet under the group

SU(2)L. This charged scalar field will have Yukawa couplings with the leptons:
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Figure 18: 1-loop diagrams involving Higgs boson exchange which gives the dom-

inant contribution to neutrino magnetic moment in the model of Sec. 9.2. The

photon line can be attached to any internal line. The blob denotes the r-mass.

- ( ,-) ,--_Y E fee'_eR_be'L"Jrf_e,_eLgR h+ q- b.c.

where the hats denote conjugate fields. The diagram of Fig. 18 will now contribute

to the magnetic moment of the neutrinos. Following the chirality of the fermion

line, it is easy to see that the diagram is proportional to the mass of the internal

fermion. Thus, it is expected that the largest contribution to the magnetic moment

is obtained when the internal line corresponds to the 7 lepton, and one gets [69,70]

ef_,g, , M__ 1 . (9.5)
/_".= 32v2M_ lnm_

The experimental constraints on the couplings f,b are very weak. One can have,

e.g., f_]_. _ 10-a if Mh " 100GEV. In this case, the above equation gives #,_

10-1°#s.
While the model cannot be ruled out from experimental data, some weaknesses

of the model are worth discussing. First, the model does not give any insight on the

smallness of neutrino mazes. In fact, neutrino masses have divergent contributions

from diagrams like Fig. 18 without the photon line. These diveregences have to be

renormalized by some suitable prescription which will determine the neutrino mass.

Thus, from the point of view of the model, neutrino mass is completely arbitrary.

Secondly, the fight handed neutrLaos, being gauge singlets, can have a bare Majo-

rana mass term. If this term is present, the vL and the VR, once the mass matrix

is diagonalized, appear as chiral projections of two different Majorana particles. It

is then hard to understand how to satisfy Eq. (8.9) without making some extreme

. assumptions about the bare mass of ua. One has to therefore eliminate this term

by postulating a global lepton number symmetry on the Lagrangian.

The model can be easily extended [71] to a left,right symmetric model based on

the group SU(2)L × SU(2)R × U(1)s-L, where h+ would be a singlet of SU(2)L ×
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SU(2)R. In this case, the problem of bare masses is eliminated. However, one still

needs to impose a global lepton number symmetry in order to obtain Dirac particles.

10 Models with naturally large magnetic mo-

ments

10.1 Generic problem with large magnetic moment

The naive Higgs models described above can be tuned to give a small enough mass

for a given magnetic moment, as we discussed in that context. However, such a

procedure will suffer from unnatural fine tuning of parameters. To see this, let us

consider a generic magnetic moment diagram. The contribution of the diagram is:

e_ (10.1)

where M denotes the heaviest mass in the loop, e is of course the photon coupling,

and g stands for everything else. The same diagram, stripped of the photon line,

gives a contribution to neutrino mass. A naive order-of-magnitude estimate gives

_ ~ gM. (io,2)

Combining these estimates, we get

_~ _ (10.3)
my M 2 "

Thus, if we want #v_ "_ 10-11/_B, we need

M < 1 GeV. (10.4)

since m.. < 12eV. But, in the magnetic moment diagram, the internal line con-

necting to the photon must carry electric charge. Direct experimental searches show

that the mass of may unknown charged particle must be larger than about 45 GeV.

With M _ 45 GeV, if #_. _ 10-11#B then the natural value of m_. turns out to

be about 20 keV. One therefore has to perform some unnatural fine tuning to keep

m_ consistent with its experimental upper bound of 12 eV.

To get around this unnaturalness, one needs some symmetry in the theory. One

can ask whether there is any symmetry in the models described above which can

ensure rn_ = 0, but #_ # 0. There isn't any. The only symmetry broken by a

neutrino mass term is a global chiral symmetry associated with the neutrino fields.

But exactly the same symmetry is violated by the magnetic moment term. This
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shows up clearly in Eq. (10.1) and Eq. (10.2), where g is the chiral symmetry

breaking parameter. Thus, once chiral symmetry is broken, one gets a nonzero rn_

as wel', One needs some extra symmetry in the model in order to obtain mu - 0

for #v _ O.

10.2 Towards a better notation

So far, we have written the magnetic moment operator as VRa_pVL plus its hermitian

conjugate. The mass operator, in the same customary notation, is VRVL% h.c.. We

now want to write them in a different way which will be useful for later discussion.

Notice that the field operator vR creates a right handed neutrino but also anni-

hilates its antiparticle, the left handed antineutrino (PL). The same operations can

be performed by the field operator of PL itself. In a matrix notation, one can write

=vc, 00.5)

where C is a numerical matrix that rearranges the rows and is unimportant as long

as we consider the creation and annihilation properties only. Anyway, what Eq.

(10.5) tells us that it is possible to write everything using left handed fields only.

For example, the magnetic moment operator can be written as pTca:_pVL + h.c.,

the mass term as pTCvL + h.c. This strategy of using fields with only one chirality

is often used in grand unified model building. As we see now, here also the use of

this notation gives some important insight.

10.3 Suppressing m_,/#_, by a symmetry

Consider now the general case where there axe a number of flavors of neutrinos. We

gather all the uncharged left-handed fields, including things like PL, and call them

¢_L where the index a runs over a range of values. Writing all indices explicitly, the

magnetic moment interaction can be written as

_"]_#_b (¢_L)_ (Ca_p)o,_ ('¢bL)_ FAP (10.6)
" a,b ol,_

where )_, p are Lorentz indices and a,/_ denote various components of a spinor. In

this notation, the most general mass term is given by

a,b ot,_

The advantage of this notation is that, since we are dealing with bilinears in-

volving the fields eL only (as opposed to bilinears invloving ¢ as well), we can see
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the effect of Fermi statistics. If we interchange (¢_L)_ and (¢5L)_, we expect a

negative sign. In the mass term, interchanging the spinor indices a,/3 gives a sign

since C_ = -C_, i.e., C' is an antisymmetric matrix. In that term, then, exchange

of the flavor indices a, b must not give any extra sign, i.e., we need

mab = mb_ (i0.8)

to ensureFermi statistics.On the otherhand,we have the matrixCtr_pin the

magnetic moment term. Using the relation

c- = _,yT/ (lO.9)

which defines the matrix C, and t'ne equation

i

whichdefinestr,xp,itiseasytoseethatCtrApissymmetricinthespinorindices,i.e.,

= (i0.11)

Thus, in Eq. (10.6), the negative sign due to the interchange of two spinors must

come from their flavor indices, i.e., we need

#,_ = -#b.. (10.12)

Voloshin [72] realized that these different symmetry properties of the mass and

magnetic moment might be crucial to explain a large magnetic moment for a small

mass. Consider the simple case where there are only two left-handed fields VL

^ sv(2)and VL, and they form a doublet under some symmetry. Then the mass

term, being the symmetric combination, would transform like a triplet where the

antisymmetric magnetic moment would be a singlet. Thus, if this SU (2)_ symmetry

is an exact symmetry of the Lagrangian of a model, massless neutrinos can have

nonzero magnetic moments in that model. As we will see next, the SU(2)_ is

broken in realistic models, which gives rise to nonzero masses as well. However, if

the SU(2)v breaking is small in some sense, the ratio my/#v can be kept small, which

is necessary for a natural explanation for a large magnetic moment of O (10-111_).

10.4 Implementing the Voloshin symmetry

Implementation of Voloshin's idea [72] is problematic since SU(2)_ does not com-

mute with the electroweak group. Several possibilities can be explored.
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Way i: Enlarge electroweak group to include SU(2)_. An example of such a model
has been presented in Sec. 10.4.1.

Way 2_ Use some other SU(2) for Voloshin mechanism, which commutes with the

gauged SU(2)L. An example is a horizontal symmetry SU(2)H with VeL, V_,L

as a doublet [73,74,75]. The magnetic moment in this case connects VeLwith

V,L, i.e., is transitional. Since V_Lis part of the doublet eel of the gauged

SU(2)L _and V,L is part of the doublet ¢,L, we must put ¢_L and ¢,L as

a horizontal doublet. Thus, in the limit of unbroken _qu(2)H, one obtains

me = m_. Such SU(2)H must therefore be broken to get me _t m,. The

subgroup Le - L, can remain unbroken.

Way 3: One can use a discrete symmetry with carefully chosen quantum numbers.

To see how this works, consider [76] what could happen if the theory were

invariant under charge conjugation C, with

C(_o) = -1, C(_,)= +1. (10.13)

The cross mass term vTCv_, would then be odd under C, but the magnetic

moment interaction vTCo'.x,_,,F _" would have been even, i.e., invariant under

C owing to a extra minus sign coming from the odd C properties of the electro-

magnetic field. Thus, the magnetic moment terra would have been allowed by

such a symmetry but the mass term wouldn't have. Of course, C is violated

nearly maximally in weak interactions, so in realistic models, the above argu-

ment does not work. But, if we have some other discrete symmetry having

similar property, it can suppress mr.

Way 4' One can try to find a discrete nonabelian symmetry with same symmetry

properties as SU(2)_, i.e., under which the magnetic moment term is invariant

but the mass term is not. There are various nonabelian discrete symmetries

satisfying this condition [77,78,79,80]. We give some details of one such model
in Sec. 10.4.2,

Below, we give some examples of models implementing the ideas above. The particu-

lar models chosen have no bearing on their physical plausibility. They are presented

for illustrative purposes only.

10.4.1 Example' Extended electroweak symmetry t

As an example of implementing Voloshin's mechanism with extended electroweak

group, we consider a model described by Barbieri and Mohapatra [81] where elec-

troweak interactions are described by the gauge group SU(3)L x U(1)x. This group
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Figure 19: 1-loop diagrams involving Higgs boson exchange in the model of Ref, [81]

which gives the dominant contribution to neutrino magnetic moment when a photon

is attached to any of the internal lines.

spontaneously breaks down to U(1)Q of electromagnetism, with the charge operator

given by Q = Ta- 17_ Ts + X, where

1 1

T3= _ diag(O,1,-l),'Ts = _-_ diag(-2,1,1). (10.14)

_o_at_plot,rhoo1_t_c_h_g__o(X+_,X+_,X-_).The1op,o__-a
generationareassignedthefollowingrepresentationsofthegaugegroup:

" _I/_L-- V_L : 3,-

eL

_+ : (1,1). (lo.15)

Looking at _L, it is apparent that Voloshin's SU(2)_ acts on the first two rows of

the triplet, whereas the SU(2)L of the standard model acts on the last two rows.

The representations of quarks are irrelevant for our purpose. The same can be said

about some extra fermions which are necessary to ensure that the gauge anomalies
cancel.

In the Higgs sector, first of all there is a triplet _:

_= _+ : 2)_ (10.16)

so that (_o°>generates the mass of the electron and other charged fermions. There is

another multiplet • which has the same gauge properties as ¢, but (_° / - 0. These

two Higgs multiplets have various Yukawa couplings, among which the following

terms are important for us:

= * _ _I,* .-L:y h_LT_ e+ + J_L_rL_ + / _L _+ (10.17)
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In this equation, we have suppressed all SU(3)L indices. If we put them explicitlyl

the term whose coefficient is f will look like

,T,_m# ,_'_ (10,18)g_#'Y_eL_L_ '

There are two 1-loop diagrams for neutrino mass, as shown in Fig. 19. Each has one

vertex involving this interaction. One of these has a = 2,/_ = 3, '7 = 1, while the

other has a = 1, _ = 3, '7 = 2. The antisymmetrlc e-symbol then gives a relative

negative sign between the contributions of the two diagrams, so that we get

/I' mL (lo,19)_- ,
The diagrams for magnetic moment are obtained by attaching a photon to az_yinter-

nal line. The photon attaches to particles of oppostie charges in the two diagrams,

which cancels the negative sign from the e-symbol. Thus,

eff' 1 m2¢_ 1 in ma______2 (10,20)

If SU(2)_ is unbroken, mc, = m¢:, so that m,_ : 0. SU(2)_ breaking effects,

due to additional Higgs representations not shown here, give m¢1_._ : rn_ -4-_1Am_.
Therefore,

//, A,n (lo.21)

efr' 1 m_ : e2mVo m_ (10.22)

Demanding _v. < 20eV, #._ > 10-n#s, one gets Am_ < 60GEV 2 for _ _-

(100 GeV) 2.

The problem of the model [82] is that it is not easy to keep the SU(2)v breaking

scale low without some fine-tuning of parameters in the Higgs potential. The ad-

vantage of this approach is that, since grand unified theories involve some extension

of the standard model gauge group, one can hope that the extended electroweak

symmetry needed here can come from some grand untied model in the course of

symmetry breaking. Indeed, it has been shown by Deshpande and Pal [83] that,

with some modifications, the above model can be derived from a grand unified

group.

10.4.2 Example: quaternionic group t

Let us now give an example of how a discrete group can serve to implement

Voloshin's idea. Consider the quaternionic group Q. It is a discrete group of eight



elements, which can be called ±1, ±i, ±j, ±k. The complete multiplication table

can be deduced from the following rules: iH= jH = kH = -1, ij = k, jk = i, ki = j,

Thus, the group has two generators which we can take as i and j, and all other ele-

ments can be obtained as their products, There are five irreducible representations

of the group, Four of them are one dimensional, which we denote by Rl through Ri,

The other representation is two dimensional, which we call D. The representations

of the generators i and j are given here:

Ri RH R_ R., D

i 1 1 -i -i -icr, (10.23)

j 1 -i I -i -i_H

The D representation has the important property that D x D = (R1)_.ti,y,.., + (R_ +

R3 + P_),y,u,.. Thus, if fermions transform as D, magnetic moment will transform

like R1 which is the trivial representation, invariant under transformations of the

quaternionic group. The mass term, on the other hand, will transform either

RH, R._ or P_ - all of which are nontrivial. Thus, the group Q can act in place of

Voloshin's SU(2), to suppress m_ [79],

To see how that works, we assign the following representations of SU(3)_ x

su(2)L×u(i)_,×Q forf_r_,_o_s:

= : 1,2,-_, D
e # L

eR :(I,1,-1,RH)

,an : (1, 1,-1, R:_)

g,,,gR :(3,1,-_,n_) (i0,24)
,,j

Here, 9 is an extra vectorlike quark. The usual quarks are not relevant for what

follows, so we omitted them. The Higgs bosons of the model are:

#: 1,2,_.,Ri , @: 1,2,_,D

( - )g' [t,2, 1,D , : 3,2,_,D . (10,25)

The gauge invariant Lagrangian has the following terms involving the fermions'.

= +
+,,,,,._g,,+h(_,v),,,g,,+h'(_,_'),,,g.+h,_, (io,_8)

and the Higgs potential contains the terms

V = A_ (HH")a, _o2 + E A_¢(HH")R, (@@)R,+ ... (10.27)

I °°
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Figure 20: 1-loop diagrams involving Higgs boson exchange in the model of Ref, [79]

which gives the dominant contribution to neutrino magnetic moment when a photon

line is attached to any internal line,

There are, of course, many other terms but they are not necessary in the ensuing
discussion,

The magnetic moment arises from the diagram in Fig, 20, A rough estimate of
the contribution is

_ hh'._ (_)_ (10,28)
#. - 16_r2m_l

This diagram without the photon line, cannot contribute to m. since _o is in the

antisymmetric gl representation, But consider s similar diagram with ¢ instead of

_oin the external legs, This gives s mass of order

Achh'm, (V) 2 (10,29)
m.- 16v2m_

Thus

_,_~,_ (v>_ 1 (lo,3o)

If (_) _ (cp), we can get a large magnetic moment with a small mass,

11 Other ways of getting a large magnetic mo-

ment

So far, we discussed Voloshin's idea [72] of putting some extra symmetry which
forbids neutino mass but does not forbid neutrino magnetic moment. There are

some other ideas of how mass can be suppressed compared to the magnetic moment,

which we discuss now,

u7
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Figure 21: The spin suppression mechanism works if the dominant contribution to

neutrino magnetic moment comes from a diagram like this. The blob represents an

effective coupling generated by loops.

11.1 Spin suppression

Barr, Freire and Zee [84] have suggested another interesting scenario in which neu-

trino mass can be suppressed without suppressing magnetic moment. Suppose, for

some reason, that the dominant contribution to magnetic moment comes through

the generic diagram of Fig. 21, where the photon coupling is an effective vertex

developed through quantum corrections. The helicity flip required to obtain the

magnetic moment operator is obtained through the coupling of the scalar particle.

The corresponding mass contribution is obtained by stripping Fig. 21 of the pho-

ton line. However, one this is done, we see that the blob involves a spin-0 particle

turning into a spin-1 particle. This would be impossible if we have the transverse

components of the vector particle connecting to the blob. However, the longitudinal

component of the vector particle is really a spin-0 particle, so it can connect to the

blob. In short, the vector line in the ma_s diagram must involve only the longitu-

dinal component, i.e, the unphysical Higgs. However, the couplings of unphystcal

Higgs bosons can be derived from the gauge couplings irrespective of the details

of the Higgs content of the model. For couplings with fermions, one obtains that

the coupling involves factors mf/Mw, where m! is a generic fermion mass. Since

all known leptons are much lighter than Mw, this gives a suppression for the mass

diagram. In the magnetic moment diagram, however, the transverse compon._uts

of the vector field appear in general, and so the coupling is not suppressed. More-

over, since in the mass diagram both the vertices on the fermion line flip helicity,

one needs another factor of lepton mass to obtain a net flip of helicity. Thus, the

suppression of the mass diagram is really rn_/M_/. Thus, the bound of Eq. (10.4)

is modified to rnl _ 1 GeV, which is surely satisfied for the electron and the muon,

Ge

| vo
_m

!



S _ S

h+ ,, h "

VI,L It., VIL Vr,L It., lR Vtt.,

Figure 22: Adding a photon line to some internal llne of thr:s_ diagrams give the

dominant contribution to neutrino magnetic moment in the model of Ref. [84]. The

scalar loops consist of Higgs doublets, and H is the unphysical Higgs eaten up by
the W.

and presumably also by the tauon.

To implement this idea, one therefore needs a model where a diagram Hke Fig. 21

indeed gives the dominant contribution to the magnetic moment. Barr, Freire and

Zee [84] observed that they do not have to invent a new model for this. A model of

neutrino mass, proposed long time ago by Zee [85], already has this property.

The model is based on the standard modelgauge group SU(2)L × U(1)r, and

contains several Higgs doublets (three are necessary to obtain large neutrino mag-

netic moment) and a charged field h+ which is a singlet of SU(2)L. There are no

fight handed neutrinos. In Fig. 22, we show diagrams which give the dominant con-

tributions to neutrino magnetic moment because they are unsuppressed by powers

of Mw:

eMo fee, (11.1)¢,_ .

(16"2)2M2,

where fee, is the Yukawa coupling matrix of h+ as defined in Eq. (9.4), Mo is

the trflinear coupling of h+ with two Higgs doublets, and M is some heavy mass

characteristic of the loop. For M _ Mo _ 100GEV, f _ 10-1, we can obtain

magnetic moments of order 10-11 #B.

The mass contribution from these diagrams is the matrix

Mo fee,(rn,_- m_,) (11.2)
mee, " (161r2)2 M, 2 ,

where me and me, are the charged lepton masses. The quantity M t appearing in

this expression involves mass differences of the charged and neutral components of

doublet Higgs fields. If this splitting is small, it provides a further suppression in

neutrino mass [84].
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Figure 23: 1-loop contributions to neutrino mass Zee's model.

It should be commented that neutrino masses in this model can come from the

1-loop diagram of Fig. 23. These contributions are not as suppressed as the 2-

loop diagrams since the loop integration factors are not as small. But the doublets

involved in this diagram have to be different because of SU(2)L symmetry. So, if

we choose a basis in which only one Higgs doublet has a nonzero vev_ and if the

fermions couple only to this doublet, Fig. 23 vanishes. This can be achieved by

imposing some discrete symmetries on the model [84].

11.2 Vacuum structure

Choudhury and Sarkar [88] have discussed a model where, mass is suppressed for a

different reasoT_. The essential features of the model can be summarized as follows.

Suppose we have a symmetry in our model which forbids both mass and magnetic

moment. Both mass and magnetic moment can therefore be generated only in the

symmetry breaking process. However, as we discussed in Sec. 10.3, the magnetic

moment operator and the mass operator transform like different representations of

the flavor group. Thus, they cannot be generated by a single vev. Mass arises from

a vev transforming like the symmetric representation, and magnetic moment from

vev like the antisynunetric representatiom But suppose the vacuum structure of the

model is such that the antisymmetric scalars have nonzero vev but the symmetric

scalars are either absent altogether or do not acquire vev. In this case, one obtains

magnetic moment but no mass.
As an illustrative example, Choudhury and Sarkar presented [86] a model based

on the symmetry SO(3)H x U(1)t which commutes with the electroweak gauge sym-

metry. The U(1)t here is the lepton number symmetry and SO(3)H is a horizontal

symmetry. Whether they are gauged or not is of no importance here. Leptonic
II
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doublets transform as a triplet of SO(3)H:

v_ v. v,),e # r L

which has lepto n number 1. There are no right handed neutrinos. Thus, mag-
netic moment terms must be transitional and transform like (3,2) representation

of SO(3)H x U(1)t, whereas mass terms transform like (5,2) or (1,2). In the Higgs

sector, there are particles that transform like (3,2), which gives rise to magnetic

moment. But no Higgs transforms like (5,2) or (1,2), so no mass can be generated.

12 Chlorine vs Kamioka

In the prelude to this part of the article, we mentioned that the time variation in

the detected solar neutrino flux is apparent only in the chlorine experiment and not

in Kamiokande data. We can ask ourselves whether it is possible to understand this

discrepancy in a theoretical model.

The clue to the explanation might lie in the fact that the detection mechanisms

for the two experiments are very different. The chlorine experiment detects v_ by

interaction with nucleons whereas the Kamiotmnde experiment detects neutrinos by

their interaction with electrons. Recall that the key point is that a magnetic field

rotates VL into vR, and vR cannot be detected since we believe it has no interactions
with normal matter.

But suppose [87] in a model vR interacts with e- with strength comparable

to G F. Then the Kamiolmude detector will detect both VL and vR with similar

efficiency and will not find any net change. But if vR does not have interaction with

quarks, 37C1detector will not see them.
To see how this can be realized in a model, add a Higgs doublet _ to the standard

model Higgs. There can be Yulmwa interactions of the form f_R_L_', where _L iS

the lepton doublet. The coupling constant f is not related to the neutrino mass

if _' has zero vev. The charged component of _ will mediate e-v_ interaction of
2

strength 4/M-_. If this strength is comparable to the weak interaction strength, GF,
then the above situation is realized and we can understand why Kamiokande does

not see time variation in the flux.



Part IV

Concluding remarks

13 Outlook for future experiments

In Part I, we described that there is a discrepancy between solar neutrino flux esi-

mated by solar model calculations and that detected by terrestrial experiments. In

Parts II and III, we showed that this discrepancy can be solved by some proper-

ties of neutrinos like mass_ mixing or magnetic moment. Such properties are yet

unconfirmed from laboratory experiments, but the range of magnitudes of these

quantities required to solve the solar neutrino puzzle is largely unexplored.

Needless to say, one needs more data to explore the problem fully and confirm

which solution_ if any, is acceptable by all experiments. To this end, the Davis group

and the Kamiokande collaboration continue taking more data. In addition, more

detectors are being planned or being built. The radiochemical 71Ga detector has

recently been brought into operation by the SAGE group [9], although their results
are tentative so far. The results of this detector will be crucial in our understanding

of the solar neutrino puzzle since none of the earlier detectors could detect the low

energy pp neutrinos, which constitute the bulk of the flux of neutrinos from the

sun. Some new type of detectors are also in a planning stage. A heavy water
! detector at the Sudbury Neutrino Observatory (SNO) will detect neutrinos by their

charged- as well as neutral-current interactions. The proposed Borex detector made
i of liB would also be able to detect neutrinos via both charged- and neutral-current

-= reactions with nuclei, as well as by electron scattering. If oscillation of v_ to v_ or

-_ v_ is responsible for the solar neutrino problem, purely neutral current detectors

- should not see any depletion from the solar model calculations in the number of
total neutrinos detected.

With new and plentiful data, One hopes to see the time variation and the energy

dependence of the solar neutrino flux. The energy dependence, as argued before,

can decide between different regions of the solution space obtained by resonant

matter oscillation mechan_Jm.

The time variation should tell us, first of all, whether the ll-year cycle of sunspot

activities is anticorrelated with the solar neutrino flux. If the answer here is affir-

_ mative_ that immediately selects out the neutrino magnetic moment as the solution

of the puzzle.

Further refinement can see if there are time variations at smaller time scales.

I
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For example, if neutrinos have a magnetic moment, one expects a semiannual cycle

in the solar neutrino flux. This is because the sun's magnetic equator is tilted at an

angle of about 7° with the earth's orbit. Twice a year - in June and December - the

earth comes on the plane of the solar equator where the magnetic field is zero, as

can be implied by the absence of sunspots there. When this happens, the neutrinos

coming out to the earth encounters hardly any magnetic field and therefore would

not undergo precession. This will result in a high value of the number of neutrinos

detected. In March and September, the number of neutrinos would be minimum.

If, on the other hand, resonant matter oscillation is responsible for the solar

neutrino puzzle, one expects a diurnal variation in the solar neutrino flux. This is

because at night, the neutrino comes through the earth, and matter effects in the
earth's interior would affect the neutrino flux.

So far, the data is not enough to establish any of these variations [88]. Knowl-

edge of such time variations will help determine the mechanism responsible for

the solar neutrino problem. If the solution lies in resonant matter oscillation and

only two generation of neutrinos are involved, one can easily find the mass and

mixing parameters consistent with the experiments in the manner described in the

text. If three generations are involved, one needs a better understanding of the
non-adiabatic effects or needs to tackle them numerically.

If magnetic moment is responsible for the solar neutrino problem, then unfortu-

nately it would be dif_cult to make precise estimates of the survival probability in

any experiment since the magnetic fields in the sun are not very well known, as we
mentioned earlier. This will call for better understanding of magnetohydrodynamic

phenomena in the sun.

14 Outlook for Physics beyond the standard

model

The solar neutrino puzzle can be summarized as follows: if the standard solar model

calculations are reliable, the neutrino properties of the standard electroweak model

cannot explain the results of the experiments to detect the neutrino flux. Assuming

the reliability of the stand_d solar model as we have done throughout in this article,

the solar neutrino puzzle than leads one to Particle Physics beyond the standard

electroweak model. Indeed, the mass difference and mixing needed for neutrino

oscillation, or the magnetic moment needed for spin precession - are all absent in

the standard electroweak model.

It _-_however q,,_,_ _A_y¢_o o_cornrnndate neutrino mass and mixin_ by extendingI
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the standard model. For example, one can add a right handed neutrino to each

generation of fermions. The neutrinos can then obtain mass through the Higgs

mechanism, just like Other fermions do. One can also extend the Higgs sector in

many ways to obtain neutrino mass and mixing _ Ali these models give rise to

neutrino mixing in a natural way.

The mass squared difference required to solve the solar neutrino puzzle are very

small. For the solution via vacuum oscillations, we need A _ 10-l° eV2. Matter

enhanced oscillation can produce solutions for A as large as _ 10-4 eV 2. This, by

itself, does not tell us about the masses as such. But, unless there is some minute

cancellation between two masses, one would expect one eigenvalue close to A 1/2and

another quite smaller. For A _ 10- 4 eV 2, one then expects _ _ 10-2 eV, which is
very small compared to the masses of any other fermion. The mixing angle needed

to solve the solar neutrino puzzle can alzo be very small since matter effects can

enhance it and produce large depletion. In a word, the matter enchanced oscillation

solution really demands small modifications on the standard model.

The magnetic moment solution, on the other hand, requires some elaborate

alterations of the standard model since, as we showed in Sec. 9.1, simple changes

in the standard model produces magnetic moments much smaller than what is

necessary. This is why most of our discussion in Part III was concerning the model

building aspect to accommodate a large magnetic moment.

There is, however, another angle to this argument. Since the oscillation solu-

tions require very small parameters, they will be almost impossible to find in any

laboratory experiment. For example, if the neutrino mass is obtained through the
see-saw mechanism and if the heavier of the neutrinos involved in oscillation is the

u_, the solutions for A _ 10-4 eV2 gives M _ 109 GeV for the heavy mass occurring
in the see-saw. This means that Physics beyond the standard model is really far

beyond. If the heavier neutrino is v_, the scale of new physics is even higher [90].

