MASTER

Technical Manual

12-INCH SODIUM FLOW CONTROLLER

FOR

U. S. ATOMIC ENERGY COMMISSION reactor engineering division

CONTRACT No. AT(11-1)-681

WESTINGHOUSE ELECTRIC CORPORATION ATOMIC EQUIPMENT DEPARTMENT - CHESWICK, PA.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
SECTION TITLE PAGE
Is INTRODUCTION 1
A. Safety Notice 1
B. Component List 2
C. Equipment Data, Table 1 2
l. Controller 2
2. Thermal Barrier 3
${ }^{2}$. Permanent Magnet Coupling 3
4. Operator 4
5. Overall Dimensions 7
6. Weights 7
II. DESCRIPTION OF SODIUM FLOW CONTROLLER 13
A. Hydraulic Characteristic 13
B. Control Cone Positioning Mechanism 13
C. Thermal Barrier 15
D. Permanent Magnet Coupling 16
E. Operator 17
I. Position Limitswitches 17
2. Remote Position Indicator 17
3. Double Torque Limitswitch 17
4. Torque Indicator 18
5. Magnetic Brake 18
6. Manual Override 18
7. Indicating Lamps on Pushbutton Station 19
8. Reversing Controller 20
9. Adaptability for Servo Control 20
III. GENERAL INSTALLATION AND OPERATIONAL POINTERS.
A. Don't 22
B. Do (Includes Lubrication) 24
C. Trouble Shooting 26
IV. INSTALLATION INSTRUCTIONS
A. Cleanliness 32
B. Installation Procedure 33
V_{*} DISMANTLING OF SODIUM FLOW CONTROLIER 36
A. Removal of Operator 36
B. Dismantling of Operator 37
C. Removal of Permanent Magnet Coupling 40
D. Removal of Thermal Barrier 44
E. Removal and Dismantling of Drive Screw Assembly 44
F. Removal of Control Cone 46
SECTION TITLE PAGE
VI. ASSEMBLY OF SODIUM FLOW CONTROLLER 47
A. Installation of Control Cone 47
B. Assembly \& Installation of Drive Screw Subassembly 47
C. Installation of Can \& Thermal Barrier 50
D. Installation of Stator Assembly 51
E. Mounting of Operator 54
F. Checking Position Limit Switches 57
G. Readjustment of Position Limit Switches 58
H. Checking of Double Torque Limit Switch 61
I. Readjustment of Double Torque Limit Switch 61
J. Adjustment for Friction Disc Wear of Magnetic Brake 63
K. Seal Welding Instructions 65
VII. LIST OF SPECIAL TOOLS AND FIXTURES 66
VIII. REPAIR PARTS LIST 67
A. Sodium Flow Controller 67

* B. Operator 74
C. Motor 75
D. Magnetic Brake 76
a. Repair Parts List 76
b. Coil Replacement 77
c. Removal of Friction Discs 77
E. Reversing Controller 79
F. Pushbutton Control Station 80
* California Service:

Philadelphia Gear Corporation
507 East Alondra Blvd.
Garden, California
Mr. R. Burhoe
Mr. R. Dale, Mgr.

TABLE OF CONTENTS (CONTINUED)

Fig. or
Dwg. No. Title Page
Figure 1 Motor Performance Curves 5
Figure 2 12" Sodium FIow Controller Perspective 8
Figure 3 Fluid Scheme 9
Figure 4 Body Photograph 10
Figure 5 Drive Screw Assembly Photograph 11
Figure 6 Operator Photograph 12
ED-SK-286961A Flow Characteristic 14
3660376 Expansion Plug (Body) 34
3660380 Expansion Plug (Body Inlet) 35
6060909 Assembly Tools 56
Figure 7 Geared Position Limitswitch 59
Figure 8 Double Torque Limitswitch 62
15:008E Seal Welding Instructions 65
Figure 9 General Parts Drawing 73
D-744.21 Operator Parts Drawing, Sheet. \#I 74
D-74412 Operator Parts Drawing, Sheet \#2 74
Figure 10 Magnetic Brake Parts Drawing 76
A 76993 Reversing Controller Installation Drawing 82
A 76088 Pushbutton Station Installation Drawing 83
A 76969 Remote Position Indicator Installation Drawing 84
A 1874 Wiring Diagram for Remote Position Indicator 85
Fig. or
Dwg. No. Title Page
B 69025 Wiring Diagram for Operator 86
772 D 217 Keeper Removing Tool 87
772 D 225 Keeper Removing Tool Case 88
505D061 Stator Sub Assembly 89
$510 F 033$ Drive Screw Sub Assembly 90
Figure 11 Exploded View 91
$618 J 693$ General Assembly 92

SECTION I

INTRODUCTION

A. SAFETY NOTICE

Only experienced and authorized personnel should install and maintain the 12" Sodium Flow Controller. The controller is designed for continuous operation at $1000^{\circ} \mathrm{F}$ and 100 psi with the thermal insulation placed as indicated on drawing 618J693, page 92.

The main components of the $12^{\text {n }}$ Sodium Flow Controller are:

1. Flow Controller Body
2. Drive Screw Assembly and Disc
3. Thermal Barrier
4. Permanent Magnet Coupling
5. Operator with its Electrical Controls and Indicators
C. TABIE 1

EQUIPMENT DATA

1. Controller

Operating Temperature	$1000^{\circ} \mathrm{F}$
Maximam Operating Pressure	100 psig
Fluid Containment	Zero Leakage
Hydrostatic Test Pressure	225 psig
Operating Range	350 to 7000 gpm
Fluid	Liquid Metal
Body Drain	Provided
Can Vent	Provided
Disc Stroke	$5-3 / 8$ inches
Closing Revolutions	13
Closing Time Seconds	7.8
Closing Handwheel Revolutions	62.4

Internal Thermal Insulation

Vacuum Ring

Rotor Support

Connections for additional cooling or heating fluid flow

Heaters
Voltage
Wattage

> 9-7/16 Dia.

7-7/16 Dia. 5-7/16 Dia.

Total
Thermocouples
B \& S Gauge
I.S.A. Calibration

Sheath Material
3. Permanent Magnet Coupling

Revolutions

Maximum Torque Capacity @ Room Temperature

Operating Torque
Operating Temperature

110 Volts
Vacuum
Cool Fluid for insulating。
(Hot Fluid for additional heat source, if desired, for melting solidified sodium.)

Provided

110 Vols

1000 Watts
750 Watts
550 Watts
2300 Watts

28
Iron-Constantan (J)
Inconel

100 rpm max.
$680 \mathrm{ft} . \mathrm{Ibs}$.
300 ft. 1 lbs . max.
$450^{\circ} \mathrm{F}$ max.

Make	Philadelphia Gear Corp.
Model	Sma3
Motor	
Performance Curves	Fig. 1, Page 5
Make	Reliance Electric \& Engineering Co.
Voltage	$440 \pm 10 \%$
Phase	3
Frequency	60 cps
Current, at 440 Volts, Starting	59.4 Amps
Full Load	14 Amps
Locked Rotor	59.4 Amps
Torque, Starting	$80 \mathrm{ft.1b}$.
Full Load	32 Pt .1 lb .
Enclosure	Totally enclosed, weatherproof
Duty	Continuous
Ambient Temperature	$130^{\circ} \mathrm{F}$
Insulation throughout except Selsyn Transmitter	Type H
Temperature Rise	$115{ }^{\circ} \mathrm{C}$
Control Voltage	110 Volts
Phase	1
Frequency	60 cps
Stearns Magnetic Brake	Model HT-72-A9 (70 Series)
Solenoid Gap	7/16"
Output Shaft Revolution	100 rpm
Output Shaft Full Load Torque	400 ft . lb .
Manual Override	Provided
Handwheel Ratio	4.8:1
Automatic Motor Override	Provided
Motor Ratio	18:1

A.O. Motor Performance Curves			
Specification Datas		Nameplate Datas	
E/S AD-5145	Frame DB-254-UR3	$80 \mathrm{FT}-\mathrm{LB}$ Start	Cycles 60
Rotor 403759-DT	Draty Cont.	32 FT-LB Run	Code K
Test S.O. Y-140609	Phase 3	Volts 220/440	Temp. Rise 55
Test Date 6-1-60	Type/Form P/YR	Amps 17.4/8.7	Nema Designm
Res. On 440 V . Conn.			Enclosure TEFC

Nolts	Amps		
	N.L.	F. $\mathrm{L}_{\text {。 }}$	L. R.
484	7.59	15.4	-
480	---	--m	67.4
440	5.75	14	59.4
400	--m-	--	53.6
396	4.34	14.1	-m.

Remote Position Indicator	Selsyn Type
Torque Indicator	Provided and Calibrated
Position Limitswitches	Provided and Adjusted
Contact Rating	20 amp at 115 Volts 60 cps
Torque Overload Protection for both, "Open and "Close" direction	Provided and Adjusted
Motor Control	
Reversing Controller (Page 82)	
Make	Westinghouse
Size	1
Enclosure	Nema I
Mounting	Surface
Voltage	440/110
Phase	$3 / 1$
Style \#	133A831G01
Catalog \#	15-831 NS17
Shop Order	$24-\mathrm{F}-2142$
Contactor Operating Coil	$\begin{aligned} & S-1470241 \\ & 3 P S=130 \end{aligned}$
Voltage	110
Inrush	35 Amps
Holding	27 Amps
Heater Code \#	BA9. 6
Heater Style Number	966488
125\% Overload Protection F.l. Motor Current @ $40^{\circ} \mathrm{C}$	8.16 to 9.19 Amp
Current Rating @ $40^{\circ} \mathrm{C}$	10.2 Amp
Pushbutton Station (Page 83)	
Make	Clark
Type	AS
Mounting	Surface
Catalog \#	BUL 100 Type H
Case Cat. \#	$1 \mathrm{H5}-\mathrm{SPL}$
Lamp No. 51 -6.	7V, 3W

Height (Bottom of Controller Body to Top of Operator) 93-1/2
Length ($£$ to Magnetic Brake) $42-1 / 2$
Length (Port to Port) 47-5/8Width (Flange Dim.)28-9/16
6. Weights:

Description	$\begin{aligned} & \text { (Page } 91 \text {) } \\ & \text { Expl.View \# } \end{aligned}$	Drawing	Lbs.
1. Total		618J693, Gr. 1	4900
2. Body	11	618J694, Gr. 1	1190
3. Split Ring	5	3660319, Gr. 1	68
4. Bolting Ring	2	3660320, It. 1	110
5. Body Inlet	3	505D047, Gr. 1	435
6. Control Cone	4	5050048, Gr. 1	75
7. Drive Screw	30	510F033, Gr. 1	125
8. Guide	12	258B219, It. 1	62
9. $1^{\prime \prime} 8$ UNC-2Ax5 $\frac{7}{2}$ Hex Bolt	9	12100-9	6
10. Can Split Ring	10	366C324, Gr. 1	125
11. Can Flange	56	366C326, It. 1	240
12. Operator Support	83	505D057, Gr. 1	240
13. Rotor Bearing	46	Ind.Tect. 3166	6
14. Bearing Retainer	47	258B221, It. 1	2.3
15. Rotor	50	505D056, It. 1	560
16. Bearing Retainer	45	366C332, It. 1	2.1
17. Operator Mtg. Pl.	88	3660334, It. 1	180
18. Motor Operator	90	D74411/2	1431
19. Drive Hub	77	366C333, It. 1	53
20. Drive Hub Brg.	74	KD 110 CP	2.1
21. Bearing Retainer	58	3660327, It. 1	15

Fig 3

0

SECTION II

DESCRIPTION OF SODIUM FLOW CONTROLIER

A. Hydraulic Characteristic (Fig. 2-Page 8, Fig. 3-Page 9, and 618J693, Page 92)

The Sodium Flow Controller is a flow controlling device for regulating the heat transfer in a liquid metal nuclear power plant. The controller consists of the body (Fig. 4, Page 10) with the separate inlet section, the control cone, drive screw assembly (Fig. 5, Page 11), the thermal barrier, the permanent magnet coupling, and the operator (Fig. 6, Page 12). The flow regulating control cone is located in the upstream part of the body and moves along the flow axis. The flow divides into two half sections, after passing the control cone, circumventing the center portion of the body which contains the control mechanism. After passing this center portion, the fluid converges near the downstream port of the body. The flow path is shaped carefully to guide the flow through its directional changes so that dissociation of the fluid on the low pressure diffusion side is kept to a minimum, especially at high velocities. Two drain plugs are provided which, in conjunction with the intermal drain system, effect a clean drain of the sodium flow controller.

B. Control Cone Positioning Mechanism

The control cone is positioned by a screw type duplex toggle arm linkage (Fig. 5, Page 11). Its peculiar force-stroke characteristic, with its roller nuts running around the drive screw in opposite directions, compensates the axial force vectors within itself without requiring a bearing to take up reactional forces against the body. The symmetric

To determine percent of disc stroke for a given throat area (sqoin。), read horizontally from throat area scale to intersect curve "b", then vertically to intersect curve "a", and again horizontally to percent scale.

Example: Given 15 sq.in, throat area (6.9 drive screw revolutions) $=30.25 \%$ dise stroke。

a - Drive Screw Revolutions to Percent of Disc Stroke
b ∞ Drive Screw Revolutions to Throat Area

FLOW CONTROL CHARACTERISTIC (THROAT AREA) OF
12^{19} SODIUM FLOW CONTROLTER
design avoids side thrust to the control cone stem, thereby avoiding additional frictional loss. Each roller nut and toggle arm pair carries only half of the load.

Uniform revolutions of the drive screw are translated into higher force and slower travel in the direction of the closed position where higher dydraulic pressure drops require higher forces and where faster flow changes require finer regulation. (See ED-SK-286961A on Page 14 showing the flow control characteristic).

Roller nuts, equipped with stellite ball bearings transmit the rotary motion of the drive screw into linear motion. The toggle arms, then, convert the vertical linear motion into the horizontal control cone motion effecting the variable orifice. Rotation of the control cone is prevented by a pin which is guided in a bearing hole penetrating the front cup of the body. The static axial thrust of the control cone stem is transmitted over 8 double row ball bearings directly to the 2 channels in the controller body.

C. Thermal Barrier

On top of the body, the thermal barrier separates the $1000^{\circ} \mathrm{F}$ body from the permanent magnet coupling which should not exceed a temperature of $450^{\circ} \mathrm{F}$. The barrier serves several functions. In addition to the insulating vacuum and air chambers, connections are provided foradditional coolant flow through the thermal barrier, if so desired. Further, the thermal barrier is equipped with a total of 2300 watt heaters for melting solidified sodium in the can after a shutdown. On the other hand, additional heating could be effected by introducing heating fluid through the above
mentioned connections. Two thermocouples in the thermal barrier provide the control signal for the sodium temperature in the coupling as well as for the sheath temperature of the heaters.

D. Permanent Magnet Coupling

The permanent magnet coupling on top of the thermal barrier is driven by an electric motor operator. The coupling rotor runs on stellite ball bearings and is connected to the drive screw by a self-aligning spline. Magnetic flux links the permanent magnet stator assembly through the can With the soft magnetic rotor and thereby effects the seal-free coupling between the commercial operator and the hydraulic controller. Again, cooling openings are provided in the lower and upper part of the motor support, flange, and drive hub to assist in keeping the critical permanent magnets at a practical temperature by gravity air circulation. These holes could be closed partially or completely in case the thermal gradient is too great resulting in possible sodium solidification inside the can.

The position of the stator assembly can be observed through one of the upper cooling holes in the operator support, where an indicating hand is mounted pointing at the circular position scale. This ring scale has different graduations on either side. The percentage scale is used to identify the different control cone positions in connection with the different sodium flow capacity readings after installation of the sodium flow controller in the loop. The degree scale had been used at the factory for indicating the stator vs. rotor displacement through the entire torque range when the operator torque indicator had been calibrated.
E. Operator (Fig. 6-Page 12, Dwg. D-7LLII/2-Page 74)

The operator with its male self-aligning splined shaft drives the stator assembly of the permanent magnet coupling directly on its centerline. The symmetrical concentric drive avoids additional gearing thereby avoiding separating forces, additional frictional losses, and need for Iubrication. The operator drive shaft is hollow through its entire length to admit the stationary vent tube. When venting the system, the operator may stay in its place. An $1 / 8^{\prime \prime} N P T$ pipe tap is provided on the vent valve for conducting the vented fluid spillfree to a safe place. Only the operator lifting adaptor, which serves as a dust cover, has to be removed for access to the vent valve.

In addition to the positioning function of the operator, the following features are included:

1. Adjustable position limitswitches, which stop the operator automatically in the controller end positions. Three normally open and three normally close auxiliary contacts are available in the "OPEN" as well as in the "CLOSE" circuit.
2. Remote Position Indicator (Selsyn) calibrated in conjunction with the circular percent scale mounted on the stator,
3. Overload protecting adjustable torque switches for both control cone directions along the entire control cone stroke. Each switch has one normally close auxiliary contact in case it is desired to interlock another electrical circuit of the plant. The torque limitswitch is linked mechanically with
the axial motion of the operator worm shaft. The shaft is mounted so that it can slide against a helical "torque" spring in both directions whenever an hydraulic or frictional load has to be overcome. The amount of axial motion depends on the magnitude of the load met. The deflection of the worm shaft is linear proportional since an helical reaction spring is used which has a linear load-deflection characteristic. The torque switch can be adjusted for tripping the motor at any load within the capacity of the operator.
4. Torque indicator on operator calibrated in conjunction with the Permanent Magnet Coupling scale showing the torque produced by the operator.
5. Magnetic brake to ascertain positive positioning without any chance of drifting. The brake is adjustable for no shock stop.
6. Manual override engaged by depressing a lever and disengaged automatically by actuating the electric motor. Following general practice, the manual override closes by tuming the handwheel clockwise and opens by rotating the handwheel counter clockwise as indicated on the handwheel rim.

NOTE
Since the electric motor is disengaged when the operator is in manual position, the magnetic brake
is disengaged as well. Therefore, it is advisable not to leave the manual lever in the override position.

The lever cannot be released manually, therefore, never attempt to force it upwards. The electric motor should be energized shortly to trip the manual lever whenever it was depressed, especially since this operator has non self-locking worm gearing due to the speed requirement. When tripping the manual lever, all persons should stay clear of the operator to avoid being hit.

The overload protection, being an electrical device, is not in action during manual operation. Therefore, in case of manual operation, precaution should be taken by watching the torque dial through the "Bijur" window in the control compartment cover if there is a possibility of manual overload. The applied torque shall not exceed $500 \mathrm{ft.lb}$. on the operator output shaft (110 ft .1 lb . on the handwheel), to avoid demagnetization of the permanent magnets. The impact device on the handwheel should only be used in emergency.

7. Indicating Lamps on Pushbutton Station

In accordance with the wiring diagram (Page 86), both lamps (green-open, red-closed) are on in any intermediate position. The red lamp goes out when open, while in the closed position the green lamp will be out. (See position limitswitch development on the wiring diagram.)
8. The Electrical Reversing Controller contains:
(a) A mechanical interlock which prevents the opening and closing contacts from being closed simultaneously. The only way to reverse the direction during operation, is to trip the current to the energized coil by depressing the "STOP" pushbutton and then depress the pushbutton of the desired direction.
(b) The current rating of the heaters provided with the controller is 10.2 amps @ $40^{\circ} \mathrm{C}$. These heaters provide 125% Overload Protection at full load motor current of 8.16 to $9.19 \mathrm{amps} @ 40^{\circ} \mathrm{C}$.
9. Adaptability for Servo Control

Possibility is provided on the operator for exchanging the squirrel cage motor against a variable D.C. motor to follow the positioning signal of a servo system with computer and feedback control, free of hunting. The Selsyn type remote position indicator (Par. E.2) would furnish the necessary feedback signal. The control signal could originate from a single source like the power demand or secondary loop temperature or could include a combination of several signals compared in the computer to satisfy the economical performance in loop temperature, flow capacity, heat transfer capacity a.s.o. The adjustable D.C. control unit would be suitable for receiving a varying control signal. It would furnish a varying output signal
to vary the motor speed. Armature reversal feature would be included. A large differential signal would produce initial fast response. When approaching the desired control point, the motor speed would be slowed down to avoid overrunning and consequent hunting.

The servo control would contain a manual speed adjustment rheostat and manual/automatic selector switch.

For test purposes, an electric accumulative counter and predetermined electric counter can be used for full automatic cycling.
A. DONT:

1. Don't dismantle the roller nuts without sufficient preparation against losing the stellite balls (Fig. 5, Page 11).
2. Don't try to bend the heater lead wires close to the ceramic terminals without counter holding them.
3. Don't permit the permanent magnet stator to exceed $450^{\circ} \mathrm{F}$.
4. Don't force the operator declutch lever into motor operation position. Lever returns to this position automatically when motor is energized.
5. Don't try to move the declutch lever beyond 8° to 10° arc of travel from motor operation position to hand operation position.
6. Don't use abrasive cloth or paper to clean silver contacts of the geared position limit switches and torque switches.
7. Don't depress the declutch lever during motor operation to stop the controller travel, except in emergency.
8. Don't use torque increasing leverage on handwheel.
9. Don't use oversize motor overload heaters - instead look for cause of overloading.
10. Don't re-set torque switch heavier than 400 ft . lbs . Without factory concurrence.
11. Don't attempt to remove either worm shaft plug or drive sleeve cover from limitorque while the sodium flow controller is torque seated. Always back the controller off the internal stop several handwheel turns before dismantling the operator.
12. Don't attempt to set the limit switches without first disconnecting control and power circuits.
13. Don't motor operate the sodium flow controller without first checking the limit switch settings.
14. Don't lubricate the electric motor. It was life time lubricated at the factory.
B. DO:
15. Do apply sparingly Molub Alloy XTO Light to both stator ball bearings every six months. Before lubrication remove decayed residues.
16. Do torque the bolts of both main flanges to 75 ft . 1 bs .
17. Do adjust the permanent magnet coupling temperature, if necessary, so that it does not exceed $450^{\circ} \mathrm{F}$. Use forced fluid circulation through the thermal barrier to regulate the temperature in accordance with the temperature information originating from the permanent magnet coupling thermocouple (Exploded View, Page 91, Item 43).
18. Do adiust the electromanetic operator brake so that it stops the motion smoothly and avoids undesirable shocks to the permanent magnet coupling. See Magnetic Brake Instructions, Paragraph VI.J, Page 63.
19. Do cut power off before opening or replacing Limit Switch com= partment cover.
20. Do check Limit Switch operation in conjunction with motor rotation. If motor is turning in wrong direction, interchanse ne mir of motor leads. (Close: Clockwise when observing the conlin rcale)
21. Do install the sodium flow controller with the motor in horizontal plane, if possible. It is preferred to keep motor or Limit Switch compartment from hanging down. This prevents head of grease being against motor or switch seals.

* Imperial Oil \& Grease Co., Inc., Los Angeles, 48, Calif.

8. Do connect space heater if unit is to be stored in a damp place prior to inctallation.
9. Do set up periodic operating schedule for Sodium Flow Controller if it is used infrequently.
10. Do lubricate operator drive sleeve top bearing every six months with a heavy duty, extreme pressure grease, such as Esso Neolube EP-1 or Esso Andoke B. Use grease gun on pressure fitting in housing cover.
11. Do keep geared position limit and torque switch contacts clean. Use carbon tetrachloride or other solvent on lint-free cloth.
12. Do keep Limit Switch compartment clean and dry.
13. Do be sure area is clean before dismantling the Sodium Flow Controller. Clean all parts before re-assembly (see Par. IV.A., Page 32).
14. Do apply fresh, clean lubricant to operator after re-assembly.
15. Do re-set geared limit switch before motor operation, if the limitorque has been either dismantled or removed from the Sodium Flow Controller.
16. Do replace whole limit switch gear box rather than attempt repairs in field.
17. Do replace any molded plastic conduit tap protectors (installed for shipping and storage only) with pipe plugs when installation wiring is completed.
18. Do check and replace damaged limit switch cover gasket before securing on operator.
19. Do refer to Parts List when ordering replacement or spare parts for the operator. Give operator nameplate data:

Unit Type SMA
Unit Size 3
Order No. $\quad 57-E 0-79015 / \mathrm{L}-47087$
Serial No. 87399
C. TROUBLE-SHOOTING:

IF GEAR LIMIT SWITCH FAILS TO STOP VALVE TRAVEL, CHECK THE FOLIOWTNG:
a. Control wiring
b. Geared position limit switch setting
c. Setting rod to see that it has been backed off after each side of switch has been set.
d. Remove limit switch gear box cover and inspect for damaged or broken gear teeth.

IF UNABLE TO OPERATE LIMTTORQUE BY MOTOR:
a. Check both motor power and control circuits for supply and continuity.
b. Compare supply voltage with motor and controller nameplate rating. Then check motor amperage load.
c. If stalled motor is indicated, shut off power and operate the Sodium Flow Controller by handwheel.

EXCESS IVE HANDWHEEL EFFORI CAN INDICATE THE FOLIOWING:
a. Solidified sodium
b. Damaged parts
c. Misalignment
d. 'Ihermal seizure
e. Faulty or damaged parts

ADDITIONAL TROUBLE SHOOTING HINTS:
When the Sodium Flow Controller is reported inoperative, or when the Sodium Flow Controller reportedly fails to complete its travel, or When the Sodium Flow Controller fails to cycle in the usual length of time, try to ascertain whether or not the difficulty is in the Sodium Flow Controller or operator mechanism.

1: Shift into handwheel operation and run the Sodium Flow Controller 211 the way from fully open to close and back to fully open. Without hydraulic load, the Sodium Flow Controller should move easily, since the drive sleeve is mounted on anti-friction roller bearings.
2. In the event that \#I does not disclose any useful information, remove the limit switch compartment cover. The limit switch arrangement and their function should be noted. Then step \#1 should be repeated with the handwheel, taking note to see that the limit switches function according to the established plan. (Paragraph VI.F and H, pages 57 \& 6I)
3. If \#2 and \#1 fail to develop any peculiarity that might point to the trouble, then the Sodium Flow Controller should be operated electrically. If it is not possible to operate the Sodium Flow Controller, because of being in a sequence, then the magnetic contactor should be held in the "OPEH" position and then the "CLOSED" for sufficient time to move the Sodium Flow Controller completely through its cycle. If it is convenient, an ammeter should be in the circuit to see if the motor is properly loaded. (Fig. I, Page 5).
4. If, after completion of step \#1, \#2, and \#3, no operational difficulties occur, it can safely be assumed that the difficulty, if any, lies somewhere else than in the operator.

SPECIFIC TROUBLES that may have been noted during the examination carried out in \#1, 2 and 3.

1. Limit Switches not operating according to plan.
(a) Alter operation of the limit switches so that the travel limiting switch and auxiliary switches, if connected, work satisfactorily. (Section VI, Paragraph G, page 58)
2. Electric motor not staying on the line.
(a) Since the torque switch is located in the holding coil circuit, it may be that the torque switch setting needs to be increased to cause the operator to develop more
torque before dropping off the line. Readjust per Section VI., Paragraph I., page 61.
(b) Investigate the size of the heater strips. They should not be sized too close to the motor name plate rating.
(c) (a) \& (b) not being the case, the trouble lies in the circuits, not the operator.
3. Electric Motor Stalling
(a) Check direction of rotation to see that pushbutton holding coil operation and permanent magnet coupling direction agree with the plans, that is, that open pushbutton is energizing open side of reversing contactor and causes counter clockwise rotation of the permanent magnet coupling seen from the operator end.
(b) If (a) is 0.K., then the electric motor gear train must be inspected.
(c) Before replacing motor, after inspecting helical reduction, check motor for operation while not connected to the load.
4. Electric Motor Running Too Slow.
(a) Put ammeter on the motor and check for overload, if appreciably more than name plate value, inspect gear train of the motor and have motor tested after being removed from operator.
5. Motor Punning but No Rotation of the Drive Sleeve Occurs
(a) Lift up easily on declutch lever. If this corrects condition temporarily, it indicates weak or broken clutch spring or damage to lugs on gears.
(b) The trouble may be in the helical gear set driven by the motor shaft. Remove the motor and inspect.
6. Unusually Noisy Operation
(a) Pull grease plug and inspect condition of grease.
(b) Remove cover of the housing for further inspection if
(a) warrants further checking.
(c) Remove motor and inspect helical gear reduction.
(d) If no source of noise can be discovered, attempt to feel in the grease for burrs that may be the result of one piece rubbing another.
7. Magnetic Brake
(a) Failure to Stop:

If brake does not stop properly:
(1) Check to see if brake is in need of adjustment for lining wear. (Page 63)
(2) Friction discs may be badly worn or broken and must be replaced. (Page 77)
(3) Check to see if hub has shifted on shaft.
(b) Excessive Humming

If excessive humming is heard from brake solenoid, the plunger isn't seating properly. This may cause coil failure. To correct:
(1) Clean solenoid of dirt or foreign matter between plunger and coil frame.
(2) The coil frame may have shifted from use and is not seating properly. Align coil frame, so plunger seats properly.
(c) Failure to Release

If brake does not release when solenoid is energized, check for the following:
(I) Broken lead.
(2) Low voltage. If voltage is too low for the solenoid, the plunger may make an effort to pull in, but may not pull in completely. This could cause coil failure.
(3) Coil failure. A coil may be burned-out due to low voltage, poor voltage regulation, too rapid cycling, over voltage or improper seating of plunger (humming). Before installing new coil, check for above causes and correct, (Page 77).

SECTION IV

INSTALLATION INSTRUCTIONS

A. Cleanliness During Assembly and Disassembly

The area in which the controller is to be assembled or disassembled must be clean and dust-free. The degree of cleanliness cannot be measured or defined. However, every effort should be made to keep it as clean as a normal business office or home. Areas in or near machine shops and areas where general construction is going on should not be considered clean enough. There should be no grinding, machining, welding, or any other dirt-producing operations close by. If repair work on the flow controller must be done where dirt-producing operations are being carried out, the dirt-producing operaticns may be stopped while the flow controller is repaired, or the repair area may be completely enclosed by a canvas tent. Normal atmospheric dust is not considered harmful to controller components if they are kept dry and are exposed for a short time only. Following the assembly of clean subassemblies into components, all openings should be sealed to prevent contamination. If the internal surfaces cannot be protected simply by sealing the openings, the part should be put into a tight container or covered with clean cloths or plastic sheets. Openings should be sealed with plastic or rubber covers or with plugs taped around the edges. Intermal surfaces should never be exposed to the atmosphere longer than is necessary for working on the component.

Personnel working in the assembly area should wear clean, lint-free gloves and coveralls or similar outer clothing. (After cleaning, the con-
troller, internals should not be touched with bare hands.) Clothing should be free from dirt, grease, metal filings, and other foreign material.

B. Installation Procedure

The Sodium Flow Controller is shipped completely assembled, seal welded, and calibrated. All limit switches are properly adjusted and the controller is ready for installation in the sodium test loop.

For contamination and corrosion protection during shipping and storage, both main ports are sealed with expansion plugs 3660376, Page 34 and 3660386, Page 35. The Sodium Flow Controller is filled with inert gas of 15 psi pressure. Before removal of the expansion plugs, equalize the pressure to the atmosphere by slowly removing one of the $1 / 4^{\prime \prime}$ square head steel pipe plugs, Item 6 of the subject drawings.

Install the flow controller with the flow entering the inlet section as shown on the perspective drawing, Figure 3, Page 9. The ports are prepared for welding into the loop, using the inert gas tungsten electrode welding process with fusible inserts of the $E B$ type or equivalent for the first weld pass. For test purposes, two symmetric piezometer openings are provided to both split flow channels. The tubing and fittings for connecting the openings are furnished to facilitate connection to the pressure instrumentation.

The electrical control components (reversing controller and combined pushbutton station with indicating lights) as well as the remote position indicator receiver (Selsyn) can be installed at any desired remote location. Follow the wiring diagram B69025 on Page 86 , Selsyn diagram A-1874 on Page 85, and Equipment Data on Page 2, for proper connections.

A-CADMIUM PLATE ALL OVER PER FS $25 A A O 2$ EXCEPT THD'S.
B-CADMUM PLATE ALL OVER PER FS $25 A A O 5$ B-CADMIUM PLATE ALL OVER PER FS 25 AAOS.
C-AFTER WELDING AFINISH MACH. CADMIUM PLATE ALL OVER C-AFTER WELDING 4 FINISH MACH. CADMIUM
PER FS $25 A A O 2$.

REMOVE MIN. STOCK
FOR GOOD

DISMANTLING OF SODIEM FLOW CONTROLLER (See Sectional Assembly Dwg. 618J793, Page 92)

Numbers in parenthesis refer to those illustrated in Exploded View, Page 91, except as noted.
A. Removal of Operator

1. Open the valve either electrically or manually.
2. Disconnect all power cables from the operator (88), remote position indicator, and thermal barrier (38). Disconnect the thermocouples (39 \& 40) and the flow instrumentation.
3. Insert two $l^{\prime \prime}-8$ eyebolts into the operator lifting flange. Use the threaded holes closest to the motor for proper lifting balance.
4. Insert a bar through the eyebolts and check that the lifting flange is turned in tightly.
5. Attach a harness of I ton capacity to the eyebolts and an adjustable chain between the cranehook and the motor without applying any lifting force to the crane.
6. Remove the eight $5 / 8^{\prime \prime} \times 11$ bolts (87).
7. Insert four $5 / 8^{\prime \prime} \times 11$ jacking bolts in the threaded holes provided for this purpose in the operator mounting plate (86).
8. Turn the four jacking bolts simultaneously and uniformly in for lifting the operator in a concentric fashion. This is necessary for disengaging
the close fitting splined shaft without tilting the operator due to its off center gravity point.
9. After lifting the operator about 2 inches with the jacking bolts, remove the operator by crane avoiding carefully any tilting. If necessary, an adjustable chain should be attached between the crane hook and the magnetic brake to balance the operator.
B. Dismantling of Operator

To completely dismantle the operator, proceed as follows. Reference numbers in this paragraph only refer to drawings $D-74411$ and $D-74412$, Page 74.

1. After removal of the switch compartment cover (3) and all power and control cables, remove the torque switch and the geared position limit switch.
2. Remove the electric motor and the motor adapter plate. The motor pinion (44) is keyed to the motor shaft with key (82) and also attached with a set screw (67).
3. Remove the split ring (22) and the snap ring (122). Removal of these two pieces will allow the motor clutch gear (45) to be pulled from the wormshaft. The motor clutch gear can easily be removed since it is splined to the wormshaft. The tripper spring rods (4I) should then be removed to prevent the loss of these small pieces. The tripper springs
(40) can then be removed either from inside the motor compartment or by removing the socket head set screws (69). These springs also should be removed to prevent their loss.
4. Remove the pipe plug (85). When the plug is removed, the declutch fork shaft (33) can be removed from the same hole. When the declutch fork shaft, which has a sliding fit in the declutch fork (32) is removed, the declutch fork will fall free, allowing for easy removal of this piece.
5. Remove tripper assembly by removing pin (79) and pulling trippers (37) and (38) from shaft \#42. Care should be taken so that washers (78) and snacer (39) are not lost.
6. Remove clutch (26) and clutch spring (28) by sliding them from the wormshaft toward the motor end.
7. To remove the handwheel, take off the socket head cap screw (62), the washer (1,6) and the handwheel clutch (47).
8. Remove the declutch lever (24) by loosening the set screw (68) and the key (81), then slide tw lever from the shaft.
9. Remove the end cap (5) by removing the hex head cap screws (64) and the lock washers (72).
10. The removal of the spring cartridge (\#16) is effected by removing the cap screws and washers (\#80 \& \#63) first. Since the spring cartridge and worm (\#15) are a separate sub-assembly, they must be removed together by threading out the worm from its engagement with the worm gear (\#13). It is accomplished by manually rotating the worm shaft (\#9) CCW from the motor end. This will expose the bearing cartridge (\#19).
11. For further dismantling of this sub-assembly remove the bearing retaining ring (\#123) and lock nut (\#104). The torque spring (17) can be removed by taking off the lock nut (\#117), washer (\#91), and spacer (\#90).
12. Remove housing cover (2).
13. Remove the handwheel shaft (10) by removing the elastic stop nut (116) and the washer (77). The handwheel gear (25) which is keyed to the handwheel shaft can be pulled free since it has a sliding fit. Tapping on the motor end of the handwheel shaft will free the bearings (97) and (98) from their respective positions and allow the handwheel shaft to be pulled free from the housing.
14. To remove worm shaft (\#9), loosen cap screws (\#70) from motor end. Now remove bearing cap (\#18). By gently tapping on sides of worm shaft (\#9) with soft hammer, it can be pulled from housing at motor end.
15. Loosen the set screw in the declutch link (29). This will allow the declutch link to be removed from the splined end of the declutch shaft (30) when the declutch shaft is pulled from the handwheel end of housing. Care
should be taken against loss of declutch link spacer (31) when shaft is pulled free.
16. Lift complete drive sleeve assembly from unit housing. The drive sleeve assembly consists of locking nut (II), jam nut (12), drive shaft (7), drive sleeve (6), top oil seal (112), top thrust bearing (94), worm gear (13) and (14), worm gear spacer (20), lower thrust bearing (96), oil seals (111). The two bottom oil seals will remain in place when the drive assembly is lifted from the housing. This complete drive assembly can be further dismantled if required.
C. Removal of Permanent Magnet Coupling (Exploded View, Page 91)
17. Attach three $5 / 8^{\prime \prime} \times 11$ eyebolts to the operator support (84) and attach a 3-chain hamess to it.
18. Remove the eight $5 / 8^{\prime \prime} \times 11$ bolts (81) from the operator support (84).
19. Lift and remove the operator support. If desired, the jacking holes in the operator support flange can be used for assistance.
20. For removing the permanent magnet coupling stator assembly, the keeper removing tool 772 D 217 (page 87) is needed. Proceed in the following manner.

NOTE
The permanent magnets are made of Alnico V which is extremely brittle. Therefore, care should be taken to handle and move the stator assembly without any bumps and shocks.

In the installed position, the main flux passes through the small running gap between the magnet poles and the can generating the by far greatest and concentrated attraction of the entire assembly for any kind of steel particles. Special care should be taken, therefore, that no iron particles he present in the form of chips or especially iron powder within a 5 foot radius. This includes the tools, working clothes, gloves, shoes, etc. It is suggested to use a magnetic sweeper or any other suitable method to clear the area and working clothes painstakingly from any magnetic material. It is a very tedious job to remove iron particles piece by piece from the magnetized stator assembly, especially the pole faces if this care had been neglected.

It is suggested that the stator assembly be enclosed in a polyethylene bag whenever work on it is stopped for any length of time.

The circular graduation scale is made of aluminum and, therefore, considering its size, easily damaged. To avoid bending and scratching, have a clean carton of sufficient size ready for storage before removing the scale from the stator top end plate.
5. Wi.thdraw the eight $5 / 16^{\prime \prime} \times 18$ bolts (73) and remove the stator top endplate (71) together with the drive hub (77) and the ball bearing (74).
6. Insert three $3 / 4^{\prime \prime} \times 10$ eyebolts into the stator top endplate (71) without touching the magnets (66) beneath.
7. Slide the ton End nlate with the drive hub and ball bearing straight up, carefully avoiding any side pull.
8. Separate the drive hub from the plate by using the two $5 / 16^{\prime \prime} \times 18$ threaded prying holes in the bottom of the plate.
9. Remove the ball bearing (74) from its seat in the top end plate.
10. Reinstall the top endplate with all eight $5 / 16^{\prime \prime} \times 18$ bolts using the two dowel bolts $(75,76)$ for lineup. Remove and store the dowel bolts in the keeper removing tool case (page 83).
11. Mount the keeper guide plate (Item 3 of 772D217, Page 87) using the twelve $5 / 16^{\prime \prime} \times 18^{\circ}$ bolts (Item 5 of 772D217).
12. Apply sufficient high temperature grease to all keepers, Item 2 of 772 D 217.
13. Insert all 12 keepers 3 inch deep in crosswise progressive order through the guide slots as shown on drawing 772D217.
14. Use the lift screw, Item 1 of 772D217, for incrementally driving the keepers down until they stop against the stator bottom end plate.

Here, too, proceed in 0 nsswise progressive order, and further, take care not to exceed a 2-inch stroke for each set of crosswise progressive steps.
15. Remove the six $5 / 16^{\prime \prime} \times$ if bolts (57) and lift the stator assembly straight up. No further dismantling of this assembly should be performed (except for the endplate), otherwise, the removal of the keepers outside its installed position would result in substantial demagnetization of the permanent magnets. See note of Paragraph 4.
16. Can
(a) Remove all flange bolts (1). For strength and thermal expansion reasons, these flange bolts are made of cold reduced 316 SST studs. The nuts are merman (1.r mounted on the studs with an interference fit and are is' nt to be removed from the studs. The stud and nut assembly should be treated as a one piece bolt.
(b) Remove split flange (10).
(c) Cut lower seal weld by grinding a minimum slount of fused metal.
(d) Insert three 5/8" $\times 17$ eyebolt equally spaced into the outer bolt circle of the can flange (56) and lift the can assembly with the rotor and thermal barrier straight up. (The axial static thrust capacity of the bearing (59) is 8150 lbs.)

$$
43
$$

D. Removal of Thermal Barrier

1. For removing the thermal barrier and rotor, unscrew the bolts (40) and lower the can (55) on a flat clean surface.
2. Cut the upper seal weld and lift the can flange (with the can) straight up。
3. The rotor can be disconnected from the thermal barrier by removing the bolts (49).
4. For replacement of any heaters $(37,38,39)$ both seal weld rings $(31,33)$ have to be opened. Only the butt welded side has to be cut on' each seal weld ring.
5. In case of bearing (59) replacement;
(a) Remove the lock pin (57). Be careful to lift the locking hook just out of engagement without overstraining the material.
(b) Remove the ring nut (60).
(c) Remove the lower stator bearing (59) by lifting the bearing retainer (58)。
E. Removal \& Dismantling of Drive Screw Subassembly (Drawing 510F033, Page 90)
6. Install two $3 / 4^{17} \times 10$ eyebolts in the guide retainer (29).
7. With the control cone in the open position, lift the guide retainer with the attached drive screw assembly straight up. While doing so, observe carefully through the $2-1 / 2^{\prime \prime}$ diameter holes of the guide retainer that the toggle arm connector block (26) is sliding out smoothly. If necessary, insert a rod through one of the $2-1 / 2^{\prime \prime}$ diameter holes for guiding the block out of engagement with the control cone stem (4).
8. Roller Nuts (Drawing 5lof033, Page no)
(a) Remove bearings (27).
(b) Unlock and remove set screw pins (16) and toggle arm lock pins (15).
(c) Remove toggle arm pins (20).
(d) Remove toggle arms (25).
(e) Remove spacers (21).
(f) Unlock and remove nut locking pins (22).
(g) Remove both nuts (23) f rom toggle arm connector block (26).
(h) Remove all four toggle arms (25) and spacers (24) from the connector block.
(j) Removal of Roller Assemblies (510F033, Page ' 1) When dismantling the roller assemblies, (17), care iuct bo taken to keep the inner races constantly held together through all
handling until they are kept in their position by small aluminum strips or equivalent. Otherwise, loosening the grip on the roller subassembly at any time will cause the stellite balls to fall out resulting in their possible loss. It is suggested that this critical disassembly be performed in a box, open at the top only (Figure 5, Page 11). This box should not have any crevices or remote corners where small balls like these could withdraw from sight.
(k) Remove the roller assemblies, one after another, after withdrawing the set sorem (13) and the roller pin (14). For removing the roller pins (14) of the upper carriage (28), insert a $1 / 4^{\prime \prime}$ stud into the pin (14). While removing the roller pins of the upper carriage (28), special care has to be taken to hold down the upper inner race preventing it from riding up and letting the balls escape. The roller assembly can now be taken out by sliding it out onto the roller assembly tool (6060909 HOl , Page 56). See Photograph, Figure 5, Page 11.

P. Pemoval of Control Cone

The control cone can only be removed from the body by first removing the body inlet section from the loop. The necessary axial removal length is 16 inches.

SECTION VI

ASSEMBLY OF SODIUM FLOW CONTROLLER

(Assembly 618J693, Page 92)

Numbers in parenthesis refer to the Exploded View, Figure 11 of Page 91, except as noted.
A. Installation of Control Cone

1. Insert the control cone (4) with its stem into the body bushing. until the cone is back seated.
2. Mount the split flange (8).
3. Mount the inlet section (3) without the test 0-ring.
4. Insert and torque four equally spaced bolts (1) to 75 ft . Ibs.
5. Perform the seal welding per welding instructions given on Page 59 and Assembly drawing 618J793, Page 92 and 15w008E, Page 65.
6. Insert and torque the remaining bolts (1).
B. Assembly and Installation of Drive Screw Subassembly (5l0F033, Page 0 ,

Photograph, Figure 5, Page 11)

1. Care must be taken to keep the inner races of the roller assemblies (17) constantly held together through all handling until the shims are inserted and the set screws (6) tightened. Otherwise, the stellite balls could fall out, resulting in their possible loss. It is suggested
that this critical assembly be performed in a clean box with an uninterrupted flat bottom without any crevices where bearing balls could withdraw from sight. See Figure 5, Page 11.
2. Stack up the right (19) and left hand (28) carriages and the guide retainer (29) in this consecutive order. Lower the threaded part of the drive screw (30) into this stack. Block the guide retainer (29) up to the drive screw shoulder. Block the carriages (19 \& 28) up to dimension "A" of drawing 510F033. The two carriages are to be in line as shown.
3. The roller assemblies (17) and shims (18) are marked with the numbers 1 thru 6. The pockets on the upper carriage (28) are marked correspondingly With the numbers $1,2 \& 3$, and on the lower carriage (19) with 4, 5, \& 6 .
4. Place the shim with the roller assembly marked "l" in vertical position on the roller assembly tool 606C909HO1 (page 56), with the marking "Top" on far side of $€ A$. Remove the aluminum straps carefully.
5. As shown on photograph Figure 5, Page 11, center the drive screw in the carriages. Lift the assembly tool with the roller assembly (17) and shim (18) adjacent to the pocket marked "1" and slide it into the pocket engaging the drive screw thread.
6. Attach a $1 / 4^{\prime \prime}$ stud to the roller pin (14) and insert it into the carriage and roller assembly.
7. Remove the stud from the pin and complete this assembly with the set screw wrenchtight.
8. Repeat this operation on both carriages except that no $1 / 4^{\prime \prime}$ stud is required for the lower carriage assembly. However, when installing the roller assemblies in the lower carriage, care has to be taken to hold the inner race firmly and continuously upwards until the roller pin (14) and set screw (13) are installed. In this position, the outer race is held upwards through its engagement with the drive screw thread. Any loosening of the lower inner race would open the lawer bearing and consequently release the balls.
9. Recheck dimension "A" and make sure that the carriages are in line.
10. The toggle arm, spacer and pin in carriage (28) are marked with the number 7 on one side and 8 on the other. Carriage (19) is marked 9 \& 10. The toggle arms, spacers, nuts and connector block (26) are identified with the number " 11 " on one side and "12" on the other.
11. Slide spacers (24) and toggle arms (25) on connector block (26) retaining with nut (23) which shall be wrench tight. Then back the nut off approximately 15° to 30° for free running clearance.
12. Fold the arms into the slots of the carriages, and insert the spacers (21). Slip the pins (20) through the spacers (21) and arms (25).
13. Turn the drive screw (30), using the flats on the top of the screw, to check for free running of the roller nuts.
14. After completion insert and weld pins (16) to lock the set screws (13). Insert and weld pin (15) to lock pin (20).
15. Separate the roller nuts $9.75^{\prime \prime}$ nominal by counter clockwise rotation of the drive screw.
16. Install the eight double row ball bearings (17).
17. Insert the guides (12).
18. With the control cone in the open position, lower the drive screw assembly into the body observing through the $2-1 / 2^{\prime \prime}$ diameter holes of the guide retainer (29) that the connector block slides into proper engagement with the control cone stem (4). If necessary, a suitable rod, inserted through one of the $2-1 / 2^{\prime \prime}$ diameter holes, may be used for assistance.

C. Installation of Can \& Thermal Barrier

1. Install the split flange (10).
2. Place the thermal barrier (41) on a clean flat surface of a diameter somewhat less than $10-3 / 4^{\prime \prime}$.
3. Lower the rotor (50) with its bearings (46) and (51) installed, straight down, engaging the outer race seat of the lower bearing (46) into the thermal barrier.
4. Insert, tighten, and secure the retaining ring bolts (14) with the locking plates (48).
5. Insert three 5/8" - 11 eyebolts equally spaced into the outer bolt circle of the can flange (56).
6. Assemble the can flange (56), bearing retainer (58), lower bearing (59), ring nut (61), and self-locking pin (60) onto the can (55).
7. Attach a 3-chain hamess to the three eyebolts and lower the can carefully over the rotor onto its seat on the thermal barrier flange. 1-5/16" before reaching the thermal barrier seat, the upper inner ball bearing race (51) will begin to engage the internal bearing seat of the can. Therefore, it is suggested to take special care in guiding the can properly into the ball bearing (51).
8. Insert and tighten the four $3 / 8^{\prime \prime} \times 16$ bolts (40) through the bottom of the thermal barrier.
9. Lower the can assembly over the drive screw spline. For engagement with the rotor, turn the can assembly while hanging on the crane and not while resting on the spline until the teeth line up.
10. Insert and torque four equally spaced bolts (1) to 75 ft .1 lbs .
11. Seal weld per welding instructions given on Page 65 and Assembly drawing 6185693, Page 92.
12. Insert and torque the remaining bolts (1).
D. Installation of Stator Assembly (5050061, Page 89)
13. The permanent magnets are made of Alnico V which is extremely brittle. Therefore, care should be taken to handle and move the stator assembly without any bumps and shocks.

In the installed position, the main flux passes through the small running gap between the magnet poles and the can generating the by far greatest and concentrated attraction of the entire assembly for any kind of steel particles. Special care should be taken, therefore, that no iron narticles be present in the form of chips or especially iron powder within a 5 -foot radius. This includes the tools, working clothes, gloves, shoes, etc. It is suggested to use a magnetic sweeper or any other suitable method to clear the area and working clothes painstakingly from any magnetic material. It is a very tedious job to remove iron particles piece by piece from the magnetized stator assembly, especially the pole faces, if this care had been neglected. It is suggested that the stator assembly be enclosed in a polyethylene bag whenever work on it is stopped for any length of time.
2. Insert three $3 / 4$ " 10 eyebolts into the stator top endplate (71), without touching the magnets (66) beneath.
3. Lower the stator sub assembly and remove the eyebolts.

CAUTION
1-1/4" before reaching the final seat on the lower bearing (59), take care not to touch the self-locking $\operatorname{pin}(60)$.
4. Use the lift screw, Item 1 of 772D217 (Page 87), for incrementally removing the twelve keepers, Item 2 of 772D217. Proceed in crosswise progressive order. Take care not to exceed a 2-inch stroke for each set of steps.
5. Remove the keeper guide plate, Item 3 of 772 D 217 , and store it together with the keepers in the keeper removing tool case drawing 772D225 (Page 88).
6. After removal of the keepers the magnetic flux is linked with the rotor exerting a radial excentric side load to the stator. Therefore, after placing the upper stator bearing (7)) on top of the upper stator end plate (71), center the stator with the 3 centering jack screws $606 \mathrm{C} 909 \mathrm{HO7}$ (Page 6). The bearing can now easily be installed. Remove the jack screws and store them in the keeper removing tool case 772 D 225 (Page 88).
7. Install the drive hub (77) with the twelve $5 / 16^{\prime \prime} \times 18$ bolts and the three dowel pins (78).
8. Install the circular graduation scale with the percent scale up. The circular graduation scale is made of aluminum and, therefore, considering its size, easily damaged. Avoid bending and scratching of the scale.
9. Attach three 5/8" $\times 11$ eyebolts to the motor support (86) and attach a 3-chain hamess to it.
10. Lower the motor support concentrically and straight down on its seat on the can flange (56), and insert and tighten the eight $5 / 8^{\prime \prime} \times 11$ bolts (83).
E. Mounting of Operator (Figure 6, Page 12-1 M11, , Page 74.

1. In case the operator had been dismantled per Section V. Paragraph B, proceed in reverse sequence for its reassembly.
2. Insert two $1^{\prime \prime} \times 8$ eyebolts into the operator lifting flange. Use the threaded holes closest to the motor for proper lifting balance.
3. Insert a bar through the eyebolts and check that the lifting flange is turned in tightly.
4. Attach a harness of 1 ton capacity to the eyebolts and an adjustable chain between the crane hook and the electric motor.
5. Lift the operator and tension the adjusting chain until the operator is hanging perfectly vertical.
6. Lift and lower the operator with the operator mounting plate (88) attached carefully in position by guiding the splined operator shaft smoothly into engagement with the splined drive hub (77).
7. The operator mounting plate (89) has no locating fit with the motor support (86) to facilitate proper centering of the operator spline with the drive hub (77). Shortly before letting the operator down on its seat on the motor support, center the operator splined shaft
in the drive hub. It is suggested to use two indicators for this purpose, placing them 90° apart on the O.D. of the operator mounting plate. The concentricity can then be established as the medium (.006") between the two end positions in the 90° apart planes.
8. Remove the switch compartment cover on the side of the operator and the position indicator cover on top.
9. Reconnect all power cables to the operator and the thermal barrier. Follow the wiring diagram B69025 on page $86, A 1874$ on page 85 , and the equipment data table 1 (page 2). Connect the thermocouples and the flow instrumentation. Replace the covers.

WARNING
DO NOT TOUCH any part of the valve when power is turned on to the motor. Especially, keep away from the manual lever; it disengages automatically when the motor is energized. It, a upward movanent could do bodily harm if it hits someone.
10. After manually positioning the sodium flow controller in the middle of its travel, briefly jog the OPEN, STOP, CLOST Pushbuttons to check for proper rotation of the motor. If the stator assembly (visible through the openings in the motor support (1) does not turn clockwise with the CLOSE button depressed, reverse any two of the motor cable connections and check the operation again. Remove any jumpers if formerly installed.

F. Checking Position Limit Switches (Figure 7, Page 59)

Numbers in parenthesis refer to Figure 7, Page 59.

All adjustments of the torque and position limit switches as well as of the percent scale on top of the permanent magnet coupling, the remote position indicator, and the torque indicator have been made at the factory. The following procedures are given for checking, changing, or correcting the limit switch settings.

NOTE
When working on the switch compartment, make sure that the incoming power switch is turned off.

1. Depress the "OPEN" Pushbutton.
2. After the "OPEN" Position Limit Switch has stopped the motor, observe the torque indicator. It should read The percent scale on top of the permanent magnet coupling and the remote position indicator should be on zero.
3. Depress the declutch lever (24) of drawing $D-74411 / 2$ Page 71 in the direction of the cast-on arrow until it remains latched in the depressed position. Slight rocking of the handwheel (8) of drawing $D-72636$ may be required to depress the declutch lever to the latched position. The lever will remain in the depressed position until motor operation is resumed at which time the handwheel will automatically be declutched.
4. Turn the handwheel in the "OPEN" direction, as marked on its rim. If the "OPEN" position limitswitch is set properly, the torque indicator should immediately show an increase in torque.
5. Depress the "CLOSE" pushbutton and repeat Paragraph 1 through 4 logically for the "CLOSE" position.

G. Readjustment of Position Limitswitches (Figure 7, Page 59)

Numbers in parenthesis refer to Figure 7, Page 59.

1. If adjustment is required, close the controller for about 10 handwheel revolutions and then reopen it against the internal stop. The rotation of the handwheel for opening is counterclockwise as marked on the rim of the handwheel. Do not use excessive force. While opening the controller, observe the turning direction of the slotted gear shaft 6 B of Figure 7, Page 59. This slotted shaft is extended through the gear case and can be seen just above the switch rotor marked "OPEN" which is connected to the "OPEN" contactor coil (terminals 3 \& 43). After meeting the internal "OPEN" stop, observe the torque indicator and unload the operator to zero lbs. by reversing the handwheel rotation (clockwise).
2. At this position set the percent scale of the permanent magnet coupling, which is visible through the opening of the operator support, to zero beneath the pointer.
3. Set the remote position indicator to zero.

| PARTS LIST | | \|r| $\begin{aligned} & \text { PC } \\ & \text { NO }\end{aligned}$ | NAME | $\begin{aligned} & \hline 9 \\ & n 0 \\ & \hline \end{aligned}$ | NAME | $\begin{aligned} & P C \\ & \mathrm{NO} \end{aligned}$ | NAME |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PC | NAME | 7 | INTERMITTENT PINION SHAFT | 15 | PIN | 23 | HEX NUTS |
| No | | 8 | G.L. FRAME COVER | 16 | TAPER PIN | 24 | LOCKWASHER |
| 1 | CARTRIDGE | 9 | INTERMITTENT GEAR | 17 | LOCKWASHER | 25 | SW'B'D WASHER |
| 2 | GEAR FRAME | 10 | INTERMITTENT PINION | 18 | SCREW | 26 | SEITING ROD AS5Y. |
| 3 | DRIVE SLEEVE \& SHAFT | 11 | DECLUTCH SPRING | 19 | SWITCH BASE | 27 | ROTOR |
| 4 | DRIVE PINION (MAIN) | 12 | STEM SPUR PINION | 20 | R.H FINGER ASSEMBLY | 28 | COItER FIN |
| 5 | DRIVE PINION (SECONDARY) | 13 | BALL BEARING | 21 | L.H. FINGER ASSEMBLY | | |
| 6 | INTERMITTENT GEAR SHAFT | 14 | OIL SEAL | 22 | RD.HD. SCREW | | |

4. Now declutch the drive pinion, Part 5 of Figure 7, by turning the setting rod Part 26 with a long screw driver clockwise until it is tight. Gear, Part \#9, can now be turned for adjustment by inserting a screwdriver in the slot of the gear shaft (6B).
5. Turn gear shaft, Part $6 B$, in the same direction as noted when the controller was being opened until the contact No. 4 (terminalsCLI and 60) (red indicating light) on rotor, Part \#27, opens.
6. In the event this contact is already open, turn the gear shaft, Part 6B, in the direction opposite to the direction as specified in step 5 until it closes; then back off the shaft until the contact opens again.
7. Engage the drive pinion Part \#5 again by returning the setting rod, Part \#26, to its original position. Turn it counterclockwise until a firm stop is reached, but do not jam. The "OPEN" position limitswitch gear train is now set.
8. Connect the electrical power and check the setting per steps F.I through F. 4 after having closed the controller for one complete coupling revolution.
9. The "OPEN" position switch adjusting procedure applies logically for the closed position limitswitch, contact \#8, with its terminals CL 1 and 70, except that the percent scale on top of the permanent magnet coupling and the remote position indicator stay set based on the open position.

H. Checking of Double Torque Switch (Figure 8, Page 62)

1. Install jumper wires across the terminals CL 1-60 and CL 1-70 in the switch compartment.
2. Both the "OPEN" and "CIOSE" torque limitswitches have been set at the factory to $3.2+1.1$ corresponding to an overload cutout at 400 ft .1 lbs . torque.
3. After positioning the controller somewhe re between its end positions, depress the "CLOSE" pushbutton being ready on the stop pushbutton to be able to interrupt the current immediately if the torque indicator shows a higher value than 400 ft . 1 bs .
I. Readjustment of Double Torque Limit Switch (Figure 8, Page 62)

Numbers in parenthesis refer to Figure 8, Page 62.

1. If the torque limit switch does not stop the motor at 400 ft . 1 lbs ., unlock the jam nut Part \#25 of Figure 8, Page 62 and readjust the set screw, Part \#27. Removing this set screw increases the torque cutout point. Turning the set screw in, decreases the torque value.
2. To avoid hunting for the proper control point, load the operator manually to a torque indicator reading of $400 \mathrm{ft}$.lbs . in the closed position.
3. Turn in the set screw of the corresponding torque switch (terminals 51-70 "CLOSE" and 41 - 60 "OPEN") so that the contacts close.
4. Withdraw the set screw until the contacts open.

NO	NAME
1	BRACKET
2	ACTUATIN'G ARM R.S. BL.S
3	DIAL HOLDER R.S.
4	DIAL HOLDER LS.
5	actuating link
6	TRIPPER ARM
7	ACTUATING ARM SHAFT
8	ROLLER
9	ROLLER PIN
10	dial r.S.
11	DIAL L.S.
12	SPRING
13	STA. TERMINAL BLOCK
14	movable terminal blk
15	THREADED BUSHING
16	TERMINAL STUDS
17	CONTACT
18	Contactor
19	HEX NUTS 10-32
20	WASHERS \# 10
21	LOCKWASHERS \# 10
22	"0" RING
23	SOCK HD. CAP SCREW
24	HEADLESS SET SCREW
25	JAM NUT $\frac{1}{4}-20$
26	COTTER PIN a WASHER
27	SET SCW. $\frac{1}{4}-20 \times 1 \frac{1}{4}$ LG.
28	"0" RING
29	SOCK CAP SCW. $\frac{1}{4}-20 \times \frac{5}{8}$ LG.
30	T. SW. SPACER
31	GROOVE PIN $\frac{1}{8} \times 1 / 1$ LG.

Fig. 8
Double Torque Switch
5. Tighten the fam nut.
6. Read the resulting red pointer position of the "CIOSE" actuating arm, Part \#2, and adjust the "OPEN" actuating arm to the same dial position.
7. Do not touch the threaded bushing, Part \# 15 , with its locking screw, Part Mo. 21. This bushing was set and locked at the factory in order to make sure that the torque switch will cut off the nower within the capacity rating of the operator.
R. Check for proper operation per Step H. 3 .
9. Femove both jumper wires of Step H.l.
J. Adjurtment for Friction Disc Wear of Magnetic Brake

How to Determine if Brake is in Need of Adjustment:
With current off, indicator at "NORMAL" or "ON" position indicates brake
is in proner adjustment. When indicator is at the "ADJUST" position, or
if marled increase in stopring time is noted, adjustment for wear is necessary.

1. Remove pipe plug in housing.
2. Insert screwdriver and turn adjusting stud in clockwise direction until indicator returns to the "ON" or "NORMAL" position.
3. Replace pipe plug.

Alternate Procedure

1.a. Remove housing.
2.a. Insert screwdriver and turn adjusting stiod in counter-clockwise direction until the proper solenoid gap of $7 / 16^{\prime \prime}$ is attained.

3.a. Feplace housing.

A. TOOLS

Description	Qty.	Tool No.	Page	Referenced on Drawing	Page
Expansion Plug	1	3660376	34	6185693	92
Expansion Plug	1	3660386	35	$618 \mathrm{J693}$	92
Roller Assembly Tool	1	6060909	56	510F033	90
Stator Centering Screw	3	6066909	26	618 J 693	92
Keeper Removing Tool	1	772 D 217	87	:15061	89
Vacuum Tool	1	3660318		772 D 263	
Dowel Bolts) For Stator	4	140199 HO 4		5050061	89
Hex Nut \int Endplates	4	8190-5		505D061	89

B. FIXTURES

Torque Test Fixture	1	772 D 218	618 J 693	92
Hot Gas Test Assembly	1	772 D 240	618 J 693	92

A. SODIUM FLOW CONTROLLER

TABLE 2

Line No.	Name of Part	$\begin{aligned} & \text { No, Req'd. } \\ & \text { Per SFC } \\ & \hline \end{aligned}$	Mfg.Dwg。\& Ser.Part \#	Correspondi Expl'd.View Page 91	Ing Item No. Gen.Ass'y. Page 92
1	Body Assembly	1	618J69LGO1	11	1
2	Cap	1	505 DO 46 HOL		
3	Backup Ring fro $34^{\prime \prime}$ of $5 / 32^{\prime \prime}$ dia. 316L Insert MC73432 CE	1	0		
4	Stem Bushing	2	366 C 322 HO 4		
5	Lock Ring	2	366C322H05		
6	Split Ring	1	366C319G01	8	2
7	$\begin{aligned} & \text { Lug fr. } 4-3 / 4^{\prime \prime} \times 4 / 3 / 4^{\prime \prime} \times \\ & 2-1 / 2^{\prime \prime} 316^{\prime \prime} \text { Plate } \end{aligned}$	2	0		
8	Flange Stud	44	258B278G01	1	3
9	"O" Ring	1	160A975H21		4
10	Bolting Ring	1	366 C 320 HOL	2	5
11	Body Inlet	1	505D047G01	3	6
12	Control Cone \& Stem	1	505DO48G01	4	7
13	Drive Screw Assembly	1	510F033G01		8
14	Drive Screw	1	505D058G01	30	
15	Ring fr $3 / 4^{\prime \prime}$ of $2-3 / 8^{\prime \prime}$ dia. Haynes 25 Bar	1	0		
16	Upper Carriage	1	505D049H01	28	
17	Lower Carriage	1	$505 \mathrm{DO5OHOL}$	19	
18	Roller Assembly	6	3660336G01	17	
19	Outer Race	6	366 C 335 HOL		
20	Inner Race	12	258B22OHO1		
21	Ball	156	160A413HOI		

$\begin{aligned} & \text { Line } \\ & \text { No. } \\ & \hline \end{aligned}$	Name of Part	$\begin{gathered} \mathrm{No}_{\mathrm{o}} \text { Req }{ }^{1} \mathrm{~d} \\ \text { Per SFC } \\ \hline \end{gathered}$	Mf ${ }^{\prime}$ ．Dwg．\＆ SeroPart \＃	Correspondin Expl＇d．View Page 91	ng Item No． Gen．Ass ${ }^{1} \mathrm{y}$ 。 Page 92
22	Roller Pin	6	258 B 218 HOL	114	
23	$\begin{aligned} & 1^{\prime \prime}-1 M_{4}-N F-2 A \text { x } I^{\prime \prime} \text { Ig。Flat } \\ & \text { Pt. Soc. Set Screw } \end{aligned}$	6	0	13	
24	Shim	6	$160 \mathrm{Al}_{4} 09 \mathrm{HOL}$	18	
25	Roller Lock Pin	6	S\＃52D2030F15	16	
26	Toggle Arm Connector	1	366 C 321 HOL	26	
27	Connector Spacer	6	3660322HOI	24	
28	Toggle Arm	4	$258 \mathrm{B217HOL}$	25	
29	Toggle Arm Retainer	2	$160 \mathrm{~A}_{4} 08 \mathrm{HOL}$	23	
30	Pin	2	S\＃52D2030P9	22	
31	Carriage Spacer	8	3660322H03	21	
32	Toggle Pivot Pin	4	366C321H02	20	
33	Pin	2	S\＃52D2031P8	15	
34	Bearing	8	\＃3373 Ind。 Tectonics Inc．	． 27	
35	Cuide Retainer	1	$366 \mathrm{C} 325 \mathrm{HO1}$	29	
36	Guide	2	258B219H01	12	9
37	$\begin{aligned} & 1 "-8 \text { UNC-2A } \times 5-1 / 2^{\prime \prime} 1 g \\ & 316 \text { SST Hex Bolt } \end{aligned}$	4	12100－9	9	10
38	1＂－8 UNC－2B Hex Nut 316 SST	4	12100－9	5	11
39	Can Split Ring	1	$3660324 G 01$	10	12
40	Iug fr $4-3 / 4^{\prime \prime} \times 3-3 / 4^{\prime \prime} \times 2-1 / 2^{\prime \prime}$ thk burn of 316 SST Plate		0		
41	Can Flange	1	366C326HO1	56	13
42	Operator Support	1	505D057G01	86	14
43	Support Shell	1	505D084H02		
44	Top Flange	1	$505 \mathrm{DO84} \mathrm{HO}_{4}$		

$\begin{aligned} & \text { Line } \\ & \text { No. } \end{aligned}$	Name of Part	$\begin{aligned} & \mathrm{No}_{0} \text { Req }{ }^{1} \mathrm{~d}_{0} \\ & \text { Per SFF } \\ & \hline \end{aligned}$	Mfg．${ }^{\text {Dwg．\＆}}$ Ser．Part \＃	Correspondi Expl『d．View Page 91	Item No。 Gen．Ass ${ }^{1} \mathrm{y}$ 。 Page 92
45	Bottom Flange	1	505D08L HO 3		
46	$\begin{aligned} & 5 / 8^{\prime \prime}-11 \text { UNC- } 2 \mathrm{AA} \times 2^{\prime \prime} \mathrm{lg} \\ & \text { Hex Bolt } 316 \mathrm{SST} \end{aligned}$	8	12100－9	83	15
47	Rotor Lock Ring	1	366C332H02	45	16
48	Rotor Bearing	2	Ind．Tectonics Inc．Dwg． 3166	46，51	17
49	Bearing Retainer	1	258B221H01	47	18
50	$\begin{aligned} & 5 / 16^{n}-18 \text { UNC-2A } \times 3 / 4^{\prime \prime} \mathrm{lg} \\ & \text { Hex Bolt } \end{aligned}$	6	12100－9	49	19
51	Rotor	1	505D056H01	50	20
52	Bearing Retainer	1	366C332HO1	52	21
53	$5 / 16^{6}-18 \text { UNC-2A } \times 3 / 4 \mathrm{lg} .$ Soc．Cyl．SST Cap Screw	6	12100－9	54	22
54	$\begin{aligned} & \text { Vent Tube } 30-1 / 2^{\prime \prime} \text { of } 1 / 2^{\prime \prime} \\ & \text { Sch } 40316 \text { SST Pipe } \end{aligned}$	1	12920－2		23
55	Operator Mtg。 Plate	1	366C334 HOL	88	24
56	Motor Operator	1	Phila Gear SMA3－E－675000	90	25
57	$\begin{aligned} & 5 / 8^{\prime \prime}-11 \text { UNC-2A x } 2^{\prime \prime} \lg 316 \\ & \text { SST Hex BoIt } \end{aligned}$	8	12100－9	89	26
58	$\begin{aligned} & 7 / 8^{\prime \prime-9} \text { UNC-24 } \times 2-1 / 4^{\prime \prime} \\ & \text { Ig Soc. Cyl.SST Cap Screw } \end{aligned}$	8	$\begin{aligned} & 52 \mathrm{DO} 20 \mathrm{HO} 03 \\ & 316 \mathrm{SST} \end{aligned}$	87	27
59	Drive Hub	1	3660333 HOL	77	28
60	Drive Hub Bearing	1	Kaydon KD－110CP	P 74	29
61	Stator Sub Assembly	1	505D061G01		30
62	Top End Plate	1	366C331H01	71	
63	$5 / 16^{\prime \prime}-18 \times 1-1 / 4^{\prime \prime} \text { Soc. }$ CyI.SST Cap Screw	8	52D2015P7	62	
64	5／16＂Stl．Lock Washer	52	0	63， 72	

$\begin{aligned} & \text { Line } \\ & \text { No }_{\text {a }} \end{aligned}$	Name of Part No	$\begin{gathered} \text { No. Req }{ }^{9}{ }^{d} \\ \text { Per SFC } \end{gathered}$	$\begin{array}{lr} & \text { Cor } \\ \text { Mf.g.DWg. \& } & \text { Exh } \\ \text { Ser.Part \# } & \\ \hline \end{array}$	orrespondi xpl ${ }^{\circ} \mathrm{d}_{0}$ View Page 91	Item No。 Gen.Ass ${ }^{7} \mathrm{y}$ 。 Page 92
65	Stator Shell	1	505055 HOL	70	
66	Magnet	12	366 C 330 HOL	66	
67	$5 / 16^{\prime \prime}-18 \times 4^{\prime \prime} \lg \text { Soc. }$ Cyl.SST Cap Screw	36	$6553-1$	68	
68	Pole Piece	12	366 C 329 HOL	67	
69	Bottom End Plate	1	366 C 328 HOL	64	
70	Shield 11-1/4" x 1-1/8" of .016" Brass	12	2676-1	65	
71	$5 / 16^{\prime \prime}-18 \times 7 / 8^{11} \text { lg.Soc. }$ Cyl. SST Cap Screw	8	52 D 2015 P 5	73	
72	Lock Ring	1	258B222HOI	61	31
73	Bearing Retainer	1	366C327H01	58	32
74	Stator Bearing	1	Kaydon KF-120CP	P 59	33
75	Can	1	5050054 HOL	55	34
76	Thermal Barrier	1	5050098G01		35
77	Rotor Support	1	5050099GO1	41	
78	Thermocouple Well fr 1-1/4 of $3 / 4$ dia 316 SST Bar	1	12923-2		
79	Heater	1	366C348HO1	37	
80	Heater	1	366C3448H02	38	
81	Heater	1	366 C 348 HO	39	
82	Heater Clamp	1	3660349G01	36	
83	T.C. Cuide fr 6-1/4" of $0248^{\prime \prime}$ OD x.048" Wall Inconel Tubin	ng 2	8153-4		
84	Soc. Cyl. Cap Screw	21	52D2004H03	34	
85	Locking Cup 1/4"	21	160 A 943 HOL	35	

$\begin{aligned} & \text { Line } \\ & \text { No. } \end{aligned}$	Name of Part	$\begin{aligned} & \text { No. Req }{ }^{1} d_{0} \\ & \text { Per SFC } \\ & \hline \end{aligned}$	Correspondi Mfg。Dwg．\＆ Explda，View \qquad Page 91	Ing Item No。 Gen．Ass ${ }^{1}$ y． Page 92
86	Ball \＆Socket Insulating Beads	1 Set	Star Porcelain Cat．\＃le	
87	Insulating Tubing 5／32＂ID， $1 / 4^{\prime \prime} 0 \mathrm{D}, 9-3 / 8^{\text {n }} \mathrm{Ig}$	7	$\begin{aligned} & \text { Ceramio for } \\ & 1200^{\circ} \mathrm{F} \end{aligned}$	
88	3／4＂Conduit Nipple Sch 40 S	1	3／4 4^{18} NPT both ends	
89	Conduit Locknut 3／4 ${ }^{\text {1 }}$	1	W Supply Cat．\＃142	
90	$4-11 / 16^{\prime \prime}$ Sq．Box $2-1 / 8^{\prime \prime}$ Deep	1	W Supply Cat．\＃72171－1	
91	End Bushing	1	W Supply Cat．\＃7is	
92	Terminal Strip	2	Jones Type 3－142	
93	$.164^{11}-32 \times 3 / 4^{17} \mathrm{lg}$ ．Fil． Stl．Mach．Screw	8	0	
94	$.164^{\prime \prime}-32$ Hex．St1．Mach． Screw Nut	8	0	
95	4－11／16＂Square Cover	1	W Supply \＃72－Cm 2	
96	Vacuum Ring	1	$772 \mathrm{D} 200 \mathrm{GO1} 32$	
97	3／4＂SST C＇sunk Pipe Plug	2	0	
98	Thermocouple $7^{\prime \prime} \mathrm{lg}$	1	5050098 H 2 O	
99	Thermocouple $9^{\text {¹ }} \mathrm{Ig}$ 。	1	5050098 H 23 ［ 42	
100	Seal Weld Ring	1	3660351 HOL	
101	Seal Weld Ring	1	366 C 351 HO 23	
102	＂01 Ring	2	160 A 975 H 20	36
103	$\begin{aligned} & 3 / 8^{11}-16 \times 2-1 / 4^{\prime \prime} \text { Soc.Cy1. } \\ & \text { SST Cap Screw } \end{aligned}$	4	$12100 \mathrm{~m} 9 \quad 40$	37
104	Vent Plug	2	160ALOTHOL 7	56
105	Lifting Flange	1	3660344G01	57
106	Connector	2	Autoclave Eng． Cat．\＃30A40800 316 SST	58

Corresponaing Item No. No.Req ${ }^{1} d$. Mf.g.Dwg. \& Explid.View Gen. Ass ${ }^{\circ} y$. Name of Part Per SFC Ser.Part \# 1

2 160AL15HO1 $6 \quad 160 \mathrm{~A} 9 \mathrm{~L} 3 \mathrm{HO} 2$ 40 ft. . 051^{17} dia. 304 SST
111 Locking Plate6

4
1-3/4 $4^{71} O D, 1-1 / 32^{\prime \prime}$ ID, $1 / 16^{11}$ thk. 316 SST Bar
113 Pointer 1
114 $.190-32^{\prime \prime} \times 3 / 8^{11}$ Pan StI.Mach.Screw 5
115 Circ. Graduation Scale 1
116 Clamps 4
117 5/16" -18 UNC-2Ax1-1/4" Soc.Cyl。 18SST Cap Scr. 316 SST
118 Lock Pin=1/8" dia. x 1m1/2 1
lg 316 SST
119 "O" Ring 1
120 Self Locking Pin 1
121 Tee Union 316 SST Ermeto 1
122 Male Connector2
123 Tube-1/4"OD x .049 ${ }^{17} \mathrm{Wall} \times \mathrm{KO}^{\prime \prime}$ Ig 316 SST2
124 Nameplate 1
125 .190"-32 x 3/8"Fil.SST Mach.Screw 4126 Vent Tube $3^{\prime \prime}$ of I/2'Sch 40316 ISST Pipe $1 / 2^{\prime \prime}$ NPT, Both Ends
127 Temp-Plate 3
128 Dowel Pin 3
366C350HO2 85 65
9964-2 82 66
366 C 350 HO 3 80 67
366 C 350 HO 81 68
52D2015H07 79 60
316 SST
12923-2 4471
53C2613P30 72
160AL21HO1 60 76
Weatherhead Cat. 77
\#8717 x 4
Weatherhead Cat. 78\#8217 x 412920w179
131 P 427 HOL 80
12100-1 81
12920-2 82
618J693H83 83
52D2036P13 84

Customer Phila. Gear
Reliance 5.0.

ORDERING INSTRUCTIONS: When ordering, please specify; Part Name, Part Number Nameplate Data (see above), Serial and/or Model Number
*Recommended For Stock
Get Production Insurance With Genuine Factory-Fuilt Parts

REPAIR PARTS LIST

STYLE H-70 SERIES

Stranms
 magnetic disc brakes

Fig. 1115
IMPORTANT
Use this multiplier to determine net price on brake parts.
Multiplier \qquad Date \qquad
Company \qquad
If your multiplier is not shown in this space, please contact your local representative or the Milwaukee office for this information.

INFORMATION REQUIRED When ordering repair parts, give the Stock Number of the part needed. This number will completely identify the part. The Item Number only may be used if the following Name Plate data is furnished: Serial Number
Size \qquad Voltage \qquad

HOW TO USETHISLIST This repair parts list covers all sizes and models of Style H-70 Series STEARNS magnetic Disc Brakes. After checking the exploded parts drawing, the proper Stock Number of the part needed may be found in the accompanying tables.

STEARNS ELECTRIC CORPORATION

करता
 \%

 H-70 SERIES BRAKE PARTS LIST

 H-70 SERIES BRAKE PARTS LIST}

TABLE NO. 2 - SUPPORT PLATE (BRAKE MECHANISM) ASSEMBLY

[^0]

VERTICAL MOUNTING COMPONENTS USED IN BRAKES MANUFACTURED AFTER JUNE, 1960 (STARTING WITH SERIAL NO. B-297697)

REPRESENTATIVES AND/OR DISTRIBUTORS

ATLANTA, GEORGIA
BALTIMORE, MARYLAND
BEAUMONT, TEXAS
BUFFALO, NEW YORK
CAMBRIDGE, MASSACHUSETTS
CHARLOTTE, NORTH CAROLINA
CHATTANOOGA, TENNESSEE
CHICAGO, ILLINOIS
CINCINNATI, OHIO
CLEVELAND, OHIO
DALLAS, TEXAS
DENVER, COLORADO
DETROIT, MICHIGAN
EL PISO, TEXAS
GRAND RAPIDS, MICHIGAN
GREENSBORO, NORTH CAROLINA
GREENVILLE, SOUTH CAROLINA

HARRISBURG, PENNSYLVANIA
HOLYOKE, MASSACHUSETTS
HOUSTON, TEXAS
KALAMAZOO, MICHIGAN
KANSAS CITY, MISSOURI
LOS ANGELES, CALIFORNIA
LONG BEACH, CALIFORNIA
LUBBOCK, TEXAS
MEMPHIS, TENNESSEE
McALLEN, TEXAS
MILWAUKEE, WISCONSIN
MINNEAPOLIS, MINNESOTA
MUSKEGON HEIGHTS, MICHIGAN
NEW ORLEANS, LOUISIANA
NEW YORK, NEW YORK
OMAHA, NEBRASKA
PEORIA, ILLINOIS

PHILADELPHIA, PENNSYLVANIA
PHOENIX, ARIZONA
PITTSBURGH, PENNSYLVANIA
PORTLAND, OREGON
PROVIDENCE, RHODE ISLAND
READING, PENNSYLVANIA
RICHMOND, VIRGINIA
ROCKFORD, ILLINOIS
ROCK ISLAND, ILLINOIS
SALT LAKE CITY, UTAH
SAN FRANCISCO, CALIFORNIA
SAN LEANDRO, CALIFORNIA
SEATTLE, WASHINGTON
SOUTH BEND INDIANA
SPRINGFIELD, MASSACHUSETTS
ST. LOUIS, MISSOURI
YOUNGSTOWN, OHIO

CONSULT YOUR TELEPHONE DIRECTORY FOR LOCAL STEARNS REPRESENTATIVE OR BRAKE REPAIR PART DISTRIBUTOR

STEARNS ELECTRIC CORPORATION
 120 N. Broadway, Milwaukee 2, Wis.

The data in this bulletin is subject to change without notice.

b. Magnetic Brake Coil Replacement

1. Disconnect solenoid from circuit.
2. Remove solenoid link pin.
3. Lift plunger from solenoid frame.
4. Remove coil clamp, screw and lockwasher.
5. Slide coil sideways from frame. To reassemble, follow preceding steps in reverse order.
c. Magnetic Brake, Renewal of Friction Discs

6. Dismantling: Remove housing screws, housing, support plate screws, support plate assembly, pressure plate, friction disc and stationary disc.
7. Reassemble friction discs and pressure plate. To insure proper brake operation, be sure that the friction disc moves freely, but not loosely, on hub. If snug, file internal edges lightly until free movement is attained.
8. Turn out (reverse direction than for adjusting) adjusting stud to compensate for adjustments that had been made to brake. For proper direction, see Paragraph J, Page 58, before assembling the support plate assembly to the endplate. If it becomes difficult to tighten the support plate screws, turm out the adjusting stud further.
9. Adjust brake as described in Paragraph J, Page 58.
10. Replace housing and housing screws.
renewal

This data presents the most frequently used renewal parts for size 1 type N Life-Line starters and Life-Line contactors of current design.

Information on parts not shown may be obtained at the nearest Westinghouse office. Please advise class and style number of complete starter when requesting this information.

style numbers:

non-reversing style number	reversing style number	non-reversing style number	reversing style number
2-pole			
133A824G01 to 11 133A956G01 to 11 133A957G01 to 11 453D212G02		133A851G01 toll 133A852G01 to $11 \triangle$ 133A994G01 to 11 133A995G01 to $11 \triangle$ 453D212G01 \triangle - 453D212G03	

3-pole

133A247G01, 02+	134A265G01	134A335G01 to 08	133A831G01 to 11	133A855G01 to 11	133A844G01 to 11
133A826G01 to 11	134A266G01 to 13	134A336G01 to 12	133A832G01 to 04	133A857G01 to $11 \triangle$	453D179G01
133 A 827 G 01 to 04	134A267G01 to 13	$134 \mathrm{~A} 337 \mathrm{G01}$ to 03	$133 \mathrm{~A} 835 \mathrm{GO1}$ to 03	133A996G01 to 11	
$133 A 828 \mathrm{GO} 01$ to 030	134A268G01 to 13	134A338G01, 02	133A837G01	133A998G01 to 11	
133A830GG01 to 03 $133 A 960 \mathrm{GO1}$	$\begin{aligned} & \text { 134A269GO1 } \\ & \text { 134A270GO1 to } 13 \end{aligned}$	$134 \mathrm{~A} 340 \mathrm{GO1}$ to 08 $134 \mathrm{~A} 341 \mathrm{GO1}$ to 12	$\begin{aligned} & \text { 133A839G01 } \\ & 133 \mathrm{~A} 841 \mathrm{GO1}\end{aligned} \mathrm{to} 11+0$	$\begin{aligned} & \text { 453D213G01 } \triangle \mathbb{4} \\ & 453 \mathrm{D} 213 G 03 \end{aligned}$	
$133 \mathrm{~A} 961 \mathrm{G01}$ to 1110	134A271G01 to 13	134A342GO1 to 08	$133 A 918 \mathrm{GO1}$ to 14		
133A962G01 to 11	134A272G01 to 13	134A343G01 to 12	$133 \mathrm{~A} 986 \mathrm{GO1}$ to 11		
133A963G01 to $11+$	134A302G01 to 11	134A344G01, 02	$133 \mathrm{~A} 987 \mathrm{GO1}$ to 06, 09, 10		
133A964G01 to 11+	134A303G01, 02	134A345G01 to 04	133A989G01 to 11		
133A965G601 to 07	134A304G01 to 03	134A346GO1 to 14	133A990G01 to 11		
133A971G01 to 11	$134 \mathrm{~A} 306 \mathrm{G01}$ to 11	134 A 348 GOL to 14	134 A 053 G 01 to 03		
133A972G01 to 11	134A307G01 to 11	134A349G01	$134 \mathrm{Al24G01}$ to $03+$ -		
133A973G01 to 11	134A309G01 to 07	134A350G01 to 14	134A357G01, 02		
133A974G01 to 04	134A310G01 to 04	134A351 G01 to 14	134A358GO1 to 11		
133A975G01 to 04	134A311G01 to 12	134A352G01 to 14	134A359G01 to 04		
133A97677G01 to 04	134A312G01 to 04	134 A 354 GOO to 14	$134 \mathrm{~A} 360 \mathrm{GO1}$ to 12		
133A978G01 to 11	134A314G01 to 04	134A355G01 to 14	134A362GO1 to 12		
133A979G01 to 11	134A315GO1 to 04+	134A356G01 to 14	134 A 363 G 01 to 08		
133A980G01 to 11	134A316G01 to 04	134A382G01, 02	$134 \mathrm{~A} 364 \mathrm{GO1}$ to 08		
133A981G01 to $11+$	134A317G01 to 04+	134A833G01 to 04	134A365G01 to 08		
133AA982GO1 to $11+$	134A318G01 to 12	134A851G01 to 04	134A366GO1 to 12		
134A250G01 to 11	134A320G01 to 12	135 A 041 G 01 to 05	134A368GO1		
134A251G01 to 11	134A321 G01 to 05	135A175G01 to 05	134 A 369 GOI to 03		
134A252G01 to 11	134A322G01 to 08	135A176G01 to 06	134A370G01 to 03		
134A253G01 to 11	134A323GO1 to 12	135A122G01 to 05	$134 \mathrm{~A} 854 \mathrm{GO1}$ to 04		
134A254G01 to 11	134A324G01, 02	135A639G01 to 11	134A855GG01 to 04		
134A255G01 to 11	134A325G01, 02	135A712G01, 02	134A856GG01 to 04		
134A256G01 to 11	$134 \mathrm{~A} 327 \mathrm{G01}$ to 08	135A713G01, 02	134A857G01 to 04		
134A257G01 to 11	134A328GO1 to 03	135A714G01 to 04	64A3076G04		
134A259G01, 02	$134 \mathrm{~A} 330 \mathrm{G01}$ to 04	64A3076G02	453D179G02 ${ }^{\text {a }}$		
134A260G01	134A331 GO1 to 04+	64A3076G05	453D179G05		
134A261G01	134A332G01 to 04	$313 \mathrm{C} 282 \mathrm{GO2+}$	453D179G08		
134A262G01 to 13	134A333GO1 to 04 134A334G01 to 04	453D213G04	453D210G04		
134A264GO1 to 13		$\begin{aligned} & \text { 453D213G05 } \\ & \text { 453D213G12 } \end{aligned}$			

4-pole

133A829G01 to 11 133A967G01 to 11 133A968G01 to 11 133A983G01 to 11 453D214G02	133A838G01 to 11 $133 A 988 \mathrm{GO1}$ to 11 453D217G02	133A859G01 to 11 133A860G01 to $11 \triangle$ 133A997G01 to 11 453D214G01 453D214G03

5-pole

Mechanical parts, style number, not supplied without coils, specify number coil desired

+ Three overload relays
\triangle No interlock
- No overload relays

I See page 2 for style number of individual replacement parts

renewal

parts data

11-000B1
page 2

kits of normal wearing parts

Normal wearing parts for two and three pole Linestarters have been packaged in a single, easily identified contact kit. Each kit contains one moving contact, one moving contact spring and two stationary contacts for each pole. The contact kit for a two pole Linestarter is style number 1605211 and for three pole is style number 1605 212. Two style number 1605211 kits are used for a four pole Linestarter.

ordering information

- Name part and give its style number.
- State method of shipment desired.
- Send all orders or correspondence to nearest sales office of the Company.

Parts indented are included in the part under which they are indented.
\triangle Not illustrated
I Kits of normal wearing parts see copy above
O Not used on lasses
N

- Not used on classes 11-205, 11-211 or contactors classes 15-815 and 15-825
- Use double quantities for reversing devices except only two overload relays are used and they also use two normally closed interlocks.
operating coils

\square dual voltage coil.

PARTS LIST TYPE ALEX

PARTS LIST TYPE ALW

() (1) (3) (3) (3) (3) (3) (3) (3) (1) (3) () Fig. 1

PHILADELPHIA
LIMITORQUE

CONTROLSTATIONS

TYPE ALW
closed

TYPE	ENCLOSURE	BUTTONS	LIGHTS
AS	Sheet Steel NEMA I	3	2
AL	Cast Aleminem NEMA V	3	2
ALW	Cast Alluminum NEMA IV	3	2
ALEX	Cast Iron NEMA VII	3	2

DUST TIGHT CONTROL STATION

LimiTorque Push Button Control Station
TYPE AL is enclosed in a heavy cast aluminum housing. This unit meets NEMA
V requirements for dust t mestruction. V requirements for dust tight construction.
TYPE AL should be specified wherever
WEATHERPROOF CONTROL STATION type alw
sUrface mounting

LimiTorque Push Button Control Station
TYPE AlW is enclosed in a haocy cost Limitoraue Push Butuon Control Station
TYPE ALW is senclosed in heary cast
diuminum housing. This unit meets NEMA aluminum housing. This snit heets IN EMA IV requirements tor weatherproon con-
struction. TYPE ALW should be specified
\qquad
 whether su
desired.

GENERAL PURPOSE CONTROL STATION

tYPE AS

LimiTorque Push Button Control Station TYPE AS is enclosed in a sheet steel housing. This
Unit meets NEMA requirents sor general
purposes electrical unit enclosures. TYPE AS
should be specified for application indoors, where atmospheric conditions are normal.
Pleaces specity wheether surface or fush
nounting is desired mounting is desired.

EXPLOSION PROOF CONTROL STATION

LimiTorque Push Bution Contror Station TYPE
ALLEX is enclosed in a cost ron housing

should be specified wherever atmospherii
conditions necessitate conditions necessitate adherence to these
requirements. Please specify whether surface ting is desired.
flush mounting
flush mounting

(o)

118 Voli 60 Cycle

WIRING DIAGRAM-SELSYN TRANS-MITTER \& RECIEVER	PMLADELPHIA GEAR WORHS PHILADELPHIA, PENNA.	Superseoss no.	
		Supersmbep ay No.	smert no. A 1874

[^0]: "Solenoid Assemblies complete with coil require, for identification, both the "Solenoid Assembly Less Coil" Stock Number and the Coil Stock Number. List prices for solenoid assemblies complete with coil are the sum of the list price for the coil and for the assembly less coil.

