Two-Dimensional Radiation-Hydrodynamic Calculations for a Nominal 1-Mt Nuclear Explosion Near the Ground

Henry G. Horak
Eric M. Jon.es
Maxwe!! T. Sandford II
Rodney W. Whitaker
Richard C. Anderson
John W. Kodis

rWO DIMENSIONAL RADIATION HYDRODYNAMIC CALCULATIONS FOR A NOMINAL IMI NUCLEAR EXPLOSION NEAR THE GROUND

by

Henry G. Horak, Eric M. Jones, Maxwell T. Sandford II. Rodney W. Whitaker. Richard C. Anderson, and John W. Kodis

Abstract

The two dimensional radiation hydrodynamic code SN VAQUI was used to calcu late the esolution of a hypothetical nuclear fireball of I Mt yield at a burst altitude of 500 m . The ground reflected shock wave interacts strongly with the fireball and induces the early formation of a rapidly rotating ring shaped vortex. The hydrodynamic and radiation phenomena are discussed.

1. INTRODUCTION

In Ref. 1. J. Zinn describes the one dmensonal radation hydrodynamic code R ADFLO and presents an applicatoon of his method of calculating the evolution of a hypothetical 1 Mt vield nuclear firebail. Because two dimensional effects become important when the fireball is close to the ground, we have extended his calculations into two dimensions by treating a I Mt burst at an altitude of 500 m . We applied the computer program SN YAQU'I, a variant of YOKIFER (described in Refs. 2. 3. and 4!. SN YAQUI was especially designed to be consistent with RADFLO, and the same 40 frequency groups, opacity, and equation of state tables for air used by Zinn are incorporated into this code.

SN.YAQUi is written in r-z cylindrical geometry and performs. in alternate seps. two main functions: (1) hydrodynamic evolution is followed in Lagrangian fashion with the code YAQ JI (Ref. 5), and (2) radiative evolution is followed wid, a simplified version of the code TWOTRAN (Ref. (1). which is based on the method of discrete ordinates (or SN). Whenever necessary, an automatic particle-in- ell rezoning procedure ${ }^{7}$ is carried out to prevent cell boundaries from becoming concave; temporary rezones also are performed regularly for the

SN. which reyures cells of rectanguiar crose nectum Provison in made for the reflection of light from the ground surface in accordance with Lambert' law ot diffuse reflection with a given albedo, to wheh a salue of unty was assigned for the calculatoon repored here.

The initial conditions are obtained at an approprotate cholution tume by adoping values of the physical param eters derised from RADFLO: the time chosen (0.1 い just before the shock strikes the ground. The initial physical quantities are specific internal energy for tem perature). density. and the radial and axial components of relocity (Figs 1, 2, and 3). The values are interpolated from the RADFLO mesh containing ~ 100 spherleal zoner unto about half of the total $7000(70 \times 1001$ cell of the SN YAQUI mesh. For the problem at hand. the length of a ceil side averages $\sim 10 \mathrm{~m}$. In addition. a uniform distribution of some 250 massless marker particles is established within the fireball portion of the mesh (Fig. 4): these are moved with the instantaneou. fluid velocities and serve as tracers for the debris material within the fireball. The values of the physical variables in ambient cells are set in accordance with a realistic model atmosphere consisting of the alcitude profiles of pressure, temperature, density, and water 'apor.

At certain preselected times. computer derived graphs of the firchall are generated. showing the physical varables. isophotes. etc. In the following sections. we will discuss the shock wave. Mach stem, reflect ed shock fireball interaction. rise and growth of the fireball. and radation held.

II The Shock wave and mach stem

The promary hock wave originating from the detona tion strikes the ground shortly after 0.1 s. reflecis. and returns through the fireba!! (see Fig. 51. Compresste heating raises the sound speed behond the shock and the propagatoon speed of the retlected shock. Consequently. the Mach stem. the intersection surface of the two shocks, forms at the ground and with time increases vertically. Normaily, the propagation of the Mach stem is complicated be we character of the terrain. by the ground showe. and sometumes by the presence of a near surface layer of heated air. which can cause a precursor shock to form. These ellects are not meluded in this catculation, wheh considers an ideal ground siditace. The reflected shock passe through the hurst point at 0.24 s and merges completely with the primary snock at 1.0 , (Fig. 6). The alculated eertical distances of the primary and reflected wocks and the horizo,...ll distance of the Mach stem from the sub detomation point are given as a function of time in F ig. 7 a . The altitude of the triple point vs time is shown in Fig. 7b. Figure 8 gives the relative peak owerpressure. (p- p_{0}) p_{w}, where p is the peak pressure in the Mach stem and p_{0}, is the ambient pressure. and the relatise peak dynamic pressure. $q / F_{1}, \quad 0.5 \rho^{2} p_{0}$, where ρ is density and v is velocity. A pressure cross section of the Mach stem at 0.6 .3 s is shown in Fig. 9. The calculated Mach stem doesn't display the sharpness or high peak pressure that could be produced by finer zoning in, the Mach stem region.

