The high-strain-rate and spallation response of tantalum, Ta-10W, and T-111

PDF Version Also Available for Download.

Description

The compressive true stress-true response of tantalum, Ta-10W, and T-111 were found to depend on the applied strain rate, in the range 0.001 to 7000 s{sup {minus}1}. The strain-rate sensitivities of the flow stress of tantalum, Ta-10W, and T-111 a 1% strain are 0.062, 0.031, and 0.024, respectively. The rates of strain hardening in Tantalum, Ta-10W, and T-111 are seen to exhibit differing behavior with increasing strain rate. The calculated average strain-hardening rate in tantalum, {Theta}, for the quasi-static (0.001 s{sup {minus}1}) data at 25{degrees}C is 2080 MPa/unit strain. The hardening rate at 3000s{sup {minus}1} at 25{degrees}C decreases to 846 ... continued below

Physical Description

Pages: (14 p)

Creation Information

Gray, G.T. III & Rollett, A.D. January 1, 1991.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The compressive true stress-true response of tantalum, Ta-10W, and T-111 were found to depend on the applied strain rate, in the range 0.001 to 7000 s{sup {minus}1}. The strain-rate sensitivities of the flow stress of tantalum, Ta-10W, and T-111 a 1% strain are 0.062, 0.031, and 0.024, respectively. The rates of strain hardening in Tantalum, Ta-10W, and T-111 are seen to exhibit differing behavior with increasing strain rate. The calculated average strain-hardening rate in tantalum, {Theta}, for the quasi-static (0.001 s{sup {minus}1}) data at 25{degrees}C is 2080 MPa/unit strain. The hardening rate at 3000s{sup {minus}1} at 25{degrees}C decreases to 846 MPa/unit strain. Normalizing the work hardening rate in tantalum with the Taylor Factor for a random polycrystal, ({Theta} / (3.07){sup 2}), yields work hardening rates of {mu}/276 at quasi-static strain rates and {mu}/680 at high-rates, assuming a shear modulus of 61 GPa for tantalum at room temperature. While the work hardening of all the tantalum-based materials are similar at quasi-static rates, alloying results in a small reduction in hardening rate. With increasing strain rate, the work hardening rate in tantalum decreases by approximately a factor of two compared to the alloys. Alloying tantalum with substitutional or interstitial elements is thought to result in increased edge dislocation storage and screw dislocation cross-slip due to interactions with the alloying elements at high strain rates. 28 refs.

Physical Description

Pages: (14 p)

Notes

OSTI; NTIS; GPO Dep.

Source

  • Fall meeting of the Minerals, Metals and Materials Society of AIME and Materials Week of the American Society of Metals, Cincinnati, OH (United States), 20-24 Oct 1991

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE92002446
  • Report No.: LA-UR-91-3160
  • Report No.: CONF-911003--20
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 5126507
  • Archival Resource Key: ark:/67531/metadc1061971

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1991

Added to The UNT Digital Library

  • Jan. 22, 2018, 7:23 a.m.

Description Last Updated

  • Feb. 1, 2018, 7:03 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Gray, G.T. III & Rollett, A.D. The high-strain-rate and spallation response of tantalum, Ta-10W, and T-111, article, January 1, 1991; New Mexico. (digital.library.unt.edu/ark:/67531/metadc1061971/: accessed October 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.