Geometric Perturbation Theory

and Plasma Physics

by
Stephen Malvern Omohundru
Ph.D. Thesis

Accelerator and Fusion Research Division
Lawrence Berkeley Laboratory
and
University of California Berkeley, California 94720

April 4, 1985

This work was supported by the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.

The United States Department of Energy has the right to use this thesis for any purpose whatsoever including the right to reproduce all or any part thereof.

The Goverrment reserves for itself and others acting on its behalf a royalty free, nonexclusive, inrevocable, world-wide license for govermental purposes to publish, distribute, translate, duplicate, exifibjit, and perform any such data copyrighted by the contractor.

Geometric Perturbation Theory and Plasma Physics

Copyright © 1985
Stephen Malvern Omohundro

DISCLAIMER

This report was prepared as an account of work sponsorad by an agency of the United Stites Government Neither the United States Government nor any ag. ncy thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference heren to any specific commercial product, process, or service by trade name. tradenark. manufacturer, or otherwise does not necessarily constitute of imply its endorsement, recommendation, or faroring by the United States Government or any agency thertof. The views and opinions of authors expressed hetcin do not necessarily slate or relleet those of the United States Government or any agency therecf

Geomerric Perturbation Theory and Piasma Pbasacs
Stepher Malvern Omohurdro
ABSTRACT

Modern differential geometric technifues are used to unify the physical asymptotics underlying mechanice, wave theory and statistical mechanics. The approach gives new insights into the structure of physical its and is suited to the need of modero large-scale computer simulation ald asinbol manipulation sygtems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure in five different ways. The theory of perturbations in the oresence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The peendo-forces and magnetic Poisson bracket terma due to reduction are given a datural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is alan given a Hamiltonian formulation. These methods are used to arswey a long-standing question posed by Kroskal about nearly periodic syatems The ansher leads to a new secular perturbation theory the contains no ad hoc elements. which wo then applied to gyromotion. Eikonal wave theory is given a Hamiltonian formulation tha* geveratizes Whitham's Lagrangian approach. The evolution of wave action dengity on ray phase space is given a Hamiltorian Btructure using a Lie-Poisson brarket The relationship between dissipative and Hamiltonian systems is diacussed A the ory notivated by free electron lasers gives new reatrictions on the clange gif arpa of projerted parallelepipeds under ranunical transformations A new type of atrartor
is defined which attracts both forward and backward in cime and is ahown to occur in infintr-dimenpional Hamiltonian sytems prith dissipative behavior. The theory of Sinale horyeshoes is apphed to gyropotion in the neighborhood of a magnetic field reversal and the phesomezon of reiosertion in area-pregerving borsesboes is introduced. The centrat limit sheorem is proved by renormalization group techniques. A naturad symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism in the bame way the structure for clasgical mecharics arises from quantum merchanits via path integrals. The new etracture for themodynamics is used to generalize Maxwell's equal area rule.

Acknowledgements

It is a pleasure to here thank those people who made this thesis possible and this period of my life positive, productive, and exrixing.

My mother, Hope G. Wallace, who through her example bas taught me to be persistent. organized, and to love lerrning, and who has given me her love and support in every possible way. My father, Stuart W. Omobundro, who tisught me to pursue philosophical questions and to love oration and vigorous discussion, and who with his wife Astrid Omohundro, has helped support me financially over the years. My stepfather Dr. Leon Wallace, who by example showed me how to pursue scientific thought and research, and who !as always given generousl; tis me, both financially and emotionally.

To my advisers I owe a great debt of thanks. They have influenced every aspect of this thesis, both in spirit and in content and many of their ideas appear within it.

Allan N. Kaufmen has created a near perfect reaearch environment at the Lawrence Berkeley Laboratory, with just the right mix of individual freedom and group endeavor. He has been as ideal mentor, constantly including me in his research, beginning with his stimulating year and a half plasma course, on through the great ferment of ideas he is continually generating ("Let me show y y this great idea I thought of at 3:00 this morning!") in the development of his unique uaified approach to theoretical plasma physics. He has given me immense freedom and bas been extremely supportive of the paths I have taken, even when they didn't
scem to be along the main thrust of our group's research (eg. cellular automata, knotted dynamical orbits). He has been very innovative in bringing into physics ideas from other disciplines through his wonderful free-for-all dynamics seminar, in which we tackled head on mome rather abstract mathematics reading, and through his close contart with nathematicians, bridging some traditionally wide gaps. With his deep insights into physics, his interminable curiosity, and continual probing into the structure of basic theory, Allas has taught me to be a physicist.

Alan Weinstein, through his course on geometrical mechanics in my first year of graduate schooi and through his insightful comments and lectured since, has taught me differential geometry and its abeolutely central place in physical thinking. Through his example, I have learned that a good picture can be worth a thousand equations and that parsimony and elegance often arise from abatraction. At weekly meetinga with his studenta, Alan continually makes those short insightful remarks that change the whole direction of research. Through his patient explanations and striking insights, Alan has taught me mathematics.

Maureen Saunders for her love and eupport during often stressful times, and for enlivening my life even during her own strugglea at medical school.

Peter Blicher, my roommate during all five years of graduate school for bundreds of great discussions about everything (inciuding many of the ideas in this thesis) and for firsthand advice on using TEX for writing a thesis. He and Lynn Hall are responsible for my going out to dinner and seeing roovies many more times than I would have otherwise.

Jerry Marsden for many helpful comments and discussions on the material of
this thesis, especially for suggesting avcraging as an interesting procedure to look at geometrically, aud for including me in many seminars, gatherings and conferenes phich have really shaped my undergtanding of mathematical physics His excellent profuse writings and boundless intellectual energy will always serve as at example for me.

Robert Littlejohn, for insightful discussions on many subjects, particularly for his explorations into eikon.I wave theory and for the observation of the many similarities between wave theory and statistical mechanics. His writings on guiding center theory have served to stimulate me (and many other people) to think about perturbation theories in new ways.

Richard Montgomery for being a sounding board for virtually everything in this thesis and for his contributions which appear throughout (especially in the sections on feometric perturbation theory and guiding center theory). At our weekly meetings he suggested many useful directions and explained many mysteries to me. Debbie Lewis for her friendship and encouragement, Bruce Boghosian for many discussions and ideas (especially on dissipative Hamiltonian systems, reversibility, infinite dimensional Lie transforms, and relativistic guiding center theory). Jonathan YYurtele for many discussions and for explaining FEL's to ze. Andy Seas ler for sug gesting the questions about the projection of area under Hamiltonian llow. Pbilippe Similon for many discussions, especially $\mathrm{c}: \mathrm{f}$ ponderomotive stabilization. adiabatic invariants and suiding centers, Ted Courant for discussions of Hamiltonial mechanics and guiding centers, John David Crawford for many discussions and insights into dynamical systems and plasma physics and for collaborating ou ¡Crawford and

Omohundro. 19841. Steve McDonald for his insights into eikonal wave theory, Celso Grebogi for diacussions on dynamical systems and ponderomotive theory, Darryl Holm for being responsible for a wonderful summer that I spent at Los Alamos and for his ronstant interest in and encouragement of my work, Doyne Farmer who has given me many insights into life, dynamics and statistics and who has invited me back to Lor Alamos for geveral great stays, Norm Packard ar. 1 J .m Crutchfield for many diseugsions of dynamical systems theory, Alice Roos for insights into integrability and for sharing her perspectives on perturbation theory, Bill Baird whose drive for knoriledge and quest for insights is truly inspiring, and Yukkei Hui and Iǹa Chang who are continuing the application of modern mathematical tools to plasma physics.

This thesis was written on the cce machine at Livermore using Donald Knuth's excellent mathematical typortting language TEX and on an Apple Macintosh computer. These tools have allowed me to proceed much more quickly and with much greater ease than I might have otberwise.

The work reported in this thesis was supported by the Office of Basic Energy Scieaces of the U. S. Department of Energy under Contract No. DE-AC0376SF00098. This support is due to the far-reaching insight of Oscar Manley who has the vision to support research into basic issues.

The writings of Vladimir Arnold and, in modern guise, the fundamental ideas of Leonb: . d Euler and Henri Poincaré have constantly served me as inspiration.

Short Table of Contents

Chapter 1. Introduction 1
PART I: MECHANICS 75
Chapter 2. Survey of Geometric Perturbation Theory 76
Chapter 3. Preudo-forces and Reduction 187
Chapter 4. Hamiltonlan Structures in Perturbation Theory 183
Chapter 5. Kruskal's Theory of Nearly Periodic Systems 231
Chapter B. Ponderomotive Force and Gyromotion 251
PART II: WAVES 299
Chapter 7. Abymptotic Wave Theory 300
Chapter 8. A Hamiltonian Appraach to Wave Modulation 338
Chapter 9. A Lie-Poibson Bracket for Wave Action Density 358
PART III: DISSIPATION AND STATISTICS 364
Chapter 10. Imbedaing and Projection Theorems 365
Chapter 11. Projected Area and Canonical Transformations 378
Chapter 12. Reversibility va. Irreversibility 404
Chapter 19. Hamiltonian Dissipation In Infnite Dimensions 407
Chapter 14. Reinsertion In Area-Preserving Horseshoes 428
Chapter 15. Renormalization Group 439
Chapter 18. Symplectic Thermodyammics from Maxixauna Entropy 458
Chapter 17. Glossary of Terms 528
Chapter 18. Bibliography 538

Table of Contents

Chepter 1. Lntroduction 1
1.1: Summary and Motivation 1
1.2: Philosophical Approach 15
1.3: Guide for the Reader 19
1.4: Intritive Discussjon of the Conceptual Framework 23
1.4.1: The Analogy Between Entropy and Action 25
1.4.2: Adiabatic Invariants and Pseudo-forces 26
1.4.3: Symmetries and Exact Invariants 29
1.4.4: Thermodynamic Forces 30
1.4.5: Wave Action 31
L.4.6: Action, Entropy and Asymptotics 34
1.4.7: Steepest Descents, Stationary Phase, and Averaging 35
1.4.7.1: Resonance 36
1.4.8: The Key Exaraples in Mechanics, Waves, and Statistics 37
1.4.9: Mechanical Systems 38
1.4.10: Mechanical Systems: Separation of Time Scales 38
1.4.10.1: Gyromotion and Asymptotics 39
1.4.10.2: Oscillation Centers and Ponderomotive Forces 41
I 4.10.3: Geometric Perturbation Theory 42
1.4.11: Averaging in Statistical Systems 44
1.4.11.1: Matched Asymptotics 46
1.4.12: Averaging and Local Fourier Transforms 47
1.4.12.1: Scales in Differentiation 49
1.4.13: Symplectic Asymptotics in Thermodynamics and Mechanjcs 50
1.5: A Hundred Further Questions, Conjectures, and Suggestions 56
PART I: MECHANICS 75
Chapter 2. Survey of Geometric Perturbation Theory 76
2.1: Historical Background 76
2.2: Geometric Perturbation Theory 81
2.2.1: Manifolds 81
2.2.2: Dynamical Systems 82
2.2.3: Perturbation Theory 83
2.2.4: Firat Order Perturbation Equations 88
2.2.5: Functions, Covectors, and Cotangent Bundles 89
2.2.6: Vectors and Tangent Bundles 89
2.2.7: The State Space for First Order Perturbation Theory 91
2.2.8: Flows and Derivatives 92
2.2.9: Dynamics for First Order Perturbation Theory 92
2.3: The Geometry of Jth Order Perturbation Theory 95
2.3.1: The Path Space 95
2.3.1.1: Spaces of Shorter Paths 97
2.3.2: The Space of Germs of Paths 98
2.3.3: The Space of Jets of Paths 100
2.3.3.1: Coordinates on the Jet Space 100
2.3.4: Tangent Vectory to Path Space 101
2.3.5: Tangent Vectors to the Quotient Spaces 103
2.3.5.1: Coordinates on the Tangent Bundle to the Jet Space 103
2.3.5.2: Coordinate Relation Between Path and Jet Vectors 104
2.3.6: Dynamics on Path Space 105
2.3.7: Dynamics on Jet Space 106
2.4: Geometric Gamiltonian Mechanics 108
2.4.1: Poisson Manifolds 109
2.4.2: Hamiltonians and Hamiltonian Vector Fields 110
2.4.3: Symplectic Manifolds 110
2.4.4: Symplectic Leaves and Bones and Casimir Functions 11.
2.4.5: The Natural Symplectic Structure on Cotangent Spaces 111
2.5: Hamiltosian Systems with Symmetry 114
2.5.1: Generalized Noether's Theorem 115
2.5.2: Circle Actions 110
2.5.3: Reduction by a Circle Action 11 "
2.5.3.1: The Reduced Phase Space 117
2.5.3.2: The Reduced Hamiltonian 119
2.5.3.3: The Reduced Poisson Bracket 1.9
2.5.3.4: Coordinate Calculation of the Reduced Space 120
2.È: Example: Centrifugal Force 121
2.6.1: Angular Momentum Generates Rotations 121
2.6.2: The Reduced Space and Bracket 123
2.6.3: The Reduced Hamiltonian Gives Centrifugal io.re 125
2.7: Higher Dimensional Symmetries 127
2.7.1: Hamiltonian Symmetry 127
2.7.2: The Momentum Map 128
2.7.2.1: Linear and Angular Momentum as Momenturn Maps 129
2.7.3: Non-commutativity as the Obstruction to Reduction 129
2.7.4: The Adjoint and Coadjoint Actions 130
2.7.4.1: Equivariance of the Momentum Map 133
2.7.5: Multiaimensional Reduction using a Coadjoint Isotropy Subgroup 134
2.7.6: Multidimensional Reduction using Coadjuint Orbits 135
2.7.7: The Lie-Poisson Bracket and Group Configuration Spaces 135
2.7.8: Euler's Equations for the Free Rigid Body 137
2.7.9: Euler's Equations for a Perfect Fluid 139
2.7.10: Gases and Plasmas 141
2.8: Geometric Hamiltonian Perturbation Theury 145
2.8.1: Linearized Dynamics at a Fixed Point from Jet Bracket 147
2.8.2: Symmetry and Perturbation Theory 150
2.9: The Method of Averaging for Bamiltonian Systems 152
2.9.1: Approximate Noether's Theorem 153
2.9.2: Hamiltonian Averaging as Reduction by a Circle Action 153
2.9.2.1: Averaging and the Jet Picture 155
2.9.2.2: Extensions from Lrops to Tori and Energy Surfaces 156
2.9.3: Pseudo-Potentials and Adiabatic Invariants 157
29.3.1: Ping-pong balls and One-dimensional Gass 159
2.9 3.2: Oscillatory Stabilization 160
2.9.3.3: Multiple Space and Time Scales 161
2.10: Exarple: $E \times B$ Drift 104
Chapter 3. Pseudo-forces and Reduction 167
3.1: Pseudo-forces and Reduction 167
3.1.1: Fictitious Forces 168
3.1.2: Rotating Coordinates 169
3.1.3: Reduction of Siraple Mechanical Systems 171
3.1.4: Circle Actions on Simple Mechanical Syatems 173
3.1.5: Fictitious Forces as Reduction 174
3.1.6: Fictitious Forces with Momentum Shift as Reduction 176
9.2: Geometry of the Method of Variation of Parameters 179
3.2.1: Hamiltonian Variation of Parameters 181
Cbapter 4. Hamiltonian Structurea in Perturbation Theory 183
4.1: Introduction 183
4.2: First Order Hamiltonian Perturbation Theory 186
4.3: Path and Jet Spaces 193
4.3.1: Path Space Symplectic Structure and Hamiltonian 194
4.3.2: The Path Space Dynamics is Hamiltonian 194
4.4: Coordinate Descr ption of the J-jet Structure 196
4.4.1: The Jet Hamiltonian 197
4.4.2: The Jet Poisson Bracket 197
4.5: Relation to the Iterated Tangent Bundle 198
4.5.1: Injecting Jets iuto the Jterated Tangent Bundle 198
4.5.1.1: Coordinate Description of the Injection 199
4.5.2: Symplectic Structure on the Iterated Tangent Bundle 2010
4.5.2.1: Coordinate Description of Symplactic Structure 2@
4.5.3: Pulled Back Symplectic Structure on the Jet Space 201
4.0: Relation to the Path Space Bracket 202
4.6.1: Weighted Patin Bracket and Hamiltonian 202
4.6.2: Jet Bracket Arises from Derivative of Delta Function Weighting 204
4.6.3: Jet Hamiltonian from Derivative of Delta Function Weighting 205
4.7: Jet Space as Derivative 206
4.7.1: The Sheet Quotient Spaces 206
4.7.2: Sheet Symplectic Structure and Hamiltonian 206
4.7.3: Map Between Sheet Space and Jet Space 207
4.7.4: The Pulled Bask Sheet Syroplectic Structure and Hamilonian 207
4.7.5: Sheet Structures Asymptote to Jet Structures for Small Spacing 208
4.8: Jets and Symmetry 211
4.8.1: e-dependent Group Actions on M 211
4.8.1.1: Lift to G Action on the Pat' Space 212
4.8.1.2: Lift to G Action on the Jet Space 212
4.8.1.3: Maps from the Lie Algebra to Vector Fields on M. P.M. and JM 213
4.8.1.4: The Momentum Niap 213
4.8.1.5: Momentuv Map on $P M$ 214
4.8.1.6: Momenturn Map on $J M$ 214
4.8.1.7: Equivariance of $J M$'s Momentum Map 214
4.8.2: The Patb Group: $P G$ 215
4.8.2.1: The Path Lie Algebra: Pg 216
4.8.2.2: The Dual of the Lin Algebra of the Path Group 216
4.8.2.3: The Action of the Fath Group on the Path Space 216
4.8.3: The Jet Group: JG 217
4.8.3.1: The Lie Algebra of the Jet Group: J_{g} 218
4.8.3.2: Homomorphism from $J g$ to Vector Fields on $J M$ 219
4.8.3.3: The Dual of the Jet Lie Algebra: Jg° 220
4.8.3.4: The Jet Momentum Mape 220
4.8.4: When M is a Coadjoint Orbit with the KKS Symplectic Structure 221
4.8.4.1: Coadjoint Action of $P G$ 222
4.8.4.2: The KKS Symplectic Structure on Coadjoint Orbits in $P_{g}{ }^{*}$ 222
4.8.5: Natural Projections and Injections of $G, P G$, and $J G$ 223
4.8.5.1: Projections and Injections of the Lie Algebras and Duals 224
4.8.6: The Lie Poisson Bracket on g^{*} 225
4.8.6.1: The Lie Poisson Bracket on $J_{g}{ }^{*}$ 225
4.8.6.2: Jg^{*} as J-jets of Paths in $\tilde{\rho}^{*}$ 225
4.8.6.3: Coadjoint Orbits in Jg^{*} 226
4.8.6.4: $J M$ is a Coadjoint Orbit in J_{g} as a Manifold 227
4.8.6.5: The KKS Symplectic Structure is the Jet Symplectic Structure 227
4.8.7: $J G$ as a Semi-Direct Product 229
4.8.8: Jet and Pait ?educed Spaces are Reduced Jet and Path Spaceo 230
Chapter 5. Kruskal's Tineor; of Nearly Periodic Systema 231
5.1: In' aduction: Kruskal's Approach 231
5.2: The New Approach Expressed in Coordinate: $23 ;$
5.3: The Geometric Version of the Nrw Approach 240
5.4: Extensions and Limitaticns of Kruskal's Tbeory 242
5.4.1: Secular Perturbatiol Theory 243
5.4.1.1: Lie Transforms 245
5.4.1.2: Two-Timing 245
5.4.2: $1 / \epsilon$ Time of Validity for Kruskal's Technique 246
5.4.3: Averaging with Muriple Frequeucies 248
5.4.4: Averaging Over Ergodic Orbita 249
5.4.5: Noc-uniqueness of Symmetry for Finite Perturbation 249
Chnpter 6. Ponderomotive Force and Gyromotion 251
6.1: Ponderomotive-like Forces 251
6.1.1: Intuitive Trea:ment 253
6.1.2: Introducing the Asymptotic Scaling 256
6.1.3: Using the Kruskal-like Perturbation Method 260
6.1.3.1: The Coordinates x, v_{x}, A, θ 260
6.1.3.2: Result of the Method of Averaging ?62
6.1.3.3: Calculation of the Roto-rate Vector Field 263
6.1.3.4: The Hamiltonian Structure 266
6.1.4: Obtaining the Action to First Order 268
6.2: Some Comments on Perturbation Caleulations 270
8.3: 2 D Gyromotion via the New Kruskal-like Mcthod 274
6.3.1: The Four Componeats of R_{1} 278
63.2 The Four Components of R_{2} 281
6.3.3: Summary of the Calculation 287
6.4: The Hamiltonian Structure of Gyromotion 289
6.4.1: The Poisson Bracket 289
6.4.2: The Symplectic Structure 290
6.4.3: Uniqueness of the Generator for a Vector Field 292
6.4.4: Comparison With Robert Littlejohn's Results 293
6.4.5: Prospects for a Fully Hamilonian Theory 297
PART I: WAVES 299
Chapter 7. Aaymptetic Wave Theory 300
7.1: Wave Asymptotics and Approximate Symmetry 300
7.1.1: Eikonal Waves 302
7.1.1.1: Sources with Time Scales Generate Eikonal Waves 305
7.1.1.2: Dispersive Media Create Eikonal Waves 307
7.1.1.3: Whitham's Generalization to Nonlinearity 307
7.1.1.4: Sinugoidal Waves 308
7.1.2: The Local Fourier Transform 309
7.1.3: Ssati , ary Phase, Laplace's Method, and Steepest Descents 311
7.1.3.1: Heisenberg's Uncertainty Principle 314
7.1.3.2: Asymptotic Waves with a Definite k and y 317
7.1.4: Eikonal Waves and Lagrangian Submanifolds 321
7.2: WKB Theory and Asymptotic Equations 324
7.2.1: The Structure of First Order P.D.E.'s 327
7.2.2: Hamilton-Jacob: Thory and Symplectic Manifolds 330
7.2.3: Cotangent Bundles, Contact Spaces, and Jet Spares 333
7.2.4: The Contact Bundle and the Conormal Bundie 334
7.s: Limitations of WKB Theory 335
Chapter 8. A Hamiltonian Approach to Wave Modulation 338
8.1: Introduction 338
8.2: Periodic Solutions 340
8.2.1: The Hamiltonian Restricted to Periodic Solutions 340
8.2.2: The Symplectic Structure Restricted to Periodic Solutions 341
8.2.2.1: A Degenerate Poisson Structure on the Prriodic Solutions 342
8.2.3: The Action of Periodic Orbits 343
8.3: Modulations 344
8.3.1: Stationary Prase integrals 344
8.3.2: The Modulational Poisson Brackets 345
8.3.3: The Modurational Hamiltonian 346
8.4: Global Symmetry Implies Local Conscriation Law 347
8.5: The Nonlinear Klein-Gordon Equatiou 350
Chapter 9. A Lie Poisf an Bracket for Wave Action Density 356
9.1: Explicit C'alculation of the Lar Poisqon Bracket 356
9.2: 'The Geonetrical Picture $36!$
PART III: DISSIPATION AND STATISTICS 364
Chapter 10. Imbedding and Projection Tieorems 365
10.1: Imbedding in a Hariltonian System 365
10.2: Projection from a Hamiltonian System 368
10.3: Dangerous Operations with Unbon:ded Variables 370
10.3.1: Eg:: Surreptitiougly Changing Damping to Driving 370
10.3.2: Eg.: Pitfalls in the Use of Lie Transforms 371
10.4: Imbedding in Poisson Systems 375
Chapter 11. Projected Area and Canonical Tranaformaticng 378
11.1: Applivation to Particle Accelerators 379
11.1.1: Courant's Theorem 380
11.2: Relation to the Uncertainty Principle 382
11.3: Weinstein's Approach $38:$
11.4: Theorem for Linear Canonical Transformations 389
11.4.1: The Geometry of Projected Parillelepipeds 391
11.4.2: The Case of Linear Canonical Transformations 398
Chapter 12. Reveraibillty va. Irreveraibility 104
Chapter 13. Hamlltonian Dissipation in Infinite Dimensions 407
13.1: Poincaré Recurrence and Altractors 408
13.1 1. The Lack of Recurrence in lafinite Dimede: ns 409
19.2: Asymptetic ans' Liapunoy St .oility 410
13.2 Almnst Attractors 410
13.3: Keverwbic Atrartory and Infinite Dinensmod Hamiltonians 411
Table of Contents $\mathrm{x}^{\mathrm{V} 11}$
13.3.1: Reversible Almost Attractor in the Wave Equation 411
13.3.2: The Liouville Equation and Koopmanism 412
13.3.3: Landau Damping 413
1?.3.4: The Boltzmann Equation and the BBGKY Hierarchy 413
3.3.5: Dissipation from Resonance 414
13.3.6: Resonant Coupling of Eikonal Waves 421
13.4: The String with a Spring 422
Chapter 14. Reinsertion in Area-Preserving Horseshoes 424
14.1: The $2 x$ mod 1 Map 425
14.2: The Baker's Transformation 427
14.3: The Horseshoe 428
14.4: Example of Horseshoee in Gyromotion 430
14.6: Area Preserving Horseshoes and Reinsertiol. 435
Chapter 15. Renormalimation Group 439
15.1: Scaling and Universality 439
15.2: Magnetic Spin Lattices 442
15.3: The Central Limit Theorem 446
15.4: A Poor Man's Feigenbaum Number 450
Chapier 16. Symplectic Thermodynamice from Maximum Eatropy 456
16 1: Previous Approaches to Geometric Thermodynamics 457
18.2: Seven Approaches to the Maximum Ent woy Formalism 462
16.2.1: Axiomatic Subjective Approach 463
16.2.2: Counting Sequences of Trials 464
16.2.3: Via Stecpest Descents in Two Ways 466
16.24: Via Probability in Three Ways 4:0
16.3: The Thermodynamic Limit 472
16.3.1. The Density of States 473
16.3.2: Tle Partition Function 474
16.4: Maximum Entropy Applied to Statistical Mechanics 475
16.5: Some Symplectic and Contact Geometry 479
16.5.1: Hypersurfaces Determined by a Function 480
16.5.1.1: The Underlying Manifold M 482
16.5.1.2: The Graph of a Function 482
16.5.1.3: The Cotangent Bundle 482
16.5.1.4: The First Jet Bundle 483
16.5.1.5: The Space of Contact Elements 483
16.5.2: The Conormal Bundle 484
16.5.3: The Wavefront Set 485
16.5.4: The Space of Tangent Contact Elements 486
16.5.5: Legendre Transforms and Linear State Spaces 487
16.5.5.1: The Legendre Map 487
16.5.5.2: The Legendre Transform 488
16.5.5.3: The Legendre Transform and a Function's Graph 489
16.5.5.4: Legendre Transforms and Projective Duality 490
16.5.5.5: Legendre Transforms and Uncertainty Relations 494
16.5.5.6: Legendre Transforms and Jets of Functions 495
16.6: The Origin of the Lagrangian Submanifolds in Physics 496
16.6.1: Congtrained Integration and Extremization 49
16.6.2: Paths Constrained on Suriaces 497
16.6.3: The Wavevector as a Kind of Force 498
16.6.4: Distributions Coustrained on Subsystems 499
16.6.5: Thernodynamic Forces 500
16.6.6: Lagrange Multipliers and Legendre Maps 501
16.6.6.1: Constant Force Asymptotic Systems 502
16.6.7: Lagrangian Submanifolds and Constrained Extrerrization 503
16.6.7.1: Parametrizing Lagrangian Submanifolds 503
16.6.7.2: Theorem on Pushing Forward Lagrangian Submanifolds 504
16.6.7.3: Application of the Theorem to Waves 505
16.6.7.4: Application of the Theorem to Thermodynamics 505
16.7: Theorem on the Pushforward of Legendre Suhmanifolds 507
16.7.1: The Contact Structure for Thermodynamics 508
16.7.1.1: The Contact Form for Jets of Entropy 509
16.7.1.2: The $U, V,(1 / T),(p / T)$ Symplectic Manifold 509
16.7.1.3: The (S, V, p, T) Symplectic Manifold 510
16.7.2: Legendre Transforms and Thermodynamic Potentials 510
16.8: Phase Transitions and the Geometry of the Equation of State 512
16.8.1: Caustics and Phase Transitions 513
16.8.2: Convexity and First Order Phase Transitions 513
16.8.3: A Generalization of Maxwell's Equal Area Rule 517
16.9: Relations Between Symplectic Thermodynamics and Mechanics 521
16.9.1: A) Eikonal Waves and Stationary Phase 521
16.9.1: B) Thermodynamic Limit and Steepest Descents 521
16.9.2: A) Waves and the Feynman Path Integral 522
16.9.2: B) Probability and the Maximum Entropy Formalism 522
16.9.3: A) Wave Path Integrals over a Subspace 523
16.9.3: B) Probability Distribution Averages over a Subspace 523
16.9.4: A) Lagrange Multipliers and Canonical Conjugacy 524
16.9.4: B) Lagrange Multiplicrs and Thermodynamic Conjugacy 525
16.9.5: A) Fourier Transforms and Legendre Transforme 525
16.9.5: B) Laplace Transforms and Legendre Transforms 526
Chapter 17. Glossary of Terms 528
Chapter 18. Bibllography 536

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Lsboratory or the Deparment of Energy.

Reference to a company or product name does not imply appreval or recommendation of the product by the University of Califomia or the U.S. Department of Energy to the exclusion of others that may be suitable.

Chapter 1: Introduction

*One of the principal objects of theoretical research in any department of know/edge is to find the point of view from which the subject appears in its greatest simplicit; "-J.W. Gibbs

1.1. Summary and Motivation

This thesis presents the underlying theoretical basis for an ambitious program to develop a unified, coordinate-fren theory of asymptotic perturbation methods in the three major areas of physies: mechan al systems, wave systems. and statistical systems. This program has far-reaching consequences, both practical and thcoretical, which we will outline here. It is quite clear that we are entering a new cra in physics and engincering in which powerful computers will play a major role. The two major applications of the computer will be simulating physical systems and performing symbolic computations. Both of these areas ars fundamemally impacted by our research.

It bas long been known that many of the most important problems in physe: and enginecring design are analytically intractable Recont theoretical developmernthave shown that this intractability can be inherent in the problem. and not due moply to insufficient mathematical technique. Rigorme result:- from dyamical

Which aboolutely precludes the development of analvtic solutions (eer for example (inckenteimer and Holmes. 1983j). Reiem work in cellular autumata theory han -hown that there are problems whose behavior cannot be predicted by any algorithm which is shorter than direct simulation (Wolfram, 1984:.

Computer simulation is therefore destined to play a fundamental role in the study of physical problems. Uufortunately, the very same exponential divergences of neighboring orbits which cause difficulties in analytic treatments also platue computer simulations. For a given accuracy of prediction, the computing power required typically grows exponentially with the tirie-scale to be studied measured in units of the smallest important physical time-scale. Advances in parallel computation will increase the power of computers by factors of about a million in the next twenty years. While large, this number paies against the spectre of needed exponeatial growth and the new scales posed by fully three-dimensional simulations. It is therefore nec'ssary to develop reliable analytic theorjes for preconditioning problems prior to simulation. An important exaraple of this concept is utilized in studying the gyromotion of a charged particle in slowly-trying magnetic and electric fields. The particle motion consists of fast gyrations near the gyrofrequency, on top of alow drifts of the center of gyration. If one simulates the particle motion directly, the simulation errors acrumulate on the time-scale of the gyroperiod, quickly leading to incurrect results on the drift time-scale. By first introducing anymptotics and analytically removing the fast gyration, we obtain the so-called guiding center deseription. Tleece equations have significant evolution on only the drift time-scale. and the smulation retaine validity for murb longer timen with the same romputing
resources. A similas motivation is behind the deerription of a partule in a waw using ovrillation centers and the description of the ewolutan of atr emonal wave in terns of modulational equations.

The need for accurate ass mptotics performed to very high order will rventually be met hy using symbolic manipulatio: programs such as MACbyMA and S.sp. For this to be possible, it is absolutely essential that we bave methods that are precisely defned with a precisely defined domain of applicability, are systematic. and require no ad hoc cheices in their implementation. It is also very important to design simulations to take adyantage of any precise knowledge of the dynamics. such as energy or momentum conservation. Insight into the theoretical structure of a physical theory leads to much more efficient and testable computer code and may mean the difference between a successful theory and a useless one.

For these practical reasons, as well as for fundamental theoretical ones, we have taken a new approach to physical asymptotics. The approach we take is based on some revolutionary new ideas that are changing the underlying mathematical structure of physics. The introduction of the vector calculus by Heaviside in 1882 led not only to the streamlining and simplification of calculacus.s. but to new conceptual insights into the structure of physical law. The application of coordinate-free differential geometry, developed primarily by Elie Cartan in the 1930 s. is having an even more profound effect on both the expression and the conceptual structure of physics. Coordinates are not physical, and the new formulations encourage the use of only physically relevant concepts, never ad hoc artifacts of sume coordinate description. Hamiltonian mechanics has been particularly revolutanized by thi-
 demeribee the structure of space-time. symplecter geometry dewerbes the structure of Hambonian phase space An introduction to the theory in the context of our work is presented in chapter 2. The full impart of the reformulation of Hamiltor nian mechanics has been felt mly recently. In the past fow years virtually every area of physics has been Hamiltonianized. The new perspective has shed light on the underiying symmeiry structure of these theories (including the elucidation of automatically conserved quantitics, called Casimir functions), has yielded improved noolincar stability results hased on Aroold's stability method, and has given insight into the reasone for the integrability of eertain systems.

Hamiltonian structures were originally ietrodused by Lagrange to simplif; and to check perturbation calculations. They will play a similar role in modern computer simulations. Most of the recent developments in Mamittonian mechanics have dealt. with fundamental models of physical systems and have not studied the structure of perturbation equations. We have initiated a study of such equations and discovered several important resulte.

Our first goal was to study ordinary non-singular perturbation theory. Chapter 2 gives a coordinate-free description of this technique in terms of the mathematical theory of jets. This is important for systematizing perturbation methods and bringing them under the purview of modera mathematical methods. Many physical systems have state spaces that are naturally manifolds, and many are naturally infinite-dimensional. Eefore our work, it was not clear that one obtained the same perturbation exprensions when ene worked in different coordinate systeme and there

Cbapter 4 studies the pernurbation theory in a Hamilonian context. Agan we find that the theory is expressible in coordinate-free language the have dwo overed that a remarkable and important Hamiltonian structure governs the perturbation equations themselves. The fact that the perturbation equations are Hamiltonian means that. for the first time, all of the powerful techniques of Hamiltonian mechanics (including Noether's theorem, energy conservation. Liouville's theorem, and stability techniques) may be applied directly to perturbed systems. We have discovered that the new perturhation structure is related to the key elements of modern Hamiltonian mechanies in five different ways. (We have worked out the direct coordinate description, the relationship with natural structures on the so-called iterated tangent bundle, the relationship with a gatural structure on a path space, a new sense in which the perturbation state space can be viewed as a "derivative" which unilies our method with previous work, and finally an extensive theory of perturbations in the presence of symmetry.) The theory describing the relationship of perturbations and symmetries extends to perturbation problems what is pertapthe most important idea of modern Hamiltovian mechanics: reduction Tha is a procedure formulated by Marsden and Weinstein and discussed a chapter 2. which is a far-reaching generalizatom of Nocther's theory of nmplification in ther promare of symmetry. Every mod, rul Hamiltonian structure. inchoding thome aris ing in plasma physics, magneto-bydrodynamics, tuid dynamics. gemeral relativity. electromagoptism, quantum mechames. superfluidity, and superomductivity. mas

of these cisee. the resulting Pobson bracket in intmately related to the walled Lie-Pobson bracket. which arise from tedurtion We have broadened this theory to encompras ferturbed systenis and nave show that the perturbation structures are intimately related to certain "jet-group" symmetries. Our Hamiltomian perturbation stacturc arises from the Lie-Poisont bracket of this larger group

Perhaps the most important application of mon-singular perturbation theory is as a componert of a singular or secular perturbation calculation. Using geometric methods. we have been able to make fundamental advarces in secular perturbation theory as well. We first demonstrate in section 2.9 that the method of averaging can be viewed as an application of reduction by an approximate circle action. This allows the method of averaging to be incorporated into any situation amenable to reduction. We explicitly calculate the Poisson structure for $E \times B$ drift using these new raethods in section 2.10. Nowbere in the calculation does or need to introduce the unphysical or ad hoc elements usually required. The resultant bracket is derived wich much less calculation than by any previous method.

To rearh higher order than the method of averaging, we reexamine the seminal theory of Kruskal in the light of the new methods in chapter 5 . He introduced the first systematic, order by order calculation of adiabatic invariants to all orders. His technique requires oue to make changes of coordinates order by order. Each change, howev : reçuites one to make ceriaiu arbitrary choices leading to an ad hoc element in the perturbation algorithm Kruskal was able to show that nonetheless the vector field generated by the adiabatio invariant (which we would now call an approximate rircle symmetry) was uniquely defined to all orders. This vector field
is the real goal of the perturbation technque and Kruskal wan moved to comment in his paper: "It does not appear ohwous whether an explicit recursion formola to determine R the symmetry vector field in terms of f ithe dynamical vector field can be found. If so, the whole theory of this paper might be simplified and rendered less deep." Indeed, our approach explicitly gives just such a formula ind relates it to the developments in Haraltonian mechanics listed above. Our algorithm is completely weil defined with no id hoc elements and so is ideally suited int symbolic implementation on a computer. As an example, we compute the symmetry vector field for two dimensional gyromotion to second order in chapter 6.

We have found that Kruskal's results (and others of the same type) are often misunderstood and misused. While Kruskal showed that the accuracy of the adiabatic invariant conservation may be made exponentially small in the small parameter, the time-scale over which this is valid is only the reciprocal of the small parameter. Kruskal's result is often quoted as: "adiabatic invariants i-p preserved to all orders in the small parameter" and wrongly interpreted to mean exponentially small error for exponentially long times. This misinterpretation can be very dangerous in the situations where the theorem is applied. and so we have constructed a number of connterexamples to illustrate the limits of the theory in section 5.4 .

We have also successfully considered the method of variation of parameters in this light and have explicitly demonstrated the connection with the notions of "psfudoforces" and "magnetic curvature terms" in the Poisson brackets of reduced systems in chapter 3. We have strown a uew way of interpreting the Coriolic furce (as a term in the Poisson brarket due to reduction) which is exiendible to any oh her
syatrm experened in a changing reforeme frame

The next rlans of sesteme we study are those descriting the asymptone evolution of ei . al waves. We bave developed a number of new theoretical constructs in the fielu including a precise asyaptotic definition of loral Fourier transform. These ideas are presented along with a summary of the geometric approach to eikonal wave theory in chapter 7. We have also succected in our main goal, which was to develop a systematic method for finding a Hamiltonian description of modulational equations given the underlying Hamiltonian wave system. Our technique is algorithmic and does not depend on linearity, nor on any other special features of the system. We present the theory for the Klein-Gordon equation in detail in chapter 8. Our approach encompasses the systems amenable to Whitham's averaged Lagrangian technique. but applies in addition to Hamiltonian systems that do not arise from a Lagrangian (for example, any of the s: stems with Casimirs or any system based on a Lie-Poisson bracket). It also unifies the study of eikonal waves with the other Hamiltonian systems we have discussed.

We also study the common case of linear waves described by a canonical Hamiltonian structure with wave amplitude and phase as conjugate variables. We have shown that these systems are naturally described by a wave action density on the entire x, k phase space. The evolution of this action density is itself Hamiltonian, but with respect to a natural Lie-Poisson bracket, as is demonstrated in chapter 9. The symmetry group underlying this theory is the same as that for the Vlasov equation.

I'sing new mathenatica! techniques, we have dimovered several novel results
 and non-dissipathe ststems. In chapter Its, we show by exphert comerurtion that any dynamical system (with any amoun: of dissipation) can be imbedded in a Hamiltonian systen of twice the dimension or a Poisson system of only one higher dimension. We also show by explicit construction that there are a Hamiltonian system and a Poisson system of only one dimension greater that project (by ignoring the value of a coordinate) to become any arbitrary dynamical system. These results show at once that Hamiltonian systems are very general and that it can be very dangerous to indiscriminately add new rariables to a system. In particular, we show that by introducing time-dependent changes of coordinates, one can make any system look integrable, or coerce Liapunoy nxponents to take any desired values. We give several explicit examples of seemingly harmless yet truly dangerous operations. We show in an explicit example intolving a resonance that, by indiscrininate use of the metbod of Lie transforms, one can inflict mortal injury to the underlying physics.

In chapter 11 we use modern symplectic geometry to study some questions that arise in the design of free electron lasers and other accelerators One often wants to force the particles in a beam into a more confined region in phase space. Most devices act on the particles in a (tame-dependent) Hamiltonan way and an we consider the effect of canoniral transfurmation on regions of phase space. Liouville's theorem says that it is imponsible to change the volume of the region in phane space Often, though. We are interented in the promertion of our region nito wame

variable-1. One might attempt to shrirt the image of such a projection Courant adrienenci thi question for linerar systems. but only under ver: special conditions. particle. in allipooids or parallelepipeds with axce aligned with the coordinate axes both before and after the transformation. Weinstein has given a general theorem that applu" only for sufficiently small transformations. We generalize Courant's thesy in a fundamental way and obtain results for arbitrary linear canonical transformations. This is accomplished by positing and proving a new theorem about the structure of parallelepipeds in high dimensional spaces. We give several examples and countcrexamples and discuss the pussibility of a geveralization to statements about projected measures as opposed to voiumes.

In chapter 12 we introduce a new class of attractors into dynamical systems theory that sheds light on classical irreversibility paradoxes. By construction, we exhibit systems possessing a fixed point which is attracting both forward and backward in time. In chapter 13 we show that exactly this behavior occurs in many intinite dimensional H:miltonian systems and is responsible for the appearance of dissipation in many cases. Examples include a variety of wave systems, Landau damping, resonant coupling, and the decay of correlations in chaotic maps.

The fundamental mathematical structure behind chaos in dynamical systems is known an Smale's horseshoe. This is a very commonly found piece of nonlinear mappings which guarantees the existence of orbits that bos between two regions according to any sequence of random l's and 0's. Any map with a borseshoe has dynames whicis is as unpredictable as a sequence of coin tosses. In chapter 14 we -hos that periordically perturbed ge romotion in the neighbortood of a magnetic

 whpiry athi so ouly beginting to be underntood. Horsenhore are responable for (han wh both drsipative and Hamiltoniaia systems but bave been studied mostly in the dissipative case. We baze discovered a fascinating apparent paradox regarding riamilronian horseshoes whose resolution indicates a much more intricate structure for the Hamiltonian than for the dissipative case. We call the new phenomenon "reinsertion" because it forces the tongues of the unstable manifold to reinsert into other tongues an infinite number of times. It is possible that this aew structure is responsible for some extremely complex phenomena that have been recently observed by Holmes and Whitley in the trausition from dissipative to Hamiltonian horseshoes.

In chapter 15 we give a dynamical systems description of the idea of renormalization and prove the central limit theorem using renormalization group techniques. Using renormalization group methods, Feigenbaum discovered a universal scaling constant for period-doubling casrades. He used a Cray supercomputer to calculate this constant to high accuracy. In section 15.4 we present a poor man's approach that gives the constant to within 25 percent on the back of an envelope

The last type of physical asymptotics that we have incorporated is.to our the oretical structure is the transition from statistical mechanics to thermodynamic. This is perhaps the most profound aspect of our work and introduces structures that are of fundamental physical significance. At diseussed in chapter 16. we have
discowered that the asmptotic averaging procens that ocrurs in the tran-mon from stanternal mechance the thermodynames is exactly analogous to the asymptote ascraging proces that lakes us from ejional wave theory to tays (e.g.. from guantum merlatur to classical mechanics). We show that a natural symplectic structure for thermodynamics arises from this asymptotics in exactly the same way that the iymplertic structure of Hamiltoaian mechanics (that bas beet so fruitful in recent applications) arises from wave asymptotics. Our theory now allows the same powerful results which have caused Hamiltonian dynamics to flourish in recent years to be applied to statistical systems.

The upderlying statistical foundation for the new theory is the principle of maximum entropy. We develop several new interpretations for this principle in section 16.2, in which it plays exactly the same role as the principle of least action plays in mechanics. Just as the principle of least action arises asymptotically from the method of stationary phase applied to the Feynman integral over all paths, the principle of maximum entropy arises from the method of steepest destents applied to an integral over all probability distriuutions. This formulation is new and is expected to lead to the sane benefits in statistical mechanics that are derived from the path integral formulation in quanturn mechanics.

The integral over paths can be done by integrating over paths with a given constraint and then integrating over the constraist. This leads to the action de. fined on phase space and the description of dynamics in terms of it. The integral over distributions may be done by integrating over distributions obeying a given ronstraint and then integrating over the constraint. This leads to the entropy de-
fined of the thermodymanc state space and the de-e roptum of the repaton of wate.
 ty introducing Lagrange multiphers that are caronically conjugate to the ofithat variable and choosing them so that the exeremal action urcure at the proint of in terest. The value of the multipliers is the wave-vector or monnentum conjugate th the position and has a value equal to the derivative of the action. This is the ongm of the symplectic structure of mechanics. We obtain the entropy for given valurs of the merhanical quantities by introducing Lagrange multipliers that are therinodynamically conjugate to the mechanical variables and choosing them to make the maximum entropy occur at the state of in:erest. The value of the multipliers is the derivative of the entropy with respect to the mechanical variables. This is the origin of the semplectic structure of thermodynamics. The Lagrange multipliers cause our path integral to be a Fourier transform and our probability integral to be a Laplace transform. The asymptotic evaluation of these transforms by stationary phase and steepest descents. respectively. leads to the Legendre transforms that are so central in mechanics and thermodynamics

[^0]

1.2. Pbilosophical Approach

Abstract

 w cured in the great revolutions of lewtoman mechanm. werid and gemeral rat. ativity and quantum mechanics. This is not what mont the retical phyorive du, however. They start with the fundamental laws (be they quantum electrodymamics or some other modelj and determinc what behaviors these laws inply in spectal situations. Ideally. this enterprise is one of thatbematical deduction. but practically one must often make intuitive leaps either because current mathematical techniques aren't powerful enough or simply because the underlying mathematical model of the physical situation is inadequate. The ultimate goals of such studies are the predicthon and understanding of physical bebaviors. Sometimes these rome in the form of numbers to compare - ich experiment, but more often one is interested in qualitative features like the stahuty of an equilibrium state or the type of evolution experted of a given system. At the highest level, one hinds gennral principle. which apply to many situations and give reasons for the qualitatur hehaviore observed.

From this viewpoint. the enterprise of theoretical physirs may be thought of it the creation of a surcession of models. The highest models are extremely general in their domains of application but are very intractable and because of their ge nerality. give little insight into actual behavior. The lower models specialize the general ones to smaller class of situations and make more and more precise predictions until finally the lowest models describe a single experimental wortupand predis the numerical valuew of individual measurements.

 of the -maplituatura*.

The fundamsatal theorvical otoucture which unifies che modele of physics at Il levels is the Hamiltonian structure, as may be seen in the brautiful compendinm 'L. andan and Lifintz. 1960 1981'. The fuodamental equations of physics all appear to be Hamiltonian and many of the simplifiration procedures respect this Hamiltomiaf structure. The most basic circumstance which allows simplincation is the prenencer of symmetry. Emmy Noether discovered that for systems with a Hamiltonian structure, the preseace of a dimension of symmetry allows one to eliminate two dimensions of state space from coe ideration. Recently, the reduction of fundamental models to more specibic ones bas been accomplished within a Hamiltonian franuwork for many examples using the symmetries present in the underlying situation

Sany times, however, we are not exactly in the symmetric situation but we are close to it in some sense. The physics is described asymptotically using the diverse methods of perturbation theory which bave come to be the mainstay of much of theoretical physics. One can make a case that all of the actual calculations carried out in quantum electrodynamies. plasma physics. solid state physics and many other held- are expressions of divers perturbation approaches to the underlŷing equations.

The other great simplifying tool is statistics. As for perturbation theory, the fundamental theoreical justification for using statistical approximation- i- almosi
alway- lacking, and yet thene techmpue have led to some of the mun wering and acrurate theories in any domain of atid.

Our purpose in tha the is is to cxamine in a onew light tome of then- -mplification procedures at the heart of phyics. Traditionally, physical salculaton- have been carried out in special arbitray coordinate systems which may suplify the calculatons but obscure the distinction between what is intrinse to the phesical situation and what is arbitrary. The mathematical physics community has recontly been moving to reexpress the fundamental ideas of physics in the coordinate free language of differential geometry. developed by Elie Cartan. This bas led to some resounding successes and has identifed many new structures that bave direct relevance 20 physics. Much of the buge body of traditional work in applied inathematics has not yet benefitted from this new viewpoint, however. Books and journal articles on perturbation methods typically describe these methods in terms of a specific example and little or no attenpt is made to delineate what physt al features of the model bave made the method wort. The result is a moras: of disconnected spectan cases. Workers in the field bave develope' intuitions at what will work where. but this has not been codified into a theory.

The underlying philosophy here is that there is ne magic if a situtabimplifies. if a problem is :ractable, or if there is some offer u bich is umberal curough to be given a name, then there must be a definite phystal reason for it Wirmoh to understand these reasons. The thest, of courvt. F onty a hegname in tha direribu We find the underlying geomerncal content of enne of the a motal pers.

trourture moolved. redu dansual dermations and produre new rembla. To make
 mathematical results. We show hou they fit into the pieture presented here without t.w tmu h duplieation of materna' that can be found in standard reference works.

1.3. Guide for the Reader

 ways. Throughout the thess. we use concepte from differebtal hemetry fememern
 these fields. we give an intuitive discussion of the basic ittens involved and retere a... to more detailed discussions. Fortuvately, this background maternal is becoming widely 'nown and used in the physics community, primarily because of the exmence of several excelleat texts.

Geometric mechanics is beautifully presented in Abraham and Marseden. 1978. iAmold. 1978', and Thirring. 1978'. 'Arnold. 1978' gives the most intuitive dincussions, Abrabam and Marsden, 1978 is the most complete and mathematically precise, and Thirring, 1978; covers several additional topirs like the $\mathrm{K} . \mathrm{Al}$. thentetn

Both |Abraham and Marsden, 1978: and 'Thirring. 1978 ' begin with interductions to differential geometry. An expanded vernon of this intenduction and infinitedimensional versions of the iden are fiven in Abraham. Marden, and Rativ, 1983'. We give sperific citations to this reference an the fumbmental geor metric concepts appear. An intuitively appealing treatherit of diferemtal geometry mave also be found in 'Spivak. 1979'

The whea of dyanical systems theory are discused in Abraham and Maraden 1978., Arnold. 1983', and [Guckembemer and Holmes. 1983. 'Gmkenhenner and Holmes. 1983, gives a very mice treatment of many example in addition to prenenting the pure theory.

A unified treatment of the classion statistical physics we ueed is prearnted in

Becauce there is no iudex, we bave made the table of contents very detailed. We have also provideci an alphabetical list of key conrepts ans the sections in which they appear in chapter 17.

The remander of this introduction is intended to be reablable without extensive mathematical backgroume . It presente the hasic comepotual structure of the thesis and motivates nome of the mathematical concepts.

The body of the thesis is brokers up into thref parts: I) mechanics. II) waves. and III dissipation and statistics. While one of our goals is to connect these disciplines. for the most part the three parts may be read independently of one another.

Shapter 2 is intended to introduce the geometric approach to rechanics while introducing our approach to nom-singular perturbation theory. It gives intuitive dracripti, an of the basic concepts of differential geometry with pointers to more detailed reference works. We have tried to point out the key ideas of the geometric approach ind to make our dinct sions casier to follow at a heuristic lewel than the reference work:

Chapter 3 resto on detaled geometrio methames and will be most acconth, th reader-with this backgronnd No other sectome depend on the mater al

Chapter 4 rats on the material of chapter 2 and will be most accon-thete to readers with some mathematical barkground The philosophy and howic rewult: were presented in chapter 2 and chapter 4 may be viewed an a referemere for the details and methods of the approach. The remults are uned in sections 5.3 and 9.3

Chapter 5 extends some standard secular perturbation methods We give an introduction and critique of this theory lut the reader may wish to look at standard references and the paper [Kruskal. 1962] while reading thi: rhapter. Section 5.3 rests on geometric notions from chapter 4 and may be omitted by the uninterested.

Chapter 6 is an application of the methods of efapter 5 to gyromorion. We Lave given fai:ly complete details of our calculations so that they may be used on other problems. Later sbapters do wot depend on this one.

Chapter 7 is an introduction to ihe geometry of eikonal wave theory. Extensive use of the symplectic geometry intrutuced in chapter 2 is made in this chapter.

Chapter 8 develops a Hamifonian perturhaton technique for sikonal wave which is founded in . ae geometric ideas of chapter 7 but take the iorm of an explirit algorithmic calculation The example he preant may serve an a model for similar problems.

Chapter 9 agar present- an explicit calculatinn whome theory reat- on the

 second aethon rear beandy ount
(haper 10 um why the elcmentary dean of chapter 2 and should be farly rans (1, reat

Chapuer 11 sests on some symplectir grometry. but the result are easily undernood and may be useful in general stuations. The proof of the main renult uses nily 'mear algelera and indurtion
©hapter 12 may be read on its own and serves as the background for chapter 13.

Chepter 14 introduces the dynamical systems concepts necessary and may be read independently of the rest of the thesis. It may be uscful for the reader unfamiliar with the ideas of chantic dyamics to consult some of the more detailed work:

Chapter 15 rests on some ideas of probability theory. dy namical systems theory. and rensmalization group theory. It may be read independently of the rest of the thesis but consultation of the refesence works listed in that section may provide useful background material for the reader.
\{hapter 16 makes many refermenes to chapter 7. It also rests on the ideas of inaximum entropy which are quickly sketched here but may be studied in detail from 'Jaynes. 1983'. It is also necessary to introduce many ideas from contact geometry. wheth charify many aspecte of thermodynamies. It might be useful to look at the mote detasted reterences on the material.

1.4. Intuitive Discuasion of the Conceptual Framework

Plasma physies is a fascinating discipline in part beranse it is at the cros-romad. of what I consider to be the three fundamental types of models in physies: mechanics. wave theory, and statistical merhanirs. Each of these areas getw its ricluent and most powerful models and clementary concepts from asymptotic approximalsono to the real physical system. It is this asymptotics which allows us to introduce the concepts central to simplified descriptions of physical phenomena. This thesis explores some amazing relations among these three secmingly disparate disciplines and develops a unified way of understanding the structures that make them work.

We are trying to understand how systems simplify. The key feature of such systems is that they project onto a sub-piece which moves according to its own dynamics which is approximately independent of the exact state of the forgotten pieces. The interesting physics arises from the fact that the two halves are in no sense decoupled, and the effect of the forgoten piece is felt in the kept piece as a new physical effect. Each of our three main types of sy stem can undergo such a simplification, and together these systems span the breadth of physics. There are simple dynamical systems with fast oscillatory degrees of freedom. wave systems in the eikonal limit of short wavelength, and chaotic systems of a large mumber of degrees of freedom in the limit in which statistics is valid. In each, we make a separation of scales by first introducing a formal parameter (ofton only implisitly) which increases the separation as it vanis'ses, and then by doing asymptotice in that iarameter.

Figure 1.1: Some links between the three disciplines of mechanics, waves, and statistical mechanics.

1.4.1. The Analogy Between Entropy and Action

We will forge links between these three disciplines. Let us first state the warions relatiouships and then give int uitive examples of them. Oddy enough, in each case the classical notation associates the letter " $5^{\text {r }}$ with the fundamental unifying quantity. The relation between quantum and classical mechanics is based on the classical action S along a path in phase space, which also represents the quantum phase corresponding to that path. The information entropy S of a probability distribution similarly gives the connection between statistical mechanics aud thermodynamics in the maximur entropy approach. In the asymptotic cikonal limit, we may define the action S as a function on the space of only real dynamical patbs. In the case of a system all of whose orbits are periodic, we may define the action S as a function on phase space. Tbis function is an adiabatic invariant for slow variations of paramcters, and this constancy forces the exchange of energy between the system moving the parameters and the fast periodic oscillations. This excbavge causes the slow sy_tem to bebave as if it had new pseudoforces arting on it. which are expressed in terms of S and are Hamiltonian. When we think of wave systems as themselves being dynamical systems, we can define a local wave action density. Again. this se adiabatically a locally conserved quantity, which canses energy io move aroutud 50 as to stay constant. In the thermodynamic limit, we con vicu the entropy as a function S on the space of only the real cquilibium distributions. Asymptotically. in the case of ergodicity, we can assiga it to be the function S on the system phaxe space given by the logarithm of the volume of particle orbits. When we think of a statistical systens as itsolf being a dynamical system. Hhis memopy becoms, an
 and thry lead to a thermwdyamic symplectio state space on which we can define S. and taterns of which we get the thermodyoamic equations of state.

Beranse this sequence of connections is the central unification around which this thesis revolver, we with now give some easily understood examples of the concepts involved.

1.4.2. Adiabatic Invarianta and Paeudo-forcea

Lorentz was first to ask the question that led to the notion of adiabatic invariance. He wondered how the energy of a simple harmonic oscillator varied as ite spring constnnt slowly changed. It was discovered that, although the energy and frequency both change, their ratio remains asymptotically constant for slow variations. This ratio, H / ω, is an adiabatic invariant for the oscillator. A precise definition of the concept of adiabatic invariance and some of its limitations are given in sections 2.9 and 5.4. H / ω is equal to the action of the oscillator over one cycle. The action of a closed orbit is the area encircled by that orbit in the (q, p) phase plane, it is a quite general result that this area is an adiabatic invariant for slow variations of the parameters of both linear and nonlinear oscillators. We show how to understand this result geometrically in section 2.9 and how to use this understanding to get more refined results in section 5.4. That we consider area as measured in the coordinates q and p is absolutely essential here. It we had instead roordinatized plane space using velocity rather than momentum, the area would hase hant no special significance.

In higher dimensions, the actoon of a closed loop can be defoned as the integral of $p^{\prime} d q_{1}$ around the loop where we adopt the unal Einstein comention that repeated indice are summed over. This combination $p^{*} d g$, therefore has a deep physical sig. nificance. Geometrically, the choice of individual coordinates q, and thejr comjugate p^{2} is irrelevant and only the combination $p^{2} d q$, is signficant A geometrir entity that one can integrate along one-dimensional paths is called a one-form. $p^{\prime} d q_{1}$ is intrinsically built into the structure of physical phase space and is therefore called the canonical one-form and is usually denoted by θ. Another way to obtain the action of a closed loop in phase space is to find the area of a dise whase edge is the loop. -Area" must be defined in a ,pecial way to ge: an answer that is independent of the means used to obtain it. Applying the (generalized) Stokes' theorem to the line integral of $p^{2} d q_{2}$, we see that the action can be defined as the surface integral of $d q, d p^{2}$ over the disc. It is important here to keep track of orientation. A geometric structure that one can integrate over two-dimensional surfaces is called a tho-form. The standard notation uses a wedge to keep track of orientation. The two-form $d q_{1} \wedge d_{p}{ }^{2}$ is usually denoted by w and is called the symplectic form on phase space. It is uniquely defined from θ and so also is intriusic to the geometry of phase spase. Since the evolution of a Hamiltonian system preserves the action of closed loop: (this is P'sincarés first integral invariant), the notion of area with respect to the symplectic structure ω is also preserved. From the modern perspective of geometry introduced in Telix Klein's Erle ager program, a "geometry" is defined by a mathematical structure and the group of symmetry transformations that preserve that structure. For example. Rimmanian geometry studies the concepts that are invari-
ant under the isometries of a metric tenvor. The geometry of the phase space of Hamileorian mechanical swatems is symplectir geometry. since it is the symplectic structure which is invariant under the ranopical transformations describing time evolution

The real conceptual and computational advantage in the phenomenon of adiabatic invariance is that we can forget about the phase of the fast degree of freedom. Inagine a complex, slowly moving piece apparatus (for example, one of the designs of Rube Goldberg). Tbere is a small weight attached to a string that hangs out of a bole in the side of the macbine. As the apparatus moves, the string is slowly pulled in and out of the bole. The part of the string that is hanging out forms a pendulum with the weight. The weight rapidly swings back and forth (say thousands of times before the string length varies appreciably). In trying to understand the operation of this device, one first thinks that the exact state of the machine, including the phase of the pendulum, will be essential in determining the time evolution. The idea of adiabatic invariance tells us that we only need to know the action of the pendulum (say by observing the initial amplitude of swing) and not the phase in order to determine the average effect on the apparatus. As the machinc pulls the rope in. the energy of the pendulum will change so as to keep its action constant. It will thercfore give and take energy from the rest of the machine. The pendulum energ: looks like a function purely of strinf iength. From iuside the machine, we may regard the string as attached co a nonlinear spring whose potential energy represents the entire pendulum euergy. The oscillations have been replaced by a "perudopotential".

1.4.3. Symmetries and Exact Invariants

One sees similar "pseudopotentials" when one forger- about conduatem ith cystemb with symnetry. In studying a particle moving in a central potential we may igoore the angular position of the particle, since all angle lead to the same particie behavior (i.e. there is a rotational symmery) Nocther tells us that thes symmerry leads to a conserved quantity, namely the angular nomentum of the particle. The radial motion must behave in such a way as to keep the angular momentum constant. The energy in the angular direction is not constant and so the radial dyamies must supply and receive the extra angular energy. This comes out looking like a new radial pseudopotential that gives rise to the centrifugal force. The adiabatic invariant case is exactly analogous: we forget about the fast part's phase: the fast part's energy must change so ac to kerp the adiabatic invariart constant; this energy must come from the slow part of the system: and the ne: result is a new "pseudopotential" and corresponding peudoforce acting on the show system. We make this conaection precise in section 2.9 .2 and show that these "forgetcing operations" are part of a procedure known ibe reducton

Io going to rotating frames of reference, were is a chang to har Pom-in ciruc. ture. corresponding to the Coriolis force. in addition whe thange in the Hamiltonian In chapter 3 we give the underlying strueture behind this and wow hou the method of variation of parametern entends this kir 1 of chatuge to an anympr totic setting The simplification procen- which is ajplied to aymututic syoteme

the trotion which result from symmetry are rodified geometricaliy in the notion of The momentum map of a group action. The puwerful setting in which this concept makes grocral suse is discused in sections 2.5 through 2.7. Adiabatic invariants are the generators of asymptotic symmetries. This viewpoint is developed into a powerful perturbation method in chapter 5 .

1.4.4. Thermodynamic Forces

The next connection is with thermodynamic systems. If one slowly varies the parameters of a thermodynamir system in equilibrium, there is again an adiabatically invariant quantity known as the entropy. The entropy rhange along a path in thermodynamic phase space can be defined as the integral of the one-form $(1 / T) d \Gamma^{\prime}+(p / T) d V^{*}$ (where T is temperature. p is pressure, U is energy, and V is volume). The choice of coordinates ($1 / T$) and (p / T) , thermodynamically conjugate to I I and V^{\prime}, is absolutely essential to obtainiug an adiabatically invariant integral. As in mechanics, this canonical one-form $(1 / T) d U+(p / T) d)^{\prime}$ plays a fundamental role in the structure of thermodynamics. The net change in entropy in a cyelic process can be ootained by integrating the corresponding symplectic two-form

$$
\begin{equation*}
u=d U \wedge d\left(\frac{1}{T}\right)+d V \wedge d\left(\frac{p}{T}\right) \tag{1.1}
\end{equation*}
$$

wer arjy wodimensional disc bounded by the loop representing the cycle in phase space This thermodynamic symplectic structure is discussed in section 16.7.1.2.

Picture a slowly moving apparatus attached to a piston that compresses a gas confined in a rylinder. When we first study the system. we might think that we
hase to keep track of the detailed dybamies of reery molecule of the ga- if order 10) understand the operation of our device. The adiabatic invartance of the entrops tell- us. however. that we really need only the entropy of the gas fobtained by. intially measuring the internal energy of the gas say) As the piston moves the energy of the gas will change so as to keep the entropy constant This energe comes from our apparatus, and the effect of the gas is just like a nonlinear spring We can forget the gas by introducing a new "pseudopotential" into the dynamics of the machine. This pseudopotential gives rise to thermodynamic forces This then connects thermodynamic forces with adiabatic pseudoforces. A more detailed discussion of this connection is given in sections 2.9 and 5.4.4.

1.4.5. Wave Action

The next connection is with wave systems. First consider the example of linear sound waves in a closed room. The wave evolution may be expressed as a superposition of room eigenmodes, each of which are purely oscillatory at a corresponding eigenfrequency. What happens if we excite an eigenmode and then slowly vary the shape of the room? In an underlying infinite-dimertsional Hamiltonian phase space for the waves, the eigenmode's evolution describes a closed loop (since it is periodic). Just as in the purely mechanical case, we may define the action of the oscillatory wave to be the integral of the symplectic form over a dise bounderi by this loop. For linear waves, the action is again the energy of the wave divided by the frequency. As we slowly vary the room, the action of the eigenmode remains constant. Because the eigenfrequency typically varies as we change the romm, thi:

Forese the wave energy to change This extra wave energy come from the work done against the wave in altering the room

One might think that our eigeumode could excite other eigenmodes as we vary the roont. As long an the eigenfequencies are distinet, this coupling is exponentially small in the .lowness of room variation. For typical onc-parameter room variations it turns out that the eigenfrequencies remain distinct. This phenomenon is sometimes called "level repulsion" and is due to the fact that the space of two by two Hermitian matrices (representing the possible couplings of two modes for all room parameters) is 4 -dimensionai, while the subspace of matrices with equal eigenvalues is only 2-dimensional (parameterized by the eigenvalue and the imaginary off-diagonal antisymmetric element). It therfore takes two parameters to force a degeneracy.

Imagine a slowly varying apparatus which, as it moves, changes the shape of the room containing the eigenmode. At first we might think that we need to know the phase of the mode to determine the evolution. Adiabatic invariance allows us to get by with just the wave action. The apparatus moves as if it had a new: pseudopotential. When the wave is a light wave, the corresponding force is the radiation pressure.

The same idea may be applied to quantum wave-functions in a slowly varying potential. The classical limit of the wave result applied te a particle in an oscillator potential gives the adiabatic invariance results for mechanical systems that we discussed first. A square-well potential with slowly varying width corresponds to a particle bouncing back and forth between a stationary and a moving wall. The adi-
abatic mariant is the area of the rectangle deseribed by the part:cle in ($4 . p$) space (see section 2.9.3.1). Physically. the particle energe change ber anme the partule is bouncing off a moving wall and on cach bounce romes away with a different mag nitude of velority than it had going in. The statisti al analog is a one-dimensional gas and the adiabatic invariance is represented by the conservation of pt ' , in wave system may be understood as a gas of quanta (for electromagnetic wayen, a gas of photons), and a quantum changes energy in bouncing off a moving wall duc to the Doppler shift. The de Broglic relation $E=h \omega$ for a free massless quantum shows thai the action E / ω is the number of quanta times \hbar.

The "normal modes" for a free wave are infinite plane waves. These have infinite action, but there is a sense in which they have a well-defined action density (i.e. action per unit of volume). Such is notion becomes asymptotically precise when we study eikonal waves, which are plane waves with slowly varying amplitude and wave-vector. Asymptotically, it begins to make sense to think of the energy and action of an eikonal wave as being made up of additive contributions from the different regions of space. In chapter 8 we will show how the asymptotic wave energy density and wave action density arisc asymptotically. Whe obtain the evontion of the wave action density in time. In the presene of slowly varying potentials, the wave energy density varies but the wave action density evolves as a locally conserved quantity. The pseude-fore on the mediun due to the giving and taking of wawe energy is the ponderomotive fore Thee variour relatione give another connection between our subjecta.

We have sen that the action in Hamitonian dyamm and the entropy in
thernomy namu sybumb play very analogous roles th is interecting that thene are the tho concepts that often give students the most trouble when learning mechanics aud theronodynamice. Both are adiabatir invarianth under slow variations of the parametere of a sysuem. Becanse of this, they both give rise to the pseudoforces that are a characteristic consequence of eliminating degrees of freedom. They are both intimately related to a geometrical symplectic structure on the corresponding phase spaces The action motivates us to introduce canonically conjugate momentum variables to the configuration space variables of a mechanical system. The entropy motivate: us to introduce thermodynamically corjugate variables to the mechanical obervables (like energy, volume, particle number, etc.) of a thermodynamic system.

1.4.6. Action, Entropy and Asymptotica

We know, however, that both classical mechanics and thermodynamics are asymptotic theories that are limiting approximations to quanturn mechanics and statistical mechanics respectively. Can we understand the geometrical structure of these limiting theories as arising from the asymptotic process? Do the key quantities: action and entropy, have any natural meaning in the detailed underlying theorics? The answers to both questions are resoundingly affirmative and much of this then is is devoteri to ferreting them out. The essential idea is that quantum mechanics associates to every path a wave amplitude whose phase is the action of that path. This very general action agrees with the classical mechanical action on the pathe that represent real classical motions. These paths are defined asymptotirally via the method of stationary phase and satisfy the principle of least action.

Statistical mechaturs (as we formulate it here) associates a weight to each probabolity distribution This is an exponential whose exponent is the information entrops of the prohability distribution and is defined as $-\int p \log p d x$. This very general entropy agrees with the thermodynamic eatropy on the distributions that represent real equilibrium thermodynamir states. These distrihutions are defined asymptotically via the method of steepest -escents and satisfy the principle of maximum entropy.

1.4.7. Steepest Descents, Stalicnary Phase, and Averaging

The two main mathematical theorems whinh allow the asymptotic simplification are the metbod of stationary phase for the oscillatory and wave systems, and the method of steepest descents for the statistical systems. These methods connect line integrals in the complex plane of functions with an asymptotic parameter, to expressions that asymptotically depend only on the function in the neighborhood of certain special points. Dependence on the full details is reduced to dependence on only certain special features. Where does the extra eliminated information go? Its contribution is to things that have no long-term effect on the degrees of frecdom we are interested in. In each of the domains studied here, we perform some kind of averaging that eliminates the features which have no !ong-term rontribution. Physically, we are ofen interested in the interactions of our system with other systems (like ourselves) that respond only to these averages and so they are really the quantities of interest. The only way a fast degrer of freedom can contribute is for it to have a long-term effect. This can come about only if its many contributions
add coherently Thas in turn, can happen if the f t degrees of fromom repeatedy come bark clone to the same state and bo give a net convibution to the hlow seale behaviot In that cae our system han an approximate symmetry that maps one fact excursion to the next one.

1.4.7.1. Reaonance

The regions of phase space where fast contributions add coherently are called resonanfes in oscillatory systems and correlations in statistical ones. Long-term effects are represented by phenomena whose frequency lies in a region near zero (and with appropriate scaling, the width of this region approaches zero in the asymptotic limit. leading to the omnipresent delta-functions in frequency). Nonlinearities 1 make use of rationally related frequencies to create near-zero frequency effects (the dynamics is then defined on tori whase orbits do not cover their surfaces densely); these effects are known as resonam interactions. One can even get them linearly if it is possible to simply add the frequencies to get zero (since then there is an oscillatory coordinate with zero frequency). These rescnant effects are responsible for most of our knowledge of phenomena on time scales smaller than the one on which we normally operate (cg. spectroscopy in atoms, nuclei, particles, etc.).

1.4.8. The Key Examples in Merhanics, Waves, and Statistics

To give bearinge, let us list cone of the key example whor featurio expm plify the ideas we wish to explore. There is overlap in the technique of the there domairs (and it is this overlap that we are particularly interested in). but roughly most models can be categorized as being one of the three type In mectianic: we have systems with exact symmetries, such as a planar particle in a rotationally symmetric potential, to which we can apply Noether's theorem. We also have systems with approximate symmetries to which the method of averaging. Lie transforms, Kruskal's method, and other perturbation techniques we shall discuss can be applied. Exaraples include: gyromotion, oscillation center motion, ascillatorily stabilized systems, and the interesting variety of systems with adiabatic invariants.

In wave theory, we have all the situations with short wavelength waves. including plasma waves, propagation of light rays, elastic waves, quantum mechanies, and the various noplinetr plasma and fluid waves. The methods of analysis include the classical WB theory, its geometric extension by Maslov to handle caustirs, and it: exteusion to nonlinear waves due to Whitham

There are two types of statistical models wet type is concerned will equlibrium systems. This includes models of thermodynames uning either the maximum eatropy formalism or Khimehins approach via the central linut theorem Thes type alse ancludes Brownan motion and Ructuation theory which we relate to the
 Them inchude the vast majoms of pithera setems The particular modele of in

equation the Purtuatari-disipation theorem the Onsager relatwons, and the terh-
 are lurkng brhind virtually every apert of the physe of these systems and will therefore he a prime consideration in our exploration.

1.4.9. Nechanical Systems

The original example of a Hamiltonian system is given by the dynamics of point particles in a potential. In plasma physics, one is interested in charged particles and their Hamiltonian dynamics in electric and magnetic belds. The t^{2} ree nontrivial but tractable situations one offen neeas to study are: the gyration of a particle in a magnetic field, the motion of a particle in an electromagnetic wave, and the scattering of particles off one another (usually all three are present a: the same time but certain aspects dominate the particle's behavior). When there are exact symmetries. we may simplify the system by using reduction as we have discussed. Usually. however, systems have only approximate symmetries.

1.4.10. Mechanical Syetems: Separation of Time Scales

The asymptotics in particle mechanics usually arises from a separatiou of time scale- One set of degrees of freedom may have dynamics that is considerably faster than the others. In igit rane, the effect of the iast degrees of freedom on the slow ones tends to be close to the average effect and the effect of the slow degres of freedom on the fast ones tends to be almost as if we were holding them fixed. If We introduce asmptotrs. we may obtain in asymptotic expansion a model of our
 of freedom. He may ofien underatand the separathon at bemg due wodmedath

 b. the presence of new pendopotentials th the Haniltoman and maguetic twan in the Poisson brackets. These remaine of the forgotien fasi degres: of fredom grif rise to the new physice introduced b, asymptotics

1.4.10.1. Gyromotion and Asymptotics

In the case of a particie in a magnetic field, we let the asymptotics move the particle faster and faster around its gyration loops in comparison to the rate of motion of the center of these loops. The asymptotic theory of guiding centers. which forgets the fast gyromotion and describes only the slow drift of the loops. has the new concepts of: $E \times B$ drift, curvature drift. polarization drift. magnetic moment as an adiabatic invariant, bouncing from a marmatic mirror. etr. None of these concepts makes precise sense for the physical system as it appearc in nature. Nonetheless, they have been extremely important in the design and unorrstanding of plasma devires and represent truly acw physical notions in the given setting To make the model of these useful concepts prerise. we must introdure asymptotic: Note that this is far more signifiant than the usual idea of perturbation theory as giving better and better approximations to some underlying exart model. Whale it doee tiat. I believe its real importane is in the conerpetal advance it allow one to make in minderstanding and utilizing physics
()ro often sees (particularly of older literature) the stated goal of perturbation Wheors a-comergent series and the comemnitant lament that mont physically une ful - are aro anly anmptotic From the conceptual viewpoint we emphasize here. consergetio is irrelevant. We never use more than a finite number of terms of our arie- (b-ually the firt under terms suffice to give the new physies). the underlying model equations we are approximating are based on concepts that themselves are only asymptotic. and convergence is a complex analytic concept requiring apparently physically irrelevant complex structures in our models. Usually we only require our transformations to be smooth and a smooth, non-analytic transformation can destroy the covergence of most scries (a classical construction due to Borel uses C^{∞}-bump functions to construct a smooth function whose derivatives at a given point are cqual to the elements of any arbitrary sequence of real numbers: using such a function to change coordinates will convert an analytic function whose first derivative is non-zero into one whose derivatives are any desired sequence; we need only choose one which grows fast enough to prevent convergence of the Taylor expansion at any radius). What I feel is important for theoretical understanding is not the actual numbers but rather the physical tendencies. Of course in applications one wants numbers, but asymptotic series often yield a given accuracy of - pproximation to the exact solution with many fewer terms than any corresponding convergent series.

1.4.10.2. Oscillation Centers and Ponderomotive Forces

In the cate of a charged particle moving under the influme of a hach-frequin": wase whos amplitude slowly sarme in space. we matrotuce the deympher emmer of the oscillatic: conter. As the wave wsillates. the particle ferl: a force tiret in one direction and then in the other causing it to oscillate an well If the wav. were spatially uniform, the the excursions to carh side would exactly rat.ecl each other yielding no net average effect. In a non-uniform wave, the particle fect: a bigger force in the region of larger amplitude and so is pushed more away from such regions than into them. The average push behaves like a force on the particle pushing it away front higher wave amplitude regions. The reduced deseription gives the dynamics of the center ot oscillation and includes a remnant of the fast motion through this so-called ponderomotive force. Both the guidinf. center equations and the ponderomotive equations are Hamiltonian.

The second chapter shows how to use reduction by a circle symmetry in conjunction with the method of averaging, to obtain the $E \times B$ drift dynamis as a Hamiltonian system. The higher order theory, based on the ideas of Kruskal. is dicussed in chapter 5 , and the relation to the pionecring work on the Hamiltonian structure of gyromotion due to Robert Lithe ohn is deraserd in rhaper 6. Many other systenis fit into the setting of these asymptotio methom and the physical concept: that conn out of the awmptotic- can be cuite striking syaternwith constraim- can exhibit phenomena analogous to forderomotive efiect. due w

of Himd or the f f stabilized umatable MHD moden, as the effert of the abomptotio pacudrafores.

1.4.10.3. Geometric Perturbation Theory

To make theme rotoms presise. we bave developed a systamatic georetric frameuork for aymptotology based on notions from the mathematical theory oi jets. Because we are interested in systems whose phase spaces are manifolds and we particularly want to study the asymptotic behavior of geometrically intricate Lie group symmetries, we develop the various perturbation theries in the coordinate-free language of modern differential geometry. While ofen useful (particularly in explicit calculations), coordinates are unphysical and often obscure the underlying content of physical theories. The movement in the mathematical physics community to reexpress the fundamental physical notions without arbitrary coordinate systems has been very successful in mechunics and has succeeded in dramatically simplifying some of the classical results (eg. Liouville's theorem, Noether's theorem. Darboux's theorem, artion-angle variables. etc.), elarifying the essential structure of the theory (especially the extreme importance of symplectic geometry). and obtaining many new ideas and results (eg. the extension to infoite dimensions, Nocther's theorem for arbitrary lic groups, the KAM theorem, chaotic dynamics, etc.).

Our formulation of perturbation theory is in the spirit of this movement. and ow whmmarize some of its key ideas in chapter 2 . In thit chapter we also give the non- Hamiltonian avpert- of this geometric approach to non-secular perturbation thenrs and sketeh the Hamilooian results. The Hamiltonian results are given it
detal win chapter 4 There we thom that the non-archar perturbaton dyamm-
 a womenhat unexpected form, in that it pair: the lower urder varathe: with the highest order. the next to lowest with the next to bughent and on on Wir shom that it is the natural structure in five different mays. each of which sheds a different light on the relationship between the perturbed and unperturbed systems The relationship between symmetry and perturbations is also given in that chapter, and the operation of performing reduction is shown to commute with the operation of performing a perturbative anausis. Chapter 5 uses the previous non-secular results to do secular perturbation theory. We develop a new technique based on these ideas which is simpler to apply in practice. Its application to guiding center motion is given in shapter 6.

The limitations of ihis and all gencral secular perturbation theorics $\mathrm{d} t$ not appear to be well known in the physics community. We therefore give examples and explanations of why tie time of validity of this and other theories is only of order $1 / \epsilon$. even thougb the accuracy over this time can be to all orders in, We aist discuss the case of many fast frequencies and the concomitant resonances Finally. we end chapter 5 with the case in which the fast motion is ergodic on the energy surface and begin to make the conuections with statistical mechanics.

1.4.11. Averaging in Statiatical Sybtema

Tinere ts an untrerthug way in which the need to average over an intermediate rate herome- apparent in both the statistical and wave systems Consider the conimmond very usprul result that says that independent measurenents of a defirite qua tur represmative of a complex system will be distrituted as a Gaussian. The very general argument for this assumes only that srnall errors from the many parts of the system will contribute additively to the error in the measured quantity. Regardless of the how the individual errors aie distributed (under some very weak constraints). the centras limit theorem tells us that their sum will be distributed as a Gaussian. Let us try to understand how one applies this atement operationally and so see that a specific type of averaging is required to make sense of the notion of Gaussianity. Let us consider an actual experiment where we bave made, say, 1000 measurements of some quantity (so as not to obscure the argument, let us assume that the results of our measurement are precise real numbers). Taken directly, our measured probability distribution is a sun: of δ-functions, one for each measured value (no Gaussianity bere!). In practice, we "bin" the measurements. i.e. We make a bistogram of the number of measurements that fall into each of a set of intervals that partition the space of measurement values. If we make the bins too small. we get the problem of the δ-dis.ributions, i.e widely spaced bins with one measurement each. If we make the bins too large, then all measurements fall into a single bin. We see something that approxmates a Gaussian only if we hin on an intermediate scale. This is defined using an asymptotic parameter given by the number of meacurements.

 like 1 , \bar{T}, then axymptotically there will be ann wimte number of neanmementin each bin. The law of large numbers tells us that asymptotically the number of measurements falling iuto earh bin will agree (with probability one) with the number expected from the Gaussian distribution. Furthermore, since the width of the bins is going to zero, we get arbitrarily fine accuracy. Also note that, while with any given number of measurements the observed distribution may be changed by altering the binning, as long as the binuing is on an intermediate scale. the arymptotics is bin independent. Furthermore, the range of bin chores that yield values close to the asymptotic result gets wider as l gets larger. Another way to think of the asymptotics is in terms of the convergence of the delta-function distributions representing the measurenuents, to the smooth asymptotic distribution From thr: perspective. : he binning procedure defines a topology on the space of distribut ton-

It is only in this asmptotic seuse that the whole notion of a probability density makes physiral sease at all. There are many other stuationt in whel atomlar

 and charge. Thene are to be merpreted in terme of the anymptotics The real sthation 1s forl at the atmptotic limit. but the object of interest is small on the large sonle (and we seale it sa it gets ever smaller acymptotically) and has finite mas: (or charge. etr.) on the sinall. We then develop consistent rules that are arymptotically valid and these lead to the faniliar calculus of δ-functions and other singular distributions. Similarly. real flud velocity tunctions (which are the result of an average over a macroscopically smail region with a large numher of particles) canot validly have wavelengths shorter than or on the molecular scale. We model the velocity evolution by nonlinear parial differential equations. however. that can (and do) excite arbitrarily short wavelength Fourier components. If these ever berome important. the separation of seales fundamental to our model has broken down and the model becomes invalid.

1.4.11.1. Matched Abymptotics

A fundancutal techuique of singular perturbation theory is to insert mavels which include the phesies of the small scale in regions of breakdown. For example, If very high shear regions of a fluid, one need to include more kinetic effeces than are epremend in the smple Namer-Stokes model. The two important cases arise when these =agular regmons (with asymptotically small scate physics) are, 1) locitberi and get smathet with the anmptotics and 2) spread ower open regions but have

 and outer analyses sparately, with the boundary conditon ansing from the math h_{h}. itig of the avimpotics of the muer region at intione with the witer reghon at pero The case where the small scale effects are not lucalzed. but are home renenu-. learito the eikoual techaques we shall discuss aext, in which we have showly modulaterd Fast behavior which is regular on the small scale at each large scale point ieg lural plane waves).

1.4.12. Averaging end Local Fourier Transforms

The idea of averaging over an intermediate scale that arose in trying to understand the notion of probability dencity also arises in trying to define the frequency or waveiength of a slowly varying wave. When we talk about a wave having a rertain waveleagth or a sound having a certain frequency, we are always talking about a local Fourier tran: form No soumid lasts forever and we usually are not interested in the properties of a wave in the next galaxy. What do we mean by a lucal Fourier transfurm? Operationally we usually work with the Finsier tratsform of a tignal multipliad by a window function.

$$
\begin{equation*}
F\left(t, \omega^{\prime}\right) \equiv \int_{-\infty}^{\infty} f(t-r) 4(-), \quad+\cdots \tag{1.2}
\end{equation*}
$$

We might have a spectrum analyser that works on a finme segment of the shat fand smoothly dampe the on and off 'dger of the window to mumaze pharrons edge

 of the of u - Foadean after the concert) If we make the window too small, we hon t sample enough wavelengt ds (perhaps not even one) to get a good fix on the frequens : inrming the radio on and of quickly results in a click with all frequencies). If we are trying to say that a frequency (or frequencies) is present at a given time (as in describing a piece of music in music notation), th~n that frequency should he distinctive To make precise the manipulations allowed, we embed the given wave in an a-ymptotic family, which makes the frequency of interest mn.c and more distinct as a parameter approaches its limit. We make the number of wavelengths occuring iv a region of significant wavelength change becone infinite by making the scale length longer for fixed wavelength, the wavelength shorter for fixed scale length, or both. We introduce a short scale given by the wavelength and a long scale given by the scale length deh. :d so that asymptotically their ratio vanishes. The operations and concepts we are allowed to use in describing our wave are those which make asymptotic sense. As the parameter approaches its limiting value, the domain of validity of such asymptotic concepts gets larger and larger. For any real situation, oue must make sure that one doesn t bave physics which violates the separation of scales and thus the validity of this kind of model.

The local Fourier transform above can be made precise asymptotically. We let the window function 4 scale with the asympotics between the fast and slow scales. On the slon scale it looks mure and more like a δ-function and in the anymptotic calculu- we may treat it as such. On the fast scale it looks more and more like
a enustant and so the local Fourne transform anymptotirally lonk- focally like the Fourier transform whose useful relations then carry oyer to the seviptote calculu-

1.4.12.1. Scales in Differentiation

Many other areas of study have this same large vs. smail scale dichotomy Robert Littlejobn suggested the example of optimal algorithms for numerical differentiation (sce [Stoer and Burlirsh. 1980]). Assume we bave some function represented n a computer as an algorithm that can calculate values to some act uracy. What is the optimal way to calculate its derivative at a point numerically? We can evaluaie the function at two nearby points, take the difference and divide by the distance between the points. How do we choose this distance? If it is too wide then we won't get the derivative at the point of interest, but rather something averaged over a region in which the function may have signifcant change. If it is too small, theu the division by a small number blow up the errors until they are arbitrarily large. Given sorme criterion of goodness in these two respects, there is an optimal distance. We identify the asymptotic limit with increasing the numerical accuracy of the calculation. If we take the distance between the points of evaluatson to shrink on an intermediate scale \{i.e. they become infutcely close an far as the variation of the funtion is concerned, but are far enough apart that the divismon algoritian bumes infinitely accurate asymptotically) then in the limit we get the
 sentially the same an the mathematkal definition, goven that real are tefined an

operations on ratiotals). The very same issues are relevant in any physical situation in which wetake a derivative and this kind of approxination is almost always what we really mean (eg. the strain in the deivative of the displacement in elasticity. but dispiacement as a smooth function is an asymptotic idea as the molecules of material become nore and more numerous).

1.4.13. Symplectic Asymptotice in Thermodynamice and Mechanice

The last part of the thesis discusses the relationship between eikonal wave asymptotics aud the particle number asymptotics of statistical mec. anics. Both theories reduce to asymptotic theories with natural symplectic structures: classical mechanics in the case of waves, and thermodyoamics in the case of statistical mechaures. The description of a state is given by a submanifold of these asymptotic state spaces in both cases. It turns out that this submanifold of states always has a very special relationship with the symplectic structure (the symplectic form actually vanishes when restricted to the submanifold). Such submanifolds are called Lagrangian submanifolds and give rise to a rirh theory (see section 7.1.4). The role of the Fourier transform in wave theuries is played by the Laplace transform in statis:ical mechanics. The simplification provided by the method of stationary phase in wave mechanics is provided by the method of steepest descents in statistical mechanich. The reis of the action is played by the entropy. Cauonically conjugats variables correspood to thermodynamically coujugate variables. The analog of the Heisenberg uncertainty principle in the asymptotic limit is the fact that the dispersion tensors of thermodynamically conjugate variables are inverses of each other.

Nondegenerate critical points give the rays in ove mechanes and the Gansuans in statistical mechanics.

Heisenberg. and Fourier before him prevent us from localizing staten in r. k space. But. by letting k go to infuity, we can make the relative dispersions in both x and k go to zero (by relative dispersion in k we mean $\Delta k / k$ where Δk is the absolute dispersion). So by rescaling (i.e. going to slow variables) we get states whose local Fourier transform as asymptotically a δ-function in phase space.

Given a definite mpan energy U (or any other extensive quantity from the underlying mechanical system) the maximum entropy formalism gives an exponential distribution parameterized by the conjugate variable (inverse temperature β in the case of energy). A definite temperature corresponds to a (canonical) distribution of energies. A definite energy corresponds to a distribution of temperatures. We may use Bayesian statistics to see that the temperature and energy distributions are related by esse.atially a Laplace transform. The analog of Heisenberg's principle says that we cannot localize a distribution in $U . \beta$ space. If we let U go to infinity. however, we can make both relative dispersions go to zero. By rescaling, we get an asymptotic delta-function on thermodynamic phase space.

Eikonal waves have k 's at each x that fit together into a Lagrangian submanifold. This manifold is locally the graph of the differential of wave phase, which for mechanical systems is the act ion. If we view k as the base coordinate, this manifold is the graph of the differential of a function of k that is the Legendre transform of the phase. This Legendre transform results from applying stationary phase to the Fourier transform of our cikonal wave. Asymptotically we obtain the Legen-
dre relation between functions of s and of k becanse only the stationary points rontribute.

The state of an equilibrium statistical mechanical system is restricted to lie in a Lagrangian submanifold in thermodynamic state space. For simplicity, let us just consider ($E . j$) space (where we have introduced the inverse temperature $\beta=1 / T$). This manifold is locally the graph of the differential of the entropy 5 as a function of U. In other words, only those points in (U, β) space which satisfy

$$
\begin{equation*}
\beta=\frac{\partial S}{\partial \bar{U}} \tag{1.3}
\end{equation*}
$$

correspond to thermodynamic states. To write this as the graph of the differential of a function of β, we again introduce the Legendre iransform. This Legendre transform results from applying steepest descents to the Laplace transform of our distribution function. Again only stationary points contribute asymptotically. The usual Legendre transforms of thermodynamics are of the energy instead of the entropy. These give the Helmholz and Gibbs free energies and the enthalpy. They arise from taking the entropy instead of the encrgy as the observable extensive variable in phase space. The two pictures are related to a large one containing the extensive and conjugate intensive variables and the entropy. This has a natural contact structure given by the first law of themnodynamics (conservation of energy). The equation of state is a Legendre submanifold with respect to thi contact structure and turns into a Lagrangian submanifold when we project onto either of the natural symplectic thermodynamic state spaces.

We may understand the relation between the underlying infinite dimensional wave and probability density spaces and the resulting symplectic phase and ther-
mon (name space better using a theorem about lagrangian manfold The detail of the theory art given in section 16.7.3. We are given a fibration of one nandelat over another (i.e. a projection so that the iverec images of points all look the same) and a function 5 on the first manifold. The graph of the differential $d S$ is a Lagrangian submanifold of the cotangent bundle of the first manifold The puthforward of this submanifold to the cotangent bundle of the second manifold consist: of solutions to a constrained variational principle. that is. it is the push-fornard of extrema of S restricted to each of the fibers. From a more general result, one may show that this resulting pushforward is Lagrangian iff all oi S 's critical points are non-degenerate (i.e. $\delta^{2} S$ is invertible). The more general formulation is if we are given a map from one spare to another one, then a Lagrangian submanifold of the cotangent bundle of the first space pushes forward to a Lagrangian submanifold in the cotangent bundle of the second space if and only if it intersects the pull back of the second cotangent bundle transversally. In the case of a fibration and a Lagrangian submanifold given by the graph of the differential of a function. the extrema of the function restricted to each fiber represent the intersection with the pull-back and so pust forward to a Lagrangian submanifold (non-degenerary corresponds here to transversal intersection). For the case of waves, we consider the space of paths originating on some source region. The image spare is \mathbb{R}^{3} and the projection sends a patb to its final endpoint. The fiber over a point in R^{3} conssts of all paths that end at that point. For the function S on path spare. we take the action along each path. In the Feymman patb integral formalism. thit function is the phase assoriated with each path. The differential ds define a Lagrangian
-ntmanfold in the rotangent bunde of path space. Domg the Feymman megral five 11 a wave on ${ }^{\circ}$: whos phase is detemined at each point by stationary phane to he that of the pathe of extermal artion. where we consider variations restricted to the fiber (ie to pathe that end at the point of interest). This is exactly the Fhthforward of the Lakrangian submanifold $d S$ and gives the Lagrangian submanifuld in the space of (x, k)'s (i.e., the cotangeat bundle of \mathbb{R}^{3}) which represents an eikonal wave. For statistical mechanics, our frst space is the space of probability distributions on phase space. The entropy of a distribution (defined by the integral of $-p \log p$) is a function on this space. The map to a space of observables given by the mean value is a fibration. Tine maximum entropy formalism says we extremize the eatropy on the fiber (i.e., all distributions with the given mean values) and the theorem says that this determines a Lagrangian submanifold in the cotangent bunde of the observables (i.e. thernodynamic state space).

In wave dyramics, we start with a theory of arbitrary waves, and specialize it to the important special case of eikonal waves. To make the ideas of this specialization precise, we imroduce an eikoual parameter that specifies the separation of scales between the local wavelength and its slow variation. We may either think of the wavelength going to zero for given scale length, or (as I prefer, since the artual wavelength often has physics in it) the seali length going to infinity for given wavelength The waves we want to study the dyamics of ane viswed as asymptotic familice and we utilize the asymptotology to introduce new physical concepts which apply only approximately to the real waves, but show the tendency of the behavior an the separation of scale: becomes greater. The key simplifying idea in the calculus
of asimptotic wave in the method of stationary phase. Integrals (such a thowe in the description of wave provagation, which really depetid on the entire state of the wave, asymptotically depend on the state only in the local neightorbood of a point The key asymptotir information about the wave at a point is the wave-vector k and we obtain :ays" in (k, s) space, to which the dependency of a portion of a wave is restricted asymptotically. This is a notion which is precisely defined by the spatial Fourier transform in the case of plane waves, but that bas only asymptotic meaning for our eikonal waves. The asymptotic local Fourier transform makes precise the notion of a wave whose wave-vector spectrum depends on x.

1.5. A Hundred Further Questions, Conjectures, and Suggestions

And time for all the works and days of hand
That lift and drop a question on your plate:
Time for you and time for me.
And time yet for a bundred indecisions,
And for a hundred visions and revisions,
Before the taking of a toast and tea.

- Irum The Love Song of J. Alited Prufrock by T. S. Eliot

This section presents a number of questions and suggestions for further work related to the topics covered in this thesis. Some of them appear to be fairly straightforward and some appear to be quite difficult. They are presented in the order the subjects appear in the thesis and we make reference to the relevant sections for each question. 1. Answer the question posed in section 2.1: Does the KdV Poisson bracket naturally arise from the one for the Boussinesq equations?
2. Is there a natural way of workiag directly with the germs of paths, and can one use this to get information on exponentially small effects in the perturbation parameter ((such as tunneling)? (section 2.3.2)
3. Does Newton's approach to centrifugal force, outlined in section 2.6.3, extend to any other situatione?
4. Find physical systems that utilize the KKS symplectic structures on the spaces of measured loops and measured Lagrangian submanifolds introduced in section 2.7 .10 (sec for example the eikonal wave systems discussed in chapter 9).
5. Wise the symplertir structure on some of the coadjoint orbits of the group of
I.S A Humdred Further Questumn ('ontge tures athed suggentions 5
sym;ipetomorphisms mot discussed an erthon 2.7 .10 (gg strue of the "water hath" models in plama phyms naturally live in tiese orbit-l.
6. Apply the J-jpt strue ures of chapter 2 to a rariety of problems
7. Can one extend the Arnold stability method from fixed poute to periodic orbits (or even orbits which limit on compact ohyects such as tori) by udding Casimirs to make the Hamiltonian quadratically maximal or miuimal on the ortit in question?
8. Richard Montgomery has shown that there is a natural Poisson structure on the space of 2 -jets of a Poisson manifold (see section 4.8.6.5). The construction given in section 2.8 .1 "explains" the fact that the linearization of a symplectic Hamiltonian system about a fixed point is Hamiltonian. Can we apply the same construction to linearize a Poisson Hamiltonian system about a lixed point? I Io linearize at a point in a symplectic leaf, one need only add Casimirs to eliminate any linear piece in the Hamiltonian, take the Poisson structure at the fixed point and the quadratir piece of the Hamiltonian. To see that there ate probilms neer bones. just consider the Lie Poisson bracket on the dual of the Lie algebra of the rotation group. This Poisson structure vanisbes at the origin. yet the lincarized dynamics can be non-trival. The approach suggested here via the jet brarketmay give a solution even at the bones.)
9. Apply the lincarized stractures of section 2.8 .1 and the prevour que-tun to any of the numeroun physical systers in whith one horariver about a fixed point Seg. the liefericed Vanovequation about thermal equilibrium, lanear wave theors in flusd mechanio or elaztirity. hucat surface waves cte. .
10. Apply the linearized Hamiltonian structure about a given orbit (as opposed to a fixeld pami) drarribed in sertion 2.8.1 to physisal cit uations (eg. study the linear evolution of small perturbations ahout a nonlinear wave solution. Jerry Marsden is applying this to general relatwity).
11. Vse the same techniques as in the previous question and section 2.8 .1 to understand the Iamiltonian nature of the lift of Hamiltonian dynamics to the symplectic ! ame bundle which bas arisen in Robert Littlejohn's and Yukkei Hui's work on extending cohereat sates by including metaplectic corrections (see also section 7.1.3.2).
12. As in section 2.8.1, extend the previous four questions to Jth order structures (as opposed to just linearizing) and apply to examples where bigher order effects are important.
13. Use the approach to oscillatory stabilization discussed in section 2.9.3.2 to study various r.f. plasma stabilization sehemes in a Hamiltonian manner.
14. Vise the connection between averaging and reduction to tieat more problems like that discussed in section 2.10 in a geometric way.
15. Use the method of averaging given in section 2.10 to find the "pseudoputential" felt by a deforming elastic body due to the presence of elastic waves (i.e. the elastic analog of ponderomotive forces- as we deform the body the wave spectrum changes, caut: ug energy to be transfered between the body and the wavesi.
16. U'se the method of averaging given in section 2.10 to study the Stokes' drift of a fluid part'. Ie under the influence of surface waves (fluid particies move in approximate circles in the presener of small amplitude surface gravity waves in
a find the circle are hig near ith surface ata get smaller with depth a partuld
 in gerumotion the resultant partarie path has a drift parallel th rhe weffer of the Huid)
17. Use the ronnection hetween averaging and reducturn givet in -etton 2 Id to prove the K - theorem relating the linear susceptibility of a plasma to uave and the ponderomotive pseudo-po mial in the plasma dynamics due to the wave after reduction
18. The explicit calculation terhnique of sect on 2.10 utilized a section of the circle bundle defined by the approximate symmetry. Develop explicit techniques for treatiog, nontrivial bundles (these are covered by the abstract theory). An example might involve a perturbed rigid body where the circle action is rotation about a given body-fixed axis the nontrivial projection to the orbit space is the Hopf map
19. Can one treat the conversion from a Lagrangian to an Eulerian description of a fluid with the concomitant introduction of convective terms as an example of the change of reference frame operations introduced in chapter 3 ?
20. (A gencralization of the previous question): Can one extend the resulte of ebapter 3 into a general theory connecting the process of reduction and the process of changing reference frames (this is carried out explicitly in section 3.10 for the Coriolis forcel?
21. Apply che methods of se. ion 3.1 .6 to develop natural Poisson structure for a varicty of rotating systeme Debbie Lewis is currenty studying the infit ite dimensional fluid dynamics of rotating liquid drops (wuch as star or nuclei) from
the: per-pective. Another example of interent might be a cold non-terutrat elec. trun phanna in a cylndrically symmetric "tin can" with axial magnetic field the dectroin $E \cdot B$ drift arcund the axis making a naturally rotating reierence frame.
22. lae the Hamiltonian structure introduced into the method of variation of parameter in aection 3.2 to redo in a geometric way physical derivations based on it (eg. the usual derivation of Fermi's golden rule in quantum mechanics).
23. Does the natural symplectic structure introduced in section 3.2 .1 on the group of (compactly supported) canonical transformations of a symplectic phase space have any otber physical applications?
24. The perspective on Jtis order non-singular perturbation theory that is taken in chapter 4 is to view the perturbation dynamics as an ordinary vector field on a perturbation extended phase space (i.e. the jet space). Another perfectly valid perspective is to introduce J-jets of vector fields on ordinary phase space, whose How is a "J-jet of a diffeomorphism" and so on for the rest of the objects in a theory. Pursue this alternate route and redo the various calculations of chapter 4 this way. Are there advantages or disadvantages to one or the other of these two perspectives?
25. Docs the binary notation for iterated tangent bundles which was so convenient in section 4.5 have any other natural applicatioss?
28. The technique of going from the path space bracket io the jet bracket introduced in section 4.6 .1 by quotienting out the degenerate piece is very powerful. Are there other applications of this? In this example when one tried to push forward the original bracket along the projection, one olbained products of delta functions
an' "then wey singular things. Similar singular branket hawe bera found th Brue
 equation. Can one use a similar solution in that situation".
27. The sheet quotient spaces introduced in section 4.7 extend to J th order a construction given to first order in $\langle\mathrm{Kijow}$ ski and Tulc 7 ypw , 1979引. It that reference they extend this construction in another direction: by making the sheet parameter be larger than one-dimeusional. (ln their work they were interested in time as the parameter and the extension is so space-time and field theories). Can one apply the extension to J-th order derivatives given here in the field context?
28. is in the previous question, can one introduce more than one parameter but now treating them all as perturbation parameters. Thus one should redo all calculations in chapter 4 replacing paths by higher dimensional submanifolds, and path jets by jets of maps of these higher dimensional submanifolds into phase space. Use this extension to treat perturbation theories with more than one small parameter. In particular this should give a context in which io explore various relative scalings of multiple parameters. (All the constructions including jet groups and Lie-algebras appear to extend in this way.)
29. Can one extend the perturbation structures deveioped in chap, in 4 to Poisson manifolds, as opposed to symplectic manifolds'. (This is important fres appliration to many of the physical systems of interest.)
30. In particular do the jet spares of Poisson manifolds inherit a Poisom structure from the Puison structure on the iterated tangent hunder dinctised in rection 4.8.6.5.
31. As arked in sectuon 4 8.6.5. does the Lie Poiston bracket on the dual of the Lif algebra of ${ }^{\prime}$ - jeta of pathe in a Lie algebrag agree with some prescription for extending g^{*} : Lic Pois bracket to the space of its J - Jeta? (This is important since many physical systems have Hamiltonian structures derived from Lie-Poisson bracket-.)
32. Can one explicitly wrise down the "magnetic terms" in the symplectic structures on the jet coadjoint orbits defined in section 4.8.7?
3.2. What is the relationship between the Lie algebra of jets of paths in a Lie algehra (which arises in perturbation theory) and the Lie algebra of jets of functions on the dual of the Lie algebra which is described in section 4.8.7 (and is useful in many coutexts such as geometric quantization)?
34. Use the extension of Kruskal's perturbation technique given in section 5.2 to analyse a variety of physical systems.
35. Inmplement the explicit algorithm given in section 5.2 on a symbolic manip ulation program such as MACSYMA or SMP and carry cut any of the calculations of the last question to arbitrarily high order.
36. Combine the new Kruskal method with its well defined operations with a changre of coordinates (as used in Lie transforms) to obtain a precise method that is easy to carry out by hand. (section 5.2)
37. Can on find a coordinate-free interpretation of two-timing or the method of multiple scales? Are there situations to which this method applies which do not fall under Kruskal's method? (section 5.4.1.2)
38. Rerxamme the attention given to the 1 /e validity of Kruskal's method in
variou= situations where it is used far example in the variation of the ablatatic invariagt in magnetic mirrors). If the adiabatic invarant ap pears to be marmat for times longer than $1 / 6$ find out why and develop a nex perturbation methond based on ilfe reason. (section 5.4.2)
39. Find physical situations with more than one fast frequency in which Arnold's notion of "almost adiabatic invariant" (discussed in section 5.4.3) is really physically appropriate and apply the method of averaging keeping track of the neasure of the "trapped particles".
40. Study |Ott, 1979] and [Kubo et al. 1965] and develop a precise form. of the argument sketched in section 5.4.4. Ott claims to be able to get an expression for the variation of the adiabatic invariant. Can his argument be made invariantly and n hat are the limitations on its validity?
41. Section 5.4 .5 shows that the reduction for finite perturbations may not be unique. What are the physical consequences of this fact and what does it say about the result of choosing different asymptotic scalings away from the unperturbed system ${ }^{7}$
42. Chapter 6 discusses the importance of making the unperturbed system consist of only periodic orbits when one wants to do singular perturbation theory. Many derivations in the literature do not have such an unperturbed system ("ome do not even have unpertur jed dynamics). Can these systems be converted (say by a change of coordinates) to systerms where secular perturbation theory is valid? If not. is the perturbation valid for time $1 / 4$? If it is valid. is there a fundanentally new perturbation methed hidden in the derivation?
43. Extend the analysis of gyromotion in chapter 6 to threedimennional. time-varying magnetic geometries.
44. ("an one" undertand the Hamiltonian structure of gyrokinetic equations as redurtion by a "gauged" circle action? (The way the formal structure of gyrokinetics arime from the single particle picture in thapter 6 is very reminiseent of the way the eikoual theory of chapter 8 is related to strictly periodic waves.)
45. Section 7.1 sketches teuristically the connection between Kruskal's secular perturbation theory and WKB theory. Can this connection be made precise using the coordinate-frec formulation of chapter 5 ?
46. Develop an analog of the local Fourier transfurm of section 7.1.1.3 that is appropriate for nonlinear wave systems (i.e. given the wave family, reproduce the expression in terms of periodic solutions with slowly varying pa:ameters).
47. Apply the variational approach to the Heiserierg uncertainty principle given in section 7.1.3.1 to other inequalities (and so get new insights into them and perbaps new results).
48. Does the approach to coherent states in terms of momentum maps given in section 7.1.3.2 extend to larger groups (eg. the Heisenberg group semidirect product the metaplectic group) to give approximations to the wave dynamics which are better than classical mechanics (eg. iaclude the dispersion of the Gaussians in addition to motion of their enters in thase space)?
49. The approach to roherent states given in section 7.1 .3 .2 does not need the base state to be a Gaussian. Can anything be gained by using "coherent states" which art the orbits of states other than Gaussians under the Heisenberg group?
50. Can one use the approaxh of aection i 1.3 .2 toget a thenry andogoms th wherent siater for monlinear equations.
51. Doce Maslover theory extend to nonherar waen' (xenton i 1 4i
 wave phase space as a complex manifold and so treat ewneecent wave:" Thateter 7)
53. Can dissipation be incorporated inta the geometric W KB picture.' (chap : ег 7)
54. What is the time of validity of the WKB approximation? In it lie an conjectured in section 7.3 ?
55. Are there asymptatic theories with asymptotic validicy for longer thme than WKB, perhaps in special situations? (section 7.3)
58. How does WKB theory's finite time of validity relate to intinite the concepts such as the eigenvalue spectrum and quantum chans". (section 7.3)
57. Are there physical situations in which the exarnple of dispersion given in section 7.3 that is no accounted for by WKB plays an mportant physual rold"
58. Is there an analog of getmetric diffaction theory for nonlinear eskona! waves? (section 7.3)
59. Apply the Hamiltonian techwiques of chapter s to a physual syemex
 system) to obtain result = not available with Whithami= averaged Lagratngian tech-
 "Ain't there no eleganter way to do it ${ }^{+\cdots}$,

61. Maxe the argument given in section 8.2.2.1 relating degeverate symplectic -tructure: to Poisson manfolds with Casimirs into a general theor: (a very similar situation uscure in the example of guiding center motion given in chapter 5: In a Porsun formulation we have a degenerate bracket perturbed by a canonical bracket. In a symplectic formulation we have a degenerate symplectic structure perturbed by a canouical one. In the Poisson case we get zero order dynamics but no unique choice of Hamiltonian or symmetry gencrator. In the symplectic case we get a i-nique Hamiltonian but no zero orde. \because-namics. The first order piece somehow defines a natural association between the degenerate zero order structures since the bracket and symplectic structure are nondegenerite and are inverses of one another when (doesn't vanish.)
62. The the Lie Poisson structure obtained in chapter 9 to study a system where wave action density on phase space is important (for examples see 'Deusr. 1972b।
63. Find examples of dissipa = systems that sit inside Hamiltonian systems as invariant submanifolds as suggested in section 10.1 (John David Crawford and Bruce Bughosian have suggeste.l that the dissipation in Landau damping is of this $13 p+1$
64. I- it ever ueful to convert dossipative systeme to Hamiloman rystems with thore vartablew an show in chapter 10° (This doeri allow one to use variational
formulation- for invatite:

 cortert the analys.

 acting on a Poison manifold, consider the action on the product of that manfold with the cotangent bunde of the group (where the action on the cotangent bundle. is the lift of left tratulation). Gae obtans a new bracket on the orbit spare of this action by reduction. When the group ic the real line acting by the fow of a vector field this reduces to the example in 104 . Lse the more general brackets to understand other physical situations.
67. Can one use the (very elever) technique used in Gromov's proof to get any insights into the physics of the projected area situations of chapter $11^{\prime \prime}$
68. Can the intuitive argument gives in section 112 for Gromov's theorm based on the uncertainty principle be made precise?
69. Can one make the connection between Bogoliubor: derivation of the Bohzmann equation via BBGKY and projected measures that is suggested in sertion 11.4 precise?
70. Can one uesign a better particl: accelerator based on the abstran con struction for shrinking projected meacure given in section 11.4.2?
71. Can one place any conetraint: on the progected methise of regione under

 If mararmg pars: of proyected quantiticr"
72. (an you bind finite dimensional ituation- where the timereversible almost at ractor introduced in chapter 12 is directly responsible for irreverible asymptotir behavior in a time-reversal symmetric situation?
73. Implement the approach to the threewave interaction of eikonal waves discused to section 13.3.6. Does this invalidate the usual approacb in terms of infinite plane waves?
74. Can one explicitly analyze the Landau damping equations using the notion of an alnost attractor in an infinite dimensional Hamiltonian system? (section 13.3.3)
75. Section 13.3 .5 introduced a very gencral mechanism for obtaining dissipative behavior from resonant Hamiltonian systems. Can one find an ahstract setting in which the precise characteristics of systems exhibiting this phenomenon it e stated? Can one analyse Landau damping with these tecbniques?
76. Many infinite dimensional linear physical systems bave a continuous spectrum making atalysis difficult (espectally bifurcation theory). The "eigenfunctions" are often singular (for example the van Kampen modes in the Poisson-Ylasov systens). Whether the spectrum is continuous or not is physically detectable only after an infinite time. Physically one often is not interested in "normal" modes hut

 The eikonal analysis of sertion 13.3 .5 dom not anfer the defert (an one apre a similas analysis to othes problem of the type.
77. Can one analyze the disspation due to bulk viscosty in a manaer anale gous to that used in section 13.4 ? (Bulk viscosity results from the time lag for the rotational degrees of freedom a gas to reach equhbrum with the limear degrees of freedom under compression. Imagine a gas in a ryliuder with a prion which you quickly move in and out. As you push down the gas has a kigher pressure than it would in equilibrium since less energy is in the rotational degrees of freedom than should be. When you pull the piston out, the pressure is less than in equilibrium because more of the energy is in rotational degrees of freedom than should be The net result is that the work done on the downstroke is greater than the work returned on the upstroke: the gas absorbs energy and therefore appears dissipative. A very similar kind of thing is behind the dissipation due to the string.)
78. Can one use the method of Melnikov to fud horsmhoer in stuation- if plasma physics other than the situation studied in eection 14.4 feg. orther maggetic geometries. particle drwen by electromagnesic wive. waw dybatme ohton dynamics)?
79. Can one use the know atathetral propertien of hor whor studed in
 reversals:" (nerton 144)

explait: the complex tehawor bincomed in Holmes and Wheley. 1984 an one gom

81. ('a. you fond unversal structure in homoclinic tangles and homorlinic bifurcatos: using renormalaztion group techniques? (chapters 14 and 15) There are many remormahzation type mappings at work in homoclinic dynamics. The "ruoser tron" of a piece of stable or unstable manifold is a Cantor set (with correnonding scaling properties) and homoclinic tangencies occur when the stable and unstable manifolds' Cantor sets intersect. Eacb homoclinic tangency causes an infinite number of period doublings for which we know there is universal behavior.)
82. Study the fractal: that arise :n dature using renormalization. For example. a classic Canior set (remove the middle third of an interval recursively) corresponds to a periodic orbit as we continuously blow up the scale. A fat Cantor set (eg. remove mic,ile third. then middle u inth, then middle 27 th, ete.: this type of fractal occurs as the set of parameter walues at which hump map orbits are chaotic after criticality) asymptotically approaches the stable fixed point represented by a solid line. An undernourished Cantor set (eg. remove mildle third. middle square root of 3:d. middle cube root of 3rd.etc.) approaches the stable fixed point representing a single point in empty space. The set obtained by removing the rationals from the unit interyal and separating the two sides around each rational p / q by a distance $1 / y^{3}$ (the KAM tori lie in phase space like the points in this set in an arjitrary perturbation of a Hamitoman system away from criticality) scales at each point arcurding to terms in the contmued fractinn expansion of the point (Liouville num-her- which are eant to appoximate liy rationals approach a hixed ponit represpenting
 tonal -
 orbit-1 (chapter 15$)$

 approach of section $15 \jmath^{\prime}$
84. Can one use the renormalization group approach given in section 153 to derive the Boltzmanı factor $e^{-3 E}$ using revormalization?
85. Sirrilarly, can one derive the standard probability distributions other than Gaussians (such as Lorentzians, Zipfians, Bradford's distribution. Lolka's distribution. Pareto distributions, $1 / /$ noise, \log normal distributions and the other "ong :ail" distributions so important iv modern statistical physics) usimg renormalzation but with a renormalization operator constrained by other criteria than having a prescribed normalization, mean, and dispersion? Do the renormalization eigenvalues give scaling rates for these examples? (section 15.3)
86. Some of the distributions of the previous question will correspond to unstable fixed points. Can we understand physical systems with statistics which behave according to one of these distributions for a long range of scalce but anymptotically behaves differently in terms of the renormalization orbit starting pear the stable manifold of the corresponding fixed pont, approaching the fixed point for a lone time and finally feeling the effert of the umstable manifold and getting attracted to a more siable distribution at somes seale (ite after wome mumber of applicatom-
of the remomalizatwo opratur)". ("an we use the relative values of the renormalizatof eigenvalue to predirt the range of wale which are described by the fixed pome" (An example of this type of behavior orcurs in any of the extremely lange uumber of systems well dearshed by $1 / j$ noise, this distribution is not normalizable and so mant really thrn monother distributhon at some scale) (section 15.3)
87. Find "pon man" approaches to other renormalization cakslations, such Lت area-jresertung period doubling, breakdown of circle maps, breakdown of KAM tori. (section 15.4)
88. The the new formulation of maximum entropy given iu section 16.2.3 in terms of an integral over all probability distributions to get new insights into statistical nechanics, just as the path integral formulation gave new insights into quantum meehanics !Schulman. 1981!.
89. Yothing in the maximum entropy formulation (section 16.2) either requires c. disallows time-dependence of the studied quantitics. [Jaynes, 1983] derives some asperts of non-equilibrium thermodynamics from the maximum entropy criterion. Can one use this derivation and the symplectic structures introduced in chapter 16 to obtain a symplectic analysis of non-equilibrium thermodynamics?
90. The Onsager relations have been discussed in terms of Lagrangian submanifolds in [Abraham and Marsden, 1978]. Can this discussion be given a fundamental basis using the ideas of the last question?
91. Allan Kaufman has discovered many non-equilibrium systems whose evolution is goverued by a Lie Poisson bracket plus a so-called dissipative bracket which i- - ymmetric The generator of the dynamics becomes the Hamiltomian plus the en-

 relations appear naturally.)
92. Can one introduce "super-reduction" which starts with a large-dime:tmonal underlying system, perform reduction by an exact symmetry th some variablen, reduction by an approximate ymmetry it some others, and reduction by a "statistical symmetry" (via maximum entropy) in some others, aud end up with the standard physical models in plasma physics, gas dynamics and tuid mesbanics?
93. Based on the results of the last few question, cas one obtain a geomertir formatation of the fluctuation-dissipation theorem? Is this a statistical analog of the K - theorem".
94. Can one connect the approach of the lant fer questions with the test particle theorem and Ead a treatment of this technique an a systematic pertarbation technique?
95. There is a very "symplectir" looking reciprority that afises from the test-particle theory there is a detailed balance betwere (eremken radiation and Landau damping, between seachrotron emission and caclotron danaping, and be-
 within a general theory?

 can be redamen on the ham of that knowledge (For example. Maxwells demon nush mbersf the wateriog of a non-rquilibrium photon to detert fast particle:
 entrope anned in formb the fast paracle to be on one side of the partution.) This argument is very similar to the maximum entropy version of the second law of thermordyamm-given in sertion 16 \& Can the connection be made precise? What is t.te reiation to projected arca concepts discussed in chapter 11 ? What is the connection with quantum measurenent limitations?
y7. Is Young infquality for the Legendre transform (section 16.5) related to the Heisenterg uncertainty principle (section 7.1.3.1) in the eikonal limit?
98. How much of the geometric theory of first order phase transitions given in section 168.2 extends to the rnore difficult situations where renormalization theory is required (eg. critical points)?
99. Apply the extension of Maxwell's equal area rule for first order phase Iramitions given in section 16.8 .3 to nontrivial problems.
100. Is there a deep reanon for the remarkable parity between the asymptotic structure of eikonal wave theory and statistical mechanics av presented in section $169^{\prime \prime}$

PART I:

MECHANICS

\because. he couched his discussion in the move sophintrated language kmomir to physi-s, not all weighed down by lumps of data like Joule's heavehandrd labo ratory reports, oor confined to the primitive numermal equivalents of Mayer. but in the graceful, taut, and lissome differential equations of classical dymamis Gillespie referring to Helmholz (Hirsch, 1984

Chapter2:

Suryey of Geometric Perturbation Theory
-I completed my comire in engincering and I would like to try to explain the effert of this enginecring training on me. Previously, I was interested only in exact equations. It seemed to me that if one worked with approximations there was an intolerable ugliness in ones's work and I very much wanted to preserve mathematical beaury: Well. the engineering trining which I received did teach me to tolerate approxinations and I was able to sec that even theories based upon approximations could have a considerable amonnt of beauty in them"-P.A.M. Dirac (p. 112 of (Dirac. $\left.1, \because 7]^{\prime}\right)$

2.1. Historical Background

In this chapter we survey ideas innm the rest of the thesis, particularly chapter 4. intuitively and beuristicaily. In chapter 4 we assume a background in geometric mechrats and give detailed proofs. Here we will give the Havor of the esructures and develop the needed barkground matcrial. We will state results and indicate why they i. true without detaled proof. We brgin with some introductory remarks, discus: a geometre picture for non-singular perturbation theory. introduce the needed

It is of interest to li:1 the seminal ideas that form the backeround of the present work. In 1808. Lagrange antroduced the description of the ryatmics of rele tial bodies in terme of what we today call Hamilton's equatome (tagrange, 1808 atid (Weinstein, 1981'). His motivation was the reduction of the enormous labor involved in a straightforward perturbation analysis, which required tedious computations to be performed on each component of the dynamical vector feld. 10 manipulations of a single function: the Hamiltonian. The description in terms of Lagrange bracket. led to several other bencfits. Lay unge sbowed that the value of the Haniltonian and the structure of the brackets were both invariam under the dyamic- leading to a useful cherk of the complex calculations (which at that tume were of coure dene by hand). In addition he was able to show that the invariame of the Hamultom). tould be used to prove the stability of cert in equilibria A the century pregrement Hamilonian mechanics was refined and the consections with variational promesten
 had developed very powerful damilomian periurbation method mulizing generaring functions. a: odnced the nuthon of asimptone expan-ion, and tregun the gex.

III Dirat. 1958, by analugy with optr-and werved to put Hamblemiat strus ture firnds at the renter of the notiera formalation of fundamental physe ? andan and

 Hermann. 1968. Sourian. 1970a. Abraham and Marsden. 1978 and Arnold. 1978. About the sum the method of Lic transforms greatly simplitied HamilU, inall proturbatm theory Cary. 1981 . The 1970 s saw emormous developments 3 the gemuctic approach to mechanirn ind largely as a result of these. an ever wider range of physical swstems bave been described in Hamiltonian terms. Some "xamples are: quantum mechanies [Cbemof and Marsden. 1974], fuid mechanics: Anormon and Grene. 1980', Marsden and Wienstein, 1983], and [Marsden, Ratiu. and Weinstein. 198.4. Maxwells equations: PPauli. 1933! and (Marsden and Wein-
 Murrison. 1980. Marsden aud Wrinstein, 1982:, and [Kafman. 1982], relativistic plasma wates Kaufman and Holm, 1984, gyrokinetir models; Kaufman and Woghosian. 1984, elantrity theory. Marsden and Hughes, 1983; and Hoim and Kuperdmudi. 1984a', gencral relativit? (0 Marmden and Hughem. 1983 . magnetohydromyanme Sorrion and Greene. 1980, and Holm and Kupershmidt. $1984 a^{\circ}$. multi-fluig plismas Spenere and Kaufman, 1982' and 'Holm and Kupershmidt. 1984a. Cbromohydrodynamics: !Gibhous. Holm and Kupershmidt, 1982., superflud. and "upercondefor, Eiolm and Kupersin...idt, 1984b; the Kortewen de Vires "flathon Faddeev and Zakharov, 1971, ets These developments have shed light

stability results based on Artolds stalibity method Holm. Saroneti. Ratm. ated Weinstem. 1984, and have given inseght into the raano for the mespatility of certain -3 atoms, Guillemin and Sternberg. 1984.

For the most part. however these structures describe fundamental underlying models in the various fields. In actual applications wre almest always make numerous approximations which may or may not respect the underlyialg Hamiltonian structure. It is folklore within the particle physies community and elsewhere that perturbation methods which respect the underlying symmetries and conservation laws yield much better approximations to the actual system than those which do not. It is of interest. then. to try to do perturbation theory within the Hamiltonian Framework and to obtain structures relevant to the approximate system. Cne may thus hope to understand the relation between the structures of systems which are limiting cases of known systems (cg. doce the KdV Poisson bracket arise naturally from that of the Boussinesq equation:?) \{Olver, 1984! The history of Hamitomian mechanics is inextricably tied to perturbation methods. For the most part, though. the Hamiltonian structure was used to simplify th. perturbation method and the geometric structure of the perturbation method itself was not explored. We bave [ound in several examples that taking this structure into arcount leads to simplitientions (as in the problem of guiding center motion discussed later in thin chapter) and to deeper insi, hat into the approximate system (as for the modulational equations: for waves in the eikonal limit studied $\mathrm{i}: 1$ \{Omohundro, 1984 f and chapter 8)

We have therefore been engaged in a progran of insestigating the Hamilonian structure of the various perturbation theories used in practice. ha the chatera
we deseribe the geometry of a Hanileman structure for non-simgular perturbation theory applied to Hamiltu lian sysume on symplertio manfolds and the connection with sing slar perturbatime techuiques based on the method of averagine Chapter 5 dincuarb a singular perturbation technique based on a method introduced by Kru-kal

2.2. (icometric Perturbation Theory

In the sertion we will place perturbation theors into the context of the geo metne dymamis: that has proven so fruitíul in recent years We will give intuitwe discussions of the geometric concepts of dyumies and explicitly put non-singular general first-order perturbation theory int, this framework. The next section will do the same for higher order perturbation the ory and chapters 4, 5, and 6 will forus on Hamiltonian and singular perturbations.

2.2.1. Manifolde

The modern setting for describiug an evolving system is that of a dynamical system. The state of the system is represented by a point in a manifold M A manifold 15 a space which locally looks like Euclikean space and in which there is a notion of derivative (for more details see 'Abraham. Marsedi. and Ratiu. 1983° p. 122). Globally a manifold may be connected togethe: in a wortrival way. as ocrurs , the examples o the sphere and the torus

Many of the standird systems studied in physe-haw state space that are naturally manifolds and have apparent singularitie when on trin. tw model them as Euclidean spaces. A simple example of this io given ly the negd bods The standard deseription of the contiguration of a rigud body ntifice the Euler angles This deeriptorn is fraught with singular hehavior fer more than one bet of Euler angle- candencribe the -ane contguration at extreme of the angle-s The singu-

 conhgitation prace of fluids and platmas

2.2.2. Dynqmical Syatems

"A mong all mathematical disciplines the theory of differential equations is the most important... It furbishes the explanation of all those elementary manifestations of nafure which invoive time."--Sophus Lie (1895) [Hirsch, 1984]

If you know where you are in a state space, a dynamical law tells you where you'r. going.

Figure 2.1: A dynamiral system

A dy namical lan is reprexinted by a vertor dold on the manifold if tate A
 (wee Abraham. Maredeu and Ratiu. 1983. p. 1841. In coordinater. the dynamion
 Typiral denamical tystems pith state spare of there domencions of ereater hase chantic dynamical belavior with extermely complicated trayoromion lto nany cose ove can actually prove that there is an exact descriptiof of the solution curve in closed form (see (Gurkerbeimer and Holmer. 1983;). If the evolution simplifies then there is some physically relevant sperial feature, such as a symmetry, which rauses the simplification.

2.2.3. Perturbation Theory

In important physical applications, we often hid ourselver close to a system which simplifies, and we are interested in the effect of our deviation from it. We express this deviation in terms of the small pararaeter 1 .

In many physical situations we are faced with an apparently different pohlem in which we have but a single dynamical system and we are interested in solutions whose initial conditions are close to a known equilibrium point. The parameter , expresses t^{2}. distance of the initial condition from the equilibrium point One common situation of this type, which appears repeatedly in plasma physics, hill thermal equilitrium as the equilibrium point and studers the time evolution of deviations of initial size \& from it.

We may easily convert this type of problem with asymptotic initial conditions in in unsolvable dynamical system, to an asymptotic system whose linaiting case is solvable. This transformation is commonly made by expanding the dynamical vector field a.bout the equilibrium and re-expressing the dynamics in terms of scaled quantities: This leads to a lincar system at the lowest order, which is often solvable.

Berause thermal equilibrium is stable, this lowest order linear evolution is given by (pixsibly damped) oscillating dormal modes (i.e. there can be no unstable modes in thertal equilibrium). These often take the form of travelling waves. The second order terms in e represent two-wave coupling, the third order terms represent threewave croupling and so on.

To keep a simple model in mind as we proceed, let us focus on the excitation of a single mode which nonlinearly couples only to itself. This reduces to a system of the form

$$
\begin{equation*}
\ddot{u}=f(u) . \tag{2.1}
\end{equation*}
$$

If $u=0$ is to be the equilibrium solution of interest, then we bave $f(0)=0$. Let us assume that f is an odd function in u, since thif is a common occurance. To write our equation as a dynamical system, we introduce $v \equiv \dot{u}$ and so obtain the system

$$
\begin{equation*}
\dot{u}=v \quad \dot{v}=f(\mathbf{u}) . \tag{2.2}
\end{equation*}
$$

We want to study the evolitior of small values of u and t, so we choose an asymptotic initial condition:

$$
\begin{equation*}
u(t=0)=\epsilon u^{0} \quad v(t=0)=\epsilon v^{0} . \tag{2.3}
\end{equation*}
$$

We now have a hard problem with an initial condition that axymptotically approaches an intitial condition whose evolution we can solve for We want to convert this to a family of problems that asymptotically approach one which we can solve. Let us introduce scaled variables.

$$
\begin{equation*}
\mathrm{L}^{\mathrm{t}} \equiv \frac{\mathrm{u}}{\epsilon} \quad V \equiv \frac{v}{\epsilon} . \tag{2.4}
\end{equation*}
$$

The in itial condition in terms of U and V is constant:

$$
U(t=0)=u^{0} \quad V(t=0)=v^{0}
$$

The dynamical system in the new variables has become an asymptotic family:

$$
\begin{equation*}
\dot{U}=V \quad \dot{V}=\frac{f(c U)}{c} . \tag{2.5}
\end{equation*}
$$

The limiting system as $c \rightarrow 0$ is

$$
\begin{equation*}
\dot{U}=V \quad \dot{V}=f^{\prime}(0) \cdot U \tag{2.7}
\end{equation*}
$$

which is linear. If we express f as an asymptotic series (and remember that f is odd), then we see that our system is asymptotically equivalent to

$$
\begin{equation*}
\dot{U}=V \quad \dot{V}=f^{\prime}(0) \cdot \dot{U}+\frac{1}{6} \iota^{2} f^{\prime \prime \prime}(0) \quad U^{3}+\ldots \tag{2.8}
\end{equation*}
$$

If we redefine ε, u, and t and assume that higher order terms ianish. then this system reduces to the Duffing equations for a nonlinear spring:

$$
\begin{equation*}
\dot{u}=v \quad \dot{v}=-u-c u^{3}, \tag{2.9}
\end{equation*}
$$

with initial conditions that are independent of c, say for example

$$
u(t=0)=c \quad v(t=0)=0 .
$$

We shall use this systern as an illustrative example as we proceed. Let us return now to the abstract setticg which we have just motivated. The class of problems which require study of a small seighborhood of an equilibrium leads to linear zeroth order equations. Examples like gyromotion bave nonlinear zeroth order equations which are nonetheless solvable due to symu.tries.

In general, we are given a dynamical system of the form

$$
\begin{equation*}
\dot{x}=X_{0}+\epsilon X_{1}+\frac{\varepsilon^{2}}{2!} X_{2}+\cdots \tag{2.11}
\end{equation*}
$$

in termas oi the vector felds X_{2} with initial conditions described by

$$
\begin{equation*}
x(\epsilon, t=0)=y(c) . \tag{2.12}
\end{equation*}
$$

We attempt to erpress the solution as an asymptotic series in ε :

$$
\begin{equation*}
x(t)=z_{0}(t)+c x_{1}(t)+\frac{c^{2}}{2!} x_{2}(t)+\cdots \tag{2.13}
\end{equation*}
$$

Choosing coo:dinatea $x^{a}(1 \leq a \leq N)$ in a local patch of the staie space manifold and plugging this assumed asymptotic form into the equation of motion gives

$$
\begin{align*}
\dot{x}_{0}^{a}+\epsilon \dot{x}_{1}^{a}+\frac{\epsilon^{2}}{2!} \dot{x}_{2}^{a}+\cdots= & X_{0}^{a}\left(x_{0}+\epsilon x_{1}+\frac{c^{2}}{2!} x_{2}+\cdots\right)+ \\
& +\epsilon X_{1}^{a}\left(x_{0}+\epsilon x_{1}+\frac{c^{2}}{F^{2}} z_{2}+\cdots\right)+ \tag{2.14}\\
& +\frac{\epsilon^{2}}{2!} X_{2}^{a}\left(x_{0}+\epsilon x_{1}+\frac{\epsilon^{2}}{2!} z_{2}+\cdots\right)+\cdots
\end{align*}
$$

Asymptotic expansions are unique (see for example (de Bruijn, 1981i), so we can
equate coefficients of equal powers of ϵ to get equations for x_{n}, x_{1}, x_{2}.

$$
\begin{align*}
\dot{x}_{0}^{a} & =X_{0}^{a}\left(x_{0}\right) \\
\dot{x}_{1}^{a} & =\sum_{b=1}^{N} \frac{\partial x_{0}^{a}}{\partial x^{b}}\left(x_{0}\right) \cdot x_{1}^{b}+X_{1}^{a}\left(x_{0}\right) \\
\dot{x}_{2}^{a} & =\sum_{b, c=1}^{N} \frac{\partial^{2} X_{0}^{a}}{\partial x^{b} \partial} \frac{x^{c}}{x^{c}}\left(x_{0}\right) x_{1}^{b} x_{1}^{c}-\sum_{b=1}^{N} \frac{\partial X_{0}^{a}}{\partial x^{b}}\left(x_{0}\right) x_{2}^{b} \tag{2.15}\\
& +2 \sum_{b=1}^{N} \frac{\partial X_{1}^{a}}{\partial x^{b}}\left(x_{0}\right) \cdot I_{1}^{b}+X_{2}^{a}\left(x_{0}\right)
\end{align*}
$$

If $y(f)=y_{0}+c y_{1}+\frac{e^{3}}{2} y_{2}+\cdots$ is an asymptotic expansion for the initial condition $y(c)$, then the initial conditions for these equations are

$$
\begin{equation*}
x_{0}(t=0)=y_{0}, \quad x_{1}(t=0)=y_{1}, \quad \ldots \tag{2.16}
\end{equation*}
$$

The Duffing equations yield the following equations by this prescription:

$$
\begin{array}{ll}
\dot{u}_{0}=v_{0} & \dot{v}_{0}=-u_{0} \\
\dot{u}_{2}=v_{1} & \dot{u}_{1}=-u_{2}-u_{0}^{3} \tag{2.17}\\
\dot{u}_{2}=v_{2} & \dot{v}_{2}=-u_{2}-6 u_{0}^{2} u_{1}
\end{array}
$$

with initial couditions given by

$$
\begin{array}{ll}
u_{0}(t=0)=a & u_{0}(t=0)=0 \\
u_{1}(t=0)=0 & v_{1}(t=0)=0 \tag{2.18}\\
u_{2}(t=0)=0 & v_{2}(t=0)=0
\end{array}
$$

If the Duffing model is itself a trudcation of a system with a more general nonlinearity, theu it may not be meaningful to carry out the perturbation analysig to too many orders.

These equations irmmediately raise a number of questions. They are defined in terms of x 'iysically irrelevant coordinates; is tbe perturbation structure independent of these coordinates? If the original equations are Hamilt.snian, are these equations? In J th order perturbation theory, how are we to interpret this evolution of many variables $I_{0}, I_{1}, \ldots, x_{j}$? One goal of this work ip to answer these questions.

2.2.4. Flrst Order Perturbation Equations

Let us tura to the geometric interpretation of these equations. It is easiest to understand the first order perturbation equations.

For the Duffing example, the first order system is

$$
\begin{align*}
\dot{u}_{0}=v_{0} & \dot{v}_{0}=-u_{0} \\
\dot{u}_{1}=v_{1} & \dot{v}_{1}=-u_{1}-u_{0}^{3} \tag{2.19}\\
u_{0}(t=0)=a & v_{0}(t=0)=0 \\
u_{1}(t=0)=0 & v_{1}(t=0)=0
\end{align*}
$$

In gederal, the first order equations have the form

$$
\begin{align*}
& \dot{x}_{0}^{a}=X_{0}^{a}\left(x_{0}\right) \\
& \dot{x}_{1}^{a}=\sum_{b=1}^{N} \frac{\partial X_{0}^{a}}{\partial x^{b}}\left(x_{0}\right) \quad x_{1}^{b}+X_{1}^{a}\left(x_{0}\right) \tag{2.20}\\
& x_{0}(t=0)=y_{0} \quad x_{1}(t=0)=y_{1} .
\end{align*}
$$

We would like to determine the geometric nature of the rquantities x_{0} and x_{1}. To understand what we mean by this, het us recall the relationship between geometric quantities and coordinates.

2.2 5. Functions, Covectora, and Cotangent Bundlea

A function on a manifold is an intrinsically fefined thing; it assigus a real number to each point of the manifold. A coordin.te system on a region of an N dimensional manifold is a collection of N real valued-functions x^{1}, \ldots, x^{N} defined on that region, whose differentids are linearly independent : each point. In these coordinates, the gradient of a function is a collection of N numbers: the derivatives with respect to each of the x^{a}. Geometrically, however, it is wrong to think of tiese as just real nuobers, because they change if we change our coordinate sysiem. For example, if we choose coordinates whose values at each point of the region are twice those of x^{1}, \ldots, z^{N} then the components of the gradient of a function are halved We introduce a geometric object whose relationahip to the manifold at a given point is lise that of the differential of a function and we call it a covector or one-form (see ¡Abraham, Mareden, and Ratiu, 1983| p.286). In this context, the gradient is usually refered to as the differential of the function. The collection of all covectors at a point is defined to be the cotangent space at that point and the collection of all cotangent spaces taken together form the cotangent bundle (see [Abraham, Marsden, and Ratiu, 1983] p. 285)

2.2.6. Vectors and Tungent Bundlea

Similarly, the values of the components of a vector ar a point are doubled when we double the values oi the coordinates. All vectors at a point taken together form the tangent space at that point and all tangent spaces taken together form the tangent bundle $T M$ of M (see [Abraham, Marsden. and Ratiu, 1983] p. 150).

Pictorially, we think of a vertor as a little arrow whose end is at the point of interest as in figure (2.2a). A covector may be thou sht of as a pair of parallel planes representing local levei sets of a function whose gradient is that covector ([Misner, Thorne, and Wheeler, 1973 | and [Burke, 1980|) as in figure (2.2b). The distance between planes gets smaller as the gradient gets larger so that the amount of a vector starting at the first plane that is cut off by the second plane is independent of the scale (and so defines an invaria it pairing between vectors and covectors). Covectors have been referred to as lasagna vectors because of this picture (Jim Napolitano, private commuaication).

Figure 2.2: a) A picture of a vector, b) A picture of a covector.

Vectors and covectors are different objects when we consider more than one coordinate system, even though they both have N components in any given system. If we have two curves in a manifold through a given point, in any ceordinate system
we may determine if the curves go through the point at the same rate and in the same Cirection (i.e. if they are targent to first ordet). It turde out that thes determination is independent of which coordinatey are used. In differential geonuctry, one usually defines a tangent vector at a point to be an equivalence class of curves which are tengent to first order. The invariant pairing betpreen vectors and covectors is then used to define coventors as elements of the dual space to the tangent space at a point. The dual space V^{*} of a vector space V is the vector space of linear functions on \boldsymbol{V}. Our interest here will be to find out whether the quantities x_{0}^{0}, \ldots, x^{0}, for $1 \leq a \leq N$ have any geometric structure that is independent of a given coordinate system

2.2.7. The State Space for First Order Perturbation Theory

Intuitively, the first order quantity x_{1} represents a small deviation from the unperturbed quantity x_{0}. Because x_{0} can vary over the whole manifold M, we expect it to represent a point in the manifold. As e getasmaller, $x_{0}+\epsilon x_{1}$ approaches the point x_{0}. The variable x_{1} measures the first order rate of approach to x_{0}. Two different paths in the manifold approaching the point x_{0} as c approaches zero have the same x_{1} if and only if they are tangent at x_{0}. This, bowever, is the defining criterion for a vector at the point x_{0}. We thus expect x_{1} to lie in the tangent space to M over the point x_{0}. The $\left(x_{0}, x_{1}\right)$ dynamirs then lakes place in the tangent bundle $T M$. We will describe this dynamics on $T M$ intrinsically in ter:ns of vector fields derived from $X(\epsilon)$ on M.

2.2.8. Flows and Derivatives

The solution of a system of O.D.E.'s tells us the state at each time t of a system which began with each initial condition. Geometrically, this is a mapping of M to itself for each t. If the solution does $n^{\prime} t$ run of the manifold, then the uniqueness and smoothness of solutions with given initial conditions tells 18 that this map is a diffeomorphism (i.e. a smooth, ?-1, onto map with smooth inverse, |Abraham, Marsden, and Ratiu, 1983] p. 102). This one-parameter family of diffeomorphisms labelled by t is called the flow of the dynamical vector field (see [Abraham, Marsden, and Ratiu, 1983] ρ. 185). As ϵ varies, the corresponding flows of $X(\varepsilon)$ will vary. Perturbation theory describes that variation. Any time we have a mapping / from one manifold to another, we may define the derivative map $T f$, called the tangent of f (see [Abraham, Marsden, and Ratiu, 1983| p. 153). This is a map that takes the tangent bundle of the first manifold to the tangent bundle of the second. It describes how infinitesimal perturbations at a point are sent to infinitesimal perturbations at 'he image point. In coordinates, it acts on the tangent space at a point via the Jacobian matrix of f at that point.

2.2.9. Dynamica for Firat Order Perturbation Theory

Let us denote the flow of the unperturbed vector field X_{0} by $x_{0}(t) . x_{0}(t$, yo $)$ is the point to which y_{0} has flowed in time t under X_{0}. A small perturbation in M hrom a given orbit will evolve ander X_{0} according to the derivative of this flow: $T x_{0}(t)$. This derivative is itself a flow on the manifold $T M$. The vector field of
ribl t. it is the foo may be friten

$$
\begin{equation*}
\left.\dot{X}_{0} \equiv \frac{d}{d t}\right|_{t=0} T x_{0}(t ; \tag{2.21}
\end{equation*}
$$

\tilde{x}_{0} is a vector field on $T M$. defined rithout recourse to cwordinaters, that reparsegtthe effect of the unperturbed flow on perturbed orbits. In coordinates, \bar{X}_{0} bas components given by

$$
\begin{align*}
& \dot{x}_{0}^{a}=X_{0}^{a}\left(x_{0}\right) \\
& \dot{x}_{1}^{a}=\sum_{b=1}^{N} \frac{\partial X_{0}^{a}}{\partial x^{b}}\left(x_{0}\right) \cdot x_{1}^{b} .
\end{align*}
$$

These dynamical equations represent exactly that part of the perturbation equations (2.20) which depends on X_{6}.

For the Duffing example, these equations give

$$
\begin{array}{ll}
\dot{u}_{0}=v_{0} & \dot{v}_{0}=-\iota_{0} \tag{2.23}\\
\dot{u}_{1}=v_{1} & \dot{v}_{1}=-u_{1} .
\end{array}
$$

The last two of these deacribe the evolution under the zero order equations of a litcle perturbation along (u_{1}, v_{1}). We now ses that $\left(u_{1}, v_{1}\right)$ gives the coordinates of a tangent vector based at $\left(u_{0}, v_{0}\right)$. The $\left(u_{1}, v_{1}\right)$ equations are of the same forta as the (ω_{0}, v_{0}) equations. This is because the zero order system for the Dufing oscillator is linear and the derivative of a linear r ap is the identity when se identify the linear space with its tangent space.

The part of the dynamics which depends on X_{1} may also be defined intrinsically For any $x \in M$ and $v \in T_{x} M$, we define

$$
\begin{equation*}
\tilde{x}_{1}(x, v)=\left.\frac{d}{d t}\right|_{t-0}\left(v-t x_{1}(x)\right) \tag{2.24}
\end{equation*}
$$

The \dot{x}_{1} dyannics for the Duffing system is

$$
\begin{array}{ll}
\dot{u}_{3}=0 & \dot{u}_{0}=0 \\
\dot{u}_{1}=0 & \dot{v}_{1}=-u_{0}^{3} . \tag{2.25}
\end{array}
$$

This represents the additional effect of the perturbed equation without including the effect of the unperturbed system.

The entire first order perturbation dynamics on $T M$ is given by

$$
\begin{equation*}
\tilde{\boldsymbol{X}}_{U}+\tilde{X}_{\mathbf{1}} \tag{2.26}
\end{equation*}
$$

We bave therefore succeeded in finding a geometric, coordinate-free intereretation for first order per arbation theory.
2.3. The Geometry of Jth Order Perturbation Throry

We now would like to extend thiv picture to bigber orders The grometric object that arises is called a jet. To underatand the setting. we duseuss a pumber of selevant spaces.

2.3.1. The Path Space

How are we to think of the exact equation for the evolution of an 6 -dependent point $x(\epsilon)$ under ϵ-dependent evolution equation: $\dot{x}(\epsilon)=X(\epsilon, x)$ with ϵ-dependent initial conaitions $y(\epsilon)$? It is useful to think of the ϵ-dependent point $x(f)$ as a curve in the space $I \times M$, where I is the interval (say $[0,1]$) in which \in takes its values (as in Ggure (2.3)). We shall call such curves paths (as this is the standard mathematical terminology). Moving along a path correspouds to varying the asymptotic parameter ε.

If we think of $x(\epsilon)$ as a map from I to M, then the curve is the graph of this map. The dynamical vector field $X(\varepsilon)$ naturally lives on $I \times M$ and its I component is zero everywhere. The flow of $\boldsymbol{X}(\boldsymbol{\varepsilon})$ on $I \times M$ takes paths to paths by letting each point of a path move with the flow as in figure (2.4). Our initial conditions are represented by paths (if they are independent of f then they are straight lines). The true dynamics takes paths to paths. Even if the intial conditions are t-independent, the c dependent dyamics bends the path over as in figure (2.5).

Thus we really should think of our dynamics as living on the infinite dimensional path space

$$
\begin{equation*}
P_{1} M \equiv\{\text { space of aل paths } p: I \rightarrow I \times M \text { of the form } p: \nrightarrow\{\epsilon, I(\epsilon)\}\} \tag{2.27}
\end{equation*}
$$

Figure 2.3: Curve in $I \times M$.
where, as before, $I=[0,1]$. For the Duffing example, this is the space of curves in (u, v, c) space that project diffeomorphically onto c. Each curve represente $u(c), v(c)$ for ϵ in I.

This space projects naturally onto

$$
\begin{equation*}
P_{0} M \equiv\left\{\text { equivalence classes in } P_{1} M \text { where } p_{1} \sim p_{2} \text { iff } p_{1}(0)=p_{2}(0)\right\} . \tag{2.28}
\end{equation*}
$$

The projection sends a curve to its $\varepsilon=0$ endpoint which represents the point about which the perturbati, n is taken. $P_{0} M$ is naturally isomorphic to M and represents the domain of the unperturbed dynamics. The equivalence classes forget all perturbation information and only remember behavior at $\epsilon=0$ as shown in figure (2.6).

Figure 2.4: A path moving under the influence of a vector field $X(\epsilon)$.

2.S.1.1. Spacea of Shorter Patha

We are interested in spaces through which this projection of actual to unperturbed dynamics factors (i.e. spaces which are the image of a projection from the first space and the domain of a projection to the second space, such that the composition of these two projections gives the original projection from the first th the second space). Perturbation theory tries to study behavior infinitesimally close to $\epsilon=0$ without actually getting there. For each $0 \leq \alpha \leq 1$ we may defne $P_{\mathrm{a}} M \equiv\left\{\right.$ equivalence classes in $P_{1} M$

$$
\begin{equation*}
\text { where } \left.p_{1} \sim p_{2} \text { iff } p_{1}(\epsilon)=p_{2}(t) \forall 0 \leq: \leq n\right\} . \tag{2.29}
\end{equation*}
$$

These allow as to consider more and more restricted domains of t, but there is always

Pigure 2.5: An 6 -independent initial condition becoming f-dependent.
a continuum of e's to traverse before reaching $\epsilon=0$. For each $1 \geq \alpha_{1} \geq \alpha_{2} \geq 0$ we bave the natural maps

$$
\begin{equation*}
P_{1} M \rightarrow P_{a_{1}} M \rightarrow P_{a,} M \rightarrow P_{0} M \tag{2.30}
\end{equation*}
$$

2.3.2. The Space of Germs of Paths

We are intereated in structure between "even the smallest $P_{\alpha} M$ with $\alpha \neq 0^{n}$ and $P_{0} M$. We may introduce germs of paths:

$$
\begin{align*}
G M \equiv & \left\{\text { equivalence classes in } p_{1} M \text { where } p_{1} \sim p_{2}\right. \text { iff } \tag{2.31}\\
& \left.=\alpha_{12}>0 \text { sucb that } p_{1}(\epsilon)=p_{2}(c) \vee 0 \leq \epsilon \leq \alpha_{12}\right\}
\end{align*}
$$

Figure 2.6: The projection of a path to its $\epsilon=0$ endpoint.

For any $\alpha>0$ we have $P_{\alpha} M \rightarrow G M \rightarrow P_{0} M$. The germe capture bebavior closer to $c=0$ than any given ϵ, but still contain much more information than perturbation theory gives us (gerrrs depend on features of functions in a little neighborhood that may not be captured in a Taylor series.)

2.3.3. The Space of Jets of Pathe

Finally we may introduce spaces of jets of paths at $\&=0$ with integer $1 \leq J \leq$ x :
$J M=\left\{\right.$ equivalence classes in $P_{1} M$ where $p_{1} \backsim p_{2}$ iff

$$
\begin{align*}
& \forall C^{\infty} \text { functions } f \operatorname{con} J \times M \text { we bave } \tag{2.32}\\
& \left.\left.\frac{\partial^{2}}{\partial \epsilon^{i}}\right|_{t=0} f\left(p_{1}(\epsilon)\right)=\left.\frac{\partial^{2}}{\partial \epsilon^{i}}\right|_{t=0} f\left(p_{2}(\epsilon)\right) \quad \text { for } 0 \leq i \leq J\right\} .
\end{align*}
$$

Notice that ∞M is the space of infinite formal power series by this definition. The space of J-jets gives the first J terms in a Taylor expansion of the curve around $\mathrm{t}=0$ in any coordinate system. Clearly,

$$
\begin{equation*}
G M \rightarrow \infty M \rightarrow I M \rightarrow J M \rightarrow P_{0} M \quad \text { for } I>J \tag{2.33}
\end{equation*}
$$

Thus the jets focus on information cioser to $¢=0$ than even the germs.
In the Duffing example, the J-jet of $(u(\epsilon), v(\epsilon))$ consists of the values of the first J derivatives with respect to $\boldsymbol{\epsilon}$ of u and v. We called these $u_{0}, v_{0}, u_{1}, v_{1}, \ldots u_{J}, v_{J}$.

2.3.s.1. Coordinates on the Jet Space

If $x^{\text {a }}$ for $1 \leq a \leq N$ are coordinates on $M \approx P_{0} M \approx 0 M$, then we may introduce coordinates $\left\{x_{0}^{a}, x_{1}^{a}, \ldots, x_{j}^{a}\right\}$ for $0 \leq J \leq \infty$ on $J M$ to represent the equivaience class of the curve:

$$
\begin{equation*}
x_{0}^{a}+\epsilon x_{1}^{a}+\frac{\epsilon^{2}}{2!} x_{2}^{a}+\cdots+\frac{\epsilon^{J}}{J!} x_{J}^{a} \tag{2.34}
\end{equation*}
$$

in $I \times M$ (near $\epsilon=0$ this won't leave the chart on which the x^{a} are defined).

The clam bere is that $J M$ represent geometrically the perturtation gatitities $=$: JJ it may seem strange to go thruugh the mfinite dimensional space ρ_{1}. 1 if eft so it. but we shall see (especially wben looking at the Hamiltonian structure) ita: is organizes and simplifies the structures of interest. It is a completely intrinsic and natural (or in modern parlance: functorial) operation to go from the original cynamical manifold M to the path space $P_{1} M$ in the jet spare $J M$. We stall nore show that the dynamics on M also induces natural dynamics on $P_{1} M$ and then projects fom there down to $J M$ where it is the perturbation dynamics we are interested in. Later we will see that a Hamiltonian structure on M leads to Hamilsonian structures on $P_{1} M$ and $J M$.

The dynamics $\dot{x}=X(c, x)$ take elements of $P_{1} M$ to other elements of $P_{1} M$ and in fact tabes equivalence classes to equivalence classes for each of $P_{a} M, G M$, $\times M . J M$, and M. This is what allows us to obtain an induced dynamics on eacb of these spaces. To determine this dynamics explicitly, we must understand what a langent vertor on each space is.

2.3.4. Tangent Vectors to Path Space

Intuitively, a vector represents a little perturbation to a point. We defise it precisely as an equivalence class of tangent curves, where the curve represents the direr $10 n$ of perturbation and the equivalence class ensures that only the first order motion is reflected in the langent vector. A point in the path space $P_{1} M$ represeuts a pait in $I \times M$. A small perturbation of this point represents a dearby path. Each poir: of the path is pertusbed a little bit and we are interested whe tirst order
perturbation We therefore expert a tangent vector to a point in path space to he a vector feld along the corresponding path as in figure (2.7). By a vector field along a path. we mein a choire of tangent vector to M at each point of the path. In geacral a vertor field along a wap f from a manifold M to a manifold N, is a smucth choice of image-space tangent vector in $T_{f(x)} N$ for each point x in the somrce spare M.

Figure 2.7: A small perturbation of a path in $I \times M$ is given by a vector field along that path.

A curve $p(\gamma)$ in $P_{1} M$ parameterized by γ defines a curve $p(\epsilon, \gamma)$ for each ϵ .hrough $p\left(\varepsilon_{1} \gamma=0\right)$ in $I \times M$. The equivalence class of curves in $P_{1} M$ defining a vector thus reduces to an equivalence class of curves in M for each e, Wie may identify a tangent vector to p in $P_{1} M$ with a field of vectors over p in $I \times M$ sucb
that each vector has no $\frac{d}{d}$ component. For $p \in P_{1}, M$ a vector $l ; T_{p}\left(P_{1}, M\right)$ is a map

$$
\begin{equation*}
\overline{\mathrm{F}} \cdot I \rightarrow I \times T M \tag{235}
\end{equation*}
$$

taking $\epsilon-(\epsilon, \mathcal{V}(\epsilon))$ where $V^{\prime}(c) \in T_{p(t)} M$ (i. e a path in $7 M$)
For the Duffing example, a tangent vector based at the path (u(t), r(t)) has the form ($\delta u(c), \delta v(c)$) and represents the vector field

$$
\begin{equation*}
\left.\delta u(\epsilon) \frac{\partial}{\partial u}\right|_{(u(*), v, \cdot)}+\left.\delta v(\epsilon) \frac{\partial}{\partial \nu}\right|_{(u(\epsilon), w(\epsilon))} \tag{2.36}
\end{equation*}
$$

along the path $(u(c), v(c))$.

2.3.5. Tangent Vectors to the Quotient Spaces

The tangent spaces to the quotient spaces are defined by taking the derivatives of the natural projections. Because $P_{0} M \approx M$, we see that $T I_{4} M \approx T M$. Because the first jet space is isomorphic to the tangent bundle: $1 M \approx T M$, we see that $T 1 M \approx T T M$. Thus the first order perturbation space $1 M$ is naturally $T M$ and the dynamical evolution is given by a vector field on $T M$ as we saw in section 2.2.9.

2.3.5.1. Coord'natea on the Tangent Buadle to the Jet Space

As with . 11 tangent bundes, $T J M$ has a natural coordinate chart, derived from the coordinates $\left\{x_{i}^{a} \ldots, x_{j}^{a}\right\}, 1 \leq a \leq N$ on $J M \mathrm{~d}$ dined carlicr. We obtain coordinates $\left\{x_{0}^{a}, \ldots, x_{j}^{a}, v_{0}^{o}, \ldots, v_{j}^{a}\right\}$ by writing the corresponding vector as

$$
\begin{equation*}
\sum_{a=1}^{N} v_{0}^{a} \frac{\partial}{\partial x_{0}^{a}}+\cdots+v_{j}^{a} \frac{\partial}{\partial r_{j}^{a}} . \tag{2.37}
\end{equation*}
$$

We would like to know to which set of components $\left.\left\{v_{0}^{a}, \ldots, v^{\prime}\right\}\right\}$, the equivalence class of a vertor 'l'f) on $P_{1} M$ corresponds. For the Duffing example, a tangent vectur to the space of J-jets looks like

$$
\begin{equation*}
\delta u_{0} \frac{\partial}{\partial u_{0}}+\delta v_{0} \frac{\partial}{\partial v_{0}}+\ldots+\delta u, \frac{\partial}{0 \cdot \vartheta_{J}}+\delta v_{j} \frac{\partial}{\partial v_{J}} \tag{2.38}
\end{equation*}
$$

2.3.5.2. Coordinate Relation Between Path and Jet Vectora

To the path $x^{a}(\epsilon)$ representing a point in $P_{1} M$ corresponds the point coordnatized by

$$
\begin{equation*}
x_{k}^{a}=\left.\frac{\partial^{k}}{\partial \epsilon^{k}}\right|_{\varepsilon=0} x^{a}(c), \quad 1 \leq a \leq N, \quad 0 \leq k \leq J \tag{2.39}
\end{equation*}
$$

in $J M$. To the curve of paths $x^{a}(c, \gamma)$ in $P_{1} M$ corresponds the curve

$$
\begin{equation*}
x_{k}^{a}(\gamma)=\left.\frac{\partial^{k}}{\partial \varepsilon^{k}}\right|_{\varepsilon=0} x^{a}(\varepsilon, \gamma), \quad 1 \leq a \leq N, \quad 0 \leq k \leq j \tag{2.40}
\end{equation*}
$$

in $J M$. The rector tangent to this curve in $T P_{1} M$ has coordinates

$$
\begin{equation*}
V^{\mathrm{a}}(\epsilon)=\left.\frac{\partial}{\partial \gamma}\right|_{\gamma=0} x^{\mathrm{a}}(\epsilon, \gamma) \tag{2.41}
\end{equation*}
$$

In $T J M$ this corresponds to

$$
\begin{align*}
\boldsymbol{v}_{\boldsymbol{k}}^{\mathbf{a}} & =\left.\frac{\partial}{\partial \gamma}\right|_{\tau=0}\left(\left.\frac{\partial^{k}}{\partial \epsilon^{k}}\right|_{\varepsilon=0} x^{\alpha}(\epsilon, \gamma)\right) \\
& =\left.\frac{\partial^{\mathbf{k}}}{\partial \epsilon^{k}}\right|_{\epsilon=0}\left(\left.\frac{\partial}{\partial \gamma}\right|_{\tau=0} x^{a}(\epsilon, \gamma)\right) \tag{2.42}\\
& =\left.\frac{\partial^{k}}{\partial \epsilon^{k}}\right|_{\epsilon=0} V^{a}(\epsilon) .
\end{align*}
$$

 to the jet space vector

$$
\delta u_{u_{0}} \frac{\partial}{\partial u_{0}}+\delta_{v} \cdot \frac{\partial}{\partial t_{0}}+\quad+\delta_{u_{J}} \frac{\partial}{\partial u j}+\delta_{u^{\prime}}, \frac{\partial}{\partial v_{j}}
$$

where

$$
\begin{aligned}
& \delta u_{0}=\delta u(0) \quad \tau_{0}=\delta v(0) \\
& \delta u_{1}=\left.\frac{\partial}{\partial t} \delta u(\epsilon)\right|_{\ell=0} \quad \delta v_{1}=\frac{\partial}{\partial i} \delta v((t),-0 \\
& \delta u J=\left.\frac{\partial^{J}}{\partial \epsilon} \delta u(c)\right|_{e=0} \quad \delta v j=\frac{\partial^{J}}{\partial \epsilon} \delta \delta v(\epsilon)_{i=0}^{\prime}=0
\end{aligned}
$$

2.s.6. Dynamice on Path Space

Let us now consider the effect of the dynamics $\dot{x}=X(\epsilon, x)$ on paths. This lifts to a vector field on $P_{1} M$ given by

$$
\begin{equation*}
\bar{X} \text { where } \bar{X}(p): \varsigma \mapsto X(\epsilon, p(\epsilon)) \tag{2.45}
\end{equation*}
$$

This is the path space dynamical vector field. Note that this vector feld is of a very special type and not every vector field on P_{1}, h can arise in onis way for the Duffing example, the path space vector feld ($\delta \mathrm{u}(\mathrm{d})$, $\delta \cdot(6))_{u, v}$ at the point (u, t) is equal to

$$
\delta u(t)=\eta(t) \quad b t(t)=-u(t) \cdots\left(u^{3}(t) .\right.
$$

2.3.7. Lynamics on Jet Space

In. coorduates, the corresponding vector fiefd on $J P$ is

$$
\begin{gather*}
\left.\mathfrak{v}_{k}^{a}\left(x_{0}, \ldots, x_{t}\right)=\left.\frac{\partial^{k}}{\partial t^{k}}\right|_{t=0} X^{a}\left(t, I_{0}+\varepsilon x_{1}+\cdots+\frac{t^{j}}{J!}!^{\prime}\right\}\right) \\
\frac{\partial^{k}}{\partial \epsilon^{k}} x_{\epsilon-0} x^{-a}\left(t, x_{0}\right)+\left.k \frac{\partial^{k-1}}{\partial \epsilon^{k-1}}\right|_{t=0} \sum_{b=1}^{N} \frac{\partial}{\partial x_{0}^{b}} X^{a}\left(\epsilon, x_{0}\right) x_{1}^{b}+\cdots, \tag{2.47}
\end{gather*}
$$

which is exactly the perturbation dynamics up to order J obtained in equations (2.15):

For exaniple, we calculate that

$$
\begin{align*}
V_{0}^{a}\left(x_{1}, \ldots, x_{J}\right)= & X^{a}\left(0, x_{0}\right) \\
V_{1}^{a}\left(x_{0}, \ldots, x_{j}\right)= & \left.\frac{\partial}{\partial c}\right|_{c=0} X^{a}\left(c, x_{0}\right)+\sum_{b=1}^{N} \frac{\partial}{\partial x_{0}^{b}} X^{a}\left(0, x_{0}\right) x_{1}^{b} \\
V_{2}^{a}\left(x_{0}, \ldots, x_{j}\right)= & \left.\frac{\partial^{2}}{\partial c^{2}}\right|_{c=0} X^{a}\left(c, x_{0}\right) \\
& +\left.2 \frac{\partial}{\partial c}\right|_{c=0} \sum_{0=1}^{N} \frac{\partial}{\partial x_{0}^{b}} X^{a}\left(0, x_{0}\right) x_{1}^{b} \tag{2.48}\\
& +\sum_{b, c=1}^{N} \frac{\partial^{2}}{\partial x_{0}^{b}} X^{a}\left(0, x_{0}\right) x_{2}^{b} x_{i}^{i}+\sum_{b=1}^{N} \frac{\partial}{\partial x_{0}^{b}} X^{a}\left(0, x_{0}\right) x_{2}^{b}
\end{align*}
$$

In the Duffing example, we see that the jet vector field

$$
\begin{equation*}
\delta u_{0} \frac{\partial}{\partial u_{0}}+\delta{L_{0}^{\prime}}^{\frac{\partial}{\partial v_{1}}}+\ldots+\delta u_{j} \frac{\partial}{\partial u_{j}}+\delta v_{j} \frac{\partial}{\partial v_{j}} \tag{2.49}
\end{equation*}
$$

bas the components:

$$
\begin{aligned}
\delta u_{0} & =\delta u(0)=v(0) \\
\delta v_{0} & =\delta v(0)=-u(0) \\
\delta u_{1} & =\left.\frac{\partial}{\partial \epsilon}\right|_{t=0}=0 \tau(\epsilon)+\left.\frac{\partial}{\partial u}\right|_{t=0}(\delta u(0)) u_{1}+\left.\frac{\partial}{\partial v}\right|_{t=0}\left(\delta u(0) \cdot u_{1}\right. \\
& =0+0+1 \cdot v_{1}=v_{1}(0) \\
\delta v_{1} & =\left.\frac{\partial}{\partial \epsilon}\right|_{e=0} \delta v(c)+\left.\frac{\partial}{\partial u}\right|_{1=0}(\delta v(0)) u_{1}+\left.\frac{\partial}{\partial v}\right|_{t=0}(\delta v(0)) v_{1} \\
& =-u^{3}(0)+\left.\left(-1-3 \epsilon u^{2}\right)\right|_{\mathbf{l}}=0 u_{1}=-u^{3}(0)-u_{1}
\end{aligned}
$$

We have thus found the natural geometric setting for Jth order perturbation theory in a certain jet bundle. The picture of the dynamics of paths in $I \times M$ is an extremely fruitful one One can prove that the solution of the perturbation equations (2.15) really is the asymptotic expansion of the true solution just by noting that they are the equations of evolution of the jets of the paths evolving under the true dynamics. The coordinates in which the dynamics are expressed are irrelevant as regards the perturbation dynamics and therefore we can do perturbation theory on manifolds and in infinite dimensions as is required for many physical systems. Next we will review modern Hamultonian mechanics and indicate why the perturbation dynamics is Hamitonian in a natural way if the unperturbed dynamics is.

2.4. Gcometric Hamiltonian Mechanica

"The next morning, I burried along to onc of the libraries as soon as it was open and then I looked up Poisson brackets in Whittaker's 'Analytic Dynamies' and I found that they were just what I needed ${ }^{n}$--P. A. M. Dirac in [Dirac, 1977] p. 122.

The evolution of mechanical systems is traditionally described in terms of generalized coordinates q_{1} and their conjugate momenta p_{1}. One introdures the Hamiltonian function

$$
\begin{equation*}
H\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}\right) \tag{2.51}
\end{equation*}
$$

and the Poisson bracket

$$
\begin{equation*}
\{f, g\}=\sum_{i=1}^{n}\left(\frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{2}}-\frac{\partial f}{\partial p_{1}} \frac{\partial g}{\partial q_{1}}\right) \tag{2.52}
\end{equation*}
$$

of two functions of q_{1} and p_{4}. Any observable f evolves according to the evolution equation

$$
\begin{equation*}
\dot{f}=\{f, H\} \tag{2.53}
\end{equation*}
$$

For the Duffing example, we may use the Poisson bracket

$$
\begin{equation*}
\{f, g\}=\frac{\partial f}{\partial u} \frac{\partial g}{\partial v}-\frac{\partial f}{\partial v} \frac{\partial g}{\partial u}, \tag{2.54}
\end{equation*}
$$

the Hamiltonian

$$
\begin{equation*}
H=\frac{v^{2}}{2}+\frac{u^{2}}{2}+c \frac{u^{4}}{4} . \tag{2.55}
\end{equation*}
$$

Together these give rise to the correct equations:

$$
\begin{equation*}
\dot{\mathrm{u}}=\{\mathrm{u}, H\}=\frac{\partial H}{\partial v}=v \tag{2.56}
\end{equation*}
$$

ans:

$$
\begin{equation*}
\dot{\mathrm{v}}=\{v, H\}=-\frac{\partial H}{\partial u}=-u-c u^{3} . \tag{2.57}
\end{equation*}
$$

2.4.1. Poisson Manifolds

For a detailed deacription of the modern approach to mechanics see references [Abraham and Marsden, 1978], [Arnold, 1978], and [Marsden, 1981]. The modern perspective regards the particular coordinates p_{2} and q_{2} as physically irrelevant. Just as general relativity isolates the physically relevant easence of local coordinates in a metric tensor, modern classical mechanics views the Poisson bracket structure (not necessarily expressed in any coordinate system) as the physical entity. Just as physics in spacetime is invariant under transformations that preserve the metric, physics in phase space is invariant under the canonical transformations which preserve the Poisson bracket. In the modern viewpoint one proceeds axiomatically and does not require canonical coordinates. Dynamics occurs on a Poisson mani fold. This is a manifold of states with a Poisson bracket defined on it. From this viewpoint a Poisson bracket is a bilinear map from pairs of functions to functions Which makes the space of function: into a lie algebra and acts on products as a derivative does:
I. Bilinearity:

$$
\left\{a f_{1}+b f_{2}, g\right\}=a\left\{f_{1}, g\right\}+b\left\{f_{2}, g\right\}
$$

Il. Abti-symmetry:
$\{f, g\}=-\{g, f\}$
III. Jacobi's identity:
$\{f,\{g, h\}\}+\{g,\{h, f\}\}+\{h,\{f, g\}\}=0$
[5. Derivation property: $\quad\{f, g h\}=\{f, g\} h+\{f, h\} g$

2.4.2. Hamiltoniana and Hamiltonian Vector Fields

The Hamiltonian is a function on the Poisson manifold. The evolution of local coordinates z^{\prime} is obtained from a Hamiltonian H and the Poisson bracket \{,\} via

$$
\begin{equation*}
\tilde{z}^{\prime}=X_{H} \cdot z^{\prime}=\left\{z^{\prime}, H\right\} . \tag{2.59}
\end{equation*}
$$

X_{H} is the Hamiltonian vector Geld ssociated with H and defines a dynamical system. The fourth property of a Poisson bracket implies the useful expreasion

$$
\begin{equation*}
\{f, g\}=\sum_{i, j} \frac{\partial f}{\partial z^{\mathbf{i}}}\left\{z^{\mathbf{i}}, z^{\prime}\right\} \frac{\partial g}{\partial z^{j}} . \tag{2.60}
\end{equation*}
$$

Thus tbe Poisson bracket is equivalent to an antisymmetric contravariant two-tensor

$$
\begin{equation*}
J^{\prime J} \equiv\left\{z^{i}, z^{\prime}\right\} . \tag{2.61}
\end{equation*}
$$

2.4.3. Symplectic Manifolds

If this tensor is nondegenerate, its inverse $\omega \equiv J^{-1}$ is a cloged, nondegenerate two-form called a symplectic structure. In this case our Poisson manifold is known as a symplectic manifold (see [Abraham, Marsden, and Ratiu, 1983] p. 463). The terminology is due to Herman Weyl. The symplectic group is related to "line complexes ${ }^{m}$ in projective geometry and so ω was originally refered to as a complex structure. There is another object that naturally has this name in the study of the complex analysis of many variables, however. To eliminate this confusion, Weyl look the Latin roots com and plex and converted them to their Greek equivalents sym and plectic.

2.4.4. Symplectic Leaves and Bones and Casimi Functions

Because we do not require nondegencracy, a Poisson manifold is a more generad notion than a symplectir manifold. If J is degenerate, then there are directions in phase space in which no Hamiltonian vector field can point. The available direction lie tangent to submanifolds which fill ou. the Poisson manifold and on which J is nondegenerate. The highest dimensional of these form a foliation of their unicn and so are known as symplectic leaves. The only prior usage of the term symplectic in Engiish is to describe a small bo- in the head of a fisb. Because Poisson is French for fish, the lower dimensional symplectic submanifolds are sometimes known as symplectic bones (these notions were introduced in [Weinstein, 1983a]). Togetber, the symplectic leaves and the symplectic bones fill out the Poisson manifoid, and any Hamiltonian dynamics is restricted to lie on a single bone or leaf. Any function which is constant on each bonc and leaf Poisson commutes with every other function. Any function which Poisson commutes with every function is automatically a constant of the motion, regardleas of the Hamironian and is called a Casimir fuaction.

2.4.5. The Natural Symplectic Structure on Co'angent Spaces

A natural symplectic manifold arises from each Lagrangian mechanical system on a confifuration space C. The Lagrangian L lives on the tangent bundle $T C$ (velocities being tangent to the curves of motion in c:'jguration space are naturally tangent vectors). Hamiltonian mechaniss takes place on the cotangent bundle $T^{*} C$ (momenta, being derivatives of L with respect to velocity, ase naturally dual to
velocities and tbus are covectors). At each point x of C, the set of velocity vectors v in $T_{r} C$ are identified with correspouding momenta p in $T_{x}^{*} C$ by a Legendre map defined by L (tbe classical concept of a Legendre map is dexcribed in modern terms in section 16.5.11):

$$
\begin{equation*}
p=\frac{\partial L}{\partial v} \tag{2.62}
\end{equation*}
$$

The Ha:niltonian is a function on the cotangent bundle which on each cotangent fiber is equal to the Legendre transform (deacribed in sectinu 16.5.5) of the the Lagrangian restricted to the corresponding tiber of the tangent bundle.
$T^{*} C$ has the natural symplectic structure

$$
\begin{equation*}
\omega=-d \theta \tag{2.63}
\end{equation*}
$$

where θ is an intrinsically defined one-form on $T^{*} C$ (see |Abraham, Margden, and Ratiu, 1983| p. 465). θ must pair with a tangent vector v in $T T^{*} C$ based at (x, α) in $T^{*} C$ to give a real number. To define this we use the natural projection

$$
\begin{equation*}
\pi: T^{\bullet} C \rightarrow C \tag{2.64}
\end{equation*}
$$

which takes a covector to its basepoint in C. The differential of π sends $T T^{\circ} C$ to $T C$ and may be applied to v to get a vector tangent to C, α is a one-form on C and may be applied to this vector. Let us defiue the pairing of θ with v to be the pairing of α with the image of v under $T \pi$:

$$
\begin{equation*}
\theta(v)=\alpha(T \pi v) . \tag{2.65}
\end{equation*}
$$

In coordinates q^{a} on C, this takes the form

$$
\begin{equation*}
\theta=p_{\alpha} d q^{a} \tag{2.66}
\end{equation*}
$$

and , ads to the symplectir form

$$
\begin{equation*}
u-d q^{a} \wedge d p_{a} \tag{267}
\end{equation*}
$$

This construction generaizes the usual structure in terme of canonacal p 's and p s to configuration spare $=$ which are manifolds. Symmetry is responsible for the simpli jed systems about which we perturb and plays an intimate role in our geometric theory We therefore next introduce some key modern ideas and basic examples relating to Hamiltonian symmetry.

2.5. Hamiltonian Sybtems with Symmetry

Pertups the central advantageoug feature of systems with a Hamiltonian structure Lu a generalization of Noether's theorem selating symmetries to conserved quanuties. Noptber considered symmetries of the Lagranfian under transformations of ronfiguration space. One may introduce generalized coordinates $\left(q_{1}, \ldots, q_{n}\right)$ where $\left(q_{2} \ldots, q_{n}\right)$ are constant under the symmetry transformation and q_{1} varies with the transformation. For example we might take the configuration space to be ordinary Euclidean 3-8pare where the action of the symmetry is translation in the I direction, and utilize the coordinates

$$
\begin{equation*}
q_{1}=x, \quad q_{2}=y, \quad q_{3}=z . \tag{2.68}
\end{equation*}
$$

That L is :nvariant means that it does not depend on q1, i.e. q_{1} is an ignorable coordinate. The Euler-Lagrange equations

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)-\frac{\partial L}{\partial q}=0 \tag{2.69}
\end{equation*}
$$

show that in this case the momentum

$$
\begin{equation*}
p_{1}=\frac{\partial L}{\partial \dot{q}_{1}} \tag{2.70}
\end{equation*}
$$

conjugate to q_{1} is actually a constant of the motion

2.6.1. Generalized Noether's Theorem

By going to a Hamiltonian description in terms of Poisson brackets we may extend Nuether's theorem in a fundemental nay We may consider a one-parameter symmetry transformation of the riole phase space as opposed to just configuration space. If this transformation preserves the Hamiltonian and the Poisson bracket (i.e. is a canonical transformation) then it is associated wich a conserved quantity. We will see that this extension of Noether's theorem is essential in the case of gyromotion and in otiser examples.

One-parameter families of canonical transformations of this type may be represented as the "time" s evolution generated by some function J, treated momentarily as a Hamiltonian. Parametrizing our transformation by a and labelling points in phase space by $\underline{2}$, the solution $\underline{z}(s)$ of

$$
\begin{equation*}
\frac{d \underline{z}}{d s}=\{\underline{z}, J\} \quad \underline{z}(0=0)=z_{0} \tag{2.71}
\end{equation*}
$$

is the family of canonical transformations generated by J.
If the transformations generated by J are symmetries of H then

$$
\begin{align*}
\frac{d H}{d s}=0 & =\sum_{1} \frac{\partial H}{\partial z^{i}} \frac{d z^{i}}{d s} \\
& =\sum_{i} \frac{\partial H}{\partial z^{2}}\left\{z^{\prime}, J\right\} \\
& =\{H, J\} \tag{2.72}\\
& =-\{J, H\} \\
& =-j .
\end{align*}
$$

So J is a conserved quantity.

2.5.2. Circle Actions

We now consider the cage in which the solutions of

$$
\begin{equation*}
\frac{d \underline{z}}{d s}=\{\underline{z}, J\} \tag{2.73}
\end{equation*}
$$

are all closed curyes with the same period We will call these closed orbits loops. The symmetry iransformation is then said to be a circle action on phase space.

Figure 2.8: The circle action on J, θ phase space.

For exanple we might consider rotation hy θ in J, θ space. In this case phase space looks like a cylinder (as shown in figure (2.8). The Poisson bracket is

$$
\begin{equation*}
\{f, g\}=\frac{\partial f}{\partial \theta} \frac{\partial g}{\partial J}-\frac{\partial j}{\partial J} \cdot \frac{\partial g}{\partial \theta} . \tag{2.74}
\end{equation*}
$$

J geqerates the dynamics

$$
\begin{align*}
& \frac{d \theta}{d A}=\{\theta, J\}=1 \tag{1275}\\
& \frac{d J}{d \mu}=0
\end{align*}
$$

which just rotates the cylinder.

2.5.3. Reduction by a Circle Action

In studying the dyaamics of a Hamiltonian H symmetric under a circle artion generated by J, we may make two simplifications which toge:her comprise the process of reduction. This procedure was defined in Marsden and Weinstein, 1974] in a more general setting that we will describe sbortly. The process unifies many previously known techniquas for simptifying sperific examples of Hamiltonian systems.

2.5.3.1. The Reduced Phase Space

1. Because J is a constant of the motion, the surface $J=$ constant in phase space is invariant under the dynamics and so we may restrict attention to it.
2. The symmetry property of H implies that if we take a solution curve z(t) of the equation $\dot{\underline{z}}=\{\underline{z}, H\}$ and let it evolve for a "time" s under the dynamics $\dot{z}=\{\underline{z}, J\}$ then we obtain another solution curve of $\dot{\underline{z}}=\{\underline{z}, \boldsymbol{H}\}$. In fact th. dynamics of B takes an entire loop into other entire loops

The dynamies around loops is easy to solve for berause

$$
\begin{equation*}
\theta=\frac{\partial H}{\partial J} . \tag{2.76}
\end{equation*}
$$

Notice that θ is not uniquely defined but $\dot{\theta}$ is. We are interested in the problem of finding the dynamics from loop to loop. We want to projert the original dynamics on ph. apace P down to a space P / S^{1} whose points represeut whole loops in P. Let us all P / S^{1}, the space of loops and $\pi: P \rightarrow P / S^{1}$, the projection mapping loops in P to points in P / S^{1}. For example, when $P=J . \theta$ space the projecticn mapping takea J, θ to J. This projection is shown in Ggure (2.9). Thus the second simplfication La 'o consider dynamics on the space of loops P / S^{1}.

Figure 2.9: The projection of J, θ space to the space of loops

Performing both of these operations-- restricting to $J=$ constant and considering the space of loops - leaves us with a space,

$$
\begin{equation*}
R \equiv P /\left.\xi^{1}\right|_{J=\text { eoontant }} \tag{2.77}
\end{equation*}
$$

of two dimensions lequ thar P. called the reduced space
We have seen that the dyankicn on P uaturally determiges dybamirs on R The key importance of R is that R 's dyamics is itself Hamiltonian. For this statement to make sense we need to find a Hamiltonian and a Poisson bracket on R Tbese are the so-called rec'uced Haniltonian and reduced Poisso:: bracket.

2.5.3.2. The Reduced Hamilitonian

The original Hamiltonian H on P is constant on loops by the symuetry condition. We mey take the value of the reduced Hamiltonian at a point of k to be the value of H on the corresponding loop in P.

2.5.3.3. The Reduced Poisson Bracket

To obtain the reduced Poisson bracket of two functions f and g on R, we consider any two functions \bar{j} and \bar{g} on P which are constant on loops and agree with f and g when restricted to $J=$ constant and projected by π to R. The Poisson bracket on P of f and \dot{g} will be constant on loops and its value on $J=$ constant will be independent of how \hat{f} and \hat{g} were extended as functions on J (because they are constant on loops: $\{\dot{f}, J\}=0$ and $\{\hat{g}, J\}=0$ so $\{\dot{f}, \hat{g}\}$ is independent of $\partial \dot{f} / \partial \partial J$ and $\partial \dot{g} / \partial J$). Thus the value of the reduced Poisson bracket on R of f and g is the value on the corresponding loop in P of the Poisson bracket of any two exte.sions j, g that are constant on loops.

2.5.3.4. Coordingie Calculation of the Reduced Space

In examples we often introduce a coordinate θ describing the position on a loop. We may then treat P / S^{t} as the set $\theta=0$ (at least locally). In this case R is the subset $\theta=$ constant,$J=$ constant of P. The reduced Hamiltonian on R is just the value of H on this subset of F To calculate the value of the Poisson bracket of two functions on P on this surface, we need only their first derivatives there.

If the functions are constant on loops (i.e. independent of θ), then the derivative $\partial / \partial \theta$ ia zero. The dependence on J is irrelevant, so we may take the derivative $\partial / \partial J$ to be zero. Plugging these two expressions into the Poison bracket on P gives us the expression for the reduced Poisson bracket on \boldsymbol{R}.

2.6. Example: Centrifugal Force

We consider a particle on a two-dimensional plane moviog in a rotationally symmetric potential The phase space is then $T^{-\mathfrak{S}^{2}}$ with coordinates $\left(x, y, p_{x} \cdot p_{v}\right)$ The Poisson bracket is the canonical one:

$$
\begin{equation*}
\{f, g\}=\frac{\partial f}{\partial x} \frac{\partial g}{\partial p_{x}}-\frac{\partial f}{\partial p_{x}} \frac{\partial g}{\partial x}+\frac{\partial f}{\partial y} \frac{\partial g}{\partial p_{y}}-\frac{\partial f}{\partial p_{v}} \frac{\partial g}{\partial y} . \tag{2.78}
\end{equation*}
$$

The Hamiltonian is taken to be

$$
\begin{equation*}
H=\frac{1}{2 m}\left(p_{x}^{2}+p_{v}^{2}\right)+v\left(\sqrt{x^{2}+y^{2}}\right) . \tag{2.79}
\end{equation*}
$$

The symmetry on phase space is given by the evolution of the equations

$$
\begin{array}{cc}
\frac{d x}{d s}=-y & \frac{d y}{d \theta}=x \\
\frac{d p_{x}}{d \theta}=-p_{v} & \frac{d p_{y}}{d_{\theta}}=p_{x} \tag{2.80}
\end{array}
$$

We may think of a point in phase space as a point in the plane (x, y) with a vector attached ($p_{x} . p_{y}$). The action of the symmetry is to rotate the plane about the origin, vector and all as shomin in figure (2.10;

2.6.1. Angular Momentum Generates Rotations

The Harniltonias depends only on the radial distance and the magnitude of the momentum vector and so clearly remans invariant under this rotation The rotation is a cajonical transformation with generator J satisfying

$$
\frac{d f}{d s}=\{f . J\}=x \frac{\partial f}{\partial y}-y \frac{\partial f}{\partial x}+p_{x} \frac{\partial f}{\partial p_{\mathbf{u}}} \quad p_{v} \frac{\partial f}{\partial p_{x}}
$$

Figure 2.10: The action ois the circle symmetry on momentum vectos.
for any f. Taking $f=x, y, p_{x}, p_{y}$ gives

$$
\begin{equation*}
\frac{\partial J}{\partial p_{x}}=-y \quad \frac{\partial J}{\partial p_{y}}=x \quad \frac{\partial J}{\partial x}=p_{y} \quad \frac{\partial J}{\partial y}=-p_{x} . \tag{2.82}
\end{equation*}
$$

Thus we see that the generator is $J=x p_{y} \sim y p_{x}$, i.e. the angular momentum. We may label a loop by the value of x, p_{x}, and p_{y} when $y=0$ and $x \geq 0 . J$ on this subset is just $x p_{v}$. These then form coordinates on the space of loops P / S^{1}. Notice that the value of x on a loop when $y=0$ defines the radial coordinate. For clarity, we will introduce the coordinate functions r and p_{r} on the retuced space for rach J A loop is labeled by - if $x=r$ when $y=0$ on that loop. A loop is labeled by p_{r} if $p_{x}=p_{r}$ when $y=0$ on that loop.

2.6.2. The Reduced Space and Bracket

To get the reduced spart wre ae: J to the constant value μ To get the eduren bracket, it is easiect to envision the tho-dimensoual redur a spare with coordinates (r.p.) as a submanifold of the four-dimensional total spase with corscimater $\left(x, p_{z}, y, p_{v}\right)$ defined b_{y} :

$$
\begin{array}{ll}
x=r & \boldsymbol{p}_{\boldsymbol{x}}=p_{r} \\
y=0 & p_{v}=\frac{\mu}{r} . \tag{2.83}
\end{array}
$$

This submanifold intersects each loop transversely in exactly one point since a loop has $y=0$ with $z \geq 0$ at only one point. It also lies entirely in the level surface $\boldsymbol{J}=\boldsymbol{\mu}$ since

$$
\begin{equation*}
J=x p_{\nu}-y p_{x}=r\left(\frac{\mu}{r}\right)-0 \cdot p_{r}=\mu \tag{2.84}
\end{equation*}
$$

We want to know the rejuced Poisson bracket of functions $\int\left(r, p_{r}\right)$ and $g\left(r, p_{r}\right)$ of 5 and p_{r}. As in section 2.5.3.3, we define the bracket of two such functions by introducing $\hat{f}\left(x, p_{x}, y, p_{y}\right)$ and $\hat{g}\left(x, p_{x}, y, p_{y}\right)$ on the four-dimensional space which are equal to \int and g when restricted to the two-dimensional submanifold and which are constant on loops. We take the four-dimensional Poisson bracket of \hat{f} and $\hat{\boldsymbol{g}}$. This bracket is also guaranteed to be constant on loops. The restriction of the bracket of \hat{f} and g to the (r, p_{r}) submanifold is defined to be the bracket of f and g. Since we only geed the full bracket on the submanifold, we don't really need to know \hat{j} and \hat{g} everywhere; we need only their derivatives in each direction at points of the submanifold. We calculate these derivatives as follows. Delivatives along the submanifold are the same as for \hat{j} and $\dot{\boldsymbol{q}}$:

$$
\begin{equation*}
\frac{\partial \dot{f}}{\partial x}=\frac{\partial f}{\partial r} \tag{2.85}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \dot{f}}{\partial p_{x}}=\frac{\partial f}{\partial p_{r}} \tag{2.86}
\end{equation*}
$$

with .umilar expressions for g. Derivatives of \dot{f} and \dot{g} along the loops (and so tralsveras to the submanifold) must be zero since \dot{f} and \bar{g} are constant on loops.

This implies that on the manifold

$$
\begin{align*}
\left.\partial \dot{f}\right|_{\text {Iubmanifold }} & =0 \\
& =x \frac{\partial \hat{f}}{\partial y}-y \frac{\partial \hat{f}}{\partial x}+p_{x} \frac{\partial \hat{f}}{\partial p_{y}}-p_{v} \frac{\partial \hat{f}}{\partial p_{x}} \tag{2.87}\\
& =r \frac{\partial \hat{f}}{\partial y}-0 \cdot \frac{\partial f}{\partial r}+p_{r} \frac{\partial \hat{f}}{\partial p_{y}}-\frac{\mu}{r} \frac{\partial f}{\partial p_{r}} .
\end{align*}
$$

Finally, we may extend \dot{f} in the fourth direction in any way we like because the result is independent of this extension. For simplicity, let us choose

$$
\begin{equation*}
\frac{\partial \dot{f}}{\partial p_{v}}=0 . \tag{2.88}
\end{equation*}
$$

This leads to

$$
\begin{equation*}
\frac{\partial \dot{f}}{\partial y}=\frac{\mu}{\tau^{2}} \frac{\partial f}{\partial p_{r}} \tag{2.89}
\end{equation*}
$$

Nor we can calculate the reduced bracket:

$$
\begin{align*}
\left\{f_{,} g\right\}_{R}\left(r, p_{r}\right) & =\{\hat{f}, \hat{g}\}\left(x=r, y=0, p_{x}=p_{r}, p_{y}=\frac{\mu}{r}\right) \\
& =\frac{\partial \hat{f}}{\partial r} \frac{\partial \hat{g}}{\partial p_{x}}-\frac{\partial \hat{f}}{\partial p_{x}} \frac{\partial \hat{g}}{\partial x}+\frac{\partial \hat{f}}{\partial y} \frac{\partial \hat{g}}{\partial p_{y}}-\frac{\partial \hat{f}}{\partial p_{y}} \frac{\partial \hat{g}}{\partial y} \tag{2.90}\\
& =\frac{\partial f}{\partial r} \frac{\partial g}{\partial p_{r}}-\frac{\partial f}{\partial p_{r}} \frac{\partial g}{\partial r}+\frac{\mu}{r^{2}} \frac{\partial f}{\partial p_{r}} \cdot 0-0 \cdot \frac{\mu}{r^{2}} \frac{\partial g}{\partial p_{r}} \\
& =\frac{\partial f}{\partial r} \frac{\partial g}{\partial p_{r}}-\frac{\partial f}{\partial p_{r}} \frac{\partial g}{\partial r} .
\end{align*}
$$

The reduced bracket in this case is just the canonical bracket on r, p_{r} space.
2.0 3. The Reduced Hamitoniat Gives Centifugal Force

The reduced Hamiloman is ohtamed by restricting the original Hamithonian submanifold and is given by

$$
\begin{equation*}
H=\frac{p_{r}^{2}}{2 \pi}+\left(\frac{\mu^{2}}{2 m} \frac{1}{r^{2}}+\zeta(r)\right) . \tag{2.91}
\end{equation*}
$$

Note the effective potential $\mu^{2} / 2 m r^{2}$ die to reduction, that represents the centrifu. gal force.

As an aside, it is interesting to note that Newton derived the centrifugal force in a more "kinetic" way which is related to averaging in statistical gas models (Brush, 1983]. He envisioned the motion of a particle along a circular path as the limit of motions on paths on iuscribed polygons as the number of sides becomes infinite. Imagne a circular frictionless billiard table and a billiard ball which refiects from the wall in each traversal about the ec ce of the table. Equivalently a mass attached to a string whose other end is fixed (e.g., a tether ball) can undergo polygonal motion whare the string is fully extended only at the vertices. The centrifugal force is just the average radial monentum transfer per unit of time. It turns out that this is independent of the numbsi of bonnces Nenton considered the average force for an inserined square. Eatb irpact transfers $2 m e / \sqrt{2}$ units of momentum. The total radial momegtum transfer is then $4 \sqrt{2} m V$. The distance travelled by the ball in one tra: ersal is $4 \sqrt{2} r$. The time this takes is $v /(4 \sqrt{2 r})$. The average radial momentum transfer per unit of time is tbeu

$$
\begin{equation*}
4 \sqrt{2} m_{t}\binom{r}{4 \sqrt{2} r}-\frac{m \cdot t}{r} \tag{2}
\end{equation*}
$$

Which is the centrifugal force. (The same result is even easier to obtain with just tro bounce. The momentum transfer is $4 m v$ and the time is $\% / 4 r$.) The first correc: arcount of centrifugal force was actually given by Huygens, who is better known for has ideas on waye motion.
2.7. Higher Dimennional Symmetries
-The hest and hatest marhematual methods to appear on the market Lave been uned ubedever possuble In doing this many an old and trasted farorite of the older generation has been forsaken. as I deemed it best not to hand dull and horn-out tools dona to the next generation." Thirrirg. 1978, p iv

Quite ofter physical systems are blessed with more than one dimension of symmetry. In keeping with the philosophy of not making unpiysical chnices, it in natural to consider the process of reduction in the presence of an irbitrary Lie group of syirmetry. This program was carried out in (Margden and Weinstein, 19/4].

A Lie group is a group which is also a manifold, such that the group operations respect the smoothness structure. A good example to keep in mind is the group of rotations of three-dimensional Euclidean space. This group is denoted by $S O(3)$. It may be thought of as the space of 3 by 3 matices (this is the 3 in $S O(3)$) which are orthogonal (this is the O in $S O(3)$) and have unit determinant (this is the S, which stands for epecial). The group multiplication is matrix multiplication, and the manifold structure arises from thinking of $S O(3)$ as a submanifold of the nine-dimensional Euclidean space of all 3×3 matrices.

2.7.1. Hamiltonian Symmetry

A Hamiltonian syste- - with symmetry congists of a Poisson manifold M, a Hamiltonian H, and a group G that acts on M so as io preserve both H and the Poisson bracket $\{$,$\} . The tangent space of G$ at its identity may be identified with the Lie algebra g of the group and represents grouf elements infinitesimally close
to the ideatity. The artion of an infinitesimal element of G on M perturbs each point of M by an infinitesimal amount. Thus earh element v of the Lie algebra of G naturally determmes a vector field on M. The action on M of the one-dimensional subgroup te which, is tangent, is given by the flow of this vector field. That the group artion preserves the Poisson bracket, inplies that this vector feld is actually Haniltonian.

For example, M might be the canonical phase space of a system of particles in a central potential (such as planets around a sun), B is then symmetric under the action of $S O(3)$ which rotates the positions of the particles and the directions of their momenta. Thr Lie algebra oo(3) represents infinitesimal rotations and gives rise to a vector field on M. Rotation by a finite angle is the result of flowing aloug this vector field for a finite time.

2.7.2. The Momentum Map

We may therefore associate to each Lie algebra element v, a Hamiltonian function which generates its corresponding vector field (at least locally). If G is n dimensional, and we pick a basis for g, then the group action gives us n corresponding Hamiltonian functions on M. So as not to prefer one basis over another, we collect these n numbers at each point of M into a vector. This vector naturally pairs with an element of g (to give the value of the function which generates the action of that clement) and so the collection of n Hamiltonians is a vector in the dual of the Lie algebra g^{*} at each point of M. Thus with every Hamiltonian group action of G on M, there is a natural map called the momentum map from M to

2721 Lire; 1 Augular Momentury ar Momentum Maph
$g^{*} w^{\prime}$ ich collects together the generatore of the mhatesmal artuon of G ou M 'are A Abrah . 7 and Marsden. 1978 p 276)

2.7.2.1. Linear and Angular Momentum as Momenium Maps

For a mechanical system in R^{3} whech is translation invariant, the momentum map asociates with each poirt in phase space the total linear momentum of the system in that state. If the Hamilonian is rotationally symmetric, the momentum map gives the total angular momentum in each state (so the angular momentum inn't naturally a vector in R^{3}; rather it takes its values in the dual of the Lie algebre of the rotation group $\left.s o(3)^{*}\right)$. When we talked about reduction in the one dimensional case above, the generator J of the action was the momentum map.

2.7.s. Non-commutativity as the Obstruction to Reduction

Does reduction work for higher dimensionai symmetries? If the group is commutative, we may apply the one-dimensional procedure repestedly to eliminate two dimensions of phase space for each dimension of symmetry. If we are able to eliminate all dimensions of phase space in this pray, the system is called integrable (see (Abrabam and Marsden, 1978]p. 393). If the group orbits are bounded, then one can prove that the group is a torus in this case, assuming that the "periods" are constant (see [Arnold, 1978] p. 271). Locally we ma: define angle variables on the toroidal group orbits and the corresponding action variablen form the momeutum map. Recall that there were two steps in the rednction of systems pith one dimension of symmetry, each of whit eliminated uthe dimension of the phawe space
and that either could be performed first. One was to restrict to a level get of the generating function and the other was to drop down to the orbit space (space of loops) For nom-commutative groups, we may again perform either of theve two operations, but each gets in the way of subsequently performing the other. The main issue here is that while the Hamiltonian is invariant under the group action, the momentum map is not. Consider the exarnple of a mechanical system in a spherically symmetric potential so that the rotation group acts on phase space as a symmetry and the momentum map is the total angular momentum While the enerpy is left unchanged as we rotate the state, the angular momentura is rotated just like a vector in R^{3}. This action of $S O(3)$ on the dual of its Lie algebra is known as the coadjoint action.

2.7.4. The Adjoint and Coadjolat Actioner

Let us digress a bit on the structure of Lie groups to make this point clearer. We will use the rotation group $S O(3)$ as an example. As shown in the diagram in figure (2.11), every Lie group has three natural actions on itself. If h is an element of G, then me may multiply on the left by h to get the action L_{h}, we may multiply on the right by h^{-1} (the inverse is chosen so that $R_{f h}=R_{f} R_{h}$) to get R_{h}, and coojugate by h (i.e. $c-h c h^{-1}$) to get the action $A D_{h}$.

Let us consider these three actions for $S O(3)$ when h is a rotation by $\pi / 2$ atout the \dot{z} axis (say, clockwise looking down $\hat{\mathbf{z}}$). Let the actions be applied to c, a. rotation by $\pi / 2$ about the \dot{x} axis. $L_{h} \cdot c=h c$ means first rotate by c and then by h, r setuds \dot{x} to $\dot{\tilde{x}}$ which h seads to $-\hat{y}$, c sends \dot{y} to $-\dot{z}$ which h sends to $-\dot{i}$,

Figure 2.11: Some Natural Group Actions
and c sends \dot{z} to \dot{y} whirb h seods to $\dot{\dot{f}}$ The net result is a rotation ahout the axis contuning $\dot{z} \quad \dot{y}+\dot{z}$ by an angle of $2 \pi / 3$.
$R_{h} \cdot r-h^{-1}$ nicarss rotate by h^{-1} and then by c. h^{-1} sends \dot{x} to \dot{y} which c serude to $\dot{E} . h^{-1}$ sende \bar{y} to $-\bar{i}$ wbicb c gends to $-\dot{j}$ and h^{-1} gends \dot{z} to \hat{z} which c sende t, \dot{y}. The net result is a rotation about the axis defined by $\dot{x}-i-z$ by $2 \pi / 3$.
$A \omega_{h} \cdot c=h r \cdot h^{-1}$ means first to h^{-1}, then c, and then $h . h^{-1}$ sends \hat{x} to \dot{y} which c genile to $-\dot{z}$ which h sends to $-\dot{z}, h \quad$ sends \dot{y} to $-\dot{x}$ which c sends to $-\dot{x}$ whict h sends to \hat{y}, and h^{-1} sends \dot{z} to \dot{z} which c sends to \dot{y} which h sends to \dot{x}. The net result is a rotation by $\pi / 2$ about the $-\bar{y}$ axis. It is no accident that this is where h ser ds \hat{I} a nich is c 's axis.

Cumingation zaptures the noncommutativity of the group that is at issue here. $A D_{h}$ leaves the identity invarianc (since $h \cdot e \cdot h^{-1}=e$). We may therefore take the denvative of $A D_{h}$. at the identity to get a linear map from the Lie algebra to itself denoted $A d_{h}$. . Ad is actually a representation of G on its Lie algebra and i. sometimes called the fundamental representation. For rotations, $A d_{h}$ takes an inf uitesimal rotation about an axis v to an infinitesimal rotation about the axis $h \cdot v$.

If we take the derivative of $A d_{h}$. in the h variable, we get an action ad of the Lie algebra on itself. The action of an element $u \in g$ is none other than Lie bracket with u, i.e.:

$$
\begin{equation*}
a d_{\mathbf{u}} \cdot \boldsymbol{v}=[\mathbf{u}, v] \tag{2.93}
\end{equation*}
$$

For rocations, whis action is given by the cross product. An infinitesimal rotation about axis u followed by an infinitesimal rotation about axis v differs from first
rotarag about \boldsymbol{t} and then about u Ey an intitesimal rotatwo about the axir u -
We have seen that the dual of the Lie algebra g^{*} nlays an mportant role n Hamiltontan symmetres. Ane time you have a linear tranformatou L as thig on a vector space l^{\prime}, you can define its adjoint L^{*} atting on $\mathfrak{l}^{\prime *}$ by requiring that

$$
\begin{equation*}
\left\langle L^{*}, r^{\cdot}\right\rangle=\left\langle a, L_{v}\right\rangle . \tag{294}
\end{equation*}
$$

The adjoint of Afr_{2}. is called the coadjoint action of G on the duad of its Lie algebra g^{*} and is pritten $A d^{*}$. The action of the rotation group on angular momenta that we discovered above is an example of this. The rotation it zots on the angular momentum a to give an angular mumentum $A d_{h}^{*} \alpha$ which is rotated by h.

2.7.4.1. Equivariance of the Momentum Map

One usually requires that a rac nentum mapping be equivariant as in this example (see [Abrahaw and Marsden, 1978] p 269). This means that the value of the momentum map varies as the group acts on the phise space according to the coadoint action:

$$
\begin{equation*}
J(g \cdot x)=A d_{g}^{*} \cdot J(x) \tag{2.95}
\end{equation*}
$$

The interpretarion of $t^{\prime}=$ for the rotation group is -a follows I is a foint in phase space. g is a rotation (1.e. an element of $S O(3)$) $g \cdot x$ is the point in phase space we get to by a plying the rotation g (for a mechanical system, $g \cdot x$ just has each of its position and monyentum variobles rotated by g) $J(a \cdot x)$ ta the angular momedum of the rotated state It is na urally an element of the 3-dunensomal dual of the Lie algetra of $S O(3) J(5)$ is the angular momeaturn of the onginal state Ats,
is the ce, djoint action of the rotation g on the dual of the Lie algebra of $S O(3)$. Here thit artion juat rotates the angular momentum vector by g. That the action in equirariant says that the angular momentum of the system rotated by g is the romatof: hy g of the original angular mornentum.

2.7.5. Multidimensional Reduction using a Coadjoint Lsotropy Subgroup

Let us now try to mimic the reduction procrdure in this noncommutative case. First we restrict attention to the subset of phase space

$$
\begin{equation*}
J=\mu \tag{2.96}
\end{equation*}
$$

where $\mu \mathrm{L}$ a constant element of g^{*}. The dynamics restricts to this subset because J is a constant of $t=$ motion. The whole group G does not act on this subset Lowever, because a general element of G will cbange the value of J. The subgroup of C which leaves μ invarant under the coadjoint action (known as μ 's isotropy subgroup G_{μ}) will act on this subset, and we may drop the dynamics down to its orbit space The realting space,

$$
\begin{equation*}
J^{-1}(\mu) / G_{\mu} \tag{2.97}
\end{equation*}
$$

has a natural symplectic structure, and the Hamiltonian restrict: ' to it generates the projected dyamics. For the rotation group example, we reatrict, to states with a given total angular momenturn (eliminating 3 dimensions) and then forget about the ar gle of rotation about the axis defined by that angular momentum (eliminating one more) The result is a phase apace of four dimensions lower than we started with

2.7.0. Multidimensional Reduction using Coadjoint Orbits

We may obtain the came recult in another way. Cunsider the orbit of a particular element μ of the dual ot the Lic algebra under the coarljoint action This coadjoint orbit O, has a natural symplecic strurture which we will discusa momentarily (see \Abraham and Marsden, 1978] p. 302). For the rotation group the coadjoint orbite are spheres of constant total angular momentum (and the origin). This is !-ecause the rotation group acts on elements of the dual of the Lie algebra by rotating them, and the set of all vectors reachable by rotation from a given vector is a sphcie. The orbit space of M modulo G has a nataral Poisson structure (the bracket of G invariant functions is G invariant) which is not typically symplectic. The symplectic leaves of this structure project onto the coadjoint orbits under the momentum map. The inyerse image of a whole coadjoint orbit under the momentum map is invariant under the group action on M. The orbit space

$$
\begin{equation*}
J^{-1} O_{\mu} / G \tag{2.98}
\end{equation*}
$$

is the same reduced space we constructed above. For the rotation group this consists of restricting to states with a given total magnitude of angu'ar momentum and then modding out by the whole rotation group.

2.7.7. The Lie-Poisson Bracket and Group Conffgration Spaces

An important example of redurtion applies to mechanical systen whose configuration space is the symmetry group itself. We will see that the free rigid body and the perfect fluid are examples of this type in the uext two sections, a fact first
discussed in |Arnold, 1966j. The phase space M is then $T^{*} G$ and the G action is the canonical lift to $T^{\circ} G$ of left or right multiplication. The G orbits have one point in each cotangent Eber (i.e. the group action associates with a given momentum in a given configuration exactly one momentum in each other configuration) and so we may iduntify the orbit space with the cotangent space at the identity, i.e. the dual of the Lie algebra. If the group identity represents a reference configuration, then we may use the group action to identify momenta in an arbitrary configuration with momenta in the reference. If we apply the process of reduction to this setting, this shows that the orbit space of G acting on $T^{\bullet} G$ may be identified with the dual of the Lie algehra g^{*}. If we forget about the configuration and identify momenta with momenta at the reference, then our phase space becomes the space of momenta at the refercnce.

The mornentum map for the group action is then the identity. The coadjoint orbits receive a natural symplectic structure, being the reduced spaces. These symplectic structures are known as Kirillov-Kostant-Souriou (KKS) symplectic structures. If we just consider the orbit space $T^{*} G / G$, thea we obtain a instrial Poisson bracket on g^{*} already known to Sophus Lie ([Weinstein, 1983b]) and sa •alled the Lie Prisson bracket. Explicitly t is

$$
\begin{equation*}
\{f, g\}(\alpha)=\langle a,| \frac{\delta f}{\delta \alpha}, \frac{\delta g}{\delta \alpha}| \rangle \tag{2.99}
\end{equation*}
$$

where $\alpha \in g^{*}, f$ and g are functions on $\boldsymbol{g}^{*},[$,$] is the Lie algebra bracket, and \langle$, is the natural pairing of g and g^{*}. This bracket is behind many of the nontrivial Poisson structures recently discovered in various areas of physics.

2.7.s. Euler's Equations for the Free Rigid Body

As an example. Iet us consider Eiuler's equations for the frem right body fare (Abraham and Maraden, 1978 p. 311). To sperify the configuration of a ferer nerid body, me give a reference configuration and every other configuration is uniquely sperified oy the element of the rotation group that acts ou the reference to give that configuration. The configuration space is therefore identifiable with the group $S O(3)$ itself. As the body rotates in some manner, the representative point in $S O(3)$ moves along a rurve in $S O(3)$. The angular velocity of the body (i.e the velority in this confguration space) in a given confguration represents the first order change in configuration as we let it evolve for a short time. Two evolution curves througb a given configu ation point have the same angular velocity iff they are tangent to first order. In section 2.2 .6 we defined a tangent vector to be just such an equivalence elass of curves. Geametrically, then, we may identify the angular velocity in a given configuration with a tangent vector to $S O(3)$ based at the point representing that confguration. Therefore the state including the angular velocity is naturally a point in $T S O(3)$.

The angular momentum is obtained by axting on the angular velocity ty the moment of inertia tensor. Since the mornent of inertia tensor pairs with tho copies of the angular velocity t. give the kinetic energy which $2 s$ a walar, we see that both of its indices are covariant (i.e. it has two slots for vectors). The angular momentum arisns from filling only one of the slots and is therefore a covector (i.e a one-form) For general Lagrangian systems the momentum is defined in terms of the Lagrangian as $p-\frac{\partial 1}{\partial y}$. Since L is a scalas, thin agat shows that p is a ont
form (which pairs with vector, to give the first-order change in L when the velocity is varied along the yector.: In section 16.5.11, this kind of map is defined as the Legnadre mar gen rated by L from the tangent space to the cotangent space. The moment of inertia teusor (and in general the bilinear kinetic energy form) plays the role of a metric on configuration space which converts velocity vectors to momentum one-forms: For example, in the simple free particle relation $p=m v$, we should view the mase as a tensor (we can see that it is not a scalar by considering multiple particles with diferent masses). Therefore the state including angular momenturn is a point in $T^{*} S O(3)$. This is then the natural phase space for the rigid body.

A priori, there is no way of comparing the angular velocity or momentum in one configuration with that in anotber. Using the group action, however, we may push all velocities to velocities at the identity (i.e. velocities on the reference configuration) which may be identified as elements of the Lie algebra. Both left and righe multiplication can bring us to the identity since they each act on the group trazsitively. Consider a path at the identity (for example a rotation ahout the z axis) to which a given element of g is tangent. Left multiplication by $h \in G$ means move along the path and then rotate by h. Thus the path is associated with the baci, and we get the angular velocity is the body-fixed frame. Multiplying on the right means rotate first by h, then follow the path. The path applied is in'icpendent of the configuration of the body (dearribed by h) and so its tangent represents angular velocity in the apace-fixed frame. Similarly, left multiplication gives angular momentum in the body-fixed frame and right multiplication gives it in the space-fixed frame. At a configuration represented by $h \in G$, the map from
g to g that takes spatial angular velority to body angulay velocity is the adjoint action of h. Similarly, the map from g^{*} to g^{*} that takes spatial angular momentum to body angular momentum is the coadjoint action.

The energy depends only on the augular momer :um in the body (the orientation in space is irrelevant for a free rigid body) and so the Hamiltonian on $T^{*} S O(3)$ is invariant under the colangent lift of left mulniplication and we are indeed in the situation deacribed above. If we drop down to the orbit space of this left multiplication. We get a Poisson bracket and Hamiltonian on the three dimeasional space of angular momenta in the body. The dynamics on this space is exactly Euler's equations. The Poiss a bracket is explicitly given by

$$
\begin{equation*}
\left\{J_{x}, J_{v}\right\}=J_{z} \tag{2.100}
\end{equation*}
$$

plus cylic permutations. The total angular momentum $J_{x}^{2}+J_{y}^{2}+J_{z}^{2}$ is a Casimir function ad so is autornatically conserved. The coadjoint orbits (aud so the symplectic leaves and boncs) are the spheres of constant tot angular momentum and the origin as shown in figure (2.12). The area element on each splere is the two-forrs. representing the KKS rymplectic strucuture.

2.7.9. Euler's Equations for a Perfect Fluid

In ar exactly analogous way, we may consider the Hamiltonian structure of a perfect fuid. If we chonse a reference conf guration, then to get any other configuration we apply a unique diffeomorphism is in Erure (2 13) (volume preserving if the fluid is incompressible). Thus the configuration spare may be identifed with

Figure 2.12: The coadjoint orbits of the rotation group.
the group of diffeormophisms of the region in which the fluid resides. The state of the fluid plus its velocity feld is represented by a point in the tangent bundle of this group. Points of the phase space represent the state of the fluid and the momentum density and so lie in the cotangent bundle of the group. Again we may identify velocities and momenta with elements of the Lie algebra and its dual by left or tight multiplication. Right multiplication gives the Eulerian velocity or momentum field in space. Left multiplication gives them for material points in the reference
conhguration. Here, in contrast to the righ budy cate. the energy depends only on the spatial momentum (which fuid partiche where is energetic.lly irrelevan') and so the Hamilonian is right invariant Droppong to the orbit spare given us dynames: for the spatial momentum density, i.e. Euler's fluid cquations, in Hamiltoni. n firm

Figure 2.13: A configuration of the fluid specifier. by a diffeomorphism.

2.7.10. Gasgs and Plasmas

For gases and plasmas, the state of the svitem is represented by the particle distribution function on single-particie phase spare. This distritution function evolves by the action of svmplectomorphisms ac anonical transformations) of this phase spare (see Weinstein, 1984t, for more discussion an 1 referenceil. The
group of symplectomorphisms has the Hamiltonian vector fields as its Lie algebra. We tuas identify this with the spare of func ions on the phase space where the lie bracket is the Poisson bracket of functions. The dual of the Lie algebra is then densities in phase space. whirh we may use to describe the kinetic state of plasmas and gase The coadjoint action just pushes the density around by the symplectomorphism One coadjoint orbit comes from considering a delta distribution on phase space. The symplectomorphisms push it all over phase space to give a coadjoin* orbit that is identifable with the original phase space. In fact the KKS symplectic structure is exactly the original symplectic structure. This shows that every symplectic manifold is a coadjoint orbit (albeit in the dual of the Lie algebra of the infinite-dimension $ل$ l group of canonical transformations of that manifold).

It is interesting to consider some of the other coadjoint orbits for this system. In chapter 9, eikonal waves are associated with certain distributions on (x, k) space whose support (i.e. the closure of the complement of the region where the region vaniches) is a Lagrangian submanifola (an N-dimensional mianifold on which the symplectic structure vanishes, see section 7.1.4). The space of such distributions is a union of coadjoint orbits of the group of symplectomorphisms.

Any local piece of a Lagrangian submanifold can be made to coincide with a local piece of any other Lagrangian submanifold by a canonical transformation [Weinstein, 1977]. In fact, the symplectic structure of a small neighborhood of a small piece of Lagrangian sut-nanifold is identifiable with the canonical symplectic structure of a small neightorhood of the zero-section of the cotangent bundle of the piece of Lagrangian submanifold In other words, small regions of any Lagrangian
submanfold may Le straughtened out to a pirer of \mathfrak{g}^{2} : ghat This means that
 local structure assoctated with a Lagrangran submanifold otber than the property of beaug Lagraggian. (As a sumple example of something with on for al cons* raunts yet still obeyog a global constraint, consider a mater ballon The surface of the balloun is arbitrary locally but globally must eaclose a given volume.) This bobavor is in great distidrtion to the case of Riemannian geometry where local pieces of space are invariantly characterized by various curvatures and even flat subruanifolda nay sit in space in locally different ways The less rigid nature of symplectic geometry belps to give it its characteristic feel and makes the atudy of pbase ar" ${ }^{\text {a }}$ quite different from the study of spacetime.

In section 10.1 we show that an arbitrary diffemorphism of a manifold M may be extended to a symplen .omorphism of $T^{*} M$ which acts on the zero section according to the original diffeumorphism. We may use this type of map to vary the yalue of a distribution with Lagraugian support while leaving the support manifold invarinnt. There are global constrants on the image of a Lagrangian submanifold under a ecnonical transformation as well. In $\mathbb{R}^{2 N}$ one can associate with earh Lagrangian torus, the actions of each of the non-contractible roops lying in it. These actions cannot change under a symplectomorpbism. In non-trivial topologies, one must talk about the change in action of a lonp under a deformation because there may be no disk pitin the loop as its boundary (the change in action is simply the symplectir area of the region swept out by the loop under deformatmon). If the deformations are exart symplectomorphisms (e. g. symplertomorphism of a
simply ronnected region). then the artion cannot change. One may show that, other than this constrast on actions, earli Lagrangian torus can be taken to every other nearby Lagrangian torus.

There are ane subtleties in generalizing from a deita function at a point to delsa functic ns defioing a submanifold. In general, a distribution is a linear functional satufy $n g$ cemtain contmuity criteria that associatiss a real number with each smoolh fuaction (satisfying certain vanishing criteria, see for instance [Hörmander, 1983i). We think of a distribution as something we may integrate smooth functions against. A delta function at a point $p \in M$ in a manifold just assigns to each smooth function f its value $f(p)$ at the point p. The analog of a delta function whose support is a Lagrangian submanifold would associate with each function on M its integral over the Lagrangian rubmanifold. This requires a measure on the Lagrangian sub. ifold. The space of Lagrangian supported delta-like distributions may be identified with the smooth Lagrangian embeddings of if dimensional manifolds with measures on them. Lei va call these measured Lagrangian submanifolds. The space of measured Lagrangian tori with given actions is thus a coadjoint orbit. Similarly, the space of measured loops with given action is a coadjoint orbit and therefore a symplectic manifold.

2.R. 1 iesmetric Hamiltonian Perturbation Theory

Let us now relate this geometric Hamitonian mechanics to the germetric perturbation theory we discussed earber. We will see that the J lib order ferturberd dynamos has a natural Hamiltonian structure if the exart dyamics does More details on the ideas of this section are given in section 46

The firgt thing to note is that the path space dynamics is Hamilonian This is not surprising if we think of the path space as a kind of direct iniegral of the phase spaces at each 8 . The dynamics at different i's are completely independent (except for the fact that the paths are smootb). If we bad the product of only two Hamilonian systems (instead of a continuum of them) then we would get the correct dynamics from a symplectic structure which is the sum of the pullback to the product of the individual symplectic structures and a Hamiltonian which is the sum of the pulled back Hamilonians. Fxtending this construction t. a contınume of multiplicands do to the symplectic structure

$$
\left.\dot{\Xi}_{p}\left(\tilde{V}_{1}, \dot{V}_{2}\right) \equiv \int_{0}^{1}-p(e)\left(V_{1}(e, p(e)), V_{2}\left(e, p_{1}\right)\right)\right) d
$$

The analog of the sum of Hamiltonians is

$$
\dot{H}(p) \equiv \int_{0}^{1} H(t, p(x)) d \epsilon
$$

 raber of a product of a finte number of Hamileonan systents. We are artua', allowed 1. take ary linear combination of the symplectic structurio (ustrad of a stranght

of Harmitonians. If a coefficient vanishes, that factor has no dynamics. For our freturbatwn dyuamics then, we want to ignore the region in the interval that is away from $:=0$

In fact if we ingert the Jth derivative of a delta function into the integrals in (2101) and (2.102) we get the corrert perturbaticn dyamics on $J M$. If the Poisson trarket on M is $\left\{x^{a}, x^{b}\right\}=J^{a b}$ then the bracket on $J M$ is

$$
\begin{equation*}
\left\{x_{k}^{a}, x_{m}^{b}\right\}=J^{a b} \frac{k!m!}{J!} \delta_{k, J-m} \tag{2.103}
\end{equation*}
$$

and the Hamiltonian 13

$$
\begin{equation*}
\left.\bar{H}\left(x_{0}, \ldots, x_{j}\right) \equiv \frac{d^{J}}{d r^{j}}\right|_{\epsilon=0} H\left(\epsilon, x_{0}+\varepsilon x_{1}+\cdots+\frac{\epsilon^{j}}{J!} x_{j}\right) . \tag{2.104}
\end{equation*}
$$

Together these give the correct perturbation dynamics. Notice that the Oth order variables are pared with J th order variables, lst order with $J-$ lst order, etc.

From the above coordinate description it is not clear that thia bracket is is fact intriasic. We may show this hy conaidering the iterated tangent bundle to M. The tangent bundle to a symplectic marifold has a natural symplectic structure. A \mathcal{A} is the structure on M, then we may use it to identify $T M$ and $T^{*} M . T^{*} M$ bas a natural symplectic atructure, which we sined in section 4. The structure on $T M$ is obtained by pulling $T^{*} M^{\prime}$ s back using the identification supplied by ω. This o; eration may be iterated to give symplectic structures on the 'ierated rangent bundes TTM, TTTM, TTTTM, etr The Jth order jets naturally embed into the J th iterated tangent bundle. If th'symplectic structure on $T^{J} M$ ss pulled back to J.M we obtain the jet Poisson bracket in equation (2.103).

The symplecinc structuti on T Si nas be thonght of ab the tirel drmatibe of

 essence J th derivative of the path siructure Thm approaxi L smmar io studjes of faite differences as approximands of rdmary derivatives

2.8.1. Linearised Dyt mice at a Fixed Polwi from Jet Bracket

We have seen that when the Poisson bracket is degenerate. non-degenerate symplectic leaves and bones are injected into the Poisson manifnld as suinmanifolds If a closed two-form is degenerate naen we project ont the degenerate dirortions to obtain a symplectic manifold. The fart that the two-form is closed imf:ies that the nihilated direction satisfy the conditions of Frobetius's theorem and so lie tangent is smooth submanifolds which we may then project along (at least locally). We have used an example oi this consiruction above. If we inser the $J \not t$ derivative of a delta function into the path symplectic integral (2.101), we obtain a degenerate, closed two-form on the patb space $P_{1} M$. The projection elinumating the degenerate directions is exactly the projection from parts spare down to the jet

 - Trat:er The reultimg twi-form will be closed but may not be non-degenerate If thare at me giobally, we may apply the above projection A special case of thin letar t, - jates that the jet construction contains as a special case the linearized dynams af a Hamiltoman sycuem around a fixed point. We consider the 2 -jet space 24 The whmanifoid of jets with base poi . equal to ine fixed point is an invariant mbman:foli Becauser the zero order base Cirections are paired with ahe second order directions in (2 103), restricting to a given basepoint makes the second order directions degencrate. Projecting these out leaves us with only the first order jets at the fixed pount (i.e. the tangent space there). These are paired with themselves by the second order bracket according to the original symplectic structure at the fixed point. The aecond order Hamiltonian (2.104) gives the quadratic piece of the Taylor expansion in the x_{1} vanables. Together these give the linearzed flow in the tangent spare of the fixed point as a Hamiltonian system. The situation in Poisson manifolds is more complex [Weinstein, 1983a]. If the fixed point is in a symplectic leaf (as opposed to a bone), we take the Poisson bracket at the point, the quadratic part of the Hamiltonian in the leaf direction, and the linear part of the Hamiltonian across leaves. The bones are more difficuit.

We can also consider the same approach to the evolution of J-jets based at a zero order fixed point. The zero order variables are now paired with J-th order variabies. When we restrict to a given zero order point, the J-th order directions
 degeceracy we are left with only the first through J int order versable The -ympleric structure s the $J-2$ jet structure up $1 \cdot$ Durneriral corffictent and the Hamiltones is the J-th derivatuve

We may also use this approana to obtan a symplecter structure for luearbint absut a single non-fixed unperturbed orbit We restrict the spare of 2 -jets to jets that originat no the orbit of interest. There is now a $2 N$ - 1 dimensional degenerate foliation which we mav quotier: by. The result is a symplectic space whose points indicate position along the unperturbed orbit, an element of the targent space at that position, and a single quotiented 2 -jet variable that pars non-trivially with the orti, position variable. The Hamiltonian is again the second derivative of the original Bamiltonian:

$$
\begin{align*}
& \bar{H}\left(x_{0}, x_{1}, x_{2}\right)=\left.\frac{d^{2}}{d \epsilon^{2}}\right|_{\epsilon=0} H\left(\epsilon \cdot x_{0}+\epsilon x_{1}+\frac{\epsilon^{2}}{2} x_{2}\right) \\
& \quad=\left.\frac{d^{2}}{d \epsilon^{2}}\right|_{\epsilon=0}\left(H\left(\epsilon, x_{0}\right)+\epsilon \frac{\partial H}{\partial x_{0}}\left(\epsilon, x_{0}\right) x_{1}+\frac{\epsilon^{2}}{2} \frac{\partial^{4} H}{\partial x_{0}^{2}}\left(\epsilon, x_{0}\right) x_{1}^{2}+\frac{\epsilon^{2}}{2} \frac{\partial H}{\partial x_{0}} x_{2}\right) \\
& \left.\quad=\frac{\partial^{2} H}{\partial \epsilon^{2}} H\left(\epsilon, x_{0}\right)+\frac{\partial}{\partial x_{0}} \frac{\partial H}{\partial \epsilon}, t, x_{0}\right) x_{1}+\frac{\partial^{2} H}{\partial x_{0}^{2}} x_{1}^{2}+\frac{\partial H}{\partial x_{0}} I_{2} . \tag{2.105}
\end{align*}
$$

The dependence of this on x_{2} is only througt the term

$$
\frac{\partial H}{\partial x_{0}}\left\{0, x_{0}\right\} \cdot x_{2}
$$

\bar{H} is thus constant under variations of x_{2} in the annibilator subspare of $d H$. But these are exartly the deections symple-wally orthogonal to the zero order urbit and so span the degenerate f. ation. The linea-izord iy jamics about an unperturbed orbit therefore has an invariant formulativa

2.8.2. Symmetry and Perturbetion Theory

We bave seen hou important symmetry and its related concepts are in Hamiltonian mechaniry. How do the symuetry operations intermix with the perturbation operations" A Hamiltonin G action on M lifts to both the path spare $P M$ (just puab the whole path around by the greup action) and the jet $=$ pace $J M$ (just push the jet around). The corresponding monentum maps are just the integral along a patin of the M mumentun: map and the same integral with the J th derivative of a delta funcion thrown in. Both are equivariant.

When considering reduction we quickly see that these groups are not of high snough dimension. A 4-dimensional phase spare with a 1 -dimensional symmetry drops down ' 2 dimensions. The frst order perturbation space has 8 dimensions. In the prespace of aymmetry we expect to be able to drop this down to the first order perturbation space of the 2-dimensional reduced space. The above group action can only eliminate 2 dimensions instead of the needed 4 and so we expect a larger group to act. This is indeed the case. It makes sense to multiply two paths in a group by multiplying pointwise. Thus $P G$ is an infinite dimensional "Lie" group and its "Lie" algebra is the path space of G 's Lie algebra g. $P G$ has a Hamiltonian action on the path space $P M$ by multiplying the point $p(c)$ by tbe group element $g(c)$. The momentum map sends a path in M to a path in g^{*} gotten by applying M 's momentum map to each ϵ. In an exactly aridogous way, we may define the group $J G$ of J-jets of paths in G with Lie algebra being J-jets of paths in g. This acts ir a Hamilonian and equivariant way on the perturbation space $J M$. The mornentum map i- obtained by extending a jet to any consistent path, taking the

282 Symmetry and Perturbatom Thenr!

patb momeutum map to $\mathrm{f}^{\prime} \mathrm{g}^{\circ}$ and dropping down to, $J_{g}{ }^{*}$
The process of reduction commutes with taking the path spare or fet spacif The jet or path spare of the reduced spare is the redured space of the jet or path space by the jet or patid group.

We have sece the central importance of the dual of the Lie algebra and the coadjoint orbits with their KKS symplectic structure for fbysics the have seed that any symplectic manifold may be thought of as a coadjunt orbit in the dual of the Lie algebra of some group. It turns out that of M is a cuadjoint ormt in the dual of G 's Lie algebra then the perturbation space $J M$ with the jet symplectic strusture are naturally a coadjoint orbit in the dual of the Lie algebra of the jet group $J G$ and the jet uracket ${ }^{\prime} 2.103$) is the natural $K K S$ symplectic structure. This is shond in section 4.8.6.

These relations are at the heart of a new framework for singular Lie transform perturbation theory about which we will report in chapter 5 . Here we discuss only the first order method of averaging
2.9. The Method of Averaging for Hamiltonian Syatema

Sany of the interesting physical regularities wip find in diverse systems are tanced by the preseure of processme that operate un widely separated time scales. The bask smplification that this sopation entails is that the fast degrees of freedom act almos at if the slow variables are constant and the slow degrees of freedom are affected only by the average behavior of the fast variables. Bogoliubov in particular has used thir separation of scales with great success in many examples. For example be obtains the Boltzmann equation from the BBGKY hierarchy of evolution equations for correlation functions by Lolding the 1-particle distribution functions fixed while determining the fast evalution of the higher correlations, and then subatituting the result in as the collision term driving the 1 -particle evolution. One makes a similar separation in calculating fluid quantities like viscosity, thermal conductivity, diffusion or electrical conductivity from an underlying kinetic description. In studying complex situations with slow, heavy nuclei and fast, light electrons in molecular and solid state physics, one often holds the nuclei fixed, calculates the electron ground state and energy as a function of the nuclei positions and then uses them to define an effective potential in which the nuclei move (this is the Born-Oppenkeimer approach).

We have seen that in the presence of an exact aymmetry, the symmetry directions may be completely eliminated by the process of reduction. We will row discuss how the averaging underlying the systems with separated scales can be viewed as reduction by an approximate symmetry. One often finds that the effect of "forgetting ${ }^{-}$these degrees of freedom is to introduce an amended potential into the

Har: t, man and a "magnetir" puere to he Pomson brasket of the seducent eyatem In the estems with appoximate symmetry these extra terme encapalate the new physes reveated we the averaging procedure Earher me sam the ceatefugal force comeg out an an effertuve potential Wie give a wersion of the redurtin prormurn which begitus by including the "angle of the earth" as a dywamical variable and reduces by the earti's rotation and the rotation of the systern tugether in the next chapter The resulting reduced space gives the centrifugal force as an amended potential w the reduced Hamiltoz an and the Coriolis force ar a new term th the Poisson bracket.

2.9.1. Approximate Noet'jer's Theorem

When we introduce a perturbation which breaks a eymmetry we no longer have exactly conserved quantities. It is easy to prove an "approximate Noether's theorem ${ }^{+}$, bowever, which says that the momentum map for a slightly broken symmetry evolves slowly:

$$
\begin{equation*}
X_{\jmath} \cdot H=\{H, J\}=, \quad \text { implies } \quad J=\{J, H\rangle=-6 . \tag{2.106}
\end{equation*}
$$

2.9.2. Hamiltonian Averaging as R duction by a Circle Action

In the special case where the unperturbed dynamics is e.tirely composed of periodic orbits, the action of the orbit through each point is the menentunt map of a circle symmerry of the unperturbed Haniltonian. As we turn on a perturbation wherh breake the symmetry the motion will stll be prmarly around the loops.
but it fill , lowly drift from loong to loop Because the symmetry is broken, different pointe un a loop pall move toward diferent loops As the perturbation is made smallf. though phase point orbit many time near a given loop before drifting away Thas suggente (correctly) that the 1 rturbation a point feels will asymptotirally be the same as the average around an unperturbed loop. Because this average in the same for all points on a loop, for small perturbations entire loops drift onto other entire loops. We may therefore drop the dynamics down to the loop space. In fact one can prove that for a gencral (even dissipative) system where the unperturbed dynamics X_{0} is entirely composed of periodic orbits, the motion of a point under the flow of $X_{0}+c X_{1}$ projected down to the loop space remains within ϵ for a time $1 / \epsilon$ of the arbit of a corresponding point on the loop space under the low of the average of X_{1} around each loop projected down \lfloor Arnold, 1983]. In the Hamiltonian case we break the circle symmetry of H_{0} to get the perturbed system $H_{0}+c H_{1}$. We average H_{1} around the loops to get $\bar{H}_{1} . H_{0}+\epsilon \bar{H}_{1}$ is again invariant under the circle action and so we may perform reduction. The reduced dyamics is the slow Cynamics on the reruced space and the fact that we may restrict to a constant value of the momertum map shows that it is actually conserved to within order t for time $1 / \epsilon$. The momentum map for the circle group sends each point of phase space to the artion of the loop it belongs to. The action of a loop is the integral of the symplectic form ω over a disc whose boundary is the loop. Since ω is invariant under a canonical transformation, ss is the value of the action of a loop (this is Poincare's first integrai invariant). If the dynamics was represented by a canon transformation that took loops exactiy to uther loops. then the action would be an
exact constant of the motion The truc dy nam : takes loups to only wither of another loop after tme 1 : Tbus says that the actuon of the loop a phane spat
 is not invariant but wadrabathally invariant (1e the error wimall for longer and logger twes an : $\rightarrow 0$ Kruskal hav sobun that there wartually a quantity which is conserved to all orders in efor tume l/t 'Kruskal. 196'z (we give a geometrir formulation of this result in chapter 5) Getting resulte valid fo: times longer than 1/t is extremely important physically, but so far no general tweory exists. Chapter 5 includes arme discussion of the relevant issues here.

2.9.2.1. Averaging and the Jet Pleture

Let - relatr . . . previous sections. We bave an action of the circle grait S^{1} on M. Tbis lifts to an artion of $P S^{1}$ on $P M$ and $J S^{1}$ on $J M$. The unpercurbed Lamiltonian is invariant under the S^{1} action on M, but the path and perturbation Hamiltonians are not invariant under $P S^{1}$ and $J S^{1}$. We would like to change the action of $P S^{1}$ on $P M$ so as to leave the path Hamiltonian invariant and so allow reduction. Fince the resulting action should still be Hamiltonian, we look for an e-dependent canonical transformation of $I \times M$ which is the identity at $\epsilon=0$ and which pushes the $P S^{1}$ action into a symmetry. The metbod of Lie transforms (see0 [Cary, 1981] ando [Mayfeh, 1973] p. 200] attempts to do this ai the perturbation level, letting the canonical tramsionmation be the flow of an e-dependent Hamiltonian, which is thed obtained order by order. Here we nem only consider the first order group artion
oi $1 S^{1}$ a $7 S^{1}$ on $1 M$ - $7 M$ We know that the artion will be perturbed so that tie value of the redured Harniltoman is the averape of the perturbed Hamiltonian around the notranoformed circtes $T M$ hat twice the dimension of M. Reducing by TS' elminates 4 dimensions. The resulting dynamical vector field has no unpertulted component. One may think of this as the reason for getting resuits good for time $1 /$ ($1 t$ is the effect of the unperturbed flow on the perturbation which causes this level of serularity). In this situation it makes intrinsic sense to project the 1st order vector field down to M, where it repecsents the slow dynamics.

2.9.2.2. Extensions from Loops to Torl and Energy Surfaces

A lrop in a 2-dimensional phase space (like an orbit of a simple harmonic oscillator) mav be thought of in 3 ways. It is 1-dimensional, 1 dimension less than 2 , and half of 2. Each has an important generalization to higher dimensional Hamiltonian systems. In the presence of a slowly varying Hamiltonian, we have already seen that the action of a 1 -dimensional loop is conserved. There is an analogous result for half dimensional Lagrangian .sr. Kubo has shown that for a aystem ergodic on an energy surface (which has one dimensiol less tha.t phase space), the volume enclosed is adiabatically invariant under slow variation of parameters [Kubo et al., 1965j. Roughly; since the motion is ergodic, every or bit changes according to the average of the perturbation over the energy surface; thus the entire energy surface charges by the same energy mon so is taken to another energy surface; but the volume enclosed by a surface is preserved under a canonical transformation by

2.9.3. Pepudu-Potentials and Adiabsitic Invariants

 the average effect of the fast on the slow- degrees of iremonn (apturirg the effm : is the conten: of many physically useful theories. It is interesting to note that in the late nimeteenth rentury, the idea that all potential energies were really kinetic energies of hidden or forgot ten degrees ui seedom was one the the main motivations fo: the development of kinetic theory. We may use averaging to see how this comes about

Because of ite direct relevance to the ideas presented here, let us give a long quotation from Felix Klein's historical account of ninecenth century mathematical rhysics. He first introduces Routhes function R wheh was in between the Lagrangan and Ifamitonian m that on! the fist m of the n ondguration pace variable bad thes velocities Legendre transfonmed mo mon:enta He contimes
"Thus the equations splt into two groups, one of the Lagningian kind and '.nt of the Hamilonian. For $m=0$ the Routh fuortion, and therewith the system of equations, is the same as th twe Lagrangian case: while for $m=n$ it is the same as to the Hamultonsan

Thas system of equations you arquire partur ular interes through certang g'aeral fundarsental concepte of merbasere that are conuertal with it liamely. If R
does nut cualurity contion the κ_{1} the congigutation variables whose velority vari-

 hbuh or itr- momenhat enther th Thommon and Tait as a "cycloidal system".

In pratior thin save ariwe when one as dealing with rotating motions of rotating

 than the usual behavior that the body as a whole shows as it moves in space (a top or gromeope). In cases like this where outside influence on the motion of the Ay-wheel is excluded, the momeata corresponding to the cyclic coordinates are constant.

From these facts follow some remarhable ideas on the nature of potential anergy If we assume that the kinetic energy T decomposes into a part $T(\dot{q})$ that depends only on the velocities \dot{q} and into a part $T(\pi)$ that depends only on the cyclic momenta π (thus assuming that there are no terms in which velocities \dot{q} are multiplied by momenta π), then the Routh function is

$$
\begin{align*}
R & =T(\dot{q})-T(\boldsymbol{\imath},-V \tag{2.107}\\
& =T(q, \dot{q})-T(q, c)-U(q),
\end{align*}
$$

if we bear in mund the depencience of all the guantities on the coordinates q and replare the constant momenta $\pi_{\text {, }}$ by the quantities c. The q_{m+1}, \ldots, g_{n} are determined from the differential equations

$$
\begin{equation*}
p_{a}=\frac{\partial T(\partial)}{\partial q_{i}}, \quad \frac{d p_{a}}{d l}=\frac{\partial T(q)-(U+T(c))!}{\partial q_{o}} . \tag{2.108}
\end{equation*}
$$

 degrees of freedons add abose poteattal encigy hav teern merrased by $T(0)$. the
 of q with constant coeflicients; they cuter wito the sum only together. not eparately Heare the question arises where we in ant case bave vo idea of the pasence of the potential energy of whether every quantity that appedrs in merbanics as 'potestual energy" is actualy a kinetic energy caused by a hidden. cyclic, so-called "ignored" mution. Like a fata morgana, the possibility of a purcly kinetic theory of mat'er appears in the distance.

This general idea was first prasented in 1888 by J. J. Thomson in his book Applications of Dygamics to Physics and Chemistry (lecture at Cambridge in 1886, then in the Philosophical Transactions 1886-87). But in spec: al cases it had .. eady' been pursued by Wi' ת Thomson (=Lord Kelvin), for example in his address to the British Association in Montreal in 1884, which be prudently titled "Strps to a kinetic theory of matter" (Math. and Pbys. Papers, Volume 3, p. 366). This idea was fually worked out for closed systems in Heinrich Hertz's posthwnous work of 1904. Die Prinzipien der Mechanik [The Principle; of Mechanics] "

2.9.3.1. Ping-pong balls and One-dimensional Gases

If we slowly move a ping pong paddle up and down from a 1 sble with a ping pong lall bouncing very rapidly between the paddle and the table, then we will feel a varying force due to the average momenta imparted due to the impacts of the ball. Iu phase space the ball oescribes a rectangle and so the artion is given by
J - $4 L m t$ where L the distance from the paddle to the table and V is the speed of the t,all Besause this is invariant under slow padde movements, the ball velocity gors ac $1 / L$ The momentum transferred on each impact is 2 mV and there are $V / 2 L$ mparto per unit of time, so the average force felt goes like $V^{2} / L \sim 1 / L^{\text {s }}$. Thus , tartime with no poteutial energy at all, we end up with a $1 / L^{3}$ effective potential for the paddle:

It is mell known that slow compression of an ideal gas leeps the quantity $\mathrm{pr}^{\prime \prime}$ constant, where the ratio of specific heats r depends on the properties of the gas (this followis from the adiabatic invariance of the entropy). Our single particle result is exartly this requirement for a one-dimensional gas with $\gamma=3$. Since particles do not interact :- an ideal gas, it makes sense that each particle should reflect the behavior of the entire gas. (A similar result holds for radiation, where the adiabatic compression of a container containing black body radiation actu on each normal mode separately and yet the overall effect keeps the spectrum black body but at a different temperature.)

2.9.3.2. Oscillatory Stabilisation

For a harmonic oscillator, the energy is the product of the action and the frequency: $H=\omega J$. If we have a weight, hanging on a string and undergoing ymall amplitude oscillations as we slowly pull the string, the change in pend:alum e..rgy is the change in $J_{\omega} . J$ remans constant and $\omega \sim \sqrt{g / L}$ so we feel a $1 / \sqrt{L}$ potential. We get other potenticls if we ask for the force we feel if we tune a guitar string as someone plays it on the acoustic pressure on the water if we fill up a
shouet as sumeone shag- in it The etfective force due is the fist degrees of freedon may sometimes stalnhar anstable fixed poiat of the show system Ordinatiy an inverted pendulum is unstable aid falle to the position with ther weight hanging downeard. If we shake the support of the pendulum pertodically bard enorgh and fast enough, the merted position in stabilized! Ao even more spertarular version of this effect occurs if you shake an inverted cup of flas and stavilize the Rayleigh-Tay lor instability which ordinarily causes the fluid to spill out (it is casiest to actualiy do the experment with a bigh viscosity fluid like unotor oil\} The dea of RF s^{+}abilization is to stabilize unstable modes of a plasma (say in a tokamak) by bathing it in a high frequency radio wave. Some of the modern airplanes with wings in a forward iacing delta are actually operated ic an aerodynamically uns sble regime shat is stabilizad by the fast dynamics of a computer controlled feedbick loop. This alows for great maneuverability fince the plane would like to turn רnyway!).

2.9.3.3. Multiple Space end Time Scalea

Quite often it is very useful to split out the main dyuamics of a system and hocsrize the rest, treating them as fast oscillatious. Thus one takes a fluid, elastic, or plasma medium and treats its prolution as slow oyerall development of the background mediuns with fast racillations occuring on top of it. The effect of the oscillations th to change or renormalize the dyamics of the ba kgrennd in if win

surts a syctern in generalized cuordinates which respect the constraints. Physually. though, one supposes that there is some large potential normal to the constrant surfare The system will exerute rapid osrillation in the normal direction and slow volutun along it If the width of the constraining potential we'l varies with the mechanical coordinates, ibee an wave seen the adiabatic invariance will give rise to a ner perudopotential which affects the mechanical motion. In a plasma we treat the slowil: varying background as a dielectric mediurı in which waves propagate according to WKB theory The waves affect the background (introducing a radiation pressure in the dynamics) via ponderomotive forces. If we have a charged particle in the presence of a wave with a slowly varying amplitude, the particle will oscillate back and forth with the wave. It feete more of a push in going down an amplitude gradient than in going up one, leading to ... uyerall average force described by the ponderomotire potential. This sind of separation is the basis of plasma quasilinear theory. We have extended the geometric perturbation theory to some of these singular perturbation problems. Chapter 8 gives a Harniltonian treatment of an eikonal theory for linear or nonlinear waves (which is related to the averaged Lagrangian treatment of Whitham [Whitham, 1974|). Here let us demonstrate the efficacy of a global gecmetric apprcach only with the simple example of $E \times B$ drift. A charged particle restricted to a plaze with a constant perpendicular magnetic field executes periect circles If there is, in addition, an electric field then the radius of the circles is greater in low potential regions and smaller in higb potential regions. Thus the fur ular orbits do not close and the particle drifts perpendicularty to the electric held A Hamiltonian treatmeut of more cont.plicated versions of this so-call d guid-
ing center motion has been previously given [Littlejohn, 1983]. This work required great cleverness in the choice of physically relevant coordinates. We would like to demoustraie, in this simple version, how a coordinate free approach would lead us to the correct answer, with no previous knowledge.

2.10. Example: $E \times B$ Drift

In the simplest situation we have a charged particle in the x, y plane moving in the presence of a constant magnetic field B which points in the $\hat{\boldsymbol{z}}$ direction and a small constant electric field ϵE which points in the \hat{x} direction. We introduce the phase space $P \sim T^{*} R^{\mathbf{2}}$ with coordinates (x, y, p_{x}, p_{v}) (we use mechanical momenta $p=m v$ here). The correct dynamics in the presence of a magnetic field may be described in a Hamiltonian formulation in two ways. The standard approach is to introduce the unphysical vector potential A and to work with canonical mornenta $p=m v-(e / c) A$. Here we use the physical momenta and magnetic field, but a noncanonical Poisson bracket:

$$
\begin{equation*}
\{f, g\}=f_{x} g_{p_{z}}-f_{p_{z}} g_{z}+f_{v} g_{p_{v}}-f_{p_{v}} g_{y}+\frac{e B}{c}\left(f_{p_{z}} g_{p_{v}}-f_{p_{v}} g_{p_{t}}\right) \tag{2.109}
\end{equation*}
$$

We obtain the correct dynamics in this case with the Hamiltonian

$$
\begin{equation*}
B=B_{0}+c B_{1}=\frac{1}{2 r n}\left(p_{x}^{2}+r_{y}^{2}\right)-\epsilon e E x \tag{2.110}
\end{equation*}
$$

The dynamics is then

$$
\begin{align*}
& \dot{x} \cdot: \frac{p_{s}}{m} \quad \dot{y}=\frac{p_{y}}{m} \tag{2.111}\\
& \dot{p}_{x}=\frac{e E}{m c} p_{y}+\epsilon \epsilon E \quad \dot{p}_{y}=-\frac{e B}{m c} p_{x} .
\end{align*}
$$

The unperturbed situation here is just a charged particle on a plane in a constant magnetic field. Every orbit in this situation is a closed loop. Thus the unperturbed system bas a circle symmetry:

$$
\begin{align*}
& \dot{x}=\frac{p_{x}}{m} \quad \dot{y}=\frac{p_{v}}{m} \\
& \dot{p}_{x}=\frac{e B}{m c} p_{v} \quad \dot{p}_{v}=-\frac{e B}{m c} p_{x} \tag{2.112}
\end{align*}
$$

The generator of this symmetry (i.e. the momentum map) is none other than the unperturbed Hamiltonian itself:

$$
\begin{equation*}
H_{0}=\frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}\right) . \tag{2.113}
\end{equation*}
$$

This is because non-relativistic motion in a constant magnetic field has the remarkable property that the period of all orbits is the same (we could introduce a normalization constant to make it 1 or 2π if desired). Let us obtain tbe reduced phase space and Poissc a bracket for this symmetry action. Firsi we look at the space of loops P / S^{1}. Each circular particle orbit has exactly one point where $p_{y}=0$ and $p_{x} \geq 0$. We may label a loop by the values of x, y, p_{x} at this point. Next we restrict to the set where the momentum map is a constant: $H_{0}=\alpha$. The reduced space is

$$
\begin{equation*}
R=P /\left.S^{1}\right|_{H_{0}=0} \tag{2.114}
\end{equation*}
$$

and may be coordinatized by the values of x and y when $p_{x}=\sqrt{2 m \alpha}$ and $p_{y}=0$. The reduced Poisson bracket $\left\}_{a}\right.$ of two functions $f(x, y)$ and $g(x, y)$ is obtained by extending them to \mathbf{P} in such a way that

$$
\begin{equation*}
\left.\frac{\partial \dot{f}}{\partial p_{x}}\right|_{p_{s}=\sqrt{2 m a}, p_{r}=0}=0 \tag{2.115}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\hat{f}, H_{0}\right\}=0=\frac{\sqrt{2 m \alpha}}{m} \frac{\partial \hat{f}}{\partial x}-\frac{e B}{m c} \sqrt{2 m \alpha} \frac{\partial \hat{f}}{\partial p_{v}} \tag{2.116}
\end{equation*}
$$

Thus we replain $\partial / \partial p_{x}$ by 0 and $\partial / \partial p_{y}$ by ($c / e B$) $\partial / \partial x$ to get

$$
\begin{equation*}
\{f, g\}_{\alpha}=\frac{c}{e B}\left(f_{v} g_{x}-f_{x} g_{v}\right) \tag{2.117}
\end{equation*}
$$

Thus we see that the original spatial coordinates x and y now play the role of canonically conjugate variables in the reduced apace. The factor of $1 / B$ in the bracket appeared in Litelejohn's work [Littlejohn, 1983]. The full system is not invariant under our circle action. If we average the perturbetion Hamiltonian $\boldsymbol{H}_{\mathbf{1}}$ around the circles, we do obtain a ciri: symmetric system. The average of the potential eeEx around a loop is just the value when $p_{y}=0$. Thus the reduced averaged Hamiltonian is

$$
\begin{equation*}
\bar{H}_{a}(x, y)=a-\epsilon e E x . \tag{2.118}
\end{equation*}
$$

The reduced averaged dynamics is then

$$
\begin{align*}
\dot{x} & =\left\{x, \ddot{H}_{a}\right\}_{\alpha}=0 \\
\therefore \quad \dot{y} & =\left\{y, \ddot{H}_{a}\right\}_{\alpha}=\frac{c}{e B}(-\epsilon e E)=-\epsilon \frac{c E}{B} \tag{2.119}
\end{align*}
$$

This is indeed the $\boldsymbol{E} \times \boldsymbol{B}$ drift dynamics.

Chapter3:

Pseudo-forces and Reduction

"Philosophy is written in this grand book, the universe, which stands ctotinually open to our gaze. But the booir cannot be understood unless one first learns to comprehend the language and read the letters in which it is compased. It is written in the larguage of mathematics, and its characters are triangles, circles, and other geometric figures without which it is humanly impossible to understand a single word of it; without these, one wanders about in a dark labyrinth."-Gutho in The Assayer

3.1. Peeudo-foress ard Reduction

If you have a system that is coupled to some subdynamics and you forget about the subdynamics, the original syatem may evolve with new "pseudo-forces" acting. For simple mecharacal systems with symmetry, these take the form of "magnetic" terms in the Poisson bracket (by analogy with a Hamiltonian description of particles in magnetic fields; and new "effective potentian" in the Hamiltonian. These forces may stabilize previously unstable dynamics, just as a frec charged particle at
rest in the plane is stabilized by a perpendicular magnetic field (magnetic stabilization). One finds these pseudo-forces also in situations where the observer's motion is included in the dynamics. In more complex examples these forces seem to lead to "convective" terms in Eulerian continua descriptions, drifts and pondermotive forces, "forces" that bend light rays in inhomogeneous media, pressure and other thermodynamic forces in statistical mechanics, "renormalized" masses for quasiparticles, etc. Near the end of the last century, there was a school of thought that held all potential energies to be merely the kinetic energy of "hidden" degrees of freedom. This gave great impetus to the kinetic theory of matter as we discussed in section 2.9.3.1.

3.1.1. Fictitious Forcet

Our goal in this chapter is to give a coordinate-free interpretation to the process of chauging reference frames and to the concommitant new physical effects. We first consider the effect of a time dependent change of phase apace. A single state in the new frame corresponds to a time-parametrized curve of states in the old frame (e.g., a given configuration of particles and their velocities fixed in a rotating frame corresponds to \mathbf{a} whole circle of atates in a fixed frame as time evolves). We therefore have a time-dependent identifcation between the original phase space and the new one. The time dependence of the identification diffeomorphism may be expressed as the llow of a vector field \boldsymbol{Y} (for example, a rotating reference frame is described by the vector field we discussed in section 2.6).

Let $F X_{t}$ be the flow of X for time $\left\{\right.$, and $F Y_{t}$ the fow of Y for time 1 , on M. $F X_{t}$ is viewed as the dynamics and $F Y_{4}$ as our "changing point of view", so the dynamical evolution we observe is $F Y_{1} \circ F X_{1}$. This is the flow of the time-dependent vector field

$$
\begin{equation*}
\tilde{X}=F Y_{t o} \cdot X+Y \tag{3.1}
\end{equation*}
$$

by the chain rule (the lower star means pusb-forward by the map $F Y_{t}$, and represents the image of X at each point under the diferential of $F Y_{i}$). If X is Y-invariant, then

$$
\begin{equation*}
\tilde{X}=X+Y \tag{3.2}
\end{equation*}
$$

If X is Hamiltonian X_{H} and Y is a symmetry generated by J, then the combined flow bas Hamiltonian

$$
\begin{equation*}
\check{\boldsymbol{H}}=\boldsymbol{H}+\boldsymbol{J} \tag{3.3}
\end{equation*}
$$

J represents fictitious forces in the Hamiltonian due to our changing perspective.

s.1.2. Rotating Coordinatea

In this section we will demonstrate these ideas on the example of a rotating coordinate system for a partscle in the plane. A very important subtlety arises from the question of what the velocity and momenta are in a rotating frame. One perspective takes some given inertial frone and always talks about velocity v in that frame with corresponding momentum $m \boldsymbol{m}$. The other perspective measures velocities with respect to the observer's coordinate systera. If we do this and still define momentum as mass times velocity, then the Poisson structure will change in
general as we change coordinates. We take this approach here and will identify the new piece in the Poisson bracket as the Coriolis force. In older times the notion of a non-canonical Poisson bracket was not in widespread use. To keep the bracket defnition invariant, one had to say that momentum did not change under change of reference frame (see for example p. 129 of the mechanics volume of (Landau and Lifshitz, 1960-1981]).

Let

$$
\begin{equation*}
H=\frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}\right)+V\left(\sqrt{x^{2}+y^{2}}\right) \tag{3.4}
\end{equation*}
$$

be a rotationally symmetric Hamiltonian on $T^{*} \Re^{2}$ and

$$
\begin{equation*}
J=\omega\left(x p_{y}-y p_{x}\right) \tag{3.5}
\end{equation*}
$$

generate rotazions. Since \boldsymbol{H} is invariant under the symmetry here,

$$
\begin{equation*}
\overline{\boldsymbol{H}}=\boldsymbol{H}+\boldsymbol{J} . \tag{3.6}
\end{equation*}
$$

This captures the observer's rotating reference, but does not include the fact that due to bis motion the oberver will meagure a different set of values for the momenta. (In some sense, the transformation thus far has given us valid orbits of the observed bystem but has changed which orbit we are looking at). We must change coordinates by

$$
\begin{align*}
& \bar{x}=x, \\
& \dot{y}=y \tag{3.7}\\
& \tilde{p}_{x}=p_{z}-\omega m y \\
& \bar{p}_{y}=p_{v}+\omega m x
\end{align*}
$$

to get the momenta as seef in the rotating frame. Here we define the momentum \tilde{p} to be m times the observed velocity. The observed \boldsymbol{r}-component of the velocity will he the velocity v_{z} measured in the fixed frame minus the x-component of the velocity of the observation point in the rotating frame, which is wy. Similarly. the observed y-component of the velocity is v_{v} minus $-w x$. The dynamics is now described by

$$
\begin{equation*}
\tilde{\mathbf{H}}=\frac{1}{2 m}\left\{\tilde{p}_{x}^{2}+\bar{p}_{U}^{2}\right\}+V\left(\sqrt{x^{2}+y^{2}}\right)-\frac{\omega^{2} m}{2}\left(\tilde{x}^{2}+\tilde{y}^{2}\right) \tag{3.8}
\end{equation*}
$$

with the Poisson bracket

$$
\begin{equation*}
\{f, g\}=\{f, g\}_{\text {canonical }}+2 \omega m\left(\frac{\partial f}{\partial \tilde{p}_{x}} \frac{\partial g}{\partial \tilde{p}_{y}}-\frac{\partial f}{\partial \bar{p}_{y}} \frac{\partial g}{\partial \tilde{p}_{x}}\right) . \tag{3.9}
\end{equation*}
$$

The centrifugal term

$$
\begin{equation*}
-\frac{\omega^{2} m}{2}\left(\tilde{x}^{2}+\tilde{y}^{2}\right) \tag{3.10}
\end{equation*}
$$

makes an effective potential or peeudo-force and the Coriolis term in the Poisson bracket is of the "maguetic" type which causes drifts.

3.1.3. Reduction of Simple Mechanical Systems

We have seen how changing coordinates can lead to pseudo-potentials in the Hamiltonian and magnetic terms in the Poisson bracket. Asymprotic systems get pseudo-forces by reduction by an approximate symmetry. Here re give the context in which pseudo-forces and magnetic terms in the Poisson bracket may be seen to arise from the process of reduction. We specialize this to circle actions in the next section. In the following 3 sections we show how changing coordinates may be
vit wed as reduction of a larger space which includes the observer's state. This unifies these two sources of pseudo-forces. The argument is of necessity a bit abstract and so some readers may wish to skip the details. Let us start with the general setting.

If the phase space is $T^{*} Q$, where Q is Riemannian with netric K and the Hamiltonian is of the form

$$
\begin{equation*}
H=K^{*}+\pi^{*} V \tag{3.11}
\end{equation*}
$$

where we moved K to $T^{s} Q$ and

$$
\begin{equation*}
V: Q \rightarrow \Re \tag{3.12}
\end{equation*}
$$

is a real valued function on Q which we lift to $T^{*} Q$ along the natural projection

$$
\begin{equation*}
\pi: T^{\bullet} Q \rightarrow Q \tag{3.13}
\end{equation*}
$$

then we have a simple mechanical system (see [Abraham and Marsden, 1978] p. 341). A group action of G on Q by isometries that preserve V lifts to $T^{4} Q$ to preserve H. If we reduce at $\mu \in g^{*}$ with the momentum map

$$
\begin{equation*}
J: T^{*} Q \rightarrow g^{*}, \tag{3.14}
\end{equation*}
$$

the reduced space is

$$
\begin{equation*}
\left(T^{*} Q\right)_{\mu}=J^{-1}(\mu) / G_{\mu} \tag{3.15}
\end{equation*}
$$

where G_{μ} is the isotropy subgroup of μ under the coadjoint action. We may identify this reduced space witb the cotangent bundle $T^{*}\left(Q / G_{\mu}\right)$ with a nciw Poisson bracket (the old one plus "magnetic terms") and a new Hamiltonjan (the old one with a new "effective potential"). Using the metric, we choose a one-form α_{μ} on Q to behave
on vectors tangent to the orbit of G_{μ} in Q the way μ behaves oi the corresponding elemenzs of the Lie algebra, and to annihilate vectors perpendicular to the orbit. a_{μ} induces \dot{a}_{μ} on Q / G_{μ} and by lifting, on $T^{*}\left(Q / G_{\mu}\right)$. The new symplectic structure on $T^{*}\left(Q / G_{\mu}\right)$ is the old one plus the magnetic piece $d \bar{\alpha}_{\mu}$. The new Hamiltonian is the old one (H is G invariant and so is defined on $T^{*}\left(Q / G_{\mu}\right)$) plus a pseudo-potential $K^{*}\left(\alpha_{\mu}(q)\right)$ (for more details see [Marsden, 1981] p. 33).

3.1.4. Clrcle Actions on Simple Mechanical Systems

With the notation above, if G is a circle and the vector field generating its action on Q is ξ, then there are some simplifications. The momentum map

$$
\begin{equation*}
J: T^{*} Q \rightarrow \mathbb{R} \tag{3.16}
\end{equation*}
$$

may be taken to be

$$
\begin{equation*}
\alpha_{q} \mapsto \alpha_{q}(\xi) \tag{3.17}
\end{equation*}
$$

The G-action on $T^{\prime \prime} Q$ is then generated by $X_{J} . \alpha_{\mu}$ is then simply

$$
\begin{equation*}
\frac{\mu}{K(\xi, \xi)} K(\cdot, \xi) \tag{3.18}
\end{equation*}
$$

so the effective potential is

$$
\begin{equation*}
\frac{\mu^{3}}{\boldsymbol{K}(\xi, \xi)} \tag{3.19}
\end{equation*}
$$

In this case the reduced space is identifiable with $T^{*}\left(Q / S^{1}\right)$ with its modifed structures.

3.1.5. Fictitious Forces as Reduction

We now describe a setup which unifies some of these constructions. Assume we ar given, as above, a Riemanaian Q with metric K and symmetry generated by ε which also leaves $V: Q \rightarrow 9$ iovariant. ξ lifts to X_{y}, which is generated by

$$
\begin{equation*}
J(q, p)=p(\xi(q)) \tag{3.20}
\end{equation*}
$$

and leaves $H=K^{*}+V$ on $T^{*} Q$ invariant. Above we reduced by $X J$ to get a lower dimensional systema. The approach to fictitious forces given in section 3.1 .1 treated the rotating phase space as being of the same dimension as the fixed phase space. Here we increase tbe dimension by 2. Now we introduce a "potating observer", described by a point θ of a circle S^{2} and a rotation action p_{θ} in $T^{*} S^{1}$. A circle acts on this S^{1} generated by $\partial / \partial \theta$ and lifte to $T^{*} S^{1}$ generated ty $p g$. Call

$$
\begin{equation*}
\hat{\xi}=\frac{\partial}{\partial \theta}+\xi \tag{3.21}
\end{equation*}
$$

on $S^{1} \times Q$ and lift it to X_{f} on $T^{*}\left(S^{\mathbf{2}} \times Q\right)$ generated by

$$
\begin{equation*}
\hat{J}=p_{\theta}+J . \tag{3.22}
\end{equation*}
$$

E rotates the configuration space without changing θ (the state of the oberver), $\partial / \partial \theta$ rotates the observer without changing configuration space, $\dot{\xi}$ rotates the two together (twisting toget her the two circle actions), X, rotates particle phase space alone, $X_{p z}$ rotates the observer alone, and X_{f} rotates the particle phase space and the observer.

We have the Hamiltonian

$$
\begin{equation*}
\hat{H}=H+\frac{1}{2} p_{\theta}^{2} \tag{3.23}
\end{equation*}
$$

on $T^{\prime \prime}\left(S^{1} \times Q\right)$ which generates the real dynamics on $T^{*} Q$ and rotates the observer with speed p_{θ}. It Poisson commutes with p_{θ}, J (tbought of on $T^{\prime \prime}\left(S^{1} \times Q\right)$) and $\hat{\boldsymbol{J}}$. We wate to consider the orbit space of the $\boldsymbol{X}_{\mathrm{j}}$ action, but to look at the level surfaces of p_{s} (as opposed to \hat{J}) since we want to study a given speed of rotation and we don't prant to mix up different speeds in the same phase space. We may ideatify

$$
\begin{equation*}
\left.T^{*}\left(S^{l} \times Q\right)\right]_{P=1}=\text { conetant } / X_{J} \tag{3.24}
\end{equation*}
$$

with $T^{*} Q$ by identifying (θ, q, p, p) to the (\tilde{q}, \tilde{p}) on the X_{f} orbit through it at the point $\theta=0$. Since

$$
\begin{equation*}
X_{\hat{H}}=X_{H}+p_{e} \frac{\partial}{\partial \theta} \tag{3.25}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{J}=X_{J}+\frac{\partial}{\partial \theta} \tag{3.26}
\end{equation*}
$$

the dynamics on $T^{\prime \prime}\left(S^{1} \times Q\right) / X_{\mathcal{J}}$ identified in the above way is given by

$$
\begin{equation*}
X_{H}-p_{\theta} X_{J} \tag{3.27}
\end{equation*}
$$

The Poisson bracket of two functions is seen to be

$$
\begin{equation*}
\{f, s\}_{T *(s, \times Q) / X_{J}}=\{f, s\}_{T * Q}-X_{J} \cdot f \frac{\partial g}{\partial p_{G}}+\frac{\partial f}{\partial p_{\theta}} X_{J} \cdot q . \tag{3,28}
\end{equation*}
$$

If we now reatrict to $p_{\theta}=$ constant. and identify with $T^{*} Q$, we get a Hamiltonian system with the original Poisson bracket and Hamiltonian

$$
\begin{equation*}
\boldsymbol{H}-\boldsymbol{p}_{\theta} J_{1} \tag{3.29}
\end{equation*}
$$

showing $-p_{6} j$ to be a fictitious force.

3.1.6. Fictitious Forces with Momentum Shift as Reduction

Now we apply the ideas from section 3.1 .4 to the setup in section 3.1.5. The orbit space of $\dot{\xi}$ on $S^{1} \times Q$ is identifiable with Q by sending an orbit to its q value at $\theta=0$, call it $\left(S^{1} \times Q\right) / \hat{\xi}$. We would like to compare the $T^{\bullet} Q$ obtained in section 3.1 .5 by quotienting $T^{\bullet}\left(S^{1} \times Q\right)$ by $X_{\mathcal{I}}$ and holding P_{θ} fixed, with the $T^{*} Q$ ohtained by taking the cotangent bundle

$$
\begin{equation*}
T^{*}\left[\left(S^{1} \times Q\right) / \hat{\xi}\right] \tag{3.30}
\end{equation*}
$$

and so obzain ite relation to the original $T^{*} Q$ dynamies. We use the fact that on the cotangent bundle

$$
\begin{equation*}
\left.T^{*}\left[S^{1} \times Q\right) / \hat{\xi}\right] \approx T^{*} Q \tag{3.31}
\end{equation*}
$$

with metric K on Q, the momentum \bar{p} should be related to the velocity via K :

$$
\begin{equation*}
\tilde{p}=2 K(\cdot, \dot{q}) . \tag{3.32}
\end{equation*}
$$

Here \dot{q} is the projection of the dynamics on $T^{*} Q$ down to Q. This gives us a map

$$
\begin{equation*}
T^{*} Q \rightarrow T^{*} Q, \quad \text { by } \quad(q, p) \rightarrow(q, \bar{p}) \tag{3.33}
\end{equation*}
$$

where (q, p) is a representative of a point in

$$
T^{*}\left(S^{1} \times Q\right) /\left.X_{\rho}\right|_{p g=\text { constant }}
$$

and ($q, \stackrel{\tilde{p}}{ }$) in

$$
\left.T^{*} \mid\left(S^{1} \times Q\right) / \hat{\xi}\right\}
$$

Since the Hamiltonian is now $H-p_{\theta} J$, we see that

$$
\begin{align*}
\dot{q} & =\frac{\partial}{\partial p}\left(H \rightarrow p_{\theta} H\right) \\
& =\frac{\partial}{\partial p}\left(K^{*}(p, p)+V(q)-p_{\theta} p(\xi(q))\right) \tag{3.34}\\
& =\frac{\partial}{\partial p} K^{*}(p, p)-p_{\theta} \xi(q) .
\end{align*}
$$

K is quadratic, 8

$$
\begin{equation*}
2 K\left(\cdot \frac{\partial}{\partial p} K^{*}(p, p)\right)=p \tag{3.35}
\end{equation*}
$$

and so

$$
\begin{align*}
\bar{\partial} & =2 K\left(\cdot, \frac{\partial H}{\partial p}\right) \tag{3.36}\\
& =p-\rho_{\theta} 2 K(\cdot, \xi)
\end{align*}
$$

In the case $Q=\operatorname{RO}^{2}$,

$$
\begin{equation*}
\xi=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x} \tag{3.37}
\end{equation*}
$$

is a rotation, and

$$
\begin{equation*}
K=\frac{m}{2}\left(d x^{2}+d y^{2}\right) \tag{3.38}
\end{equation*}
$$

on $T Q$ and

$$
\begin{equation*}
K^{*}=\frac{1}{2 m}\left(p_{x}^{2}+p_{U}^{2}\right) \tag{3.39}
\end{equation*}
$$

on $T^{*} Q$, we see that

$$
\begin{equation*}
\tilde{\boldsymbol{p}}_{x}=p_{x}+p_{\theta} m y \tag{3.40}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{p}_{v}=p_{v}-p_{\theta} m x . \tag{3.41}
\end{equation*}
$$

If we identify

$$
\begin{equation*}
\omega=-p_{\theta} \tag{3.42}
\end{equation*}
$$

then this is exactly the setup in section 3.1.2. Thus the Coriolis force and centrifugal force obtaiged in 3.1 .2 are identified with magnetic terms in the Poisson bracket and a modified potential in the Hamiltonian arising from reduction.

3.2. Geometry of the Method of Variation of Parameters

Let us now consider the powerful and commonly uned perturbation technique known as the method of variation of parameters. A goud description of the technigue may be found in [Nayfeh. 1973] on p. 59. This method defines the evolution of the perrurbation in terms of quantities at the unperturbed point. We expect to be O(1) away from this point in time $1 / \mathrm{f}$ (since the size of the perturbation is $O(\epsilon)$) and so cannot get a correct description on this time scale. To extend the time of validity, the orbit of the unperturbed system to which we compare the true fir \mathbf{w}^{*} must be allowed to vary. If we label unperturbed orbits by then initial conditions, then we may rewrite the perturked orbit's drift from unperturbed orbit to orbit in terms of a dri4 of initial conditions. Often this slow drift may be further simplified (eg. via averaging) and results in a usable perturbation theory for time $1 / c$. Let us formulate this dynamics geometrically.

Any dynamical system

$$
\begin{equation*}
\dot{\Sigma}=X(x) \tag{3.43}
\end{equation*}
$$

on $I f$ gives rise to a natural dynamics on the group Di $\int f(M)$ of diffeomorphisms of M. We view X as an element of the Lie Algebra $d i / \int(A)$ and we get the rightinvariant dynamical vector feld by right translation to each point of Diff(M). In general, we get a right-invariant vector field on a group containing the vector t at the identit , by considering the first order infinitesinal leff trarslation by the 1 -parameter subgroup to which v is tangent. The resulting flow on Diff(M) has the following interpretation: The time-t evolution of $\int \in \operatorname{Di} \int(J)$ is the difeomorphism obtained by first applying f and then ietting I fow for timo-t

Now ronsider a perturlied vector field

$$
\begin{equation*}
X_{0}+\varepsilon X_{3} \tag{3.44}
\end{equation*}
$$

 is to be the "evolution of initial conditions" that variation of parameters produces, then $\vec{F}_{t}(r(t))$ is a solution to the full equation

$$
\begin{equation*}
\frac{d}{d t} \mathcal{F}_{t}(x(t))=X_{0}\left(\mathcal{F}_{t}(x(t))\right)+\epsilon X_{1}\left(\mathcal{F}_{t}(x(t))\right) \tag{3.45}
\end{equation*}
$$

By definition, the left hand side is

$$
\begin{equation*}
=X_{0}\left(\mathcal{F}_{t}(x(t))\right)+D \mathcal{F}_{f} \cdot(\dot{x}(t)) \tag{3.46}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\dot{x}(t)=\epsilon D \mathcal{J}_{-t}(x(t)) \cdot X_{1}\left(\mathcal{F}_{t} x(t)\right)=c \mathcal{F}_{-t *} X_{1} . \tag{3,47}
\end{equation*}
$$

We may view this as a time dependent evolution equation or consider dynamics on $D i f f(M) \times M$ given by

$$
\begin{equation*}
\tilde{X}:(f, x) \mapsto\left(X_{0} \circ f, c f_{0}^{-1} X_{1}\right) \tag{3.48}
\end{equation*}
$$

with initial condition (identity, $x_{0}+\epsilon x_{1}$), If \mathcal{F}_{t} is periodic then $\epsilon \mathcal{F}_{-t}, X_{1}$ is periodic and the method of averaging is to average it over a period. We discuss the method of averaging in greater deail in section 2.9.

3.2.1. Hamiltonian Variation of Parameterg

If $M . w$ is symplectic and

$$
\begin{equation*}
X_{H_{0}}+c X_{H_{1}} \tag{3.49}
\end{equation*}
$$

is Hamiltonian, then we may work on the group $S y m p(M)$ of symplectomorphisms. If $f \in S y m p(M)$ and $X_{H_{0}}$ is Hamiltonian, then so is $X_{H_{0}} \circ f$. We may define a right invariant symplectic structure on $\operatorname{Symp}(M)$ by

$$
\begin{equation*}
\dot{\sim}\left(X_{1} \circ f, X_{2} \circ f\right)=\int_{M} \omega\left(X_{1}, X_{2}\right) d x . \tag{3.50}
\end{equation*}
$$

We would like to find a Hamiltonian on $\operatorname{Symp}(M)$ whose corresponding vector field at $f \in S_{y m p}(M)$ is $X_{H_{0}} \circ f$. We first determine the one-form obtained by inserting, this into $\tilde{\omega}$:

$$
\begin{align*}
\bar{\omega}_{/}\left(X_{H_{0}} \circ f, X \circ f\right) & =\int_{M} \omega\left(X_{H_{0}}, X\right) d x \\
& =\int_{M} d H_{0}(X) d x \tag{3.51}\\
& =\int_{M} X\left(H_{0}\right) d x
\end{align*}
$$

Thus we may take the Hamiltonian on $S y m p(M)$ to be the right invariant function

$$
\bar{H}_{0}(f)=\int H \circ \int d x
$$

To check that this gives the correct dynamics, notice that the vector $\mathrm{X}=\int$ acting on this is

$$
\begin{align*}
\frac{d}{d c} \tilde{H}(J+C X) & =\int \frac{d}{d \epsilon} H(J+C X) d x \\
& =\int X\left(H_{0}\right) d x \tag{3.53}
\end{align*}
$$

as desired. Now notice tbat

$$
\begin{equation*}
\int_{.}^{-1} X_{H_{1}}=\ell X_{f} \cdot H_{1} . \tag{3.54}
\end{equation*}
$$

So with a symplectic structure on $S y m p(M) \times M$ given by

$$
\begin{equation*}
\tilde{\omega} \times \omega \tag{3.55}
\end{equation*}
$$

and a Hamiltonian $\bar{H} \cdot S y m p(M) \times M \rightarrow$ given by

$$
\begin{equation*}
\tilde{H}:\left(f, x^{2}, \cdots \int_{M} H_{0} \circ f d x+e H_{1}\left(\int(x)\right)\right. \tag{3.56}
\end{equation*}
$$

We get the variation of parameter dynamics.
We may sev from this that if $\boldsymbol{X}_{H_{0}}$ has all periodic orbits then the averaged dyoamics is Hamiltonian with Hamiltonian $H_{I}(f(x))$ averaged over the evolution f

Chapter 4:

Hamiltonian

Structures in

Perturbation Theory

"Schrödinger and I both had a very strong appreciation of mathematical beauty and this dominated all our work. It was a sort of act of faith with us that any equations which describe fundamental laus of Nature must bave great mathematical beauty in them. It was a very profitable religion to hold and can be considered the basis of much of our success."-P. A. M. Dirac on p. 136 of [Dirac, 1977]

4.1. Intr duction

In this chapter we describe the geometry of a Hamiltonian structure for nonsingular perturbation theory applied to Hamiltonian systems on symplectic manifolds. This is limited in two respects: 1) Many systems of physical interest require more sophisticated singular perturbation methods as in (Nayfeh. 1973) and [Kevorkian and Cole, 1981] and 2) the Hamiltonian structures of many systems are given in terms of more general Poisson manifolds (Weinstcin. 1983a: Some extension of the present chapter to these cases is given in later chapters. The result-
in this chapter are relevant to these investigations though. Most singular perturbation methods have a nonsingular expansion underlying them. Ponssen manifolds are stratified by symplectic manifolds and many of the symplectic constructions considered here are susceptible to getheralization.

If we are given dynamics in the form

$$
\begin{equation*}
\dot{r}=X_{0}+\epsilon X_{1}+\frac{\epsilon^{2}}{2} X_{2}+\cdots \tag{4.1}
\end{equation*}
$$

wher" each of the vector fields X_{1} is Hamiltonian with respect to a common Poisson structure, we may attempt to express the solution as an asymptotic series in ϵ :

$$
\begin{equation*}
x(t)=x_{0}(t)+c x_{1}(t)+\frac{\epsilon^{2}}{2} x_{2}(t)+\cdots \tag{4.2}
\end{equation*}
$$

Plugging this form into the equation of motion and equating coefficients of powers of e gives us equations for x_{0}, x_{1}, \ldots. The main result of this chapter is that the equations for x_{0}, \ldots, x, form a Hamiltonian system for any J.

These resuits were discussed in chapter 2 but are proved here in full detail. The background material and non-Hamiltonian perturbation structures introduced in chapter 2 will be needed in this chapter. The reader not familiar with geometric mechanits at the level of [Arnold, 1978] may find sections of this chapter rough going. Except for parts of chapter 5 , the rest of the thesis is independent of the detailed derivations given here.

We study the perturbation Haniltonian structure in five different ways, each of which sheds a different light on it. In the second section we do the case of first order perturbation theory explicitly, where it is easier to understand the structure. The extension to arbitrary order necessitates the introduction in the third section
of rettain path spares and jet buadfes. The fre inwstigative approache that follow. 1) In the fourth section we give the desired Hamiltonian strurture in loral canonical coordinates. 2) The fifth section shows that this strurture in courdinate independent by imhedding the jet bundle in an iterated tangent bundle. 3) The sixth section obtains the structure from a matural one on the infinite dimensional path space. 4) The seventh section shows in what sense the structure is the J th derivative of a product structure, 5) The eighth section shows that if the original symplectic manifold is a coadjoint orbit in the dual of a fic algebra with the Kirillov-Kostant-Souriou (KKS) Lie symplectic structure, theo the jet bracket is a KKS Lie symplectic structure for a coadjoint orbit of a certain jet gioup. We close with a discussion of the process of reduction appiled to perturbed systems with symmetry.

4.2. First Order Hamiltonian Perturbation Theory

Let us recall the geometric structure of Hamiltonian mechanics. The phase space will be a $2 N$-dimensional symplectic manifold M (many of the constructions work in infinite dimensions and many of the interesting physical examples are infinite dimensional [Marsden, 1981], but this entails technicalities which we will not consider here). This is a manifold with a distinguished closed non-degenerate 2form w which geometrises the classical Lagrange bracket. The Hamitonian is a distinguished function H on M which we take to be a function of e as well. Usually we assume that $\varepsilon \in I \equiv\{0, i\}$ and so we can view H as a function on $I \times M$. For each value of c we obtain a vector field $\boldsymbol{N}(\epsilon)$ on K_{I} by the Hamiltonian prescription. This says that at a proint $x_{0} \in M, X\left(\epsilon, x_{0}\right)$ is the unique (since ω is nou-degene:ate) vertor at x_{0} which gives the one form $\left.d H\right|_{x_{0}, t}$ when inserted in $\left.\omega\right|_{\text {a }}$, i.e.

$$
\begin{equation*}
i_{X(e)} \omega=d H \tag{4.3}
\end{equation*}
$$

We will discuss the flow of $X(c)$ as though it were complete, taough wis need not be the case (a vector field is complete if solution curves don't run off the manifold in firete time). Let us assume that H may $1 \sim$ represented in an asymptotic series as $\mathrm{f} \rightarrow 0$ which is uniform in x, i.e.

$$
\begin{equation*}
H(\epsilon, x) \sim H_{0}(x)+\varepsilon H_{1}(x)+\frac{\epsilon^{2}}{2!} H_{2}(x)+\cdots \tag{4.4}
\end{equation*}
$$

where the first derivatives of each H_{1} are uniformly bounded in x. Because of the linearity in going from functions to their Hamiltonian wetor felds, we also bave the asymptotic expansion

$$
\begin{equation*}
X(c, x)-X_{0}(x)+\varepsilon X_{1}(x)+\frac{c^{2}}{2!} X_{2}(x)+\cdots \tag{4.5}
\end{equation*}
$$

as $\ell-0$. In this expression, X_{i} represents the Hamiltorian vector field corresponding to H_{2}. Hamilton's equations are

$$
\begin{equation*}
\dot{x}(\epsilon, t)=X(c, x(c, t)) . \tag{4.6}
\end{equation*}
$$

Ft the initial conditions be given as $x(\epsilon, t=0)=y(\epsilon)$ and assume that y has an expansion $y(\epsilon) \sim y_{0}+\epsilon y_{1}+\left(c^{2} / 2!\right) y_{2}+\cdots$.

As we have seen in chapter 2, non-singular perturbation theory asks for the fow representing the solution an asymptotic series in \boldsymbol{c} :

$$
\begin{equation*}
x(c, t) \sim x_{0}(t)+\epsilon x_{1}(t)+\frac{c^{2}}{2!} x_{2}(t)+\ldots \quad \text { as } \epsilon \rightarrow 0 \tag{4.7}
\end{equation*}
$$

In chapter 2 we substituted this representation into the equations of motion, equated coefficients of equal powers of ϵ, and so obtained differential equations for x_{0}, x_{1}, \ldots with initial conditions given by $x_{i}(t=0)=y_{i}$. The solution of these equations gave us an asymptotic representation of the true solution, but in general it was nonuniform in t. To deal with times (like $\frac{1}{\varepsilon}$) longer than some hounded value as $\varepsilon \rightarrow 0$, we must use more sophisticated perturbation techniques such as Lie transforms or multiple time scales and so lose the generality of the problems we may treat. We discuss these singular or secular perturhation theories in chapter 5.

The goal in this chapter is to determine the gemetric nature of the quantities x_{0}, x_{2}, \ldots and to determine a Hamiltonian structure for their evolution equations. It is casy to relate these asymptotic expansions for the abstract vector fields and their Hamiltonians to a coordinate representation of them. If we introduce a local coordinate system $z^{1}, \ldots, x^{2 N}$ on a chart of M, we may express

$$
\begin{equation*}
X(\varepsilon, x)=\sum_{a=1}^{2 N} X^{a}(f, x) \frac{\partial}{\partial x^{a}} \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{\mathrm{r}}(x)=\sum_{a=1}^{2 N} X_{t}^{a}(x) \frac{\partial}{\partial x^{a}} \quad \text { for } \quad 0 \leq i<\infty \tag{4.9}
\end{equation*}
$$

We will use a convention where the upper index from the beginning of the Latin alphabet (e.g. a, b, c, \ldots) gives the coordinate on M and the lower index from the middle of the Latin alphabet (e.g. i_{j}, k, \ldots) gives the order of perturbation. The components of X in this coordinate system have the asymptotic expansion

$$
\begin{equation*}
X^{a}(\epsilon, x) \sim X_{0}^{a}(x)+c X_{1}^{a}(x)+\cdots \quad \text { as } \epsilon \rightarrow 0 \text { for } 1 \leq a \leq 2 N \tag{4.10}
\end{equation*}
$$

as may easily be seen. The equations of motion are

$$
\begin{equation*}
\dot{x}^{a}=X^{a}(\epsilon, x) \quad \text { with } \quad x^{a}(t=0)=y^{a} \quad \text { for } \quad 1 \leq a \leq 2 N \tag{4.11}
\end{equation*}
$$

We saw in chapter 2 that the first order perturbation approximation to these equations is

$$
\begin{align*}
& \dot{x}_{0}^{a}=X_{0}^{a}\left(x_{0}\right) \\
& \dot{x}_{1}^{a}=\sum_{b=1}^{2 N} \frac{\partial X_{0}^{a}}{\partial x^{b}}\left(x_{0}\right) \cdot x_{1}^{b}+X_{1}^{a}\left(x_{0}\right) \tag{4.12}
\end{align*}
$$

with initial conditions $x_{0}^{a}(t=0)=y_{0}^{a}$ and $x_{1}^{a}(t=0)=y_{1}^{a}$. A snlution $x_{0}(t), x_{1}(t)$ to these equations with the correct initial conditions will form a first order asymptotic solution $x_{0}(t)+\epsilon x_{1}(t)$ to the original cquation at each fixed t (and so uniformly over bounded time intervals).

We lave seen how to formulate this procedure in terms of coordinate free objects. The true dynamics takes place on M and for each t the flow $x(t)$ is a diffeomorphism of M to itself taking initial conditions to their time t evolution. X_{0} and X_{1} are vector fields on $M . x_{0}(t)$ gives the flow of the unperturbed vector
field X_{0}. Becausc r_{1} represents a small perturbation to r_{0} as t vanishes, it !ives in the tangent space to M at $x_{0} . x_{0}, x_{1}$ represent an equivalence class of How: parameterized by e, where we identify flows whici asymptote to the unperturhed flow with linear rate x_{1} as egoes to zero. If we pick a time $/$ and an initial condition then each flow defines a urve parameterized by ϵ, which passes through $x_{0}(t)$ when $c=0$. The equivalence relation on flows leads to an equivalence relation on curves through $x_{0}(t)$ that is oxactly the defining relation for a tangent vector based at $x_{0}(t)$. In local coordinates on M, we see that x_{0}^{0}, x_{1}^{h} for $1 \leq a, b \leq 2 N$ are coordinates on the tangent hundle $T M$ where x_{0} coordinatizes the base and x_{1} the fiber over x_{0}.

Equations (4.12) are to be thought of as locally defining a vector field on $T M$. We showed in chapter 2 that they are actually coordinate independent by defining vector fields \bar{X}_{0} and \tilde{X}_{1} on $T M$ from X_{0} and X_{1} on M. If $x_{0}(\ell)$ is the flow of X_{0} on M, then its derivative $T x_{0}(t)$ defines a tlow on $T M$. We defined the corresponding vector field on TM:

$$
\begin{equation*}
\left.\dot{X}_{0} \approx \frac{d}{d t}\right|_{t=0} T x_{0}(t) \tag{4.13}
\end{equation*}
$$

\tilde{X}_{0} defines the linearized flow of X_{0} (see [Abraham and Marsden, 1978], page 252; In coordinates, \tilde{X}_{0} is given by

$$
\begin{align*}
\dot{x}_{0}^{a} & =X_{0}^{a}\left(x_{0}\right) \\
\dot{x}_{1}^{a} & =\sum_{b=1}^{2 N} \frac{\partial X_{0}^{a}}{\partial x^{b}}\left(x_{0}\right) \cdot x_{1}^{b} \quad \text { for } \quad 1 \leq a \leq 2 N \tag{4.14}
\end{align*}
$$

Because the tangent space at a point is linear, it makes sense to add a vector v in $T M$ to a tangent vector in $T T M$ over v. Thus for $(x, v) \in T M$ we may define

$$
\begin{equation*}
\bar{X}_{1}(x, t)=\left.\frac{d}{d t}\right|_{t=0}\left(t+t X_{1}(\tau)\right) \tag{4.15}
\end{equation*}
$$

Tbis gives a vertical vector field on the bundle TM which is constant on each fiber. In coordinates \hat{X}_{1} is given by

$$
\begin{align*}
& \dot{x}_{0}^{a}=0 \tag{4.16}\\
& \dot{x}_{1}^{a}=X_{1}^{a}\left(x_{0}\right)
\end{align*}
$$

Thus the invariantly defned vector feld $\tilde{X}_{0}+\bar{X}_{1}$ on $T M$ gives the correct equations (4.12) in each local coordinate patch.

Let us now assume that X_{0} and X_{1} are Hamiltonian and investigate the Hamiltonian nature of the perturbed system $\tilde{X}_{0}+\tilde{X}_{1}$ ou $T M . M$ carries the symplectic two-form ω and we are given Hamiltonjads H_{0} and H_{1} such that

$$
\begin{align*}
& i_{x_{0}} \omega=d H_{0} \\
& i_{x_{1}} \omega=d H_{1} . \tag{4.17}
\end{align*}
$$

$T M$ carries a natural symplectic structure $\tilde{\omega}$ gotten by usiag ω to iỏentify TM with $T^{*} M$ and by pulling back $T^{*} M^{\prime}$ s natural structure to $T M$ (|Abraham and Marsden, 1978], page 200, problem 3.31). Berause the unperturbed Hamiltonian is a map from M to the reals,

$$
\begin{equation*}
H_{0}: M \rightarrow \mathbb{R} \tag{4.18}
\end{equation*}
$$

we see that its differential,

$$
\begin{equation*}
d H_{0}: T M \rightarrow \Re, \tag{4.19}
\end{equation*}
$$

may be thought of as a function on TM which is linear on the Gibers. If we denote the natural projection of $T M$ to M by π then since H_{1} is a function on M, we sec ilat $\pi^{*} H_{1}$ is a function on $T M$. We shall see that \dot{X}_{0} and \tilde{X}_{1} are Hamiltonian with respect to $\dot{\sim}$ with Hamiltonians given by $d H_{0}$ and $\pi^{*} H_{1}$. Thus

$$
\begin{equation*}
\hat{H} \equiv d H_{0}+\pi^{\bullet} H_{1} \tag{4.20}
\end{equation*}
$$

is the desired Hamiltonian on $T M$ for the perturbed rquations (4.12).
We demonstrate these statements in local Darboux (canonical) coordinates $q^{\circ} \cdot p^{\circ}$ for $1 \leq \alpha \leq N$ on M. The symplectic structure is

$$
\begin{equation*}
\mu=\sum_{a=1}^{N} d q^{a} \wedge d p^{a} \tag{4.21}
\end{equation*}
$$

with corresponding Poisson bracket:

$$
\begin{equation*}
\left\{q^{\alpha}, p^{B}\right\}=\delta^{\circ B} \tag{4.22}
\end{equation*}
$$

and all other combinations of q 's and p 's vanishing. We represent x_{0} by $q_{0}^{\alpha}, p_{0}^{\alpha}$ and x_{1} by $q_{1}^{\alpha}, p_{1}^{\alpha}$. One can see that the natural Poisson bracket on $T M$ corresponding to to is

$$
\begin{equation*}
\left\{q_{0}^{\alpha}, p_{1}^{\beta}\right\}=\delta^{\alpha \beta} \quad\left\{q_{\mathrm{t}}^{\mathrm{a}}, p_{0}^{\beta}\right\}=\delta^{\alpha \beta} \quad \text { for } \quad 1 \leq \alpha, \beta \leq N \tag{4.23}
\end{equation*}
$$

where all ot her combinations vanish. In these coordinates

$$
\begin{equation*}
\tilde{H}\left(q_{0}, p_{0}, q_{1}, p_{1}\right)=\sum_{\alpha=1}^{N}\left(\frac{\partial H_{0}}{\partial q_{0}^{\alpha}} q_{1}^{\alpha}+\frac{\partial H_{0}}{\partial p_{0}^{\alpha}} p_{1}^{\alpha}\right)+H_{1}\left(q_{0}, p_{0}\right) \tag{4.24}
\end{equation*}
$$

The corresponding equations of evoiution are

$$
\left\{\begin{array}{l}
\dot{q}_{0}^{a}=\left\{q_{0}^{a}, \bar{H}\right\}=\frac{\partial \tilde{H}}{\partial p_{1}^{\alpha}}=\frac{\partial H_{0}}{\partial p_{0}^{a}} \tag{4.25}\\
\dot{p}_{0}^{\alpha}=\left\{p_{0}^{\alpha}, \tilde{H}\right\}=-\frac{\partial \tilde{H}}{\partial q_{1}^{a}}=-\frac{\partial H_{0}}{\partial q_{0}^{\alpha}} \\
\dot{q}_{1}^{a}=\left\{q_{1}^{a}, \bar{H}\right\}=\frac{\partial \tilde{H}}{\partial p_{0}^{\alpha}}=\sum_{\beta=1}^{N}\left(q_{1}^{\beta} \frac{\partial}{\partial q_{0}^{\beta}}+p_{1}^{\beta} \frac{\partial}{\partial p_{0}^{\beta}}\right) \frac{\partial H_{0}}{\partial p_{0}^{a}}+\frac{\partial H_{1}}{\partial p_{0}^{a}} \\
\dot{p}_{1}^{\alpha}=\left\{p_{1}^{a} \cdot \bar{H}\right\}=-\frac{\partial \tilde{H}}{\partial q_{0}^{a}}=\sum_{s=1}^{N}\left(q_{1}^{\beta} \frac{\partial}{\partial q_{0}^{\beta}}+p_{1}^{\beta} \frac{\partial}{\partial p_{0}^{3}}\right)\left(-\frac{\partial H_{0}}{\partial q_{0}^{a x}}\right)-\frac{\partial H_{1}}{\partial q_{0}^{a}}
\end{array}\right.
$$

But X_{0} gives the equations

$$
\begin{equation*}
\dot{q}_{0}^{\mathrm{o}}=\frac{\partial H_{0}}{\partial p_{0}^{\alpha}} \quad \dot{\rho}_{0}^{\alpha}=-\frac{\partial H_{0}}{\partial q_{0}^{\alpha}} \tag{4.26}
\end{equation*}
$$

so we see that

$$
\frac{\partial X_{0}}{\partial x_{0}} \cdot x_{1}=\left(\begin{array}{cc}
\frac{\partial}{\partial q_{0}} \frac{\partial H_{0}}{\partial p_{0}} & \frac{\partial}{\partial p_{0}} \frac{\partial H_{0}}{\partial p_{0}} \tag{4.27}\\
\frac{\partial}{\partial q_{0}}\left(-\frac{\partial H_{0}}{\partial q_{0}}\right) & \frac{\partial}{\partial p_{0}}\left(-\frac{\partial H_{0}}{\partial p_{0}}\right.
\end{array}\right)\binom{q_{1}}{p_{1}}
$$

\boldsymbol{X}_{1} gives the equations

$$
\begin{equation*}
\dot{q}_{0}^{\mathrm{a}}=\frac{\partial H_{1}}{\partial p_{0}^{a}} \quad \dot{p}_{0}^{\mathrm{a}}=-\frac{\partial H_{1}}{\partial p_{0}^{a}} \tag{4.28}
\end{equation*}
$$

and \bar{H} has indeed given us the desired perturbation equations (4.12).

4.3. Path and Jet Spare日

We would now like to extrad the first order results of the last section to arbitrary order J. We will extend the Hamiltonian structure from the tangent bundle to the jet bundles introduced in Chapter 2.

As in that chapter, we introduce the path space:

$$
\begin{equation*}
P M \equiv\{\text { space of all paths } p: I \rightarrow I \times M \text { of the form } p: \subset \vdash(c, r(\epsilon))\} \tag{4.29}
\end{equation*}
$$

and from this we define the jet spaces with integer $1 \leq 3 \leq \infty$:
$J M \equiv\left\{\right.$ equivalence classes in $P_{1} M$ where $p_{1} \sim p_{2}$ iff

$$
\begin{equation*}
\forall C^{\infty} \text { functions } f \text { on } J \times M \text { we have : } \tag{4.30}
\end{equation*}
$$

$$
\left.\left.\frac{\partial^{i}}{\partial \epsilon^{i}}\right|_{\varepsilon=0} f\left(p_{1}(\epsilon)\right)=\left.\frac{\partial^{2}}{\partial \epsilon^{i}}\right|_{\epsilon=0} f\left(p_{2}(\epsilon)\right) \quad \text { for } 0 \leq \imath \leq J\right\} .
$$

If x^{a} for $1 \leq a \leq 2 N$ are ccordinates on $M \approx P_{0} M \approx 0 M$, then we introduce coordinates $\left\{x_{0}^{\mathrm{a}}, \mathrm{x}_{1}^{\mathrm{a}}, \ldots, x_{j}^{\mathrm{a}}\right\}$ for $0 \leq J \leq \infty$ on $J M$ to represent the equivalence class of the curve

$$
\begin{equation*}
x_{0}^{a}+\epsilon x_{1}^{a}+\frac{\epsilon^{2}}{2!} x_{2}^{a}+\ldots+\frac{\epsilon^{J}}{J!} x_{J}^{a} \tag{4.31}
\end{equation*}
$$

in $I \times M$ (near $\varepsilon=0$ this won't leave the chart on which the r^{a} are defined).
In chapter 2 we identified the tangent spaces to these and showed how edependent dynamics on M induces dynamics on these. The induced dynamics on the jet space $J M$ was exactly the perturbation dynamics up to J th order. We will now assume that the dynamics on M is Hamiltonian and try to find Hamiltonian structures for the dynamics on $P . M$ and $J M$.

4.3.1. Path Space Symplectic Structure and Hamiltonian

The Hamiltonian structure on M lifts to one on $P_{1} M$. As before, ω is a symplectic form on M and $H(6, x)$ is a Hamiltonian. There is a natural symplectic form こ' on $P_{1} M$. Intuitively, if we think of $P_{1} M$ as a continuous product of M 's corresponding to each value of ϵ, then $\dot{\omega}$ will just be the continuous sum of the corresponding symplectic structures. At a point $p \in P_{1} M$ and with vectors $\tilde{V}_{1}, \dot{V}_{2} \in$ $T_{p} P_{1} M$, we define

$$
\begin{equation*}
\bar{\omega}_{p}\left(\bar{V}_{1}, \bar{V}_{2}\right) \equiv \int_{0}^{1} \omega_{p(\epsilon)}\left(V_{1}(\epsilon, p(\epsilon)), V_{2}(\epsilon, p(\epsilon))\right) d \epsilon \tag{4.32}
\end{equation*}
$$

Similarly, we expect the Hamiltonian to be a continuous sum of the Hamiltonians for each e. We define \bar{H} on $P_{1} M$ as

$$
\begin{equation*}
\tilde{H}(p) \equiv \int_{0}^{1} H(\epsilon, p(c)) d \epsilon \tag{4.33}
\end{equation*}
$$

4.3.2. The Path Space Dynamica is Hamiltonian

We will now show that the Hamiltonian vector field on $P_{1} M$ defined by \tilde{H} and $\dot{\omega}$ is exactly the lift $\bar{\therefore}_{H}$ of the Hamiltonian vector field X_{H} on M. In finite dimensions, the differential of a function pairs with a vector by taking the sum over components of the product of each component of the vector with the derivative of the function in the corresponding direction. When we consider functions on a path space, this sum turns into an integral. The differential of \dot{H} thus satisfies

$$
\begin{equation*}
d \tilde{H}\left(\bar{V}_{p}\right)=\int_{0}^{1} V(\epsilon, p(\epsilon)) \cdot H(\kappa) \dot{\epsilon} \epsilon . \tag{4.34}
\end{equation*}
$$

Y is the directional derivative along V^{\prime}, with $H(4)$ viewed as a function on M and $\mathcal{F}^{\circ}(f, p(f))$ viewed as a vector in $T M$. Let us see what $t_{\dot{x}_{H}} \dot{=}$ is

$$
\begin{align*}
\bar{\omega}_{p}\left(\dot{X}_{H}, \dot{V}\right) & =\int_{0}^{1} \omega\left(X_{H(t)}(p(\epsilon)), V(\epsilon, p(\epsilon))\right) d \epsilon \\
& =\int_{0}^{1} V(c, p(\tau)) \cdot H(\epsilon) d t \tag{4.35}\\
& =d \dot{H}\left(\bar{V}_{;}\right) .
\end{align*}
$$

Thus \bar{X}_{H} is indeed Hamiltonian on $P_{1} M$.
In chapter 2 we saw that the dynamics on $P_{1} M$ naturally projects down to the desired perturbation dynamics on $J M$. We would like to project the Hamiltonian and symplectic structure as well to make $J M$'s dynamics Hamiltonian. Unfortunately, functions and forms may only be pulled back functorially and cannot be naturally pushed forward. We may write down the Poisson bracket on $P_{1} M$ corresponding to \tilde{u}. Poisson brackets can sometimes be pushed forward along a projection by pulling back the bracketed functions. In this case, however, things become too singular and we would be left with "products" of delta functions. In the next section we will find a Hamiltonian structure on $J M$ and in later sections we will relate it to the structure on $P_{1} M$.

4.4. Coordinate Deacription of the J-jet Structure

Let us reiterate the fundamental problem. We have defined a space of J-jets $J M$ with coordinates $\left\{a_{0}^{a}, \ldots, x_{j}^{a}\right\}, 1 \leq a \leq 2 N$. The correct perturbation dynamics is given by the vector feld with components

$$
\begin{gather*}
V_{k}^{a}\left(x_{0}, \ldots, x_{j}\right)=\left.\frac{\partial^{k}}{\partial \hat{\epsilon}^{k}}\right|_{c=0} X^{a}\left(c, x_{0}+\epsilon x_{1}+\cdots+\frac{c^{J}}{J!} x \jmath\right), \tag{4.36}\\
\text { for } \quad 1 \leq a \leq 2 N \text { and } 0 \leq k \leq J .
\end{gather*}
$$

We want to know whether this dynamies on a $2 N(J+1)$ dimensional space is Hamiltonian if $X(\epsilon)$ is Hamiltonian on each $2 N$ dimensional space $\epsilon=$ constant .

Darboux's theorem [Arnold, 1978] tells us that we may choose the coordinates $\left\{x^{1} \ldots, x^{2 N}\right\}$ on M to be canonical. Thus the Poisson bracket of any two coordinate functions,

$$
\begin{equation*}
\left\{x^{a}, x^{b}\right\}=J^{a b} \quad 1 \leq a, b \leq 2 N \tag{4.37}
\end{equation*}
$$

is a constant independent of x. The dynamics then takes the form

$$
\begin{equation*}
X^{\mathrm{a}}=\left\{x^{\mathrm{a}}, H\right\}=J^{\mathrm{ab}} \frac{\partial}{\partial x^{b}} H . \tag{4.38}
\end{equation*}
$$

The correct perturbation dynamics is then

$$
\begin{gather*}
\left.\dot{r}_{k}^{a}=J^{a b} \frac{\partial}{\partial x^{b}}\left(\left.\frac{d^{k}}{d c^{k}}\right|_{\epsilon=0} H\left(c, x_{0}+\epsilon x_{1}+\cdots+\frac{\epsilon^{J}}{J!} x^{J}\right)\right)\right) \tag{4.39}\\
\text { for } 1 \leq a \leq 2 N \text { and } 0 \leq k \leq J
\end{gather*}
$$

from th. expression in 4.36 for the perturbation vector field.

4.4.1. The Jet Hamiltonian

This dynamics is Hamiltogian with the Hamiltonian function on J.I given by

$$
\begin{equation*}
\left.\check{H}\left(x_{0}, \ldots, x_{J}\right) \equiv \frac{d^{J}}{d e^{J}}\right|_{t=0} H\left(c_{1} x_{0}+x_{1}+\cdots+\frac{x^{\prime}}{j!} J_{J}\right) \tag{4.40}
\end{equation*}
$$

with respect to the Poisson bracket introduced in the next section. All of the various derivatives in 4.39 are contained in this expression and the Poisson bracket picks out the right one for each perturbation variable.

4.4.2. The Jet Poisson Bracket

To discover the Poisson structure, we calculate

$$
\begin{align*}
\frac{\partial \bar{H}}{\partial x_{k}^{a}} & =\left.\frac{d^{J}}{d \epsilon^{J}}\right|_{\epsilon=0} \frac{\partial}{\partial x_{k}^{a}} H\left(\epsilon, x_{0}+c x_{1}+\cdots+\frac{\epsilon^{J}}{J!} x_{J}\right) \\
& =\left.\frac{d^{J}}{d \epsilon^{J}}\right|_{\ell=0}\left(\frac{\epsilon^{k}}{k!} \frac{\partial H}{\partial x^{a}}\left(\epsilon, x_{0}+\epsilon x_{1}+\cdots+\frac{\epsilon^{J}}{J!} x_{J}\right)\right) \tag{4.41}\\
& =\left.\frac{J!}{k!(J-k)!} \frac{a^{J-k}}{d \epsilon^{J-k}}\right|_{\epsilon=0} \frac{\partial H}{\partial x^{a}}\left(\epsilon, x_{0}+\epsilon x_{1}+\cdots+\frac{\epsilon^{J}}{J!} x_{J}\right)
\end{align*}
$$

Thus

$$
\begin{equation*}
\dot{x}_{k}^{\mathrm{a}}=\left\{x_{k}^{a} \cdot \tilde{H}\right\}_{J, M} \tag{4.42}
\end{equation*}
$$

gives the correct dynamics if the jet Poisson bracket is

$$
\begin{align*}
& \left\{x_{k}^{a}, x_{m}^{b}\right\} \tag{4.43}\\
\text { for } & 0 \leq k, j \frac{k!m!}{J!} \delta_{k}, J-m \\
& 0 \leq J \text { and } \quad 1 \leq a, b \leq 2 N
\end{align*}
$$

Sotice that for $J=1$ this gives $\left\{x_{0}^{a}, I_{1}^{b}\right\}=J^{a b}$. which was the bracket that we found in section 4.2 for first order perturbation theory.

4.5. Relation to the Iterated Tangent Bundle

We now need to show that this construction, defined in terms of coordinates, is really intrinsic. \bar{H} is clearly intrinsic, being the J th derivative of H along any representative curve in $P_{1} M$ of the point in $J M$ (all such curves give the same answer by definition). That the structure of the Poisson bracket is intrinsic is not so obvious, but may be seen as follows.

4.5.1. Injecting Jets into the Iterated Tangent Bundle

Recall that we are letting I stand for the interval $\{0,1\}$. If we take the J th derivative of the map $I \rightarrow M$, we get a map of the iterated tangent bundles:

$$
\begin{equation*}
T_{I}^{J} T^{J} M \tag{4.44}
\end{equation*}
$$

$\left(T^{J} M\right.$ simply means $T(T(\ldots(T M) \ldots))$ where there are $J T$'s. Each time we take the derivative of a map we get a map between the tangent bundles of the two manifolds.) We may think of this as a curve in $T^{J} M$, since a curve in M lifts to its tangent vector at each point in $T M$, this curve lifis to one in $T T M$, etc. The point $\varepsilon=0$ of this curve in $T^{J} M$ is then the image of $\partial^{J} / \partial \varepsilon^{J}$. As we look at all curves in M, we don't get all poin's in the $2^{J} \cdot 2 \mathrm{~N}$ dimensional $T^{J} \mathrm{M}$, but rather only a $2 N(J+1)$ dimensional suhmanifold identifiable with the jet space. This submanifold is made up of certain diagonals in the iterated tangent bundle which arise because the derivative of the derivative along a path is the same as the second derivative along a path. We give the details in the next section.

4.5.1.1. Coordinata Description of the Injection

If we look in coordinates, we see that this submanifold is given by certain diagonals in the iterated tangent bundle:

$$
\begin{gather*}
\left(x^{a}\right)=\left(x_{0}^{a}\right) \in M \tag{4.45}\\
\left(x^{a},\left.\frac{d x^{a}}{d \epsilon}\right|_{\epsilon=0}\right)=\left(x_{0}^{a}, x_{1}^{a}\right) \in T M \tag{4.46}\\
\left(\left.x^{a} \cdot \frac{d x^{a}}{d \epsilon}\right|_{\epsilon=0},\left.\frac{d x^{a}}{d \epsilon}\right|_{t=0},\left.\frac{d^{2} x^{a}}{d \epsilon^{2}}\right|_{\epsilon=0}\right)=\left(x_{0}^{a}, x_{1}^{a}, x_{1}^{a}, x_{2}^{a}\right) \in T T M \tag{4.47}\\
\left.,\left.\frac{d x^{a}}{d \epsilon}\right|_{\epsilon=0},\left.\frac{d^{2} x^{a}}{d \epsilon^{2}}\right|_{\epsilon=0},\left.\frac{d x^{a}}{d \epsilon}\right|_{\epsilon=0},\left.\frac{d^{2} x^{a}}{d \epsilon^{2}}\right|_{\epsilon=0},\left.\frac{d^{2} x^{a}}{d \epsilon^{2}}\right|_{\epsilon=0},\left.\frac{d^{3} x^{a}}{d \epsilon^{3}}\right|_{\epsilon=0}\right) \\
=\left(x_{0}^{a}, x_{1}^{a}, x_{1}^{a}, x_{2}^{a}, x_{1}^{a}, x_{2}^{a}, x_{2}^{a}, x_{3}^{a}\right) \in T T T M . \tag{4.48}
\end{gather*}
$$

Each time we copy the last list and then copy it again adding one to each subscript. To count how many of each type of derivative we get, we may write this symbolically as

$$
\begin{equation*}
\left(1+\frac{d}{d \epsilon}\right)^{J} \tag{4.49}
\end{equation*}
$$

From the binomial expansion, we get

$$
\begin{equation*}
\frac{J!}{(J-k)!k!} \tag{4.50}
\end{equation*}
$$

copies of x_{k}^{a} in our list.

4.5.2. Symplectic Structure on the Iterated Tangent Bundle

But now recall that $T M$ has a natural symplectic structure pulled back wia $د$ from $T^{*} M$. We may use this to obtain a natural symplectic structure on $T T M$ and then $T T^{T M}$, etc. We have just constructed a natural injection of $J M \rightarrow T^{J} M$, taking ; to an appropriate diagonal. We may pulleack the symplectic structure on $T^{J} M$ to get a natural one on $J M$.

4.5.2.1. Coordinate Description of Symplectic Structure

Let us introduce coordinates $\left\{y_{0}^{\mathrm{o}}\right\}$ on $M,\left\{y_{0}^{\mathrm{a}}, y_{1}^{\mathrm{o}}\right\}$ on $T M ;\left\{y_{0}^{\mathrm{o}}, y_{1}^{\mathrm{o}}, y_{10}^{\mathrm{o}}, y_{11}^{\mathrm{a}}\right\}$ on TTM. etc. Here we are using

$$
\begin{equation*}
y_{d_{1}, \ldots, d J}^{a_{1}} \tag{4.51}
\end{equation*}
$$

on $T^{J} M$ where $d_{1}=0,1$ and leading zeroes are supressed. $y_{1, d, \ldots, d}$ are the coordinates in the fiber over the arare jescribed by $y_{d, \ldots, d}$. Let the symplectic structure on M be $\omega=\omega_{a b} d y_{0}^{a} \wedge d y_{0}^{b} . T^{*} M$ pairs y_{0} with y_{1} and on $T M$ the y_{1} factor is twisted by ω. Thus the symplectic structure on $T M$ is

$$
\begin{equation*}
\omega_{a b} d y_{0}^{a} \wedge d y_{1}^{b} . \tag{4.52}
\end{equation*}
$$

$T^{*} T M$ would pair y_{0} with y_{10} and y_{1} with y_{11}. On $T T M y_{10}$ and y_{11} are twisted by TM's symplectic structure. Thus the structure for $T T M$ is

$$
\begin{equation*}
\omega_{a b} d y_{0}^{a} \wedge d y_{11}^{b}-\omega_{a b} d y_{1}^{a} \wedge d y_{10}^{b}=\omega_{a b}\left(d y_{0}^{a} \wedge d l_{11}^{b}+d y_{10}^{a} \wedge d y_{1}^{b}\right) . \tag{4.53}
\end{equation*}
$$

If we think of the subscript as a binary number, then the prescription is to pair each y with the y whose difits have 1 's and 0 's switched. Thus it pairs y_{m} with
$y_{2}{ }^{s}:-m$ such that the even binary number is the first in the wedge product. This: the symplectir structure on $T^{J} M$ is given hy

$$
\begin{equation*}
\sum_{a, b}^{2 N} \sum_{m=0}^{2^{m}-1}(-1)^{m} \frac{1}{2} \omega_{a b} d y_{m}^{a} \wedge d y_{\gamma^{\prime}-1-m}^{b} \tag{4.54}
\end{equation*}
$$

How does the jet bundle map into $T^{J} M$ in these coordinates? Each time there is a 1 in the binary expansion of m, it indicates that y_{m}^{a} coordinatizes another tangent to a tangent, i.e. another derivative in ϵ. Thus the injection of $J M$ into $T^{J} M$ is given by

$$
\begin{equation*}
y_{m}^{a}=x_{\text {Bugn of binary digite of ma }}^{a} \text {. } \tag{4.55}
\end{equation*}
$$

4.5.3. Pulled Back Symplectic itructure on the Jet Space

We may get a symplectic form on $J M$ by pulling back the one on $T^{J} M$. This amounts to substituting the appropriate x for each y. Since $2^{J}-1-m$ is m with all 1 's and 0 's switched, the sum of the 1 's $m 2^{J}-1-m$ is J minus the number of 1 's in m. Thus x_{k}^{a} is paired with $\omega_{a b} x_{J-k}^{a}$. We see that there ale $J!/[k!(J-k)!$, ways of choosing m with k l's, and so $d x_{k}^{a} \wedge d x_{j-k}^{b}$ will get this coefficient. The pulled back symplectic form on $J M$ is thus

$$
\begin{equation*}
\sum_{a . b=1}^{2 N} \sum_{k=0}^{J} \frac{J!}{k!(J-k)!} \frac{1}{2} d_{a b} d x_{k}^{a} \wedge d x_{J-k}^{b} . \tag{4.56}
\end{equation*}
$$

The corresponding Poisson bracket is exactly the one we obtained in the previous section. We have therefore shown that this bracket really is coordinate independent

4.6. Relation to the Path Space Bracket

In this section we will show how J.M's symplertic structure is related to $P_{1}, \mathbf{1 f}$ s. The result is something like the J-th derivative of the path structure. This interpretation will be made explicit in the next section. We saw in section 4.3 that $P_{1} M$ was essentially a direct integral of the spaces M_{c} as , goes from 0 to 1. The path space symplectic structure and Hamiltonian are integrals of the corresponding structures on M.

4.B.1. Weighted Path Bracket and Hamiltonian

Because the spaces do not interact for diferent values of ℓ, we may obtain equally viable structures by putting a weighting factor $\beta(\epsilon)$ into the integrals. Assuming that $\beta(\epsilon)$ doesn't vanish anywhere. we get the correct dynamics on $P_{1} M$ with

$$
\begin{gather*}
\dot{\bar{u}}_{B_{p}}\left(\dot{V}_{1}, \dot{V}_{2}\right) \equiv \int_{0}^{1} \beta(\epsilon) \omega_{p(\epsilon)}\left(V_{1}(\epsilon, p(c)), V_{2}(\epsilon, p(\epsilon))\right) d \epsilon \tag{4.57}\\
\dot{H}_{\beta}(p) \equiv \int_{0}^{1} \beta(c) H(\epsilon, p(\epsilon)) d \epsilon \tag{4.58}
\end{gather*}
$$

When we project to one of the smaller spaces, we essentially take β to vanish on some domain. $P_{a} M$ comes from taking $\beta(\epsilon)=1$ for $0 \leq \epsilon \leq a$ and $\beta(\epsilon)=0$ for $\alpha<c \leq 1$. Taking β to be a delta function $\beta(c)=\delta(\epsilon)$ gives the original structure on $P_{0} M \sim M$.

In general, if we have a closed two-form on a manifold, it may not be symplectic due to degenerate directions (i.e. there exist tangent vectors such that the one-form that resulty from inserting them into the two-form vanishes). The set of degenerate
directions forms a subspare of the tangent space at each poimt of the manifold Xear puints where the degenerate subspaces don't change in dimension. we may attempt to find a foliation by degenerate submanifolds (i.e. a smooth collection of disjoint submanifolds called leaves of the same dimension as and tangent to the degenerate subspaces, whose union is the whole manifold). Usually this is not possible even locally. Conditions under which it is possible locally are given by Frobenius' theorem (see [Spivak, 1979] p. 257). In the situation we are considering, the condition that the two-form be closed is suficient to guarantee that the requirements of the Ftubenius theorem are satisfied by the degenerate subspaces. We would like to consider the quotient of our manifold hy the degenerate foliation. The quotient is a manifold whose points are the leaves of the foliation. It is always possible to form such a quotient locally and sometimes it is possible globally. The original degenerate two-form gives rise to a non-degenerate symplectic two-form on the quotient. The value of this two-form on two tangent vectors on the quotient is defined to be equal to the value of the original two-form applied to any two vertors on the original manifold that project to the two quotient vectors. The result of this is independent of the point we lift the vectors to Decause the original two-form is closed. It is independent of the vectors we choose at that point because the different choices differ by degenerate vectors on which the two-form vanishes.

These very general considerations apply to the path symplectic structure $\dot{\sim}_{3}$ defined in terms of β. A degenerate vector on the path space at p is a vector field along p on which $\tilde{\partial}_{\theta}$ vanishes. Examining $\tilde{\omega}_{\beta}$'s dcfining integral and using the fact that ω is non-degenerate, we see that if β is a function (as opposed to a
distribution) then a degenerate f is non-zero only at those \boldsymbol{f} where 3 vanishes. If $s=1$ for $0 \leq c \leq a$ and $=0$ for $a<c \leq 1$, a degenerate vector is described by a I'(e) which is non-zera only fire $>\alpha$. The degenerate foliation has leaves that are some given $p(\mathbb{1})$ for $0 \leq \ell \leq \alpha$ and all possible extensions for $\alpha<1 \leq 1$. The quotient by the degenerate foliation is then exactly $P_{\alpha} M$ and the quotient symplectic structure is $\tilde{\omega}_{\beta}$ viewed as acting on vector fields along paths defined for $0 \leq \subset \leq \alpha$. The case of distributional β 's may be studied in a similar way.

