Three-Dimensional Carbon Nanostructure and Molybdenum Disulfide (MoS2) for High Performance Electrochemical Energy Storage Devices

Use of this dissertation is restricted to the UNT Community. Off-campus users must log in to read.

Description

My work presents a novel approach to fabricate binder free three-dimensional carbon nanotubes/sulfur (3DCNTs/S) hybrid composite by a facile and scalable method increasing the loading amount from 1.86 to 8.33 mg/cm2 highest reported to date with excellent electrochemical performance exhibiting maximum specific energy of ~1233Wh/kg and specific power of ~476W/kg, with respect to the mass of the cathode. Such an excellent performance is attributed to the fact that 3DCNTs offers higher loading amount of sulfur, and confine polysulfide within the structure. In second part of the thesis, molybdenum disulfide (MoS2) is typically studied for three electrochemical energy storage devices including ... continued below

Creation Information

Patel, Mumukshu D December 2017.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 25 times . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Patel, Mumukshu D

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

My work presents a novel approach to fabricate binder free three-dimensional carbon nanotubes/sulfur (3DCNTs/S) hybrid composite by a facile and scalable method increasing the loading amount from 1.86 to 8.33 mg/cm2 highest reported to date with excellent electrochemical performance exhibiting maximum specific energy of ~1233Wh/kg and specific power of ~476W/kg, with respect to the mass of the cathode. Such an excellent performance is attributed to the fact that 3DCNTs offers higher loading amount of sulfur, and confine polysulfide within the structure. In second part of the thesis, molybdenum disulfide (MoS2) is typically studied for three electrochemical energy storage devices including supercapacitors, Li-ion batteries, and hybrid Li-ion capacitors. The intrinsic sheet like morphology of MoS2 provides high surface area for double layer charge storage and a layered structure for efficient intercalation of H+/ Li+ ions. My work demonstrates the electrochemical analysis of MoS2 grown on different substrates including copper (conducting), and carbon nanotubes. MoS2 film on copper was investigated as a supercapacitor electrode in three electrode system exhibiting excellent volumetric capacitance of ~330F/cm3 along with high volumetric power and energy density in the range of 40-80 W/cm3 and 1.6-2.4 mWh/cm3, respectively. Furthermore, we have developed novel binder-free 3DCNTs/ MoS2 as an anode materials in half cell Li-ion batteries. The vertically oriented morphology of MoS2 offers high surface area and active electrochemical sites for efficient intercalation of Li+ ions and demonstrating excellent electrochemical performance with high specific capacity and cycling stability. This 3DCNTs/ MoS2 anode was coupled with high surface area southern yellow pine derived activated carbon (SYAC) cathode to obtain hybrid 3DCNTs/ MoS2 || SYAC Li-ion capacitor (LIC), which delivers large operating voltage window of 1-4.0V with excellent cycling stability exhibiting capacitance retention of ~80% after 5000 cycles.

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • December 2017

Added to The UNT Digital Library

  • Jan. 27, 2018, 7:36 a.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 25

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Patel, Mumukshu D. Three-Dimensional Carbon Nanostructure and Molybdenum Disulfide (MoS2) for High Performance Electrochemical Energy Storage Devices, dissertation, December 2017; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc1062842/: accessed December 11, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .