Estimating Thermal Conductivity and Volumetric Specific Heat of a Functionally Graded Material using Photothermal Radiometry

Use of this thesis is restricted to the UNT Community. Off-campus users must log in to read.

Description

Functionally graded materials (FGMs) are inhomogeneous materials in which the material properties vary with respect to space. Research has been done by scientific community in developing techniques like photothermal radiometry (PTR) to measure the thermal conductivity and volumetric heat capacity of FGMs. One of the problems involved in the technique is to solve the inverse problem, i.e., estimating the thermal properties after the frequency scan has been obtained. The present work involves finding the unknown thermal conductivity and volumetric heat capacity of the FGMs by using finite volume method. By taking the flux entering the sample as periodic and solving ... continued below

Creation Information

Koppanooru, Sampat Kumar Reddy December 2017.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Chair

Committee Member

Other

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Koppanooru, Sampat Kumar Reddy

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Functionally graded materials (FGMs) are inhomogeneous materials in which the material properties vary with respect to space. Research has been done by scientific community in developing techniques like photothermal radiometry (PTR) to measure the thermal conductivity and volumetric heat capacity of FGMs. One of the problems involved in the technique is to solve the inverse problem, i.e., estimating the thermal properties after the frequency scan has been obtained. The present work involves finding the unknown thermal conductivity and volumetric heat capacity of the FGMs by using finite volume method. By taking the flux entering the sample as periodic and solving the discretized 1-D thermal wave field equation at a frequency domain, one can obtain the complex temperatures at the surface of the sample for each frequency. These complex temperatures when solved for a range of frequencies gives the phase vs frequency scan which can then be compared to original frequency scan obtained from the PTR experiment by using a residual function. Brute force and gradient descent optimization methods have been implemented to estimate the unknown thermal conductivity and volumetric specific heat of the FGMs through minimization of the residual function. In general, the spatial composition profile of the FGMs can be approximated by using a smooth curve. Three functional forms namely Arctangent curve, Hermite curve, and Bezier curve are used in approximating the thermal conductivity and volumetric heat capacity distributions in the FGMs. The use of Hermite and Bezier curves gives the flexibility to control the slope of the curve i.e. the thermal property distribution along the thickness of the sample. Two-layered samples with constant thermal properties and three layered samples in which one of the layer has varying thermal properties with respect to thickness are considered. The program is written in Fortran and several test runs are performed. Results obtained are close to the original thermal property values with some deviation based on the stopping criteria used in the gradient descent algorithm. Calculating the gradients at each iteration takes considerable amount of time and if these gradient values are already available, the problem can be solved at a faster rate. One of the methods is extending automatic differentiation to complex numbers and calculating the gradient values ahead; this is left for future work.

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • December 2017

Added to The UNT Digital Library

  • Jan. 27, 2018, 7:36 a.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 10

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Koppanooru, Sampat Kumar Reddy. Estimating Thermal Conductivity and Volumetric Specific Heat of a Functionally Graded Material using Photothermal Radiometry, thesis, December 2017; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc1062896/: accessed April 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .