Location Estimation and Geo-Correlated Information Trends

PDF Version Also Available for Download.

Description

A tremendous amount of information is being shared every day on social media sites such as Facebook, Twitter or Google+. However, only a small portion of users provide their location information, which can be helpful in targeted advertising and many other services. Current methods in location estimation using social relationships consider social friendship as a simple binary relationship. However, social closeness between users and structure of friends have strong implications on geographic distances. In the first task, we introduce new measures to evaluate the social closeness between users and structure of friends. Then we propose models that use them for ... continued below

Creation Information

Liu, Zhi December 2017.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Author

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Liu, Zhi

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

A tremendous amount of information is being shared every day on social media sites such as Facebook, Twitter or Google+. However, only a small portion of users provide their location information, which can be helpful in targeted advertising and many other services. Current methods in location estimation using social relationships consider social friendship as a simple binary relationship. However, social closeness between users and structure of friends have strong implications on geographic distances. In the first task, we introduce new measures to evaluate the social closeness between users and structure of friends. Then we propose models that use them for location estimation. Compared with the models which take the friend relation as a binary feature, social closeness can help identify which friend of a user is more important and friend structure can help to determine significance level of locations, thus improving the accuracy of the location estimation models. A confidence iteration method is further introduced to improve estimation accuracy and overcome the problem of scarce location information. We evaluate our methods on two different datasets, Twitter and Gowalla. The results show that our model can improve the estimation accuracy by 5% - 20% compared with state-of-the-art friend-based models.

In the second task, we also propose a Local Event Discovery and Summarization (LEDS) framework to detect local events from Twitter. Many existing algorithms for event detection focus on larger-scale events and are not sensitive to smaller-scale local events. Most of the local events detected by these methods are major events like important sports, shows, or big natural disasters. In this work, we propose the LEDS framework to detect both bigger and smaller events. LEDS contains three key steps: 1) Detecting possible event related terms by monitoring abnormal distribution in different locations and times; 2) Clustering tweets based on their key terms, time, and location distribution; and 3) Extracting descriptions include time, location, and key sentences of local events from clusters. The model is evaluated on a real-world Twitter dataset with more than 60 million tweets. The analysis of Twitter data can help to predict or explain many real-world phenomena. The relationships among events in the real world can be reflected among the topics on social media. In the third task, we propose the concept of topic association and the associated mining algorithms. Topics with close temporal and spatial relationship may have direct or potential association in the real world. Our goal is to mine such topic associations and show their relationships in different time-region frames. We propose to use the concepts of participation ratio and participation index to measure the closeness among topics and propose a spatiotemporal index to calculate them efficiently. With the topic filtering and the topic combination, we further optimize the mining process and the mining results.

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • December 2017

Added to The UNT Digital Library

  • Jan. 27, 2018, 7:36 a.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 7

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Liu, Zhi. Location Estimation and Geo-Correlated Information Trends, dissertation, December 2017; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc1062799/: accessed July 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .