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ABSTRACT 

The chemical and industrial l i terature and early laboratory work of interest to 
those concerned with processing of niobium-containing nuclear fuels are reviewed. 
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1.0 INTRODUCTION 

The use of niobium in future nuclear reactors seems assured because of its high 
melting point (2470°C), moderately low thermal neutron cross section (1.15 barns), 
high tensile strength at elevated temperatures,and various other desirable properties 
such as compatibi l i ty with uranium-al loy fuels. One of the more desirable properties, 
chemical inertness to coolant gases, molten metals, and pressurized water, w i l l pose 
a problem to the chemists and chemical engineers concerned with processing of 
niobium-containing fuels to recover valuable fissionable or fert i le material. The 
goal of early laboratory work was generally to develop head-end processes for the 
conventional aqueous solvent extraction systems. Nonaqueous pretreatment, such as 
reaction with gases at high temperature or dissolution in fused salts, may be necessary 
because of the chemical inertness of niobium. Interest in processing of niobium-
containing fuels has been stimulated by the need for processing one such fuel already 
discharged from the Experimental Boiling Water Reactor, a small power reactor (1). 
The purpose of this report is to review much of the literature on niobium of importance 
to fuel processing and outline results of early laboratory work. Several recent pub l i 
cations reflect the rapidly mounting interest in the metallurgy of niobium (2-8), and 
much of the new chemical work concerns production of new compounds for h igh-
temperature use. However, the industrial and analyt ical chemical l iterature also 
contains much of Interest to those involved in fuel processing (9-16). 

2.0 STATUS OF DISSOLUTION PROCEDURES 

Much of the chemical behavior of niobium can be Inferred from its position In the 
periodic table in family IVb and in the second short transition series. The f i l l i ng up of 
the next to outer 4d orbital brings about variable oxidation states and permits formation 
of many complex compounds. The general decrease In electropositive behavior through 
the series is evident in the slight amphoteric behavior of zirconium, zirconates being 
stable only in strong caustic; the sl ightly greater amphoteric behavior of niobium, which 
forms a stable and water-soluble potassium oxyfluoride but precipitates as oxide In basic 
sodium fluoride solutions; and the stronger amphoteric behavior of molybdenum, which 
forms soluble molybdates In only moderately strong caustic. The tendency to form bonds 
of increasingly covalent nature is evident in the series from the generally Increasing 
vapor pressures of the halldes and oxyhalides of zirconium, niobium, and molybdenum in 
their highest valence states. The chemistry of niobium is very similar to that of tantalum 
because tantalum is only the second element past the lanthanide contraction. 

The chemical property of niobium of most importance is probably the stabi l i ty of the 
crystalline pentoxide (AHf at 298°K=-227.6 kcal /mole of niobium vs -190.5 and -431 
kcal/mole for the pentachlorlde and pentafluoride, respectively (17-20)) and the low 
solubil i ty of the pentoxide in acid (21). Since the pentafluoride is more stable and the 
pentachlorlde Is less stable than the pentoxide, moderate amounts of f luoride and much 



- 5 -

larger amounts of chloride can be used to form soluble complexes In acidic solutions. 
A chemical property of more importance In nonaqueous processing Is the moderate 
stabi l i ty and low vo la t i l i t y of tr ivalent niobium compounds. 

2.1 Industrial Separations 

The major problem in industrial processes Is the separation of niobium from its 
chemical tw in , tantalum. The older method, the Marignac process (11,22), involved 
preparation of complex potassium fluoride compounds and precipitation of the less 
soluble tantalum complex. More recently, a methyl Isobutyl ketone solvent extraction 
process developed by the U. S. Bureau of Mines has been used to separate the fluorides 
of niobium and tantalum (9, 1 1). Fractional dist i l lat ion of the chlorides Is thought to 
be used In processes developed only recently (2). 

In the Marignac process, the niobium-tantalum ore Is broken by fusion In excess 
sodium carbonate to y ie ld the orthoniobate, N a 3 N b 0 4 and orthotltanate, Na3Ta04. 
Treatment with water yields insoluble sodium metaniobate, N a N b 0 3 - 3 H 2 0 , st i l l con
taminated with tantalum. After dissolution of these niobium and tantalum compounds 
in hydrochloric ac id, potassium fluoride Is added to precipitate K2TaF7. Niobium stays 
In solution as K2NbOF5. 

