ATOMIC SCALE RESOLUTION WITH CORRELATION HOLOGRAPHY

Paul L. Csonka
Institute of Theoretical Science
and
Department of Physics
University of Oregon
Eugene, Oregon 97403

ABSTRACT

For many atoms (including atoms of interest in biology) the elastic
and inelastic photon scattering cross sections (denoted respectively by
\(\sigma_{\text{el}} \) and \(\sigma_{\text{inel}} \)) for photons in the wavelength region of interest satisfy
\(\sigma_{\text{el}} \ll \sigma_{\text{inel}} \). Therefore, the probability is high that when illuminated
with photons, such an atom will decay before a holographic picture of it
can be taken. On the other hand, if certain nonlinear phenomena: correla-
tions between photons are taken into account, a hologram of such atoms
can nevertheless be generated. Observation of small objects is compatible
with the principles of quantum mechanics, even if the probability of dis-
turbing the object as a result of observation is arbitrarily small.

I. INTRODUCTION

Suppose we wish to make an optical image of an atom. Suppose further
that for imaging we use photons with wavelength \(\lambda \), for which the elastic
scattering cross section on the atom, \(\sigma_{\text{el}} \), and the inelastic scattering
cross section (which includes e.g. the photoelectric cross section), \(\sigma_{\text{inel}} \)
satisfy the inequality:

\[\sigma_{\text{el}} \ll \sigma_{\text{inel}}. \]

For simplicity, illuminate the atom by an incoming plane wave whose
amplitude is \(A_1 \). The photons in this wave have momentum \(k_1 \), and frequency
\(\omega = 2\pi c/\lambda \). The wave scattered elastically by the atom has amplitude \(A_s \).

The number of incoming photons crossing a unit surface at normal in-
cidence per unit time is:

\[I_i = \alpha |A_i|^2, \]
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
where α is a normalization constant. Similarly, the photon flux density in the elastically scattered wave is:

$$I_s = \alpha|A_s|^2.$$

II. IMAGING BY ELASTICALLY SCATTERED PHOTONS ONLY

The average number, N_s, of scattered photons impinging normally on a surface area S during a time interval T (see Fig. 1) is:

$$N_s = S \cdot T \cdot \alpha|A_s|^2.$$ \hspace{1cm} \text{(2)}

![Diagram of scattering process](image)

Figure 1

In order to indicate at least the presence of the atom in question, the number of scattered photons reaching a detector surface S must be equal to or larger than one:

$$N_s \geq 1.$$ \hspace{1cm} \text{(3a)}

($N_s \geq 1$ is required if the image is to determine the position of the atom in three dimensional space). The total number of photons scattered by the atom, N_{st}, cannot be less than N_s, therefore:

$$N_{st} \geq 1.$$ \hspace{1cm} \text{(3)}
What are the chances that at least one photon will be scattered elastically by the atom? If condition (1) holds, then the probability is $\sigma_{el}/\sigma_{inel} \ll 1$ that a photon will be scattered elastically before it will be scattered inelastically. Inelastic scattering processes, on the other hand, will result with a high probability in the destruction of the atom. Therefore, the probability is small, $\nu(\sigma_{el}/\sigma_{inel})$, that the image of the atom can be formed before the atom is destroyed by the photons which illuminate it.

III. HOLOGRAPHIC IMAGING

The final (i.e. the "total outgoing") amplitude of photons of wavelength λ, on the detector surface S, will be:

$$A_f = A_i^* A_s.$$

The final flux density of such photons on the surface S, is therefore,

$$I_f = \alpha |A_i + A_s|^2 = \alpha |A_i|^2 + \alpha 2 \text{Re}(A_i^* A_s) + \alpha |A_s|^2.$$

The first term is just the background intensity, I_i, a term which would be present, even if no scattering from the atom took place. When the last term is negligible, the I_f differs from the background term by the amount

$$\Delta I \equiv I_f - I_i = \alpha 2 \text{Re}(A_i^* A_s).$$

It is through this term that the presence of the atom manifests itself in the final intensity distribution. This term contains all the information stored in the image about the atom. This is the term to be recorded on the surface S (See Fig. 2.).

![Holographic Imaging Diagram](image-url)
Note that ΔI is proportional to A^*_1, so that for large enough A^*_1 it can be made as large as one wants to by increasing A^*_1.

However, in order to prove that ΔI can be observed, it is not enough to show that ΔI can be made arbitrarily large. In addition, one has to demonstrate that it can be distinguished from the "noise" generated by the background flux density I_j. This noise is the deviation of the number of photons actually impinging on the detector surface area from the expected number of these photons. The expected number is:

$$N_1 = TS\Delta |A_1|^2,$$

and the expected deviation from it is, therefore, proportional to its square root, i.e. it is proportional to A^*_1. The signal ΔI is proportional to $A^*_1 A$, but since A is itself proportional to A^*_1, the ΔI is proportional to A^*_2. The signal to noise ratio is, therefore, proportional to A^*_2 (or A^*_1).

Next let us evaluate the critical value of A, i.e. that value which A must reach or exceed if ΔI is to be distinguished from the background noise.

For simplicity of discussion, assume that the detector consists of several identical detecting surface elements. The signal on the jth surface will exceed the background fluctuation on that surface if:

$$\text{St} \Delta 2 |A_j| |A_s| \cos^2 \theta_j \geq (\text{St} \Delta |A_1|^2)^{\frac{1}{2}}.$$

In the above equation θ_j denotes the phase angle between A_j and A_s on that surface element. A summation over all surface elements shows that the signal will be distinguishable from the background, if:

$$\text{St} \Delta |A_s|^2 \geq 1.$$

Comparison of expressions (2) and (5) shows that in order to distinguish ΔI from background noise, one needs:

$$N_s \geq 1.$$

Therefore:

$$N_{st} \geq 1.$$ \(\text{(6a)}\)

If condition (1) holds, the probability is $\nu(\sigma_{el}/\sigma_{inel})^{\frac{n}{2}} << 1$ that a photon will be elastically scattered off the atom before the atom is destroyed by inelastic collisions with the photons which illuminate it.

To form an image of a molecule which contains n atoms for which condition (1) holds, one has to image n such atoms (plus possibly others). The probability that this can be done is $\nu(\sigma_{el}/\sigma_{inel})^n$, very small for large n.
So far our result is similar to what we found in section 1.

Note that it is not specific to photons. The same result holds for Boltzmann particles; if we record the impact of \(N^B \) of such particles against a random background of particles of the same kind whose average number is \(N_i \), and if, furthermore \(N^B \) can be written as \(N^B = N \frac{1}{2} N_i \), then for \(N \) a result of type (6) holds.

The result just derived is the reason why it has been repeatedly stated in the literature that for wavelength \(\lambda \) for which inequality (1) holds, it will not be possible to produce holograms of atoms or molecules. Unfortunately, for most wavelengths of interest and many atoms which occur in biology, condition (1) is valid.

The purpose of my talk today is to point out that:

a) Holograms of atoms and molecules can nevertheless be made, even when \(\sigma_{el} \ll \sigma_{inel} \), provided that correlations between photons are taken into account (Hanbury Brown & Twiss).

b) It is consistent with the principles of quantum mechanics to clearly observe a small object, even if the probability of disturbing the object as a result of observation (in the present instance the disturbance is inelastic photon-atom collisions) is arbitrarily small.

IV. CORRELATIONS

Photons are not Boltzmann particles. There are correlations between photons which can be detected. These non-linear phenomena may manifest themselves as time correlations between photons as observed, e.g., by R. Hanbury Brown and R. Q. Twiss. They may also manifest themselves as spatial correlations. At the moment we are considering a steady state situation (well determined \(k_1 \)). For these it is the spatial correlations which are of particular interest. They can be used to discriminate against background noise.

To avoid getting into unessential complications, we consider the particularly simple case of a small object located far away from the detector. The typical dimension of the object is \(d \). (See Fig. 3.) We consider the interference pattern produced by incoming photons interfering with photons scattered by an atom located at point \(P_0 \) inside the object (e.g., a molecule) whose image is to be produced. At distances large compared to \(d \), along a radius vector \(\vec{r} \), which originates at \(P_0 \), this pattern will be (almost) periodic, with a "beat wavelength":

\[\Lambda_0 = \lambda \left(1 - \cos \theta_0 \right)^{-1}, \text{ for } |r_0| >> d. \]

Here \(\theta_0 \) is the angle between \(\vec{r} \) and \(k_1 \). Photons scattered by another atom inside the object, say one which is located at \(P_1 \), will produce a similar pattern along the radius vector \(\vec{r} \), with periodicity:

\[\Lambda_\gamma = \lambda \left(1 - \cos \theta_\gamma \right)^{-1}, \text{ for } |r_0| >> d, \]

Here \(\theta_\gamma \) is the angle between \(\vec{r} \) and \(k_1 \).
etc. All atoms will generate patterns, along radius vectors lying in the vicinity of r'_0, whose wavelengths will lie inside the range $(\Delta \pm \frac{1}{2} \Delta \lambda_o)$. For small θ_o, $\Delta \lambda_o \approx 4d/r_o \theta_o$.

Dilute the recording medium; instead of recording only on the surface S, record inside the volume delineated by dashed line in Fig. 3. Investigate each slice in this volume. (One slice, near the radius vector r'_0, is shown in Fig. 3.) The background noise will generate a random intensity pattern. Only a fraction of that will lie in the wavelength region $(\Delta \lambda_o \pm \frac{1}{2} \Delta \lambda_o)$. The rest of it can be discarded, we will discuss briefly how.

If m is the number of distinguishable Δr intervals in the slice (assume $m < \Delta \lambda_o/\Delta \lambda_o$), then only $1/m$ fraction of the background noise will be in the wavelength region which contains the signal. Therefore, instead of satisfying conditions (6a), one only needs to satisfy:

$$N_s \geq \frac{1}{m} \cdot (7a)$$

or, denoting by f the recording efficiency of scattered photons,

$$N_{st} \geq \frac{1}{m} \frac{1}{f} \cdot (7)$$
When $m \gg 1$, it can happen that $N_{st} \ll 1$. In this sense, disturbance of observed objects can be arbitrarily small.

Remarks for practical applications:

To record small Λ^0 ($\ll 10 - 100 \lambda$) choose $\theta^0 \neq \theta_0$ so that $\theta^0 \ll 1$ and $\Lambda^0 \gg \lambda$ can be realized.

To Fourier analyze, one may for example count blackened silvergrains if the recording medium is a photographic emulsion. Simpler procedure consists of illuminating slice and observe light transmitted at particular directions.

V. CONCLUSIONS

If Λ_1 is large enough, one may distinguish the hologram signal from the background, even if Λ_S is so small that $N_{st} \ll 1$.

It is possible to observe atoms (and molecules made up of such atoms), even when $\sigma_{el} \ll \sigma_{inel}$.

It is compatible with the principles of quantum mechanics to clearly observe an object, even if chances are arbitrarily small that the observation will disturb the object.