Human-Machine Interface Using Facial Gesture Recognition

PDF Version Also Available for Download.

Description

This Master thesis proposes a human-computer interface for individual with limited hand movements that incorporate the use of facial gesture as a means of communication. The system recognizes faces and extracts facial gestures to map them into Morse code that would be translated in English in real time. The system is implemented on a MACBOOK computer using Python software, OpenCV library, and Dlib library. The system is tested by 6 students. Five of the testers were not familiar with Morse code. They performed the experiments in an average of 90 seconds. One of the tester was familiar with Morse code ... continued below

Creation Information

Toure, Zikra December 2017.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 62 times , with 12 in the last month . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Author

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Toure, Zikra

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

This Master thesis proposes a human-computer interface for individual with limited hand movements that incorporate the use of facial gesture as a means of communication. The system recognizes faces and extracts facial gestures to map them into Morse code that would be translated in English in real time. The system is implemented on a MACBOOK computer using Python software, OpenCV library, and Dlib library. The system is tested by 6 students. Five of the testers were not familiar with Morse code. They performed the experiments in an average of 90 seconds. One of the tester was familiar with Morse code and performed the experiment in 53 seconds. It is concluded that errors occurred due to variations in features of the testers, lighting conditions, and unfamiliarity with the system. Implementing an auto correction and auto prediction system will decrease typing time considerably and make the system more robust.

Subjects

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • December 2017

Added to The UNT Digital Library

  • Jan. 27, 2018, 7:36 a.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 12
Total Uses: 62

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Toure, Zikra. Human-Machine Interface Using Facial Gesture Recognition, thesis, December 2017; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc1062841/: accessed December 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .