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ABSTRACT

This review has four parts. In Part I, we describe the reactions that produce
reutrinos in the sun and the expected flux of those neutrinos on the earth.
We then discuss the detection of these neutrinos, and how the results obtained
differ from the theoretical expectations, leading to what is known as the solar
neutrino problem. In Part II, we show how neutrino oscillations can provide a
solution to the solar neutrino problem. This includes vacuum oscillations, as
well as matter enhanced oscillations. In Part III, we discr.s the possibility of
time variation of the neutrino flux and how a magnetic moment of the neutrino
can solve the problem. We also discuss particle physics models which can give
rise to the required values of magnetic moments. In Part IV, we present some
concluding remarks and outlook for the recent future.
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Part 1

The solar neutrino problem

The sun is a huge nuclear reactor where lots of reactions are going on, synthes1zmg
hydrogen into helium and subsequently to heavier elements!!. In these reactions,
some neutrinos are created, as we describe in more detail below. The physics of the
sun is supposed to be quite well understood to estimate the rate of production of
these neutrinos. We can try to detect these neutrinos on the earth. The experiments
performed so far have detected much less neutrinos than were theoretically expected.
This is called the Solar neutrino problem. There are many other aspects of the
problem which will be elaborated as we go on.

Logically, the problem must be in one of the followmg aspects: (1) the detec-
tion of neutrinos might be faulty; (2) the calculation of expected neutrino fluxes
might be wrong because of poorly known input parameters and uncertainties in the
calculation with the standard solar model; (3) something might be lacking in our
understanding of the neutrino properties.

Though all these alternatives seemed equally likely at the time the first solar
neutrino experiments were performed, it now seems that the first alternative is ruled
out because since then, other experiments have been performed, employing different
detection t=chniques, and they also find less neutrinos than expected. As for the
second alternative, all we have to say is that Bahcall and his collaborators have

.. checked and improved their calculations over the years and their estimates of their

errors have progressively become smaller. Recently, another group has performed
the same calculation [2] and found results close to that of Bahcall and collabora-
tors [3], although their central value is somewhat lower, i.e., closer to the flux seen

‘in the experiments. There has also been various discussions about modifying the

standard solar model which predict lower values for neutrino flux. We will not
discuss these possibilities here. It has been argued [4] that if the neutrino proper-
ties are described exactly by the standard electroweak model, changes in the solar
model only cannot explain the discrepancy between the rate of neutrinos detected
in different experiments. In this review, we take the other extreme viewpoint, viz.,
assume that the standard solar modsl is correct, and the calculations of Bahcail’s
group [3] are accurate. Thus, there is indeed a discrepancy between solar model
calculations and experimental observations. The purpose of this review is to discuss
the theoretical ideas put forward to understand this problem by some properties of

" For a textbook presentation of the solar astrophysics, see Ref. [1].
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neutrinos which are so far untested by laboratory experiments. An outline of the
organization is provided in the abstract.

1 Socource of solar neutrinos

The dominant chain of reactions taking place in the sun can be summarized by the
equation:

dp — *He + 2e* + 2, + 25MeV. | (1.1)

This, of course, is not just one simple reaction, but rather takes place in many
steps, as elaborated later. The energy released manifests mainly as photons, which
undergo many scatterings before they come out of the sun. This is responsible for
the heat and light that we get from the sun. On the other hand, a small part of
the energy is carried by neutrinos. Because of their small scattering cross sections,
the neutrinos come easily out of the sun. Thus, they bring important information
about the solar core.

From Eq. (1.1), one can make a simple estimate for the neutrino flux received
on the earth. The total luminosity of the sun is Ly = 4 x 10°® erg/s. For each
25MeV energy coming out, two neutrinos are proudced. Thus, the number of
neutrinos produced per second is given by 2Ls /25 MeV. Dividing this by 4w D?,
where D is the earth-sun distance, 1.5 X 16'% cm, we get for the flux a value of about
6 x 10°cm~2s"!. As seen from Tebie 1, most of this flux is from the pp reaction
where deuterium is produced from two protons.

Table 1 gives the chain of reactions which we summarized in Eq. (1.1). In
the first stage, protons synthesize to deuterium (*H). This occurs in two parallel
reactions, called the pp and the pep reactions by the particles that go into them.
The pp reaction is responsible for most of the neutrinos produced in the sun. Once
deuterium is produced, it quickly synthesizes to *He, and then two *He can form
‘He by strong interaction. However, in very few cases, *He interacts weakly with
protons and produce *He, producing neutrinos in the process.

When some *He is produced, heavier nuclei like "Be can be synthesized. Slnce
1He is a very stable nucleus, the "Be produced finally turns into *He through several
steps via the production of either “Li or B as shown in Table 1. Notice that the
neutrino from ®B bave very high energy. As we will see later, this is very important
for the detection of solar neutrinos. Of course, the Hep neutrinos are also energetic,
but their flux is so small that they can virtually be neglected for our discussion.

There is also the CNO cycle, involving heavier nuclei like various isotopes of
carbon, nitrogen and oxygen (bence the name of the cycle) which produces some

6



Table 1: Reactions in the pp chain.

Reactions

Name

of reaction

E
in MeV

Flux
(10'° cm=2571)

Stage 1: p synthesizes to *H

p+p—*H+e" +v,
p+e +p—*H+u

pp
pep

<042
1.44

6.0 x (1 % 0.02)
0.014 x (1 £ 0.05)

Stage 2: *H synthesizes to °He

"H+p — *He + v -

Stage 3: He synthesizes to ‘He directly

SHe +°He — “He+p+p -

He+p — ‘He + et + v,

Hep

< 18.77

8 x 1077

Stage 4: Synthesis of "Be

3He + *He — "Be + v -

Stage 5: "Be turns into ‘He

"Be+e” — "Li+ v, "Be 0.861 0.47 x (1 £ 0.15)
"Li+p — ‘He + *He - - -

"Be+p — °B + 7 - - -
8B -+ 8B* + et + 1, 8B < 14.06 | 5.8 x 107%(1 £ 0.37)

8B* — ‘He + ‘He —

Table 2: The CNO cycle.

Reaction E in Flux in
MeV 10 cm—?g!
2C4tp — BN++q -
BN — BC4et4v.| <12 0.06(1 % 0.50)
BC+p — MN+vy -
UN4+p — 1044 -
50 —» UBN+4et+v, | <173 0.05(1 £ 0.58)
I8N 4 p — 12C 4+ ‘He -
15N +p — 160 +,.Y —
80 4+p — YVF+44 -
TR 5 VO4et+v, | <174 5.2 x 1074(1 £ 0.46)
p+70 — “‘He+"N _
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neutrinos. The reactions have been shown in Table 2. For the solar core temper-
ature, this cycle is very weak and produces only about 1.5% of the total neutrino
flux.

2 Detection of solar neutrinos

2.1 Principal techniques’

All the detection mechanisms proposed so far for solar neutrinos fall in one of the
three categories: (1) Radiochemical, (2) Geochemical, (3) Electron scattering. We
discuss the methods briefly*?, summarizing also the results obtained by using them.

Radiochemical detectors : In this method, the v, from the sun hits a detector
containing some nucleus X which undergoes inverse beta decay:

v.+X e +Y. (2.1)

The detector is kept active for a while, and then one looks for the resulting
nucleus Y. The Y nuclei are extracted chemically, and their number gives the
neutrino capture rate. The experiments proposed so far involve various target
materials, as shown in Table 3. Note that the product nuclei are radioactive.
Therefore, one cannot keep on capturing neutrinos for indefinite length of time
before trying to detect the Y nuclei chemically.

The advantage of radiochemical detectors is that one can detect low energy
neutrinos. The threshold, of course, depends on the material. In "' Ga, for
example, the threshold is so low that even the low energy pp neutrinos can be
detected. The disadvantage is that one cannot tell the times of arrival or the
energies of the neutrinos captured.

Geochemical detectors : The basic principle here is the same as that of radio-
chemical detectors. The difference is that the product nuclei have very long
balf-life, in the range of 10° to 10° years. In rock samples or natural ore de-
posits, one can look for the product nuclei, and their amount will tell us about
the solar neutrino flux over the last million years or so. The disadvantage of
the method is that one needs a theoretical estimate of how much Y nucleus
was supposed to be present primordially in the rock sample. These estimates
are not very accurate.

#2For details and references, see, e.g. the excellent discussion in Bahcall’s book [5].



Table 3: Reactions suitable for radiochemical and geochemical detection of solar
v,'s. All reactions are of the form v, + X — e~ + Y for suitable nuclei X and Y
which are listed.

Initial Final Threshold  Half-life  Capture Rate
Nucleus (X) Nucleus (Y) (in MeV) of Y (in SNU)
87C1 37Ar 0.814 35 days 7.9 +2.6
1Ga Qe 0.233 11.4 days 132 %
"Li "Be 0.862 53.4 days 51.8 +16
1271 127X e 0.789 36 days ~ 80
81Br 81Kr 0470 2 x 10° years 27.8+17
%Mo 98 168  4x10° years  17.4+£185
2057 205 p}, 0.062  ~ 107 years ~ 263

Electron scattering detectors : In this method, one uses neutrino scattering
with electrons:

v+e—v+e. (2.2)

The scattered electron is highly peaked in the forward direction. Thus, by
looking at its direction, one can reconstruct the direction of the incoming
peutrino and verify that it really came from the sun. This is one big advan-
tage of the method. In addition, one can make an event by event detection,
identifying the arrival times and energies of the neutrinos. The disadvantage
is that any incident neutral particle can cause the same kind of signature.
Thus, one has to subtract the contributions of gamma rays etc. To ensure a
good understanding of the background, the threshold for neutrinos has to be
kept high.

2.2 Active experiments and their results
2.2.1 The 3Cl] experiment

For more than two decades; Davis and co-workers have been detecting solar neuti-
nos deep under a mine in South Dakota, USA. Their detector contains 2.2 x 10%
atoms in the form of liquid C,Cl;. From Table 3, notice that the threshold energy is
0.814 MeV. Thus, the experiment cannot detect any pp neutrino. Since the absorp-
tion cross section rises sharply with energy, the B neutrinos contribute most to the

10
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capture rate. In Fig. 2, we have shown the contribution of neutrinos produced in
different reactions to the capture rate. Theoretical calculations with the standard
gsolar model yield the following expectations for the total capture rate [3]:

Pineo = (7.09 £ 0.9) SNU. (2.3)

We have put 1o error bars in the number. The unit SNU is defined to be 1 capture
per 10% target atom per second. Thus, in their detector, production of a single
37 Ar atom per day will correspond to a rate of 5.3 SNU.

The data obtained by Davis’' group has been shown in Fig. 3. The mean value
of this data with 1o errors are [7):

¢Davis = (2.1 £ 0.3) SNU. (2.4)
This means
Powis = 22248 — 0,97 £ 0.04. (2.5)
¢theo

The solar neutrino problem is the statement that Ppais # 1.
12



2.2.2 The Kamiokande experiment

The Kamiokande II detector has been operational since 1986. The energy response
for the capture rate is shown in Fig. 2b. Since it detects neutrinos by electron
scattering, a high threshold has to be set to allow an event. In the early runs,
this was set at 9.3MeV. Later, the background calculations were improved and
the threshold was brought down to 7.5MeV. The integrated result from the runs
analyzed so far gives [8]:

¢K&m

¢theo

Thus, the solar neutrino problem is present in this experiment independent of the
Davis result.

Piam = = 0.46 = 0.05(stat) & 0.06(syst) . (2.6)

2.2.3 The "'Ga experiment

The low threshold of Gallium makes it a nice detector, since such a detector can
capture many of the neutrinos from the pp reaction. The expected rate is very high.
The SAGE group is performing this experiment. So far, they have not found any
positive result [9]. Another detector, GALLEX [10] is coming into operation soon.

Part 11
Neutrino oscillation

The basic idea involved in neutrino oscillation can be explained by its analogy
with the more familiar example of spin precession in a transverse magnetic field.
Suppose one produces particles of spin ; whose spins are polarized in the +z (or
‘up’) direction. The beam travels through a region where there is a magpetic field
in the y direction. The ‘up’ spin is not an eigenstate in this magnetic field. For
this, the beam undergoes precession as it travels. If one looks at the beam affer it
travels some distance, one finds that the beam is & superposition of up and down
spins.

Let us restate the last seutence in a different way. We started from a spin up
beam, but after it travels some distance, the probability of finding up spin in the
beam is less than unity. In other words, there is a “depletion” of up spins. Neutrino
oscillation explaihs the depletion of solar v,’s in a similar fashion, i.e., by postulating
iat the states which are created or detected are not the eigenstates of propagation.

13



3 ;Vacuum néutrino oscillations anrd the solar
neutrino problem

3.1 Hamiltonian formulation of vacuum neutrino oscilla-
tions

The electron neutrino, v,, is the state produced in a beta-decay where a positron
(e*) is also produced. The muon neutrino, v,, is the state produced in 7+ decay
alongwith p+. We will call v, and v, as “flavor states”. From these definitions,
it is not obvious that these flavor states are physical particles. In general, each of
them may be superpositions of different physical pa.rt;icles. In other words, the state
produced in a beta-decay ‘might have some probability of being a particle v;, and
some probability of being v,. Wc¢ will call these states, 14 and v, as the partxcle or
physical states. We introduce the notation

0 [Ve ) — (U
w-() ()

and consider the possibility that v{f) £ p®), We can write
V() = U@ {3.2)

where U is called the mixing matrix. Since by our convention, the states in »(f)
and v are orthonormal, U must be a unitary matrix. In the standard inodel of
electroweak physics, all neutrinos are massless and hence degenerate. In this case,
the matrix U does not have any physical significance. Thus, by introducing the
matrix U, we are assuming that the neutrinos are not all massless.

If we include the third generation of fermions in this discussion, ¥(¥ should
have also the state v,, and therefore ¥®) must have three physical eigenstates. The
mixing matrix U will be a 3 x 3 matrix. But we restrict ourselves to two generations
for the most part of this article. The reason is: two generations are sufficient for
explaining the theoretical ideas involved in the solution of the solar neutrino puzzle,
and the third generation just makes all the formulas more complicated. Therefore,
we will introduce the ideas with the help of two generations and will discuss the
effects of the third generation later.

We now study the time evolution [11] of a neutrino beam which, in general, is
a superpositior. of both v, and v, — or alternatively, of v; and 1,. The evolution
equation would look particularly simple in the basis ¥/(P):

i%u(p)(t) = HVO)(t) (33)

14



where H is the Hamiltonian which is diagonal in this basis:

E1 O
H= ( o B, ) (3.4)

In the solar neutrino problem, we will be dealing with neutrinos whose ener-
gies are in the MeV range. Direct laboratory expenments put the following upper
bounds on the masses of v, and Yyl

m,, <12eV, m,, < 250keV. - (3.5)

Thus, we will assume m, <« E, for o = 1,2. In this case, one can write

2

2 Ipl

For the same reason, we can use z, the distance travelled by the neutrino, instead
of the time ¢ as independent variable. The difference between ¢ and = will introduce
higher order corrections in m/ |p|. Thus, the spatia! evolution of the neutrino beam
is governed by the Hamiltonian

1 m? 0
H = |p|+ = (1 2)

E, =P’ +m ~|p|+

(3.6)

2 |p| 0 m;
m? + m%) A
= + - os3. 3.7
(lpl 4l ) 4lp] "’ 37)
Here, o3 is the diagonal Pauli matrix and
A=mi-m?. (3.8)

For future purposes, it is better to write down the evolution equation in the flavor
basis. We can do this easily using Eq. (3.2) and remembering that v®) = Utp(f),
getting

d
2ty ) — ty,(f)

zdm(Uu ) = HUWO, (3.9)

which gives the following equation of motion for the flavor states:
2,0 — yHUtO (3.10)
dr
For two Dirac neutrinos,
U= cosf sind . (3.11)
—ginf cosf

15



The Hamiltonian in flavor basis is therefore given by:
H' = UHU'
mi+mi A [ —cos20 sin26
‘ + . .
4|p| 4|p| \ sin20 cos26

From this, we can deduce the xcletion between the diagonalizing angle 6 and the
elements of the matrix H':

= |p|+

(3.12)

 2H]
tan20 = ——12_ 3.13
%= M- (84
- Since H’ is independent of z, we can formally integrate the equation of motion to

obtain the solution
VO (z) = exp (—i H'z) VP (0). . (3.14)

To proceed, we make some simplification in the notation. First, we write |p| simply
as E. The energy eigenvalues would always appear with some subscript, so there
is no chance of confusion. Second, we notice that if there is a term in H' which is
proportional to the unit matrix, it gives an overall phase to the solution. Moreover,
such a term does not affect the mixing angle, as is seen from Eq. (3.13). Thus, such
terms are irrelevant for our purpose aud so we drop them. Effectively then,

H' A (04 8in 20 — 03 cos 26) . (3.15)

~4E
Thereiore,
vO(z) = exp [—Zf%:c (01 8in. 20 — 03 cos 20)} v (0)
A A
— v e O = @ 1 — " N —— (f
= [c,os EEe (o) 8in 20 — 03 ~0s 20) sin 1B :c] vW(0). (3.16)

Probability of finding a v, or a v, in an initial v, beam are given by

o

wu (@) = [(1:(0) | ve(z))|* = sin’® 26 sin® (a%z)
w. (@) = 1-P,, (2) (3.17)

U

Notice that the probability of finding a v, is less than unity in general. Pontecorvo
[12] suggested that this might cause the flux depletion observed in solar neutrino
experiments.



I

3.2 Confronting the solar neutrino data

To use Eq. (3.17) to explain the solar neutrino data, we should put for z the
earth-sun distance, 1.5 X 10'® cm. If we knew 6 and A, we could then calculate the
survival probability for neutrinos of any energy E. Since any experiment detects
a spectrum of energies, we need to integrate over that spectrum to find out the
survival probability for the entire beam. Let us use the notation

Ra= <sin2 (%m)> , (3.18)

where the angular brackets indicate energy averaging. Then, for a real experiment,
the survival probability is given by ‘

P,, =1— Rasin?20. (3.19)

The quantity R, is, of course, different from one experiment to another. In Fig. 4,
we have shown how it behaves as a function of A for the three experiments now in
operation [13].

To get an intuitive feeling for these behaviors, first note that

% = ( : eAVZ) (”‘éev) .1.25 x 102 cm™, (3.20)
so that, for the earth sun distance,
%w = (13/2) (mg’v) .19 x 101, (3.21)

Now consider, e.g., the Chlorine experiment. To start with, disregard the interme-
diate energy neutrinos coming from “Br, N or 1°0O decay, or from the pep reaction.
For the high energy neutrinos coming from 8B decay, the energy is around 10 MeV.
If A < 10~1°¢V?, the quantity (A/4E)z becomes so small that we hardly have
any oscillation, i.e., R =~ 0. On the other extreme, if A > 10-1%eV?, the os-
cillations are so rapid that the effects from different energies average out and we
obtain R = 1. In the region around 107 eV? we have to really integrate over the

- spectrum which gives the larger wave-like shapes in Fig. 4.

If now we include the effect of the intermediate energy neutrinos as well, we
obtain these spikes of smaller period in A superimposed on the waves of larger
period. Since the energy of intermediate energy neutrinos is around 1 MeV, the
spikes also average out for A 3> 107' ¢V?. This explains why the spikes smooth
out towards the right end of Fig. 4a.

Similarly one can understand the Ra values for other experiments as well. Once
these are known, one can use Eq. (3.19) to find out the survival probability for given

17
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values of A and 6, and see which values are consistent with known experimental
data.

For the Chlorine experiment, this is straightforward. From Eq. (2.5), we can
say

0.19 < P, <0.35 | (3.22)

at the 20 level, i.e., at the 95% confidence level. For the Kamiokande experiment,
there is one important point to remember. The flux that Kamiokande detects is not
merely the v.-flux. If v, oscillates to v, (or v;), the v, will also interact with the
detector electrons via neutral current. At the energies relevant for the experiment,
v,e scattering cross section is about one-seventh of the v.e cross section. Thus,
what Kamiokande detects is “

1

PKam = Pu,ue + ',?Pucup . (3.23)
Since P,,,, = 1- P,,,,, one can write
P, = %(7PKam - 1) . (3.24)

The result of Eq. (2.6), which gives Pxam = 0.46 £0.08 after adding the two errors,
gives

0.18 < P, < 0.55 (3.25)

at 95% confidence level. It is this range that has to be compared with the expression
in Eq. (3.19).

The plots [13,14,6] of allowed regions in the parameter space of A vs § has been
shown in Fig. 5. In fact, since it is sin® 26 that appears in Eq. (3.19), it is convenient
to use sin’ 20 directly as the z-axis variable. As seen from the plot, some small
regions of the parameter space are allowed by known data. The region has a very
small value of A, far smaller than any values explored in terrestrial experiments®.
We will show next that solar matter can enhance neutrino oscillations so that a
much larger region of the parameter space becomes acceptable.

4 Neutrino oscillation in uniform matter

In the previous discussion, we assumed that the neutrino travels through the vac-
uum, which is a good approximation to the path between the sun and the earth.

1A summary of terrestrial searches of neutrino oscillation parameters is given in Appendix A.
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Figure 5: The regions of the parameter space of A vs sin® 28 allowed by both
Chlorine and Kamiokande data. The dashed lines correspond to Kamiokande limits
and the solid lines to Chlorine experimental limits at 95% confidence level. Adapted

from Ref. [6].

But the neutrinos are produced mostly deep inside the sun, and first they have to
pass through the solar material to get out of the sun. Oscillations in the sun, or in
any material medium, can be quite different from oscillations in the vacuum. The
basic reason for this, as pointed out by Wolfenstein [15], is that interactions in a

‘medium modify the dispersion relation of particles travelling through.

We are very familiar with this phenomenon for the photons. They are massless
in the vacuum so that their dispersion relation is simply £ = |p|. In a medium,
however, the dispersion relation is more complicated, which can be interpreted by
saying that the photon develops an effective mass. Because of this, it does not travel
with speed c in a medium.

Dispersion relations essentially give the energy of a particle in terms of its mo-
mentum. Thus, in quantum mechanical language, a different dispersion relation
signifies a different Hamiltonian of the system, which gives a different time evolu-
tion of any wave function. For a neutrino beam travelling through the solar material,
the evolution is different from that of the same beam travelling in the vacuum.

Solar medium, of course, is non-uniform. Before getting into a discussion of
neutrino propagation in such a medium, let us take the simpler case of a neutrino
beam travelling through a medium of uniform density. Interactions in the medium
affect the dispersion relation of the neutrino. To quantify it, we consider neutrino
scattering in matter'®. Solar matter consists of electrons, protons, and neutrons. Of
these, the electron neutrino can have charged current interactions with the electron

MHere we follow the derivation of Ref. [15]. A field-thoeretical derivation is given in Appendix B.
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only. The v,, on the other hand, could participate in charged current interactions
only if muons were present but the solar core temperatures are not high enough for
that condition to be satisfied. Hence, so far as the solar interior is concerned, the
charged current contributions affect only v,. The effective Lagrangian for such an
interaction is

L = " feulon)rvc (o)} s o) men o)}

- 4AGr (_ - ‘ ‘
= 75 [ e} e o) ()} (4.1)
where the second form is obtained via Fierz transformation. For forward scattering
where p; = p3 = p, the 4-momentum of the neutrino does not change. Looking
at such a case, it would be impossible to know that a scattering phenomenon took
place at all. We would rather simply think that the neutrino is propagating with

4-momentum p. Therefore, this gives the following contribution to the propagation
of the v.:

% <‘é’7A (1“%15‘) e> e (P)rVer (P) + (4.2)

averaging the electron field bilinear over the background.

The solar core temperature is much smaller than the electron mass, so we can
consider the electrons to be non-relativistic. It is easy to see, from the explicit forms
of the Dirac spinors, that the various averages turn out to be as follows:

(EYrvs€) ~ spin
(evie) ~ velocity
(Eve) = ne. (4.3)
Since spin and velocity are negligible for a collection of non-relativistic particles,

the only appreciable contribution to the effective Lagrangian from charged current
interactions is given by

V2GFne Ve Yover - | (4.4)

Next, we consider neutral current contributions. The effective interaction is

Lot = % [Fe)) 7 (Lo Py - Qsin® 0w ) £(p:)] P(po) 12 Pv(pa)],  (45)

where f stands for electrons, protons, and neutrons. The symbol v can be either
v, or v,, since both have equal neutral current interactions. Contribution to for-
ward propagation can be determined in exactly the same way as in the case of
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charged current interaction. One obtains the following contribution to the-effective
Lagrangian:

V2Gr |3 ny (I, — 2sin® 0w Q') | Tryovs. (4.6)
!

In this equation, I{L denotes the third component of weak isospin for the fermion
f, and @ is the electric charge of the same. For electron, proton and neutron, the
values of these quantities are as follows:

| Iy Q
e |-1/2 -1 (@7)
pl1l/2 1
n|-1/2 0

From this, we see that in Eq. (4.6), the electron and proton contributions cancel in
a neutral medium where n, = n,. The neutral current term is thus given by:

1 _
"'\7——2'Gan (veL Yo Ver + VuL Yo VuL) . (4.8)

The charged and neutral current contributions, taken together, add terms of the
form 77°Vv to the effective Lagrangian. The value of V is different for v, and v,:

V;a = ‘/_GF (ne - }“nn)

2
V. = ‘/.:)‘Gpn,1 . (4.9)
The meaning of such terms is understood if we write down the Dirac equation:
YE—-~-p—-m=17"V. (4.10)
Rearranging the terms as
YE-V)=v-p+m | ,‘ (4.11)

and squaring both sides, we finally obtain

E=V+yp+m. (4.12)

Thus, V just adds to the energy for a given momentum. In this sense, V' can be
called the potential energy..
Evolution equation in matter is therefore given by

i2 )0 = Fy (4.13)
dr
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where

v 2 e = L m
H=H+ V26 (ne ~ 3mn) 0 , (4.14)
‘ 0 —V'Z'GF'n"
H' being the vacuum part, given in Eq. (3.12). Thus,
= m,%_}_m% —__1_ _1_~2 ‘
H = B+t - —=Gen 4 o0, (4.15)

where E, as before, is a'sho‘rtha*nd for the magnitude of the 3-momentum of the
neutrino beam, and

. 1 -Acos26 +2A Asin26
M? == 4.16
2( Asin 20 AcosZO) ’ (4.16)
where for the sake of convenience, we defined
A = 2V2G.E. (4.17)
The effective mixing angle in matter, 5, would accordingly be given by
~  2H, _ Asin26
tan20 = T _H. Dow—A4’ (4.18)
and the stationary eigenstates are
B = vecosf—u, sin @
U, = v.sinf+v,cos 8. (4.19)

Notice an interesting feature of the eigenstates. As an exampie, consider that the
vacuum mixing angle 6 is small. Then, for n, — 0, 6 — 0, so that 7, ~ v,. On
the other hand for n, — oo, § — I, so that # = v,. In other words, the lower
mass eigenstate is almost purely v. if matter density is vanishing, and is almost
purely v, if matter density if infinite. As we will see, this fact has very important
consequences.

The energy-momentum relation in matter is given by the eigenvalues of the
matrix H , which are

B =B-Gm,+Te (4.20)
o = \/Q FTy 2E7 .
where
mf,2=-;-[(mf+m§+A)=F\/(Ac0820-—A)2+Agsin220]. (4.21)
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Figure 6: Effective energies of neutrinos in a medium. The quantity A is propor-
tional to the number density of the electrons. The solid lines are the energies for
the physical eigenstates, the dashed ones are expectation values of energy for the
flavor states. The scale on the vertical axis is arbitrary. We used 8 = 0.1 for the
plot.
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These eigenvalues have been plotted in Fig. 6 as functions of A. The figure also
shows the diagonal elements of the matrix H, which are the expectation values of
energy for the states v, and v,. From the figure, it is easily seen that E, is close to
<E“,d> for low densities, whereas it is close to <E‘uu> for high densities. This brings
out the fact that 7 is mainly v, at low densities and mainly v, at high densities,
The opposite is true for 7.

- If a medium has a density given by A = A cos 26, the two diagonal elements are
equal. In this case, Eq. (4.18) shows that the effective mixing angle is 7 /4, which is
to say that the states v, and v, are maximally mixed in the eigenstates. The nature
of this maximal meing is best understood if, from Eq (4.18), we write down the
expression for sin? 26:

A? gin® 260
(Acos20 — A + A?sin? 260

sin’ 20 = (4.22)
To appreciate the physical significance of the left hand side, we need to look back
at Eq. (3.17), which gives the survival and conversion probabilites of a v. beam
travelling through the vacuum. The corresponding probabilities for a '.eam trav-
elling through a uniform medium can be obtained by replacing 6 by § and A by
the effective mass difference in the medium. Taking the average of the z-dependent
term, we obtain

1-P,,, =P,,, = -sin’ 24. (4.23)

N =

Thus, the left hand side of Eq. (4.22) is proportional to the conversion probability.
The right hand side shows that, as a function of A, the conversion probability has
the following kind of behavior:

constant

4.24
(A - AR)2 + 112 ( )

This is exactly the expression for a Breit-Wigner resonance of width I' centered at
Ag. |

Thus, the import of Eq. (4.22) can be summarized as follows: the conversion
probability, as a function of A, reaches a resonance at

Ap = Acos20 (4.25)
with width
I' = Asin26. (4.26)
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Figure 7: The plot of sin® 20 shows the resonant shape. We used § = 0.1 for the
plot.

Mikheyev and Smirnov [16] first realized the importance of the presence of such a
resonance in the context of the solar neutrino puzzle. This is the subject we discuss
next!®.

5 Resonant neutrino conversion

5.1 Motion of neutrinos in non-uniform matter

The crucial observation of Mikheyev and Smirnov [16] is that the neutrinos produced
deep in the sun will, in general, pass through a region of resonant density on their
way out of the sun. To see how this affects neutrino propagation, we first have to
derive the evolution equation for matter with non-uniform density, as in the sun.
We start with the equation for the flavor states

iLy0 = Lo, (5.1)

This is the same as Eq. (4.15), except that we omitted the unit matrix terms
because they do not affect the probabilities.
But

O = TP (5.2)

where U is a matrix similar to that in Eq. (3.11), with the angle 8 replaced by 8, the
effective mixing angle in matter. We can therefore rewrite the evolution equation
as:

L3 ((’jp(?)) = __1_1\72(7,7@) ) (5.3)
dz 2E

i

#5For an eazlier review of neutrino oscillation in matter, see Ref. [17].
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In taking the derivative, we must remember that, in non-uniform matter, g and
consequently U are different at different positions. Hence,

~ d d ~ 1 ~~

07— 5P 44| = 5P) — = A2 TP

sza: +z<de)u 2EM Uv'®, (5.4)
Using the unitarity of the matrix U, we then obtain the evolution equation for the
basis states in #(*):

d 1 ~i0 i d =

i— P = | —_TtM2T =7t —0 ) 5. )

i-P (ZE U—iU da:U) 7 (5.5)
The term UtM?2U is obtained for uniform matter as well, and gives, apart from
terms proportional to the unit matrix, the instantaneous eigenvalues m? and m? in
the diagonal entries. The other term can be calculated by using the explicit form
of U from Eq. (3.11). This gives [18]

if -~ ,2 ~

L (7 T AVEAN
;2 'dg mz 172
~igy OB

Note that if df/dz = 0, 7, and 7, are stationary eigenstates indeed. This was the
result obtained for a uniform medium. For non-uniform medium like that of the
sun, we will have to solve this equation to find different probabilities.

5.2 Adiabatic solution

In one situation, the solution of Eq. (5.6) is easy to find. This is the case when
df/dz is small, so that we can use the adiabatic approximation. Later, we will
quantify how small do /dz has to be for this. Here, we will assume that, the relevant
condition is satisfied, so that adiabatic condition prevails [19,18). In that case, ¥
traverses as 7 , although this means a different superposition of v, and v, at different
points. The same is true for 7. This can suppress the flux.

Consider an illustrative example. Suppose 4, — oo (i.e., n. — 00), where
the subscript ‘0’, from now on, will indicate the quantities at the point where the
neutrino is created. From Eq. (4.18) and Eq. (4.19), we then get

§— =, ie, v . (5.7)

I T

This 7, beam traverses outside the sun, where A = 0. There,

v; = V. 8in 0 + v, cos 6. (5.8)
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' Probability of finding v, in this beam is given by |(v. | v2)|*. Putting the superscript

‘(ad)’ to remind ourselves that we are dealing with the adiabatic solution, we can
write

PP —gin’§ for A — co. (5.9)

We started with a beam which was almost purely v,. After it came out of the
sun, we see that the probability of finding v, in that same beam is gin’ 4. If 6 is
small, this can mean a tremendous suppression. This is the main essence of the
resonant neutrino oscillation effect, which is usually called the Mikheyev-Smirnov-
Wolfenstein (MSW) effect by the authors of the pioneering papers [15,16].

In general, at the point of creation, the effective mixing angle is not m/2, but
has some value ;. In that case,

Ve = 91 cos 50 + gg sin 60. (5-10)

Thus, there is a probability cos? f, that the neutrino is produced as ¥. If that
happens, it travels outside the sun as 7 where it can be detected as a v, with a
probability cos? #. This contributes a term cos® fo cos? @ to the survival probability
P,,,.. Alternatively, the neutrino might be produced as ¥, which has a probability
sin? @,. In this case, the probability that it is detected as v, is sin® . Adding these
two cases, we then obtain the total survival probability:

PaY = cos? B cos® @ + sin® G sin® 4

R . 1 -
=1 (1 + cos 200) (1 + cos20) + i (l — cos 290) (1 — cos 26)

2 2

The probability of conversion to v, is consequently given by

= 111 0625, cos26. | (5.11)

Vele

P =1- P&) = % - % cos 26, cos 26 . (5.12)

It is worth mentioning here that we have made an implicit assumption in deriving
these probabilities. More rigorously, for the detection of v, at a distance = from the
point of production, we can write

P (@) = |(vel@)|ve(ON]* .
= |3 (te(@) | va(@)) (va(@) | 1a(0) (na(0) [ (0]} ,  (5:13)

by introducing the complete set of states v,. The rightmost and the leftmost inner
products give the mixing matrix elements at the points of production and detection.
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The middle matrix element gives & phése corresponding to the adiabatic propagation
of the states v,, which is

exp (z /0 ’ dm’Ea(w')) . (5.14)
So we get

2

P (g) = |¢ J 4= By 0088, cos 0 + €' %' B2 gin f sin 0

VeVe

= —;- [1 + cos 26, cos 26 + sin 26, sin 26 cos (/:da:'(Ez - E))] (5.15)

The values of E, and E;, depend on the 3-momentum of the neutrino beam. In Eq.
(5.11) and Eq. (5.12), we assumed that the cosine of the energy integral vanishes
when one sums over the range of neutrino momenta detected in an experiment. From
the discussion in Sec. 3.2 about Fig. 4, this can be seen to imply that A > 101° eV?.
As we will see later, the solutions we obtain are consistent with this condition.

5.3 Non-adiabatic effects

Non-adiabatic effects induce transition between the states 7, and 7,. Later, we will
show that for realistic parameters, such effects are important only around the res-
onance regiou [20]. For otber regions, the adiabatic approximation can be used. In
the resonance region, one tries to solve the propagation equation exactly, assuming
some simplified forin of density variation that can be approximately valid in that
region. From this, one finds the probability that in this region, transition from one
eigenstate to another has taken place. We call this probability X. Suppose a v,
produced in the sun was going to survive as a v, if the conditions were adiabatic,
i.e., if there were no jump between the states 7 and 7. In the non-adiabatic case,
it would still survive as a v, provided no jump took place, a phenomenon whose
probability is 1 — X. On the other hand, situations that would have ended in a v,
in the adiabatic case, might yield a v, in the non-adiabatic case if a jump occurs.
Therefore, taking non-adiabatic effects into account, we get [21]
P, = (1-X)P{)+XPe)
1

= 3 [1 + (1 — 2X) cos 26, cos 29] ) (5.16)

where the adiabatic probabilities were taken from Eq. (5.11) and Eq. (5.12). Later,
we will find X in terms of the fundamental parameters A and §. Once that is known,
Eq. (5.16) gives an analytic formula for determining the survival probability of a
v, travelling outwards in the sun.
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There is one situatior. where the expression for the survival probability is some-
what more involved. Consider, for this, a neutrino produced in the far half of the
sun. There is a certain probability that will travel towards the earth. If it does, it
will pass through the core region. If it is created far enough out in the sun where
the density is lower than the resonance density, it crosses the resonance region once

" while coming towards the core. After that, it crosses the resonance region again

on its way out. We can use reasoning similar to that in the previous case to find
the survival probability in this case [22]. Here, Pu(fi) needs to be multiplied by the
probability that the neutrino either performs no jump near both resonance regions,
or that it jumps to the other level in the first resonance region but jumps back in
the second region. Similarly P{*) will be multiplied by the probability that the
neutrino jumps near one resonance region but does not jump near the other one.
Thus,

P, = [(1-X)*+ X" P +2X (1 - X) P&
- .;_ [1+ (1 - 2X)” cos 2B cos 26] . (5.17)
Thus, Eq. (5.16) and Eq. (5.17) give us analytic expressions for the survival proba-
bility in the general case provided we can express X as a function of the parameters
of the problem. To proceed further, we need to find what X is. This is what we do

next.

5.4 The adiabaticity parameter

Recall the form for the hamiltonian matrix in Eq. (5.6). The adiabatic solutions
were obtained by assuming 6 to be a slowly varying parameter. Let us now try to
quantify this statement, which will also lead to a plausible expression for X.

Simply stated, adiabaticity condition means that the off-diagonal terms in the
matrix of Eq. (5.6) are much smaller than the diagonal terms. However, in writing
the evolution equation, we omitted unit matrix terms at our will. Such terms would
change the diagonal elements, but will keep their difference unchanged. Thus, in
diagonal terms, the only physically meamngful quantity is the difference. Therefore,
the adiabaticity condition is

dr

db
2E

‘ <~ Mal lml m2| (5.18)
Using the expression for f in Eq. (4.18), we get

A sin 26 . dn.
(Acos20 — A)® + A?sin’ 20 da
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The mass-square eigenvalues were giw)en in Eq. (4.21). Using them, we reduce the
adiabaticity condition in Eq. (5.18) to the form

dn,
dz

[(A cos 20 — A)? + A? gin? 20]%

.20
2V2GrE? « Asin20 (5:20)

Recalling the expression for the effective mixing angle in Eq. (4.22), this can be
rewritten as t

y(z) > 1 (5.21)

where the quantity

(z) = (A/E)® sin’20 1
" 9V2Gr sin® 20 \d-ar—|

(5.22)
do !

can be called the “adiabaticity parameter”. It depends on the position through 6
and dn,/dz.

If the density is very high at some point, # — m/2 so that v becomes high. If
matter density is vanishing somewhere, § — 6, so that once again + is large unless

9 itself is close to m/4. In Fig. 8, we plot y(z) for various values of A/E and 6,
assuming that the density profile of the sun is given by [23]

2
1o () = 98.8 Ny, €XP (— z“i b) , (5.23)

where z = r/Rg, a = 11.1, b = 0.15, and n,y, is the convenient unit of Avogadro
number of particles in 1cm?®:

Navo = 6.03 X 10%/ cm®. (5.24)

This is a very good fit, as can be seen from Fig. 9.

From Eq. (5.22), it is obvious that the adiabaticity condition is hardest to
satisfy at the resonance point, since sin 20 is maximum there. In fact, in all cases
shown in Fig. 8, the regions far from the resonance point can always be treated
adiabatically [20]. The jump probability X introduced earlier thus depends only on
the conditions near the resonance. Let us call by the symbol vz the value of ()
at resonance. It can be obtained from Eq. (5.22) by putting sin 20 = 1 and can be
simplified by using the expression for resonant density | '

A cos 26

_ Lcosdb 5.25)
22 GrE (5.25)

Lo
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Figure 8: The solid lines give the adiabaticity parameter y(z) as a function of
the distance from the solar core, for various values of the parameter A/E. The
vacuum mixing angle  has been taken to be 0.1. The height of dashed lines are
proportional to the values of sin’ 20 for a neutrino produced at the solar core, with
the peak indicating the resonance point. Note different scale for the top graph.
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Figure 9: The dots are obtained from soia.r model calculations. The solid line is the
fit from Eq. (5.23). The dashed line is the fit of Eq. (G.1).

which follows from Eq. (4.25) and the definition of A. Thus, we obtain

_A sinf20 1
TR=TF cos20 |;;d;1nne

(5.26)

R
Of course, if yg >> 1, the propagation is adiabatic everywhere. If, on the other
hand, «g is close to or smaller than unity, X is appreciable.

Intuitively, it is clear that X should be larger for higher values of E, which
means that more energetic neutrinos should jump more readily. As E — 0, X
should vanish. Also, X cannot be a polynomial in E since the level crossing is
essentially a non-perturbative effect. These considerations indicate a solution of
the form

X = exp (—aF) (5.27)

where the quantity F is independent of E and depends on how n, varies with x
near resonance. If the variation is linear, for example, F is a constant, as we show
in the next section where we outline the derivation of the expression for X.

5.5 Evaluation of the jumping probability?
5.5.1 The semi-classical approach

The non-adiabatic transition probability between two states was calculated inde-
pendently by Landau [24], Zener [25] and Stiickelberg [26] in the context of atomic
physics problems, and was applied to the present case by Parke [21] and by Haxton
[27]. To find the leading behavior in the semiclassical approximation, we can use
Landau’s method of complex trajectory [28]. This method gives

InX = —2Im [$; (t1,8.) + Sz (b, t2)] +° (5.28)
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where S (t1,t.), for example, denotes the action for the motion of the neutrino beam
in state 7; from some initial time ¢; to a transition time £, which will be specified
shortly. After the time ¢,, one uses the action in state 7, upto some final time ¢,
when the neutrino beam goes out of the non-adiabatic region. The imaginary parts
of the action remains unaffected if we take ¢; = ¢; = tp, tp being the time at which
the neutrino beam crosses the resonance point. Thus,

In X = —2Im /; it (B, - B), (5.29)

where E,, are the energy eigenvalues in the medium, given in Eq. (4.20). We change
the integration variable from ¢ to A. This gives

A
_ — A2 2 qin?
InX = Im/ dA/d ) V(A cos 26 — A)? + A?sin? 26, (5.30)

where we replaced dA/dt by dA/dzx since we have been using t and z interchangeably.
The lower limit of this integral is Agr = A cos26. The upper limit, A,, is the value
of A at the “transition point” mentioned earlier. In Landau’s method, this is the
value of A for which the two eigenvalues coincide, i.e., B, = E,. From Fig. 6, we
see that this does not happen for any real value of A. Indeed from Eq. (4.20) and
Eq. (4.21) we get |

A, = Aet?? (5.31)

which is complex. Thus, the integration of Eq. (5.30) has to be done for complex
values of A. This is why this method is called the method of complex trajectories.

To evaluate the integral, one needs to know how A behaves as a function of x
in the resonance region. If the variation is linear, dA/dz is constant and we can
take it outside the integral. If its value is positive, we use the positive exponent
in Eq. (5.31) so that In X is negative. If dA/dz is negative, we use the negative
exponent in Eq. (5.31). In either case, changing the integration variable from A to
a= (A— Acos20)/Asin26, we get

A?sin’ 26 i = A’sin®20 w
= == .= 5.32
X = Fiiajdaly ™ [ davT+a@ =5 dAjdal, 4 (5.32)
Recalling that Ar = A cos 26, we can also write it as
Asin® 26 1 R
== 5.33)
ln X E cos 26 ‘d mAl (5.33)
This shows that in Eq. (5.27), we should take F' = 7, i.e.,
X = exp("‘—’YR) (5.34)

34



b

The result, of course, depends on the assumption of linear variation of A near
the resonace, which might seem a little drastic. For an exponential fall-off in the
golar density near the resonance, one obtains [29] F' = (1 — tan® ). This is of
particular interest since the solar density has indeed an exponential variation for a
large region in the sun. However, for most values of interest, the difference between
the exponential and the linear case is insignificant. Thus, in what follows, we will
stick to the simpler form F' = I. | '

5.5.2 The extreme non-adiabatic limit

Landau's method described above is a semiclassical one, and gives the leading term
in the limit of large values of the exponent. When 4y is very small (< 1), the
expression for X given in Eq. (5.34) is unsatisfactory.

The limitation of Eq. (5.34) can be understood from a simple example [30].
Consider a neutrino beam travelling through the boundary of a uniform medium

~ into the vacuum. The propagation is obviously adiabatic in' the medium as well

as in the vacuum, since both have uniform density. But at the boundary, there is
an abrupt density change so that dn./dr — oo, which means, through Eq. (5.22),
v — 0, i.e., the situation is highly non-adiabatic. Denoting a point deep inside
the medium by = and another far outside by y, we can write down the crossing
probability X as

X = [(n@)|a@)f
- lz ()| W) (a0 | )

4
2

X ()| ve(e)) (ve(z') | Ba (")) (B (2') | a(=))| ,  (5.35)

where z' is a point just inside the medium and ¥/’ is just outside the medium, on two
sides of the boundary plane. The flavor states are continuous across the boundary,
ie., (1(y')| w(z')) = 1. Using the mixing matrix in matter and in the vacuum and
neglecting all interference terms, we then obtain

X =sin®( - 6). (5.36)

If, for example, the medium is very dense, § — /2 so that
X =cos® 0. (5.37)

This is not the limit we obtain from Eq. (5.27), which gives X — 1 as yg — 0.
The difference is significant if § is not small. To convince oneself that it is Eq.
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(5.37) which gives the correct result and not Eq. (5.27), we plug in the expression
for X into the expression for survival probability in Eq. (5.16). This gives, using
50 = 1['/ 2, |

P, =1 7 in26. (5.38)

This is the energy-averaged survival probability in the vacuum, as obtained in Eq.
(4.23). This is the expected result since, with § = m/2, there is no oscillation in
the medium as can be seen by putting the mixing angel to be equal to 7/2 in Eq.
(3.17). Therefore, oscillation occur only after the beam escapes into the vacuum,
and therefore the vacuum result is expected.

Having becoming convinced of the limitation of the exponential form for X in Eq.
(5.27), we look for a better formula. This can be obtained by exact solutions of the
propagation equation. For this, one usually uses the flavor states directly. Starting
from Eq. (4.13), one can write down the two first order differential equations for v.
and v,. Eliminating v, from these equations, one gets

Ve + i(ﬁn + Hy,)ve + (ﬁfg — Hy Hy +iHy)ve =0, (5.39)

recalling, from Eq. (4.16), that only the fiu element is z-dependent. We now use
a new variable

a. = exp (i /w dm’ﬁn(m’)) Ve, (5.40)

which differs from the old variable only by a phase and therefore does not affect the
probabilities. In terms of this new variable, the equation becomes [22,31]

be + i(Hzz — Hyy)a. + Hya. = 0. (5.41)

This equation needs to be solved, putting in the z-dependence of Hy;. Once this is
done, the survival probability at a distance z is given by |a. (a:)|2

In principle, if Eq. (5.41) could be solved for the density profile of the sun,
one could obtain an exact answer for the survival probabilities of solar neutrinos.
This, however, cannot be done because the solar density profile has a complicated
shape. So, one solves Eq. (5.41) only near the resonance region and finds the jump
probability X exactly, which is given by 1 — |a.|>. Once this is done, one can use
Eq. (5.16) or Eq. (5.17) to find the survival probability after the entire journey
through the sun. |

The exact solution of Eq. (5.41) was first done for a linear variation of density
[21], but since has been performed for a number of other density profiles [32,33,34,
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35,36,30]. All of these solutions give the form

¥ = P (=YrF) — exp (—'yRF/ sin’ 0)

| 1 — exp (—'mF/ gin® 0) |
where F is to be calculated by using Landau’s method. Note that for vz — 0, this
gives the correct limit of Eq. (5.37). Since this form works with all known solutions,

it has been conjectured [30] that it works irrespective of the nature of the density
variation.

, (6.42)

5.6 Solution summary

Let us, at this point, summarize the solution of the evolution equation of the neu-
trino beam given in Eq. (5.6). The probability that a v. survives as a v, is given
by

P, = % [1+ (1 - 2X) cos 2 cos 26] (5.43)

where 8 is the effective mixing angle at the point where the neutrino is produced,
given by
2 8in 26

tan 260 =
A = T 0820 — 2v2Grme

(6.44)

no being the number density of electrons at the point of production. As for the
jumping probability X, we will use the simplest expression

w A sin?26 1
X -— —— 4 — . .
exp ( 4 E cos20 |Lgnp, R) ' (6.45)

which is valid if the density variation is linear near the resonance.

In order to calculate P,,,, for neutrinos of a given energy, we thus need two
kinds of information. First, we need to know the electron density profile of the
sun so that we know no once we know where the neutrino is produced. The profile
will also give us the quantity Ed; Inn.| at the resonance point, which appears in the
expression for X. Secondly, we need the parameters specifying the particle physics
aspects of the problem, viz., the mixing angle 6 and the mass square difference A.

In keeping with the spirit of the approach taken here, we will assume that we
know the density profile very well and will try to see if the observed solar neutrino
fluxes tell us something about the particle physics parameters § and A.

37



6 Resonant neutrino oscillation confronts the so-
lar neutrino data

6.1 A simplified example

~ To get a simple feeling for the solutions, we make two simplifying assumptions as

follows.

1. All neutrinos are procuced at a point where the electron number density is
98.87,v0, Which is the core dens.ty according to solar model calculations.

2. At the point of resonance, lc_i% Inn,
nance took place in the sun.

= 10R;!, independent of where the reso-

The first assumption is reasonable since most neutrinos are produced near the core
where the temperature is high. As for the second, we note that the density profile

ne(r) = 200 Tavo€™ 07/ R0 (6.1)

is in good agreement with astrophysical calculations everywhere except the inner
15% of the radial distance from the solar core, as seen from Fig. 9. Thus, as long
as the resonance does not occur deep inside the sun, the second assumptions does
not lead to a drastic simplification of the real problem.

We next note that in Eq. (5.43) through Eq. (5.44), the particle physics pa-
rameter A always appears in the combination A/E. Thus, to discuss the solutions,
it is better to consider A/FE as a single parameter. In Fig. 10, we show the nature
of variation of the survival probability P, ,, with A/E for various values of the
vacuum mixing angle 6. |

The nature of these curves can be summarized as follows. For high values of
A/E, the probability of survival is high. As A/E decreases, there comes a point
where the probability starts to fall until it reaches a flat basin. It stays there for a
while until, for even lower values of A/E, it rises again and reaches a plateau.

The key to the understanding of this nature of variation lies in Eq. (5.44) and
Eq. (5.45). We said before that at resonance, the effective mixing angle becomes
n/4. Outside the sun, i.e., in the vacuum, the mixing angle is 6 < m/4. Thus, the
neutrinos will undergo the resonar ¢ if, at the point of production, the effective
mixing angle exceeds /4. In that case, on its way out of the core, it will pass
through the point where G=m /4 and finally will come out with even lower value of
the mixing angle, viz., §. Thus, resonance conversion occurs provided b, > /4, or,
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Figure 10: The survival probability as a function of A/E for various values of the
vacuum mixing angle 6. The vertical scale runs from 0 to 1 for each graph. The
vertical dashed line for each graph corresponds to the value of A/E which gives
X = 0.05. We assumed that the electron number density at the point of neutrino
production is o = 98.8 Tlaye. For 6 = 0.5, the short dashes indicate the probability
obtained by using F = Z(1 — tan’#6) in Eq. (5.27). For other values of 6 shown
here, the distinction between this and F' = Z is not appeciable on the scale of the

plot.
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from Eq. (5.44), if

%cos 20 < 2/2Grno = 1.5 x 107" eV. (6.2)

The other important point to understand in the curves of Fig. 10 is the importance
of non-adiabatic effects. Obviously, such effects are small as long as X < 1, as
is seen from Eq. (5.43). Let us say the non-adiabatic effects are “important” if
X > 0.06. For a linear variation of density near the resonance, this occurs when
Yr < 3.8, where yr has been defined in Eq. (5.26). With our parametrization of
the quantity ‘;‘f; Inn,|, this gives

A sin® 26
-E' . w < 10~ eV, (6.3)

using Ry = 7 x 101°cm. In all the plots of Fig. 10, we have marked the value of
A/E corresponding to the equality sign in the last equation. The non-adiabatic
effects are important to the left of this mark.

At the right end of the plots of Fig. 10, the value of A/E is so large that neither
the resonance condition Eq. (6.2), nor the non-adiabaticity condition, Eq. (6.3), is
satisfied. Thus, X =~ 0 and from Eq. (5.44), 8 = 6, so that P,,,, ~ 1 (1 + cos® 26),
which is the average survival probability in the vacuum. As A/E decreases, at
some point it satisfies Eq. (6.2). For values of § < 1, this occurs when A/E =
1.5 x 10~ eV. Around this point, the survival probability drops down because of
resonant conversion of v, into v,, The range of values of A/E over which this fall
takes place, is determined by the width of the resonance given in Eq. (4.26). It is
clear from the plots that this width increases with increasing 6, as expected from
Eq. (4.26). For A/E substantially smaller than the resonant value the adiabatic
survival probability is just sin’ §, as argued in Eq. (5.9). This corresponds to the
basins in the plots.

If there were no non-adiabatic effects, the survival probability would have stayed
in that basin for all lower values of A/E. However, at some point depending on
the value of #, non-adiabatic effects become important, which results in a higher
probability of survival. The onset of this effect, as shown in Eq. (6.3), occurs
for lower and lower values of A/E for higher and higher values of #. In the plot
corresponding to & = 0.01, this onset occurs before the adiabatic basin is reached,
80 that the probability never goes down to sin’ 6, in contrast the other cases shown.

We now represent the solutions in a different way which would be more useful
later. Consider, for example, neutrinos of a fixed energy, and suppose we know
experimentally that their survival probability is between 0.19 and 0.35. We want
to find out which values of A and # will be consistent with this range of survival
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Figure 11: The dashed lines show the allowed region of the parameter space if,
for E = 5MeV, one finds 0.19 < P,,,, < 0.35. The dotted line is the same for
E = 10MeV if 0.18 < P,,, < 0.55. The shaded region is allowed by both the
conditions.
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probability. For # = 0.01 in Fig. 10, we find an almost continuous region around the
lowest point. As we go to the higher value # = 0.05, we find two clearly different
regions of solutions — one in the adiabatic region and the other in the non-adiabatic
region, separated by the basin where the survival probability is lower than the
values specified in the range. As 6 becomes larger, the adiabatic solution occurs
still roughly at the same value of A/E, but the non-adiabatic solution recedes
further owing to a broader basin. The basin, for increasing values of #, becomes
more and more shallow. For 6 = 0.5, we see that even the whole basin is within the
specified range of probabilities, so we obtain a large band of values of A/E for that
value of 6. Putting in the value of E, we can mark the allowed region in a plot of
6 vs A This plot for E = 5MeV has been shown in dashed lines in Fig. 11. Note
that the horizontal axis of this plot is not  but the combination sin® 26/ cos 26 that
appears in the expression for X. The advantage of using this as the independent
variable will be explained later.

As the figure shows, the contour corresponding to a certain survival probabil-
ity is roughly a triangular region in the plot. The upper and lower limits of the
survival probability thus select out a triangular band-shaped region. With just one
experiment, this is the best one can do to determine A and 6.

But now suppose we make another experiment with E = 10 MeV and obtain that
the survival probability lies between 0.18 and 0.55. This will similarly correspond
to a similar region in the parameter space, which has been shown by a dotted line.
Combining this result with the previous one, we can narrow down the range of
allowed solutions considerably. For example, the figure shows that the horizontal
parts of the solution are eliminated since they do not overlap. The vertical and
the diagonal branches are also narrower in the overlap region than in either of the
individual plots. ,

This procedure can be continued if one has more data at different energies. The
solution space can be restricted by the overlap of all the data available.

