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ABSTRACT Cluster BE1 Streptomyces bacteriophages belong to the Siphoviridae,
with genome sizes over 130 kbp, and they contain direct terminal repeats of ap-
proximately 11 kbp. Eight newly isolated closely related cluster BE1 phages contain
43 to 48 tRNAs, one transfer-messenger RNA (tmRNA), and 216 to 236 predicted
open reading frames (ORFs), but few of their genes are shared with other phages,
including those infecting Streptomyces species.

The increasing numbers of bacteriophages that infect Streptomyces hosts and have
sequenced genomes available show them to have considerable genetic diversity

(1), similar to that reported for phages of Mycobacterium (2) and Gordonia (3) hosts.
Here, we report eight newly isolated Streptomyces bacteriophages recovered using
either direct plating or enrichment on three Streptomyces hosts, Streptomyces griseus
ATCC 10137 (phages NootNoot, Paradiddles, Samisti12, Sushi23, and Warpy), Strepto-
myces lividans JI 1326 (phages Jay2Jay and Peebs), and Streptomyces viridochromogenes
DSM40736 (phage Mildred21). Isolates were obtained from soil samples collected in
Missouri, Pennsylvania, and Texas (Table 1).

Phage genomes were sequenced using the Illumina MiSeq platform (except for
Samisti12, which was sequenced using Ion Torrent), and genomes were assembled
using Newbler. The resulting assemblies each contained a single major contig with at
least 185� coverage, long terminal repeats, and defined ends (Table 1). The physical
ends of each genome were identified by a substantial increase in the number of reads
beginning at a single base position and an approximately 2-fold increase in coverage
between these ends defined the terminal repeats. Their genomes range in size from
131,086 bp to 133,917 bp, with a mean genome size of 132,969 bp (Table 1). All phages
have G�C contents of 50% � 0.5%, approximately 20% lower than those of their hosts.
The eight phages are closely related, with pairwise average nucleotide identities from
0.79 to 0.98, and they are grouped together in subcluster BE1; Mildred21 is the least
similar to other BE1 phages. Electron microscopy shows these phages to have a
siphoviral morphology and isometric capsids.

All genomes were annotated using Glimmer and GeneMarkS and refined using
BLAST alignments to previous manually annotated genes; start codon choice was
evaluated using multiple sequence alignments of closely related genes. Putative func-
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tions were assigned using BLASTP (4) and HHpred (5) or by protein-threading assess-
ments using Phyre2 (6); potential functions were assigned to approximately 20% of the
protein-coding genes. Annotated gene functions include virion structure and assembly,
DNA/RNA metabolism, lysis, and DNA packaging.

The direct terminal repeats of approximately 11 kbp are the longest found in any of
the actinobacteriophages to date, and they are similar in size to previously reported
long repeats in phages, such as T5 and SPO1, which have terminal repeats of 10,139
and 13,185 bp, respectively (7, 8). The direct repeats are predicted to include 20 to 25
open reading frames, including an lsr2-like gene; the other genes are of unknown
function. These subcluster BE1 phages each carry a single transfer-messenger RNA
(tmRNA) gene and the largest numbers of tRNA genes (43 to 48) among any phages of
actinobacterial hosts, including at least one tRNA gene for each of the 20 amino acids.
This large tRNA gene repertoire could act to counter tRNA-based degradation defense
systems or to optimize gene expression in hosts that have widely different G�C
contents and differing codon usage preferences (9).

Accession number(s). The GenBank accession numbers are shown in Table 1.
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TABLE 1 Properties of eight Streptomyces phages

Phage name Isolation host Genome size (bp)
Terminal
repeat size (bp)

No. of
ORFs

No. of
RNAsa Origin

GenBank
accession no.

Jay2Jay S. lividans 133,531 10,778 235 46 Tresckow, PA KM652554
Mildred21 S. viridochromogenes 131,976 10,818 234 49 St. Louis, MO MF155946
NootNoot S. griseus 131,086 10,787 221 46 Keller, TX MF347636
Paradiddles S. griseus 133,486 10,778 216 47 Denton, TX MF347637
Peebs S. lividans 133,047 11,072 226 44 Wilkes-Barre, PA MF347638
Samisti12 S. griseus 133,710 10,666 226 45 Denton, TX MF347639
Sushi23 S. griseus 133,917 11,074 229 45 Bethlehem, PA MF358542
Warpy S. griseus 132,996 11,458 233 45 Wrightsville, PA MF358541
atRNA and tmRNA genes. All eight phages contain one tmRNA gene.
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