III. THE RING VORTEX. FLOW FIELD, AND FIREBALL RISE AND GROWTH

A "free-air" nuclear burst has negligible interaction between the fireball and reflected shock: however. buoyancy forces deform the rising fireball and eventually create a ring vortex (toroid). When the interaction occurs early, as in the present case, the strong reflected shock imparts high negative vorticity to the fireball similar to that produced by buovancy (the upward veiocities near
the $:$ axis are highest , and the ring vortex forms much eatlier than :t would from buoyancy alune. For a i Mt free air burst. the time of toroid formation is - 11 ' . but for a burst altitude of 500 m . the calculated time is -1.5 s. The following situation occurs (see Fig. 10): a center of negative vorticity forms behind the reflected shock and. at 0.20 s. has riten to an altitude of 70 m . By 0.375 s . it has migrated ic 225 m : eventually it becomes the toroidal vortex. Figure 1 la gles the allitudes of the vortex center and the firchall top and the horizontal radius of the firehail 1000 K ixotherm during the first 7. Figure lth gives the horizomal anc verncal coordi nates of the vortex center for times to 70 .

The flow lied near the lireball displays a predictable. though dramatic. behavor. At first the velocities are directed radialiy outwards behind the prinbary shock The reflected shock passes through mid fireball at 0.24 with an accompanying updrall. The toroid is ectablehed by - 1.5 s: mean uhile the primary shock and Mach sum continue to press outward, though ever weakening the reroning procedure eventualiy discards them from the mesh). The regon unmediately ahowe the promars wore and toward, the, axi display a trong positive wrtici t) (Fng. ion that was oremally created by an in ward mosing dweturbance at -0.13 s and is a mat fiestation of infual conditions obtained from R.ADFP. ().

As the firctall rines, the updraft along the 1 axs continues and pulf in repiacement air from several kilometers ama!. This ereates the "afterwind" that 1 characteristically observeci in low altitude explosions." Vetocty profiles alorg the t axis are shown in Fig 12

The marker particles revolve about the internal coroid axis (Fig. 13) with angular velocity during 1.5 to 45 amounting to -2 rad's and linear speed -240 m relative to the toroid. which in turn rises at $\sim 80 \mathrm{~ms}$. By 20 s . the angular velonty of the ioroid has decreased to -10% of its inital value.

iv. RADIATION PHENOMENA

The calculated radiative evolution of the fireball is carried out with the method of discrete ordinates. m: certain selected times. graphs are computer-generated to show isophotes and irradiances in several spectral bands for a given observer's position. For this purpose, it is most convenient and accurate to apply the method of characteristic rays: the emergent radiances of the firebal! in the direction of the observer are obtained by the direct application of the formal solution to the equation of
transier. The detail are given in Ref. Y.
Figure 14 shows the calculated emitted power of the lireball as a function of lime summed over all watelengthes and in the red ($\lambda \lambda=600$ to 6800 A) and green ($\lambda \lambda+600$ to $56(0) A$) band. These powers were computed by the $S N$ method and are consistent with irradances determined independenty by integrating over radiances obtained from charaterista rays. The integral of rad ated energ! taken ower the power the surne give a "thermal fraction" of the total yeld amountme to 20%.

Figure 15 show calculated sophoten the the red wavength hand at nelected umes. a would be observed from a position located borisontally 500 km from the fireball. Table 1 gises the maximum temperature in the mesh and the maxmum bregtenestemperature obtamed from the isuphotes on the soshle apeseal region for selesed times. By s - the fireball han devehned a vers promiment "shis." which is the large. hot but relathely quiescent. region bencath the rapidy rotann forond. it arises as a consequence of the deformation of sotherm produced by the reflected thock (Fig. 16). Several calculated eontinuous spectria are shomn in Fig. 17. Such apedra hate rather csure renotution amounting to - S(k) A at 12000 A. -1000 A in the sisible. and ~ 2000 A at $\sim 1 \mu \mathrm{~m}$.

TABLE 1. Maximum Temperatures In Mesh And Masimum Brightnes I mperature

Time (s)	T., (K)	$T_{\text {R.ul }}$ (visible) (K)
		- - .-
0.15	39000	
6. 20	30000	3800
0.50	18000	7000
0.75	15000	7800
1.00	12500	7850
1.25	4600	
1.50	8300	
2.00	7100	6000
3.00	5800	4900
6.00	4800	3550
8.00	4500	3450
10.00	4100	3200

v. ACKNOWLEDGMENTS

We wish to thank J. Zinn for valuable discussions. A. Amsden. R. Gentry, and H. Ruppel assisted us with the

YAQL: hy Jrodynames. and W. Reed and K I athrop assuled an implementme a umplified berson of the TWOTRAN radiation ramport program.

REFFRENCES

1. I. Kann. 'a fome Difference Scheme fior limelopendent Sphereal Radaton Hedro denamio Probleme. J. Compunational Phes. 13. 5nt (19-?)
2. R. © Andernom and M. I. Sandford II "YUKIFPR: A Tuo Dmenmonal Hedrodyname and Radatom !ranoport Program." Lo, Alamon Scontific Labora tory report lat ${ }^{-} 04 \mathrm{MS}$ (January 1475).
\therefore M. 1. Sandiord $I!$ and R. (C. Andernon. - Inolonnemunnal Implicit Radatan Ifydor dyamme. J. Computaional Phis. 13. 130,197:3.
3. M. T. Sandiord IJ. R. (․ Anderoon. H. (; Morak. and 1. W. Kods. "Improxed Implact Rastaton Hydro dyans心.". Computatonal Ph's. 19. 280(1975)
4. A. Amaden and ©. W. Hirt. ${ }^{-1}$ AQU: An Arbitrar! Lagrangan Eukeran Computer Program for Flud Flow at All Speeds." Los Alamos Scentalic 1.aborator: repori 1 A 5100 (Mareh 1473).
5. K. I) Lathrop and F. W. Brankley. "IWOTRAN. H: An Interfaced. Exportable Verton of the TWOTRAN Code for Tuo Dimensmmal Tranapurt." Los Alamos Scientific laboratory report I.A 48-5 MS (July 1973).
6. H. Gi. Horak. I: M. Jones. J. W. Kods. and M. I. Sandford [1. "An Algorithm for the Discrete Rezon ing of Lagrangan Meshes." J. Compurational Phis 26. 27719988.
7. S. Glassone Fc.. The Effects of Vuclear Heapons. (US Atomic Energy Commision. Rev.. 1962). pp. 33.
8. H. (i. Horath and J. W. Kodis. "Slant Path Distances Through Cell in Cylindrical Geometry and the Computation of Isuphotes." to be published as a Los Alamos National Laboratory LA series report.

z^{2}

20	4π	\therefore.	
DISTANCE	FROM	BURST	P(IN

1is. I. Intial temperature dintribution all 0.1 \&

Fig. 2. Snitial denhity distribution at 0.1 s.

1/g. A. Initial velocity distribution at 0.1 s .

Fig. 4. Initial distributın of Lagrangian particles in the vertical plane -. al 0.1s.

fis h. The positions of the sheck in the verical plome x, at times $11.2,0.5,0.75$ and 1.05.

-is. 7at. The ' ercical distances of the primary and reflected shock and the horizontal distance of the Mact, wem 'rom the whb barst point a functions of there.

Fig. 8. The relative peak werpressure. (p p_{n})/p., and the reidive peak dynamic pressure. 4 p. , in the Mach stem vs time.

fig. 10. A few isopleths of relative vorticity are shown at 1.5 s . Previous positions of he center of negative vorticitg are mdicated bs \therefore and of positive vorticity by

Fig. Y. The pressure profile through the Mach stem at ground tesel at 0.6. 5

Fg. Ha. Z(TOP) in the thitude of the wop of the firethall. and XF the horizontal radius of the firchall at detheed by the 1000 K inoturm. ZIVORTEXI is the altitude of the center of the tornidal womex.

Fig. 12. Kadial velocity curses along the 1 insm at 2.5.5. and ? 0 . The region of updraft is laheled $[$, doundraft D, whock S. and the small region of positise sonticits (Fig. 10) is lateled P.

Fig. Ith X(YORTEX) and Z(LORTFX) are the horizonlal and sortacal coordinate of the center of the tornidal wortex.

J.ig. 1.3. I agrangian marher particles at 6 .

Fig. 14. Calculated emitted pouer of firebali as a fursction of time integrated over all bands (total) and for the red and green bands.

Fag. 15. Isephotes in the red hand 15600 to 6800 A$)$ at selected times. The radiance factor betueen successive inuphoter is 1 . 38 . The hrightest points are marked A."

Fig. 16. |sotherms al ! s. The center of the toroid is marked + .

Fig. 17. Continuous spectra of various times.