The simple example shown here is very close to the actual calculations done
for solar neutrinos. In fact, to make the example realistic, we have chosen the
ranges of survival probability corresponding to the dashed and the dotted lines to
be equal to the probabilities observed in Chlorine and Kamiokande experiments at
the 95% confidence level. The fact that we took E = 5MeV for the dashed lines and
E = 10MeYV for the dotted ones is reminiscent of the fact that at an average, the
Kamiokande detector detects higher energy neutrinos than the Chlorine detector.
That is why most of the features of the solution obtained here are similar to those
obtained by elaborate analysis, which we discuss next.
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6.2 The full analysis

The full calculation of survival probabilities for solar v.'s involves two levels of
complication which were left out in the simplified example given above. First, the
solar neutrino flux is not monochromatic, so one has to integrate over the energy
response. For different experiments, these responses were plotted in Fig. 2. Second,
in the simpler example we assumed all neutrinos are produced at the center. In
the detailed calculation, one has to take account of the distribution of the point of
production of the neutrino. We would also like to use the better density profile of
Eq. (5.23) rather than Eq. (6.1). '

The distribution of production point of neutrinos is obtained directly from the
solar model calculations. One important point to remember here is that some
neutrinos are created in the far half of the sun, and they undergo level crossing
twice. For such neutrinos, one must use Eq. (5.17) to determine the survival
probabilities.

Results of numerical integrations [6,37,38,39] over energy and production point
have been shown in Fig. 12. Qualitatively, the shape of the parameter space allowed
by Chlorine and Kamiokande data is similar to the shape of the allowed regions of
Fig. 11. For each experiment, there is a horizontal, a vertical and diagonal region.
Let us try to have some intuitive feeling for these branches of solutions.

Resonant conversion occurs provided 6, > /4, or, from Eq. (5.44), provided

Acos20 < Ao, (6.4)

where

x E no
= = -5 42,
Ay = 2V2GrmoE =1.5x 107° eV (1MeV> (98.8%0) : (6.5)

Consider now the horizontal branch [19]. As explained in connection with Fig. 10,
this branch represents adiabatic neutrino propagation. Since 8 « 1 for the most
part here, we can write the resonance condition as

- E Mo ) .
5 2 ,
A <15 x 10756V (1MeV) ( ) - (6.6)

For a given value of A, if this condition is satisfied for some value of E, all neutrinos
with that energy are converted. Only low energy neutrinos survive.

Next, consider the vertical branch. This is also adiabatic. Here the resonance
condition is satisfied for almost all relevant energies because either A is small or
cos 20 small, or both. All neutrinos survive with probability sin’® § irrespective of
E. Allowed range of 6 corresponds to =in? # being the observed probability.
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Figure 12: The dashed lines show the allowed region of the parameter space if
0.19 < P,,,, < 0.35 for the energy response of the Chlorine experiment as shown in
Fig. 2. The dotted line is the same for 0.18 < P,,,, < 0.55 where the Kamiokande
energy response has been used. The shaded region is allowed by both the conditions.



The diagonal branch [31,40,41] is non-adiabatic. To understand why this portion
" is almost straight, recall the expression of survival probability from Eq. (5.43). If
the density of production is high, B ~ w/2. If, moreover, § < 1, then we obtain
P, =~ X. Contours of constant P, ,, are then contours of constant X to a good
approximation. But from Eq. (5.34), log X o -yg, so that we need lines for constant
vr. Recalling the expression for vz in Eq. (5.26), we see that for a fixed energy,
equal B,,,, lines give Asin® 26/ cos 20 = constant. These are diagonal straight lines
in a log-log plot if we plot‘ A vs sin® 20/ cos20. This is the reason for taking this
combination as the independent variable in the plot rather than plotting @ directly.
Another advantage of this variable is that it expands the region near 6 = /4, so
that the vertical branch solution can be read clearly from the graph.

Note that the energy distributions have different characters for the three
branches. In the horizontal branch, the low energy neutrinos survive, the high
energy ones are converted. In the vertical branch, the conversion probability is
independent of énergy. In the non-adiabatic branch, the low energy neutrinos are
predominantly converted, high energy ones survive.

From this, it is not hard to see why the horizontal branch solution is ruled out
when we take both Davis and Kamiokande results into account [42]. The average
energy of detected neutrinos is higher in Kamiokande experiment. If the horizontal
branch solution were correct, they should have seen a larger suppression in flux than
the Davis experiment. The results, however, do not indicate that.

Once enough data is available to know the energy distribution of the neutrinos
detected, one can ascertain from any single experiment which branch does the solu-
tion lie in. Since chemical detectors cannot detect the energy of the neutrinos, they
are unsuitable for this purpose. Kamiokande can decide this issue with more data.
In fact, even with the present data, they argue that they see more depletion in the
lower energy sector, so that the horizontal branch is ruled out without any input
from other experiments [43]. The situation will be more clear when they have more
statistics.

7 Variations on the theme'

7.1 What if v, oscillates to a sterile neutrino?

So far, we have assumed that v, oscillates to v,. This assumption is not supported
by any experiment. All we know, from Davis as well as Kamiokande experiments,
is that the v,’s are converted to something — but we do not know what.
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Figure 13: The allowed region of the parameter space if v, oscillates to a sterile
neutrino. The shaded regions are allowed by both Chlorine and Kamiokande data.
For ' Ga detector, the standard solar model rate is taken to be 132 SNU.

If v, oscillates not to v, but to v, all the above analysis remain unchanged -
because v, and v, have same interactions in a medium which contains electrons but
not muons or taons. However, in many extensions of the standard model including
most grand unified models, there exist additional neutral fermion fields. In general,
v, mixes with them and therefore can oscillate into them. What happens, for
example, if v, oscillates to one such neutrino v, which is sterile, i.e., has no weak
interactions?

If we want to find the solution by vacuum oscillations, the only difference is
that, since the sterile neutrinos are not detected by the Kamiokande experiment,
we should use Piam = P,.,, rather than Eq. (3.23). Thus, at the 95% confidence
level, we should impose

0.30 < P,,,, < 0.62 (7.1)
instead of the limits in Eq. (3.25). This results in a somewhat smaller allowed
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region [13].

In case of the matter enhanced oscillation as well, the change is formally simple.
When we considered v, oscillating to v,, we needed the effective hamiltonian for
the v,-v, system, which was given in Eq. (4.14). Recall that in that equation, H'
is the hamiltonian in the vacuum, which has the same form if we considered the
Ve-v, system as well. Among the terms coming from matter contributions, the term
proportional to n. comes from charged current interactions, and will be unchanged
in the v,-v, case as well. However, in Eq. (4.14), the neutral current contriubitons
affect both v, and v, equally. If we consider the v,-v, system, v, will not have this
term since, being sterile, it does not have weak interactions. Of course, v, will have
the neutral current term as before. Thus, we have

— !
H=H'+(‘/§?n g) (7.2)
where
n=n,— —énn. (7.3)

The analysis is exactly similar, except n. has to be replaced by n’ everywhere. The
solution space changes [23], as shown in Fig. 13. To show the difference clearly, we
have presented the calculations for a "' Ga detector as well.

7.2 Solution with more than two generations of neutrinos

It is straightforward to generalize the formulas obtained for the two generation case
to include the effects of extra generations. For the vacuum oscillation case, we can
write any flavor state in general as

o) = Ua |Va) (7.4)

where the index o runs over all the mass eigenstates. If one creates a beam of v, at
t = 0, its time evolution will be given by

lve(t)) = 3 €7 U W) (7.5)
The probahility of finding the flavor state v in this state is given by

Po(t) = |(vo|ne®)l

* *
= Y |UaUpaUppUrs
B

cos[(Ex — Ep)t — @eviap) s (7.6)
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where

Prerap = arg(Uso UefaUe’zUt’ﬁ) . (7.7)
Using the approximation E, 3> m, as before, we can use Eq. (3.6) to write [11,44]
Py (@) = Zﬂ\UzaUgfaU;gUm‘ cos (2}3 T — e aﬂ) - (7.8)

where
Ay =mi —mj. (7.9)

As in the case with two generations, there are some allowed regions where the -
A-values are around 10-1°eV?. But, with taree generations, some new type of
solutions are also possible. '

For this, consider that we are in a range of values of Ays where (A,s/2E) 7 > 1
for typical energies of solar neutrinos. The energy averagmg then completely washes
out the terms with a # 8 and we get

P,, = ; Utal* [Ural* - (7.10)
To proceed, let us parametrize the elements of the mixing matrix by
U, =cosby, U, =sinb cosfs, U, =sinbsind,. (7.11)
Then,
P,... = cos’ 6, + sin’ 8, (cos* 6, + sin* 6,) . (7.12)

Unlike the 2-generation case where P,,,, > 1, here we can get P,,. aslow as
1. This can be consistent with the 20 survival probabilites found in Chlorine and
Kamiokande experiments, as given in Eq. (3.22) and Eq. (3.25). The solution for
the angles is shown in Fig. 14. The values of the mass square differences have to be
much larger than 10-1° eV? and are bounded from above by terrestrial limits given
in Appendix A.

It is easy to calculate the corresponding probabilities if we take matter effects
into account as long as the propagation is adiabatic. Following the arguments
leading to Eq. (5.11), we get

plad) =

Vevg

3 [T Vel (7.13)

o

where U is the effective mixing matrix at the point where the neutrino is produced.
This looks deceptively simple. The cumbersome part involves the determination of
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Figure 14: Vacuum oscillation solutions for the solar neutrino problem with
three generations of neutrinos. The mass square differences are assumed to be
> 10~1° ¢V?. The inside of the inner and outer curves are consistent with the data
at the 20 and 30 levels respectively. |

the elements of U in terms of the density of the medium and energy of the neutrinos.
The exact analysis for the three generation case [45,46] is quite complicated since
it involves the solution of a cubic equation. Some approximate solution techniques
have also been tried [47,48,49,50,51,52,63,54,55,56], which give more intuitive feeling
for the solution.

From the discussion of the two generation case, it is obvious that two resonances
will occur in the three generation case. In a diagram like Fig. 6, these resonances
take place when (E,,) crosses <Eu“> and (E,,) respectively. When the two crossings
are fairly far apart, the two resonances can be treated independently of each other.
But even then, confrontation of the data is quite involved for many reasons. The
solution space is much bigger since it involves two mass squared differences A
and Aai, as well as three mixing angles. In general, even CP-violating phases can
appear in the mixing matrix, making the problem more frustrating. Moreover, the
results of two experiments might not be correlated in the sense that one of them
might show a depletion in flux because of v.’s converting to v,'s, whereas the other
one might show a depletion because of v.’s converting to v:’s.

Non-adiabatic effects will make the problem further complicated. They intro-
duce transitions between different stationary states. If we denote the transition
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probability from a state 7, to a state ¥z by X,s5, then

Puve = L|0cl (Ul Xeag . (7.14)

af

For N generations, there are at most (N —~1)? independent quantities X5 since they
must satisfy the relations -, X,s = 1 and 35 X, = 1 which follow from unitarity.
However, the quantities X5 cannot be calculated analytically in general. Some
conjectures have beer. made in the case where the resonances are well separated
[67].

Part III
Neutrino magnetic moment

It has been argued from time to time® that the neutrino flux detected in the Chlorine
experiment has shown some anticorrelation with sunspot activity. This is shown in
Fig. 15, where we have plotted the Chlorine data alongwith the number of sunspots.
Notice that the scale of sunspot numbers is reversed, so a correlation on this figure
implies an anticorrelation in the physical quantities.

If this anticorrelation is believed to be real, perhaps the most reasonable ex-
planation of the solar neutrino problem would involve a magnetic moment of the
electron neutrino [59,60,61]. Qualitatively, the idea is as follows. Sunspot activity
is related to magnetic field in the sun. If the magnetic field is large, sunspot activity
is high. On the other hand, if neutrinos have a magnetic moment, they will undergo
spin precession in a magnetic field. The neutrinos produced in the nuclear reactions
are left handed. As they travel through a transverse magnetic field, they can precess
to a right handed neutrino which has hardly any interaction and therefore cannot
be detected. At the time of high sunspot activity, the magnetic field is larger, and
so the probability of precession to a right handed neutrino is also larger. In other
words, the probability of detecting a solar neutrino is smaller at the time of high
sunspot activity since the left handed component in the neutrino beam is smaller.
This results in an anticorrelation of neutrino flux and sunspot number.

In this part of this article, we will discuss the theoretical ramifications of the
aforesaid anticorrelation, assuming that it really exists. As for this assumption we
need to point out that although Fig. 15 indicates some anticorrelation, it is not
clear whether it is statistically significant. Moreover, one needs to remember that

¥6For a recent analysis and older references, see e.g. Ref. [58].
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Figure 15: The continuous line denotes the number of sunspots, and the circles are
the mean values of the % Ar produced in the Chlorine detector. The graph indicates
some anticorrelation. Note the inverted scale for sunspot numbers.
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the figure shows only data from the Davis experiment, The Kamiokande data is
fairly flat. Between 1988 and 1990 when the solar neutrino flux detected in the
Chlorine experiment dropped noarly by a factor of 4, the Kamiokande result varied
by 10% at most. In some sense, this difference in behaviour is also a puzzle of the
golar neutrinos, and some explanations have been suggested, as we will discuss in
Sec. 12. For the most part, we will be concerned with the depletion of flux at the
time of high sunspot activity.

8 Kinematics of neutrino propagation in mag-
netic field

8.1 Spin precession

In quantum field theory, magnetic moment interaction between two fermion fields
v and ¢/ is given by uo,,9' F*?, where F** ig the electromagnetic field tensor. If
¥ and ¢/ are same fields, the interaction reduces to x(s) + B in the non-relativistic
approximation, where B is the magnetic field and (s) is the expectation value of
spin. This identifies 4 as the magnetic moment of the particle. When v and ¢/
represent different fields, the coefficient u in that case is called a transition magnetic
moment.

In a background field <F‘*”>, the effect of magnetic moment y is to add a term
uho <F*P> to the free Lagrangian of a particle. This term connects opposite
chiralities since

Por ¥ = PLosYh + Yroa ¥, . (8.1)
Thus, these terms are similar to the mass terms in the sense that they contain no
interaction or derivatives and they connect opposite chiralities.

Consider [60,61] the system of a left handed neutrino v, and a right handed one,
vr. To keep the discussion general, we do not even assume that their masses are
equal — we denote the masses by m;, and mpg respectively. In a magnotic field B,
the evolution equation of this system is governed by the equation:

d (v _ | m}/2|p|  uB (u)
d() B _""*( uB  mi/2lp| )| \vr

_ [ Awr/aE uB . (VL)
= ( uB ——ALR/4E)+(unit matrix terms)} (8.2)

where
Arr =mi —m%, (8.3)

52



and as usual we have denoted |p| by E.
As in the case of the oscillation formalism, we can omit terms proportional to
the unit matrix in the hamiltonian without affecting any probabilities. Thus, we

write
d (v AR vy
i = (VR) = ( AR uBm) (Vn . (8.4)

For a uniform magnetic field, this equation can be formally integrated and one
obtains the solution:

(149) = - (g ) o] ()

= [cos Qx — a (iLER 0y + uBm) sin Qm] (u (0)) ’(8.5)

where
Q! = (uB)® + (Arr/4E)". (8.6)

If we produce a beam of v, at x = 0 and let it travel through the magnetic field, the
spin direction of the beam would undergo a precession. The probability of finding
a vy, in this beam at the point = is given by

P, (w> = |<VL(3’)|VL(O)>‘

- _ il
= |cos {dr 0iE sin O
= cos’ lz + cos® Bsin® Q. (8.7)

In the last step, we have introduced the angle £, which is defined by
uB

t = . 8.8
an ﬂ ALR/4E ( )
Spin precession is efficient when 8> 1, i.e., when

AR S 4EuB. (8.9)

Let us try to estimate how large the right hand side can be. The magnetic moment
is an effective neutrino-photon coupling through which the neutrinos can interact
with electrons. Laboratory measurements on neutrino-electron scattering puts the
bound |y <107'%up. For solar neutrinos, the energy is of order 10 MeV or less. The
magnetic field in the sun is not well-known at all. Educated guesses give B ~ 10°
to 10* Gauss. Using these values, we obtain [61]

|ALr| S 10~ 7 eV2. (8.10)
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For a single Dirac neutrino, this is trivially satisfied in the vacuum since Apr = 0.
The problem then reduces to the canonical problem of spin precession treated in
any elementary textbook of quantum mechanics. The present situation is a little bit
different since the magnetic field exists not in the vacuum but in the solar material.
So, the masses relevant for this problem are not the masses in the vacuum, but
rather the effective masses inside the medium. As described in Sec. 4, the effective
masses recelve contributions due to interactions in the medium. Borrowing the
results proved in that context, we write

mi = m?+2v2GrE(n, — %nn)

mp = m’ (8.11).

where m is the vacuum mass. Ncte that for vg, this is the same as the effective
mass since Vg does not have weak interactions. Thus, Arr = 2v2GrE(n. — in,),
and putting it in Eq. (8.9), we obtain for energies in the 1 to 10 MeV range,

1
Mo~ Mn S 10% em™ . (8.12)

This is possible in the outer part of the sun (convective zone).

8.2 Spin-flavor oscillations and resonance!

Relaxation of the upper bound on Apr (or consequently, on densities) can be ob-
tained if more than one flavor is considered. Consider two Dirac neutrinos. In the
flavor states, we now will have to include the right handed fields also to see the
effect of the magnetic field. Thus,

Vel,
pO = | L (8.13)
Ver
V“R
The evolution equation is given by
d
L0 — 0 8.14
iV Hv (8.14)
where [62,63]
-4%20529+V,,6 . £ sin 20 feeB  UeuB
H = 15 8in 26 mcos*20+Vu“ /,c,,eAB B (8.15)
Hee B M, B - 0
Heu B H;u B U
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Figure 16: The expectation values of the mass squared operator for different flavor
states. The crossings on this plot denote resonances. The vertical scale is arbitrary.

We have, of course, taken the liberty of omitting a term proportionai to the unit
matrix. The quantity A here is the mass square difference of the two physical Dirac
neutrinos in the vacuum, and 6 is the vacuum mixing angle. The various magnetic
moments have been represented by the quantities ue where £,£ = u or e. Finally,
V.. and V,,, are the potentials felt by left handed v, and v,,, which were given in Eq.
(4.9). Thus the upper left 2 x 2 block of the matrix # is the same as the Hamiltonian
H discussed in the context of neutrino oscillation in matter. The lower 2 x 2 block
has no matter contribution since the right handed neutrinos have no interaction
with matter. If the neutrinos are Majorana particles rather than Dirac ones, the
right handed objects would really be the right handed antineutrinos, so that even
the lower block will have matter corrections.

In Fig. 16, we have shown the plot of diagonal elements of H assuming n, ~ in,,
which is approximately valid everywhere in the sun except the inner 20% of the
radius. From the plot, we see two crossings of diagonal elements, which are the
regions where resonances occur. Thus, the v.;-v,r resonance occurs when

A
Ve = Z-E(l + cos 26) (8.16)
which gives the condition
1 Acos® 6
- = 7 8.17
(e = g™)r = 2v2G,F (8.17)
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On the other hand, the v.;-v,; resonance (or the usual MSW) resonance, occurs
when |

A cos 20
2V2GrE "
For 6 <« 1 the two resonances are close since in the sun, n, < n.. Because of this,
one cannot use the analytic solutions obtained in Part II for a single resonance. To

(ne)R = (8'18)

proceed, one can make some simplifying assumptions. For example, if the mixing
angle 6 is zero, and if the magnetic moments are purely transitional (i.e., g =
puu = 0), the 4 x 4 matrix of Eq. (8.15) decomposes into two 2 X 2 blocks. - The
block involving v,.;, can then be analyzed [64,65] in much the same way as the MSW
solution was analyzed. Of course, to do this, one has to make some plausible guesses
about the nature of variation of the magnetic field inside the sun. The experimental
limits on survival probability will select out regions in the parameter space of A vs
the transition magnetic moment. From such analysis, one finds that it is possible
to have solutions for A as high as 10-*eV?.

In the general case when the mixing does not vanish, the only recourse is nu-
merical solutions. For various acceptable values of the vacuum mixing angle 6, the
magnetic field B and the magnetic moments, numerical solutions were performed
[62,63]. They also show that values of Arp as high as 10~ eV? can be acceptable.
But for large A, the resonance occurs in the radiation zone (further inside). This
may not be related to sunspot activities. So let us, for the moment, stick to the
single flavor case discussed earlier.

8.3 How large a magnetic moment do we need?

For the single flavor case, we recall the solutioa of the evolution equation in Eq.
(8.5). Using it, we found in Eq. (8.7) the probability of finding a v after a v
beam travels through a distance x. Equivalently, we can write down the expression
for the probability of finding a vp in that beam:

PVLVR(:B) =1-F,,, (x) = gin? ﬂSinz Q. (8.19)

To obtain substantial flip, one not only needs 8> 1 but also Qz ~ 1. So far, we
have discussed the consequences of the condition 8> 1 and found that ALr has to
be small. Because of that, 2 ~ uB, so that the second condition reads uBz ~ 1.
Using the educated guess that B ~ 10° to 10* Gauss in the convective zone whose
width is £ ~ 2 x 10 cm, we obtain

p = (0.1t01.0) x 107" ug. (8.20)
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Previously, we mentioned the neutrino-electron scattering puts upper bounds of
order 107°up on neutrino magnetic moment. Here, we see that the magnetic
moment cannot be far from that upper bound if it has to provide the solution of the
solar neutrino puzzle. The question to ask then is: could neutrinos Lave magnetic
moment in this range for viable models of particle interactions?

Before entering into a discussion of this question in the rest of this part of the
article, we want to emphasize that the estimate of Eq. (8.20) has been based on a
specific estimate of the magnetic field. The magnetic fileds inside the sun are not
very well known. It has been argued that at the time of sunspot activities, the field
becomes as strong as 10 Gauss at some places [66]. If such a strong field exists over
a large region, we can obtain substantial spin flip with a magnetic moment much
smaller that what is specified in Eq. (8.20). It has also been argued [67] that apart
from the dynamical factor appearing in the neutrino propagation, which was shown
in Eq. (8.5), there can also be topological Berry phases, which can make the spin
precession more efficient so that magnetic moments as small as ~ 10~3up may be
sufficent to solve the solar neutrino problem.

Thus, the magnitude of the magnetic moment needed to solve the problem can
be debated upon. But in any case, the value that emerges is orders of magnitude
larger than what one would expect from the most obvious extension of the standard
model, which we discuss in Sec. 9.1. It is in this spirit that we approach the problem.

9 Easy models for neutrino magnetic moment

9.1 The simplest attempt

In the standard model, all neutrinos are massless. There is no right handed neutrino
field. Because of this, neutrinos cannot have any magnetic moment as well. Thus,
a neutrino magnetic moment calls for going beyond the standard model.

The simplest way to accommodate a neutrino magnetic moment is to add, to
each generation of fermions of the standard moeld, a right handed neutrino field vr.
Such a state would be a singlet of the gauge group SU(2);, x U(1)y, and therefore
will not have any gauge interaction. However, they will have Yukawa couplings of
the form

—LY = hpppvr + h.c. (9.1)

where 1, denotes the doublet of left-handed leptons, and ¢ is the Higgs doublet.
We have suppressed the generation indices in the above equation.
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Figure 17: 1-loop diagrams mediated by W-bosons which give rise to magnetic
moments of neutrinos.

The Yukawa coupling given above produces neutrino mass m, when ¢ develops
a vacuum expectation value. The magnetic moment arises at 1-loop through the
diagrams shown in Fig. 17. It is easy to make a rough order-of-magnitude estimate of
the magnetic moment generated by these diagrams. The loop integration typically
comes with a factor of order 1/8n%. The photon coupling would contribute a factor
e. The couplings and propagators of W give the Fermi constant Gr. And then, it
is also clear that the magnetic moment will have a factor of m,. This is because
the vg does not have any interaction with the W. Thus, the only way to have the
vr on the outer line of the diagram is by having vz changing the chirality through
the mass to vy, which participates in weak interactions. Taking all these factors
together, we conclude

1
MKy ~ —S'FCGFm,, . (92)

Detailed calculation supports this estimate and gives [68]

— __3__ — -19 ( m, )
Wy = W eGrm, =3 X 107" up Tev) (9.3)

Since the v, mass cannot be larger than about 12eV, we cannot get a magnetic mo-
ment much higher than about 108y in this model. Compared to this benchmark
value, we need a huge magnetic moment, as we menioned earlier.

9.2 Naive Higgs models

To show that it is not impossible to cook up models with large magnetic moments,
we add to the particle content of the standard model not just the right handed
neutrinos vr but also a charged scalar field h, which is a singlet under the group
SU(2)r. This charged scalar field will have Yukawa couplings with the leptons:
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Figure 18: 1-loop diagrams involving Higgs boson exchange which gives the dom-
_ inant contribution to neutrino magnetic moment in the model of Sec. 9.2. The
photon line can be attached to any internal line. The blob denotes the 7-mass.

-Ly = ;; (fwizmﬂ/)em + fée/-D_KL'eR> h; + h.c., (94)
where the hats denote conjugate fields. The diagram of Fig. 18 will now contribute
to the magnetic moment of the neutrinos. Following the chirality of the fermion
line, it is easy to see that the diagram is proportional to the mass of the internal
fermion. Thus, it is expected that the largest contribution to the magnetic moment
is obtained when the internal line corresponds to the 7 lepton, and one gets [69,70]

_ ‘efeTfé'rmT M}%
Hee = “gam M7 (111 m ") (9:5)

The experimental constraints on the couplings f,, are very weak. One can have,
" .8y forfl, ~ 1071 if M) ~ 100GeV. In this case, the above equation gives u,, ~
10-10 us.

While the model cannot be ruled out from experimental data, some weaknesses
of the model are worth discussing. First, the model does not give any insight on the
smallness of neutrino mases. In fact, neutrino masses have divergent contributions
from diagrams like Fig. 18 without the photon line. These diveregences have to be
renormalized by some suitable prescription which will determine the neutrino mass.
Thus, from the point of view of the model, neutrino mass is completely arbitrary.
Secondly, the right handed neutrinos, being gauge singlets, can have a bare Majo-
rana mass term. If this term is present, the vy and the vg, once the mass matrix
is diagonalized, appear as chiral projections of two different Majorana particles. It
is then hard to understand how to satisfy Eq. (8.9) without making some extreme
assumptions about the bare mass of vgr. One has to therefore eliminate this term
by postulating a global lepton number symmetry on the Lagrangian.

The model can be easily extended [71] to a left-right symmetric model based on
the group SU(2)1, x SU(2)r X U(1)5-L, where h, would be a singlet of SU(2) X
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SU(2)g. In this case, the problem of bare masses is eliminated. However, one still
needs to impose a global lepton number symmetry in order to obtain Dirac particles.

10 Models with naturally large magnetic mo-
ments

10.1 Generic problem with large magnetic moment

The naive Higgs models described above can be tuned to give a small enough mass
for a given magnetic moment, as we discussed in that context. However, such a
procedure will suffer from unnatural fine tuning of parameters. To see this, let us
consider a generic magnetic moment diagram. The contribution of the diagram is:

eg

where M denotes the heaviest mass in the loop, e is of course the photon coupling,
and G stands for everything else. The same diagram, stripped of the photon line,
gives a contribution to neutrino mass. A naive order-of-magnitude estimate gives

m, ~GM . (10.2)
Combining these estimates, we get

Ky €
-7-’;: ~ ME . (10.3)

Thus, if we want u,, ~ 10~ ug, we need
M <1GeV. (10.4)

since m,, < 12eV. But, in the magnetic moment diagram, the internal line con-
necting to the photon must carry electric charge. Direct experimental searches show
that the mass of any unknown charged particle must be larger than about 45 GeV.
With M ~ 45GeV, if p,, ~ 10" up then the natural value of m,, turns out to
be about 20 keV. One therefore has to perform some unnatural fine tuning to keep
m,, consistent with its experimental upper bound of 12eV.

To get around this unnaturalness, one needs some symmetry in the theory. One
can ask whether there is any symmetry in the models described above which can
ensure m, = 0, but u, # 0. There isn't any. The only symmetry broken by a
neutrino mass term is a global chiral symmetry associated with the neutrino fields.
But exactly the same symmetry is violated by the magnetic moment term. This
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shows up clearly in Eq. (10.1) and Eq. (10.2), where G is the chiral symmetry
breaking parameter. Thus, once chiral symmetry is broken, one gets a nonzero m,
as wel!. One needs some extra symmetry in the model in order to obtain m, = 0
for p, # 0.

10.2 Towards a better notation

So far, we have written the magnetic moment operator as ¥go) v, plus its hermitian
conjugate. The mass operator, in the same customary notation, is gy, + h.c.. We
now want to write them in a different way which will be useful for later discussion.

Notice that the field operator Uy creates a right handed neutrino but also anni-
hilates its antiparticle, the left handed antineutrino (#,). The same operations can
be performed by the field operator of Uy, itself. In a matrix notation, one can write

vp =010, (10.5)

where C is a numerical matrix that rearranges the rows and is unimportant as long
as we consider the creation and annihilation properties only. Anyway, what Eq.
(10.5) tells us that it is possible to write everything using left handed fields only.
For example, the magnetic moment operator can be written as 97 Co,,v, + h.c.,
the mass term as U7 Cyy, + b.c. This strategy of using fields with only one chirality
is often used in grand unified model building. As we see now, here also the use of
this notation gives some important insight.

10.3 Suppressing m,/u, by a symmetry

Consider now the general case where there are a number of flavors of neutrinos. We
gather all the uncharged left-handed fields, including things like 77, and call them
¥, Where the index a runs over a range of values. Writing all indices explicitly, the
magnetic moment interaction can be written as

> 3 b (War), (COr)ap (W11) g F (10.6)

ap a,f

where ), p are Lorentz indices and e, # denote various components of a spinor. In
this notation, the most general mass term is given by

Z Emab (YaL)y Cap ("/)bL),@ . (10.7)

ab of

The advantage of this notation is that, since we are dealing with bilinears in-
volving the fields 1, only (as opposed to bilinears invloving V¥ as well), we can see
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the effect of Fermi statistics. If we interchange (¥ur)s and ()s, we expect a
negative sign. In the mass term, interchanging the spinor indices v, B gives a sign
since Cyp = —Cpq, i.€., C is an antisymmetric matrix. In that term, then, exchange
of the flavor indices a, b must not give any extra sign, i.e., we need |

mab = My, ( (10‘8)

to ensure Fermi statistics. On the other hand, we have the matrix Co,, in the
magnetic moment term. Using the relation

CpC™' = - (10.9)

which defines the matrix C, and tae equation

i
Txo = 5 [0 %] (10.10)

which defines o, it is easy to see that Co, is symmetric in the spinor indices, i.e.,

(Ca/\l’)aﬁ = (Car\p)ﬁa ' (10.11)

Thus, in Eq. (10.6), the negative sign due to the interchange of two spinors must
come from their flavor indices, i.e., we need

Hob = —Hbg - (10.12)

Voloshin [72] realized that these different symmetry properties of the mass and
magnetic moment might be crucial to explain a large magnetic moment for a small
mass. Consider the simple case where there are only two left-handed fields vy,
and 7r, and they form a doublet under some SU(2), symmetry. Then the mass
term, being the symmetric combination, would transform like a triplet where the
antisymmetric magnetic moment would be a singlet. Thus, if this SU(2), symmetry
is an exact symmetry of the Lagrangian of a model, massless neutrinos can have
nonzero magnetic moments in that model. As we will see next, the SU(2), is
broken in realistic models, which gives rise to nonzero masses as well. However, if
the SU(2), breaking is small in some sense, the ratio m, /u, can be kept small, which
is necessary for a natural explanation for a large magnetic moment of O (107! »).

10.4 Implementing the Voloshin symmetry

Implementation of Voloshin's idea [72] is problematic since SU(2), does not com-
mute with the electroweak group. Several possibilities can be explored.
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Way 1: Enlarge electroweak group to include SU(2),. An example of such a model
has been presented in Sec. 10.4.1.

Way 2: Use some other SU(2) for Voloshin mechanism, which commutes with the
gauged SU(2),. An example is a horizontal symmetry SU(2)y with ver, vy,
as a doublet [73,74,75]. The magnetic moment in this case connects v.;, with
vuL, 1.e., is transitional. Since v.;, is part of the doublet 4. of the gauged
SU(2), and v, is part of the doublet 1,;, we must put ., and Y, as
a horizontal doublet. Thus, in the limit of unbroken SU(2)y, one obtains
me = my. Such SU(2)y must therefore be broken to get m. # m,. The
subgroup L. — I, can remain unbroken.

Way 3: One can use a discrete symmetry with carefully chosen quantum numbers.
To see how this works, consider [76] what could happen if the theory were
invariant under charge conjugation C, with

C(ve)=-1, C(y,)=+1. (10.13)

The cross mass term v Cv, would then be odd under C, but the magnetic
moment interaction v7 Co,v, F** would have been even, i.e., invariant under
C owing to a extra minus sign coming from the odd C properties of the electro-
magnetic field. Thus, the magnetic moment term would have been allowed by
such a symmetry but the mass term wouldn't have. Of course, C is violated
nearly maximally in weak interactions, so in realistic models, the above argu-
ment does not work. But, if we have some other discrete symmetry having
similar property, it can suppress m,.

Way 4: One can try to find a discrete nonabelian symmetry with same symmetry
properties as SU(2),, i.e., under which the magnetic moment term is invariant
but the mass term is not. There are various nonabelian discrete symmetries
satisfying this condition [77,78,79,80]. We give some details of one such model
in Sec. 10.4.2.

Below, we give some examples of models implementing the ideas above. The particu-
lar models chosen have no bearing on their physical plausibility. They are presented
for illustrative purposes only.

10.4.1 Example: Extended electroweak symmetry!

As an example of implementing Voloshin’s mechanism with extended electroweak
group, we consider a model described by Barbieri and Mohapatra [81) where elec-
troweak interactions are described by the gauge group SU(3)r, x U(1)x. This group
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- Figure 19: 1-loop diagrams involving Higgs boson exchange in the model of Ref. [81]
which gives the dominant contribution to neutrino magnetic moment when & photon
is attached to any of the internal lines.

spontaneously breaks down to U (1)q of électromagnetism, with the charge operator
given by Q = T3 — 71§T8 + X, where

N
2v3
For a triplet, the electric charges are (X +LX+1X- %) The leptons in a
generation are assigned the following representations of the gauge group:

Ty = ; diag(0,1,-1), T = 5= ding(~2,1,1). (10.14)

peL 1
Ve =] vor | (3, —§)
€L
ef : (L,1). (10.15)

Looking at W, it is apparent that Voloshin's SU(2), acts on the first two rows of
the triplet, whereas the SU(2);, of the standard model acts on the last two rows.
The representations of quarks are irrelevant for our purpose. The same can be said
about some extra fermions which are necessary to ensure that the gauge anomalies
cancel.

In the Higgs sector, first of all there is a triplet (:

+
2\ 9

o= vt |:(33) (10.16)
¢°

so that (°) generates the mass of the electron and other charged fermions. There is
another multiplet ® which has the same gauge properties as ¢, but ($°) = 0. These
two Higgs multiplets have various Yukawa couplings, among which the following
_ terms are important for us:

~Ly = h¥. 0%l + fU, W, ® + f 0, 8 7f (10.17)
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In this equation, we have suppressed all SU(3), indices. If we put them explicitly,
the term whose coefficient is f will look like

Eapy Vo V7L 97 (10.18)

There are two 1-loop diagrams for neutrino mass, as shown in Fig. 19. Each has one

. vertex involving this interaction. One of these has o = 2, 8 = 3, v = 1, while the

other has a = 1, 8 = 3, v = 2. The antisymmetric e-symbol then gives a relative
negative sign between the contributions of the two diagrams, so that we get
i mg,
My, & {65 M lnmﬁ,z . (10.19)
The diagrams for magnetic moment are obtained by attaching a photon to any inter-
nal line. The photon attaches to particles of oppostie charges in the two diagrams,
which cancels the negative sign from the e-symbol. Thus,

- eff 1 mj, 1 m},
vo & Tz M i In m + - In | (10.20)

If SU(2), is unbroken, mg, = mg,, so that m,, = 0. SU(2), breaking effects,
due to additional Higgs representations not shown here, give m?,,m =mj £ 1Am}.
Therefore,

U

ff Am?
myo o~ 167"2 ¢ mg¢ (10-21)
! 2 2
w, ~ I L me 2 ) T (10.22)

82 my o m2 CAmE  mi
Demanding m,, < 20eV, u,, > 10~up, one gets Am% < 60GeV? for mi =~
(100 GeV)?.

The problem of the model [82] is that it is not easy to keep the SU(2), breaking
scale low without some fine-tuning of parameters in the Higgs potential. The ad-
vantage of this approach is that, since grand unified theories involve some extension
of the standard model gauge group, one can hope that the extended electroweak
symmetry needed here can come from some grand unified model in the course of
symmetry breaking. Indeed, it has been shown by Deshpande and Pal [83] that,
with some modifications, the above model can be derived from a grand unified

group.
10.4.2 Example: Quaternionic group!

Let us now give an example of how a discrete group can serve to implement
Voloshin's idea. Consider the quaternionic group Q. It is a discrete group of eight

6b



K M |

elements, which can be called &1, i, &4, 2zk. The complete multiplication table
can be deduced from the following rules: % = j? = k? = —1, i¢j = k, jh =1, ki = J.
Thus, the group has two generators which we can take as ¢ and j, and all othor ele-
ments can be obtained as their products. There are five irreducible representations
of the group. Four of them are one dimensional, which we denote by R, through R,.
The other representation is two dimensional, which we call D. The representations
of the generators 1 and j are given here:

|Ri R, Ry, Ry D
ill 1 -1 -1 —io (10.23)
i1 -1 1 =1 —ig

The D representation has the important property that D X D = (R} )antisymm + (B2 +
Ry + Ry)syuum. Thus, if fermions transform as D, magnetic moment will transform
like R; which is the trivial representation, invariant under transformations of the
quaternionic group. The mass term, on the other hand, will transform either as
Ry, R; or Ry — all of which are nontrivial. Thus, the group @ can act in place of
Voloshin's SU(2), to suppress m, [79].

To see how that works, we assign the following representations of SU(3). x
SU(2)L, x U(1)y x Q for fermions:

I :<1’2'“‘1vD)
e U/, 2

€R (],1, 1’R2)
KR : (Ll"‘ll,R«'i)
9L 9R F(3)1, ~3 Ry) (10.24)

Here, g is an extra vectorlike quark. The usual quarks are not relevant for what
follows, so we omitted them, The Higgs bosons of the model are:

gp:(l,Z,%,&), @:(1,2,%,1))
H: (3,2,-%,1)) . H: (3,2,-2—,1)). | (10.25)
The gauge invariant Lagrangian has the following terms involving the fermions:
—Ly = f (‘ijq))ng en+ fu (\f@)m Ha
+mygugr +h (TH), gn+ K (VH )p, g +he. (10.26)
and the Higgs potential contains the terms

V = Ao (HH")p, " + 3N (HH")g, (825, + .. (10.27)
i
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Figure 20: 1-loop diagrams involving Higgs boson exchange in the model of Ref. [79]
which gives the dorinant contribution to neutrino magnetic moment when a photon
line is attached to any internal line.

There are, of course, many other terms but they are not necessary in the ensuing
discussion.
The magnetic moment arises from the diagram in Fig. 20. A rough estimate of
the contribution is
~ EAPR'm, ()
B = 6remi,

This diagram without the photon line, cannot contribute to m, since ¢ is in the
antisymmetric R, representation. But consider a similar diagram with ® instead of
¢ in the external legs. This gives a mass of order
M o Aehh'm, (®)*

YT 16mim,

(10.28)

(10.29)

Thus

B €A <9P)2 1
— ‘ 10.30
my A(b <‘I’>2 m%[ ( )

If (®) < (), we can get a large magnetic moment with & small mass.

11 Other ways of getting a large magnetic mo-
ment

So far, we discussed Voloshin's idea [72] of putting some extra symmetry which
forbids neutino mass but does not forbid neutrino magnetic moment. There are
gome other ideas of how mass can be suppressed compared to the magnetic moment,
which we discuss now.
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Figure 21: The spin suppression mechanism works if the dominant contribution to
neutrino magnetic moment comes from a diagram like this, The blob represents an
effective coupling generated by loops.

11.1 Spin suppression

Barr, Freire and Zee [84] have suggested another interesting scenario in which neu-
trino mass can be suppressed without suppressing magnetic moment. Suppose, for
some reason, that the dominant contribution to magnetic moment comes through
the generic diagram of Fig. 21, where the photon coupling is an effective vertex
developed through quantum corrections. The helicity flip required to obtain the
magnetic moment operator is obtained through the coupling of the scalar particle.
The corresponding mass contribution is obtained by stripping Fig. 21 of the pho-
ton line. However, one this is done, we see that the blob involves a spin-0 particle
turning into a spin-1 particle. This would be impossible if we have the transverse
components of the vector particle connecting to the blob. However, the longitudinal
component of the vector particle is really a spin-0 particle, so it can connect to the
blob. In short, the vector line in the mass diagram must involve only the longitu-
dinal component, i.e, the unphysical Higgs. However, the couplings of unphysical
Higgs bosons can be derived from the gauge couplings irrespective of the details
of the Higgs content of the model. For couplings with fermions, one obtains that
the coupling involves factors m;/Mw, where m; is a generic fermion mass. Since
all known leptons are much lighter than My, this gives a suppression for the mass
diagram. In the magnetic moment diagram, however, the transverse componcuts
of the vector fleld appear in general, and so the coupling is not suppressed. More-
over, since in the mass diagram both the vertices on the fermion line flip helicity,
one needs another factor of lepton mass to obtain a net flip of helicity. Thus, the
suppression of the mass diagram is really m? /M{,. Thus, the bound of Eq. (10.4)
is modified to m, <1 GeV, which is surely satisfied for the electron and the muon,
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Figure 22: Adding a photon line to some internal line of thrsc diagrams give the
dominant contribution to neutrino magnetic moment in the model of Ref. [84]. The
scalar loops consist of Higgs doublets, and H is the unphysical Higgs eaten up by
the W.

and presumably also by the tauon.

To implement this idea, one therefore needs a model where a diagram like Fig. 21
indeed gives the dominant contribution to the magnetic moment. Barr, Freire and
Zee [84] observed that they do not have to invent a new model for this. A model of
neutrino mass, proposed long time ago by Zee [85], already has this property.

The model is based on the standard model gauge group SU(2); x U(1)y, and
contains several Higgs doublets (three are necessary to obtain large neutrino mag-
netic moment) and a charged field h, which is a singlet of SU(2);. There are no
right handed neutrinos. In Fig. 22, we show diagrams which give the dominant con-
tributions to neutrino magnetic moment because they are unsuppressed by powers
of me /My :

eM, '
puew ~ -(1—6;29)—2 %f;—z ) (11.1)
where fi is the Yukawa coupling matrix of h; as defined in Eq. (9.4), M, is
the trilinear coupling of h, with two Higgs doublets, and M is some heavy mass
characteristic of the loop. For M ~ M, ~ 100GeV, f ~ 107!, we can obtain
magnetic moments of order 107! ug.

The mass contribution from these diagrams is the matrix

My fe(mi—mj)
1672)? M ’

My ~ ( (11.2)

where m, and my are the charged lepton masses. The quantity M’ appearing in
this expression involves mass differences of the charged and neutral components of

‘doublet Higgs fields. If this splitting is small, it provides a further suppression in

neutrino mass [84].
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Figure 23: 1-loop contributions to neutrino mass Zee’s model.

It should be commented that neutrino masses in this model can come from the
1-loop diagram of Fig. 23. These contributions are not as suppressed as the 2-
loop diagrams since the loop integration factors are not as small. But the doublets
involved in this diagram have to be different because of SU(2), symmetry. So, if
we choose a besis in which only one Higgs doublet has a nonzero vev, and if the
fermions couple only to this doublet, Fig. 23 vanishes. This can be achieved by
imposing some discrete symmetries on the model [84].

11.2 Vacuum structure

Choudhury and Sarkar [86] have discussed a model where mass is suppressed for a
different reason. The essential features of the model can be summarized as follows.

Suppose we have a symmetry in our model which forbids both mass and magnetic
moment. Both mass and magnetic moment can therefore be generated only in the
symmetry breaking process. However, as we discussed in Sec. 10.3, the magnetic
moment operator and the mass operator transform like different representations of
the flavor group. Thus, they cannot be generated by a single vev. Mass arises from
a vev transforming like the symmetric representation, and magnetic moment from
vev like the antisymmetric representation. But suppose the vacuum structure of the
model is such that the antisymmetric scalars have nonzero vev but the symmetric
scalars are either absent altogether or do not acquire vev. In this case, one obtains
magnetic moment but no mass. '

As an illustrative example, Choudhury and Sarkar presented (86] a model based
on the symmetry SO(3)y x U(1); which commutes with the electroweak gauge sym-
metry. The U(1); here is the lepton number symmetry and SO(3)y is a borizontal
symmetry. Whether they are gauged or not is of no importance here. Leptonic
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doublets transform as a triplet of SO(3)x:

r
e u L

which has lepton number 1. There are no right handed neutrinos. Thus, mag-
netic moment terms must be transitional and transform like (3,2) representation
of SO(3)y x U(1);, whereas mass terms transform like (5,2) or (1,2). In the Higgs
sector, there are particles that transform like (3,2), which gives rise to magnetic

moment. But no Higgs transforms like (5,2) or (1,2), so no mass can be generated.

12 Chlorine vs Kamioka

In the prelude to this part of the article, we mentioned that the time variation in

the detected solar neutrino flux is apparent only in the chlorine experiment and not

in Kamiokande data. We can ask ourselves whether it is possible to understand this
discrepancy in a theoretical model.

The clue to the explanation might lie in the fact that the detection mechanisms
for the two experiments are very different. The chlorine experiment detects v, by
interaction with nucleons whereas the Kamiokande experiment detects neutrinos by
their interaction with electrons. Recall that the key point is that a magnetic field
rotates vy, into vg, and vr cannot be detected since we believe it has no interactions
with normal matter.

But suppose [87] in a model vp interacts with e” with strength comparable
to Gr. Then the Kamiokande detector will detect both v and vg with similar
efficiency and will not find any net change. But if vz does not have interaction with
quarks, ¥Cl detector will not see them.

To see how this can be realized in a model, add a Higgs doublet ¢’ to the standard
mode] Higgs. There can be Yukawa interactions of the form f UrYL¢, where 1y, is
the lepton doublet. The coupling constant f is not related to the neutrino mass
if ¢' has zero vev. The charged component of ¢’ will mediate e-v. interaction of
strength Z%};T If this strength is comparable to the weak interaction strength, Gr,

then the above situation is realized and we can understand why Kamiokande does
not see time variation in the flux.
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Part IV
Concluding remarks

13 Outlook for future experiments

In Part I, we described that there is a discrepancy between solar neutrino flux esi-
mated by solar model calculations and that detected by terrestrial experiments. In
Parts II and III, we showed that this discrepancy can be solved by some proper-
ties of neutrinos like mass, mixing or magnetic moment. Such properties are yet
unconfirmed from laboratory experiments, but the range of magnitudes of these
quantities required to solve the solar neutrino puzzle is largely unexplored.

Needless to say, one needs more data to explore the problem fully and confirm
which solution, if any, is acceptable by all experiments. To this end, the Davis group
and the Kamiokande collaboration continue taking more data. In addition, more
detectors are being planned or being built. The radiochemical "' Ga detector has
recently been brought into operation by the SAGE groupf[g], although their results
are tentative so far. The results of this detector will be crucial in our understanding
of the solar neutrino puzzle since none of the earlier detectors could detect the low
energy pp neutrinos, which constitute the bulk of the flux of neutrinos from the
sun. Some new type of detectors are also in a planning stage. A heavy water
detector at the Sudbury Neutrino Observatory (SNO) will detect neutrinos by their
charged- as well as neutral-current interactions. The proposed Borex detector made
of 1'B would also be able to detect neutrinos via both charged- and neutral-current
reactions with nuclei, as well as by electron scattering. If oscillation of v, to v, or
v, is responsible for the solar neutrino problem, purely neutral current detectors
should not see any depletion from the solar model calculations in the number of
total neutrinos detected.

With new and plentiful data, one hopes to see the time variation and the energy
dependence of the solar neutrino flux. The energy dependence, as argued before,
can decide between different regions of the solution space obtained by resonant
matter vscillation mechanism.

The time variation should tell us, first of all, whether the 11-year cycle of sunspot
activities is anticorrelated with the solar neutrino flux. If the answer here is affir-
mative, that immediately selects out the neutrino magnetic moment as the solution
of the puzzle. ‘

Further refinement can see if there are time variations at smaller time scales.
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For example, if neutrinos have a magnetic moment, one expects a semiannual cycle
in the solar neutrino flux. This is because the sun's magnetic equator is tilted at an
angle of about 7° with the earth’s orbit. Twice a year — in June and December — the
earth comes on the plane of the solar equator where the magnetic field is zero, as
can be implied by the absence of sunspots there. When this happens, the neutrinos
coming out to the earth encounters hardly any magnetic field and therefore would
not undergo precession. This will result in a high value of the number of neutrinos
detected. In March and September, the number of neutrinos would be minimum.

If, on the other hand, resonant matter oscillation is responsible for the solar
neutrino puzzle, one expects a diurnal variation in the solar neutrino flux. This is
because at night, the neutrino’comes through the earth, and matter effects in the
earth’s interior would affect the neutrino flux.

So far, the data is not enough to establish any of these variations [88]. Knowl-
edge of such time variations will belp determine the mechanism responsible for
the solar neutrino problem. If the solution lies in resonant matter oscillation and
only two generation of neutrinos are involved, one can easily find the mass and
mixing parameters consistent with the experiments in the manner described in the
text. If three generations are involved, one needs a better understanding of the
non-adiabatic effects or needs to tackle them numerically.

If magnetic moment is responsible for the solar neutrino problem, then unfortu-
nately it would be difficult to make precise estimates of the survival probability in
any experiment since the magnetic fields in the sun are not very well known, as we
mentioned earlier. This will call for better understanding of magnetohydrodynamic
phenomena in the sun.

14 Outlook for Physics beyond the standard

model

The solar neutrino puzzle can be summarized as follows: if the standard solar model
calculations are reliable, the neutrino properties of the standard electroweak model
cannot explain the results of the experiments to detect the neutrino flux. Assuming
the reliability of the standard solar model as we have done throughout in this article,
the solar peutrino puzzle than leads one to Particle Physics beyond the standard
electroweak model. Indeed, the mass difference and mixing needed for neutrino
oscillation, or the magnetic moment needed for spin precession — are all absent in
the standard electroweak model.

Tt is however quite easy to accommodate neutrino mass and mixing by extending
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the standard model. For example, one can add a right handed neutrino to each
generation of fermions. The neutrinos can then obtain mass through the Higgs
mechanism, just like other fermions do. One can also extend the Higgs sector in
many ways to obtain neutrino mass and mixing!” All these models give rise to
neutrino mixing in a natural way.

The mass squared difference required to solve the solar neutrino puzzle are very
small. For the solution via vacuum oscillations, we need A ~ 10~1°eV?. Matter
enhanced oscillation can produce solutions for A as large as ~ 10~*eV?. This, by
itself, does not tell us about the masses as such. But, unless there is some minute
cancellation between two masses, one would expect one eigenvalue close to A% and
another quite smaller. For A <107* eV?, one then expects m, <107%eV, which is
very small compared to the masses of any other fermion. The mixing angle needed
to solve the solar neutrino puzzle can alzo be very small since matter effects can
enhance it and produce large depletion. In a word, the matter enchanced oscillation
solution really demands small modifications on the standard model.

The magnetic moment solution, on the other hand, requires some elaborate
alterations of the standard model since, as we showed in Sec. 9.1, simple changes
in the standard model produces magnetic moments much smaller than what is
necessary. This is why most of our discussion in Part III was concerning the model
building aspect to accommodate a large magnetic moment.

There is, however, another angle to this argument. Since the oscillation solu-
tions require very small parameters, they will be almost impossible to find in any
laboratory experiment. For example, if the neutrino mass is obtained through the
see-saw mechanism and if the heavier of the neutrinos involved in oscillation is the
vy, the solutions for A <107*eV* gives M >10° GeV for the heavy mass occurring
in the see-saw. This means that Physics beyond the standard model is really far
beyond. If the heavier neutrino is v,, the scale of new physics is even higher [90].

On the other hand, the magnetic moment solution always involves some new
and unknown particles around the mass scale of 100 GeV to 1 TeV. These would be
accessible to the next generation of particle accelerators.
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Appendices

A Laboratory bounds on neutrino oscillation pa-

rameters

The laboratory bounds on neutrino oscillations come from the following type of
experiments. One takes a beam of known flavor from a reactor or an accelerator and
lets it travel for some distance z. At that point, one checks whether the survival
probability of the original flavor, or the conversion probability to another flavor,
can be consistent with nonzero values of mixing and mass difference. So far, all
confirmed results are negative. They can be summarized as follows: if A <0.1 eV?,
there is no bound on the mixing angle, and if the mixing angle is smaller than about
0.05, then there is no bound on A. For details and references, see, e.g., Ref. [89].
Note that the solutions obtained for the solar neutrino problem pertains to much
smaller values of A than 0.1eV?, so that all values of the mixing angles are allowed
in this range by terrestrial experiments.

B More rigorous derivation of dispersion rela-

tions in medium

In quantum field theory, the dispersion relation of a particle is given by the pole
of its propagator. Thus, if we can find the full propagator of a neutrino within a
medium, that can give us H of Eq. (4.15).

To do this, one calculates the self-energy of neutrinos in the thermal bath of the

75



Ve w vV, v A

Figure 24: 1-loop self energy corrections to the neutrino propagator.

solar medium [91,92,93]. The full propagator is given in the form
1
p-m-X(p)’
In the lowest order, the contribution to ¥(p) comes from the diagrams shown in
Fig. 24. Considering just the charged current diagram for the moment, we obtain

- (BY)

igh

iX(p) =i(*%)2/(—g:}kjﬂx Py, i8S, (k) Py - Y7 | (B.2)

where S, (k) is the propagator of the electron, and we have neglected the momentum
dependence of the W-propagator. For the electron propagator, we use the effective
propagator in the medium, which is

i, (K) = (b + me) [m _om 8k —m2) fr(k-w)] | (B3)

where

() 6(—z)
efle-w) +1 ° e Ple=n) 417

fr(z) = (B.4)

where © is the step function which equals +1 if the argument is positive and is zero
otherwise, p is the chemical potential and 3~! is the temperature of the background
electrons.

The first term in the electron propagator in Eq. (B.3) gives infinite renor-
malization. This is present even in the vacuum and is eliminated by a suitable
renormalization prescription. The second term gives

V2GF(Ne- — Nt )70 (B.5)

which then easily gives Eq. (4.4). Similarly, one can evaluate the neutral current
diagram. Note that for this derivation, we need not assume that velocity or spin
has to va_‘ninhy as we did in the text.
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Figure 25: Electron-neutrino scattering through neutrino magnetic moment. The
blob is the effective coupling of neutrinos with photons.

C Laboratory bounds on neutrino magnetic mo-
ments

Here, we give a rough estimate of the bounds on neutrino magnetic moment that can
be obtained from laboratory experiments. The bounds arise because the neutrinos
can scatter against electrons via photon exchange through the diagram of Fig. 25.
The cross section calculated from this diagram can be easily estimated:

. s ”
neglecting factors of order unity. The tree level W and Z exchange, on the other

hand, gives
g
O.W’Z ~ WV- Eme 3 (0-2)

where g is the SU(2) gauge coupling constent of the standard model, and E is
the neutrino energy, assumed much smaller than My . Since the standard model
calculation fits scattering data very well, we can demand

amag/aW.Z <1. | (0'3)
This gives, since g ~ e,
2 3 2
N m.E < 10-19 ( E ) o4
(MB) S "0 \ovev) (C4)

Reactor experiments have been performed upto neutrino energies of order of a few

‘tens of MeV’s. So, from Eq. (C.4), one gets

p<3x1070;. (C.5)
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If one does more careful analysis of individual experiments and the error bars in
their measurements, one gets upper bounds ranging from (4 to 20) x 10~°uz. There

~ are also other bounds coming from astrophysical and cosmological considerations.

For a summary of these bounds and references, see Ref. [89).
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