On the other hand, the magnetic moment solution always involves some new

and unknown particles around the mass scale of 100 GeV to 1 TeV. These would be

accessible to the next generation of particle accelerators.
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Appendices

A Laboratory bounds on neutrino oscillation pa-
L

rameters

The laboratory bounds on neutrino oscillations come from the following type of

experiments. One takes a beam of known flavor from a reactor or an accelerator and

lets it travel for some distance x. At that point, one checks whether the survival

probability of the original flavor, or the conversion probability to another flavor,

can be consistent with nonzero values of mixing and mass difference. So far, all

confirmed results are negative. They can be summarized as follows: if A < 0.1 eV2,

there is no bound on the mixing angle, and if the mixing angle is smaller than about

0.05, then _here is no bound on A. For details and references, see, e.g., Ref. [89].

Note that the solutions obtained for the solar neutrino problem pertains to much

smaller values of A than 0.1 eV_, so that all values of the mixing angles are allowed

in this range by terrestrial experiments.

B More rigorous derivation of dispersion rela-
tions in medium

In quantum field theory, the dispersion relation of a particle is given by the pole

of its propagator. Thus, if we can find the hill propagator of a neutrino within a

medium, that can give us H of Eq. (4.15).

To do this, one calculates the self-energy of neutrinos in the thermal bath of the

I
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Figure 24: 1-loop self energy corrections to the neutrino propagator.

solar medium [91,92,93]. The full propagator is given in the form

1 (B.1)
_ _ _ - r.(p)'

In the lowest order, the contribution to XI(p) comes from the diagrams shown in

Fig. 24. Considering just the charged current diagram for the moment, we obtain

Ok ig_O
iF,(p) = i f (B.2)(2.)__ P__s_(k)_P_' h-_

where S_(k) is the propagator of the electron, and we have neglected the momentum

dependence of the W-propagator. For the electron propagator, we use the effective

propagator in the medium, which is
J

[' ]_so(k)- (_+,_o)_ _ ,_ 2,_e(k_-,_)/_(k. ,_) , (B.a)
where

O(_) + O(-_) (B.4)
IF(x) = e_(_-#)+ I e-_(_-.)+ I'

where O is the step function which equals +1 if the argument is positive and is zero

otherwise, _ is the chemical potential and _-1 is the temperature of the background
electrons.

The first term in the electron propagator in Eq. (B.3) gives infinite renor-

malization. This is present even in the vacuum and is eliminated by a suitable

renormalization prescription. The second term gives

V_GF(n_- - n_+)70, (B.5)

which then easily gives Eq. (4.4). Similarly, one can evaluate the neutral current

diagram. Note that for this derivation, we need not assume that velocity or spin

ha.q_to v'anish_ as we did in the text.
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Figure 25: Electron-neutrino scattering through neutrino magnetic moment. The

blob is the effective coupling of neutrinos with photons.

C Laboratory bounds on neutrino magnetic mo-

ments

Here, we give a rough estimate of the bounds on neutrino magnetic moment that can

be obtained from laboratory experiments. The bounds arise because the neutrinos

can scatter against electrons via photon exchange through the diagram of Fig. 25.

The cross section calculated from this diagram can be easily estimated:

_-7.__ ' (c.i)
neglectingfactorsoforderunity.The treelevelW' and Z exchange,on theother

hand,gives

g4

ow,z~ _ E,_o, (C.2)
where g is the SU(2) gauge coupling constant of the standard model, and E is

the neutrino energy, assumed much smaller than Mw. Since the standard model

calculation fits scattering data very well, we can demand

_m_,/_W,Z<--I. (c.3)

This gives, since g ~ e,

<M_w~m_Ei0__(i0_oV) " (CA)
Reactor experiments have been performed upto neutrino energies of order of a few

tens of MeV's. So, from Eq. (C.4), one gets

< 3 × 10-'°#B. (C.5)

| "
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If one does more careful analysis of individual experiments and the error bars in

their measurements, one gets upper bounds ranging from (4 to 20) × 10-1°pp. There

are also other bounds coming from astrophysical and cosmological considerations.

For a summary of these bounds and references, see Ref. [89].
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