Several chlorlnation processes have been proposed for the recovery and purif ication 
of niobium or tantalum chlorides (23-26). The relative vo la t i l i ty (TaCl^iNbCl^) at 
atmospheric pressure was found to be 1.36 over the whole range of mixture compositions 
(27). Since the melting and normal boi l ing points of tantalum pentachlorlde are 220.0 
and 232.9°C, respectively, and of niobium pentachlorlde are 209.5 and 247.4°C, respec
t ive ly (27,28), separation by vapor- l lquld dist i l lat ion should be possible. The presence 
of any oxygen-containing impurities would probably cause formation of some niobium 
oxychloride, NbOCl3 . This oxychlor ide, which has a vapor pressure of 20.8 mm of Hg 
at 250°C (29), would be expected to have some effect if present during the vapor- l iquid 
d is t i l la t ion. The tr ichloride of niobium is also quite stable whi le that of tantalum is less 
stable (30,31). 

2.2 Important Compounds 

The niobium compounds of part icular Interest in fuel processing are those soluble in 
water since aqueous dissolution of the niobium-containing fuel w i l l not proceed rapidly 
unless the product is soluble, present technology requires solvent extraction of uranium from 
aqueous solutions, and i t is highly desirable to avoid sol id- l iquid separations in radiochemical 
operations. 

Ac id ic Solutions. In acidic solutions, niobium forms an Insoluble oxide unless a large 
amount of strongly complexing anion is present. Fluoride Is the most eff ic ient of the common 
niobium-complexing anions. Between about 30 and 5 (1,32) moles of fluoride is required 
to dissolve 1 mole of niobium. The lowest figure was obtained In a detailed phase study 
of the HF-NbF5-H20 system at 20°C and was further veri f ied by potentiometric t i trat ion (32), 
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The presence of an oxidant that promotes hydrolysis of the soluble niobium penta
fluoride to Insoluble oxide probably accounts for observations where more than 5 moles 
of fluoride is required to solubl l ize 1 mole of niobium. Thus, these solubil i ty 
measurements actual ly Include equil ibrium values for the reaction 

N b 2 0 + lOHF 5> 2NbF^ + 5H2O 

in addition to the solubi l i ty of niobium pentoxide in hydrofluoric acid. The most 
Important acid-soluble compound appears to be the completely fluorinated complex 
rather than the pentoxide or the oxyfluoride complexes, which are stable and soluble 
in basic potassium solutions. Although niobium is soluble In hydrofluoric ac id , metal l ic 
niobium w i l l not dissolve In this acid unless an oxidant such as ni t r ic acid or hydrogen 
peroxide is present. The oxidant apparently is needed because hydrogen gas cannot 
evolve from the niobium surface and must be removed by reaction with the oxidant i f 
dissolution is to continue. The Inabi l i ty of hydrogen to evolve from the metal surface 
Is probably caused by a high hydrogen overvoltage, not of the niobium Itself but of the 
protective films which form consistently and rapidly on niobium In aqueous solutions 
(33,34). This need for an oxidant greatly complicates aqueous dissolution of metal l ic 
niobium, since hydrofluoric acid mixed with an oxidant is a good dissolvent for al l the 
common construction metals. 

Niobium chloride Is soluble to less than 0.5 M In very concentrated hydrochloric 
acid, probably as a niobium pentachlorlde complex (35). A t lower concentrations of 
hydrochloric ac id , as the pentachlorlde hydrolyzed to the oxychloride, the solubi l i ty 
was decreased greatly. In 12 M HCI, the solubi l i ty of niobium pentoxide Is only 0.02 M 
(21). This hydrolysis to less soluble compounds, the very slow rate of attack on niobium 
metal, and the corroslveness of hydrochloric acid makes the use of this acid unattractive 
in processing of niobium-containing fuels. Sulfate ion reportedly (21) w i l l complex and 
solubll ize niobium ions approximately as wel l as chloride Ions. The high concentrations 
required to dissolve niobium metal (Sect. 3) make the use of sulfuric acid unattract ive, 
since the concentrated acid Is very corrosive. 

Neutral Solutions. Niobium forms many other anionic complex compounds that are 
soluble in neutral or weakly acidic or basic solutions. The solubi l i ty of potassium niobium 
oxyfluoride, K 2 N b O F 5 ' H 2 0 , used In Industrial separations is about 0.3 M in 1 M HF at 
20°C and increases rapidly with increasing temperature (12). Many hydroxy-acid complex 
compounds, part icular ly the QJ-hydroxy, are water soluble. An example Is oxaloniobic 
acid, which resembles the oxyfluoride in that one oxygen atom is direct ly bonded to the 
niobium in the complex (16). Fairbrother and Taylor (36,37) have shown experimentally 
that the soluble hydroxy-organic acid compounds are 5-membered cycl ic anionic complexes. 
They report that niobic acid Is also appreciably soluble In chromic and ortho- and po ly-
phosphoric acids and forms five-membered chelate rings wi th hydroxyl amines (36-38). 
None of these soluble complex niobium compounds has been investigated in detai l for use 
In fuel processing. Their use in processes in which uranium is recovered by solvent extraction 
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as uranyl nitrate is unl ikely since the organic complexes are probably not suff iciently 
stable In nitrate solution and the inorganic complexes would introduce corrosion problems. 
The soluble perniobic ac id, which can be made by dissolving bisulfate melts containing 
niobium in mixed hydrogen peroxide-di lute sulfuric acid (39), appears to be of l i t t le use 
in processing since great excesses of hydrogen peroxide are needed and the equil ibrium 
constant greatly favors formation of the insoluble pentoxide (40). 

Oxidat ion of niobium cladding could probably be used as a method for opening 
niobium-clad fuel to expose the core to conventional acid dissolution. At 760 mm Hg 
oxygen pressure, a linear oxidation-penetration rate of about 4 mils/hr has been observed 
at 800°C (8,41). 

Table 1 Is a preliminary list of some of the more important compounds of niobium with 
some properties of these compounds. The data were drawn from many sources, without 
attempting to reference the sources or to be comprehensive. 

3.0 LABORATORY DISSOLUTION STUDIES 

Laboratory work has consisted generally of a preliminary search for dissolution 
methods for niobium metal. No method has been found which is compatible with present 
radiochemical plant technology, since al l acidic aqueous reagents which attack niobium 
rapidly are too corrosive for containment in any readily avai lable construction metals. 
The method of attack that appears most promising is gas-phase chlorlnation at about 300°C. 

3.1 Aqueous Solutions 

Niobium does not dissolve in pure hydrofluoric acid but dissolves rapidly in mixed 
HF-HNO3 (Fig- ! )• For example, laboratory measurements predict in i t ia l reaction rates 
of 5 mg cm~2 min" in 3, 6, and 9 M HF containing about 2, 1, and 2 M HNO3, 
respectively. Rate studies were not made in HF-H2O2, but dissolution rates are probably 
comparable to those in HF-HNO3. The latter reagent produces no off-gas during dissolu
t ion. Corrosion rate studies made in the HF-H2O2 system (42) indicate that none of the 
common or newer construction materials would make a satisfactory container. 

Niobium can be dissolved In refluxing sulfuric acid more concentrated than 14 M 
(Fig. 2). The dissolution rate Increased rapidly with sulfuric acid concentration to 6 
mg cm~2 m i n " ' at 18.3 M H2SO4, the point at which the reflux temperature is maximum. 
The dissolution rate Increased less rapidly as the sulfuric acid (or sulfur trioxide) concen
tration Increased above 18.3 M, probably because the reflux temperature decreased. 
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Table 1. Niobium Compounds 

Abbreviations are those used in Lange's Handbook of Chemistry 

Formula 
Formula 
Weight 

Solubi l i ty in 100 Ports 

Appearance SG MP, °C BP, "C 
Cold 
Water 

Hot 
Water Other 

Nb 

Oxides 
Nb205 
3Nb205-

7H2O 
NbO 
NbOj 

Haiides and 
NbF3 
NbFs 
NbCl3 
NbCls 
NbBrj 

NbOF3 
Nb02F 
NbOCl3 
NbOjCI 
NbOBr3 

Other Simpl 

92.91 

265.82 

923.6 
108.91 
124.91 

Oxyhalides 
149.91 
187.91 
199.29 
270.20 
492.49 

165.91 
143.91 
215.28 
160.37 
348.66 

e Salts 

wh. cr. 

wh. amor. 
bl. cb. 
bk. 

dk. blue 
col. mn. 
bl. 
yel,delq.red 
purple-red 

_ 
wh. 
wh. rd. 

-
yel.cr. 

8.57 

4.6 

4.3 
6.3-6.7 

-

-
3.29 

-
2.75 

-

_ 
-
-
-
-

2470 

1520 

d. 

-
-

-
75.5 

-
194 
150 

_ 
-

subl. 
d. 

subl. 

NbH 93.92 gray pd. 
N b N 106.92 bk. 
Nb20S3 298.0 bk. 
NbC 104.91 

6.0-6.6 

d. 
3500 

5140 

229 

240.5 
270 

i S .HF+HN03,K0H 

i S.HF,H2S04,HCI 

S.hot KOH 

S.HNO3 
d, HNO3 
S.HD, CCl4 ,d .a l . 
d . a l . 

S.HF+HNO3 
S,H2S04, a l . 

S.HF 
S.HF, +HNO3 
S.H2SO4, HF 
S.HF+HNO3 

Complex Compounds 
Nb(HC204)5 538.06 
KNbOF5 .H20 300.1 
K2NbF5 266.11 
KaNbOF^ 340.21 

S.H2C204;d.al 
S d.a. 

S.HF;d.a. 
S d.a. 
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Aqueous ammonium fluoride solution (ZIr f lex reagent) has been used satisfactorily 
to dissolve U-Zr -1 ,5% Nb al loy (1). However, this reagent does not appear attractive 
for niobium metal or alloys containing large percentages of niobium. The dissolution 
rate of pure niobium in ammonium f luoride, NH4F-NH4NO3 , or NH4F-H2O2 was very 
slow. The solubi l i ty of the dissolution product, (NH4)2NbF7, was about 0.01 M. 
Addit ion of 3 M HNOo to the product caused part of the niobium to precipitate as 
oxide and about 1 mole of niobium per 30 moles of fluoride stayed in solution. 
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Fig. 1. Dissolution of niobium In refluxing nitr ic-hydrof luoric acid. 

3.2 Organic Solutions (43) 

In preliminary studies alcohol ic hydrogen chloride or alcohol-mercuric chloride 
appeared promising as niobium dissolvents because of high dissolution rates and low 
corrosion rates. The more rapid dissolution in the anhydrous reagent Is probably due 
to the absence of surface fi lms, which always form on niobium in aqueous solutions (33,34). 
In alcohol ic hydrogen chloride, hydrogen Ion Is reduced and hydrogen gas is evolved; in 
alcohol-mercuric chloride, mercuric ion Is reduced to mercurous Ion or mercury as niobium 
dissolves. Transfer of the uranium to an aqueous solution in preparation for solvent extrac
tion was demonstrated In both cases. However, serious problems make eventual use of 
either of these reagents Improbable. Alcohol ic hydrogen chloride reacts rapidly, as the 
temperature is increased, to produce ethyl chloride and water. Water causes hydrolysis 
of the soluble dissolution products to undesirable insoluble compounds. The dissolution 
reaction is exothermic, and It would be d i f f icu l t to keep the reagent cool while main
taining rapid dissolution. The process using mercuric chloride would require several 
mercury-recycle operations, al l of which have been demonstrated on a laboratory scale 
but have not been evaluated on engineering scale. 
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3.3 H igh - tempera tu re G a s - S o l i d React ions 

N i o b i u m reacted r e a d i l y w i t h ha l ide gases at h igh temperatures, p a r t i c u l a r l y w i t h 

ch lo r i ne , where the reac t i on rate exceeded 10 mg cm" '^ m i n " a t furnace temperatures 

above 300°C (F ig . 3) . O the r workers have also reported rap id r eac t i on rates above 300°C 

w i t h ch lo r i ne (28) and have examined the n o n v o l a t i l e lower va lence products wh i ch are 

formed by reac t i on w i t h hydrogen ch lo r i de (30 ,44-47) and hydrogen f l uo r i de (47). Much 

v o l a t i l e pen tach lo r l de and pen ta f l uo r i de are also produced in react ions w i t h hydrogen 

ch lo r ide or hydrogen f l u o r i d e . The n o n v o l a t i l e products p robab ly decrease the reac t ion 

rates. Excess ch lo r i ne repor ted ly Is needed to conver t n iob ium t r i c h l o r i d e to the p e n t a 

ch lo r lde (30) . The x - r a y pa t te rn o f n iob ium t r i f l u o r i d e was i d e n t i f i e d In the n o n v o l a t i l e 

b lue compound that formed dur ing hyd ro f l uo r i na t l on of n iob ium. N i o b i u m repor ted ly 

reacts r e a d i l y w i t h f l uo r ine or hydrogen f l uo r i de at 300°C (48) . A l l o y s of n iob ium w i t h 

uranium and z i r c o n i u m have been hyd roch lo r l na ted at sat is factory rates ( 4 9 , 5 0 ) L 
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Fig. 3. Reaction rates of niobium In halogen gases. 

A disadvantage in hydrochlorinatlon is that the more stable and nonvolati le niobium 
pentoxide, rather than the pentachlorlde, can form from oxygen-containing Impurities 
introduced into the system. Under practical operating conditions, some oxygen-containing 
Impurities w i l l always be present. However, the pentoxide can be converted rapidly to 
pentachlorlde by treatment with carbon tetrachloride vapor at temperatures above 250°C 
(50,51), or by mixing with carbon and treatment with chlorine gas (24-26). 

Niobium pentachlorlde may be separated from zirconium tetrachloride by absorption 
of the latter on sodium or potassium chloride beds at elevated temperatures (26,49,52). 
The decomposition temperatures of the niobium chloride-sodium and potassium chloride 
complexes are 287 and 562°C, respectively (26). The decomposition pressures of the z i r 
conium chloride-sodium and potassium chloride complexes are 2.8 and 1.97 mm Hg at 432 
and 650°C, respectively (26). 

The volat i le niobium pentachlorlde can be condensed as a l iquid which melts at 
209.5°C and bolls at 247.4°C at 1 atm pressure. 

3.4 Fused Salts 

The dissolution rate of niobium in potassium hydroxide solution increased from 0.1 
to b.5 mg cm"'^ mln~l as the potassium hydroxide concentration increased from 10 M 
(refluxing) to 30 M (325°C) (Fig. 4). Addit ion of 5 M or 10 M KF only decreasedlhe 
dissolution rate. Niobium dissolved In fused sodium hydroxide at 400°C at 0.035 
mg cm~^ min" . The rate In 10 M LIOH was too slow to measure and In 10 M K O H -
1 M RbF was 0.04 mg cm~2 m i n " l , about half that in 10 M KOH alone. 

Processing of niobium-containing fuels In the ORNL Fluoride Vo la t i l i t y Process (53) 
Is being investigated. The dissolution rate at 600°C was measured as 1.8-2.4 mg cm"'^ min 
(54). Niobium also dissolved in fused ammonium bif luoride at a rate of 1.6 mg cm"'^ min" ' 
aT220°C (1). 
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10 20 
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Fig. 4. Dissolution of niobium In potassium hydroxide solutions. A l l solutions except 
30 M KOH were ref luxing. 

Fused chlorides do not attack niobium as rapidly as does chlorine gas. Uranium-
zirconium alloys containing 10% Nb dissolved In refluxing 3ZrCI4'2POClo (360°C) at 
9-12 mg cm"^ min" {^S). The niobium product Is thought to be NbCl5 'POCl3, which 
has a normal boi l ing point of 263°C (56). In a fused lead chloride process being developed 
at the Idaho Chemical Processing Plant, the dissolution of many materials, among which is 
niobium, is being investigated {,^1^. 
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