Effect of shock wave risetime on material ejection from aluminum surfaces

PDF Version Also Available for Download.

Description

The effect of shock wave risetime on material ejection in aluminum has been studied for loading stresses of 21 GPa. Uniform loading was accomplished with plate impact techniques by mounting specimens on a ramp wave generator. Projectile impact on one side of the wave generator produced a wave which dispersed with propagation distance. This wave was then made incident to an aluminum specimen, so that the specimen experienced non-shock loading. It was found that mass ejection from aluminum surfaces can be reduced by over two orders of magnitude relative to shock loading conditions by accelerating the surface with a wave ... continued below

Physical Description

Pages: 37

Creation Information

Asay, J.R. September 15, 1977.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The effect of shock wave risetime on material ejection in aluminum has been studied for loading stresses of 21 GPa. Uniform loading was accomplished with plate impact techniques by mounting specimens on a ramp wave generator. Projectile impact on one side of the wave generator produced a wave which dispersed with propagation distance. This wave was then made incident to an aluminum specimen, so that the specimen experienced non-shock loading. It was found that mass ejection from aluminum surfaces can be reduced by over two orders of magnitude relative to shock loading conditions by accelerating the surface with a wave risetime greater than about 35 ns. These results suggest an explanation for the apparent discrepancies which are sometimes observed in mass ejection measurements utilizing either plate impact or electron beam deposition to generate stress waves.

Physical Description

Pages: 37

Notes

Dep. NTIS, PC A03/MF A01.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND-77-0731
  • Grant Number: EY-76-C-04-0789
  • DOI: 10.2172/5379599 | External Link
  • Office of Scientific & Technical Information Report Number: 5379599
  • Archival Resource Key: ark:/67531/metadc1063555

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 15, 1977

Added to The UNT Digital Library

  • Feb. 4, 2018, 10:51 a.m.

Description Last Updated

  • Feb. 26, 2018, 12:40 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Asay, J.R. Effect of shock wave risetime on material ejection from aluminum surfaces, report, September 15, 1977; United States. (digital.library.unt.edu/ark:/67531/metadc1063555/: accessed December 11, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.