4.6.2. Jet Bracket Arises from Derivative of Delta Function Weighting

We claim that taking β to be the J th derivative of a delta function gives us the J-jet structure. Consider

$$
\begin{gather*}
\bar{\omega}_{J p}\left(\bar{V}_{1}, \bar{V}_{2}\right) \equiv \int_{0}^{1}\left((-1)^{J} \frac{d^{J}}{d \epsilon^{J}} \delta(\epsilon)\right) \omega\left(V_{1}(\epsilon, p(\epsilon)), V_{2}(\epsilon, p(\epsilon))\right) d \epsilon \tag{4.59}\\
\bar{H}_{J}(p) \equiv \int_{0}^{1}\left((-1)^{J} \frac{d^{J}}{d \epsilon^{J}} \delta(\epsilon)\right) H(\epsilon, p(\epsilon)) d \epsilon \tag{4.60}
\end{gather*}
$$

This structure does respect the jet equivalence classes. We take symplectic coordinates on M so that $u^{\prime}=\frac{1}{2} \omega_{a b} d x^{a} \wedge d x^{b}$ and use the coordinates $\left\{x_{0}^{a}, \ldots, x_{j}^{a}\right\}$ as defined before on the J-jet space. Recall that a vector

$$
\begin{equation*}
\sum_{a=1}^{2 N} \sum_{k=0}^{J} V_{k}^{a} \frac{\exists}{\hat{c} x_{k}^{a}} \tag{4.61}
\end{equation*}
$$

corresponds to a vector X along a curve with the same jet according to

$$
\begin{equation*}
V_{k}^{a}\left(x_{0}, \ldots, I_{J}\right)=\left.\frac{d^{k}}{d \epsilon^{k}}\right|_{\epsilon=0} X^{0}\left(\epsilon, x_{0}+\iota_{1}+\cdots+\frac{\epsilon^{j}}{j!} x_{j}\right) \tag{4.62}
\end{equation*}
$$

We wre that $\dot{I} J$ really depends only on the J-th jet of the path and the J-ih jet of the vector field:

$$
\begin{align*}
& =\frac{1}{2} \sum_{k=0}^{J} \frac{J!}{k!(J-k)!} \omega_{a b}\left(\left.\frac{d^{k}}{d c^{k}}\right|_{c=0} X_{1}^{a}\left(c, x_{0}+\ldots+\frac{c^{j}}{J!} x_{J}\right)\right) \tag{4.63}\\
& \left(\left.\frac{d^{J-k}}{d e^{J-k}}\right|_{\epsilon=0} X_{2}^{b}\left(\epsilon, x_{0}+\ldots+\frac{\epsilon^{J}}{J!} x J\right)\right)
\end{align*}
$$

by the Leibniz rule for derivatives.
But these derivatives give the components of the jets of X :

$$
\begin{equation*}
\tilde{\omega}_{J}\left(\tilde{X}_{1}, \bar{X}_{2}\right)=\frac{1}{2} \sum_{k=0}^{J} \frac{J!}{k!(J-k)!} \omega_{a b} V_{1, k}^{a} \bar{r}_{2, J-k}^{\prime b} \tag{4.64}
\end{equation*}
$$

So ©̄J is really the puliback along $P_{1} M \rightarrow J M$ of the form which we discovered before:

$$
\begin{equation*}
\sum_{a, b=1}^{2 N} \sum_{k=0}^{J} \frac{J!}{k!(J-k)!} \frac{1}{2} \omega_{a b} d x_{k}^{a} \wedge d x_{J-k}^{b} \tag{4.65}
\end{equation*}
$$

4.6.3. Jet Hamiltonian from Derivative of Delta Function Weighting

 Similarly,$$
\begin{equation*}
\bar{H}_{J}(p)=\left.\frac{d^{J}}{d \epsilon} J\right|_{\epsilon=0} H\left(\epsilon, x_{0}+\epsilon_{1}+\cdots+\frac{c^{J}}{J!} I^{J}\right)=\bar{H}\left(x_{0} \ldots \ldots x_{J}\right) \tag{4.66}
\end{equation*}
$$

is the pullback of \bar{H} along $P_{1} M \rightarrow J M$.

4.7. Jet Space as Derivative

In this section we will make more explicit the sense in which the symplectic structure on $J M$ is a derivative of \sim. Tulczyjew and Kijowski have shown how the natural structure on TM is a first derivative in [Kijowski and Tulczyjew, 1979).

4.7.1. The Sheet Quotient Spaces

We will need the spaces defined by

$$
\begin{array}{r}
P_{0, \delta} M \equiv\left\{\text { equivalence classes in } P_{1} M \text { where } p_{1} \sim p_{2}\right. \\
\text { iff } \left.p_{1}(0)=p_{2}(0) \text { and } p_{1}(\delta)=p_{2}(\delta)\right\} \tag{4.67}
\end{array}
$$

and in general by

$$
\begin{array}{r}
P_{0, \delta, \ldots, J \delta} M \equiv\left\{\text { equivalence classes in } P_{1} M \text { where } p_{1} \sim p_{2}\right. \tag{4.68}\\
\text { iff } \left.p_{1}(\epsilon)=p_{2}(\epsilon) \text { for } \epsilon=0, \delta_{1} \ldots, J \delta\right\} .
\end{array}
$$

We require the curves to agree on sheets $\epsilon=0, \delta, \ldots, J \delta$ spaced by δ. Let us call the coordinates on these sheets $\left\{z_{0}^{a}, z_{1}^{a}, \ldots, z_{J}^{a}\right\}$.

4.7.2. Sheet Symplectic Structure and Hamiltonian

We get the correct dynamics on these sheets if we take the symplectic structure and Hamiltonian to be

$$
\begin{gather*}
\dot{\omega}_{\delta} \equiv \sum_{k=0}^{J} \frac{1}{2} \beta_{k} \omega_{a b} d z_{k}^{a} \wedge d z_{k}^{b} \quad \beta_{k} \neq 0 \tag{4.69}\\
\dot{H}_{\delta}\left(z_{0} \ldots . z_{j}\right) \equiv \sum_{k=0}^{J} \beta_{k} H\left(k \delta, z_{k}\right) \tag{4.70}
\end{gather*}
$$

These are discrete versions of the infinite dimensional structures mentioned in the last section. We wan' to map $J M$ into this space and pull lack $-\ddot{\sim}$, and \dot{H}_{n}. We choose the \mathcal{B}_{k} as functions of δ so that the limit $\delta-0$ is both non-singular and non-trivial.

4.7.3. Map Between Sheet Space and Jet Space

With coordinater $\left\{x_{0}^{a}, \ldots, x_{J}^{a}\right\}$ on $J M$ we can define the map

$$
\begin{equation*}
z_{k}^{a}=\sum_{m=0}^{J} k^{m} \frac{\delta^{m}}{m!} x_{m}^{a} \tag{4.71}
\end{equation*}
$$

This identifies $\left\{x_{0}, \ldots, x_{J}\right\}$ with the points where the curve $x_{0}+\epsilon x_{1}+\ldots+\frac{\frac{1}{3}^{J}!}{x} x_{J}$ intersects the sheets introduced above.

4.7.4. The Yui: :d Back Sheet Symplectic Structure and Hamiltonian

The pulled back $\check{\omega}_{\delta}$ on $J M$ is then

$$
\begin{equation*}
\omega_{\delta}=\frac{1}{2} \sum_{k, m, n=0}^{J} k^{m+n} \frac{\delta^{m+n}}{m!n!} \beta_{k} \omega_{a v} d x_{m}^{a} \wedge d x_{n}^{b} . \tag{4.72}
\end{equation*}
$$

The pulled back Hamiltonian is

$$
\begin{equation*}
H_{\delta}\left(x_{0}, \ldots, x_{J}\right)=\sum_{k=0}^{J} \beta_{k} H\left(k \delta, x_{0}+k \delta x_{1}+\cdots+\frac{(k \delta)^{J}}{J!} x_{J}\right) . \tag{4.73}
\end{equation*}
$$

4.7.5. Shmet Structures Aaymptote to Jet Structurea For Small Spacing

Lookint, at the expression for H_{6}. we see that there is no hope for x_{J} dependence as $k \rightarrow 0$ if $J_{k} \rightarrow x$ slower than δ^{\prime} as $\delta \rightarrow 0$. We therefore assume that $3_{k}=b_{k} \dot{c}^{-J}$ where b_{k} is independent of δ. δ then only appears in the expression for w_{ℓ} as δ^{m+n-J}. Terms with $m+n>J$ will vanish when $\delta \rightarrow 0$. For ω_{δ} to be defined as $\delta \cdots 0$. we must choose b_{0} so that the sum of terms with $i=m+n<J$ must bave a vanishing coefficient. Thus the b_{k} must satisfy

$$
\begin{equation*}
\sum_{k=0}^{J} \sum_{m+n=;} k^{m+n} \frac{b_{k}}{m!n!}=0 \quad 0 \leq i \leq J-1 . \tag{4.74}
\end{equation*}
$$

This may be rewritten

$$
\begin{equation*}
=\sum_{k=0}^{J} \sum_{m=0}^{i} k^{*} \frac{b_{k}}{m!(i-m)!} \tag{4.75}
\end{equation*}
$$

and the binomial theorem gives $\left.\sum_{m=0}^{7} \mid m!(i-m)\right]^{-1}=2^{1} / i$. Thus

$$
\begin{equation*}
\sum_{k=0}^{J} \frac{2^{\prime} k^{\prime}}{i!} b_{k}=0 \quad \text { for } 0 \leq i \leq J-1 \tag{4.76}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{k=0}^{J} k^{2} b_{k}=0 \quad \text { for } 0 \leq i \leq J-1 \tag{4.77}
\end{equation*}
$$

This is J equations for $J+1$ unknowns. We may take $b_{0}=1$ and remember that an arbitrary multiplicative factor is allowed. We solve the equations by introducing a generating function

$$
\begin{equation*}
f(x) \equiv \sum_{k=0}^{1} b_{k} x^{k} \tag{4.78}
\end{equation*}
$$

The condition $b_{0}=1$ becomes $f(0)=1$. Natice tbat

$$
\begin{equation*}
\left(x \frac{d}{d x}\right)^{k} f=\sum_{k=0}^{J} k^{1} b_{k} x^{k} \tag{4.79}
\end{equation*}
$$

So

$$
\begin{equation*}
\left.\left(x \frac{d}{d x}\right)^{*} f\right|_{x=1}=0 \quad \text { for } 0 \leq i \leq J-1 \tag{4.80}
\end{equation*}
$$

This easily implies that

$$
\begin{equation*}
\left.\frac{d^{t}}{d x^{n}} f\right|_{x=1}=0 \quad \text { for } 0 \leq i \leq J-1 \tag{4.81}
\end{equation*}
$$

Using these equations we may Taylor expand f about $x=1$

$$
\begin{equation*}
f(x)=0+0+\cdots+\frac{C_{J}}{J!}(x-1)^{J}+\cdots \tag{4.82}
\end{equation*}
$$

Because f is a J-th order polynomial and $f(0)=1$, we see that $C,=J:(-1)^{\prime}$ and 50

$$
\begin{equation*}
f(x)=(1-x)^{J} \tag{4.83}
\end{equation*}
$$

From the binomial expanstion

$$
\begin{equation*}
b_{k}=(-1)^{k} \frac{J!}{k!(J-k)!} \text { and } \sum_{k=0}^{J} k^{J}=\left.\frac{d^{J}}{d x^{J}}(1-x)^{J}\right|_{x=1}=J!. \tag{4.84}
\end{equation*}
$$

The only terms left in wave $m+n=J$ and give us

$$
\begin{align*}
\omega_{b} & =\sum_{k_{2} m=0}^{J} \frac{1}{2} f^{J} \frac{1}{m!(J-m)!} b_{k} w_{a b} d x_{m}^{a} \wedge d x_{J-m}^{b} \\
& =\frac{1}{2} \sum_{m=0}^{J} \frac{J!}{m!(J-m)!} \omega_{a b} d x_{m}^{a} \wedge a x_{j-m}^{b} \tag{4.85}
\end{align*}
$$

just as before.
Now
$H_{i}\left(x_{0} \ldots, I_{J}\right)$

$$
\begin{equation*}
=\sum_{k=0}^{J} \frac{1}{\delta J}(-1)^{k} \frac{J!}{k!(J-k)!} H\left(k \delta_{1} x_{0}-k k_{1}+\ldots-\frac{(k \delta)^{J}}{J!} x_{J}\right) . \tag{4.86}
\end{equation*}
$$

If we call S_{δ} the operator which shift: a function of ϵ by an amount 0 . so $S_{\delta} f(x)=$ $\int(t+8)$, then we see that

$$
\begin{align*}
H_{\AA}\left(x_{0} \ldots \ldots x_{J}\right)= & \left.\sum_{k=0}^{J} \frac{1}{\delta^{J}}(-1)^{k} \frac{J!}{k!(J-k)!} S_{\delta}^{k}\right|_{\epsilon=0} H\left(\kappa x_{0}+\epsilon x_{1}+\cdots+\frac{c^{J}}{J!} x_{J}\right) \\
& =\frac{\left(1-S_{\delta}\right)^{J}}{\delta^{J}}-H\left(\epsilon, x_{0}+c x_{1}+\cdots+\frac{c^{J}}{J!} x_{J}\right) . \tag{4.87}
\end{align*}
$$

As δ goes to zero, the operator $\left(1-S_{\delta}\right) / \delta$ becomes $d / d \epsilon$. In the limit we have

$$
\begin{equation*}
\bar{H}\left(x_{0}, \ldots, x_{J}\right)=\left.\frac{d^{J}}{d \epsilon^{J}}\right|_{\varepsilon=0} H\left(\epsilon, x_{0}+\epsilon x_{1}+\cdots+\frac{\epsilon^{J}}{J!} x^{J} J\right) \tag{4.88}
\end{equation*}
$$

just as beforc. Our jet structure thus comes out of a limiting process almost uniquely. Similar kinds of arguments arise in the theory of finite differences used to approximate derivatives numerically. A good reference written from a theoretical perspective is [Stoer and Burlirsb, 1980].

4.8. Jeta and Symmetry

In this section we study Hamiltonian group actions in the perturbatom context we have been considering. We need to understand the perturbation analoge of group actions and the process of reduction. We first show that a Hamiltonian group action of G on M lifts to the path space $P_{1} M$ and jet space $J M$. We calculate the momentum maps and show that they are equivariant. We then introduce the group $P G$ of paths in G and the group $J G$ of their J-jets. These too act on $\dot{r} \cdot \dot{\psi}$ and $J M$ and we find their momentum maps. Next we consider the case where M is a cuadjoint orbit in \mathfrak{g}^{*} and show that $P M$ is a coadjoint orbit in Pg^{*} and $J M$ in $J g^{*}$. We calcuiate the corresponding Lie symplectic structures and show that they give the path bracket and jet bracket that we discovered earlier. We then study the process of reduction and show that the reduced path space is the path space of the reduced space and the reduced jet space is the jet space of the reduced space.

4.8.1. e-dependent Group Actions on M

Our starting point is an ϵ-dependent group action on the manifold:

$$
\begin{equation*}
\rho: I \times G \times M-M . \tag{4.89}
\end{equation*}
$$

Here I is the interval $\{0,1\}, G$ is the group, and M is the manifold. If e is the identity of G then

$$
\begin{equation*}
\rho(\epsilon, L, m)=m \tag{4.90}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho\left(c, g_{1}, \rho\left(c, g_{2}, m\right)\right)=\rho\left(c, g_{1} \cdot g_{2}, m\right) . \tag{4.91}
\end{equation*}
$$

For a compact group (; acting on a compact manifold $.1 f$, we can eliminate the -dependence of the group action by an e-dependent coordinate change in I (this result is due to Palais). This is not true for non-compact G as the example of the real line demonstrates. In this case group actions are the flows of vector felds. Even if we restrict attention to arbitrarily small neighborhoods of $\epsilon=0$, only the soralled "structurally stable" vector fields can be made \boldsymbol{c}-independent by an e-dependent coordinate change.

4.8.1.1. Lift to G Action on the Path Space

This action lifts to the space of paths $P M$ by defining

$$
\begin{equation*}
\tilde{\rho}: G \times P M \rightarrow P M \quad \text { by } \quad \tilde{\rho}(g, p)(\epsilon) \equiv \rho(\epsilon, g, p(\epsilon)) \tag{4.92}
\end{equation*}
$$

4.8.1.2. Lift so Action on the Jet Space

This respects the equivalence classes that define the J-jet space $J M$. We introduce coordinates x^{a} on M and $x_{i}^{a}, i=0,1, \ldots, J$ on $J M$ as before. The components of ρ will be written ρ^{a}. The action of G on $J M$ is then given by

$$
\begin{equation*}
\left.\bar{\rho}_{\mathrm{z}}^{a}\left(g,\left(x^{0}, x^{1}, \ldots, x^{J}\right)\right) \equiv \frac{d^{n}}{d \epsilon^{k}}\right|_{\varepsilon=0} \rho^{a}\left(c, g,\left(\epsilon, x_{0}+\epsilon x_{1}+\cdots+\frac{\epsilon^{\prime}}{J!} x_{J}\right)\right) . \tag{4.93}
\end{equation*}
$$

4.8.1.3. Maps from the Lie Algebra to Vector Fields on M, M, M, and M

The artion of 6 on $\ \times M$ gives us a map from the Lie algebra of of tovertor fold $=$ on $I \times M$ that leave \in invariant. If $v \in g$ is tangent to a curve $l \ldots(5$ so

$$
\begin{equation*}
v=\left.\frac{d}{d!}\right|_{t=0} g(t) \tag{4.94}
\end{equation*}
$$

then \boldsymbol{X}_{1} on $I \times M$ is defined by

$$
\begin{equation*}
x_{v}(t, m)=\left.\frac{d}{d t}\right|_{t=0} \rho(t, g(t), m) \tag{4.95}
\end{equation*}
$$

This induces a map from g to TPM defined by

$$
\begin{equation*}
\bar{X}_{v}(p)(c) \equiv X_{v}(\epsilon, p(c)) \tag{4.96}
\end{equation*}
$$

and to $T J M$ defined in coordinates by

$$
\begin{align*}
& \left.\left(\dot{X}_{v}\right\}_{1}^{d} \equiv \frac{d^{2}}{d c^{2}}\right|_{k=0} X_{v}^{a}\left(c,\left(e, x_{0}+t x_{1}+\cdots+\frac{e^{j}}{J^{\prime}}{ }^{\prime}\right)\right) \tag{4.97}\\
& =\left.\left.\frac{d^{\prime}}{d \epsilon^{\prime}}\right|_{t=0} \frac{d}{d l}\right|_{t=0} \rho^{a}\left(\ell, g(l) \cdot\left(\ell, I_{0}+a_{1}+\cdots+\frac{\ell^{J}}{J!} x_{t}\right)\right) \text {, }
\end{align*}
$$

4.8.1.4. The Momentum Map

In the case where M.w is symplectic and our Gaction has an edependent equivariant momentum map

$$
\begin{equation*}
y: 1 \times .11 \rightarrow 9^{\circ} \tag{498}
\end{equation*}
$$

then

$$
\begin{equation*}
i x_{v} w=\langle d J, r\rangle \tag{4.99}
\end{equation*}
$$

on each $\ell=$ constant.
4.8.1.5. Momenturn Map on S.M

This gives us a momentum map for G artion on $P A t$ with the symplectic structare à given by

$$
\begin{equation*}
j: P M \rightarrow g^{*} \text { by } \rho \mapsto \int_{0}^{1} J(\epsilon . P(t)) d t . \tag{4.100}
\end{equation*}
$$

It's easy to see that this gives the correct action and is equivariant because J is.

4.8.1.6. Momentum Map on $J M$

I'sing coordinates ($x_{0}^{a}, \ldots, r_{j}^{a}$) on $J M$ as before where the x^{a} 's are canonical, we see that we may defne a momentum map from $J M \rightarrow g^{*}$ by

$$
\begin{equation*}
i^{i}\left(x_{0} \ldots, x_{j}\right)=\left.\frac{d^{J}}{d f^{J}}\right|_{t=0} J\left(\epsilon,\left(\varepsilon, x_{0}+\varepsilon x_{j}+\cdots+\frac{\epsilon^{J}}{J!} x_{J}\right)\right) \tag{4.101}
\end{equation*}
$$

4.8.1.7. Equivariance of $J M$'s Momentum Map

The equivariance follows from that of J, as follows. Equivariance of J says

$$
\begin{equation*}
J(c, p(c, g, m))=A d_{g}^{*} \cdot J(c, m) \tag{4.102}
\end{equation*}
$$

On $J M$ we see

$$
\begin{align*}
& I^{\prime}\left(\rho\left(\cap,\left\{x_{0}, \ldots, x_{j}\right)\right)\right)=\left.\frac{d^{J}}{d_{\ell} J}\right|_{e=0} J\left(c, \sum_{j} \frac{i^{\prime}}{\rho_{i}} \bar{\rho}_{i}\left(g,\left(x_{0}, \ldots, x_{j}\right)\right)\right) \tag{4.103}\\
& =\frac{d^{J}!}{d e^{j}!} \quad i\left(k .\left.\sum_{t=0}^{J} \frac{t^{2}}{i!} \frac{d^{*}}{d c^{3}}\right|_{t=0} p\left(c \cdot g \cdot\left(t \cdot x_{0}+x_{1}+\cdots+\frac{c^{J}}{J!} x^{j}\right)\right)\right) .
\end{align*}
$$

The $d^{\prime} ;\left.d \epsilon^{\prime}\right|_{e=0}$ allows us to neglect ierms in e of higher that che J th order. But to this order any function $f(6)$ is equal to its J th order Taylor series

$$
\begin{equation*}
\left.\sum_{i=0}^{J} \frac{e^{2}}{i!} \frac{d^{2}}{d t^{2}}\right|_{t=0} f(t) \sim f(\epsilon) . \tag{4.104}
\end{equation*}
$$

Thus

$$
\begin{align*}
& =\left.\frac{d^{J}}{d \epsilon^{J}}\right|_{\epsilon=0} J\left(\epsilon, p\left(\epsilon, g,\left(\epsilon, x_{0}+\epsilon x_{1}+\cdots+\frac{\epsilon^{J}}{J!} x_{J}\right)\right)\right) \\
& =\left.\frac{d^{J}}{d \epsilon^{J}}\right|_{\epsilon=0} A d_{g}^{*} \cdot J\left(\epsilon,\left(\epsilon, x_{0}+\epsilon x_{1}+\cdots+\frac{\epsilon^{J}}{J!} x_{J}\right)\right) \tag{4.105}\\
& =A d_{g}^{e} \cdot \bar{J}\left(x_{0}, \ldots, x_{J}\right)
\end{align*}
$$

as desired.

4.8.2. The Path Group: $P G$

When we do reduction, we'll want a much larger group to work with. In essence, we want a symmetry that can act on different level sets of ϵ independently. Thus we define

$$
\begin{equation*}
P G \equiv\{\text { all paths } \bar{g}: I \rightarrow G, \quad \bar{g}: \epsilon \mapsto \bar{g}(c)\} . \tag{4.106}
\end{equation*}
$$

The product in this space is defined as

$$
\begin{equation*}
\tilde{g}_{1} \cdot \tilde{g}_{2}(c)=\tilde{g}_{1}(c) \cdot \tilde{g}_{2}(c) . \tag{4.107}
\end{equation*}
$$

The identity in $P G$ is the constant path at the identity $e \overline{(}(\mathbb{c})=e$ in G.
4.8.2.1. The Path Lie Algebra: $P g$

Taking infinitesimal elements, we see :nat the Lie algebra is

$$
\begin{equation*}
P g \equiv\{\text { all paths } \bar{v}: I \rightarrow g, \quad i \quad: \ell \mapsto \bar{v}(\epsilon)\} . \tag{4.108}
\end{equation*}
$$

The notation Ig would be ambiguous in that it could mean the path space of the Lie algebra or the Lie algebra of the path group, except that these two spaces are naturally isomorphic. The Lie bracket of two elements is defined pointwise

$$
\begin{equation*}
\left\{\tilde{v}_{1}, \tilde{v}_{2}\right](\epsilon)=\left\{\tilde{v}_{1}(\epsilon), \tilde{v}_{2}(\varepsilon)\right\} \tag{4.109}
\end{equation*}
$$

4.8.2.2. The Dual of the Lie Algebra of the Path Group

The dual of the Lie algebra is all (distributional) paths in g^{*} :

$$
\begin{equation*}
P g^{*}=\left\{\tilde{a}: I \rightarrow g^{*}, \quad \tilde{a}: \epsilon \mapsto \tilde{a}(\epsilon)\right\} . \tag{4.110}
\end{equation*}
$$

The pairing is given by

$$
\begin{equation*}
\langle\bar{u}, \tilde{\alpha}\rangle \equiv \int_{0}^{1}\langle\bar{v}(c), \tilde{\alpha}(\epsilon)\rangle d \epsilon . \tag{4.111}
\end{equation*}
$$

4.8.2.3. The Action of the Path Group on the Path Space

 $P G$ acts on $P M$ hy$$
\begin{equation*}
\tilde{R}: P G \times P M \rightarrow P M \quad \bar{R}(\bar{g}, p)(\epsilon) \equiv \rho(\epsilon, \bar{g}(\epsilon), p(\epsilon)) . \tag{4.112}
\end{equation*}
$$

G is the subgroup of $P G$ with $\bar{g}(\epsilon)=g$ and this action of $P G$ on $P M$ extends the action of G. The momentum map for this action is $P M \rightarrow P g^{*}$ by $p \mapsto J(\cdot, p(\cdot))$ where is the parameter c to be inserted in an clement of \tilde{g}^{*} to get $I \rightarrow g^{*}$.

4.8.3. The Jet Group: $J G$

Consider paths in G which begin at the identity and remain there to order ${ }^{\prime}{ }^{\prime}$, i.e. $\bar{g}(0)=e, \partial^{k} /\left.\partial \epsilon^{k}\right|_{t=0} \tilde{g}(\epsilon)=0$ for $1 \leq k \leq J$. The product of two such path: is such a path as are inverses and the ideutity. Let us call this subgroup of $P G$. $P G_{J-f l a t}$ (since a function whose derivative at $\varepsilon=0$ vanishes is flat there and one whose higher derivatives vanish is very fat there, i.e. J-fat). With the action \hat{R} on $P M$. we see that this subgroup leaves invariant the $J-j e t$ equivalence classes, so we are naturally interested in

$$
\begin{equation*}
P G_{J} \equiv P G / P G_{J-f \text { fat }} \tag{4.113}
\end{equation*}
$$

assuming that this is a group. It is easier to show $P G J_{-f a t}$ is a normal subgroup of $P G$ by considering Lie algebras (recall that a normal subgroup $H \subset G$ satisfies $g \mathrm{Hg}^{-1}=H$ for every $g \in G$ and that this is a necessary and sufficient condition for the quotient G / H to be a group).

The Lie algebra of $P G J$-flat is clearly

$$
\begin{equation*}
P_{g J-\text { flat }} \equiv\left\{\tilde{v} \in P g\left|\frac{d^{k}}{d \epsilon^{2}}\right|_{\varepsilon=0} \bar{v}(\epsilon)=0 \text { for } 0 \leq i \leq J\right\} . \tag{4.114}
\end{equation*}
$$

To check for normality, we want to show that

$$
\begin{equation*}
\left\{P_{g}, P_{g J-f t a t}\right\} \subset P_{g J-f l a t} \tag{4.115}
\end{equation*}
$$

(this is the Lie algebra analog of normality). But if

$$
\begin{equation*}
\hat{u}(r)=\tilde{u}_{0}+r \bar{u}_{1}+\cdots \in P g \tag{4116}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{v}(a)=\frac{t^{J+1}}{(J-1)!} i^{j}{ }^{J+1}+\cdots \in \operatorname{Sg}_{1-f l a t} \tag{4.117}
\end{equation*}
$$

then

$$
\begin{equation*}
\left.\left.[\tilde{u}, \dot{1}](t)=\frac{\epsilon^{J+1}}{(J+1)!} \right\rvert\, \tilde{u}_{0}, \tilde{v}_{J+1}\right]+\cdots \in P_{J-f l a t} \tag{4.118}
\end{equation*}
$$

as desired. Ordinarily there are problems in relating results about infinitedimensional Lic algebras to results about the corresponding infinite-dimensional groups (for example, the image of the exponential map of the diffeomorphism group does not contain any neighborbood of the identity). Path groups are especially wellbehaved, however, and the argument here is valid in this context (for more discussion see Appendix A of [Ereed and Uhlenbeck, 1984]). Thus we may introduce the group of $J_{\text {-jets of paths in } G}$:

$$
\begin{equation*}
J G \equiv P G / P G_{J-f l a t} \tag{4.119}
\end{equation*}
$$

4.8.3.1. The Lie Algebra of the Jet Group: J_{g}

Its Lie algebra is

$$
\begin{equation*}
J_{g} \equiv P_{g} / P_{g J-f i o t} \tag{4.120}
\end{equation*}
$$

As for Pg , the potentially ambiguous notation is not. by a simple theorem. We may put coordinates $u_{0}^{r}, u_{1}^{c}, \ldots, u_{j}^{c}$ on $J g$ by associating $\left(u_{0}, u_{1}, \ldots, u_{j}\right), u_{1} \in g$ with the equivalence class of $u_{0}+\varepsilon u_{1}+\cdots+\left(\varepsilon^{J} / J!\right) u J$. The bracket is then

$$
\begin{align*}
& {\left[\left(u_{0}-u_{1}, \ldots, u s\right)_{+}\left(v_{0}, v_{1}, \ldots, v_{J}\right)\right]} \\
& \quad=\left[u_{0}+c u_{1}+\cdots+\frac{c^{J}}{J!} u_{J}, v_{0}+\epsilon v_{1}+\cdots+\frac{c^{J}}{J!} v^{\prime} J\right] \tag{4.121}\\
& \quad-\sum_{k=0}^{J} \frac{c^{k}}{k!}\left(\sum_{i=0}^{k} \frac{k!}{i^{\prime}(k-i)!}\left[u_{1}, v_{k-2}\right]\right) .
\end{align*}
$$

So

$$
\begin{equation*}
\left[\left(u_{0}, u_{1}, \ldots, u_{J}\right),\left(v_{0}, v_{1}, \ldots, v_{J}\right)\right\}_{k}=\sum_{i=0}^{k} \frac{k!}{t!(k-i)!}\left\{u_{1}, v_{k-1}\right\} \tag{4l22}
\end{equation*}
$$

This is an explicit formula for the Lie bracket of the jet Lie algebra. We shall need it in determining the Lie-Poisson bracket.

4.8.3.:. Homomorphism from J_{g} to Vector Fields on $J M$

The group $J G$ acts on $J M$ and so we get a Lie algebra homomorphism from $J g$ to vector fields on $J M$ (these will generate symmetries that hold up to order ϵ^{J} ior the full dynamics but are exact symmetries on $J M$). Recall that X_{v} is the image of a map from $v \in g$ to vector fields on $I \times M$. When v depends on ε as above, we see that

$$
\begin{align*}
& \left(\tilde{X}_{\left(v_{0}, \nu_{1}, \ldots, v_{j}\right)}\right)_{i}= \\
& =\left.\frac{d^{i}}{d \epsilon^{i}}\right|_{\epsilon=0} X_{\left(u_{0}+\varepsilon v_{1}+\cdots+\left(\epsilon^{J} / J!v_{j}\right)\right.}\left(\epsilon, x_{0}+\epsilon x_{1}+\cdots+\frac{\epsilon^{J}}{J!} x j\right) \\
& =\left.\frac{d^{i}}{d \epsilon^{i}}\right|_{\epsilon=0} X_{\nu_{0}}\left(\epsilon, x_{0}+\epsilon x_{1}+\cdots+\frac{\epsilon^{J}}{J!} x^{j}\right)+ \\
& +\left.\frac{d^{d}}{d \epsilon^{2}}\right|_{\varepsilon=0} \epsilon X_{\mathrm{v},}\left(\epsilon, x_{0}+\epsilon x_{1}+\cdots+\frac{\epsilon^{J}}{J!} x_{J}\right)+ \tag{4.123}\\
& +\cdots+\left.\frac{d^{2}}{d \epsilon^{\prime}}\right|_{\epsilon=0} \frac{\epsilon^{J}}{J!} X_{\nu J}\left(\epsilon, x_{0}+\epsilon x_{1}+\cdots+\frac{\epsilon^{J}}{J!} x J\right) \\
& =\left.\sum_{k=0}^{i} \frac{d^{\mathbf{i}}}{d \epsilon^{i}}\right|_{\epsilon=0} \frac{\epsilon^{k}}{k!} X_{\nu_{k}}\left(\epsilon, x_{0}+\epsilon x_{1}+\cdots+\frac{\epsilon^{J}}{J!} x_{J}\right) \\
& =\left.\sum_{k=0}^{1} \overline{k!} \frac{i!}{i-k)!} \frac{1}{k!} \frac{d^{r^{-k}}}{d \epsilon^{-k}}\right|_{\epsilon=0} X_{\nu_{k}}\left(\epsilon, x_{0}+\epsilon x_{1}+\cdots+\frac{\epsilon^{J}}{J!} x J\right) .
\end{align*}
$$

So:

$$
\begin{equation*}
\left(\tilde{X}_{\left(v_{0}, v_{1}, \ldots, v\right)}\right)_{k}=\sum_{k=0}^{\dot{\prime}} \frac{i!}{k!(i-k)!k!}\left(\tilde{X}_{v_{k}}\right)_{2-k} . \tag{4.124}
\end{equation*}
$$

This gives the action of a jet Lic algebra element on the jet space of M in terms of - he e-dependent action of the group on M. If we have an approximate symmetry in the sense that our e-uependent action preserves some structure to order J, then this J-jet action will be an exact symmetry.

4.8.3.3. The Dual of the Jet Lie Algebra: $J g^{*}$

The dual of the Lie algebra, $J g^{*}$, may be coordinatized by J elements of g^{*} with the pairing

$$
\begin{equation*}
\left\langle\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{J}\right),\left(v_{0}, \ldots, v_{J}\right)\right\rangle=\sum_{i=0}^{J}\left\langle\alpha_{i}, u_{i}\right\rangle \text { for } \alpha_{i} \in g^{*}, v_{i} \in g . \tag{4,125}
\end{equation*}
$$

4.8.3.4. The Jet Momentum Maps

By the definition given in section 2.7.2 of momentum maps on M we have in geaeral that

$$
\begin{equation*}
X_{v}^{a}(\epsilon, m)=\omega^{a b} \frac{\partial}{\partial x^{b}}\langle J(\epsilon, m), v\rangle \tag{4.126}
\end{equation*}
$$

In this case

$$
\begin{equation*}
v=v_{0}+c v_{1}+\cdots+\frac{c^{J}}{J!} v_{j} \tag{4.127}
\end{equation*}
$$

is ϵ-dependent, but nonetheless,

$$
\begin{equation*}
\left\langle J(\epsilon, m), v_{Q}+\cdots+\frac{\epsilon^{J}}{J!} v_{J}\right\rangle \tag{4.128}
\end{equation*}
$$

is an e-dependent Hamiltonian on M for the correct action. We know from section 4.4.2 that with

$$
\begin{equation*}
\left\{x_{1}^{\mathrm{a}}, x_{k}^{b}\right\}=\omega^{a b} \frac{i!k!}{J!} \delta_{1, J-k} \tag{4.129}
\end{equation*}
$$

we will get the correct dynamics from the J th derivative of the Hamiltoman. So

$$
\begin{align*}
&\left.\frac{d^{J}}{d t^{J}}\right|_{t=0}\left\langle-(c, m), v_{0}+\cdots+\frac{c^{J}}{J!} v\right\rangle= \\
&=\left.\sum_{i=0}^{J} \frac{d^{j}}{d \epsilon^{J}}\right|_{\varepsilon=0} \frac{c^{i}}{i!}\left(J(\epsilon, m), v_{t}\right) \tag{4.130}\\
&=\left.\sum_{i=0}^{J} \frac{J!}{i!(J-i)!i!} \frac{d^{J-2}}{d \epsilon^{J-i}}\right|_{i=0}\left\langle J(\epsilon, m), v_{2}\right\rangle
\end{align*}
$$

generates the $\left(v_{0}, \ldots, v_{J}\right)$ dynamics on $J M$. Thus the momentum map is

$$
\begin{equation*}
\tilde{j}_{2}\left(x_{0}, \ldots, x_{J}\right)=\left.\frac{J!}{i!(J-i)!i!} \frac{d^{J-1}}{d \epsilon^{J-i}}\right|_{\epsilon=0} J\left(\epsilon, x_{0}+\epsilon x_{1}+\cdots+\frac{\epsilon^{J}}{J!} x J\right) . \tag{4.131}
\end{equation*}
$$

This momentum map is again equivariant. This is important hecause this is the approximate constant of motion corresponding to an approximate symmetry. For example, we will see in chapter 5 that adiabatic invariants may be viewed in this way. If we can find an exact symmetry of the dynamics on $J M$, then this gives a constant of the motion up to order J in e for the full system.

4.8.4. When M is a Coadjoint Orbit with the KKS Symplectic Structure

Thus we have discovered two groups, $P G$ and $J G$, that contain G. Let us consider the special case in which M is a coadjoint orbit of G in g^{*} with the canonical Kostant-Kirillov-Souriou symplectic structure. (This is really no limitation since we may take G to be the group of symplectomorphisms of \dot{M}, g is then Hamiltonian functions. \mathfrak{g}^{*} i, distributions and we may identify M and its symplectic structure with the orbit of a δ-function and its KKS structure).

4.8.4.1. Coadjolnt Action of $P G$

Because multiplication in $P G$ is ϵ-wise, the adjoint action of $P G$ on $P g$ is just

$$
\begin{equation*}
\left(\bar{A} d_{\bar{i}} \cdot \bar{v}\right)(\epsilon)=A d_{\overline{\mathrm{j}}(\epsilon)} \cdot \bar{v}(\epsilon) \tag{4.132}
\end{equation*}
$$

and the coadjoint action is similar.

4.8.4.2. The KKS Symplectic Structure on Coadjoint Orbitn in $P \boldsymbol{q}^{*}$

Consider any path

$$
\begin{equation*}
\bar{\alpha}: I \rightarrow M \subset g^{*} . \tag{4,133}
\end{equation*}
$$

Since M is a coadjoint orbit of G, under the coadjoint action of $P G$ on \bar{a}, at each ϵ we will sweep out a copy of M. Since the different e's are nearly independent, it is easy to see that the coadjoint orbit of $P G$ tbrough $\overline{\bar{a}}$ is the path apace $P M$ of M.

What is the Lie symplectic structure? Given an element \bar{v} of g, we determine a curve of tangent vectors to M, i.e. an element \bar{V} of $T_{P} P M$, by identifying a path p with an element $\tilde{\alpha}$ of $\boldsymbol{P g}^{*}$. We let

$$
\begin{equation*}
\bar{\alpha}(c)=p(\epsilon) \tag{4.134}
\end{equation*}
$$

and take

$$
\begin{equation*}
\bar{V}(p)=\bar{a} \bar{d}_{j} \bar{\alpha} \tag{4.135}
\end{equation*}
$$

or

$$
\begin{equation*}
V(p(\epsilon)):=a d_{\dot{\bullet}}^{*}(\epsilon) \alpha(\epsilon) . \tag{4.136}
\end{equation*}
$$

Similarly ansociate $\hat{u} t \bar{g}$ with $\bar{l} \in T_{p} \Gamma M$. The Lie sumplectic structure is then

$$
\begin{align*}
& =\langle\bar{\alpha},| \bar{u}, \bar{v}| \rangle \\
& \left.=\int_{0}^{1}\langle\alpha(c),| \bar{u}(\tau), \stackrel{v}{v}(r)| \rangle\right) d \tau \tag{4.137}\\
& =\int_{0}^{1} \omega_{p(t)}(\tilde{U}(\epsilon), \bar{V}(\epsilon)) d \epsilon
\end{align*}
$$

since $\omega_{p(\varepsilon)}$ on M was the Lie symplectic structure for G. Thus we obtain our previous path space symplectic structure via a coadjoint orbit of the group of paths in G.
4.8.5. Natural Projections and Injections of $G, P G$, and $J G$

We are interested in the groups $G, P G$, and $J G . G$ is naturally a subgroup of $P G$ given by constant paths:

$$
\begin{equation*}
\tilde{g}(\sigma)=g . \tag{4.138}
\end{equation*}
$$

We also bave a projection $P G \rightarrow G$ which sends a path to its endpoint:

$$
\begin{equation*}
\tilde{\boldsymbol{g}} \curvearrowleft \tilde{g}(0), \tag{4.139}
\end{equation*}
$$

which is also a homomorphism. $P G$ also projects to $J G$ by $J G$'s definition as $P G / P G J$-flar. G 's image in $P G$ gets sent to a subgroup of $J G$ containing those points with zero jets. $J G$ also projects onto G but is not naturally a subgroup of $P G$.

The picture summarizing these ratural maps is

4.8.5.1. Projections and Injections of the Lie Algebras and Duals

Taking derivatives of these maps also gives us maps between the corresponding Lie algebras

where - means a projection and - an injection. Elen ents of $P g$ are paths in g. They project to their J-jets in $J g$ and their value at $\epsilon=0$ in g. Elements of g are sent to J-jets whose 0 -jet is the element and whose higher order jets vanish. They are sent to constant paths of the given value in $P g$.

Taking duals gives

where \rightarrow means a projection and \leftarrow means an injection. Elements of Pg^{*} are distributional patbs in g^{*}. They are sent to g^{*} hy letting them act on an element of g by integrating their value on that element over c :

$$
\begin{equation*}
\int_{0}^{1}\langle a(c), v\rangle d c . \tag{4.143}
\end{equation*}
$$

Elements of $J g^{*}$ are in the dual to the J-jets of paths in g. We may coordinatize it by $J-1$ copies of g^{*} and give the pairing

$$
\begin{equation*}
\left\langle\left\langle\alpha_{0}, \ldots, \alpha_{J},\left(v_{0}, \ldots, v_{J}\right)\right\rangle=\left\langle\alpha_{0}, v_{0}\right\rangle+\cdots+\left\langle\alpha_{J}, v_{J}\right\rangle\right. \tag{4.144}
\end{equation*}
$$

$\left(\alpha_{0} \ldots, \alpha_{j}\right)$ is sent to the element

$$
\begin{equation*}
\alpha_{0} \delta(\epsilon)-\left.\alpha_{1} \frac{d}{d \epsilon}\right|_{\epsilon=0} \delta(\epsilon)+\cdots+\left.\alpha_{J}(-1)^{J} \frac{d^{J}}{d \epsilon}\right|_{\epsilon=0} \delta(\epsilon) \tag{4.145}
\end{equation*}
$$

of $P g^{*}$ and to the element α_{0} of $g^{*} \cdot g^{*}$ injects into $J g^{*}$ to send α_{0} to $\left(\alpha_{0}, 0, \ldots, 0\right)$.

i.8.6. The Lie Poisson Bracket on g^{*}

The Lie-Poisson bracket on g^{*} is

$$
\begin{equation*}
\{f, g\}(a) \equiv\left\langle\alpha \cdot\left[\frac{\delta f}{\delta a}, \frac{\delta g}{\delta a}\right]\right\rangle \tag{4.146}
\end{equation*}
$$

and M is a symplectic leaf for this bracket.

4.8.6.1. The Lie Poisson Bracket on Jg*

The Lie-Poisson bracket on $J g^{*}$ may be defined with the help of our coordinates
as

$$
\begin{align*}
\{f, g\}\left(\alpha_{0}, \ldots, \alpha_{J}\right) & =\left\langle\left(\alpha_{0}, \ldots, \alpha_{J}\right),\left[\left(\frac{\delta f}{\delta \alpha_{0}}, \ldots, \frac{\delta f}{\delta \alpha_{J}}\right),\left(\frac{\delta g}{\delta \alpha_{0}}, \ldots, \frac{\delta g}{\delta \alpha_{J}}\right)\right]\right\rangle \\
& =\sum_{t=0}^{J}\left\langle a_{i}, \sum_{k=0}^{2} \frac{i!}{k!(i-k)!}\left[\frac{\delta f}{\delta \alpha_{k}}, \frac{\delta g}{\delta \alpha_{i-k}}\right]\right\rangle \\
& =\sum_{i=0}^{J} \sum_{k=0}^{i} \frac{i!}{k!(i-k)!}\left\langle\alpha_{t},\left[\frac{\delta f}{\delta \alpha_{k}}, \frac{\delta g}{\delta \alpha_{t-k}}\right]\right\rangle \tag{4.147}
\end{align*}
$$

4.8.6.2. $J g^{*}$ as J-jets of Paths in g^{*}

We would like to identify some coadjoint orbit in $J g^{*}$ as M s J-jet space $J . M$. For this we would like to identify J -jets of paths is 9^{*} with elements of $\mathrm{J} g^{*}$. What is a natural pairing of J-jets of paths in g with J-jets of pat!!s in g^{*} ? If we change the measure on our pairing of paths to

$$
\begin{equation*}
\left\langle\alpha, v^{\cdot}\right\rangle_{J} \equiv \int_{0}^{1}\langle\alpha(c) \cdot v(t)\rangle(-\mathrm{I})^{J} \frac{d^{J}}{d \epsilon^{J}} \partial(c) d t . \tag{4.148}
\end{equation*}
$$

where σ is a path in g^{*} and r a path in g. we see that the result only depends on the $J_{\text {-jet }}$ of and the \boldsymbol{J}-jet of t i.e. it defines a pairing of the appropriate jet spaces. Now we would like to find the identification of J-jets of paths in g^{*}, say $\alpha_{0}+1 \alpha_{1}+\cdots+\frac{t^{j}}{j} \alpha_{\jmath}$. with our previous coordinatization which gives duals of the components $\left(v_{0}, v_{1}, \ldots, x_{j}\right)$ of the jet of the path $v_{0}+\varepsilon v_{1}+\cdots+\frac{v^{J}}{J!} v_{J}$. We see that

$$
\begin{aligned}
& \left\langle\alpha_{0}-\epsilon \alpha_{1}+\cdots+\frac{\epsilon^{J}}{J!} \alpha_{J}, v_{0}+\epsilon v_{1}+\cdots+\frac{\epsilon^{J}}{J!} v j\right\rangle_{J}= \\
& =\left.\frac{d}{d c}\right|_{\epsilon=0}\left\langle\alpha_{0}+\left(\alpha_{1}+\cdots+\frac{\epsilon^{J}}{J!} \alpha_{j}, v_{0}+\left[v_{1}+\cdots+\frac{\epsilon^{J}}{J!}{ }^{t}\right\rfloor\right\rangle\right. \\
& =\left.\left.\sum_{i=0}^{J} \frac{d}{d \epsilon}\right|_{t .0} \frac{d}{d \epsilon}\right|_{t=0}\left\langle\frac{c^{2}}{i!} \alpha_{i}, \frac{d_{-}}{J-i!} v_{j-m}\right\rangle \\
& =\sum_{i=0}^{J} \frac{J}{i!(J-i)!}\left\{\alpha_{i}, z_{J-i}\right\rangle .
\end{aligned}
$$

Thus the J-jet of $\alpha_{0}+c \alpha_{1}+\cdots+\frac{e^{2}}{J!} \alpha_{J}$ is associated with the element

$$
\left(\frac{J!}{J!0!} \alpha_{J} \frac{J!}{(J-1)!1!} \alpha_{J-1}, \cdots, \frac{J!}{0!J!} \alpha_{0}\right)
$$

The J-jet space $J M$ of M gets turned upside down when we put it into $J g^{*}$.

4.8.6.3. Coadjoint Orbits in $J g^{*}$

With this identification of J-jets of g^{*} with $J_{g^{*}}$. the ccadjoint action of $J G$ on J-jets of g^{*} is just the obvious one: pick a representative path in G with the right J-jet: lev it ast at cach e according to the coadjoint action of G on g^{*} and then take the J-jet of Le resulting path.

By definition this is the yay the adjoint action of G on g works. We would like

$$
\begin{equation*}
\left\langle a \hat{d}_{u^{1}}, a \dot{d}_{\mathbf{u}} \cdot \alpha\right\rangle_{s}=\{v, \alpha\rangle \tag{4.151}
\end{equation*}
$$

for all $u \in g$. But since

$$
\begin{equation*}
\left.\left\langle a d_{u(c}\right)^{v}(\alpha) \cdot a d_{u(c)}^{*} \alpha(c)\right\rangle=\langle v(c) \alpha(c)\rangle \tag{4.152}
\end{equation*}
$$

for all ϵ, it is clear by integrating over c against $(-1)^{J} \frac{d^{\prime}}{d,} \delta(c)$ that it is true for the jets.

4.8.6.4. $J M$ is a Cogdjoint Orbit in $J g^{*}$ as a Manifold

Because the coadjoint orbit in $P g^{*}$ of a p ath which lies solely in M is the space of all paths in M, the coadjoint orbit in $J g^{*}$ of a J-jet of a path in M is the space of all J-jets of paths in M, i.e. the J-jet space $J M$.

4.8.6.5. The KKS Symplectic Structure is the Jet Symplectic Structure

So $J M$ is a coadjoint orbit. What is the Lie symplectic structure? Again every' J-jet of a path in g determines a J-jet of a path of tangent vectors to M, i.e. an element of $T J M$, by

$$
\begin{align*}
& V_{1}\left(\alpha_{0}+\left(\alpha_{1}+\cdots+\frac{\epsilon^{j}}{J!} \alpha_{J}\right)\right. \\
& \quad=\left.\frac{d^{\prime}}{d c^{t}}\right|_{\epsilon=0} a d_{v_{r}+\epsilon v_{1}+\cdots+\frac{j}{J} v_{s}}\left(\alpha_{0}+c \alpha_{1}+\cdots+\frac{\varepsilon^{j}}{J!} \alpha_{J}\right) . \tag{4.153}
\end{align*}
$$

The lio symplectic structure is then

$$
\begin{align*}
& \mathcal{L}^{\prime}\left(\sigma_{1,1} ., \ldots,\left(\left(u_{0} \ldots, u_{J}\right),\left(v_{0} \ldots, v_{j}\right)\right)=\right. \\
& =\left(\left\{a_{1}, \ldots, o_{J}\right),\left\{\left(u_{0} \ldots, u_{J}\right),\left(r_{0} \ldots, r_{\jmath}\right)\right\rangle_{j}\right. \\
& =\int_{0}^{1}\left\langle a_{0}+c o_{1}+\cdots+\frac{\ell^{\prime}}{J!} o_{j},\right. \\
& \left.\left[u_{0}+c u_{1}+\cdots+\frac{c^{J}}{J!} u_{J}, v_{0}+c v_{1}+\cdots+\frac{\epsilon^{J}}{J!} v_{J}\right]\right\rangle(-1)^{J} \frac{d^{J}}{d \epsilon^{J}} \delta(c) d \epsilon \\
& =\left.\int_{0}^{1} \frac{d^{2}}{d c^{2}}\right|_{\epsilon=0} \omega_{\infty}\left(U_{0}+c U_{1}+\cdots+\frac{c^{J}}{J!} U_{J}, V_{0}+c V_{1}+\cdots+\frac{\epsilon^{J}}{J!} V_{J}\right) d \epsilon, \tag{4.154}
\end{align*}
$$

but we have seen that this is exactly the J-jet bracket that we obtained before.
Jerry Marsden has pointed out that some of these syr.plectic cons rur'ons immediately generalize to corresponding constructions on Poisson manifolos. For example, to get a symplectic structure on $T M$ from ω on M, we use ω to identify $T M$ with $T^{*} M$ and pull back the canonical structure. While a Poisson structure does not define an isomorphism, it does define a map from $T^{*} M$ to $T M$. We may push forward the canonical Poisson structure on $T^{*} M$ to obtain a non-canonical one on $T M$. Iterating this gives Poisson structures on each of the iterated tangent bundles. Presumably one can use these to define a Poisson structure on each of the jet spaces as well. It appears likely that the jet structure derived from a Lie-Poisson bracket ou g^{*} is the Lie-Poissoz bracket on $J g^{*}$. Richard Montgomery has recently shown that the second order perturbation jet structure may be extended in this way to arbitrary Poisson manifolds and it appears that the same methods will work to all orders.

4.8.7. $J G$ as a Semi-Direct Product

Notice that the set of elemer of $J g$ of the form

$$
\begin{equation*}
\left(0.0 \ldots, 0, u_{2}, u_{i+1}, \ldots u_{J}\right) \tag{4.155}
\end{equation*}
$$

form a nilpotent ideal. say $J g_{*}$. We see that $i g \sim J g / J g_{1}$. Thus $J g$ is a semi-direct product of $i g$ and $J g_{1}$. Note in particular that $1 G$ is $T G$ and has the group structure of the semi-direct product of G with g with the adjoint action. Alan Weinstein has pointed out th..t this provides an "explanation" of why most of the coadjoint orbits of the Euclidean group (which is the tangent group of the rotation group) are the tangent bundle of the 2 -sphere (most of the coadjoint orbits of the rotation group are 2 -spheres). Note, however, that the symplectic structure on these orbits agrees with the jet symplectic structure only on the orbits whose tangent vectors are tangent to the spheres. The other orbits have extra "magnetic terms" in their symplectic forms. If the conjecture at the end of the last section is correct. then the geaeral coadjoint orbits of $J G$ are the symplectic leaves of the jet lift of the Lie Poisson structure (f) g^{*} to $\mathbf{J g}^{*}$. It is interesting that there is another natural jet type Lie algebra associated with an arbitravy Lie algebra g. Consider J-jets at the origin of real valued functions (as opposed to paths) definci on g^{*}. The Lie Puisson bracket gives this jet space a natural Lie algebra structure. Its dimension is much larger than that of $J g$ and the relacion hetween the two Lie algebras is not clear.

4.8.8. Jet and Path Reduced Spaces are Reduced Jet and Path Spaces

Tet us now return to the general setting of an dependent action of G on M, . If we hate an i-dependent invariant function $H(\epsilon)$, it is easy to see that if the orbit spares for alle are diffemorphic (for example if the G action is cindependent or if G is compact and the variation is small enough) then $P G$ leaves \tilde{H} on $P b$ invariant. Its orbit space is the space of paths in the orbit space of G on M. Similarly, the inverse image of a point in $P g^{*}$ under the momentum map \tilde{J} is the space of paths that lie in the corresponding inverse image of J at each c. Thus the reduced space of $P G$ acting on $P M$ is the path space of the reduced spaces at each ϵ.

Similarly $J G$ acts on $J M$ leaving

$$
\begin{equation*}
\left.\frac{d^{\mathbf{1}}}{d \epsilon^{\mathbf{2}}}\right|_{=0} H(\epsilon, p(\epsilon)) \tag{4.156}
\end{equation*}
$$

invariant. Again the reduced space for this action is the jet space of the reduced space for the action of G on M.

Chapter 5:

Kruskal's Theory of

Nearly Periodic

Systems

"All nature and the graceful sky are symbolized in the art of Geometria.".Kepler, Tertius Interveniens

5.1. Introduction: Kruskal's Approach

In 1962 Martin Kruskal published "Asymptotic Theory of Hamiltonian and other Systems with all Solutions Nearly Periodic" [Kruskal. 1962]. In this paper he generalized and unified previous results due to himself and others showing that many specific physical systems had adiabatic invariants to all orders in a small parameter expressing the separation of slow and fast time seales. This work is the theoretical foundation for many concepts in plasma physics and elsewhere. It is therefore of interest to re-examine the underlying structure of the theory in the light of recent developments in geometric mechanits and dynamical systems. We have presented in earlier chapters a geometric formulation for ordinary perturbation theory and showed that it leads to deeper insights into the Hamilonian nature of
perturbed systems. Hree we will present a new version of Kruskal's result which leadu to a completely unambiguous prescription for the perturbation analysis. We then shou how the new procedure is expressed in coordinate-froe language using the geometric structure of ordinary perturbation theory. The procedure is intimately lied with the process of reduction in the Hamiluonian case and so is connected with recent developments in finding Hamiltonian structures in plasma and other physical contexts.

Let us begin by setting up the problem in geometric language and then discussing Kruskal's method in this framework. We are interested in studying dynamical systems whose dynamical vector field depends on a small parameter \& in such a way that when $\epsilon=0$ all orbits are periodic and the period is a smooth non-vanishing function on state space. Kruskal called the closed unperturbed orbits loops. These loops naturally give the state space the structure of a circle bundle. Locally we may express this bundle as a product: $S^{1} \times \Re^{n}$. It is easy to see that we may choose coordinates θ and $x^{\circ}, \quad a=1, \ldots, n$ such that the unperturbed dynamical vector field is independent of θ and has no x component. In these coordinates the dynamics is given by the vector field

$$
\begin{equation*}
X=t(x) \frac{\partial}{\partial \theta}+\epsilon X_{1}+\frac{c^{2}}{2} X_{2}+\ldots \tag{5.1}
\end{equation*}
$$

where $\psi(x)$ describes how the frequency varies with x. As we turn on the perturbation by letting c be nonzero, the dynamical vector field no lor ger points along loops and the orbits in state space drift from loop to loop along a helical path. If we are uninterested in the dynamics around the loops then the unperturbed systerm projerts to trivial dynamics on the base of the bundle. i.e. the 5 coordinate
dere not evolve. If the perturbed vector held did not depend on θ. then again by ignoring the fast 0 motion we could project the dynaraics to the base spare leaving only tbe interesting slow dynamics. Unfortunately, typical perturbations will not be independent of θ and diferent points on a loop will evolve to different loops. precluding any well defined slow dynatuirs on the base. Kruskal attempts to find t-dependent coordinates $\dot{\theta}$ and \bar{x}^{a} which reduce to θ and x^{a} when e vanishes, such that the dynarnical vector field expressed in these coordinates is independent of $\tilde{\theta}$. In general this will not be possible for finite ϵ, but Kruskal was able to sbow that such $\dot{\theta}$ and \tilde{x}^{a} exist as asymptotic series to all orders in ϵ. His technique involves an intricate "bootstrap" argument which links two expansions iogether and obtains terms in one from lower order terms in the other.

The choice of coordinates is not unique beca"se we can always apply an dependent diffeomorphism to the base and rotate the fibers (i.e. choose coordinates $\tilde{y}(\hat{x})$ and $\tilde{\theta}+f(\tilde{x}))$ without altering the desired properties. Kruskal called the ϵ dependent loop obtained by holding \bar{x} fixed and letting $\tilde{\theta}$ run from 0 to 2π, a ring. The set of rings determines a fibration of phase space for each f and reduces to the original fibration when $\varepsilon=0$. The vector field

$$
\begin{equation*}
R \equiv \frac{\partial}{\partial \tilde{\theta}} \tag{5.2}
\end{equation*}
$$

is tangent to the rings and was denoted the roto-rate by Kruskel. He showed that as an asvmptotic series, R is uniquely defined to all orders in ϵ. In the paper he rakes the interesting comment: "It does not areaser obvious whether an explicit recursion formula to determine R in terms of f the dynamical vector firld: can be found. It so. the whole theory of this paper might be simplified and reudered less deep." In
this chapter we will exhibit such a formula and stow its geometric significance.

5.2. The New Approach Expressed in Coordinates

Many perturbation methods. beginning with the Poincare-Lindstedt method and leading up to the metbod of Lic transforms, are like Kiruskal's approach in that they work by looking for an ϵ-dependent diffeomorphism of phase space which takes the perturbed system into a simpler one (equivalently one thinks of finding new coordinates in terms of which the dynamics looks simple). This bas the advantage that closed loops are automatically taken to closed loops and if the system is Hamiltonian and the diffeomorphism is a canonical transformation, it preserves the Hamiltonian structure. In the present setup we wil see that it is easier to explicitly require the rings to be closed as a constraint that belps determine terms in the expansion. In Kruskal's technique a similar constraint is required to eneure that the change of coordinates is periodic in θ. One advantage of the present ap ${ }_{1}$ roach over methods which change coordinates is the uniqueness of the desired expansion. This leads one to suspect (correctly as we will show in section 6.3) that the whole procedure has an intrinsic coordinate-free interpretation. Because the coordinate change is not uniquely specified in the standard approach, there will always t. A7 arbitrary and unphysical choice to be made at some point. This becomes especially critical in infinite-dimensions where one wishes to apply these techniques to fields (we will see in chapter 13 that ufinite-dimensional coordinate changes may involve many subtle phenomena).

We will now see that an asymptotic expansion for R can be uniquely determined on the basis of two constraints. The coordinate-free way of expreseing the dynamical
vector field X 's independence of $\bar{\theta}$ is 10 say that the Lie bracket of X and R vanishes:

$$
\begin{equation*}
|R . X|=0 . \tag{5.3}
\end{equation*}
$$

The second requirement on R is that its integral curves all be closed. Thus

$$
\begin{equation*}
\text { if } \dot{y}(t)=R \text { then } y(0)=y(2 \pi) . \tag{5.4}
\end{equation*}
$$

If we assume an expansion for R and X as above then equation (5.3) taken order by or ter in ϵ gives us a hierarchy of equations for the terms in R :

$$
\begin{align*}
& {\left[R_{0}, X_{0}\right]=0} \\
& {\left[R_{1}, X_{0}\right]=-\left\{R_{0}, X_{1}\right]} \\
& {\left[R_{2}, X_{0}\right]=-2\left[R_{1}, X_{1}\right]-\left[R_{r} X_{2}\right]} \tag{5.5}
\end{align*}
$$

Notice that cach right hand side is known from before as we determine successive terms in R. On the left hand side we alwars find the bracket of a term in R with $X_{0}=v(x) \partial / \partial \theta$. The x components and the θ components of this bracket have a diferent structure and must be dealt with separately.

We use $y^{2}, 1 \leq i \leq n+1$ to represent $x^{a}, \theta, 1 \leq a \leq n$ together. Recall that the coordinate expression for the Lie tracket of two vector fields A and B takes the form

$$
\begin{equation*}
[A, B]^{x}=\sum_{j=1}^{n+1}\left(A^{x} \frac{\partial}{\partial y^{3}} B^{x}-B^{\prime} \frac{\partial}{\partial y^{3}} A^{x}\right) \tag{5.6}
\end{equation*}
$$

X_{0} is special in that it has only a θ component, which depends only on x. Denoting the r components of a vector by an x superscript and the θ component by a θ superscript, we find

$$
\begin{equation*}
\left\{R_{1}, \mathbf{X}_{0}\right]^{x}=-v(\dot{x}) \frac{\partial \mathbf{R}_{i}^{x}}{\partial \theta} . \tag{5.7}
\end{equation*}
$$

Since $u(x)$ doesn't vanish by assumption. and assuming we have alreads obtaned all lower order terms, we may integrate this equation and find the solution up 10 an arbitrary n-component function $F(x)$:

$$
\begin{equation*}
F_{i}^{x}=-\frac{1}{y(x)} \int_{0}^{\theta}(\text { known terms }) d \theta+F(x) \tag{5.8}
\end{equation*}
$$

The θ component of the Lie bracket is slightly more complicated:

$$
\begin{equation*}
\left[R_{i}, X_{0}\right]^{\theta}=-\psi(x) \frac{\partial R_{i}^{\theta}}{\partial \theta}+\frac{\partial \psi}{\partial \theta} R_{i}^{\theta}+\sum_{a=1}^{n} \frac{\partial \psi}{\partial x^{a}} R_{t}^{a} \tag{5.9}
\end{equation*}
$$

The second term vanishes because ψ has no θ dependence. If we are able to determine R_{i}^{x} first then we may obtain R_{z}^{θ} by integrating up to an arbitrary function $G(x):$

$$
\begin{equation*}
R_{1}^{\theta}=-\frac{1}{\psi(x)} \int_{0}^{\theta}\left(-\sum_{a=1}^{n} \frac{\partial \psi}{\partial x^{a}} R_{i}^{a}+(\text { known terms })\right) d \theta+G(x) \tag{5.10}
\end{equation*}
$$

To determine $F(x)$ and $G(x)$ we employ the periodicity condition order by order. We must find $F(x)$ first without the help of R_{i}^{θ} so that we may use R_{1}^{r} in its determination as above. The fow of $\dot{y}=R$ satisfes the integral equation

$$
\begin{equation*}
y(t)=\int_{0}^{t} R\left(y\left(t^{\prime}\right)\right) d t^{\prime} \tag{5.11}
\end{equation*}
$$

Let us expand $y(t)$ as an asymptotic series in ϵ and substitute this into this equation:

$$
\begin{equation*}
y_{0}(t)+\epsilon y_{1}(t)+\ldots=\int_{0}^{2}\left\{R_{0}\left(y_{0}\left(t^{\prime}\right)\right)+c\left(\frac{\partial R_{0}}{\partial y_{0}} \cdot y_{1}+R_{1}\left(y_{0}\right)\right)+c^{2} \ldots\right\} d t^{\prime} \tag{5.12}
\end{equation*}
$$

We again get a hierarchy of equations by collecting terms urder by order in a. For reference. let us work out the integrand to order ε^{3}. Wir firt expand the terme in
R 's abmptotic expansion in Tayior serien to the needed order:

$$
\begin{align*}
R(y)= & R_{0}\left(y_{0}\right)+\frac{\partial R_{0}}{\partial y_{0}} \cdot\left(c y_{1}+\frac{c^{2}}{2} y_{2}+\frac{\epsilon^{3}}{6} y_{3}\right) \\
& -\frac{1}{2} \frac{\partial^{2} R_{0}}{\partial y_{0}^{2}}\left(c y_{1}+\frac{\varepsilon^{2}}{2} y_{2}\right)\left(\epsilon y_{1}+\frac{\varepsilon^{2}}{2} y_{2}\right)+\frac{1}{6} \frac{\partial^{3} R_{0}}{\partial y_{0}^{3}}\left(\epsilon y_{1}\right)^{3} \\
& +c\left(R_{1}\left(y_{0}\right)+\frac{\partial R_{1}}{\partial y_{0}} \cdot\left(c y_{1}+\frac{\epsilon^{2}}{2} y_{2}\right)+\frac{1}{2} \frac{\partial^{2} R_{1}}{\partial y_{0}^{2}}\left(c y_{1}\right)\left(c y_{1}\right)\right) \tag{5.13}\\
& +\frac{\varepsilon^{2}}{2}\left(R_{2}\left(y_{0}\right)+\frac{\partial R_{2}}{\partial y_{0}} \cdot \epsilon y_{1}\right) \\
+ & \frac{c^{3}}{6} R_{3}\left(y_{0}\right) .
\end{align*}
$$

Now let us collect terms to get the vector field to the various orders. To order ϵ^{0} we bave simply

$$
\begin{equation*}
R_{0} \tag{5.14}
\end{equation*}
$$

To order ϵ^{1} we have

$$
\begin{equation*}
\frac{\partial R_{0}}{\partial y_{0}} \cdot y_{1}+R_{1} \tag{5.15}
\end{equation*}
$$

To order ε^{2} we have

$$
\begin{equation*}
\frac{1}{2} \frac{\partial R_{0}}{\partial y_{0}} \cdot y_{2}+\frac{1}{2} \frac{\partial^{2} R_{0}}{\partial y_{0}^{2}} \cdot y_{1} \cdot y_{1}+\frac{\partial R_{1}}{\partial y_{0}} y_{1}+\frac{1}{2} R_{2} \tag{5.16}
\end{equation*}
$$

Finally to order f^{3} we have

$$
\begin{align*}
& \frac{1}{6} \frac{\partial R_{0}}{\partial y_{0}} \cdot y_{3}+\frac{1}{2} \frac{\partial^{2} R_{0}}{\partial y_{0}^{2}} \cdot y_{1} \cdot y_{2}+\frac{1}{6} \frac{\partial^{3} R_{0}}{\partial y_{0}^{3}} \cdot y_{1}^{3} \tag{5.17}\\
& +\frac{1}{2} \frac{\partial R_{1}}{\partial y_{1}} \cdot y_{2}+\frac{1}{2} \frac{\partial^{2} R_{1}}{\partial y_{0}^{2}} \cdot y_{1}^{2}+\frac{1}{2} \frac{\partial R_{2}}{\partial y_{0}} y_{1}+\frac{1}{6} R_{3}
\end{align*}
$$

In the expression for $y_{2}(t)$, the term $y_{1}(t)$ appears only in the form $y_{4} *\left(\partial \mu_{0} / \partial y_{0}\right)$ and all other terms are of lower order and therefore known. But $R_{0}=(\partial / \partial 0)$ is constant and so its derivative vanishes. Thus each y, is a well defined integral over
known quautities:

$$
\begin{aligned}
\theta_{0}(t) & =\theta_{0}(t=0)+t \quad x_{0}(t)=x_{0}(t=0) \\
y_{1} & =\int_{0}^{t} R_{1}\left(x_{0}, \theta\right) d \theta \\
y_{2} & =\int_{0}^{t} 2\left(\frac{\partial R_{1}}{\partial y_{0}} \cdot y_{1}+\frac{1}{2} R_{2}+\frac{1}{2} \frac{\partial^{2} R_{0}}{\partial y_{0}^{2}} \cdot y_{1} \cdot y_{1}\right) d \theta \\
& \vdots
\end{aligned}
$$

We may now impose the constraint that the orbits be periodic:

$$
\begin{align*}
y_{1}(2 \pi)-y_{1}(0)=0 & =\int_{0}^{2 \pi} R_{1} d \theta \\
\int_{0}^{2 \pi} R_{2} d \theta & =-\int_{0}^{2 \pi} \frac{\partial R_{1}}{\partial y_{0}} \cdot y_{1} d \theta \tag{5.19}\\
& =-\int_{0}^{2 \pi} \frac{\partial R_{1}}{\partial y} \cdot\left(\int_{0}^{\theta} R_{1} d \theta^{\prime}\right) d \theta
\end{align*}
$$

The elementary asymptotic series for y is valid since we need it only for finite time (in fact, only time one). Each of these equations has an x compr nent and a θ component. The asymptotic series for R is uniquely determined as follows: i) $R_{0}^{\theta}=1$ and $R_{0}^{x}=0$, ii) assuming R_{j} known for $j<i$, we obtain R_{i}^{x} up to the function $F(x)$ by means of equation (6.8), iii) we determine $F(x)$ by means of the I component of equation (6.14), iv) using the R, s and R_{1}^{x} we determine R_{i}^{θ} up to the function $G(x)$ by means of equation (6.10), v) and finally we determine $G(x)$ by using the θ component of equation (6.14) giving us the entire $\boldsymbol{R}_{\mathbf{t}}$ and allowing $u 5$ to continue the iteration to $\boldsymbol{R}_{\mathrm{t}+1}$.

5.3. The Geometric Version of the New Approach

Let us now formulate the new procedure completely invariantly, in terms of the geometric picture introduced in chapter 4. Given a vector field $X(c)$ on $I \times M$ with no $\partial / \partial c$ component and $X(0)$ having all periodic orbits, we would like to find $R(c)$ on $I \times M$ with no $\partial / \partial c$ romponent such that $X(0)$ and $R(0)$ are tangent. $[X(\epsilon), R(\epsilon)]=0$, and all of $R(\epsilon)$'s orbits are periodic of period 2π. We cannot do this for finite \& (due to homoclinic behavior, for example, which is discussed in chapter 14), but R is determined uniquely to all orders in ϵ.

Let $\psi: M \rightarrow \Re$ be the period function of $X(0)$ and assume that it does not vanish anywhere. Let $R(0)=X(0) / \psi$. We have the hierarchy of jets of paths at $\epsilon=0$:

$$
\begin{equation*}
\infty M \rightarrow \ldots \rightarrow J M \rightarrow \ldots \rightarrow 2 M \rightarrow 1 M \rightarrow M \tag{5.20}
\end{equation*}
$$

$X(c)$ determines vector fields on each of these spaces. We are looking for R 's on each space such that each projects to the one below. The bracket of two vector fields lifts to a vector field on $J M$ which is the bracket on $J M$ of the lifts to $J M$ of the vector fields. Thus $[\boldsymbol{X}(\epsilon), R(c)]=0$ lifts to a condition on each $J M$. The flow' of a vector field for time 1 is a diffeomorphism of $I \times M$ preserving e. It therefore lifts to diffeomorphisms of each $J M$ which project into one another. On $J M$ the diffeomorphism is the time-1 flow of the lift of the vector feld to $J M$. The condition $\dot{y}=R(y)$ implies $\left.y^{\prime}, 1\right)=y(0)$ lifts to similar conditions on the lifts to each $\boldsymbol{J} M$.

We know from the coordinate calculations that to determine a given order of R, we first have to determine it modulo R_{0} and then use this to get the full R. Thus we introduce the drift tangent bundles $D T J M$ which at each point of $J M$ has fiber
$T_{p} J W / \bar{R}_{0}(p)$, where \bar{R}_{0} is the dift to $J M$ of ${ }^{J} R_{0}$. We ger the natural projertions

The key relation is

$$
\begin{equation*}
\left[R_{1}, x_{0}\right]=\left[R_{y}, \psi R_{0}\right]=\left(R_{1} \cdot \psi\right) R_{0}+\psi\left[R, \cdot R_{0}\right] . \tag{5.22}
\end{equation*}
$$

The fi-st term is along R_{0} and so is killed by the D operation, the second may be solvec for R_{3} by integrating along the flow of R_{0} the quantity $1 / \psi$ times the right hand side. The integral relation on D space then gives the constant of integration. Next, since $R_{0} \cdot \psi=0$, we see that

$$
\begin{equation*}
\left(R_{3}+f R_{0}\right) \cdot \psi=R_{3} \cdot \psi \tag{5.23}
\end{equation*}
$$

So the first term depends only on $D R_{3}$. So the R_{0} component of R, may be found by integrating: $\frac{1}{v}\left(-\left(D R_{j} \cdot w\right) R_{0}+\tau . h . s.\right)$ and then the integral gives the constant. We will see several examples of this procedure in the next chapter.

5. 4. Extensions and Limitations of Kruskal's Theory

In this eection let us describe some of the himitations and extensions of Kiruskal's and other secular perturbation theories. Most of the isymptotic theories of physics are based upon asymptotic rather than convergent expansions. An asymptotic expansion of a function of ϵ is a formal power series in ϵ such that the eruncation after the N th term approximates the function to order ε^{N}. Typically, as N gets larger. one must go to smaler c to get a good approximation and there may be no c for whish all the terms in an asymptotic series are helpful (and in fact most such series are divergent). Most of the techniques one applies in perturbative analyses yield asymptotic series because the exact solution we ase approximating doen not thave a convergent expansion. The notion of convergence rests on a complex analytic structure, while smooth non-analytic coordinate changes, wbich should he physically irrelevant, can destroy the convergence of an asymptotic expression. There are two limiting processes here, letting ego to zero and letting the number of terms go to infinity. Asymptotic series have niec limits when they are done in that order; convergent series allow us to switch the order of tie limiting processes. From a practical point of view, one never uses more than a finite nurber of terms of an expansion in any cave and often there are asymptotic series which approximate an expression much more quickly than a corresponding er jvergent series.

5.4.1. Secular Perturbation Theory

If the coefficients of an asymptotic series are in addition a function of other parameters x, then one may inquire into the uniformity of the asymptotic approximation. We say that a series is asymptotic uniformly in x if the coefficient of ϵ^{m} in the error term of a truncation may be chosen to be independent of x for each m. How small we tave to make ε to get a given approximation should be specifiable independently of x. Most of the asymptotic expansions in physics are nonuniform, otherwise known as singular or secular. If the nonuniformity occurs near a finite point, we may often insert a boundary layer expansion defined on an 6 dependent region about the singular z which is uniform over that region, and patch it to the singular expansion using the method of matched asymptotic expansions (see [Nayfeh, 1973] p. 111). Such a technique is used for example in matching a thin boundary layer where viscosity is important in an almost inviscid fluid to the inviscid solution in the interior.

The most cummon occurrence of nonuniformity, however, takes place as \boldsymbol{x} goes to infinity (again note that the order of the x limit and the c limit may not be exchanged). A key example of this is where x represents the time in the solution of ordinary differential equations. We have seen that the most pedestrian perturbation technique is to simply expand the supposed solution of an O.D.E. in an asymptotic series, plug this into the equation, and solve for the terms order by order. We saw that this technique gave asymptotic solutions over times independent of \subset to all orders ir c. For even the simplest problems with recurrent behavior. however. these expansions are non-uniform in time and in fact are no longer asymptotio
expancions at all when written in terms of a "slow" time: $\tau \equiv \mathbb{\ell}$. We have not made any mistakes in our analysis of the equation as is sometimes suggested; rather this nonuniform behavior is a property of the exact solution.

Consider for example the simple equation

$$
\begin{equation*}
\ddot{x}=-(1+c)^{2} x . \tag{5.24}
\end{equation*}
$$

This is just a harmonic oscillator of frequency $(1+c)$ and so has solutions like

$$
\begin{equation*}
x(t)=\sin (1+\epsilon) t \tag{5.25}
\end{equation*}
$$

If we expand this in an asymptotic expansion, we obtain

$$
\begin{equation*}
x(t) \sim \sin (t)+c t \cos (t)+\cdots \tag{5.26}
\end{equation*}
$$

This is the asymptotic expansion of the true solution, and yet we see that for times of order $1 / \epsilon$, the second term does not go to zero as ϵ does. This is thus non-uniform in t and the non-uniformity is on a scale of $t=1 / \epsilon$. For this example we may make a change of independent variable to $s=(1+\epsilon) t$ and we see that we get a completely uniform (and even convergent) expansion in terms of s. The effect of this is to do our asymptotics along the lines $s=$ constant in the (ϵ, t) plane instead of along $t=$ constant.

5.4.1.1. Lie Traneforms

The general technique of all secular perturbation theories is $t 0$ introduce a new asymptotic process as in this example. For example, the method of Lic transforms makes an e dependent canonical transformation of an underlying phase space, such that in terms of the new variables the standard perturbation method yields solutio:s that are asymptotic for longer than bounded times. This technique may be shown to work for nearly periodic dynamical systems for time $\mathbf{1 / \epsilon}$ (see for example |Cary, 1981] and [Nayfeh, 1973] p. 200). Even here it is not completely specified what Lie transform one should make (since there is always extra freedom in making changes of coordinates). There is no general theory describing other circumstances in which the methad works and even when the method does work, there is no algorithmic procedure for cariying it out.

5.4.1.2. Two-Timing

The multiple time scale approach (two-timing) writes the solution in terms of two variables t and \boldsymbol{r} (see (Nayfeh, 1973) p. 228). The expression in terms of t is obtained by replacing \boldsymbol{r} by $\boldsymbol{c t}$, but the limiting process is performed with both t and τ held fixed. We choose the representation so that the dependence or t is nonsecular on times of order $1 / ¢$ by writing the secular parts in terms of τ. The result is asymptotics good for times of order $1 / 6$. This procedure is not given algorith, mically, it is not clear what systems this approarth works for and it is not clear how to proceed order by order even on systems where it works (though in specific examples the technique is ofen quite useful). One may sometimes get expressions for longer
times by introducing more slow times: $t, \tau=1 / \mathrm{c}, \mathrm{T}^{\prime}=1 / \mathrm{f}^{2} \ldots$. but again the theory seens to be restricted to special examples. It appears that when we express quantitie= as functions of more than one variable that we introduce an essential non-uniqueness which may limit the precision with which one can specify what one is doing.

5.4.2. $1 / \epsilon$ Tịme of Validity for Kruskal's Technique

We have scen that Kruskal's method, while restricted to perturbations of an exactly periodic system, is perfectly general within this context and uniform to all orders in ϵ for times of order $1 / \epsilon$. That the time of validity is $1 / \epsilon$ is a significant point, clearly stated in Kruskal's original paper, but not often repeated when this paper is quoted. One often hears the phrase: "Kruskal showed that adiabatic invariants exist to all orders in ϵ^{n}. This then leads one to confuse the accuracy of the approximation with the time of validity.

Why is the theory good for even time $1 / \epsilon$ (we have seen that the simplest examples make the basic perturbation technique fall on this scale)? The idea is to convert our system, by hook or hy crook, to one of the form

$$
\begin{equation*}
\dot{x}=c X \tag{5.27}
\end{equation*}
$$

where X is an asymptotic vector field. In this case we may make the change of variables to $\tau=c t$ and obtain the equation in the usual form:

$$
\begin{equation*}
\frac{d x}{d \tau}=X . \tag{5.28}
\end{equation*}
$$

We may apply standard perturbation theory to this 10 get an expression for the solution that is asymptotic for bounded r. But going back to t, this is valid for t of time $1 / \mathrm{f}$. In Kruskal's technique, we get rid of the fast oscillations by sucressive coordinate changes and so the resulting dynamics has only the slow drifts which are of order ϵ and so susceptible to the above technique. There is no way to get longer times out of this technique in general.

One sometimes hears the plausible argument: "Since the adiabatic invariant's time derivative is zero to all orders in ϵ, it will be constant for expopentially long times. ${ }^{n}$ As an example to see that this reasoning is faulty, consider the expression

$$
\begin{equation*}
j=e^{-1 / c t} \tag{5.29}
\end{equation*}
$$

If we take derivatives of this with respect to ϵ, while holding t fixed, we see that J 's time derivative is indeed zero to all orders in ϵ. Nonetheless, \dot{J} is of order 1 on times of order $1 / \epsilon$. Since when J is of order $1, J$ can change in times of order 1 , we see that for this example J cas undergo an order 1 change in times of order $1 / \mathrm{c}$.

To see that there are physical examples that fit into Kruskal's (and so everbody else's) framework and yet do not have preserved adiabatic invariants on times of order $1 / \epsilon^{2}$ we need only consider parametric resonance. As in Arnold. 1983\}. the simple harmonic oscillator with slowly varying frequency:

$$
\begin{equation*}
\ddot{x}=-w^{2}(1+a \cos (c t)) x, \tag{5.30}
\end{equation*}
$$

may be shown to be unstable for arbitrarily small f since there are resonances of arbitrarily high order. (An example is the child who pumps up a swing by
resonantly varying its length, and so its natural frequency.) It is easy to see that in this circumstance, the action will change significantly in times of order $1 / \mathbf{r}^{2}$.

5.4.3. Averaging with Multiple Frequenciea

If. instead of a single fast degree of freedom, we have several fast degrees of freedom. the motion is close to being on tori that fill up the phase space. It appears at first that one could just average over the tori and obtain as adiabatic invariants the axtions correspending to the fundamental loops of the tori. This is fine if the unpert urbed dynamics covers each torus ergodically and so the average perturbation over a torus really reflects the time average. If any of the frequencies are rationally related. however, then the orbit covers only a piece of the torus and we have no reason to expect that the average over the whole torus should have anything to do with the average over the orbit. Indeed one finds that one may have "trapping" at these so-called resonances, where the adiabatic invariant changes drastically in time 1/c. Fortunately, for generic Hamiltonians, the measure of the trapped regions is small and goes to zero as $\sqrt{6}$. [Arnold, 1983] introduces the notion of an almost adiabatic invariant which is a quantity that is constant to first order in \mathcal{C} for times of order 1, e except for a set of phase space whose measure goes to zero with c.

5.4-4. Averaging Over Ergodic Orbita

When the unperturbed system is ergodic on its energy surfaces, Kubo et al.. 1965:- and later [Ott, 1979], showed that the volume contained inside an tuergy surface is preserved to order \in for time $1 / c$. This is based on an averaging similar to the single frequency averaging case. This is of interest because as the dimension gets larger, the volume being preserved is equivaleat to the entropy being preserved. This gives a mechanical justification for the adiabatic invariance of the entropy in thermodynamies. When we forget ahout the oscillatory directions, we have seen that the constancy of the adiabatic invariant in an oscillatory system forces it to give and take energy under a variation of its parameters in such a way that it simulates a potential, leading to the pseudoforces we have discussed earlicr. The same circumstance in the thermodynamic case leads to thermodynamic forces. We shall see in the last chapter of this thesis that there is a symplectic structure and Lagrangian submanifold that describes these forces in a Hamiltonian way exactly analogous to the pseudo forces of the mecianical systems.

5.4.5. Non-uniqueness of Symmetry for Finite Perturbation

Even though Kruskal showed that in a nearly periodic system there is a unique cicle action on the perturbed dynamics to all orders in e. for finite perturbation there may be none or the circle action may not be unique. Here is give a simple example to demonstrate this non-uniqueness. Our system will be a cylinder with coordinates θ and y. The unperturbed system will just rotate in 0 :

$$
\begin{equation*}
x_{0}=\frac{\partial}{\partial \theta} \tag{5.31}
\end{equation*}
$$

A typical perturbation shifts the arbits on the cylinder so that almost all of them are helfes. For example, we get orbits that look like the stripes on a barber pole for finite s with

$$
\begin{equation*}
\boldsymbol{x}=\frac{\partial}{\partial \theta}+\epsilon \frac{\partial}{\partial y} . \tag{5.32}
\end{equation*}
$$

Since this vector field does not depend explicitly on θ, the unperturbed vector feld generates a circle action which is a symmetry of this one. There are an infinite number of others. however.

Let R be a vector Geld on the cylinder, all of whose orbits are circles. By the relationship of the flow of a vector feld to the Lie derivative along it, R will generate a circle symmetry of X if, and only if the Lie derivative of X by R vanisbes. But for vector fields this is just the Lie bracket: $[R, X]$, which is antisymmetric- and so the Lie derivative of \boldsymbol{R} along \boldsymbol{X} must vanish as weit. This says that if we know \boldsymbol{R} at any place on an X orbit, for it to be a symmetry its value anywhere else on this orbit must be obtained by pushing it forward along the flow of X. The orbits of X are a circle of helices filling up phase space. If we choose any closed loop around the cylinder that intersects each helix exartly once (it is easy to see that there are an infinite number of ways of doing this), then we can make that loop one of the orbits of R. For R on the loop, just choose R tangent to the loop, and to get R everywhere else, we push this forward by X 's flow.

Chapter6:

Ponderomotive Force and Gyromotion

"The purpose of computing is insight, not numbers."-Richard W. Hamming

6.1. Panderomative-like Forces

In this chapter we will apply the perturbation techniques of the last chapter to some example problems. The physical plasma pheyomena that underlie our examples are the ponderomotive force and gyromotion. We wish to keep the physics of these asymptotic physical effects in the foreground and so we do not work with the most general situation in which these effects arise. Instead, we focus on the simplest situations which contain the relevant physical effects, and discuss the underlying asymptotic process in detail. This approach allows us to explicitly compare aspects of these problems which are obscure in more complex settings. The insights and intuitisns gained are of course applicable to more general settings.

First we discuss a model problem that contains the essence of ponderomotive force. We consider a time-indepes lent problem with two degrees of freedon. One degree of freedorn behaves like a fast oscillator and the other evolves slowly in an
arbitrary potential. The example we will use is

$$
\begin{align*}
\dot{x} & =v_{x} \\
\dot{y} & =v_{v} \\
\dot{v}_{x} & =-\frac{\partial v^{\prime}(x)}{\partial x}-\frac{1}{2} \frac{\partial W(x)}{\partial x} y^{2} \tag{6.1}\\
\dot{v}_{v} & =-W(x) y
\end{align*}
$$

with the initial conditions

$$
\begin{array}{ll}
x(0)=x_{0} & y(0)=y_{0} \tag{6.2}\\
v_{x}(0)=v_{x} & v_{y}(0)=v_{v 0}
\end{array}
$$

This system is Hamiltonian with the canonical Poisson bracket in x, y, v_{x}, v_{y} and the Hamiltonian

$$
\begin{equation*}
H\left(x, y, v_{x}, v_{y}\right)=\frac{1}{2} \mathrm{v}_{x}^{2}+\frac{1}{2} v_{v}^{2}+V(x)+\frac{1}{2} W(x) y^{2} . \tag{6.3}
\end{equation*}
$$

A physical model with this dynamics is a ball rolling in a trough. The trough is a surface whose height over the (x, y) plane is given by $V(x)+W(x) y^{2} / 2 .\left(v_{x}, v_{u}\right)$ represent the x and y velocities respectively. Along each line $x=$ constant, the potential has a minimum at $y=0$ and grows quadratically with strength $W(x)$ as $|y|$ increases. If the rolling particle starts at $y=0$ with $v_{y}=0$, then it remains on the line $y=0$ for all time. In this case the system behaves like a one degree of freedom system with potential $V(x)$ and $W(x) \sin ^{1 n}$ no role. If there is any displacement froin $y=0$, then the particle continues to wsillate back and forth about the x-axis. The y^{2} in the potential acts like a restoring force toward $y=0$ and the strength $W(x)$ varies with x. Exactly this kind of model is hehind mechanical systems with constraints. When we say we have a particle in the plane constrained
to the -axis (like a bead on a wire), we really mean that thete in a stilf restoming force transverse to the axis. It is sometimes implicitly assumed that if the restoring force is sufficiently strong, the motion of the particle is well approximated by the equations restricted to the constraint manifold (in this case the 1 -axis). To make this statement precise one must introduce asymptotics in the strength of the restoring force. We will see in fact that if $W(x)$ is not constant, then the transverse motions add a new pseudo-potential to the constrained motion.

We are interested, then, in the case where the transverse y motion is very fast compared to the x motion. We want to explizitly introduce asymptotic scaling with a parameter \& into our equations of motion to make this analysis precise. Usually one is somewhat sloppy and simpiy proceeds intuitively. Sometimes this gives a usoful answer but the chances of this go down as the complexity of the problem goes up. It is also important to explicitly state the intended scaling as this represents the physical effect one is trying to study. Let us give an intuitive argument and then see what must be done to make it precise.

6.1.1. Intuitive Treatment

Because the y motion is supposed to be fast compared to the x motion, the if motion initially behaves a: if x is frozen at x_{0}. The equations for the y motion are now those of a simple barmonic oseillator with frequenry $\sqrt{W\left(x_{0}\right)}$:

$$
\begin{equation*}
\dot{y}=r_{y} \quad \dot{i}_{y}=-\boldsymbol{H}\left(x_{0}\right) y \tag{6.4}
\end{equation*}
$$

For simplicity, we take the y initial condition to be zero: $y(0)=0$. In this case the solution is

$$
\begin{equation*}
y(t)=\frac{r y 0}{\sqrt{W\left(x_{0}\right)}} \sin \left(\sqrt{W\left(x_{0}\right)} t\right) . \tag{6.5}
\end{equation*}
$$

The r_{x} evolution equation

$$
\begin{equation*}
\dot{v}_{x}=-\frac{\partial V(x)}{\partial x}-\frac{1}{2} \frac{\partial W^{\prime}(x)}{\partial x} y^{2} \tag{6.6}
\end{equation*}
$$

depends on y. Because y traverses its periodic arbit many times before y or v_{z} evolve appreciably, y 's effect on ν_{x} 's evolution will be almost the same as its average over y 's orbit. Because the average of $\sin ^{2}(\theta)$ over $0 \leq \theta \leq 2 \pi$ is $1 / 2$, the average of $-\frac{\partial W(x)}{\partial x} y^{2} / 2$ will be

$$
\begin{equation*}
-\frac{1}{2} \frac{\partial W(x)}{\partial x} \frac{v_{v_{0}}^{2}}{2 W\left(x_{0}\right)} \tag{6.7}
\end{equation*}
$$

If we now let u be the value of v_{v} when $y=0$, we see that the same argument applies to any time (not just the initial time) to give the v_{x} equation:

$$
\begin{equation*}
\dot{v}_{x}=-\frac{\partial V(x)}{\partial x} \cdots \frac{1}{2} \frac{\partial W(x)}{\partial x} \frac{u^{2}}{2 W(x)} \tag{6.8}
\end{equation*}
$$

Thus tells us how v_{x} varies if we know u (i.e. y^{\prime} 's maximum velocity).
We may determine u from the constraint that the total energy must remain constant. At an arbitrary time, the average energy in the y motion is $u^{2} / 2$, a result we obtaio by holding I and v_{x} fixed and realizing that all of the oscillatory energy is kinetic when $y=0$. The total energy (averaged over the y motion) is tben

$$
\begin{equation*}
H=\frac{1}{2} v_{z}^{z}+\frac{1}{2} \mathrm{u}^{2}+V(x) \tag{6.9}
\end{equation*}
$$

The time derivative of H must vanish, so

$$
\begin{equation*}
\dot{H}=v_{x} \dot{c}_{x}+u \dot{\dot{L}}+v_{T} \frac{\partial V}{\partial T}=0 \tag{6.10}
\end{equation*}
$$

We substitute in the expression for \dot{r}_{x} to obtain

$$
\begin{align*}
\dot{H} & =0 \\
& =-v_{x} \frac{\partial V}{\partial x}-\frac{1}{2} v_{x} \frac{\partial U}{\partial x} \frac{u^{2}}{2 W}+u \dot{u}+v_{x} \frac{\partial V}{\partial x} \tag{6.11}\\
& =u \dot{u}-\frac{1}{2} \dot{W} \frac{u^{2}}{2 W} .
\end{align*}
$$

This has an integrating fartor of $1 /(2 \sqrt{W})$ by which we multiply to obtain:

$$
\begin{align*}
0 & =\frac{u \dot{u}}{2 \sqrt{W}}-\dot{W} \frac{u^{2}}{8 W^{3 / 2}} \tag{6.12}\\
& =\frac{d}{d t}\left(\frac{u^{2}}{4 \sqrt{W}}\right) .
\end{align*}
$$

We have found a constant of the motion, a multiple of 2 of which we shall call J (rince it is equal to the action of the transverse oscillations):

$$
\begin{equation*}
J=\left(\frac{u^{2}}{2 \sqrt{W(x)}}\right)=\left(\frac{v_{y 0}^{2}}{2 \sqrt{W\left(x_{0}\right)}}\right) . \tag{6.13}
\end{equation*}
$$

This may be solved for u :

$$
\begin{equation*}
u=\sqrt{2 J \sqrt{W}} \tag{6.14}
\end{equation*}
$$

and then substituted into the equation for v_{x} :

$$
\begin{align*}
\dot{v}_{x} & =-\frac{\partial V(x)}{\partial x}-\frac{1}{2} \frac{\partial W(x)}{\partial x} \frac{u^{2}}{2 W(x)} \\
& =-\frac{\partial V(x)}{\partial x}-\frac{1}{2} \frac{\partial W(x)}{\partial x} \frac{J}{\sqrt{W}} \tag{6.15}\\
& =-\frac{\partial V(x)}{\partial x}-\frac{\partial}{\partial x}\left(J \sqrt{W^{r}(x)}\right) .
\end{align*}
$$

The x motion behaves just like a particle in the potential

$$
\begin{equation*}
V(x)+J \sqrt{W(x)}=V(x)+\frac{v_{v 0}^{2} \sqrt{W(x)}}{2 \sqrt{W\left(x_{0}\right)}} \tag{6.16}
\end{equation*}
$$

The ordinary putential $V(x)$ is augmented by a!. extra pseudo-potential $J \sqrt{W^{\prime}(x)}$ which is non-zero when there is transverse motion and has an effect on the x motion when W varies with x.

6.1.2. Introducing the Asymptotic Scaling

This argument is intuitively appealing but has not been systematic. It is difficult to see how to get more accurate evolution equations. We therefore wish to introduce an explicit e into our equations which captures the physical assumptions used in the intuitive discussion above as $\epsilon \rightarrow 0$ and which gives the correct equations for $\epsilon=1 . y$ and v_{v} are supposed to be fast variables. If we view them as varying by order 1 on a time scale of c (so the fast motion gets faster and faster as $e \rightarrow 0$, then x and v_{x} should vary by order 1 on times scales of order 1 . In modelling constrained motion, one typically makes the constraining force stronger asymptotically. We therefore replace $W(x)$ with $W(x) / \epsilon^{2}$. If we keep the initial conditions $y(0)=y_{0}$ and $v_{v}(0)=v_{v 0}$, then as $c \rightarrow 0$ the energy of the transverse motion becomes infinite. Because the transverse energy is teally of the same order as the energy of the constrained motion, we must siale the transverse displacement with c as $y(0)=c y_{0}$. This leads to a system given by

$$
\begin{align*}
\dot{x} & =v_{x} \\
\dot{y} & =v_{v} \\
\dot{v}_{x} & =-\frac{\partial V(x)}{\partial x}-\frac{1}{2 c^{2}} \frac{\partial W(x)}{\partial x} y^{2} \tag{6.17}\\
\dot{v}_{y} & =-\frac{1}{c^{2}} W(x) y
\end{align*}
$$

with the initial conditions

$$
\begin{array}{cc}
x(0)=x_{0} & y(0)=\epsilon y_{0} \tag{6.18}\\
v_{x}(0)=v_{x 0} & v_{y}(0)=v_{y} 0
\end{array}
$$

From the equations, it might appear that v_{x} can really evolve by order $1 / 4$ on times of order c contrary to asisumption. This doesn't happen. however, because
the maximal excursion in y scales as I and so counteracts the $1 / c^{2}$ in the equation for v_{z}. This is because tine initial y has this scaling and becarse the total energy is of order 1. That the transiverse potential energy $\mathrm{H}^{2} / 2 \mathrm{c}^{2}$ is of order I means that y 's maxinal excursion is of order e. This argument shows that the time lerivative of v_{y} is of order $1 / c$. This system is Hamiltonian with the canonical Poisson bracket in x, y, v_{x}, v_{y} and the Harniltonian is

$$
\begin{equation*}
H\left(x, y, v_{x}, v_{y}\right)=\frac{1}{2} v_{x}^{2}+\frac{1}{2} v_{v}^{2}+V(x)+\frac{1}{2 c^{2}} W(x) y^{2} \tag{6.19}
\end{equation*}
$$

This scaling has the fast motion getting very fast as $\boldsymbol{c} \rightarrow 0$ as is physically reasorable. The interesting pseiadr-potential has its effects in time 1 (which is presumably the time scale used by the observer). Unfortunately, this scaling is not a perturbation around any well understood system for $c=0$. As \in approaches zero, the equations of motion become singular. It is also not apparent how the operations we performed in our intuitive approach may be expressed systematically wit\} this sraling (e.g., we held the x variahles fixed while studying y-why could we do this?)

One way to resolve these difficulties is to redo our study on a stretched time scale (i.e. imagiue the clocks in your sensory apparatus getting faster as $t \rightarrow 0$). We introduce $\bar{i} \equiv t / \epsilon$. If we interpret dot to mean derivative with respect to i (while keeping the $1 n t e r p r e t a t i o n ~ o f ~ t h e ~ v e l o c i t i e s ~ v_{x}$ and v_{y} as derivatives with respect to t), then the equations of motion become

$$
\begin{align*}
\dot{x} & =\iota v_{x} \\
\dot{y} & =\varepsilon v_{v} \\
\dot{i}_{r} & =-\epsilon \frac{\partial V(x)}{\partial x}-\frac{1}{2 \epsilon} \frac{\partial W(x)}{\partial x} y^{2} \tag{6.20}\\
\dot{i}_{\psi} & =-\frac{1}{t} W(x) y
\end{align*}
$$

with the initial ronditions

$$
\begin{array}{ll}
x(0)=I_{0} & y(0)=\tau y_{0} \tag{6.21}\\
v_{x}(0)=y_{x 0} & v_{y}(0)=v_{y 0} .
\end{array}
$$

To get rid of the apparently singular terms. we may introduce a rescaled y defined by $Y \equiv y / t$. The initial conditions are now ϵ independent and the equations are non-singular:

$$
\begin{align*}
\dot{x} & =\epsilon v_{x} \\
\dot{Y} & =v_{y} \\
\dot{U}_{x} & =-\epsilon \frac{\partial V(x)}{\partial x}-\frac{\epsilon}{2} \frac{\partial W(x)}{\partial x} Y^{2} \tag{6.22}\\
\dot{v}_{y} & =-W(x) Y
\end{align*}
$$

with the initial conditions

$$
\begin{array}{cc}
x(0)=x_{0} & Y(0)=y_{0} \tag{6.23}\\
v_{x}(0)=v_{x} 0 & v_{\nu}(0)=v_{y} 0 .
\end{array}
$$

These equations are perfectly set up for the nom-Hamiltonian versions of the methods given in the last chapter. They limit as $\epsilon \rightarrow 0$ on a system with only periodic orbits:

$$
\begin{equation*}
\dot{x}=0, \quad \dot{Y}=v_{y}, \quad \dot{v}_{x}=0, \quad \dot{v}_{y}=-W(x) Y . \tag{6.24}
\end{equation*}
$$

We will study these equations momentarily. Unfortunately, they are not Hamiltonian with respect to the canonical Poisson bracket. They are Hamiltonian with respec! to the bracket

$$
\begin{equation*}
\{f, g\}=c \frac{\partial f}{\partial x} \frac{\partial g}{\partial v_{x}}-\epsilon \frac{\partial f}{\partial v_{x}} \frac{\partial g}{\partial x}+\frac{\partial f}{\partial Y} \frac{\partial g}{\partial v_{y}}-\frac{\partial f}{\partial v_{y}} \frac{\partial g}{\partial Y} \tag{6.25}
\end{equation*}
$$

with the Hamiltonian

$$
\begin{equation*}
H\left(x, Y_{,} v_{x}, v_{y}\right)=\frac{1}{2} v_{x}^{2}+\frac{1}{2} v_{y}^{2}+V(x)+\frac{1}{2} W(x) Y^{2} . \tag{6.26}
\end{equation*}
$$

This bracket become: degenerate (and functions of r and v_{r} becone C'axinurs/ when $\mathrm{E}=\mathbf{0}$

One way to preserve the Hamiltonian nature with respeci in the canonical bracket is to scale the potentials $V(x)$ and $W(x)$ to vary more and more slowly, the strength of the restoring potential to grow and the contribution of v_{x} to the kinetic energy to vanish as $\varepsilon-0$. This leads to the Hamiltonian

$$
\begin{equation*}
H\left(x, y, v_{x}, v_{v}\right)=\frac{1}{2} \epsilon v_{x}^{2}+\frac{1}{2} v_{y}^{2}+V(c x)+\frac{1}{2} W(\epsilon x) y^{2} . \tag{6.27}
\end{equation*}
$$

The equations of motion are

$$
\begin{align*}
\dot{x} & =\epsilon v_{x} \\
\dot{y} & =v_{y} \\
\dot{v}_{x} & =-\epsilon \frac{\partial V}{\partial x}(\epsilon x)-\frac{c}{2} \frac{\partial W}{\partial x}(\epsilon x) y^{2} \tag{6.28}\\
\dot{v}_{v} & =-W(\epsilon x) y
\end{align*}
$$

rith the initial conditions

$$
\begin{array}{cl}
x(0)=x_{0} & y(0)=y_{0} \tag{6.29}\\
v_{x}(0)=v_{x} 0 & v_{y}(0)=v_{y} 0 .
\end{array}
$$

Again this has nice limiting behavior as $\varepsilon \rightarrow 0$. Physically, the picture is that we are stretching the x coordinate, so that the trough becomes flatter and 日atter in the x direction. If we hold v_{x} fixed, then it takes a longer and longer time to make W vary substantially.

6.1.3. Using the Kruskal-like Perturbation Method

Let us now obtain the adiabatirally imvariant action to first order in r using the method outhned in rhapter 5. The dynamical vector field is:

$$
\begin{align*}
X & =X_{0}+\epsilon X_{1} \\
& =\left(v_{y} \frac{\partial}{\partial Y}-W(x) Y \frac{\partial}{\partial v_{y}}\right) \tag{6.30}\\
& +\epsilon\left(v_{x} \frac{\partial}{\partial x}-\left(\frac{\partial V(x)}{\partial x}+\frac{1}{2} \frac{\partial W(x)}{\partial x} Y^{2}\right) \frac{\partial}{\partial v_{x}}\right)
\end{align*}
$$

The solution curves of the unperturbed piece X_{0} are all closed:

$$
\begin{align*}
& x(t)=x_{0} \quad v_{x}(t)=0 \\
& Y(t)=A \cos (\sqrt{W(x)} t) \tag{6.31}\\
& v_{y}(t)=-A \sqrt{W(x)} \sin (\sqrt{W(x)} t) .
\end{align*}
$$

6.1.3.1. The Coordinates x, v_{x}, A, θ

Let us define the angle on these orbits as θ and introduce an amplitude A :

$$
\begin{equation*}
Y=A \cos \theta \quad v_{\mathrm{y}}=-A \sqrt{W(x)} \sin \theta \tag{6.32}
\end{equation*}
$$

Writing these relations in the other direction gives

$$
\begin{equation*}
\tan \theta=-\frac{v_{y}}{Y \sqrt{W(x)}} \quad A^{2}=Y^{2}+\frac{1}{W(x)} v_{\mathrm{y}}^{2} . \tag{6.33}
\end{equation*}
$$

Comparing these expressions with the earlier discussion we expect the zero order action to be given by

$$
\begin{equation*}
J_{0}=\frac{(A \sqrt{W(x)})^{2}}{2 \sqrt{W(x)}}=\frac{1}{2} A^{2} \sqrt{W(x)} . \tag{6.34}
\end{equation*}
$$

We may take the time derivatives of these expressions to obtain the dynameal sector field in the new coordinates.

$$
\begin{align*}
\left(1 \div \tan ^{2} \theta\right) \dot{\theta} & =-\frac{\dot{t}_{y}}{\xi \sqrt{W(x)}}+\frac{v_{y} \dot{Y}}{Y^{2} \sqrt{W(x)}}+\frac{v_{y}}{2 \xi} \frac{\partial W^{\circ}}{\dot{W}(x)^{3 / 2}} \frac{\dot{x}}{\partial x} \tag{6.35}\\
& =\sqrt{W(x)}+\tan ^{2} \theta \sqrt{W(x)}-\epsilon v_{x} \frac{\tan \theta}{2 W(x)} \frac{\partial W^{\circ}}{\partial x} .
\end{align*}
$$

And 50

$$
\begin{equation*}
\dot{\theta}=\sqrt{W(x)}-c v_{x} \sin \theta \cos \theta \frac{1}{2 W(x)} \frac{\partial W}{\partial x} \tag{6.36}
\end{equation*}
$$

Similarly for A :

$$
\begin{align*}
2 A \dot{A} & =2 Y \dot{Y}+2 \frac{v_{y}}{W(x)} \dot{v}_{y}-\frac{v_{y}^{2}}{W(x)^{2}} \frac{\partial W}{\partial x} \dot{x} \\
& =2 Y v_{y}-2 v_{y} Y-\epsilon v_{x} \frac{v_{y}^{2}}{W(x)^{2}} \frac{\partial W}{\partial x} \tag{6.37}\\
& =-\frac{c v_{x} A^{2}}{W(x)} \sin ^{2} \theta \frac{\partial W}{\partial x}
\end{align*}
$$

leading to

$$
\dot{A}=-\frac{\epsilon v_{x} A}{2 W(x)} \sin ^{2} \theta \frac{\partial W}{\partial x}
$$

Thus the dynamical vector field in these coordinates is

$$
\begin{align*}
X & =\sqrt{W(x)} \frac{\partial}{\partial \theta}+c v_{x} \frac{\partial}{\partial x}-\epsilon\left(\frac{\partial V(x)}{\partial x}+\frac{1}{2} \frac{\partial W^{\prime}(x)}{\partial x} A^{2} \cos ^{2} \theta\right) \frac{\partial}{\partial t_{x}} \\
& +\epsilon v_{x} \sin \theta \cos \theta \frac{1}{W^{\prime}(x)} \frac{\partial W}{\partial x} \frac{\partial}{\partial \theta}-\epsilon \frac{v_{x} A}{2 W(x)} \sin ^{2} \theta \frac{\partial W}{\partial x} \frac{\partial}{\partial A} . \tag{6.39}
\end{align*}
$$

6.1.3.2. Reault of the Method of Averaging

The method of averaging says that the projertion to x, v_{x}, A space of the integral curves of X agrees with the evolution on that space of the averaged vector ficld:

$$
\begin{equation*}
\dot{x} \equiv<\left(v_{x} \frac{\partial}{\partial x}-\left(\frac{\partial V}{\partial x}+\frac{A^{2}}{4} \frac{\partial W^{r}(x)}{\partial x}\right) \frac{\partial}{\partial v_{x}}-\frac{v_{x} A}{4 W(x)} \frac{\partial W}{\partial x} \frac{\partial}{\partial A}\right) \tag{6.40}
\end{equation*}
$$

to first order in ϵ for a time $1 / \epsilon$. From this we again (though this time it is rigorous) see that for the averaged dynamics

$$
\begin{align*}
j_{0} & =\frac{d}{d t}\left(\frac{1}{2} A^{2} \sqrt{W(x)}\right) \\
& =A \dot{A} \sqrt{W(x)}+\frac{A^{2}}{4 \sqrt{W(x)}} \frac{\partial W}{\partial x} \dot{x} \tag{6.41}\\
& =-\frac{v_{x} A^{2}}{4 \sqrt{W(x)}} \frac{\partial W}{\partial x}+\frac{v_{x} A^{2}}{4 \sqrt{W(x)}} \frac{\partial W}{\partial x} \\
& =0 .
\end{align*}
$$

So \mathbf{J} is exactly a constant of the motion for the averaged dynamics. This implies that J_{0} is conserved to within \& for time $1 / \epsilon$, i.e. it is an adiabatic invariant. If we consider a level set of J_{0} then the averaged vector field restricted to that level set has the form

$$
\begin{equation*}
\bar{X}_{J}=\kappa\left(v_{x} \frac{\partial}{\partial x}-\frac{\partial}{\partial x}(V(x)+J \sqrt{W(x)}) \frac{\partial}{\partial v_{x}}\right) \tag{6.42}
\end{equation*}
$$

and 50 is Harriltonian with an extra pseudo-potential $J \sqrt{W(x)}$.

6.1.3.3. Calculation of the Roto-rate Vector Field

Let us now find the roto-rate symmetry vector field to first orde - in . We know that

$$
\begin{equation*}
R_{0}=\frac{\partial}{\partial \theta} \tag{6.43}
\end{equation*}
$$

from the general theory. We wish to impose the requirement that

$$
\begin{equation*}
\left|\boldsymbol{R}_{1}, X_{0}\right|=-\left\{R_{0}, \boldsymbol{X}_{1} \mid\right. \tag{6.44}
\end{equation*}
$$

Let us solve this for \boldsymbol{R}_{1} component by component. Since

$$
\begin{equation*}
X_{0}=\sqrt{W(x)} \frac{\partial}{\partial \theta} \tag{6.45}
\end{equation*}
$$

we find that

$$
\begin{align*}
{\left[R_{1}, X_{0}\right]^{x} } & =-\sqrt{W}(x) \frac{\partial R_{1}^{x}}{\partial \theta} \\
& =-\left[R_{0}, X_{1}\right]^{x} \\
& =-\left[\frac{\partial}{\partial \theta}, X_{1}\right]^{x} \tag{6.46}\\
& =-\frac{\partial}{\partial \theta} X_{1}^{x} \\
& =0 .
\end{align*}
$$

We conclude that

$$
\begin{equation*}
R_{1}^{x}=\int_{1}^{x}\left(x, v_{x}, A\right) \tag{6.47}
\end{equation*}
$$

is a constant. The next step in the method is to impose the constraint that the orbits R close after time 2π :

$$
\begin{equation*}
\int_{0}^{2 \pi} R_{1} d \theta=0 \tag{6.48}
\end{equation*}
$$

Wie conclude that the constant vanishes and that

$$
\begin{equation*}
R_{1}^{x}=0 \tag{6.49}
\end{equation*}
$$

Similarly. we obtain the t_{x} component:

$$
\begin{align*}
\left.\mid R_{1}, X_{0}\right]^{c_{x}} & =-\sqrt{H(x)} \frac{\partial R_{1}^{\dot{C}_{x}}}{\partial \theta} \\
& =-\left[\frac{\partial}{\partial \theta}, X_{1}\right]^{\omega_{s}} \\
& =-\frac{\partial}{\partial \theta} X_{1}^{\nu_{s}} \tag{6.50}\\
& =-\frac{\partial W^{\prime}(x)}{\partial x} A^{2} \cos \theta \sin \theta .
\end{align*}
$$

So

$$
\begin{align*}
R_{1}^{v_{x}} & =\frac{1}{\sqrt{W(x)}} \int_{0}^{\theta} \frac{\partial W(x)}{\partial x} A^{2} \cos \tilde{\theta} \sin \tilde{\theta} d \tilde{\theta}+\int_{1}^{\nu_{x}}\left(x, v_{x}, A\right) \tag{6.51}\\
& =-\frac{1}{4 \sqrt{W(x)}} \frac{\partial W(x)}{\partial x} A^{2} \cos 2 \theta+\bar{f}_{1}^{v_{x}}\left(x, v_{x}, A\right) .
\end{align*}
$$

Again the integral condition forces the constant of integration to vanish and we obtain

$$
\begin{equation*}
R_{1}^{v_{x}}=-\frac{1}{2} \frac{\partial}{\partial x}(\sqrt{W(x)}) A^{2} \cos 2 \theta \tag{6.52}
\end{equation*}
$$

We proceed to find R_{1}^{A} :

$$
\begin{align*}
{\left[R_{1}, X_{0}\right]^{A} } & =-\sqrt{W(x)} \frac{\partial R_{1}^{A}}{\partial \theta} \\
& =-\left[\frac{\partial}{\partial \theta}, X_{1}\right]^{A} \tag{6.53}\\
& =-\frac{\partial}{\partial \theta} X_{1}^{A} \\
& =\frac{v_{x} A}{W(x)} \sin \theta \cos \theta \frac{\partial W}{\partial x}
\end{align*}
$$

Thus we see that

$$
\begin{align*}
R_{1}^{A} & =-\frac{1}{2 \sqrt{W(x)}} \int_{0}^{\theta} \frac{v_{x} A}{W(x)} \frac{\partial W}{\partial x} \sin 2 \tilde{\theta} d \tilde{\theta}+f_{1}^{A}\left(x, V_{x}, A\right) \tag{6.54}\\
& =\frac{v_{x} A}{4 W(x)^{3 / 2}} \frac{\partial W}{\partial x} \cos 2 \theta+\tilde{f}_{1}^{A}\left(x, v_{x}, A\right)
\end{align*}
$$

lmposiog the integral condition gives

$$
\begin{equation*}
R_{1}^{A}=\frac{v_{x} A}{4 W(x)^{3 / 2}} \frac{\partial W}{\partial x} \cos 2 \theta . \tag{6.55}
\end{equation*}
$$

Finally we obtain R_{1}^{θ} :

$$
\begin{align*}
\mid R_{1}, X_{0}^{\prime \theta} & =-\sqrt{H(x)} \frac{\partial R^{\theta}}{\partial \theta}+R_{1} \frac{\partial}{\partial x} \sqrt{H(x)} \\
& =-\sqrt{H(x)} \frac{\partial R^{\theta}}{\partial \theta} \\
& =-\left[\left.\frac{\partial}{\partial \theta} \cdot X_{\mathrm{L}}\right|^{\theta}\right. \tag{6.56}\\
& =-\frac{\partial}{\partial \theta} X_{1}^{\theta} \\
& =\frac{1}{2} v_{x} \cos 2 \theta \frac{1}{W(x)} \frac{\partial u^{\prime}}{\partial x} .
\end{align*}
$$

Thus we find that

$$
\begin{align*}
R^{\theta} & =\frac{-v_{x}}{2 W(x)^{3 / 2}} \frac{\partial \eta}{\partial x}-\int_{0}^{\theta} \cos 2 \bar{\theta} d \bar{\theta}+f_{1}^{\theta}\left(x, v_{x}, A\right) \tag{6.57}\\
& =\frac{-v_{x}}{4 W(x)^{3 / 2}} \frac{\partial W}{\partial x} \sin 2 \theta
\end{align*}
$$

where we have already imposed the integral condition.
Thus to first order in ϵ, the roto-rate vector field is

$$
\begin{align*}
R & =R_{0}+\epsilon R_{1} \\
& =\frac{\partial}{\partial \theta} \\
& -\epsilon \frac{1}{2} \frac{\partial}{\partial x}\left(\sqrt{W^{\prime}(x)}\right) A^{2} \cos 20 \frac{\partial}{\partial r_{z}} \tag{658}\\
& +\epsilon \frac{v_{x} A}{4 W \cdot(x)^{3 / 2}} \frac{\partial u}{\partial x} \cos 2 \theta \frac{\mathrm{C}}{\partial \cdot A} \\
& \cdots \epsilon \frac{v_{x}}{4 W \cdot(x)^{3 / 2}} \frac{\partial W}{\partial x} \sin 2 \theta \frac{\partial}{\partial \theta}
\end{align*}
$$

6.1.3.4. The Hamiltonian Structure

In the original coordinates. the non-trivial Poisson bracket relations are

$$
\begin{equation*}
\left\{x, r_{z}\right\}=t \quad\left\{Y^{\prime}, v_{y}\right\}=1 \tag{6.59}
\end{equation*}
$$

Let us determine the Poisson bracket in terms of the variables x, v_{x}, A and θ. Since neither A or θ depend on v_{x}, we have that

$$
\begin{equation*}
\{A, x\}=\{\theta, x\}=0 \tag{6.60}
\end{equation*}
$$

We may find the other relations most simply by using the derivation property of the bracket:

$$
\begin{align*}
2 A\left\{A, v_{x}\right\} & =\left\{A^{2}, v_{x}\right\} \\
& =\left\{Y^{2}+\frac{1}{W(x)} v_{y}^{2}, v_{x}\right\} \\
& =-\frac{v_{v}^{2}}{W(x)^{2}} \frac{\partial W(x)}{\partial x}\left\{x, v_{x}\right\} \tag{i.61}\\
& =-\frac{\epsilon v_{v}^{2}}{W(x)^{2}} \frac{\partial W(x)}{\partial x} \\
& =-\frac{\epsilon A^{2}}{W(x)} \sin ^{2} \theta \frac{\partial W}{\partial x}
\end{align*}
$$

Thus we obtain the relation

$$
\begin{equation*}
\left\{A, v_{x}\right\}=-\frac{\varepsilon A}{2 W(x)} \sin ^{2} \theta \frac{\partial W}{\partial x} \tag{6.62}
\end{equation*}
$$

Similarly

$$
\begin{align*}
\left(1+\tan ^{2} \theta\right)\left\{\theta, v_{x}\right\} & =\left\{\tan \theta, v_{x}\right\} \\
& =\left\{-\frac{v_{v}}{Y \sqrt{W(x)}} \cdot v_{x}\right\} \tag{6.63}\\
& =-\frac{c \sqrt{W^{\prime}(x)} \sin \theta}{2 A \cos \theta} \frac{1}{W(x)^{3 / 2}} \frac{\partial W}{\partial x}
\end{align*}
$$

so

$$
\begin{equation*}
\left\{\theta, v_{x}\right\}=-\frac{1}{2 W(r)} \sin \theta \cos \theta \frac{\partial W}{\partial r} . \tag{6.0.4}
\end{equation*}
$$

Lastly
$2 . A\{A \cdot \theta\}\left(\mathrm{I}+\tan ^{2} \theta\right)=\left\{A^{2}, \tan \theta\right\}$

$$
\begin{aligned}
& =\left\{Y^{2}+\frac{1}{W(x)} v_{v}^{2}-\frac{v_{y}}{Y \sqrt{W(x)}}\right\} \\
& =-2 Y\left\{Y, v_{v}\right\} \frac{1}{Y \sqrt{W(x)}}+\frac{2 v_{v}}{W(x)}\left\{v_{v}, Y\right\} \frac{1}{Y^{2}} \frac{v_{y}}{\sqrt{W(x)}} \\
& =-\frac{2}{\sqrt{W(x)}}-\frac{2 v_{v}^{2}}{Y^{2} W^{\prime}(x)^{3 / 2}} \\
& =-\frac{2}{\sqrt{W(x)}}-\frac{2}{\sqrt{W(x)}} \tan ^{2} \theta,
\end{aligned}
$$

so

$$
\begin{equation*}
\{A, \theta\}=-\frac{1}{A \sqrt{W}(x)} \tag{6.66}
\end{equation*}
$$

In the new coordinates the Hamiltonian is

$$
\begin{align*}
H & =\frac{1}{2} v_{x}^{2}+\frac{1}{2} v_{v}^{2}+V(x) \because \frac{1}{2} W(x) Y^{2} \\
& =\frac{1}{2} v_{x}^{2}+\frac{1}{2} A^{2} W(x) \sin ^{2} \theta+V(x)+\frac{1}{2} W(x) A^{2} \cos ^{2} \theta \tag{6.67}\\
& =\frac{1}{2} A^{2} W(x)+\frac{1}{2} v_{x}^{2}+V(x) .
\end{align*}
$$

One easily checks that this Hamiltonian generates the dynamical vector fielr. in these zoordinates using the above Poisson bracket relations.

6.1.4. Obtaining the Action to First Order

Let us now use the Poisson bracket relations to find the function $J_{0}+\mathrm{CJ}_{1}+$.. which generates the rotorate vector field $R_{0}+c R_{1}+\ldots$. From the defining expression

$$
\begin{equation*}
R_{0}+\epsilon R_{1}+\ldots=\left\{, J_{0}+\epsilon J_{1}+\ldots\right\}_{0}+\left\{, J_{0}+c J_{1}+\ldots\right\}_{1} \tag{6.68}
\end{equation*}
$$

for the action we find a hierarchy of equations

$$
\begin{align*}
R_{0} & =\left\{\cdot, J_{0}\right\}_{0} \\
R_{1} & =\left\{\cdot, J_{1}\right\}_{0}+\left\{\cdot, J_{0}\right\}_{1} \tag{6.69}\\
& \vdots
\end{align*}
$$

A pricri each J_{2} is only determined up to Casimirs for $\{$, \}o until we get to the next stage. In this example, we may always take these Casimirs to vanish (is this a general phenomenon?).

The zero-order vector field generated by J is

$$
\begin{equation*}
\left\{\cdot, J_{0}\right\}_{0}=-\frac{\partial J_{0}}{\partial \dot{\theta}} \frac{1}{A \sqrt{W(x)}} \frac{\partial}{\partial A}+\frac{\partial J_{0}}{\partial A} \frac{1}{A \sqrt{W(x)}} \frac{\partial}{\partial \theta} \tag{6.70}
\end{equation*}
$$

Comparing this with the desired

$$
\begin{equation*}
R_{0}=\frac{\partial}{\partial \theta} \tag{6.71}
\end{equation*}
$$

we obtain the relations

$$
\begin{equation*}
\frac{\partial J_{0}}{\partial \theta}=0 \quad \frac{\partial J_{0}}{\partial A}=A \sqrt{W(x)} . \tag{6.72}
\end{equation*}
$$

Up to possible Casimirs, we obtain the expected zero order action:

$$
\begin{equation*}
J_{0}=\frac{1}{2} A^{2} \sqrt{W(x)} \tag{6.73}
\end{equation*}
$$

The first-order vector field generated by 3 han the precrs. Thie first in

$$
\begin{align*}
\left\{\cdot J_{0}\right\}_{1} & =\{\cdot A\} A \sqrt{H(x)}+\{\cdot x\} \cdot \frac{A^{2}}{4 \sqrt{H}(x)}-\frac{\partial U(x)}{\partial r} \\
& =\frac{A}{2 W^{\prime}(x)} \sin ^{2} \theta \frac{\partial W}{\partial x} A \sqrt{W(x)} \frac{\partial}{\partial v_{x}}-\frac{A^{2}}{4 \sqrt{W(x)}} \frac{\partial H}{\partial x} \frac{\partial}{\partial v_{x}} \\
& =-\frac{A^{2}}{4 \sqrt{W(x)}} \frac{\partial W}{\partial x}\left(\sin ^{2} \theta-\cos ^{2} \theta\right) \frac{\partial}{\partial v_{x}} \tag{6.74}\\
& =-\frac{A^{2}}{4 \sqrt{W(x)}} \frac{\partial U}{\partial x} \cos 2 \theta \frac{\partial}{\partial v_{x}} .
\end{align*}
$$

The second term is $\left\{\cdot, J_{1}\right\}_{0}$ and has the same form as in the zero order calculation.
Together the two terms give

$$
\begin{align*}
\left\{, J_{i}\right\}_{0}+\left\{\cdot, J_{0}\right\}_{1} & =-\frac{\partial J_{1}}{\partial \theta} \frac{1}{A \sqrt{W(x)}} \frac{\partial}{\partial A}+\frac{\partial J_{1}}{\partial A} \frac{1}{A \sqrt{W(x)}} \frac{\partial}{\partial \theta} \\
& -\frac{A^{2}}{4 \sqrt{W(x)}} \frac{\partial W}{\partial x} \cos 2 \theta \frac{\partial}{\partial v_{x}} \tag{6.75}
\end{align*}
$$

We must choose J, so that this vector feld agrees with R. Comparing the $\partial / \partial u_{x}$ terms. we see that they already agree (this just says that the undetermined Casimirs in the zero order step were act:arlly zero). For the θ and A terms to agree we must have:

$$
\begin{equation*}
-\frac{\partial J_{1}}{\partial \theta} \frac{1}{A \sqrt{W(I)}}=\frac{1}{4 W(x)^{3 / 2}} \frac{v_{I} A}{\partial I} \cos 2 \theta \tag{6.76}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial J_{1}}{\partial A} \frac{1}{A \sqrt{1 W(x)}}=-\frac{\nu_{x}}{A H(x)^{3 / 2}} \frac{\partial W^{\prime}}{\partial x} \sin 2 \theta \tag{6.77}
\end{equation*}
$$

These are satisfied by

$$
\begin{equation*}
J_{1}=-\frac{v_{x} A^{2}}{8 W[(x)} \frac{\partial W}{\partial x} \sin 2 \theta \tag{6.78}
\end{equation*}
$$

We have thus shown that the f:nction

$$
\begin{equation*}
J_{0}+c J_{4}=\frac{1}{2} A^{2} \sqrt{H^{2}(\tau)}-\prec \frac{r_{x} A^{2}}{8 A^{2}(r)} \frac{\partial H^{*}}{\partial r} \sin 2 \theta \tag{679}
\end{equation*}
$$

varier only by order e^{2} aver times of order $1 / t$

6.2. Some Comments on Perturbation Calculations

Let us use the opportunity of this example to make explicit some very important points about physical perturbation theory which are implicitly contained in the rest of the thesis. Since the time of Galileo, the scientific method has thrived on theorists making all assumptions explicit and basing the acceptance or rejection of a theory on the testable validity of the assumptions and conclusions of a theory. For science to advance, it is important to be precise about the distinction hetween physical assumptions and rigorous mathematical deduction. In the asymptotic physical throries discussed in this thesis there are two distinct phases of analysis. The first is the "putting the $\boldsymbol{c}^{\prime} \mathrm{s}$ in". This process requires physical intuition as to which aspects of a problem are physically important and should be emphasized in the scaling with c. One must make the assumed scaling precise at the begizning of the problem if one is to have bope for a self-consistent theory. Too often workers eliminate terms haphazarjly as a calculation is progressing and the resulting theory does not have its assumptions made explicit. Without this one cannot build anything else on top of the theory and tire result is the fragmentation of a Eeld.

Once the f 's bave been inserted, the rest of a derivation should be rigorous mathematics. One must state precisely what problem is to be solved and in particular uhat time scale of validity is desired and obtained. Let us try to clearly state some facts about coordinates. When we are giv:: a problem in erms of physical variabies including ℓ, each physical state is associated with a well-defined point in the state space manifold with these coordinates. The dynamics is a precisely defined vectur field on this manifold. When we start with a definite physical state. its time
evolution goes through other definite physical states, regardless of any coordinate system. By changing coordinates, oue canoot change the evolution of the system. We have seen in chapter 2 that perturbation theory is independent of coordinates as well. This means that if we change our coordinate system, do nonsingular perturbation theory in the new coordinates and change back to the original system. we always get the same result as working with the original conrdinates all along. If the asymptotic expansion of a solution is secular in time (i.e. the coefficients in the expansion hlow up as $\ell \rightarrow \infty$, usually on a time scale of order $1 / \epsilon$), then this is a physical fact which cannot be changed by going to another coordinate system. (One can introduce fake coodinates which shrink with time making the system apparently non-secular, but rewriting this solution in the original coordinates shows that it really is secular. If the orbits are bounded, then Oseledec's theorem (see section 10.3) shows that one car atot do even this.)

If one is happ.' with time scales of order 1 then one may use simple non-secular perturbation theory (as discussed in chapter 2_{j}^{\prime} in any coordinate system one desires (in particular there is no advantage or need to do anything fancy like Lie transforms or Kruskal's method). If one wishes to do secular perturbation theory, then again there is a physical operation involved which is independent of coordinates. One must eliminate the variable that gives rise to the secularity, say by using the method of averaging or by reduction by an approximate symmetry. This is a physical operation which changes the identification of physical states with points in state space. One must lose the information that causes the secularity. Merely changing coordinates does not lose any information and cannot eliminate secularity by itself. (Changing
coordinates can make the physical operation of reduction on averaging much easier to carry out in pra-tice, but one must not lose sight of the fart that it is mere convenience and has no fundamental signifigance.)

We have seen only two methods for eliminating secularity expressed independently of the coordinate system: the method of averaging and Kruskal's method. Both of these rest in an absolutely essential way on the unperturbed system being made up of purely closed orbits. If we wish to use these methods, we must scale our system to be perindic at $\epsilon=0$. Sometimes one sees the argument made that while the unperturbed system isn't periodic, we are only interested in the case where orbits almost come back to their starting point, validating averaging. If this is the case, it should be put into the scaling with e! The whole point of the scaling is to make explicit what variation is small compared to what other variation; in a self-consistent theory all such assumptions are put in at the beginning.

One other point in connection with these polemics is that one must be careful not to expend great effort producing a long time theory for a system of equations which are themselves only an approximation for a short time. One place where this issue must be clarified is in plasma physics. One often begins with the Vlasov equation, assumes wave amplitudes are small, and then works with the linearized Vlasov equation. This is just the first order of non-secular perturbation theory, where the disturbance amplitude is scaled with ϵ, and so is valid only for bounded times as $\mathrm{c} \rightarrow 0$ as we have seen. One then often proceeds with an analysis of the linearized system using secular perturbation theory (say in analysing ponderomotive effects) which purportedly will give asymptotic answers uniformly on long time
srabs: If the long time seale in longer than the bounded time seale for which the linear theory is correct, then as far as the actual physical behavior is concerned the result i- not correct. This is qot to say that such studies are wrong, ony that there is a further assumption behind them (that the scaling of the process studied using secular theory is such that the secular time scals is bounded as far as the original finearization is concerned) which must be made explicit. Higher order non-secular theory gives the two-wave, three-wave, etc. interaction equations. Again these are often studied using fancy secular techniques. Again the scaling which makes this a worthwhile endeavor must be made explicit. This will also give restrictions on the domain of validity of the thecry.

6.3. 2D Gyromotion via the New Kruskal-like Method

In this section we will apply the perturbation technique developed in chapter 5 to the problem of two-dimensional gyromotion. We will carry out all calculations in explicit detail, so as to provide a model for other calculations done with this method. This work was done in collaboration with Richard Montgomery. The problem we wish to consider is the motion of a charged particle in the (x, y) plane, in the presence of a purely perpendicular magnetic field:

$$
\begin{equation*}
B(z, y)^{i} . \tag{6.80}
\end{equation*}
$$

The Lorentz force law:

$$
\begin{equation*}
m \frac{d v}{d t}=q(v \times B) \tag{6.81}
\end{equation*}
$$

implies that when we set $\underline{g}=m=c=1$, the exact non-relativistic equations of motion arise from the dynamical vector field:

$$
\begin{equation*}
X=v_{x} \frac{\partial}{\partial x}+v_{y} \frac{\partial}{\partial y}+B v_{y} \frac{\partial}{\partial v_{x}}-B v_{x} \frac{\partial}{\partial v_{y}} . \tag{6.82}
\end{equation*}
$$

To do a perturbation analysis, we must introduce the scaling factor ϵ. There are a variety of ways of doing this, but we choose a so that the unperturbed orbits have their velocity vectors rotating at the gyro-frequency and the particle position remains stationary. This scaling is equivalent to making the charge to mass ratio infinite (though we rescale time so that the unperturbed system has well defined dynamics). This scaling is the standard one used in plasma physics. More discussion mas be found in [Northrop, 1963] and in the papers [Littlejohn, 1979: and [Litlejohn. 1981! whicb are also good references for the rest of this section.

This dynamical vector beld has only an unperturbed part. X_{0}. and a first-order perturbation, \boldsymbol{X}_{1}

$$
\begin{equation*}
X=X_{0}+c X_{1}=B\left(v_{v} \frac{\partial}{\partial v_{x}}-v_{x} \frac{\partial}{\partial v_{y}}\right)+\epsilon\left(v_{x} \frac{\partial}{\partial x}+v_{y} \frac{\partial}{\partial y}\right) \tag{6.83}
\end{equation*}
$$

If B doesn't vanish, the unperturbed system X_{0} has all of its orbits periodic. In this case, we are in the appropriate situation for the application of the method of chapter 5. The goal of the perturbation analysis is to find the (roto-rate) symmetry vector field R, order by order in ϵ :

$$
R=R_{0}+\epsilon R_{1}+\frac{\epsilon^{2}}{2} R_{2}+\ldots
$$

The technique used here requires no special knowledge and makes no arbitrary choices. It is therefore suitable for a computer implementation which could work symbolically order by order to as high an accuracy as desired.

Recall that the condition for \boldsymbol{R} to be a symmetry of \boldsymbol{X} is that their Lic bracket vanish:

$$
\begin{equation*}
[R, X]=0 \tag{6.84}
\end{equation*}
$$

We write this equation order by order. This example has only two terms in X. and
(4) each equation contains two brackets:

$$
\begin{aligned}
& \left\{R_{0}, X_{0}\right\}=0 \\
& {\left[R_{1}, X_{0}\right\}=-\left[R_{0}, X_{1}\right\}} \\
& \left\{R_{2}, X_{0}\right\}=-2\left[R_{1}, X_{1}\right] \\
& \left\{R_{3}, X_{0}\right\}=-3\left\{R_{2}, X_{1}\right] \\
& \vdots \\
& \left\{R_{3}, X_{0}\right\}=-j\left\{R_{3-1}, X_{1}\right\} \\
& \vdots
\end{aligned}
$$

We saw in chapter 5 that it is convenient to introduce the coordinate θ describit. the phase on the unperturbed orbits. This makes it simpler to do the integrals, but is in no way required for any fundamental reason. We introduce polar coordinates in the (v_{x}, v_{y}) plane at each point:

$$
\begin{equation*}
\theta \equiv \tan ^{-1}\left(\frac{-v_{x}}{v_{y}}\right) \quad v \equiv \sqrt{v_{x}^{2}+v_{y}^{2}} . \tag{6.86}
\end{equation*}
$$

The inverse relations are

$$
\begin{equation*}
v_{x}=v \cos \theta \quad v_{v}=-v \sin \theta . \tag{6.87}
\end{equation*}
$$

Expressed ir these coordinates, the unperturbed dynamical vector field is

$$
\begin{equation*}
X_{0}=B \frac{\partial}{\partial \theta} . \tag{6.88}
\end{equation*}
$$

The first order perturbation of the dynamies is

$$
X_{1}=v \cos \theta \frac{\partial}{\partial x}-v^{\prime} \sin \theta \frac{\partial}{\partial y} .
$$

T:e frequeacy of the unperturbed orbits is D. As discused it chapter s. the zero orde- symmetry R_{0} is parallel to these orbits, but normalized so that all orthrhave period 2m:

$$
\begin{equation*}
R_{0} \equiv \frac{\partial}{\partial \bar{\theta}}=\frac{1}{B} \cdot \boldsymbol{\lambda}_{0} . \tag{6.89}
\end{equation*}
$$

The four components of the Lie bracket of R_{1} with λ_{0} are given by

$$
\begin{align*}
& {\left[R_{3}, \left.X_{0}^{\prime I}=-B \frac{\partial R_{j}^{x}}{\partial \theta}=-j \right\rvert\, R_{j-i}, X_{1}\right]^{x}} \\
& \left.\left.\left[R_{,}, X_{0}\right]^{y}=-B \frac{\partial R_{j}^{y}}{\partial \theta}=-j \right\rvert\, R_{j-1}, X_{1}\right]^{y} \\
& \left.\left.\left[R_{3}, X_{0}\right]^{v}=-B \frac{\partial R_{j}^{e}}{\partial \theta}=-j \right\rvert\, R_{3-1}, X_{1}\right]^{v} \tag{6.90}\\
& {\left[R_{3},\left.X_{0}\right|^{\theta}=-B \frac{\partial R_{j}^{\theta}}{\partial \theta}+\frac{\partial B}{\partial x} R_{j}^{x}+\frac{\partial B}{\partial y} R_{j}^{y}=-j\left(R_{,-1, X_{1}}\right\}^{\theta} .\right.}
\end{align*}
$$

These are the expressions that we use to explicitly perform the integral to determine each component of R,:

$$
\begin{align*}
R_{j}^{z} & =\frac{j}{B} \int_{0}^{\theta}\left[R_{y-1}, X_{1}\right]^{x} d \tilde{\theta}+f_{j}^{x}(x, y, v) \\
R_{j}^{y} & =\frac{j}{B} \int_{0}^{\theta}\left[R_{j-1},\left.X_{1}\right|^{y} d \tilde{\theta}+f_{j}^{y}(x, y, v)\right. \\
R_{j}^{u} & =\frac{j}{B} \int_{0}^{\theta}\left[R_{j-1}, X_{1}\right]^{y} d \dot{\theta}+f_{j}^{v}(x, y \cdot v) \tag{6.91}\\
R_{j}^{\theta} & =\frac{1}{B} \int_{0}^{\theta}\left(j\left[R_{j-1}, X_{1}\right]^{\theta}+\frac{\partial B}{\partial z} R_{j}^{x}\right. \\
& \left.+\frac{\partial B}{\partial y} R_{j}^{\nu}\right) d \tilde{\theta}+J_{j}^{\theta}\left(x, y, v^{v}\right) .
\end{align*}
$$

The right hand sides of the Lie bracket equations are all of the form

$$
\begin{equation*}
\left[R_{,-1}, X_{1}\right]=\left[R_{y-1},+\cos \theta \frac{\partial}{\partial r}-1 \cdot \sin \theta \frac{\partial}{\partial y} .\right. \tag{6.92}
\end{equation*}
$$

Let us work out the four componenis of this in general. fo at to make later work a
matter of simple substitution:

$$
\begin{align*}
& R_{j} \quad \mu_{1} \cdot{ }^{r}=R_{j}^{\prime}, \quad \cos \theta-R_{,-1}^{\theta} \cdot \sin \theta-v \cos \theta \frac{d}{\partial x}\left(R_{j, 1}^{x}\right)+1 \cdot \sin \theta \frac{\partial}{\partial y}\left(R_{y-1}^{x}\right) \\
& { }_{i}^{j} R_{j-1} X_{1}^{y}=-R_{j-1}^{v} \sin \theta-R_{j-1}^{0}+\cos \theta-1 \cos \theta \frac{\partial}{\partial x}\left(R_{j+1}^{y}\right)+v \sin \theta \frac{\partial}{\partial y}\left(R_{j-1}^{y}\right) \\
& R_{j-1} \cdot x_{1}{ }^{\prime} \cdot=-r \cos \theta \frac{\partial}{\partial x}\left(R_{j-1}^{\prime}\right)+r \sin \theta \frac{\partial}{\partial y}\left(R_{j-1}^{v}\right) \\
& \left|\boldsymbol{R}_{3-1} \cdot \boldsymbol{X}_{1}\right|^{\theta}=-\boldsymbol{v} \cdot \cos \theta \frac{\dot{\partial}}{\partial x}\left(R_{j-1}^{\theta}\right)+\mathbf{v} \sin _{-1} \theta \frac{\partial}{\partial y}\left(R_{y-1}^{\theta}\right) . \tag{6.93}
\end{align*}
$$

6.3.1. The Four Componente of R_{1}

From the general theory, we know that R_{0} is given by

$$
\begin{equation*}
R_{0}=\frac{\partial}{\partial \theta} \tag{6.94}
\end{equation*}
$$

Let us now t :oceed to find the four components of R_{2}. The constants of integration: $\int_{1}^{T}, f_{1}^{\nu}: f_{1}^{t}, f_{1}^{\theta}$. will be determined by the condition that the orbits of R close to first order. We saw in chapter 5 that this implied that

$$
\begin{equation*}
\int_{0}^{2 \pi} R_{1} d \theta=0 \tag{6,95}
\end{equation*}
$$

We will apply this condicion to each component of R_{1} after evaluating it. The components of the Lie bracket $\left|R_{0}, X_{1}\right|$ are

$$
\begin{align*}
& {\left[R_{0}, X_{1}\right]^{x}=-v \sin \theta} \\
& \left\{R_{0}, X_{1}\right]^{y}=-v \cdot \cos \theta \tag{6.96}\\
& \left\{R_{0}, X_{1}\right]^{v}=0 \\
& {\left[R_{0}, X_{1}\right]^{\theta}=0}
\end{align*}
$$

Substituting theer into the general expression give:

$$
\begin{align*}
R_{1}^{r} & =\frac{-1}{B} \int_{0}^{\theta} r \sin \dot{\theta} d \dot{\theta}-f_{1}^{x}(x, y, r) \tag{6.97}\\
& =\frac{1}{B} v \cos \theta+\dot{j}_{1}^{x}(x, y, v)
\end{align*}
$$

Since $\cos \theta$ has zero average over the interval $|0,2 \pi|$. the integral condition

$$
\begin{equation*}
\int_{0}^{2 \pi} R_{1}^{x} d \theta=0 \tag{6.98}
\end{equation*}
$$

implies that the constant of integration is

$$
\begin{equation*}
\bar{f}_{1}^{x}=0 . \tag{6.99}
\end{equation*}
$$

The x component of R_{1} is therefore

$$
\begin{equation*}
R_{1}^{x}=\frac{1}{B} v \cos \theta \tag{6.100}
\end{equation*}
$$

Similarly,

$$
\begin{align*}
R_{1}^{y} & =-\frac{1}{B} \int_{0}^{\theta} v \cos \hat{\theta} d \hat{\theta}+\int_{1}^{y}(x, y, v) \tag{6.101}\\
& =-\frac{1}{B} v \sin \theta+\int_{1}^{y}(x, y, v) .
\end{align*}
$$

The integral condition

$$
\begin{equation*}
\int_{0}^{2 \pi} R_{i}^{y} d \theta=0 \tag{6.102}
\end{equation*}
$$

implies that the constant of integration is

$$
\begin{equation*}
f_{1}^{y}=0 . \tag{6.103}
\end{equation*}
$$

The y component of R_{1} is therefore

$$
\begin{equation*}
R_{1}^{y}=-\frac{1}{B} \cdot \cdot \sin 0 . \tag{6.104}
\end{equation*}
$$

Similarly

$$
\begin{align*}
R_{i}^{*} & =\frac{1}{B} \int_{0}^{e} 0 d \bar{\theta}+f_{1}^{r}\left(x, y, z^{\prime}\right) \tag{6.105}\\
& =\int_{1}^{v}(x, y, z) .
\end{align*}
$$

The integral condition

$$
\begin{equation*}
\int_{0}^{2 \pi} R_{1}^{v} d \theta=0 \tag{6.106}
\end{equation*}
$$

implies .nat the constant of integration is

$$
\begin{equation*}
\int_{1}^{v}(x, y, v)=0 \tag{6.107}
\end{equation*}
$$

The v component of R_{I} is therefore

$$
\begin{equation*}
\boldsymbol{R}_{1}^{v}=\mathbf{0} \tag{6.108}
\end{equation*}
$$

The R_{i}^{θ} equation uses these results:

$$
\begin{align*}
R_{1}^{\theta} & =\frac{1}{B} \int_{0}^{\theta}\left(0+B_{x} R_{1}^{x}+B_{y} R_{1}^{\mathbf{y}}\right) d \tilde{\theta}+\int_{1}^{\theta}(x, y, v) \\
& =\frac{1}{B} \int_{0}^{\theta}\left(\frac{B_{x}}{B} v \cos \tilde{\theta}-\frac{B_{y}}{B} v \sin \tilde{\theta}\right) d \hat{\theta}+\int_{1}^{\theta}(x, y, v) \tag{6.109}\\
& =\frac{1}{B}\left(\frac{B_{x}}{B} v \sin \theta+\frac{B_{y}}{B} v \cos \theta\right)+f_{1}^{\theta}(x, y, v)
\end{align*}
$$

The integral condition

$$
\begin{equation*}
\int_{0}^{2 \pi} R_{1}^{\theta} d \theta=0 \tag{6.110}
\end{equation*}
$$

implies that the constant of integration is

$$
\begin{equation*}
\tilde{f}_{1}^{\theta}(x, y, v)=0 \tag{6.111}
\end{equation*}
$$

The θ component of R_{1} is therefore

$$
\begin{equation*}
R_{1}^{\theta}=\frac{B_{x}}{B^{2}} v \sin \theta+\frac{B_{y}}{B^{2}} v \cos \theta \tag{6.112}
\end{equation*}
$$

These expressions may be simpliäed by introduring a variable representing the recoprocal of the magnetir field:

$$
C \equiv \frac{1}{B} .
$$

We see that

$$
\begin{equation*}
C_{x}=-\frac{B_{x}}{B^{2}} \quad \text { and } \quad C_{v}=-\frac{B_{y}}{B^{2}} . \tag{6.113}
\end{equation*}
$$

We may then write the entire expression for R_{1} as

$$
\begin{equation*}
R_{1}=C v \cos \theta \frac{\partial}{\partial x}-C v \sin \theta \frac{\partial}{\partial y}+\left(-C_{x} v \sin \theta-C_{y} v \cos \theta\right) \frac{\partial}{\partial \theta} . \tag{6.114}
\end{equation*}
$$

6.3.2. The Four Components of R_{2}

We will now proceed to obtain R_{2}. The algebraic manipulations are more tedious than those for R_{1}, but conceptually the calculation proceeds identically.

We begin by calculating the four components of $\left\{\boldsymbol{R}_{1}, X_{2}\right\}$. In these expressions it is convenient to use the double angle trigonometric relations (purely for case of notation):

$$
\begin{equation*}
\sin ^{2} \theta-\cos ^{2} \theta=-\cos 2 \theta \tag{6.115}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin \theta \cos \theta=\frac{1}{2} \sin 2 \theta \tag{6.116}
\end{equation*}
$$

The x component is

$$
\begin{align*}
{\left[R_{1} \cdot X_{1}\right]^{x} } & =-\left(-C_{x} v \sin \theta-C_{y} r \cos \theta\right) u \sin \theta-r^{r} \cos \theta C_{r^{r}} \cos \theta+r \sin \theta C_{y} r \cos \theta \\
& =r^{2} C_{x}\left(\sin ^{2} \theta-\cos ^{2} \theta\right)+2 r^{2} C_{y} \sin \theta \cos \theta \\
& =-r^{2} C_{z} \cos 2 \theta+r^{2} C_{y} \sin 2 \theta \tag{6.117}
\end{align*}
$$

The y component is

$$
\begin{align*}
& =2 C_{\mathrm{r}} \mathrm{r}^{2} \sin \theta \cos \theta+C_{\mathrm{y}} \mathrm{r}^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \\
& =C_{r} \mathrm{r}^{2} \sin 2 \theta+C_{y} \mathrm{v}^{2} \cos 2 \theta . \tag{6.118}
\end{align*}
$$

The v component is

$$
\begin{equation*}
\left\{R_{1},\left.X_{1}\right|^{\nu}=0\right. \tag{6.119}
\end{equation*}
$$

The θ component is

$$
\begin{align*}
{\left[R_{1}, X_{1}\right]^{\theta} } & =-v \cos \theta\left(-C_{x x} v \sin \theta-C_{y x} v \cos \theta\right)+v \sin \theta\left(-C_{z y} v \sin \theta-C_{y v} v \cos \theta\right) \\
& =\frac{v^{2}}{2} C_{x x} \sin 2 \theta+v^{2} C_{x y} \cos 2 \theta-\frac{v^{2}}{2} C_{v y} \sin 2 \theta . \tag{6.120}
\end{align*}
$$

As we saw in chapter 5 , the condition that the integral curves of R close to second order is

$$
\begin{equation*}
\int_{0}^{2 \pi} R_{2} d \theta=-\int_{0}^{2 \pi} \frac{\partial R_{1}}{\partial y \omega} \cdot\left(\int_{0}^{0} R_{1} d \tilde{\theta}\right) d \theta \tag{6.121}
\end{equation*}
$$

This will eventually determine the constants of integration. To prepare for that we will evaluate the right hand side using the value of \boldsymbol{R}_{1} obtained above. First find the components of the

$$
\int_{0}^{\theta} R_{1} d \vec{\theta}
$$

integral:

$$
\begin{align*}
\int_{0}^{\theta} R_{1}^{x} d \bar{\theta}= & \int_{0}^{\theta} C v \cos \tilde{\theta} d \tilde{\theta}=C v \sin \tilde{\theta} \tag{6.122}\\
\int_{0}^{\theta} R_{1}^{\mathrm{V}} d \bar{\theta}= & \int_{0}^{\theta} C v \sin \tilde{\theta} d \tilde{\theta}=C v \cos \tilde{\theta} \tag{6.123}\\
& \int_{0}^{\theta} R_{1}^{\mathrm{E}} \mathrm{~d} \tilde{\theta}=0 \tag{6.124}
\end{align*}
$$

$$
\begin{align*}
\int_{0}^{E} R_{1}^{\theta} d \dot{\theta} & =\int_{0}^{\theta}\left(-C_{r} \cdot \sin \dot{\theta}-C_{y^{v}} \cdot \operatorname{os} \bar{\theta}\right) d \bar{\theta} \tag{6125}\\
& =C_{x} \cdot \cos \bar{\theta}-C_{v^{2}} \cdot \sin \dot{\theta}
\end{align*}
$$

Wie now substitute in these results to obtain the general expression:

$$
\begin{align*}
\int_{0}^{2 \pi} R_{2}^{5, y \cdot v \cdot \theta} d \theta=-\int_{0}^{2 \pi} & \frac{\partial R_{1}^{x \cdot y \cdot v, \theta}}{\partial x} C v \sin \theta+\frac{\partial R_{1}^{x, y, v} \cdot \theta}{\partial y} C v \cos \theta \tag{6.126}\\
& \left.+\frac{\partial R_{1}^{x, y, v, \theta}}{\partial \theta}\left(C_{z} v \cos \theta-C_{y} v \sin \theta\right)\right) d \theta
\end{align*}
$$

We now explicitly calculate the sour components of this expression.
The x component yields

$$
\begin{align*}
\int_{0}^{2 \pi} R_{2}^{x} d \theta= & -\int_{0}^{2 \pi}\left(C_{x} v \cos \theta C v \sin \theta+C_{y} v \cos \theta C v \cos \theta\right. \\
& \left.-C v \sin \theta\left(C_{x} v^{\prime} \cos \theta-C_{y^{2}} \sin \theta\right)\right) d \theta \\
= & -\int_{0}^{2 \pi}\left(C C_{\nu} r^{2} \cos ^{2} \theta+C C_{y} v^{2} \sin ^{2} \theta\right) d \theta \tag{6.127}\\
= & -2 \pi C C_{y} v^{2}
\end{align*}
$$

The y component yields

$$
\begin{align*}
\int_{0}^{2 \pi} R_{2}^{y} d \theta= & -\int_{0}^{2 \pi}\left(-C_{x} v \sin \theta C v \sin \theta-C_{v^{v}} \sin \theta C v \cos \theta\right. \\
& \left.-C v \cos \theta\left(C_{x} v \cos \theta-C_{y^{2}} v \sin \theta\right)\right) d \theta \\
= & \int_{0}^{2 \pi} C C_{x} v^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right) d \theta \tag{6.128}\\
= & 2 \pi C C_{x} v^{2}
\end{align*}
$$

The v component yields

$$
\begin{equation*}
\int_{0}^{2 \pi} R_{2}^{v} d \theta=0 \tag{6.129}
\end{equation*}
$$

The θ component yields

$$
\begin{align*}
\int_{0}^{2 \pi} R_{2}^{\theta} d \theta=- & \int_{0}^{2 r}\left[1-C_{x x} \cdot \sin \theta-C_{y x} v \cos \theta\right)(C v \sin \theta+ \\
& \left(-C_{x y} v \sin \theta-C_{y y} v \cos \theta\right) C u \cos \theta \\
& \left.+\left(-C_{x} v \cos \theta+C_{y} v \sin \theta\right)\left(C_{x} v \cos \theta-C_{y} v \sin \theta\right)\right] d \theta \tag{6.130}\\
= & -\int_{0}^{2 \pi}\left[-C C_{x x} v^{2} \operatorname{siv}^{2} \theta-C C_{y y} v^{2} \cos ^{2} \theta\right. \\
& \left.-C_{x} C_{x} v^{2} \cos ^{2} \theta-C_{v} C_{y} v^{2} \sin ^{2} \theta\right] d \theta \\
= & \pi v^{2}\left(C C_{x x}+C C_{v u}+C_{z}^{2}+C_{y}^{2}\right)
\end{align*}
$$

We may finally solve for the four components of R_{2}. The \boldsymbol{x} component is

$$
\begin{align*}
R_{2}^{x} & =\frac{2}{B} \int_{0}^{\theta}\left[R_{1}, X_{1}\right]^{x} d \tilde{\theta}+f_{2}^{x}(x, y, v) \\
& =\frac{2}{B} \int_{0}^{\theta}\left(-v^{2} C_{x} \cos 2 \bar{\theta}+v^{2} C_{y} \sin 2 \tilde{\theta}\right) d \tilde{\Gamma}+f_{2}^{x}(x, y, v) \tag{6.131}\\
& =-v^{2} C C_{x} \sin 2 \theta-v^{2} C C_{\nu} \cos 2 \theta+j_{2}^{x}
\end{align*}
$$

We next determine the constant of integ 'ion f_{2}^{x}. We have seen that

$$
\begin{align*}
-2 \pi C C_{\psi} v^{2} & =\int_{0}^{2 \pi} R_{2}^{x} d \theta \\
& =\int_{0}^{2 \pi} \tilde{f}_{2}^{x} d \theta \tag{6.132}\\
& =2 \pi \tilde{f}_{2}^{x}
\end{align*}
$$

Thus

$$
\begin{equation*}
\bar{f}_{z}^{x}=-C C_{\mathrm{y}} \mathrm{v}^{2} \tag{6.133}
\end{equation*}
$$

Finally we obtain

$$
\begin{equation*}
R_{2}^{\mathrm{x}}=-v^{2} C C_{x} \sin 2 \theta-v^{2} C C_{y} \cos 2 \theta-C C_{y} v^{2} \tag{6.134}
\end{equation*}
$$

The y component of R_{2} is

$$
\begin{align*}
R_{2}^{y} & =\frac{2}{B} \int_{0}^{\theta}\left\{R_{1}, x_{1}\right]^{y} d \vec{\theta}+f_{2}^{y}(x, y, v) \\
& =\frac{2}{B} \int_{0}^{\theta}\left(C_{x} v^{\prime 2} \sin 2 \theta+C_{y} t^{2} \cos 2 \theta\right) d \hat{\theta}+f_{2}^{y}(x, y, v) \tag{6.135}\\
& =-v^{2} C C_{x} \cos 2 \theta+v^{2} C C_{y} \sin 2 \theta+\int_{2}^{y}(x, y, v)
\end{align*}
$$

The constant of integration comes from

$$
\begin{align*}
2 \pi C C_{x} v^{2} & =\int_{0}^{2 \pi} R_{2}^{y} d \theta \\
& =\int_{0}^{2 \pi} \int_{2}^{y} d \theta \tag{6.136}\\
& =2 \pi \int_{2}^{u}
\end{align*}
$$

Thus

$$
\begin{equation*}
f_{2}^{v}=C C_{x} v^{2} \tag{6.137}
\end{equation*}
$$

Finally we obtain

$$
\begin{equation*}
R_{2}^{y}=-v^{2} C C_{x} \cos 2 \theta+v^{2} C C_{v} \sin 2 \theta+C C_{x} v^{2} \tag{6.138}
\end{equation*}
$$

The v component of \boldsymbol{R}_{2} is

$$
\begin{align*}
R_{2}^{v} & =\frac{2}{B} \int_{0}^{\theta}\left[R_{1}, X_{1}\right]^{\bullet} d \tilde{\theta}+f_{2}^{v} \tag{6139}\\
& =f_{2}^{v}
\end{align*}
$$

The constant of integration comes from

$$
\begin{equation*}
\int_{0}^{2 x} R_{2}^{v} d \theta=0 \tag{6140}
\end{equation*}
$$

Thus

$$
f_{2}^{v}=0 .
$$

Finall; we obtain

$$
\begin{equation*}
R_{2}^{v}=0 \tag{6.1+1}
\end{equation*}
$$

The 0 compement of R_{2} requires the above results and is given by

$$
\begin{align*}
R_{2}^{\theta}= & \frac{1}{B} \int_{0}^{\theta}\left(2\left[R_{1}, X_{1}\right\}^{\theta}+B_{x} R_{2}^{x}+B_{v} R_{2}^{y}\right) d \tilde{\theta}+f_{2}^{\theta}(x, y, v) \\
= & \frac{1}{B} \int_{0}^{\theta}\left(v^{2} C_{x x} \sin 2 \theta+2 v^{2} C_{x y} \cos 2 \theta-v^{2} C_{y y} \sin 2 \theta\right. \\
& +B_{x}\left(-v^{2} C C_{x} \sin 2 \theta-v^{2} C C_{v} \cos 2 \theta-C C_{y} v^{2}\right) \\
& \left.+B_{v}\left(-v^{2} C C_{x} \cos 2 \theta+v^{2} C C_{v} \sin 2 \theta+C C_{x} v^{2}\right)\right) d \tilde{\theta}+f_{2}^{\theta} \\
= & \frac{1}{B}\left(-\frac{1}{2} v^{2} C_{x x} \cos 2 \theta+v^{2} C_{x y} \sin 2 \theta+\frac{1}{2} v^{2} C_{v y} \cos 2 \theta\right. \\
& +\frac{1}{2} v^{2} B_{x} C C_{x} \cos 2 \theta-\frac{1}{2} v^{2} B_{x} C C_{y} \sin 2 \theta-B_{x} C C_{v} v^{2} \theta \\
& \left.-\frac{1}{2} v^{2} B_{v} C C_{x} \sin 2 \theta-\frac{1}{2} v^{2} B_{y} C C_{y} \cos 2 \theta+B_{y} C C_{x} v^{2} \theta\right)+\tilde{f}_{2}^{\theta}(x, y, v) \\
=- & \frac{1}{2} v^{2} C C_{x x} \cos 2 \theta+v^{2} C C_{x y} \sin 2 \theta+\frac{1}{2} v^{2} C C_{v y} \cos 2 \theta \\
& -\frac{1}{2} v^{2} C_{x}^{2} \cos 2 \theta+\frac{1}{2} v^{2} C_{x} C_{v} \sin 2 \theta+C_{x} C_{v} v^{2} \theta \\
& +\frac{1}{2} v^{2} C_{y} C_{x} \sin 2 \theta+\frac{1}{2} v^{2} C_{\nu}^{2} \cos 2 \theta-C_{y} C_{x} v^{2} \theta+\tilde{f}_{2}^{\theta}(x, y, v) \\
=- & \frac{v^{2}}{2}\left[\left(C C_{x x}-C C_{v y}+C_{x}^{2}-C_{v}^{2}\right) \cos 2 \theta-\left(2 C C_{x y}+2 C_{x} C_{y}\right) \sin 2 \theta\right]+\tilde{f}_{2}^{\theta} . \tag{6.142}
\end{align*}
$$

To determine the constant of integration, we use

$$
\begin{align*}
\pi v^{2}\left(C C_{x z}+C C_{y v}+C_{x}^{2}+C_{y}^{2}\right) & =\int_{0}^{2 \pi} \tilde{R}_{2}^{\theta} d \theta \tag{6.143}\\
& =2 \pi f_{2}^{\theta}
\end{align*}
$$

Thus

$$
\rho_{z}^{\theta}=\frac{v^{2}}{2}\left(C C_{x z}+C C_{y y}+C_{x}^{2}+C_{v}^{2}\right) .
$$

Finally we obtain

$$
\begin{align*}
R_{2}^{6}=-\frac{r^{2}}{2} & \left(C C_{z x}-C C_{y y}-C_{x}^{2}-C_{y}^{2}\right) \cos -\theta+r^{2}\left(C C_{r y}+C_{z} C_{y}\right) \sin 2 \theta \tag{6.144}\\
& +\frac{r^{2}}{2}\left(C C_{z x}+C C_{y y}+C_{x}^{2}+C_{y}^{2}\right) .
\end{align*}
$$

6.3.3. Summary of the Calculation

We have thus succeeded in fiading the roto-rate vector feld up to second order:

$$
\begin{align*}
& R \sim R_{0}-\epsilon R_{1}+\frac{\epsilon^{2}}{2} R_{2} \\
&=\frac{\partial}{\partial \theta}+ \\
& \epsilon C v \cos \theta \frac{\partial}{\partial x} \\
&-\epsilon C v \sin \theta \frac{\partial}{\partial y} \\
&+\epsilon\left(-C_{x} v \sin \theta-C_{y} v \cos \theta\right) \frac{\partial}{\partial \theta} \tag{6.145}\\
& \frac{\epsilon^{2}}{2}\left(-v^{2} C C_{x} \sin 2 \theta-v^{2} C C_{y} \cos 2 \theta-C C_{y} v^{2}\right) \frac{\partial}{\partial x} \\
& \frac{\epsilon^{2}}{2}\left(-v^{2} C C_{x} \cos 2 \theta+v^{2} C C_{v} \sin 2 \theta+C C_{x} v^{2}\right) \frac{\partial}{\partial y} \\
& \frac{\epsilon^{2}}{2}\left(-\frac{v^{2}}{2}\left(C C_{x x}-C C_{v y}+C_{x}^{2}-C_{y}^{2}\right) \cos 2 \theta+v^{2}\left(C C_{x y}+C_{x} C_{y}\right) \sin 2 \theta\right. \\
&\left.+\frac{v^{2}}{2}\left(C C_{x x}+C C_{y y}+C_{x}^{2}+C_{\nu}^{2}\right)\right) \frac{\partial}{\partial \theta} .
\end{align*}
$$

Let us summarize what we have done. We began with the exact equations of motion for a two-dimensional particle in a magnetic field. We introduced the scaling parameter $\boldsymbol{\epsilon}$ to empbasize the physically important dynamics in sucb a way that the limiting system for $\mathrm{f}=0$ has only periodic orbits. We then used the procedure presented in chapter 5 to find the roto-rate vector field order by order. This required zo sperial coordinate system. though we did introduce θ to make the integrals pasier
to write. There may exist coordinate aystems in which the calculation is eimpler and if one is clever enough to find them certainly one should eertainly use them. The virtue of our method is that it requires no cleverness and by glugging away doing more integrals like the above we could continue order by order. This explititnegs is very important when we want to delegate this labor to machines. We showed in chapter 5 (and Kruskal showed it before) that this roto-rate vector field is the unique vector Geld whose orbits are all closed loops of period 2π to all arders in ϵ and which commutes to all orders in ϵ with the dynamical vector field X. If we wish to introduce gujding center coordinates $\bar{X}, \bar{Y}, \tilde{J}, \vec{\theta}$, there is a lof of freedom in the choice. What is not Iree, if the dynamies is to be jndependent of $\bar{\theta}$, is that \bar{X} \bar{Y} and \bar{J} must be constant on the orbits of \boldsymbol{R}. We bave calculated these orbits in the course of the calculation.

In a Hamiltonian context, the rote-rate vector field is generated by the adiabatically congerved action, which we may then determine order by order (in any coordinates). We turn to this issue in the next section.

6.4. The Homilonian Stmetnre of Gyromotion

In the previous section we etudied gyromotion without using any Hamiltonian structures. Here we would like to introduce ouch structures and so make the connection with adiabatic invariance. There are a variety of ways to Hamiltonianize the equations of motion for a particle in a magnetic field. The standard approach introduces canonical momenta which depend on the (unphysical) vector potential A. In the paper [Littlejohn, 1979] an approath is developed based on a non-canonical Poisson bracket which itself depends on the magnetic field. The points in phase space represent the true particle position and velocity and the Eamiltonian is just the kinetic energy $\boldsymbol{v}^{2} / 2$. This approach allows a particularly nice formulation of the perturbative acaling used in the last section. The subtlety is that the Poisson bracket itself depends on ϵ and becomes degenerate when $\epsilon=0$. This makes for a much more interesting analyeis and is one motivation for extending the Hamiltonian perturbation results of chapter 4 to singular Poisson syatems.

6.4.1. The Poisson Bracket

Explicitly the bracket for the two dimensional ayatem is

$$
\begin{align*}
\{f, g\}= & \{f, g)_{0}+c\{f, g\}_{1} \\
= & B\left(\frac{\partial f}{\partial v_{x}} \frac{\partial g}{\partial v_{v}}-\frac{\partial f}{\partial v_{x}} \frac{\partial g}{\partial v_{x}}\right)+ \tag{6.146}\\
& \epsilon\left(\frac{\partial f}{\partial x} \frac{\partial g}{\partial v_{x}}-\frac{\partial f}{\partial v_{x}} \frac{\partial g}{\partial x}+\frac{\partial f}{\partial y} \frac{\partial g}{\partial v_{v}}-\frac{\partial f}{\partial v_{y}} \frac{\partial g}{\partial y}\right) .
\end{align*}
$$

With the Hamiltonian

$$
\begin{equation*}
H=\frac{1}{2} v_{x}^{2}+\frac{1}{2} v_{\bar{y}}^{2} \tag{6.147}
\end{equation*}
$$

this gives the scaled equations of motion used in the last section:

$$
\begin{equation*}
\{\cdot, H\}=\{\cdot, H\}_{0}+c\{\cdot, H\}_{1}=X_{0}+e X_{1} . \tag{6.148}
\end{equation*}
$$

When $\rightarrow 0$, the bracket reduces to $\{,\}_{0}$. This bracket is singular and any function of x and y alone is a Casimir.

6.4.2. The Symplectic Structure

It is intereating to look at the e-dependent symplectic structure ω which corresponds to our bracket. Since the bracket is non-singular when ϵ isn't zero, we may invert it to give a well defined symplectic form. Since the bracket becomea singular se ϵ spproaches zero, the symplectic form must become infinite in this limit. It is easiest to introduce the matrix $J^{j \prime}$ representing the components of the contravariant tensor that defines the bracket:

$$
\begin{equation*}
\{f, g\}=\sum_{i, j} \frac{\partial f}{\partial z^{i}} J^{i j} \frac{\partial g}{\partial z^{j}} . \tag{6.149}
\end{equation*}
$$

In the coordinates x, v_{x}, y, v_{y}, the matrix J has the form

$$
J=\left(\begin{array}{cccc}
0 & \epsilon & 0 & 0 \tag{6.150}\\
-\epsilon & 0 & 0 & B \\
0 & 0 & 0 & \epsilon \\
0 & -B & -\epsilon & 0
\end{array}\right)
$$

If we introduce a matrix representing ω by

$$
\begin{equation*}
\omega=\sum_{i j} d z^{i} w_{i,} d z^{j}, \tag{6.151}
\end{equation*}
$$

then it will be the inverse of the matrix corresponding to J. We easily see (say by Gauss' method) that

$$
\left(\begin{array}{cccc}
0 & \epsilon & 0 & 0 \tag{6.152}\\
-\epsilon & 0 & 0 & B \\
0 & 0 & 0 & \epsilon \\
0 & -B & -\epsilon & 0
\end{array}\right)\left(\begin{array}{cccc}
0 & -1 / \epsilon & B / \epsilon^{2} & 0 \\
1 / \epsilon & 0 & 0 & 0 \\
-B / \epsilon^{2} & 0 & 0 & -1 / \epsilon \\
0 & 0 & 1 / \epsilon & 0
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

This shows that the symplectic structure is

$$
\begin{equation*}
\omega=\frac{1}{\epsilon^{2}}\left(B d x \wedge d y+\varepsilon d x \wedge d v_{x}+\varepsilon d y \wedge d v_{\psi}\right) . \tag{6.153}
\end{equation*}
$$

This is indeed singular as $\epsilon \rightarrow 0$, but if we rescale by multiplying by ϵ^{2}, we get a well defined form for all ϵ. Now, buwever, when $\epsilon \rightarrow 0$ the form becomes $d x \wedge d y$ which is degenerate. This vanishes when we insert any vector which is a linear combination of v_{x} and v_{v}. The correct dynamics is obtained by the usual Hamiltonian prescription for any $\epsilon \neq 0$:

$$
\begin{align*}
i x \omega= & -B v_{y} \frac{1}{\epsilon} d x+B v_{x} \frac{1}{\epsilon} d y+v_{x} d v_{x}-\frac{B}{\epsilon} v_{x} d y \\
& +\frac{B}{\epsilon} v_{y} d x+\frac{1}{\epsilon} v_{y} d y \tag{6.154}\\
= & v_{x} d v_{x}+v_{y} d v_{y} \\
= & d H .
\end{align*}
$$

8.4.3. Uniqueneas of the Generator for a Vector Field

The Poisson structure we bave given becomes degenerate when $\varepsilon=0$. We must tberefore study its properties carefully. First, it is not at all obvious that the association of vecto: fields with Hamiltonians is unique with this bracket (since to zero order, say, there are Casimirs which may be added to any Hamiltonian without changing the dynamics). We will show that if we have two Hamiltonian vector fields with respect to this bracket, which are asymptotically equal to all orders in ϵ, then their Hamiltonians are also asymptotically equal to all orders in ϵ. Let us subtract the two vector fields in question to obtain a vector field which vanishes to all orders in ϵ. We want to show that only a Hamiltonian which vanishes to all orders can produce such a vector field.

The Poisson bracket has the form

$$
\begin{equation*}
\{,\}=\{,\}_{0}+\epsilon\{,\}_{1} . \tag{6.155}
\end{equation*}
$$

The zero order piece $\{,\}_{0}$ is drgenerate and the Casimirs are exactly the functions of x and y alone. The first order piece $\left\}_{1}\right.$ is canonical and so non-degererate. Let us assume that H generates the zero vector field to all orders in ϵ. Expanding \boldsymbol{H} in an asymptotic series

$$
\begin{equation*}
\boldsymbol{H} \sim H_{0}+\epsilon H_{1}+\frac{1}{2} \epsilon^{2} H_{2}+\ldots \tag{6.156}
\end{equation*}
$$

and working out the generated vector field order by order gives us a hierarchy of
equations:

$$
\begin{align*}
&\left\{, H_{0}\right\}_{0}=0 \\
&\left\{\cdot, H_{1}\right\}_{0}=-\left\{\cdot, H_{0}\right\}_{1} \\
&\left\{\cdot, \frac{1}{2} H_{2}\right\}_{0}=-\left\{\cdot, H_{1}\right\}_{1} \tag{6.157}\\
& \vdots \\
&\left\{\cdot, \frac{1}{k} H_{k}\right\}_{0}=-\left\{\cdot, H_{k-1}\right\}_{1}
\end{align*}
$$

The only thing the zero order bracket can produce is derivatives with respect to p_{x} and $p_{\boldsymbol{y}}$. These derivatives must be equal to the right hand sides. If any of the H_{k} depended on anything but x and y, then the right hand side of its equation would have a derivative which could not be matched on the left. So each H_{k} depends only on x and y. But these are then Casimirs for the left hand sides which therefore vanigb. But the right hand brackets are non-degenerate and so they only vanish when the corresponding \boldsymbol{H}_{k} is constant. Adding a meaningleas constant to the energy, we see that \boldsymbol{H} must vanish order by order.

6.4.4. Comparison W1th Robert Littlejohn's Results

Let us now show that our results agree witb the results obtained by Robert Littlejohn. The two references of intereat here are [Littlejohu, 1979] and [Littlejohn, 1981|. To avoid confusion, we $\mathrm{\nabla}$. dl use the notation of these papers and refer to formulas within them. To help otber workers make explicit comparisons, we will describe manjpulations in detail. Readers without these papers available may want to skip this section.

Let us begin with [Litilejobn, 1979]. In this paper Littlejokn introduces a very clever method based on Darhour's thearem to manipulate the two-dimensional guiding conter problem into a form suitable for the application of Lie transforms (the Lie trausform is clever too, because the bracket is e-dependeat). His Poisson bracket is $1 / \mathrm{\epsilon}$ times the one we have used and his variable θ is rotated by $\pi / 2$ from ours (ours is the clockwise angle of the velocity vector from the \dot{x} axis, his is the clockwise angle of the gyro-radius vector from the \hat{x} axis in a uniform field). Using the Darboux algorithm introduced in the paper, he defines a set of variables (X, Y, θ, J), where θ is the original θ, J is a function whose Poisson bracket with θ is $-1 / \epsilon$ to all orders in \subset and X and Y are coordinates that Poisson commute with both J and θ to 11 orders in ϵ. These variables are the natural ones for a uniform maguetic feld, but other than that have no dependence on the Hanniltoaian. These functions are obtained as asymptotic series in e. Using his formulas 4.8, 4.21, 4.20, and 4.29 and letting C denote $1 / B$, we find that to first order in ϵ they are

$$
\begin{align*}
& X=x-\epsilon v C \cos \theta+\ldots \\
& Y=y+\tau v C_{\sin \theta} \theta+\ldots \tag{6.158}\\
& J=\frac{-7}{2} C-\frac{\epsilon v^{3}}{6}\left(C \cos C_{x}-C \sin C_{y}\right)+\ldots
\end{align*}
$$

He then performs the Lie tranuform to find new variables $\overline{\boldsymbol{X}}, \overline{\boldsymbol{Y}}, \overline{\boldsymbol{J}}, \tilde{\boldsymbol{\theta}}$ which have the same Poisson bracket relations and auch that the Hamiltonian is independent of $\ddot{\theta}$ to all orders in ϵ. This theo implies that ${ }^{7}$ is the adiabatic invariant to all orders in c. We are interested only in this adiabatic invariant (since it is the only quantity that is uniquely determined). By the Poisson bracket relations, the vector field which \bar{J} generates must be simultaneously tangent to the level sets of \bar{X}, \vec{Y}, and \bar{J}.

The closed orbits of this vector field are parameterized by $\bar{\theta}$ and the Hamiltoniay is constant on them (implying that the Hamiltonian vector field commutes with the field generated by \bar{J}). These conditions are exactly the ones imposed on our rotorate vector field \boldsymbol{R} and it is the unique vector field which satisfies them. Thus the adiabatic invariant \bar{J} must generate the roto-rate vector field. We will show that the adiabatic invariant introduced by Littlejohn does indeed generate the roto-rate vector field we calculated (at least to firat order).

The expression 5.27 in the paper gives \bar{J}. To first order in ϵ, it is

$$
\begin{equation*}
\bar{J}=J+\epsilon-\frac{(2 B J)^{3 / 2}}{3 B^{3}}(\hat{a} \cdot \nabla B) \tag{6.159}
\end{equation*}
$$

Using the expressions for these quantities in terms of θ_{1}, y, and v, we find:

$$
\begin{align*}
\bar{J} & =\frac{v^{2}}{2 B}-\frac{\epsilon v^{3}}{6}\left(-\cos \theta \frac{B_{x}}{B^{3}}+\sin \theta \frac{B_{v}}{B^{3}}\right) \\
& +\frac{\epsilon v^{3}}{3 B^{3}}\left(-\cos \theta B_{x}-\sin \theta B_{v}\right) \tag{6.160}\\
& =\frac{v^{2}}{2 B}+\frac{\epsilon v^{3}}{2 B^{3}}\left(\cos \theta B_{x}-\sin \theta B_{v}\right) .
\end{align*}
$$

Let us check that this agrees with the much more general resulta presented in [Littlejohn, 1981]. Formula 82e of that paper gives the expression for the adiabatic invariant:

$$
\begin{equation*}
\bar{M}=\left\{\frac{w^{2}}{2 B}+\frac{\epsilon}{B^{2}}\left[w G_{6}+\frac{w^{2}}{4}\left(G_{8}-2 G_{2}\right)+\frac{w^{3}}{2} F_{6}\right] .\right. \tag{6.161}
\end{equation*}
$$

To compare with our much simplified situations we utilize his expressions $17 \mathrm{~g}, 17 \mathrm{i}$, $17 \mathrm{c}, 16 \mathrm{~g}, 9 \mathrm{~b}, 8$, and 11. These show that $w=v, G_{\dot{j}}=0, G_{8}=0, G_{2}=0$, and $F_{6}=\hat{\mathbf{a}} \cdot \nabla B / B$. Substituting these in we obtain to first order in ϵ that

$$
\begin{equation*}
\bar{M}=\frac{v^{2}}{2 B}+\frac{\epsilon v^{3}}{2 B^{3}}\left(\cos \theta B_{x}-\sin \theta B_{v}\right) \tag{6.162}
\end{equation*}
$$

This agrees with the first paper.
Let us now determine the vector field which \bar{J} (or \bar{M}) generates. For this we need the Poisson bracket relations:

$$
\begin{array}{ll}
x, v=-\sin \theta & y, v=-\cos \theta \\
x, \theta=-\frac{1}{v} \cos \theta & y, \theta=\frac{1}{v} \sin \theta \tag{6.163}\\
\theta, v=\frac{B}{c v}
\end{array}
$$

We then see the dynamical vector field generated by \bar{J} to lowest wo orders is

$$
\begin{align*}
\bar{J}= & \frac{1}{\epsilon} \frac{\partial}{\partial \theta}+ \\
& \frac{B}{v}\left(\frac{3 v^{2}}{2 B^{3}}\left(\cos \theta B_{x}-\sin \theta B_{v}\right) \frac{\partial}{\partial \theta}-\frac{v^{3}}{2 B^{3}}\left(-\sin \theta B_{x}-\cos \theta B_{v}\right) \frac{\partial}{\partial v}\right) \\
& -\sin \theta \frac{v}{B} \frac{\partial}{\partial x}-\cos \theta \frac{v}{B} \frac{\partial}{\partial y}+ \\
& \sin \theta \frac{v^{2}}{2} \frac{\partial}{\partial x}\left(\frac{1}{B}\right) \frac{\partial}{\partial v}+\cos \theta \frac{v^{2}}{2} \frac{\partial}{\partial y}\left(\frac{1}{B}\right) \frac{\partial}{\partial v} \\
& +\frac{v^{2}}{2} \frac{1}{v} \cos \theta \frac{\partial}{\partial x}\left(\frac{1}{B}\right) \frac{\partial}{\partial \theta}-\frac{1}{v} \sin \theta \frac{v^{2}}{2} \frac{\partial}{\partial y}\left(\frac{1}{B}\right) \frac{\partial}{\partial \theta} \\
= & \frac{1}{\epsilon} \frac{\partial}{\partial \theta} \\
& -\frac{v}{B} \sin \theta \frac{\partial}{\partial x}-\frac{v}{B} \cos \theta \frac{\partial}{\partial y} \tag{6.1t4}\\
& \left(\frac{v^{2}}{2 B^{2}} \sin \theta B_{x}+\frac{v^{2}}{2 B^{2}} \cos \theta B_{y}\right. \\
& \left.-\frac{v^{2}}{2 B^{2}} B_{x} \sin \theta-\frac{v^{2}}{2 B^{2}} B_{v} \cos \theta\right) \frac{\partial}{\partial v} \\
& \left(\frac{3 v}{2 B^{2}} \cos \theta B_{x}-\frac{3 v}{2 B^{2}} \sin \theta B_{y}\right. \\
& \left.-\frac{v}{2 B^{2}} \cos \theta B_{x}+\frac{v}{2 B^{2}} \sin \theta B_{v}\right) \frac{\partial}{\partial \theta} \\
= & \frac{1}{\epsilon} \frac{\partial}{\partial \theta}-\frac{v}{B} \sin \theta \frac{\partial}{\partial x}-\frac{v}{B} \cos \theta \frac{\partial}{\partial y}+ \\
& \left(\frac{v}{B^{2}} \cos \theta B_{x}-\frac{v}{B^{2}} \sin \theta B_{y}\right) \frac{\partial}{\partial \theta} .
\end{align*}
$$

If we make the conversion (due to the diferent definitions of θ):

$$
\begin{align*}
& -\sin \theta \rightarrow \cos \theta \\
& -\cos \theta \longrightarrow-\sin \theta \tag{6.165}
\end{align*}
$$

and multiply by ϵ, we find that this agrees to order ϵ with the roto-rate vector field \boldsymbol{R} that we obtained in the last section.

6.4.5. Prospecte for a Fully Hamiltonian Theory

We may essentially apply the argument of the last section in reverse to obtain the adiabatically invariant action from the roto-rate vector feld. Because the generating function is unique, we can solve for it order by order using the expression for the Poisson bracket and the roto-rate vector field. It is interesting that because the zero order piece of the Poisson bracket is degenerate, we can determine a given order of J from the corresponding order of R only up to Casimirs. These become determined ty the aext order term in R (only a piece of this higher order term is actually necded, so the fuli calculation need not be carried out). When one inserts R into the aymplectic form ω, the ϵ^{-2} term and the ϵ^{-1} terms vanish, though this is by ro means obvious a priori. Can this be shown in general? [Kruskal. 1962j proves that if the dynamical vector field is Hamiltonizn with respect to an ϵ independent symplectic structure, then the corresponding roto-rate vector field R is as well, leading to an adiabatic invariant. We have seen that the same is true in this example, even though the Poison bracket was f -dependent and became degenerate at $\epsilon=0$. Is it always guaranteed that the symmetry vector feld is Hamiltonian in such degenerate cases?

One would like to implement the perturbation analygis we bave given directly in terms of the Hamiltonian structures involved instead of givg through the essentially non-Hamiltonian analygis. Such a theory would look like the one developed in chapter 4, but requires some extensions. in particular, I expect that:

1. We must do sverything with Poisson brackets that have a singular structure and Casimir functions.
2. We noust deal with approximate group actions, i.e. we bave an action on the J-jet space which does not arise from a true action. Thus, for example, our "circle action" is generated by a vector field given as an asymptotic series in ϵ. The orbits of the ϵ^{J} truncation of this vectortield are only closed to order ϵ^{J+1}. We may atill reduce asymptotically in this setting.
3. The reduction map, which for $\epsilon=0$ takes the form $M \rightarrow N$, was previously cifined from $J M \rightarrow J N$. Here we would like to work with the J-jet of diffemorphisms from M to N. Thus the reduction map is given as an asymptotic series, not the phose space and the reduced space. In the example at hand this will give us the guiding center coordinates as asymptotic series in the original coordinates.

PART II:

WAVES

"Before Maxwell, people conceived of pnysical reality-insofar as it is supposed to represent events in nature-as material points, whose changes consist exclusively of motions, which are subject to total differential equations. After Maxwell they concejved of physical reality as represented by continuous fields, not mechanically explicable, which are subject to partial differential equations."-Albert Einstein (1931) [Hirsch, 1984]

Chapter7:

Asymptotic Wave
 Theory

Let us now turn to the next large class of systems: waves. These systems are particularly interesting from a foundationsl point of view, because the symplectic structure of elassical mechanies arises from a natural symplectic structure occuring in asymptotic wave theory as applied to quantum mechanics. All of the elegant and physically important Hamiltonian notions of mechanics may be seen as examples of the new conceptual structures that can arise from asymptotics, as we have discussed tbroughout this thesis. The concepts of momentum, position, energy, ection, raya, and Lagrangian submanifold do not make sense for a given wave or wavepacket. As we separate the wavelength from the scale length, however, they take on asymptotic meaning and give us classical mechanics as we know it.

7.1. Wnye Asymptotics and Approximate Symmetry

A crucial element of this simplification proceedure is the idea of approximate symmetry. Part of the asymptotic stretching we will perform on our system will make it approximately symmetric under translations. In any given region of space, an eikonal wave looks like a plane-wave. Consider the translation group acting
on a plane-wave. Translations in a direction contained in the wave-front leave the wave invariant. Translations transverse to the wave-front bring the wave back to its initial state at integral multiples of some distance. The space of distinct planeFaves obtainable from the initial one by tragelation is identifiable with tbe quotient of the group of translations by the subgroup which leaves the wave idvariant. This quotient is a circle, and we call the angle on the circle the phase of the translated wave relative to the reference wave.

For an asymptotically eikonal wave, we have an approximate symmetry given by trauslation. On the large scale this is not a real translation because we must translate by different amouncs at different points in space. Asymptotically, however, it becomes closer and closer to a true tratuslation. On the small scale a translation that alowly varies cannot make neighboring wave creats exactly line up. Asymptotically, bowever, they will match up more and more closely, We may therefore think of an asymptotic circle action on our space of eikonal rraves (using the philosophy of chapters 4 and 5, we may define an asymptotic symmetry to be an exact symmetry on a jet space). It is in this anase that we may assign a unique asymptotic phase to our eikonal wave. Our eikonal methods to eliminate the wavelength scale details and to obtaia scale-length sized dynamics and concepts may be seen as asymptotic reduction by this circle action.

The key technical tool which allows us to carry out this asymptatic simplifcation is the method of atationary phase. On a large scale only average behavior is important. Functions that obey the eikonal separation bave zero average. The systematic effects that mount up near places where the wavevector vanishes are ac-
counted for by the method of stationary phase and so allow us to obtain largescale behavior. These cikonal structures are intimately connected with the essentinlly mechanical material of the earlier chapters. We shall see in the last chapter that there is also an intimate connection with the statistical averaging that leads to thermodynamics. We will develop the needed wave gtructures to make this conoection clear. This is the reason we discuss contact atructures and Legendre submanifolds in places where bymplectic structures and Lagrangian submanifolds alone could bave sufficed for waves.

7.1.1. Elkonal Waves

A beautiful deacription of eikonal wave theory for the example of light waves in the geometric optics limit is given in [Born and Wolf, 1970j. Let us begin by defining what we mean by an eikonal wave. Intuitively we mean a physical field in space which is locally like a plane-wave. The local plane-wave is described by a one-form, called the mavevector k, which is the differential of the wave phase. As discussed above, these notions are not precise for a real wave. To make them precise, we introduce an asymptotic class of waves parameterized by c. When c is 1 this rhould give the real wave. As c goes to 0 , the class should emphasive the tendency that we feel to be phymically important for the behavior of the real wave. For the systems we have in mind, this tendency is the separation of wavelength and scale length. We therefore introduce ϵ in such a way as to separate them infinitely as it goes to zero.

There are two natural ways to do this (hough any combination of them is also possible). We may let the wavelength go to zero while tolding the scale length fixed or we may let the scale length go to infinity as we hold the wavelength fixed as in figure (7.1). I prefer the second tactic because the wavelength often determines the type of wave and its fundamental physical behavior (eg. in plasmas, how close the wave is to the Debye length plays a fundamental role, sinilarly for electron wavelength compared to the atomic spating of a crystal in solid state physics). The scale length is often something quite variable (i.e. determined by engineering rather than physics). We may change the size of a tokamak, silicon chip, or auditorium. When we feel eikonal methods provide a valid description, we are saying that we have made things large enough so that the waves propagate in an eikonal fashion. Of course we may let the wavelength go to zero without changing the wave's evolutionary behavior by altering the physical constants in the equation. One common example of this ip to say that letting h go to zero in the Schrödinger equation is the way to take the classical limit (in reality we make the potential the particle moves in very slowly varying). We shall see, however, that regardluss of how we do the asymptotics, it is often useful to introduce coordinates on the slowly varying scale, and many of the asymptotic concepts will make sense only in these coordinates.

From the geometric viewpoint we have heen emphasizing, it is important to regard the wave fields as living on manifolds. There are several reasons that this gencrality is important. General relativity says that spacetime is really a curved manifold, and so studies of quantum mechanics o. clectromagnetic radiation on a cosmic scale must utilize a geometric formulation. We have seen in our discussion of
mechanics that even when the manifold structure of spacetime is not important, the natural spaces of interest are products (for more than one component), quotients (by symmetries and ignored variables), and submanifolds (for constrained systems and invariant subsystems) of regions of spacetime and these often have a non-trivial manifold structure. (One class of rich examples arises in the study of linkages. e.g., a system of 3 rigid links in three-dimensions joined in a line by universal joints and constrained to have the two ends fixed in space, has a state space that is naturally a 3-sphere and rotations about the line joining the ends define the Hopf fibration.) Corresponding operations on wave systems lead to the study of waves on nontrivial manifolds (for example, the $\boldsymbol{Y}_{\text {tm }}$ spherical harmonics that arise in systems with rotational symmetry are the normal modes of a wave operator on a sphere). As we have been emphasizing, formulations of a theory that make explicit which structures are espential for which phenomena (e.g., what aspects of a coordinate system are used in an essential way in a derivation) give insight into the underlying physics. Lastly, coordinate-free expressions may be evaluated in any coordinatea. This allows us to work in the system most convenient for the problem at hand. This is important for systems based on a complicated geometry (e.g., modern plasma fusion devices).

How are we to incorporate the asymptotic scaling into the geometric structure of the manifold in an invariant way? The manifold structure represents slow-scale behavior. We therefore want to "blow up" the manifold asymptotically. For example, most invariant P.D.E.'s use a Riemannian structure on the underlying state space (e.g., the Laplace-Beltrami operator, which is the invariant Laplacian). The
metric should depend on ϵ in such a way that the distance between two points grows indefinitely as $\epsilon \rightarrow 0$. The curvature of the manifold then goes to zero with C. Asymptotic fast-scalc (c-independent) objects may be defined near a point of the slow manifold as if they were defined on a linear space (which invariantly is the tangent space at the point of interest). One way to see this without a metric is to use the Whitney embeding theorem to embed the manifold smoothly in $\Gamma^{2 N+1}$ with the point of interest sent to the origin. In $\mathfrak{m}^{2 N+1}$ we do the scaling by sending $x \in g^{2 N-1}$ to x / c. If we look in a fixed neighborhood of the origin as $c \rightarrow 0$, our manifold appioaches a linear space identifiable with the tangent space. If we change the embedding by a map f that leaves the origin invariant, the asymptotic linear space is changed by the Jacobian of f at the point. This shows that the asymptotic linear approximation space transforms under coordinate changes just like the tangent space. One advantage of using the other type of scaling (where iast-scale objicts are scaled smaller and smaller) is that the geometric structure is more immediately recognizahle. Two points that are fixed on the fast-scale (for example two crests of an eikonal wave) asymptoticatly approach one another in the physical manifold as $\in \rightarrow 0$. The equivalence class of all pointe that approach a given point with a given first order rate may be identifed as a tangent vector.

7.1.1.1. Sources with Time Scalea Generate Eikonal Waves

Eikonal waves appear in nearly every discipline of physics and are one of the most useful andytic tools. Why do they arise in practice? One reason is simply that the systems we wish to study have a fast natural time scale and we vary this

Figure 7.1: Two waye of making a wave asymptotically eikonal.
slowly. The waves that are generated are thus eikonal. For exarr ile, a tuning fork has a natural period of oscillation and the dissipative processes that make the amplitude decay and the period change are much slower than this. The tuning fori's generated sound wave is then eikonal. Musical instruments are usually considered to be playing with a definite pitch. The amplitude and timbre (the harmonic mix which determines the characteristic sound of an instrument) vary slowly during the note and distinguig'a different instrumente. Similar examples abound in plasma wave generation processes, solid state waves, atomic light emmission, etc.

7.1.1.2. Dlupersive Media Create Eikonal Waves

The other common reason for the prevalence of eikonal waves is the fact that in linear dispersive media, any bounded initial wavepacket will eventually turn into an eikonal wave, and the eikonality will get better and better with time. Imagine throwing a stone into a large lake. This will create a bounded disturbance with some spectrum of wavevectors. For surface gravity waves on water, the long wavelengths have a greater group velocity than the short ones. As our disturbance evolves, the long wavelengths will congregate at the outer edge of the spreading wave. After a long enough time, the different wavelengths present in the intial disturbance will have sorted themselves out radially. As time goes on, the fastest waves will go further than the slower ones and new wave crests will be formed in between. As we wait asymptotically long times, we get asymptotically long stretches of wavetrain close to each wavelength.

7.1.1.3. Whitham's Generalization to Nonlinearity

Whitham has shown that many of the notions of linear eikonal theory carry over to nonlinear waves as well [Whitnam, 1974]. The esential change is that, for nonlinear systems, the basic periodic solutions are not necessarily sinusoidal. When we make eikonal waves, they will not be slowly varying sine waves; instead, they will be locally like the nonlinear periodic wavetrains.... wit! parameters that slowly vary. The nonlinearity also leads to amplitude dependent dispersion relations, which lead to some interesting effects. We will develop parts of this theory to encompass Whitharn's ideas in later sections, but let us here focus on linear waves for clarity.

7.1.1.4. Sinusoidal Waves

In this case we sball be interested in slowly varying sinusoids. In a typical situation, we are given a wave of the form

$$
\begin{equation*}
A(x) e^{i \theta(x)} \tag{7.1}
\end{equation*}
$$

and are told that the amplitude $A(x)$ and the wavevector $k \equiv d \theta(x)$ are slowly varying functions of x compared to the wavelength $\lambda=1 /|k|$. Using the two schemes discussed above we may write down an asymptotic family es either

$$
\begin{equation*}
A(x) e^{i \theta(x) / \epsilon} \tag{7.2}
\end{equation*}
$$

or

$$
\begin{equation*}
A(\epsilon x) e^{i \theta(e x) / \epsilon} \tag{7.3}
\end{equation*}
$$

Both of these give the original wave when $c=1$ and the first shrinks the wavelength, while the second stretches the scale length. We will obtain expressions and concepts relevant to $A(y)$ and $k(y)$ which are slow scale variables (note the absence of ϵ), if we take $y=c x$. Eikonal waves of this form are described by k as a function of y, an overall phase (since k doesn't set the zero of phase), and the amplitude as a function of y. If we don't care about the pbase (and on the large scale we shouldn't, since it changes by order 1 on scales of order c) then we can represent the asymptotic features of our wave as a distribution on y, k space, with support on the surface $k=k(y)$.

7.1.2. The Local Fourier Traneform

This representation will result from taking a local Fourier transform. This is a notion one would often like to use in physical situations, but that is usually either ill defined or has very arbitrary components to it. When we introduce the asymptotics as above, however, it becomes precisely defined. The idea is to take an ordinary Fourier transiorm, but to restrict the domain of integration to the neighborhood of the point y we are interested in in such a way that the domain shrinks to zero on the large scale, but grows to infinity on the small-scale, asymptotically. We can implement this with a window function $W_{e}(y)$ that asymptotes to a delta function of y, but a constant function of x. A convenient choice is to use a family if Gaussians:

$$
\begin{equation*}
W_{k}(y)=e^{-y^{2} / \ell} . \tag{7.4}
\end{equation*}
$$

Given an arbitrary asymptotic family, we would like to explicitly obtain its local Fourier transform. Let us define the local Fourier trangform of an eikonal family $\psi_{t}(x)$ to te

$$
\begin{equation*}
\hat{\psi}_{c}(y, k) \equiv \frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-\epsilon x^{2}-1 k x} \psi_{\iota}\left(x+\frac{y}{\epsilon}\right) d x . \tag{7.5}
\end{equation*}
$$

This definition is related to ideas presented in [Guillemin and Steraberg, 1977] on page 394 and in [Weinstein, 1978]. If we ignore the asymptotic aspect of this definition which makcs the Gaussian convenient but arbitrary, this defnition is related to the so-called lagolnitzer transform (see [lagolnitzer, 1975]). This expression ${ }^{2}$ as many of the nice properties we desire of a local Fourier transform asymptotically. As one can easily ser from the manipulations below, the only properties of the window $\exp \left(-\epsilon I^{2}\right)$ that are actually needed are that it is 1 when x is zero, and that it
grow: with a scale greater than 1 but less than $1 / \mathrm{c}$. Here the width of the Gaussian is : order $1 / \sqrt{c}$ as far as x is concerned.

A specific nice property of this definition is given in the following lemma:
Lemma 7.1. If at eikonal wave is of the form:

$$
\begin{equation*}
\psi_{c}(y)=A(\epsilon y) e^{i \theta(\epsilon y) / e} \tag{7.6}
\end{equation*}
$$

then the modulus of its lacal Fouries transform is asymptotic to:

$$
\begin{equation*}
|\hat{\psi}(y, k)| \sim A(y) \delta\left(k-\theta^{\prime}(y)\right) . \tag{7.7}
\end{equation*}
$$

Procf. We will show that $\hat{\psi}(y, k)$ itself is asymptotic to $A e^{i \theta / c} \delta\left(k-\theta^{\prime}\right)$ from which the lemma follows. Choose any smooth test function $f(k)$. Then, letting $f(x)$ represent the ordinary Fourier transform of $f(k)$,

$$
\begin{align*}
& \int_{-\infty}^{\infty} \dot{\psi}_{\varepsilon}(y, k) f(k) d k= \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-\varepsilon x^{2}} \hat{f}(x) A(e x+y) e^{i \theta(e x+y) / e} d x \tag{7.8}
\end{align*}
$$

Now change variables to $X=c x$:

$$
\begin{equation*}
=\frac{1}{2 \pi \epsilon} \int_{-\infty}^{\infty} e^{-X^{2} / \epsilon} \hat{f}\left(\frac{X}{\epsilon}\right) A(X+y) e^{i \theta(X+y) / \epsilon} d X . \tag{7.9}
\end{equation*}
$$

Since the last three factors are bounded in magnitude at each X as \in goes to zero, the first factor allows us to replace the integral by one over an arbitrarily small interval about sero, asymptotically. In fact, we get a contribution to the integral only when X is of order $\sqrt{6}$. We may thus expand A and θ in Tzylor series and keep only the highest order asymptotic contribution, when X is of this order. We obtain

$$
\begin{equation*}
=\frac{1}{2 \pi \varepsilon} A(y) e^{i \theta(y) / /} \int_{-\infty}^{\infty} e^{-X^{2} / \epsilon} \bar{f}\left(\frac{X}{\epsilon}\right) e^{2 X \cdot \theta^{\prime}(t) / \epsilon} d X \tag{7.10}
\end{equation*}
$$

Non let : It in the integral to obtain the desired result:

$$
\begin{equation*}
\int_{-\infty}^{\infty} \bar{v}_{1}(y, k) f(k) む k \sim A(y) e^{i \theta(y) / c} f\left(\theta^{\prime}(y)\right) . \tag{7.12}
\end{equation*}
$$

Sinc: f was arbitrary, $\hat{\psi}_{e}(y, k)$ is weakly asymptotic to (i.e. agrees when integrated against test functions)

$$
A(y) e^{i \theta(v) / z} \delta\left(k-\theta^{\prime}(y)\right)
$$

Q.E.D.

7.1.s. Stationary Phase, Laplace's Method, and Steepest Deacenta

The method of stationary phase is the central tool in doing wave asymptotics. It and steepest descents will be the central theoretical tools of chapter 16 . There are many different cases and situations where one might apply this method, but we will restrict ourselves to the simplest cases. The basic idea of the metbod is that the integral of a shor wavelengtb wave against a slowly varying function will vanish asymptotically. In fact, such integrals vanish to all orders in the asymptotic parameter ϵ, as is quite easy to show. Consider, for instance, the integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} f(y) \cos (y / \varepsilon) d y \tag{7.13}
\end{equation*}
$$

or equivalently in terms of $x=y / \varepsilon$,

$$
\begin{equation*}
\int_{-\infty}^{\infty} f(c x) \cos (x) c d x \tag{7.14}
\end{equation*}
$$

where $f(x)$ is assumed to be smooth and to die off at infinity. If we integrate by parts, we obtain

$$
\begin{equation*}
\left.\epsilon \int(\epsilon x) \sin (x)\right|_{-\infty} ^{\infty}-\epsilon \int_{-\infty}^{\infty} f^{\prime}(\epsilon x) \sin (x) \epsilon d x . \tag{7.15}
\end{equation*}
$$

The first term vanishes and the second is ctimes an integral of the type we are considering. Repeating this prozedure puts as many e's out in front as we desire, showing that the integral vanishes to all orders in ϵ.

If we have a slowly varying frequency in the cosine, such as $\cos (g(x) / \epsilon)$, and if $d g$ never vanishes, we may change coordinates using g to get an integral with $\cos (x)$ and a slowly varying Jacobian of the transformation. This is the situation above, and we may again conclude that the integral vanishes to all orders. Thus if an integral of this type is to have a non-zers asymptotic value, it must arise from the regions where $d g=0$. In fact, it is easy to see, by chopping our integral into one on ar. interval around $d g=0$ and one on its complement, that the width of the non-uniform region for the above argument is of order $\sqrt{\epsilon}$. This shows tbat if g 's second derivative is non-zero, the value of the integral will be of order $\sqrt{\epsilon}$ and the only terms in the Taylor series of g that can contribute to leading order are those of the second order. The integral then becomes one over a Gaussiar, which may be evaluated by elementary methods. That this gives the higheat order asymptotics may also be seen by using the Morse lemma to make a slow change of coordinate to a quadratic (see [Guillemin and Sternberg, 1977] p. 16).

The sme idea may be used in integrals over an arbitrary aumber n of dimensions, and assuning a single stationary point at $y=0$ leads to the formula (see
[Guillemin and Sternberg, 1977] p. 6)

$$
\begin{align*}
& \iint(y) e^{\mathrm{vg}(v) / \epsilon} d y \sim \\
& \frac{f(0)(2 \pi \epsilon)^{n / 2}}{\sqrt{\left|\operatorname{det} g_{y y}(0)\right|}} e^{i g(0) / \ell+(\pi \pi / 4) \text { Sign } o_{v y}(0)}+O\left(\epsilon^{\mathrm{j}+\mathrm{n} / 2}\right) \tag{7.16}
\end{align*}
$$

Hert we assume that the Hessian $g_{v y}$ is nou-degenerate and "Sign" denotes the signature which is the number of positive eigenvalues minus the number of negative ones. The term in the exponestial with this factor gives rise to the "extra phase shifts in going through caustics" and is responsible for the notorious correction factors in the Bohr-Sommerfeld expression for energy eigenvalues in the old quantum theory (eg. the extra $\hbar \omega / 2$ for the barmonic oscillator).

If we have a real exponent instead of an imaginary one, then we may use Laplace's method. Maxima of the exponent tead to completely dominate under exponentiation, asymptotically. In this situation, the Taylor expansion of the exponent near the maxima (and possibly the endpoints) completely determine the asymptotic expansion of the integral (though one typically has to consider terms of order $2 j$ in the Taylor expansions to get terms of order j in the expansion of the integral). To highest order, if ϕ has a maximum at the point $a<c<b$ and $\phi^{\prime \prime}(c)<0$ then asymptotically

$$
\begin{equation*}
\int_{0}^{b} f(t) e^{\phi(t) / t} d t \sim \sqrt{\frac{2 \pi \epsilon}{-\phi^{\prime \prime}(c)}} f(c) e^{\phi(\epsilon) / \epsilon} . \tag{7.17}
\end{equation*}
$$

We will use this result when we look at statistical mechanics in a way that is analogous to the use of stationary phase in wave mechanics.

The method of steepest descents generalizes stationary phase and Laplace's method to saddle points occuring anywhere in the complex plane. The idea is to
deform the contour of integration in the aeighborhood of the sardle point so that the phase oi the integrand has constant imaginary part and a maximum in the real part. Wic can then use Laplace's method asymptotically.

Lastly, the stationary phase situation with no stationary points or maxima, may often be converted to a situation where we can use the Riemann-Lebesgue lemma. This says that

$$
\begin{equation*}
\int_{a}^{b} f(t) e^{i t / e} d t \rightarrow 0 \text { as } \epsilon \rightarrow 0 \tag{7.18}
\end{equation*}
$$

if

$$
\begin{equation*}
\int_{a}^{b}|f(t)| d t \tag{7.19}
\end{equation*}
$$

exists. We don't have to assume any differentiablity for integration by parts in this situation.

7.1.s.1. Heisenberg's Uncertainty Principle

Heisenberg's uncertainty principle puts limitations on how tightly one can localize a function and its Fourier transform at the same time. In quantum mechanics this puts fundemental limitations on how accurateiy one may measure the position and the momentum of a particle at the same time. As pe discuss in section 11.2, one .an think of quantum state as corresponding to a region in phase space of volume h^{n} (where h is Planck's constant). The usual proofs of the uncertainty pranciple rely on inequalities that are hard to remember. Let us demonstrate it here using functional derivatives.

We use thir Drac notation where $\langle\phi \mid v\rangle$ represents the L^{2} pairing of o and t. li= nolth with a normalized fuaction ψ defined on the real line:

$$
\begin{equation*}
\langle\psi \mid \psi\rangle=1 . \tag{7.20}
\end{equation*}
$$

By a transformation of the form

$$
\begin{equation*}
\psi(x) \rightarrow e^{2 k_{0} x} \psi\left(x-x_{0}\right) \tag{7.21}
\end{equation*}
$$

we can put the mean values of x and k to zero without affecting the dispersions. We therefore assume that

$$
\begin{equation*}
\langle\psi| x|\psi\rangle=0=\langle\psi| k|\psi\rangle . \tag{7.22}
\end{equation*}
$$

The dispersions on which we want to put bounds then take the form

$$
\begin{equation*}
(\Delta x)^{2} \equiv\langle\psi| x^{2}|\psi\rangle \quad(\Delta k)^{2} \equiv\langle\psi| k^{2}|\psi\rangle \tag{7.23}
\end{equation*}
$$

One easily evaluates the functional derivatives

$$
\begin{align*}
& \frac{\delta\langle\psi \mid \psi\rangle}{\delta \psi}(x)=\psi^{*}(x) \\
& \frac{\delta(\Delta x)^{2}}{\delta \psi}(x)=x^{2} \psi^{*}(x) \tag{7.24}\\
& \frac{\left.\delta_{i}^{\prime} \Delta k\right)^{2}}{\delta \psi}(k)=k^{2} \psi^{*}(k)
\end{align*}
$$

Fourier transforming this last expression gives

$$
\begin{equation*}
\frac{\delta(\Delta k)^{2}}{\delta \psi}(x)=-\frac{d^{2}}{d x^{2}} \psi^{*}(x) . \tag{7.25}
\end{equation*}
$$

We want to show that the product of the disperions reaches some minimum value on normalized functions. We do this by showing that the Gaussian has the minimum
uncertainty of any wave and then evaluating its uncertainty. We formulate the minimum uncertainty normalized wavepacket problem as a variational expression with Lagrange multiplier α. With the function F defined as

$$
\begin{equation*}
F=(\Delta x)^{2}(\Delta k)^{2}-\alpha(\psi|\psi\rangle, \tag{7.26}
\end{equation*}
$$

a minimal uncertainty wavepacket will be a point where F has a vanishing functional derivative with respect to ψ. So

$$
\begin{equation*}
0=\frac{\delta F}{\delta \psi^{\prime}}(x)=x^{2} \psi^{*}(x)(\Delta k)^{2}+(\Delta x)^{2}\left(-\frac{d^{2}}{d x^{2}} \psi^{*}(x)\right)-\alpha \psi^{*}(x) \tag{7.27}
\end{equation*}
$$

Since $(\Delta k)^{2}$ and $\left(\Delta x^{2}\right)$ are just real numbers, this yields the differential equation

$$
\begin{equation*}
\frac{d^{2}}{d x^{2}} \psi^{*}=\left(\frac{\alpha}{(\Delta x)^{2}}-\frac{(\Delta k)^{2}}{(\Delta x)^{2}} x^{2}\right) \psi^{\bullet} \tag{7.28}
\end{equation*}
$$

We may easily solve this, and imposing the normalization condition determines a; imposing zero means for x and k and choosing a phase factor so that ψ is real determines the constants of integration and gives a relation between Δx and Δk. We are left with the solution (which is easily checked by plugging into the equation):

$$
\begin{equation*}
\psi(x)=\left[2 \pi(\Delta x)^{2}\right]^{-1 / 4} e^{-x^{2} / 4(\Delta x)^{2}} \tag{7.29}
\end{equation*}
$$

To see that this extremal is really a minimum, we calculate the second functional derivative:

$$
\begin{equation*}
\frac{\delta^{2} F}{\delta \psi^{2}}(x, y)=x^{2} \psi^{*}(x)\left(-\frac{d^{2}}{d y^{2}} \psi^{\bullet}(y)\right)+y^{2} \psi^{*}(y)\left(-\frac{d^{2}}{d x^{2}} \psi^{*}(x)\right) . \tag{7.30}
\end{equation*}
$$

When we plug in the Gaussian, both terms are positive, showing that the Gaussian is indeed the minimbin uncertainty packet. We need only find the uncertainties for this packet, which entails doing some Gaussian integrals. We see that

$$
\begin{equation*}
\int_{-\infty}^{\infty} x^{2} \psi^{2}(x) d x=\left(2 \pi(\Delta x)^{2}\right)^{-1 / 2} \int_{-\infty}^{\infty} x^{2} e^{-x^{2} / 2(\Delta x)^{2}} d x=(\Delta x)^{2} \tag{7.31}
\end{equation*}
$$

and

$$
\begin{align*}
(\Delta k)^{2} & =\int_{-\infty}^{\infty} k^{2} \dot{\psi}(k)^{2} d k \\
& =\int_{-\infty}^{\infty} k^{2}\left(\frac{2(\Delta x)^{2}}{\pi}\right)^{1 / 2} \epsilon^{-2(\Delta x)^{2} k^{2}} d k \tag{7.32}\\
& =\frac{1}{4(\Delta x)^{2}}
\end{align*}
$$

Thus we find the relation

$$
\begin{equation*}
\Delta k \Delta x>\frac{1}{2} \tag{7.33}
\end{equation*}
$$

which is Heisenberg's uncertainty relation (with \hbar set to 1).

7.1.s.3. Asymptoisc Waves with a Deflite k and y

Heisenberg's uncertainty principle tells us that the product of the absolute uncertatinty in x space and k space (i.e. the dispersion in x and k without regard for the size of x or k) is bounded from below. The minimum uncertainty wave packet centered at a given z_{0} nod k_{0} is given by a complex Gaussian;

$$
\begin{equation*}
\left[2 \pi(\Delta x)^{2}\right]^{-1 / 4} \exp \left\{-\frac{\left(x-x_{0}\right)^{2}}{4(\Delta x)^{2}}+i k_{0} x\right\} \tag{7.34}
\end{equation*}
$$

The dispersion in x is given by Δx and in k it is $1 / 2 \Delta x$. The relative dispersions are $\Delta x / x$ and $\Delta k / k$. If we let either x or k get asymptotically large, we may make both of these relative dispersions $q \cdot$, to zero. In the stretched cordinates: (x, K) or (y, k) where $\epsilon x=y$ and $\epsilon k=K$, the local Fourier transform can be an asymptotic δ-function in both directions. Any eisonal wave may be asymptotically decomposed into these δ states.

For example, in quantum mechanics h is often used as the asymptotic parameter. The momentum operator \hat{p}, defined as

$$
\begin{equation*}
\bar{p} \equiv \frac{\hbar}{i} \frac{\partial}{\partial x} \tag{7.35}
\end{equation*}
$$

is exactly a stretched version of the wave vector k as \hbar asymptotes to zero. We may therefore create wavepackets that have a definite x and p as \hbar goes to zero. Heisenberg's uncertainty principle for x and p takes the form:

$$
\begin{equation*}
\Delta x \cdot \Delta p \geq \frac{1}{2} \hbar . \tag{7.36}
\end{equation*}
$$

We see then that as $h \rightarrow 0$ we may make both Δx and Δp vanish.
These asymptotic states are intimately related to the theory of coherent states and have been connected with the Lie Poisson structures associated with the Heisenberg group. Let us quickly sketch some of the results in [Yaffe, 1982], but reformulate them in terms of momentum maps. The idea is to consider an asymptotic family of "quantum mechanics's" labeled by the parameter h. For each value of \hbar we have a Hilbert space H_{h} of L^{2} wavefunctions on \boldsymbol{x}^{n} and each operator (like \hat{p} above) is defined for each δ on H_{n}. We choose a special state $|0\rangle_{h}$ in each H_{A} which will asymptotically represent the state witb zero poition and zero momentum. This is chosen to be one of our special states with vanishing position and momentum dispersions as $\boldsymbol{h} \rightarrow \mathbf{0}$, such as

$$
\begin{equation*}
\langle x \mid 0\rangle_{h}=(\pi h)^{-1 / 4} e^{-\left(x^{2} / 2 h\right)} \tag{7.37}
\end{equation*}
$$

Quantum mechanics has a natural Hamiltonian structure. We may consider $1 / \hbar$ times the imaginary part of the Hermitian inner product (\|) as a symplectic
structure on the Hilbert space (being a lipear space, ve may lift this structure to each tangent space). The Schrödinger evolution defined by the Hermitian Hamiltonian operator \dot{H} is Hamiltonian with respect to this symplectic structure and a Hamiltonian function given by the expectation value of \dot{H} :

$$
\begin{equation*}
H(\psi) \equiv\langle\psi| \hat{H}|\psi\rangle \tag{7.38}
\end{equation*}
$$

There is a natural $2 n+1$ dimensional lie group that is intimately connected with the asymptotics of quantum mechanics, called the Heisenberg group. We may
 the α factor is taken to lie in a circle). The multiplication law is

$$
\begin{equation*}
(q, p, \alpha) \cdot\left(q^{\prime}, p^{\prime}, \alpha^{\prime}\right)=\left(q+q^{\prime}, p+p^{\prime}, \alpha+\alpha^{\prime}-\left\langle q, p^{\prime}\right\rangle\right) \tag{7.39}
\end{equation*}
$$

Here we use \{, to mean the pairing of Sin with sn*. This is just the translation group on $\mathfrak{F}^{2 n}$ with the extra α factor twisted into the multiplication. The Heisenberg group naturally arises through an irreducible representation on the Hilbert spaces H_{n} defined by the mapping to unitary operators:

$$
\begin{equation*}
(q, p, \alpha) \mapsto e^{i \alpha / h} e^{i(p, \Delta\rangle / h} e^{-i(q, \dot{p}) / \hbar} \tag{7.40}
\end{equation*}
$$

$(a, 0,0)$ translates pavefunctions by g in position space, $(0, p, 0)$ translates the Fourier transform of wavefunctions by p in momentum syace, and $(0,0, \alpha)$ changes the phase.

The elements of the orbit of the special state $\mid 0>h$ under this group action are called coherent states and are iabeled by the (q, p, α) which acts to produce
them. The irreducibility of the group action may be used to immediately prove many interesting relations such as the decomposition of the identity:

$$
\begin{equation*}
\overline{\mathrm{I}}=c_{\boldsymbol{\kappa}} \int|q, p, \alpha\rangle\langle q, p, \alpha| \tag{7.41}
\end{equation*}
$$

Where the integral is over an invariant measure on the Heisenberg group. This group action is Hamiltonian and we may ask for its momentum map. Each element u in the Lie algebra g of the Heisenberg group has an asociated Hermitian operator \hat{u}_{h} defined on H_{h} which generates the action of the one-parameter subgroup tangent to u. As for the Hamiltonian operator, the corresponding Hamiltonian function simply associates to each state $|\psi\rangle$ the expectation value $\langle\psi| \bar{u}_{n}|\psi\rangle$. The momentum map J then sends ψ to that element of the dual of the Lie algehra g^{*} which satisfies

$$
\begin{equation*}
\langle J(\psi), u\rangle=\langle\psi| \hat{u}_{\mathrm{A}}|\psi\rangle \tag{7.42}
\end{equation*}
$$

for each u in g. We may easily see that this is equivariant since if β is an element the Heisenberg group, then

$$
\begin{align*}
\langle J(\hat{\beta} \psi\rangle, \mathbf{u}\rangle & =\langle\dot{\beta} \psi| \hat{\mathbf{u}}_{\mathbf{h}}|\stackrel{\rightharpoonup}{\beta} \psi\rangle \\
& =\langle\psi| \hat{\beta}^{-\mathbf{1}} \hat{u}_{\mathrm{h}} \hat{\beta}|\psi\rangle \\
& =\langle\psi| A \widetilde{d_{\theta}} \cdot \mathbf{u}|\psi\rangle \tag{7.43}\\
& =\left\langle J(\psi), A d_{\beta} \cdot \mathbf{u}\right\rangle \\
& =\left\langle A d_{\boldsymbol{\theta}}^{*} \cdot J(\psi), \mathbf{u}\right\rangle
\end{align*}
$$

The dual of the Lie algegra g^{*} is $2 n+1$ dimensional. The coadjoint orbits of the Heisenberg group in g^{*} consist of $2 n$ dimensional planes labeled by a parameter when that parameter is non-zero and an entire plane of individual points when the
parancter wishes. On each of these spaces the KKS symplectic structure is a multiple of the canonical structure on $\mathfrak{R}^{n} \times \mathbb{R}^{n v}$. Because the coherent states are an crbit of tie Heisenberg group, their image under the monentum map J is exactly one coadjoint orbit. It turns out that coherent states that get sent to the same element in g^{*} are not distinguishable by means of operators that have a nice classical limit as $\boldsymbol{h} \boldsymbol{\rightarrow 0}$ (the eliminated degree of freedom is the phase). Asymptotically, the $2 n$-dimensional coadjoint orbit is the natural arena for dynamics. Associated with each operator with a nice classical limit is a function on this coadjoint orbit whose value on an element is the expectation value of the operator in any of the coherent states corresponding to that element (they all give the same value). This reai-valued function on the coadjoint orbit is called the synnbol of the operator. The symbol of the product of two such operators is simply the product of their symbols as $\hbar \rightarrow 0$. The symbol of the limit of i / h times the commutator of two sperators is the Lie-Poisson bracket of the symbols of the operators. It would be interesting to extend these definitions to the entire dual of the Lie algebra (say by giving a family of $0>$'s, one for each coadjoint orbit).

7.1.4. Eikonal Wavea and Lagrangian Submanifsius

"The correspondence is as illustration of what I might call the "symplectic creed": EVERYTHING IS A LAGRANGIAN SUBMANIFOLD."--Alan Weivr,tein on p. 5 of \{Weinstein, 1981\}

We have seen that the result of our aysmptotic local Fourier transform on an eikonal wave family is a distribution on (y, k) space whose support is on the set
$k=d \theta$. We see that k is naturally a one-form based at the point y, it being equal to the differential of the phase function there. Geometrically we are to think of (y, k) space as the cotangent bundle of y space. We have seen that this has a natural symplectic structure that in coordinates is minus the differential of the canonical one-form: $k_{\mathrm{a}} d_{\mathrm{y}} \mathrm{y}^{\mathrm{a}}$. That the surface defined by our wave's singular support is the graph of the differential of a function is locally equivalent to the symplectic property of being Lagraugian (if the submanifold projects diffeomorphically to y space).

We may see this connection geometrically as follows. If we think of an arbitrary one-form α on y space as a mapping from y space to its cotangent bundle, then the pullback of the canonical one-form hack to y space yields the form α. (In coordinates: $\alpha=\alpha_{i} d y^{i}$ and the canonical one form is $k_{i} d y^{i}$. The mapping defiued by α takes the point with coordinates y^{i} to the point with coordinates (y^{i}, a_{i}). The canonical one-form on the image is $\alpha_{i} d y^{i}$ which pulls back to α as desired.) The canonical one-form restricted to the graph of the differential of a function has zero exterior derivative, since ite pullback to y space does (since $d o d=0$ and exterior differentiation and pullback commute). Thus the symplectic form restricts to zero on the graph. This graph is of the same dimension as the base and so is Lagrangian. If a submanifold is Lagrangian and projects diffeomorphically to the base, then by Poincare's lemma the canonical sne-form is locally the diferential of a function. But then so is the one-form whose graph the manifold is.

Thus eikonal waves are asymptotically associated with Lagrangian submanifolds that don't "bend over" in the cotangent space and so don't have a singular projection. When we allow an eikonal wave to evolve in time, the dynamics may
bend the correapondiag Lagraggian submanifold over. At sucb times, the originally eikonal wave bas ceased to be eikonal. The image of the points with a singular projection forms the caustic of the wave (so named because such places have a high ivtensity and so tend to get hot in optical fields). The straightforward asymptotics of traditional WKB theory breaks down at these points and, a priori, one might not expect the corresponding Lagrangian submanifold to have anything more to do with the wave. Maslov introduced the concept and name of Lagrangian subrnanifolds in [Maslov, 1965] while generalising earlier one-dimensional work of Keller in [Kelier, 1958]. Maslov was able to show that there is a more general asymptotic class of asymptotic families than eikonal waves which is associated with arbitrary Lagrangian submanifolds. The asymptotic dynamics of an eikonal wave does not leave this larger class and in fact the bent over Lag angian manifold contimues to represent the wave. The hasic idea is to treat our wave as being on a higher dimensional space where the correponding Lagrangian submanifold is not singular, but atill projects onto the eingular one over the space we are really interested in. Projection of one space onto another corresponds to integrating the wave over the fibers of the projection. Since tie evolution equations are linear, one may introduce dynamics on the large space which projects to the correct dybamich on the space of interest. On the large space, everything is eikonal and oo we get representatives of the caustic wave fields as integrals of eikonal waves on a higher dimensional space ([Guillemin and Sternberg, 1977] p. 428).

7.2. WKB Theory and Asymptotic Equationg

Let uy quickly sketch the theory of eikoual waver for linear P.D.E.'s. This may be gencralized to vector equations, asymptotic series in fractional powers of the amplitude, and bigher order term (see for example [Guillemin and Sternherg, 1977| p 50), but I want to focus on the bare essentials here.

In the mathematical literature on this subject (avich as0 [Hörmander, 1983]), one usually is looking for asymptotic solutions to an asymptotic partial differential equation on a manifold. One makes geometric sense of a partial differential operator as a certain class of mappings between spaces of sections of bundles over the manifold. One introduces a small parameter e and introduces the usual asymptotic equivalence classes of (-dependent operators to define asymptotic operators. An asymptotic P.D.E. is given by requiring an asymptotic operator to vanish on an agymptotic function. One usually assumes that the hisher derivative terms have coefficients with higher powers of ε, so that to make the terns balance, a solution must oscillat more and more as c vanishes. The resulting class of solutions are of the form of an asymptotic amplitude times an ever more quickly oscillating exponential. One finds a Hamilton-Jacobi equation for the phase. In addition, one obtains series of transport equations, defined along the characteristics of the Hamilion-Jacobi equation, for the terms in the amplituse's expansion. The Hamiltonian is the so-called principal symbol of the operator, which invariantly is a function on the cotangent bundle. Because the wavelength is getting ever smaller, the local asyoptotic behavior of the waves is unaffected by the global atructure of the manifold.

We are interested in scaling our system the other way. We want to make the
coefficiente of our equation slowly varying as $e \rightarrow 0$. If we are on a manifold, then the manifold should "grow ass mptotically, to become more and more like P^{n} locally. This type of scaling is often the physically relevant one. Most of the manifolds used in physics are really only manifolds in some asymptotic sense. Even if spacetime really is a manifold (which is very unlikely on scale lengths of order of the Planck length), the state spaces for our systems come from large products of space with itseff (representing the state of many particlea) followed by projections and constraints. There is always some "width" in the constraint direcion, and the inanifold picture breaks down on this scale. Similarly, quantum mechanics imposes finest scales on which it is reasonable to look at the eitronal state of a wavepacket as being a point in a manifold. Ingtead of letting this physically determined small scale shrink, we often mean to say that the large acale atructure of the state spacz is not strongiy affecting local behavior. We may represent this asymptotically as in section 7.1.1.

We also want to say only that the a:oitrary scale lengthe in our problem get large, and not to charge the physical relations of the equasion. For exa nple, assume we are studying internal waves in the ccean and want to consider slow salt gradient variations. We introdur asymptotics which makes the gradient variation more and more gradual asymptoucally. If we were to shrink the wavelength instead, we would be changing the physics of internal waves.

We are therefr-: interested in equanons of the form

$$
\begin{equation*}
P\left(c x, \frac{1}{i} \frac{\partial}{\partial x}\right) \cdot \psi_{c}(x)=0, \tag{7.44}
\end{equation*}
$$

whe:e $P(y, k)$ is a srooth function on the cotangent bundle of y space, and we
ass : me its growth in k is bounded by some power of k (so we have a finite order equation). Notice that we are treatiny y as an element of a vector space for the reasons discussed in section 7.1.1.

As an example, we will consider the Klein Gordon equatico in 3-dimensions: This could have slowly varying coefficients, but for simplicity we demonstrate only the effect of slowly varying initial conditions. The base space is 4 dimensional and is parametrized by (x, y, x, t). The equation may be written

$$
\begin{equation*}
\left(-\left(\frac{1}{i} \frac{\partial}{\partial t}\right)^{2}+\left(\frac{1}{i} \frac{\partial}{\partial x}\right)^{2}+\left(\frac{1}{i} \frac{\partial}{\partial y}\right)^{2}+\left(\frac{1}{i} \frac{\partial}{\partial z}\right)^{2}+1\right) \psi=0 \tag{7.45}
\end{equation*}
$$

So the function P on the cotangent bundle is given by

$$
\begin{equation*}
P\left(x x, \epsilon y, \epsilon z, c t, k_{x}, k_{y}, k_{z}, k_{z}\right)=-k_{t}^{2}+k_{x}^{2}+k_{y}^{2}+k_{x}^{2}+1 . \tag{7.46}
\end{equation*}
$$

We look for solutions of the form

$$
\begin{equation*}
\psi_{e}=A(\epsilon x) e^{i e(\epsilon x) / \epsilon} . \tag{7.47}
\end{equation*}
$$

In taking a derivative of this, we get $\mathrm{Bc} \boldsymbol{\mathrm { ne }}$ terms that come from differentiating $A(\epsilon x)$, and these will have as many powers of e as there were orders of differentiation. In contrast, derivatives of $\exp (i \theta(c x) / \epsilon)$ do not bring down any extra e's (though once a $\theta^{\prime}(c x)$ has come down, any higber derivatives of it will get extra $\epsilon^{\prime} s$). If $P \cdot \psi$ is to vanish to all orders in e, it must vasush term by term. The lowest order term has all derivatives hitting the exponential and looks like

$$
\begin{equation*}
P(y, d \theta(y)) \psi_{c}=0, \tag{7.48}
\end{equation*}
$$

where as before $y=\varepsilon x$ and $d \theta$ is the exterior derivative of θ on y space.

If our solution doesn't vanish, then θ must satisfy the Hamilton-Jacobi equacion:

$$
\begin{equation*}
P(y, d \theta(y))=0 . \tag{7.49}
\end{equation*}
$$

The analysis of such equations leads to a rich theoretical struct are. To see where this comes from, in the next section we consider arbitrary first order P.D.E.'s and then specialize to those of Hamilton-Jacobi type.

For the Klein-Gordon example, the Hamilton-Jacobi equation is

$$
\begin{equation*}
-\left(\frac{\partial \theta}{\partial t}\right)^{2}+\left(\frac{\partial \theta}{\partial x}\right)^{2}+\left(\frac{\partial \theta}{\partial y}\right)^{2}+\left(\frac{\partial \theta}{\dot{i} z}\right)^{2}+1=0 \tag{7.50}
\end{equation*}
$$

7.2.1. The Structure of First Order P.D.E.'s

Most of the symplectic structures in physics may trace their origin to a natural structure that arises with any (nonlinear) first order P.D.E. By a frat order P.D.E. we mean that we are given an equation of the form

$$
\begin{equation*}
F\left(x, u, u_{x}\right)=0, \tag{7.51}
\end{equation*}
$$

where x represents a point in the n-dimensional manifold M on which the P.D.E. Lives, u is the function on this manifold we are trying to solve for, u_{x} represents all its first derivatives, and F is a smooth function of $2 n+1$ variables. Geometrically the space on which F lives is the first jet space of M ($[$ Arnold, 1983] p. 66). This is a manifold whose points are equivalence clases of functions defined on neighborhoods of points in M. Two functions have the same 1 -jet at a point in M iff they have the same value and the same differential there. Let us use the coordinates p to
represent the differential directions of which there ate r and t to represert the value direction.

Given a function, the graph of it and its first differential determine an n dimensional surface in this first jet space. Just as we saw in section 7.1 .4 that the property of being the graph of the differential of a function in the cotangent space was equivalent to being a Lagrangian submanifold, being the graph of a function and its differential is locally equivalent to being a Legendre manifold in this jet space. Just as there is a natural symplectic atructure on the cotangent bundle, there is a natural contact structure on the first jet space ([Arnold, 1978] p. 349). This may be defined as a smooth choice of a nyperplane in each tangent spase of a $(2 n+1)$-dimensional manifold, that is locally annibilated hy a one-form θ (called a contact form), with the property that $\theta \wedge d \theta^{n}$ is a volume form (here $d \theta$ is a two-form and $d \theta^{n}$ means $d \theta \wedge \ldots \wedge d \theta$ with n factors). If we think of the jet space as the cotangent bundle with an extra direction tacked on to represent the value of functions, then its natural contact form is a ontorm that is the differential of the value coordinate minus the canonical one-form on the cotangent bundle. In the coordinates (x^{i}, p_{i}, u), it is given by

$$
\begin{equation*}
\theta=d u-p_{i} d x^{i} \tag{7.52}
\end{equation*}
$$

A. Legendre submanifold (Aroold, 1978] p. 365) is. an n dimensional aubmanifold on which the contact form vanishes (the hyperplanes defined by the contact form just contact the surface). It is easy to see that this in exactly the condition that the p coordinates really represent the derivatives of a function whose jet graph is supposed to be the surface in question.

The $2 n$-dimensional distribution (smooth field of subspaces cbosen from the tangent spaces at each poini) defined by the vectors that 0 annibilates is maximally non-integrabie. It would be integrable if thr contact space could be filled with smooth 2π-dimensional submanifolds (which together define a foliation) that were tangent to the specified planes ai each point. It requires very special circumstances that are spelled out in Frohenius' theorem (see [Spival, 1979] p. 257) for θ to define such $2 n$-dimensional surfaces (in fact, θ must be the differential of a function locally for these surfaces to exist). It turns out, however, that there always exists an D dimensional foliation everywhere tangent to θ 's annihilator. For the contact planes, this is in fact the largest dimensional foliation you can find (this is the meaning of maximally non-integrable). The two-form $d \theta$, acting on vectors in a characteristic plane, gives a measure of the nonintegrability there. If $d \theta$ doesn't vanish on two vectore, then it is not possible to deform the parallelogram they form to be tangent to the contact planes. That a contact structure is maximaliy nondegenerate says that $d \theta$ is nondegenerate on each contact plage (i.e. is a symplectic bilinear form on each piane).

The P.D.E. in this picture simply states that the jet graph of the solution functinn t must lie in the $2 n$-dimensional set given by $F=0$. That an n-dimensional surface is a jet graph of a function says that it is tangent to the contact planes at eacts of its points. If both of thea conditions are satisfied and the surface projects down to M diffeomorphically, then we have a local solution to the P.D.E..

Any such surface must include a certain direction in its tangent plane at each point. called the characteristic direction. This direction is defined as follows. The

2 n -dimensional tangeut plane to the surface $F=0$ at each point intersects the $2 n$ dimensional contact plane generically in a ($2 n-1$)-dimensional subspace. When $d \theta$ is restricted to this subspace it has a single degenerate direction (just as in Hamiltonian mechanics, where the degenerate direction of the symplectic structure restricted to an energy level sufface gives the direction of the dynamics). This direction is the characteristic direction that ment be included in any solution (since $d \theta$ is nondegenerate on the $(n-1)$-dimensional quotient by the characteristic direction and must vanish on our n-dimensional surface, that surface must include the characteristic dijection).

It is now easy to see how to solve the Cauchy initial value problem for our P.D.E. The initial surface on which the value of u is given, is an ($n-1$)-dimensional submanifold of M. The initial data plus the constraint that it lie in $F=0$, determines an ($n-1$)-dimensional aubmanifold in the jet space which our solution surface must include. As it must also include the characteristic direction, if these are not tangent to the intial manifold, we get a local solution by just flowing the intial manifold along the integral curves of the characteristic direction field (see [Guillemin and Steraberg, 1977] p. 34).

7.2.2. Hamilton-Jacobi Theory and Symplectic Manifolds

In the special case of a first order P.L.F. which does not explicitly depend on the value of the function u, we obtain the Bamilton-Jacobi theory (see [Abraham and Marsden, 1978| p. 381). We saw above that it is exactly this kind of equation that arises from eikonal solutions of linear P.D.E.'s. The whole point to the separation
of scales is that the value of the fast phase itself is irrelevant and only its slow derivatives contribute to the average dyamics in the cikodal limit. It is for this reason that mechanics may be formulated in terms of symplectic manifolds instead of costact manifolds.

In this case, the function $H(x, p)$ whose zero set gives our P.D.E. may be called the Hamiltonian. Since $H=0$ includes the entirety of the u fibers, and the contact form θ is invariant under translation in the u direction, we may forget about the u direction completely in our theory. What is left is the cotangent bundle $T^{*} M$ with its canonical one-form and corresponding symplectic form. The characteristic directions project to a line field on the set $H=0$ in $T^{*} M$ (since both H and θ were symmetric -long $u, s o$ were the characteristic directions). The Hamiltoniar vector Geld determined from H and the symplectic structure in the usual way is along this direction. Under this projection, Legendre subrra:ifolds transverse to the u fibers project down to Lagrangian submanifolds. As we have seen in section 7.1.4, this is the condition in $T^{*} M$ that an n-dimensional submanifold be the graph of the differential of a function. The Cauchy problerr now becomes like Hamiltcnian mechanics. Given an ($n-1$)-dimensional intitial surface in M with the intial data of u 's value on it, we get ais ($n-1$)-dimensional initial surface in $T^{*} M$ as the only submanifold in $H=0$ consistent with the differential of the intial data. The solution surface is then made up of the integral cures of H 's Hamiltonian vect. field tha: pass through the initial menifold.

We saw in sectiun 8.2 that the Hamilton-Jacobi equation for eikonal solutions
of the Klein-Gordon equation is defined by the function

$$
\begin{equation*}
H=-k_{t}^{2}+k_{x}^{2}+k_{y}^{2}+k_{z}^{2}+1 \tag{7.53}
\end{equation*}
$$

on ($x, y, z, t, k_{x}, k_{u}, k_{z}, k_{t}$) space. The characteristics are the orbits of the Hamiltonian vector field defined by H. This vector field is given by

$$
\begin{array}{cc}
\dot{x}=\frac{\partial H}{\partial k_{x}}=k_{x} & \dot{y}=\frac{\partial H}{\partial k_{y}}=k_{y} \\
\dot{i}=\frac{\partial H}{\partial k_{x}}=k_{\mathrm{y}} & \dot{i}=\frac{\partial H}{\partial k_{t}}=-k_{t} \tag{7.54}\\
\dot{k}_{\mathrm{x}}=-\frac{\partial H}{\partial x}=0 & \dot{k}_{\mathrm{v}}=-\frac{\partial H}{\partial y}=0 \\
\dot{k}_{\mathrm{x}}=-\frac{\partial H}{\partial z}=0 & \dot{k}_{\mathrm{t}}=-\frac{\partial H}{\partial t}=0 .
\end{array}
$$

We only use these curves in the surface $\boldsymbol{H}=\mathbf{0}$.
The physical P.D.E.'s we are often interested in considering (such as the KleinGordon example) have a distinguished time direction. The phase space discussed above is really an "extended" phase space in that it includes the time direction. If the Hamiltonian (and so the original P.D.E.) is time independent, we may apply reduction along the time direction to get a symplectic manifold of dimension $2 \mathrm{n}-\mathbf{2}$. Now our intial wave is given over the entire base manifold. This is the picture we have been using in the earlier sections of this chapter. The time evolution of the Lagrangian manifold is given by letting it flow along the Mamiltonian trajectories of the reduced Haniltonian. As in ordinary mechanics, these trajectories are now important on the whole phase space, not just on a subset like $H=0$. As we have discussed earlier, the Hamiltonian dynamics can bend the Lagrangian submanifold over and make its projection singular.

I:- the Klein-Gordon example, we eliminate t and set the gencrator of t translation: k_{t}, to a constant ω. The characteristics are now defined on the full (x, y, z, k_{x}, k_{v}, k) space and are thr orbits of the Hamiltonian vertor field if

$$
\begin{equation*}
\omega=\sqrt{1+k_{I}^{2}+k_{y}^{2}+k_{z}^{2}} . \tag{7.55}
\end{equation*}
$$

7.2.3. Cotangent Bundlea, Contact Spaces, and Jet Spaces

Contact spaces are associated with odd dimensions and symplectic spaces with even dimensions. We bave seen that the symplectic cotangent space has a natural generalization to the first jet space, and that the canonical one-form generalizes to the contact form. We may also obtain a contact space of one dimension lower than the cotangent bundle by forgetting about the magnitude of a covector. A covector without its length is given by saying only which vectors it annihilates (and not what it does to other vectors). This is a hyperplane called a contact element in each tangent space of our original manifold (see (Arnold, 1978] p. 354). The space of tangent hyperplanes of a manifold, is itself a contact manifold. The name "contact" makes the most sense bere, since these planes represent elements of first order contact with surfaces in the manifold. The contact structure on this space is given quite analogously to the definition of the canonical one-form. The ($2 n-1$)dimensional space of contact elements naturally projects to the base manifoid by sending a contact elernent to the point it is based at. A tangent vector to tbr space of contact elements is in the contact plane at wat point if its projection lies in the contact element it is based at. We will use this in our study of thermodynamics in chapter 16.

7.2.4. The Contact Bundle and the ('onormal Bundle

As important class of Lagrangian and Legendre submanifolds arises from submanifolds N of the base manifold M. The contact bundle of N is just the set of all contart elcments which are tangent to N. This is clearly a Legendre submanifold since any vector tangent to it projects to a vector tangent to N and so is in the contact plane at that point. The conormal bundle of N is the set of all eovectors that annihilate the tangent space of N. This is a Lagrangian submanifold of the cotangent bundle $T^{*} M$ since a vector tangent to it must project to a vector targent to N which is annihilated by the form it was based at and so by the canonical one form. Thus we see that the zero section of a cotangent bundle is Lagrangian in one limit (N equals M) and the fitrers of the cotangent bundle are as well, in the other limit (${ }^{*}$ equals a point). If \boldsymbol{N} is a source of light, then the conormal bundle gives the rays that are emanating from \boldsymbol{N}. Thus a point source radiates in all directions while a plane radiates only normal to itself. The Ruygens construction gives wavefronts as the envelope of the manifold formed by projecting those points that are a given distance along the rays.

7.3. Limitathons of WKB Theory

It is well known that ordinary WhB theory breaks down when diffaction occurs (i.e. where the medium scale length is as small as the wavetength) and near turning points (where the mavelength goes to zero). Keller has developed a beautiful theory of geometric diffaction theory which uses geometric optics (i.e. WKB) away from the bad regions in the medium and glues in the extra rays due to diffraction emanating from these regions using matched asymptotics. The gr' at simplification is that as the wavelength becomes smaller, any "edge" (or any other type of bad region) affecte a ray over a smaller and smaller portion of it. Asymptotically, the effect of a discontinuity is identical to one of only a few "canonical problems" (eg. the edge of an infinite half plane, the tip of a cone, etc.). Tl are solved once and for all and it is their solution that is glued into the problem. Turning point problems were dealt mith classically ir a similar way it one dimeosion. Near the turning point the potential asymptotically becomes more and more like a linear potential as far as the asymptotic wave can tell. The exact solution for a linear pr :ential (i.e. an Airy' function) is glued in using matched asymptotics again. As we discussed in section 7.1.4, Maslov generalized WKB theory to situations with caustics in higher dimensions. Associated with each of the elementary catastrophes of Thom (which classify the generic caustics) is a special function which is a higher dimensional analog of the Airy function. The wave field around a caustic may be obtained by glueing in these special functions at the caustics of the WKB solution. One important phenomenon that has not to my knowledge received a geometric treatment is tundeling. This is the propagation of read waves into regions that the

WKB rays cannot get to. The problem is that eikonal waves decay exponentially in clasically forbidden regions (i.e. regions without rays) as the eikonal parameter vanishes. Straight W'KB cannot detect this, but by asymptotically matching solutions on opposite sides of the barrier, one can estimate the transmission coefficient.

As in the case of perturbation theory for mechanical systems, there has been litule discussion of the time of validity of the WKB asymptotic expansion (i.e. the time-scale on which it is uniform). We san in the mectanical case that using special rechniques such as Kraskal's method could give us expansions uniform over time $1 / \epsilon$ but that getting longer times was problematic. Based on the picture of WKB as reduction by an approximate symmetry in wave space, we expect exactiy the same phenomena for waves. Long times have become important in recent years as much study has been devoted to quantum chaos (i.e. the behavior of eikonal waves when the corresponding rays are chaotic). Chaos is an inìnite time con:ept.

In fact it is easy to construct cxamples where all the requirements of WKB are satisfied everywhere and for all time and yet the WKB solution becomes invalid on times of order $1 / \epsilon$. Jeff Lerner has suggested to me the example of a translation invariant dispersive wave equation with initial condition $A(\epsilon x) e^{i k x}$ where k does not depend on x and $A(x)$ is a single hump. Because k is constant, all rays are parallel and WKB predicts no spreading of the wave packet with time. However, we mighr have alternatively represented our wave packet in terms of its Fourier transform. Because A varies, the Fourier spectrum will be a smooth hump containing a band of wavevectors centered at k. This shows that the dispersive character of the equation will indeed be noticed by the packet which then in fact will spread with time. Let
us ertimate how long it takes for the packet to spread to twice its width. Because Fourier transforms live on the dual space. the peak in n-space bis width of order *. The greatest difference in group , 'acity at different poist of the wave packet can then be at most of order e Thus our packet takes time $1 / \mathrm{c}$ to sponad 1 unit in x-space. But the packet bas width $1 / \varepsilon$. To spread to twice its width. we must let the packet evolve for time $1 / \boldsymbol{c}^{2}$. Given a real nave, there is always ambiguity in the choice of splitting into araplitude and wa"e-vector parts The differences between theie alternative scalings lead to a significant difference in the correspording WKB predictions on time scales of order $1 / \epsilon^{2}$. This may be seen by an argument exprtly analogous to the one used in this example.

Chapter8:

A Hamiltonian

Approach to Wave

Modulation

"In mechanics the setting is the theory of slow modulations for vibrating systems... The classical therry is usually develoned by Hamiltonian methods, which are not directly applicable to :-aves, but we may instead derive the simplest of the classical results by the methods developed here." - [Whitham, 1974] p. 506.

8.1. Introduction

If we are given a wave system with a Hamiltonian structure, we would like to find a Hamiltonian seructure for the evolution of slow modulations of the amplitude and wave number. We want an algorit: ic procedure completely independent of any previous knowledge or special features of the systum (for example, nothing should depend on linearity). We work out the case of the inear Klein-Gordon equation with this constraint in mind The same procedure should rork for any system: noulinear, multi-field, integ, al equations, etc. We wish to extend the heautiful work of Whitham and later Lighthill which is based on Lagrangian averaging (see
the discussion and references in the excellent text [Whitham, 1974]) to Hamiltonian systems. which we have seen are more general. [Dubrovin and Novikov. i983] gives a Hamiltonian treatment for a special class of systems (thougb their perspective is quite different from ours) and may be of interest to readers as well.

Here we will work twith tie one-dimensional Klein-Gordon equation:

$$
\begin{equation*}
p_{z t}-p_{x x}+\varphi=0 \tag{8.1}
\end{equation*}
$$

To represent this as a Hamiltonian system we introduce the conjugate feld Π with the equations of motion:

$$
\begin{align*}
& \varphi_{t}=\Pi \\
& I \mathrm{~K}_{\mathrm{t}}=\varphi_{x x}-\varphi \tag{8.2}
\end{align*}
$$

This is Hamiltonian with the Poisson bracket

$$
\begin{equation*}
\{F, G\}=\int\left(\frac{\delta F}{\delta \varphi} \frac{\delta G}{\delta \Pi}-\frac{\delta F}{\delta \Pi} \frac{\delta G}{\delta \varphi}\right) d x \tag{8.3}
\end{equation*}
$$

and the Hamilonian

$$
\begin{equation*}
H=\int h d x \tag{8.4}
\end{equation*}
$$

where h is the Hamiltonian depsity

$$
\begin{equation*}
h=\frac{1}{2}\left(\Pi^{2}+\varphi_{=}^{2}+\varphi^{2}\right) . \tag{8.5}
\end{equation*}
$$

8.2. Periodic Solutions

There is a three dimensional submanifold of periodic solutions in this φ, Π space. We may label points in this submanifold by the three coordinates (A, k, θ) via

$$
\begin{align*}
& \varphi_{A, k, \theta}(x) \equiv A \sin (k x+\theta) \\
& \Pi_{A, k, \theta}(x) \equiv \sqrt{k^{2}+1} A \cos (k z+\theta) \tag{8.6}
\end{align*}
$$

For convenience we define

$$
\begin{equation*}
w \equiv \sqrt{k^{2}+1} \tag{8.7}
\end{equation*}
$$

The dynamics restricted to this manifold is given by

$$
\begin{align*}
\binom{\dot{\varphi}_{A k \theta}(x)}{\dot{\Pi}_{A k \theta}(x)} & =\binom{\omega A \cos (k x+\theta)}{-\omega^{2} A \sin (k x+\theta)} \\
& =\binom{\omega \frac{d}{d \theta}[A \sin (k x+\theta)]}{\left.\left.\omega \frac{d}{d \theta} \right\rvert\, \omega A \cos (k x+\theta)\right]} \tag{8.8}\\
& =\omega \frac{d}{d \theta}\binom{\varphi_{A k \theta}(z)}{\Pi_{A k \theta}(x)} .
\end{align*}
$$

Thus the dynamics on A, k, θ space is

$$
\left(\begin{array}{c}
\dot{A} \tag{8.9}\\
\dot{k} \\
\dot{\theta}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
\omega
\end{array}\right) .
$$

8.2.1. The Hamiltonian Reatricted to Periodic Solutions

Now restrict the Hamiltonian to the submanifold and integrate over a large volume V :

$$
\begin{equation*}
B_{V}\left(\varphi_{A k \theta}, I_{A k \theta}\right) \sim \frac{1}{4} A^{2} V\left(k^{2}+!\right)+\frac{1}{4} A^{2} V k^{2}+\frac{1}{4} A^{2} V=\frac{1}{2} A^{2} \omega^{2} V . \tag{8.10}
\end{equation*}
$$

Notice that this is asymptotically true as $V \rightarrow \infty$ and neglects an order 1 contribution at the ends. If we were only interested in the periodic case it would perbaps
be more elegant to introduce the average here and not to introduce the l at all In fact. we are studying the periodic case only 35 a model for the pikonal case. We want to think of the eike nal waves as limiting on the submanilold of exactly periodic - aves as the eikonal parameter vanishes. It is for this reason that we do not take the mean over the ahole line and are therefore st rek with the inclegant V 's.

8.2.2. The Symplectic Structure Reatricted to Periodic Solutions

Poisscn brackets can be pushed forward along projections but cannot in general be pulled back along injections like we have bere. We therefore work with the symplectic structure, wbich can be pulled back:

$$
\begin{equation*}
\Pi\left(\left|\delta \varphi_{1}, \delta \Pi_{1}\right|,\left[\delta \varphi_{2}, \delta \Pi_{2}\right]\right) \equiv \int d x\left(\delta \varphi_{1}(x) \delta \Pi_{2}(x)-\delta \Pi_{1}(x) \delta \varphi_{2}(x)\right) \tag{8.11}
\end{equation*}
$$

This two-form is the differential of a one-form a, which is easier to work pith:

$$
\begin{gather*}
\Omega=-d a \tag{8.12}\\
\alpha([\delta \varphi, \varepsilon \Omega T]) \equiv \int \Pi(x) \sigma_{\varphi}(x) d x . \tag{8.13}
\end{gather*}
$$

To pull this back to (A, k, θ) space. we push forward z vector ($A,(k, \delta \theta)$ to ($\delta \varphi, \delta \Pi$). We only need the of component:

$$
\begin{equation*}
\delta_{\digamma_{A k \theta}}(x)=\delta A \sin (k x+\theta)+\delta k A x \cos (k x+\theta)+\delta \theta A \cos (k x+\theta) \tag{8.14}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\hat{\alpha}(\delta \delta A, \delta k, \delta \theta)) \equiv \alpha\left(\delta \digamma_{A}, \therefore \delta \Pi_{A \in \theta}\right) \tag{8.15}
\end{equation*}
$$

$$
\begin{align*}
& =\int_{v} A w^{\prime} \cos (k x+\theta)[\delta A \sin (k x+\theta)+ \\
& \quad+x \delta k A \cos (k x+\theta)+\delta \theta A \cos (k x+\theta)] d x \tag{8.16}\\
& = \\
& =\frac{Y}{2} A^{2} w \delta \theta .
\end{align*}
$$

So the two-form ω on A, k, θ space is

$$
\begin{equation*}
\overline{\mathrm{A}}=-d \theta=-V A \omega d A \wedge d \theta-\frac{V}{2} A^{2} \frac{d \omega}{d t} d k \wedge d \theta \tag{8.17}
\end{equation*}
$$

$\hat{\Omega}$ is closed but degenerate (as it must be in three dimensions), and it annihilates the vector

$$
\begin{equation*}
A k \frac{\partial}{\dot{E} A}-2 \omega^{2} \frac{\partial}{\partial t} \tag{8.18}
\end{equation*}
$$

8.2.2.1. A Degenerate Polsson Structure on the Periodic Solutions

If we ch sose a function whose level gets are transversal to this vector field, we may make this function a Casimir for a Poisson structure agreeing with w on the level sets. If, furthermore, the function is a constant of the motion, then H restricted to the level sets must give the correct dynamics. Here we take this function to be k, which we now hold constant. Then on A, θ space,

$$
\begin{equation*}
\tilde{\Omega}=V A \omega d \theta \wedge d A \tag{8.19}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{V}=\frac{V}{2} A^{2} \omega^{2} \tag{8.20}
\end{equation*}
$$

But

$$
\begin{equation*}
d H=A V \omega^{2} d A \tag{8.21}
\end{equation*}
$$

so

$$
\begin{equation*}
x_{\omega}=\omega \cdot \frac{\partial}{\partial \theta} \tag{8.22}
\end{equation*}
$$

which is the correct dynarnics.

8.2.3. The Action of Periodic Ortits

We would like to work in canonical coordinates. From the expression for $\tilde{5}$, we see that θ is conjugate to

$$
\begin{equation*}
J \equiv \frac{1}{2} V A^{2} \omega \tag{8.23}
\end{equation*}
$$

In terms of J, θ the structure is quite nice:

$$
\begin{align*}
& \overline{\boldsymbol{\Pi}}=d \theta \wedge d J \tag{8.24}\\
& \boldsymbol{H}=J \omega
\end{align*}
$$

This gives the dynamics

$$
\begin{equation*}
\boldsymbol{K}_{H}=\omega \frac{\partial}{\partial \theta} \tag{8.25}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\dot{J}=0 \quad \dot{\theta}=\omega \tag{8.26}
\end{equation*}
$$

B.3. Modulatione

Modulations essentially "gauge" this theory. We introduce the space of pairs of functions: $(A(x), \theta(x))$. For each value of e we map this into (φ, Π) space via

$$
\begin{align*}
& \varphi_{\ell, A(x), \theta(x)}(x) \equiv A(\epsilon x) \sin \left(\frac{1}{\epsilon} \theta(\epsilon \tau)\right) \\
& \Pi_{\ell, A(x), \theta(x)}(x) \equiv w(\epsilon x) A(\epsilon x) \cos \left(\frac{1}{\epsilon} \theta(\epsilon x)\right) \tag{8.27}
\end{align*}
$$

where we bave defined for convenience

$$
\begin{equation*}
k(x) \equiv \theta^{\prime}(x) \quad \omega(x) \equiv \sqrt{k^{2}(x)+1} \tag{8.28}
\end{equation*}
$$

This time the dynamics leaves the submanifold invariant only asymptotically as $c \rightarrow 0$ (but does so to all orders). We would like to consider this asymptotic dynamies on (A, θ) space, which represents the mudulational equations, as a Hamiltonian system. We do this by pulling back the Hamiltonian and the symplectic structure for each ϵ and then do asymptotics in $\epsilon \rightarrow 0$.

8.3.1. Stationary Phase Integrals

The method of stationary phase tells us that, as long as θ^{\prime} doesn't vanish, integrals of the form

$$
\begin{equation*}
\int f(\epsilon x) \cos \left(\frac{1}{\epsilon} \theta(\epsilon x)\right) d x \sim 0 \tag{8.29}
\end{equation*}
$$

vanish to all orders in ϵ as $\epsilon \rightarrow 0$. This tasily implies that

$$
\begin{equation*}
\int f(c x) \cos \left(\frac{1}{\epsilon} \theta(c x)\right) \sin \left(\frac{1}{\epsilon} \theta(c x)\right) d x \rightarrow j \tag{8.30}
\end{equation*}
$$

and

$$
\begin{equation*}
\int f(\epsilon x) \cos ^{2}\left(\frac{1}{\epsilon} \theta(\epsilon x)\right) d x \sim \frac{1}{2} \int f(\epsilon x) d x \tag{8.31}
\end{equation*}
$$

to all orders in e provided f is smooth and dies rapidly at infinity.

8.3.2. The Modulational Poisson Brackets

The modulational ? 'oisson brackets are obtained as before by col rerting (A.0) perturbations to (φ, Π) perturbations. II we call the map from (A, θ) to $(\varphi, \Pi), i_{2}$, then

$$
\begin{align*}
i_{\text {eo }}[\delta A, \delta \theta] & =\binom{\delta p}{\delta \Pi} \\
& =\binom{\delta A(\epsilon x) \sin \left(\frac{1}{\varepsilon} G(\epsilon x)\right)+\delta \theta(x) \frac{1}{\varepsilon} A(\epsilon x) \cos \left(\frac{1}{\varepsilon} \theta(c x)\right)}{\text { not needed }} . \tag{8.32}
\end{align*}
$$

All sin's and coe's have the argument: $(\theta(c x) / c)$. We will leave this argument out of our expressions for clanty. So

$$
\begin{equation*}
i_{k} c([\delta A, \delta \theta])=\alpha\left(i_{x=}(\delta A, \delta \theta]\right)=\int(\omega A \cos)\left(\delta A \sin +\delta \theta \frac{1}{\epsilon} A \cos \right) d x \tag{8.33}
\end{equation*}
$$

By stationary phase, assuming $d \theta \neq 0$ anywhere, we have that to all orders in ε :

$$
\begin{equation*}
i_{c} \alpha([\delta A, \delta \theta])=\frac{1}{\epsilon} \int \frac{1}{2} \omega A^{2} \delta \theta d \tau . \tag{8.34}
\end{equation*}
$$

Motivated by the periodic case, we introduce

$$
\begin{equation*}
J(x) \equiv \frac{1}{2} \nu(x) A(x)^{2} \tag{8.35}
\end{equation*}
$$

This is the wave action density. Thas the one form is $\left(1 / \epsilon^{2}\right) \int J \delta \theta d x$ (the ϵ is squared since J and $\delta \theta$ are evaluated at ϵx) and the corresponding Poisson bracket is canonical:

$$
\begin{equation*}
\{F, G\}=\epsilon^{2} \int a x\left(\frac{\delta F}{\delta \theta} \frac{\delta G}{\delta J}-\frac{\delta F}{\delta J} \frac{\delta G}{\delta \theta}\right) \tag{8.36}
\end{equation*}
$$

8.3.3. The Modulational Hamiltonian

The modulational Liamiltonian is simularly ottained by pulling back H :

$$
\begin{equation*}
i^{\prime \prime} H=\int d x\left(\frac{1}{2} \omega^{2} A^{2} \cos ^{2}+\frac{1}{2} A^{2} k^{2} \cos ^{2}+2 \epsilon A k A^{\prime} \operatorname{cossin}+\epsilon^{2} A^{\prime 2} \sin ^{2}+\frac{1}{2} A^{2} \sin ^{2}\right) . \tag{8.37}
\end{equation*}
$$

To all orders in ϵ, this ig

$$
\begin{equation*}
=\int d x\left(\frac{1}{4} \omega^{2} A^{2}+\frac{1}{4} A^{2} k^{2}+\frac{1}{2} \epsilon^{2} A^{\prime 2}+\frac{1}{4} A^{2}\right)=\int d x\left(\frac{1}{2} \omega^{2} A^{2}+\frac{1}{2} \epsilon^{2} A^{\prime 2}\right) \tag{8.38}
\end{equation*}
$$

Or in terms of J :

$$
\begin{equation*}
=\int d x\left(J \omega+\frac{1}{2} \epsilon^{2} A^{\prime 2}\right) . \tag{8.39}
\end{equation*}
$$

8.4. Globaı Symmetry Lmplies Local Conaervation Law

Let us now show that the presence of a global symmetry implies the existence of a local conservation law. Given a pair of canonically conjugate fields $(J(x), \theta(x))$. so

$$
\begin{equation*}
\{F, G\}=\int\left(\frac{\delta F}{\delta \theta} \frac{\delta G}{\delta J}-\frac{\delta F}{\delta J} \frac{\delta G}{\delta \theta}\right) d x \tag{8.43}
\end{equation*}
$$

and a Hamiltonian $\boldsymbol{H}(J, \theta)$ that is invariant under a global change of θ by a constant θ_{0} everywhere:

$$
\begin{equation*}
\text { i.e. } H\left(J, \theta+\theta_{0}\right)=H(J, \theta) \text {, } \tag{8.41}
\end{equation*}
$$

We may apply a generalization of Noether's theorem known as reduction. This entails rewritug everything in serms of

$$
\begin{equation*}
k(x) \equiv \nabla \theta(x) . \tag{8.42}
\end{equation*}
$$

which contains all information in θ except for a constant θ_{0}. We see

$$
\begin{align*}
& \int \frac{\delta G(J, k)}{\delta \theta} f(x) d x=\frac{d}{d \beta} G(J, k+\beta \nabla f) \tag{8.43}\\
= & \int \frac{\delta G}{\delta k} \cdot \nabla f d x=-\int\left(\frac{d}{d x} \cdot \frac{\delta G}{\delta k}\right) f(x) d x . \tag{8.44}
\end{align*}
$$

So

$$
\begin{equation*}
\frac{\delta G}{\delta \theta}=-\frac{d}{d x} \cdot \frac{\delta G}{\delta k} \tag{8.45}
\end{equation*}
$$

for $G^{\prime} s$ independent of θ_{0}. Thus the reduced Poiason bracket is

$$
\begin{equation*}
\{F, G\}=\int d x\left(\frac{\delta G}{\delta J} \frac{d}{d z} \cdot \frac{\delta F}{\delta x}-\frac{\delta F}{\delta J} \frac{d}{d x} \cdot \frac{\delta G}{\delta k}\right) . \tag{8.46}
\end{equation*}
$$

The evolution of J is thus

$$
\begin{equation*}
j(x)=\{J, H\}=-\frac{d}{d x} \cdot\left(\frac{\delta H}{\delta k}\right) \tag{8.47}
\end{equation*}
$$

This is the desired conservation equation for J, with the flux of J given by $\delta H / \delta k$. Similarly

$$
\begin{equation*}
\dot{k}(x)=\{k, H\}=-\frac{d}{d x}\left(\frac{\delta H}{\delta J}\right)=-\frac{d}{d x} \omega(x) \tag{8.48}
\end{equation*}
$$

In our case, to first order in ϵ we have

$$
\begin{equation*}
\boldsymbol{H}=\int h d x \quad h(x)=J(x) \omega(x) \tag{8.49}
\end{equation*}
$$

which is independent of the value of θ (it depends only on the gradient). We may thus apply the previous theorem to ohtain

$$
\begin{equation*}
\dot{J}(x)=\{J, H\}=-\frac{d}{d x}\left(J \frac{\partial \omega}{\partial k}\right)=-\frac{d}{d x}(U J) \tag{8.50}
\end{equation*}
$$

where we have introduced the group velocity:

$$
\begin{equation*}
U \equiv \frac{\partial \omega}{\partial k} \tag{8.51}
\end{equation*}
$$

Thus the wave action J is conserved and the fux is $U J$.
We have therefore successufully obtained the correct molulational equations using a purely Hamiltonian framework. Traditionally, obtaining modulational equations is a very complex task fraught with traps for the unwary. Whitham and Lighthill brought order to this task during the 1960's using Lagrangian methods. A fine account of this work occupies most of the second half of Whitham's book on waves: [Whitham, 1974]. The quote at the beginning of this chapter indicates
that Whitbam did not thiuk that this cruld be accomplished within a Hamiltonian framework. Wo see that it can indeed. This is of both theretical interest (particularly because of the explicit connection with the process of reduction) and practical interest. As we discussed in chapter 2. many of the recent systems which bave received a Hamiltonian formulation have done so only in the context of Poisson manifolds and therefore have no Lagrangia. analog. Our theory should be applicable to waves in these systems as wiell.

8.5. The Nonlinear Kloin-Gordon Equation

This section describes work done in collaboration with Richard Montgomery. Recently, Richard Monagomery bas proven that the method described in previous sections of this chapter for the hinear Klein-Gordon equation really is quite general and applies to arbitrary systems (preprint, March 1985). Let us here sketch the extension to the gonlinear Klein-Cordon equation:

$$
\begin{equation*}
\phi_{t t}=\phi_{x x}-V^{\prime}(\phi) . \tag{8.52}
\end{equation*}
$$

The arguments are almool identical to the linear case. We first introduce a momentum II conjugate to ϕ :

$$
\begin{align*}
& \phi_{t}=\Pi \\
& \Pi_{t}=\phi_{x x}-V^{\prime}(\phi) \tag{2}
\end{align*}
$$

This system is Hamiltonian with the canonical bracket given in section 8.1 and Hamiltonian

$$
\begin{equation*}
B=\int\left(\frac{1}{2} \Pi^{2}+\frac{1}{2} \phi_{x}^{2}+V(\phi)\right) d x \tag{8.54}
\end{equation*}
$$

We search for periodic functions of the form

$$
\begin{equation*}
\bar{\phi}^{\prime}(x, t)=F(k x+\omega t) \tag{8.55}
\end{equation*}
$$

where \boldsymbol{F} is a function of one variable. Let us denote $k x+\omega t$ by θ. We want F to be 2π-periodic:

$$
\begin{equation*}
F(\theta+2 \pi)=F(\theta) . \tag{8.56}
\end{equation*}
$$

The corresponding momentum will have the form

$$
\begin{equation*}
\tilde{\Pi}(x, t)=\omega F^{\prime}(\theta) \tag{8.57}
\end{equation*}
$$

(whese we use a prime to denote the θ derivative). Substatutang the absatz into the rguathon of motion gives us a simple O.D.E. for F

$$
\begin{equation*}
\left(\omega^{2}-k^{2}\right) \frac{\partial^{2} F}{\partial \theta^{2}}(\theta)+v^{\prime}(F(\theta))=0 \tag{8.58}
\end{equation*}
$$

Anytime one searches for travelling pave solutions (or similarity solutions) oue obtains a simple O.D.E. even when the original system is a complex nonlinear P.D.E.. In this case the resulting O.D.E. is the equation of motion for a "particle" of "mass" ($\omega^{2}-k^{2}$) moviog in a potential well defined by V if we treat θ as "time". The corresponding "energy" of this particle is

$$
\begin{equation*}
\frac{1}{2}\left(\omega^{2}-k^{2}\right)\left(\frac{\partial F}{\partial \theta}\right)^{2}+V(F)=A \tag{8.59}
\end{equation*}
$$

which we set to the constant value A (because it varies with wave amplitude).
It is interesting to note that the actual energy of the wave is

$$
\begin{align*}
H & =\int\left(\frac{1}{2} \tilde{\Pi}^{2}+\frac{1}{2} \tilde{\phi}_{x}^{2}+V(\bar{\phi})\right) d x \\
& =\int\left(\frac{1}{2} \omega^{2}\left(\frac{\partial F}{\partial \theta}\right)^{2}+\frac{1}{2} k^{2}\left(\frac{\partial F}{\partial \theta}\right)^{2}+V(F(\theta))\right) d x \tag{8.60}
\end{align*}
$$

which is the integral over x of the "particle" energy. (Tist is connected with the use of the Klein-Gordon equation in pa-ticle physics).

The energy equation gives

$$
\begin{equation*}
\left(\frac{\partial F}{\partial \theta}\right)^{2}=\frac{2(A-V(F))}{w^{2}-k^{2}} \tag{8.61}
\end{equation*}
$$

Wbich may be integrated to give the solution

$$
\begin{equation*}
\theta=\frac{1}{2}\left(\omega^{2}-k^{2}\right) \int \frac{d F}{\sqrt{A-V}(\overline{F)}} \tag{8.62}
\end{equation*}
$$

The constaut of integration is the initial phase of the wave. When V is a simple harmonic oscillator, corresponding to the linear system, this gives sin's and cos's as solutions. When V is a pendulum potential (as in the sine-Gordon equation) this is an elliptic integral and when V is quartic we get the solution to the Duffing oscillator. For the linear case we see that the constant A is half the amplitude squared (we continue to use A to farilitate the comparison with Whitham).

The nonlinear dispersion relation is obtained by requiring that F be 2π periodic in θ :

$$
\begin{align*}
2 \pi & =\int_{0}^{2 \pi} d \theta \\
& =\int_{p a r i o d} \frac{d \theta}{d F} d F \tag{8.63}\\
& =\frac{1}{2} \sqrt{\omega^{2}-k^{2}} \int_{\text {period }} \frac{d F}{\sqrt{A-V(F)}}
\end{align*}
$$

This gives one relation among A, k, and ω. This is analogous to the fact that we could write w as a function of k in the linear case. Here, though, w depends on A as well, which leads to characteristically nonlinear effects fiust as in a nonlinear oscillator where the frequency depends on the amplitude). The subuanifold of periodic solutions is thus three-dimensional again and we may coordinatize it by A, k and θ as in section B.2.

As in the linear case, we find the action for a periodic solution by integrating the canonical one-form

$$
\begin{equation*}
\int \Pi(x) \delta \phi(x) d x \tag{8.64}
\end{equation*}
$$

around a periodic orbit. $\delta \phi(x)$ acting on a unit tangent vector to the orbit will give

$$
\begin{equation*}
\frac{1}{\omega} \frac{\partial}{\partial t} \tilde{\phi}(x, t)=\frac{\partial F}{\partial \theta}(k x+\omega t) \tag{8.65}
\end{equation*}
$$

since c poves around its orbit in time $1 / \mathrm{w}$. The total action is therefore

$$
\begin{equation*}
\int \omega \frac{\partial F}{\partial \theta}(k x+\omega t) \frac{\partial F}{\partial \theta}(k I+\omega t i d x . \tag{8.66}
\end{equation*}
$$

As in the linear case, we must really integrate only over a volume \dot{V}, divide by \dot{V}, and let $\dot{\boldsymbol{V}}-\infty$, leaving woith a well defined action density. Since the integrand is periodic in r, we need only integrate over one period. The action density $J()$ is then

$$
\begin{align*}
J(x) & =\frac{1}{(2 \pi / k)} \int_{0}^{2 \pi / t} \omega\left(\frac{\partial F}{\partial \theta}(k x+\omega t)\right)^{2} d x \\
& =\frac{1}{(2 \pi / k)} \int_{0}^{2 \pi} \omega\left(\frac{\partial F}{\partial \theta^{\circ}}(\theta)\right)^{2} \frac{d x}{d \theta} d \theta \tag{8.67}\\
& =\frac{1}{2 \pi} \int_{0}^{\partial \pi} \omega\left(\frac{\partial F}{\partial \theta}(\theta)\right)^{2} d \theta .
\end{align*}
$$

Let us denote the average over a period of θ by $!$.

$$
\begin{equation*}
\langle\cdot\rangle \equiv \frac{1}{2 \pi} \int_{0}^{2 \mathrm{x}} \cdot d \theta . \tag{8.68}
\end{equation*}
$$

The action density may then be written

$$
\begin{equation*}
J(x)=\omega\left\langle F^{\prime 2}\right\rangle \tag{8.69}
\end{equation*}
$$

We may use the equation satisfied by F to write this as

$$
\begin{align*}
J(x) & =\frac{\omega}{2 \pi} \int_{\text {period }} \frac{\partial F}{\partial \theta} d F \\
& =\frac{\omega}{2 \pi} \int_{\text {period }} \frac{\sqrt{2(A-V(F))}}{\sqrt{\omega^{2}-h^{7}}} d F \tag{8.70}\\
& =\frac{\omega}{2 \pi \sqrt{\omega^{2}-k^{2}}} \int_{\text {period }} \sqrt{2(A-V(F))} d F .
\end{align*}
$$

When wic look at the special case where $V(F)=-\cos F$, this agrees with the expressiod given in [Forest and MALaugliw, 1982].

Let us now jump right into the modulational equations. We , ain consider the space of functions $(A(x), \theta(x)\}$ and for each ϵ, map this int (ϕ, Π) space via

$$
\begin{align*}
& \phi_{\ell, A(x), \theta(x)}=F_{A(\epsilon x)}\left(\frac{1}{\epsilon} \theta(c x)\right) \tag{8.71}\\
& \Pi_{\{, A(x\}, \theta(x)}=\omega(\epsilon x) F_{A\{\epsilon x)}^{\prime}\left(\frac{1}{\epsilon} \theta(\epsilon x)\right)
\end{align*}
$$

where F_{A} is the periodic F with constant set to A and ω is the known function of $k=\theta_{x}$ and A. We use F_{A}^{\prime} to denote the θ derivative of F_{A} and $\partial F_{A} / \partial A$ the A derivative. Exactly as in section 8.3.2, the canonicel oneform α is pulled back to (A, θ) space by

$$
\begin{align*}
i_{\varepsilon}^{*} \alpha\left(\left[\delta A_{1}, \delta \theta\right]\right) & \left.=\alpha\left(i_{\varepsilon}, \delta A_{i} \delta \theta\right]\right) \\
& =\int \omega F_{A}^{\prime}\left(\delta A \frac{\partial F_{A}}{\partial A}+\delta \theta \frac{1}{e} F_{A}^{\prime}\right) d x . \tag{8.72}
\end{align*}
$$

Now we use stationary phase to replace inuek oiv uver periodic quantities like F and its derivatives by integrals over the corresponding quairtities averaged over $[0,2 \pi]$. We change to the slow scale $X \equiv c x$:

$$
\begin{align*}
i_{i}^{*} \alpha(|\delta A, \delta \theta|) & =\frac{1}{\epsilon^{2}} \int \omega(X)\left(F_{A}^{\prime 2}\right)(X) \delta \theta(X) d X+\frac{1}{\epsilon} \int \omega(X)\left(\frac{\partial F_{A}}{\partial A} F_{A}^{\prime}\right\rangle(X) \dot{ }(X) d X \\
& =\frac{1}{\epsilon^{2}} \int J(X) \delta \theta(X) d X+\frac{1}{\epsilon} \int \omega(X)\left(\frac{\partial F_{A}}{\partial A} F_{A}^{\prime}\right)(X) \delta A(X) d X \tag{8.73}
\end{align*}
$$

Similarly, we see that the Hamiltonian is

$$
\begin{align*}
H & =\int\left(\frac{1}{2} \pi^{2}+V(\phi)+\frac{1}{2} \phi_{x}^{2}\right) d x \tag{8.74}\\
& =\int\left(\frac{1}{2} \omega^{2} F_{A}^{\prime 2}+V(F)+\frac{1}{2} \theta_{x}^{2} F_{A}^{2} \frac{\partial F_{A}}{\partial A} A_{x}+\epsilon^{2}\left(\frac{\partial F_{A}}{\partial A_{A}} A_{x}\right)^{2}\right) d x
\end{align*}
$$

Now we use stationary phase again and change to $X=c x$ to see that to leading
order

$$
\begin{align*}
H & \sim \frac{1}{\epsilon} \int\left(\frac{1}{2}\left(\omega^{2}+k^{2}\right) F_{A}^{\prime 2}(X)+V\left(F_{A}(X)\right)\right) d X \\
& =\frac{1}{\epsilon} \int\left(\frac{1}{2}\left(\omega^{2}+k^{2}\right) \frac{2\left(A-V\left(F_{A}\right)\right)}{\omega^{2}-k^{2}}-\frac{\omega^{2}-k^{2}}{\omega^{2}-k^{2}}\left(A-V\left(F_{A}\right)-A\right) d X\right. \\
& =\frac{1}{\epsilon} \int\left(k^{2} \frac{2\left(A-V\left(F_{A}\right)\right)}{\omega^{2}-k^{2}}+A\right) d X \tag{8.75}\\
& =\frac{1}{c} \int\left(k^{2} F_{A}^{\prime 2}+A\right) d X \\
& \sim \frac{1}{\epsilon} \int\left(k^{2}\left(F_{A}^{\prime 2}\right)(X)+A(X)\right) d X \\
& =\frac{1}{\epsilon} \int\left(\frac{k^{2}}{U(X)} J(X)+A(X)\right) d X .
\end{align*}
$$

Again we see that \boldsymbol{H} is asymptotically independent of $\boldsymbol{\theta}$. Since \boldsymbol{J} generates θ to leading order (as may be seen by looking at the asymptotic expression for the canonical one-form α),$J(X)$ is asymptotically a locally conserved quantity as for the linear system.

Chapter9:

A Lie Poisson Bracket

for Wave Action

Density

9.1. Expllicit Calculation of the Lle Polsson Bracket

This section represents joint work of Allan Kaufman, Steve McDonald, and myself. J and ψ are real valued functions of $x \in \mathbb{R}^{3}$. We consider the canonical Poisson bracket on functionals of J and ψ :

$$
\begin{equation*}
\{A(J, \psi), B(J, \psi)\}=\int\left[\frac{\delta A}{\delta J}\left(x^{\prime \prime}\right) \frac{\delta B}{\delta \psi}\left(x^{\prime \prime}\right)-\frac{\delta A}{\delta \psi}\left(x^{\prime \prime}\right) \frac{\delta B}{\delta J}\left(x^{\prime \prime}\right)\right] d^{3} x^{\prime \prime} \tag{9.1}
\end{equation*}
$$

We shift attention to functic rals of the distribution I on (\mathbf{x}, \mathbf{k}) space. We obtain the Poisson bracket of such functionals T_{1} and T_{2} by requiring that it reduce to the above canonical bracket on distributions of the form

$$
\begin{equation*}
I(\mathbf{x}, \mathbf{k})=J(\mathbf{x}) \delta^{\mathbf{3}}(\mathbf{k}-\nabla \psi(\mathbf{x})) . \tag{9.2}
\end{equation*}
$$

This can really only give the value of the wave Poisson bracket evaluated at distributions of this form. We may implicitly assume linearity in I, however, (and the

Lie I'oisson bracket in linear) and thereby extend the definition to multiple cikonal waves and then by continuity to all waves. Calling $(x, k) \equiv y$ and $\left(x^{\prime}, k^{\prime}\right) \equiv y^{\prime}$, the chain rule gives

$$
\begin{align*}
\left\{\mathrm{T}_{1}(I), \mathrm{T}_{3}(J)\right\} & =\int d^{6} y d^{6} y^{\prime} \frac{\delta \mathrm{T}_{1}}{\delta I}(y) \frac{\delta \mathrm{T}_{2}}{\delta I}\left(y^{\prime}\right)\left\{I(y), I\left(y^{\prime}\right)\right\} \\
= & \int d^{6} y d^{6} y^{\prime} d^{3} x^{\prime \prime} \frac{\delta \Upsilon_{1}}{\delta I}(y) \frac{\delta \Upsilon_{2}}{\delta I}\left(y^{\prime}\right) \tag{9.3}\\
& {\left[\frac{\delta I(y)}{\delta J}\left(x^{\prime \prime}\right) \frac{\delta I\left(y^{\prime}\right)}{\delta \psi}\left(x^{\prime \prime}\right)-\frac{\delta I(y)}{\delta \psi}\left(x^{\prime \prime}\right) \frac{\delta I\left(y^{\prime}\right)}{\delta J}\left(x^{\prime \prime}\right)\right] . }
\end{align*}
$$

We calculate the needed functional derivatives:

$$
\begin{align*}
\int \frac{\delta I(y)}{\delta J}\left(x^{\prime \prime}\right) \cdot f\left(x^{\prime \prime}\right) d^{3} x^{k} & =\lim _{t \rightarrow 0} \frac{I(y)[J+\epsilon f]-I(y)[J]}{c} \tag{9.4}\\
& =f(x) \delta^{3}(k-\nabla \psi(x))
\end{align*}
$$

So

$$
\begin{equation*}
\frac{\delta I(y)}{\delta J}\left(x^{\prime \prime}\right)=\delta\left(x-x^{\prime \prime}\right) \delta(k-\nabla \psi(x)) \tag{9.5}
\end{equation*}
$$

Siunilarly,

$$
\begin{align*}
& \int \frac{\delta I(y)}{\delta \psi}\left(x^{\prime \prime}\right) \cdot \phi\left(x^{\prime \prime}\right) d^{3} x^{\prime \prime}=\lim _{e \rightarrow 0} \frac{J(y)[\psi+\epsilon \phi]-J(y)|\psi|}{c} \\
& \quad=\lim _{e \rightarrow 0} \frac{1}{\epsilon} J(\mathbf{x})\left(\delta^{3}(\mathbf{k}-\nabla \psi(x)-\nabla \phi(x))-\delta^{3}(\mathbf{k}-\nabla \psi(x))\right) \tag{9.6}\\
& \quad=-J(\mathbf{x}) \nabla \phi(\mathbf{x}) \cdot \frac{\partial}{\partial \mathbf{k}} \delta^{3}(\mathbf{k}-\nabla \psi(x))
\end{align*}
$$

So

$$
\begin{equation*}
\frac{\delta I(y)}{\delta \psi}\left(x^{\prime \prime}\right)=\frac{\partial}{\partial x^{\prime \prime}} \cdot \delta\left(\mathbf{x}-\mathbf{x}^{\prime \prime}\right) J\left(\mathbf{x}^{\prime \prime}\right) \frac{\partial}{\partial \mathbf{k}} \delta\left(\mathbf{k}-\nabla \psi\left(\mathbf{x}^{\prime \prime}\right)\right) \tag{9.7}
\end{equation*}
$$

Finst substitute in $\frac{\delta I}{\delta j}$ and do the $x^{\prime \prime}$ integral:

$$
\begin{align*}
&\left\{\mathbf{r}_{1}, \mathbf{r}_{2}\right\}=\int d^{3} \mathbf{x} d^{3} \mathbf{k} d^{3} \mathbf{x}^{\prime} d^{3} \mathbf{k}^{\prime} d^{3} x^{\prime \prime} \frac{\delta \Upsilon_{1}}{\delta I}(\mathbf{x}, \mathbf{k}) \frac{\delta \Upsilon_{2}}{\delta I}\left(\mathbf{x}^{\prime}, \mathbf{k}^{\prime}\right) \\
& {\left[\delta^{3}\left(\mathbf{x}-\mathbf{x}^{\prime \prime}\right) \delta^{3}(\mathbf{k}-\nabla \psi(\mathbf{x})) \frac{\delta I\left(\mathbf{x}^{\prime}, \mathbf{k}^{\prime}\right)}{\delta \psi}\left(\mathbf{x}^{\prime \prime}\right)\right.} \tag{9.8}\\
&\left.-\delta\left(\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right) \delta\left(\mathbf{k}^{\prime}-\nabla \psi\left(\mathbf{x}^{\prime}\right)\right) \frac{\delta I(\mathbf{x}, \mathbf{k})}{\delta \psi^{\prime}}\left(\mathbf{x}^{\prime \prime}\right)\right]
\end{align*}
$$

Thus

$$
\begin{align*}
&\left\{\Upsilon_{1}, \Upsilon_{2}\right\}=\int d^{3} \mathbf{x} d^{3} \mathbf{k} d^{3} \mathbf{x}^{\prime} d^{3} \mathbf{k}^{\prime} \frac{\delta \Upsilon_{1}}{\delta I}(\mathbf{x} \cdot \mathbf{k}) \frac{\delta \mathbf{Y}_{2}}{\delta I}\left(\mathbf{x}^{\prime}, \mathbf{k}^{\prime}\right) \\
& {\left[\begin{array}{l}
\delta^{3}(\mathbf{k}-\nabla \psi(\mathbf{x})) \frac{\delta I\left(\mathbf{x}^{\prime}, \mathbf{k}^{\prime}\right)}{\delta \psi}(x) \\
\\
\\
-\delta^{3}\left(\mathbf{k}^{\prime}-\nabla^{\prime} \psi\left(\mathbf{x}^{\prime}\right)\right) \frac{\delta I(\mathbf{x}, \mathbf{k})}{\delta \psi}(\mathbf{x})
\end{array}\right.} \tag{9.9}
\end{align*}
$$

Now substitute in $\frac{\delta T}{\delta \psi}$:

$$
\begin{align*}
&=\int d^{3} \mathbf{x} d^{3} \mathbf{k} \cdot d^{3} \mathbf{x}^{\prime} d^{3} \mathbf{k}^{\prime} \frac{\delta \mathbf{Y}_{1}}{\delta l}(\mathbf{x}, \mathbf{k}) \frac{\delta \Upsilon_{2}}{\delta I}\left(\mathbf{x}^{\prime}, \mathbf{k}^{\prime}\right) \\
& {\left[\delta^{3}(\mathbf{k}-\nabla \psi(\mathbf{x})) \frac{\partial}{\partial \mathbf{x}} \cdot \delta^{3}\left(\mathbf{x}^{\prime}-\mathbf{x}\right) J(\mathbf{x}) \frac{\partial}{\partial \mathbf{k}^{\prime}} \delta^{3}\left(\mathbf{k}^{\prime}-\nabla \psi(\mathbf{x})\right)\right.} \\
&\left.-\delta^{3}\left(\mathbf{k}^{\prime}-\nabla \psi\left(\mathbf{x}^{\prime}\right)\right) \frac{\partial}{\mathbf{x}^{\prime}} \cdot \delta^{3}\left(\mathbf{x}-\mathbf{x}^{f}\right) J\left(\mathbf{x}^{\prime}\right) \frac{\partial}{\partial \mathbf{k}} \delta^{3}\left(\mathbf{k}-\nabla^{\prime} \psi\left(\mathbf{x}^{\prime}\right)\right)\right] . \tag{9.10}
\end{align*}
$$

Now integrate by parts with respect to \mathbf{k}^{\prime} in the first term and \mathbf{k} in the sroond:

$$
\begin{align*}
=\int d^{3} x d^{3} \mathbf{k} d^{3} x^{\prime} d^{3} \mathbf{k}^{\prime} & {\left[-\frac{\delta \Upsilon_{1}}{\delta I}(x, \mathbf{k})\left(\frac{\partial}{\partial \mathbf{k}^{\prime}} \frac{\delta \Upsilon_{2}}{\delta I}\left(x^{\prime}, \mathbf{k}^{\prime}\right)\right)\right.} \\
& \delta^{3}(\mathbf{k}-\nabla \psi(\mathbf{x})) \cdot \frac{\partial}{\partial x} \delta^{3}\left(\mathbf{x}^{\prime}-\boldsymbol{x}\right) J(\mathbf{x}) \delta^{3}\left(\mathbf{k}^{\prime}-\nabla \psi(\mathbf{x})\right) \\
+ & \left(\frac{\partial}{\partial \mathbf{k}} \frac{\delta \mathrm{T}_{1}}{\delta I}(\mathbf{x}, \mathbf{k})\right) \frac{\delta \mathrm{T}_{2}}{\delta I}\left(\mathbf{x}^{\prime}, \mathbf{k}^{\prime}\right) \\
& \left.\delta^{3}\left(\mathbf{k}^{\prime}-\nabla \psi\left(\mathbf{x}^{\prime}\right)\right) \cdot \frac{\partial}{\partial x^{\prime}} \delta^{3}\left(x-x^{\prime}\right) J\left(\mathbf{x}^{\prime}\right) \delta^{3}\left(\mathbf{k}-\nabla^{\prime} \psi\left(x^{\prime}\right)\right)\right] . \tag{9.11}
\end{align*}
$$

Now change the variables of integration: exchange \mathbf{k} and \mathbf{k}^{t} in the first term and \mathbf{x} and x^{\prime} in the second:

$$
\begin{align*}
=\int d^{3} \mathbf{x} d^{3} \mathbf{k} d^{3} x^{\prime} d^{3} \mathbf{k}^{\prime} & {\left[-\frac{\delta \Upsilon_{1}}{\delta I}\left(\mathbf{x}, \mathbf{k}^{\prime}\right)\left(\frac{\partial}{\partial \mathbf{k}} \frac{\delta \Upsilon_{2}}{\delta I}\left(\mathbf{x}^{\prime}, \mathbf{k}\right)\right)\right.} \\
& \delta^{3}\left(\mathbf{k}^{\prime}-\nabla \psi(\mathbf{x})\right) \cdot \frac{\partial}{\partial \mathbf{x}} \delta^{3}\left(\mathbf{x}^{\prime}-\mathbf{x}\right) J(\mathbf{x}) \delta^{3}(\mathbf{k}-\nabla \psi(\mathbf{x})) \tag{9.12}\\
+ & \left(\frac{\partial}{\partial \mathbf{k}} \frac{\delta \Upsilon_{1}}{\delta I}\left(\mathbf{x}^{\prime}, \mathbf{k}\right)\right) \frac{\delta \Upsilon_{2}}{\delta I}\left(\mathbf{x}, \mathbf{k}^{\prime}\right) \\
& \left.\delta^{3}\left(\mathbf{k}^{z}-\nabla \psi(\mathbf{x})\right) \cdot \frac{\partial}{\partial x} \delta^{3}\left(\mathbf{x}^{\prime}-\mathbf{x}\right) J(\mathbf{x}) \kappa^{3}(\mathbf{k}-\nabla \psi(\mathbf{x}))\right] .
\end{align*}
$$

Collect terms:

$$
\begin{align*}
&=\int d^{3} \mathbf{x} d^{3} \mathbf{k} d^{3} \mathbf{x}^{\prime} d^{3} \mathbf{k}^{\prime} {\left[-\frac{\delta \Upsilon_{1}}{\delta I}\left(\mathbf{x}, \mathbf{k}^{\prime}\right)\left(\frac{\partial}{\partial \mathbf{k}} \frac{\delta \Upsilon_{2}}{\delta I}\left(\mathbf{x}^{\prime}, \mathbf{k}\right)\right)\right.} \\
&\left.+\left(\frac{\partial}{\partial \mathbf{k}} \frac{\delta \Upsilon_{1}}{\delta I}\left(\mathbf{x}^{\prime}, \mathbf{k}\right)\right) \frac{\delta \Upsilon_{2}}{\delta I}\left(\mathbf{x}, \mathbf{k}^{\prime}\right)\right] \tag{9.13}\\
& \cdot \delta^{3}\left(\mathbf{k}^{\prime}-\nabla \psi(\mathbf{x})\right) \frac{\partial}{\partial \mathbf{x}} \delta^{3}\left(\mathbf{x}^{\prime}-\mathbf{x}\right) J(\mathbf{x}) \delta^{3}(\mathbf{k}-\nabla \psi(\mathbf{x})) .
\end{align*}
$$

Now recall $J(\mathbf{x}) \delta^{\mathbf{3}}(\mathbf{k}-\nabla \psi(\mathbf{x}))=I(\mathbf{x}, \mathbf{k})$ and integrate by parts in \mathbf{x}

$$
\begin{align*}
=\int & \left(d ^ { 3 } \mathbf { x } d ^ { 3 } \mathbf { k } d ^ { 3 } x ^ { \prime } d ^ { 3 } \mathbf { k } ^ { \prime } \left\{\left[\left(\frac{\partial}{\partial x} \frac{\delta \Upsilon_{1}}{\delta I}\left(x, \mathbf{k}^{\prime}\right)\right)\left(\frac{\partial}{\partial \mathbf{k}} \frac{\delta \Upsilon_{2}}{\delta I}\left(x^{\prime}, \mathbf{k}\right)\right)-\right.\right.\right. \\
& \left.-\left(\frac{\partial}{\partial \mathbf{k}} \frac{\delta \Upsilon_{1}}{\delta I}\left(x^{\prime}, \mathbf{k}\right)\right)\left(\frac{\partial}{\partial x} \frac{\delta \Upsilon_{3}}{\delta I}\left(x, \mathbf{k}^{\prime}\right)\right)\right] \\
& {\left[-\frac{\delta^{3}\left(\mathbf{k}^{\prime}-\nabla \psi(\mathbf{x})\right) \delta^{3}\left(\mathbf{x}-\mathbf{x}^{\prime}\right) I(\mathbf{x}, \mathbf{k})+}{\delta I}\left(\mathbf{x}, \mathbf{k}^{\prime}\right)\left(\frac{\partial}{\partial \mathbf{k}} \frac{\delta \Upsilon_{2}}{\delta I}\left(\mathbf{x}^{\prime}, \mathbf{k}\right)\right)+\left(\frac{\partial}{\partial \mathbf{k}} \frac{\delta \Upsilon_{1}}{\delta I}\left(\mathbf{x}^{\prime}, \mathbf{k}\right]\right) \frac{\delta \Upsilon_{2}}{\delta I}\left(x, \mathbf{k}^{\prime}\right)\right] } \tag{9.14}\\
& \left.\times \nabla \nabla \psi \cdot \frac{\partial}{\partial \mathbf{k}^{\prime}} \delta^{3}\left(\mathbf{k}^{\prime}-\frac{\partial}{\partial \mathbf{x}} \psi(\mathbf{x})\right) \delta^{3}\left(\mathbf{x}^{\prime}-\mathbf{x}\right) I(x, \mathbf{k})\right\} .
\end{align*}
$$

In the first term, the $\delta^{3}(\mathbf{k}-\nabla \psi(\mathbf{x}))$ in $I(\mathbf{x}, \mathbf{k})$ Iets us replace $\delta^{3}\left(\mathbf{k}^{\prime}-\nabla \psi(\mathbf{x})\right)$ by $\delta^{3}\left(\mathbf{k}^{\prime}-\mathbf{k}\right)$. In the second term we integrate hy parts in \mathbf{k}^{\prime} and then do the same replacement.

$$
\begin{align*}
& \left\{\Upsilon_{1}, \Upsilon_{2}\right\}=\int d^{3} \mathbf{x} d^{3} \mathbf{k} d^{3} x^{\prime} d^{3} \mathbf{k}^{\prime}\left\{\left[\left(\frac{\partial}{\partial x} \frac{\delta \Upsilon_{1}}{\delta I}\left(\mathbf{x}, \mathbf{k}^{\prime}\right)\right)\left(\frac{\partial}{\partial \mathbf{k}} \frac{\delta \Upsilon_{2}}{\delta I}\left(x^{\prime}, \mathbf{k}\right)\right)\right.\right. \\
& \left.-\left(\frac{\partial}{\partial \mathbf{k}} \frac{\delta \Upsilon_{1}}{\delta I}\left(\mathbf{x}^{\prime}, \mathbf{k}\right)\right)\left(\frac{\partial}{\partial \mathbf{x}} \frac{\delta \Upsilon_{2}}{\delta I}\left(x, \mathbf{k}^{\prime}\right)\right)\right] \delta^{3}\left(\mathbf{k}^{\prime}-\mathbf{k}\right) \delta^{3}\left(\mathbf{x}-\mathbf{x}^{\prime}\right) I(\mathbf{x}, \mathbf{k}) \\
& +\left[\left(\frac{\partial}{\partial \mathbf{k}^{\prime}} \frac{\delta \Upsilon_{1}}{\delta I}\left(\mathbf{x}, \mathbf{k}^{\prime}\right)\right)\left(\frac{\partial}{\partial \mathbf{k}} \frac{\delta \Upsilon_{2}}{\delta I}\left(x^{\prime}, \mathbf{k}\right)\right)\right. \\
& \left.\left.-\left(\frac{\partial}{\partial \mathbf{k}} \frac{\delta \Upsilon_{1}}{\delta I}\left(\mathbf{x}^{\prime}, \mathbf{k}\right)\right)\left(\frac{\partial}{\partial \mathbf{k}^{\prime}} \frac{\delta \Upsilon_{2}}{\delta I}\left(\mathbf{x}, \mathbf{k}^{\prime}\right)\right)\right]: \nabla \nabla \psi \delta^{3}\left(\mathbf{k}^{\prime}-\mathbf{k}\right) \delta^{3}\left(\mathbf{x}^{\prime}-\mathbf{x}\right) I(\mathbf{x}, \mathbf{k})\right\} . \tag{9.15}
\end{align*}
$$

We do the \boldsymbol{x}^{\prime} and \mathbf{k}^{\prime} integrals using the delta functions. The second term vanishes
and the first beromes the Lic-Poiswon bracket:

$$
\begin{aligned}
& \left\{\mathbf{\Upsilon}_{1}(I), \mathbf{T}_{2}(I)\right\}=\int d^{3} \mathbf{x} d^{3} \mathbf{k} I(\mathbf{x}, \mathbf{k})\left[\left(\frac{\partial}{\partial \mathbf{x}} \frac{\delta \Upsilon_{1}}{\delta I}(\mathbf{x}, \mathbf{k})\right) \cdot\left(\frac{\partial}{\partial \mathbf{k}} \frac{\delta \Upsilon_{2}}{\delta I}(\mathbf{x}, \mathbf{k})\right)\right.
\end{aligned}
$$

$$
\begin{align*}
& =\int d^{6} y I(y)\left[\begin{array}{c}
\delta I_{1} \\
\delta I
\end{array} \frac{\delta I_{2}}{\delta I}\right]_{V} \text {. } \tag{9.16}
\end{align*}
$$

9.2. The Geometrical Picture

Alan Weinstein has given the following gemmetric interpretation of this resule On the one hand, as in section 2.7 .10 we may consider the group of symplertomorphisms of a symplectic manifold M. An infinitesimal symplectomorphism in represented by a Hamiltonian vector field (at least locally). We may think of the Lic algebra of the group of symplectomorphisms as being all Hamiltonian vector fields on M with the Lie bracket of vector fields being the Lie algebra bracket (perhaps with a minus sign, depending on colveriions) .'. \cdot 'ivalently (up to a constant), we may view it as the space of functions (Har., it $1 \mathrm{~L} . \mathrm{drs}$) on M with the Lie algebra bracket being the Poisson bracket of tro functions (defined using M 's symplectic structure). The coadjoint action of a symplectomorphistr on such a function is simply given by pullback. The dual of the Lie algebra is then the space of distributions on M. We therefore have the natural Lie-Poisson F -acket (given above) on functionals of such distributions.

The coadjoint action of a symplectomorphism on a distribution is given by pushing the distribution forward along the symplectomorphism. The coadjoint orbits, whic' have a natural KKS symplectic structure, consist of all distributious obtainable from a given one by canonical transformations In particular. the orbit of : δ-function looks just like M and bas the same symplectic structure (points of M correspond to the δ-function at that point). Lagrangial submanifolds (ir balf-dimensional subroanifolds on which the symplectic form vanishes) of M are taken to other Lagrangian submanifolds under canonical transformations (since the symplectic form is preserved) Locally, any small enougt piece of a Lagrangian sul-
manifold ran be taken to a corresponding piece of any other Lagrangian submanifoi, i b) a ramomeal tranaformation. So up to global issucs, the space of measured Lagrangıan submanfolds on M is itself a symplectic manifold (see gection 27.10 for more details,

Above, we saw that the phase function which determines the manifold and the amplitude which determines the distribution on that manifold, may be treated as ranonically conjugate variables in a way that is consistent with the Lie-Poisson strurture on all distributions. We would like to understand this fact geometrically. We will show that the cotangent bunde of the space of Lagrangian suhmanifolds of A1 may be naturally identifed with the space of distributions with Lagrangian support. The cotangent space at ogiven Lagrangian submanifold is identifiable with the the space of distributions defined on that Lagrangian suhmanifold. This is then identifable with the corresponding space of δ-like distributions or M supported on that manifold (see section 2.7.10). Thus the canouical conjugacy of the distribution and the manifold arises in a natural way.

What is the tangent space to a lagrangian submanifold of M in the space of Lagrangian submanifolds? A tangent vector will be a small deformation of the manifold which is itself Lagrangian. All such deformations come from Hamiltonian vector fields. The tangent space may thus be identified with the space of Haniltoman vector fields on M modulo those which leave the Lagrangian aubmanifold invariant. A Hamiltonian vector geld leaves a Lagrangian manifold invariant if and only if it is constant on it.

We see this as follows. If a Hamiltonian vector field X_{H} is tangent to our

Lagrangian manifold, then $d H=\omega\left(X_{H}, \cdot\right)$ must aunihilate all tangent vertor: to the manifold, since it is Lagrangian and so its tangent spaces are symplectucally orthogonal to themselves. This says that H is constant on it (if it is connerted). If H is constant on the Lagrangian submanifold, then it annihilates all tangent vectors. Thus X_{H} is symplectically orthogonal to the whole tangent space. But un a Lagrangian submanifold, the only such vectors are themselves tangent to it. Thus X_{H} preserves the Lagrangian manifold.

We may therefore identify the tangent space to the space of Lagrangian submanifolds at a given such manifold with the space of functions on M modulo those functions which vanish on the manifold (again ignoring constants). But this is exactly the space of functions on the Lagrangian submanifold. Taking the dual we see that the cotangent space to the space of Lagrangian submanifolds at a given Lagrangian manifold is indeed isomernhic to the space of distributions on that manifold.

This space of distributions is identifiable with the delta-like distributions on M supported on the manifold. The cotangent bundle of the space of Lagrangian submanifolds obtainahle by deforming a given one is thus isomorphic to the coadjoini orbit of the symplectomorphism group which contains any delta-like distribution supported by the given Lagrangian submanifold. The KKS coadjoint orbit symplectic structure is exactly the canonical structure obtained from looking at the orbit as is cotangent bundle.

PART III:

DISSIPATION

 and
STATISTICS

"These two branches, mechanics and thermodynamics, can be joined only from a higher standpoint, that of the statistical mechanics of molecular systems."[Klein, 1928] p. 203

Chapter 10:

Imbedding and

Projection Theorems

In this chapter we will demonstrate a number of relations between dissipative and non-dissipative systems. We will show, in particular, that any system can be embedded in a Hamiltunian system of twice the dimension and in a Poisson system of only one dimension more. These constructions are of interest because they help to delineate what operations lead one to artificial structures. Since they can arise from any system, the Hamiltonian structures of this section cannot be expected to give any new insights into the original system. They may be useful in understanding bow dissipative dynamics may arise from an underlying Hamiltonian system, however, since this always involves some kind of projection. We will also give examples of some seemingly harmless "dangerous operations" which can completely destroy the physical content of a model.

10.1. Imbedding in a Hamiltonian Syatem

Consider an arbitrary dynamical system given by a vector field \boldsymbol{X} on a manifold Q. We will construct a Hamiltonian system of twice the dimension which bas an invariant submanifold diffeomorphic to Q and on witich the restricted dynamiss
is exactly that given by \boldsymbol{X}. The manifold will be the cotangent bundle of Q, i.e. $T^{*} Q$. The dynanics will be the cotangent lift of $\dot{\lambda}^{\prime \prime}$ to $T^{*} Q$. This is defined as follow: the flow of X is a one paraneter family of diffeomorphisms of Q to itsell. A one-form may be pushed fursiard along a diffeomorphism (just pull it back along the inveme of the diffeomorphism). Thus at every moment of time each point in $T^{*} Q$ is mapped to another such point. Taking these together gives us a natural one-parameter family of diffeomorphisms from $T^{*} Q$ to itself which covers the flow of X (this is a point transformation). This family is actually the flow of a vector field on $T^{*} Q$ which is Hamiltonian with respect to the natural symplectic structure on $T^{*} Q$. The Hamiltonian is the function on $T^{*} Q$ given by

$$
\begin{equation*}
H(q, p)=\langle p, X(q)\rangle . \tag{10.1}
\end{equation*}
$$

Notice that H is linear on each $\mathbf{f b e r}$ of $T^{*} Q$ and that the zero section is in the zero set of H. It is easy to check that this gives the correct dynamics. With the symplectic structure

$$
\begin{equation*}
\omega=\dot{a} q \wedge d p, \tag{10.2}
\end{equation*}
$$

the dy口amics is

$$
\begin{align*}
& \dot{q}^{\prime}=X^{\prime}(q) \\
& \dot{p}^{\mathbf{a}}=-\dot{p}^{\prime} \frac{\partial X^{3}(q)}{\partial q^{i}} . \tag{10.3}
\end{align*}
$$

The zero section is indeed invariant (siner if p starts out zero, it semains so) and the dynamics restricted to it is the original dynamics. Thus by restricting the class of initial conditions, we may have dyaarnics inside a Hamiltonian system looking like a dissipative system of any type.

Notice further that under the natural projection

$$
\begin{equation*}
\pi: T^{\bullet} Q \rightarrow Q \quad \text { by } \quad(q, p)-q \tag{10.4}
\end{equation*}
$$

the Hamiltonian dyoamics projects down to the given dynamics. Thus if we observe only certain variables in a Hamiltonian system, it may look just like a dissipative system of any type.

Linear Hamiltonian vector fields must have their eigenvalues ditributed in the complex plane so as ta be symmetric under reflection about both the real and imaginary axes. Thus if we start with a linear attracting fixed point, like

$$
\begin{equation*}
X^{i}(q)=-q^{i}, \tag{10.5}
\end{equation*}
$$

which has all of its eigenvalues in the left half-plane, we must double the dimension to imbed it in a Hamiltonian system. Thus the above construction is the smallest Hamiltonian space we might construct in general.

10.2. Projection from a Hamiltonian System

Tbis argument for a lower bound on dimension does not apply to the case of projection, however. A fixed point of projected dynamics need not be a fixed point of the unprojected dynamics, so the eigenvalue argument doesn't hold. In fact, we may construct a Hamiltonian system that projects to our system by adding only a single dimension if the original space is odd dimensional, or tro more dimensions if it is even dimensional. The construction sheds light on a dangerous operation one sometimes sees being performed in the physics literature. If one has unbounded motion, one may smoothly untwist the orbits and hide any features of the dynamics that one desires.

Let us extend our given space Q by a single dimension to get $Q \times \mathbb{R}$. Let us denote the time t flow of the given dynamics X on Q by $\mathcal{F}_{\boldsymbol{i}}$. It is quite natural to consider the extra dimension in $Q \times 5$ as time and to cousider the original dynamics on Q augmented by a time which flows uniformly:

$$
\begin{equation*}
\bar{X}(q, t) \equiv(X(q), 1) . \tag{10.6}
\end{equation*}
$$

Because this has no fixed points and no recurrent orbits, we may now perform the following seemingly harmless operation. We define a diffeomorphism from $Q \times \mathfrak{R}$ to itself by

$$
\begin{equation*}
(q, t) \mapsto\left(\mathcal{F}_{-t}(q), t\right) \tag{10.7}
\end{equation*}
$$

By the definition of flow,

$$
\begin{equation*}
\frac{\partial}{\partial t} F_{1}(q)=X(q) \tag{10.8}
\end{equation*}
$$

so the image of our dynamical vector field \tilde{X} under this diffeomorphism is simply:

$$
\begin{equation*}
(0,1) . \tag{109}
\end{equation*}
$$

Thus we have completely trivialized the dynamics by a coordinate change that unraveled the original orbits. In particular all dynamics can be made to look the same on extended state spaces. For our Hamiltonian construction, we may choose a symplectic structure and Hamiltonian that give the trivial dynamics of (10.9) and pull them back to the original extended state space by our diffeomorphism. There they give the extended dynamics as a Hamiltonian system and so project onto the original dynamics. The upshot is that one must beware of time-dependent coordinate changes because they can easily de many non-physical things. such as making any system look Hamiltonian.

10.3. Dangerous Operations with Unbounded Variables

This same construction in sometimes used in disguige to show that all dyamifal systerns (or any particular system an author is interested in) are integrable. Througb a series of suitably complex coordinate changes, the autbor succeeds in adding an extra variable with unbounded dynamics (the next two sections present explicit examples). Tbis is then used as above to irivialize the system, where constant: of the motion are pi. ziful. The constants are pulled back and appear magically to have simplified the original system.

Other dangerous things one can do are to make attractive systems look repulsive (as in figure (10.1) and in fact get Liapunovexponents to be anything one wishes. (Oseledec's theorem shows that they are well defined for bounded systems, in the sense that all amooth metrics give them the same values as discussed on \mathbf{p}. 284 of [Guckenheimer and Holmes, 1983], but they have no intrinsic meaning for unbounded systems).

10.3.1. Eg: Surfeptitlously Changing Damping to Driving

Let us convert a damped hamonic oscillator to one with negative friction. We start aith the bystem

$$
\begin{align*}
& \dot{x}=v \tag{10.10}\\
& \dot{v}=-x-k v .
\end{align*}
$$

We make the change of coordinated

$$
\begin{align*}
& \bar{x}=e^{k t} x \tag{10,11}\\
& \bar{v}=e^{k t} v+k e^{k t} x .
\end{align*}
$$

We see that the nem roordinates satisfy the equations

$$
\begin{align*}
\frac{d}{d t} \tilde{x} & =k e^{k t} x+e^{k t} \dot{\tilde{x}} \\
& =k e^{k t} x+e^{k t} \cdot \\
& =\hat{v} \\
\frac{d}{d t} \bar{v} & =k e^{k t} v+e^{k t} \dot{v}+k^{2} e^{k t} x+k e^{k t} \dot{\tilde{x}} \tag{10.12}\\
& =k e^{k t} v-e^{k t} x-k e^{k t} v \\
& =-\tilde{x}+k \tilde{v}
\end{align*}
$$

as desired.
In perturbation theory, if one makes time dependent coordinate changes, one must make certain that they remain close to the identiry for large times (for example by requiring that they be periodic or quasiperiodic in time) or else one may sweep any undesirable dynamics under the rug.

10.3.2. Eg.: Pitfalle in the Une of Lie Transforms

Lnt us illustrate some of these dangers with a simple example using the method of Lie transforms. It is becoming fashionable to use Lie transforms in very complex situations, where it is hard to keep one's physical intuition about the problem (eg. in systems with many-particle dynamics or even infinite-dimensional wave systems). It is therefore worthwhile to point out some pitfalls for the unwary in a simple example. Such examples will hopefully help us to avoid misapplying Lie transforms in more cemplex circumstances.

Figure 10.1: Attraction changed to repulsion by a time dependent change of coordinates.

In this method we assume given a Hamiltonian as an asymptotic series in c whose zero order term has been brought to action-angle form and depends only on the actions. Let us examine the example:

$$
\begin{equation*}
H=H_{0}+\epsilon H_{1}=\omega_{1} J_{1}+\omega_{2} J_{2}+\epsilon \cos \left(\theta_{1}-\theta_{2}\right), \tag{10.13}
\end{equation*}
$$

on the phase space $\theta_{1}, J_{1}, \theta_{2}, J_{2}$ with the canonical bracket: [,]. The method of Lie transforms seeks to find an ϵ-dependent canonical transformation which becomes the identity as $\rightarrow 0$ and which converts H to a new Hamiltonian K, which depends only on the actions. We represent the canonica' transformation as the time-one flow generated by the ϵ-dependent Hamiltonian:

$$
\begin{equation*}
-W=\epsilon W_{1}+c^{2} W_{2}+\ldots \tag{10.14}
\end{equation*}
$$

-W's Hamilionian vector feld, viewed as a differential operator on functions on phase space, is denoted by

$$
\begin{equation*}
L=|W, \cdot| \tag{10.15}
\end{equation*}
$$

The action of the flow on functions is then the operator:

$$
\begin{equation*}
e^{L} \tag{10.16}
\end{equation*}
$$

The transformed Haniitonian is then given by

$$
\begin{equation*}
K=e^{L} \cdot H=H_{0}+c\left(\left[W_{1}, H_{0}\right]+H_{1}\right)+\ldots \tag{10.17}
\end{equation*}
$$

We want to choose W order by order to eliminate the θ dependence in K. At first order we would like to soive for \boldsymbol{W}_{1} :

$$
\begin{equation*}
\left[\boldsymbol{W}_{1}, H_{0}\right\}=-H_{1} \tag{10.18}
\end{equation*}
$$

This just says that the derivative of W_{1} along the unperturbed dynamics (gencrated by H_{0}) should be equal to $-\sigma_{1}$. One sometimes ses the solutions written formally:

$$
\begin{equation*}
W_{\mathbf{1}}=-\int_{\text {uapertarbed orbite }} H_{\mathbf{1}} \tag{10.19}
\end{equation*}
$$

This leads one to think that the transformation is always possible and that the qualitative behavios of $K\left(J_{1}, J_{2}\right)$'s dynamics, which has all orbits periodic or quasiperiodic, is representative of the behavior of H 's. In the example wre are considering. this is indeed true if ω_{1} and ω_{2} are irrationally related. In this case, the Lie transform remains close to the identity for all time (and gets cluser as $c \rightarrow 0$) and so the change of variables doesn't do much damage.

Consider the case $\omega_{1}=\omega_{2}$, however. For this system

$$
\begin{equation*}
\dot{\theta}_{1}=\omega_{1}=\dot{\theta}_{2}, \tag{10.20}
\end{equation*}
$$

and so $\theta_{1}-\theta_{2}$ is constant in time. This means that

$$
\begin{equation*}
j_{1}=\operatorname{csin}\left(\theta_{1}-\theta_{2}\right) \tag{10.21}
\end{equation*}
$$

is congtant as well, and so J_{1},rrows steadily in time. This is in great variance with the prediction of K which says that $J_{\mathfrak{l}}$ remains constant in time. How is it that by a change of variables we converted a system with monotonically changing action to one with constant action? The seemingly harmleas integral over unperturbed orbits created a canonical transformation which was unbounded in time. As we have discussed, such transformations allow one to convert any system to any other, regardless of the actual physica involved. As this example demonstrates, one must he eqpecially careful when dealing with systerns that have resonances (different unperturbed degrees of freedom with the same frequency or with rationally related frequeacies). Notice that in this example, the error over bounded time is only of size c and so we bave done as well as näive perturbation theory. The whole point of Lie transforms, though, is to get behavior on a timescale of order $1 / \mathrm{c}$. On this scale the method has failed in the example above.

10.4. Imbedding in Poisson Syatems

Because Harniltolian dynamics on Poisson manifolds is more geveral than on symplecti- manifolds, we may imbed arbitiary dynamics into Poisson dynamics of only one dimension higher. As above, assume given an arbitrary manifold \mathcal{Q} and dynamical vector field X. We construct the manifol: $\mathbb{R} \times Q$ (this is realiy $\left(T^{*} \Re \times Q\right) / \Re$ as discussed in section 1.5 , question 66). Let 4 be a function on \Re defined by

$$
\begin{equation*}
h(x)=x . \tag{10.22}
\end{equation*}
$$

Deine the vertical vector field Y on $\$ \times Q$ to be

$$
\begin{equation*}
y=\frac{\partial}{\partial h} . \tag{10.23}
\end{equation*}
$$

We will use h pulled up to $\mathbb{R} \times Q$. We may define a Poisson bracket on $\mathfrak{R} \times Q$ as follows (this Poisson structure may be viewed as the bivector $\boldsymbol{X} \wedge \boldsymbol{Y}$):

$$
\begin{equation*}
\{f, g\} \equiv(X \cdot f)(Y \cdot g)-(X \cdot g)(Y \cdot f) \tag{10.24}
\end{equation*}
$$

This satisfies ith Jarobi identity, as may be routinely checked:

$$
\begin{aligned}
& \{f,\{g, h\}\}+\{g .\{h, f\}+\{h .\{f, g\}\}= \\
& X f Y\left(X g Y^{\prime} h-X h Y_{g}\right)-X(X g Y h-X h Y g) Y f \\
& +X g Y(X h Y f-X f Y h)-X(X h Y f-X f Y h) Y g \\
& +X h Y(X f Y g-X g Y f)-X(Y f Y g-X g Y f) Y h \\
& =X f Y X g Y h+X f X g Y Y h-X f Y X h Y g-X f X h Y Y g \\
& -X X g Y h Y f-X g X Y h Y f+X X h Y g Y f+X h X Y g Y f \\
& +X g Y X h Y f+X g X h Y Y f-X g Y X f Y h-X g X f Y Y h \\
& -X X h Y f Y g-X h X Y f Y g+X X f Y h Y g+X f X Y h Y g \\
& +X h Y X f Y g+X h X f Y Y g-X h Y X g Y f-X h X g Y Y f \\
& -X X f Y g Y h-X f X Y g Y h+X X g Y f Y h+X g X Y f Y h
\end{aligned}
$$

since the Lie bracket of X and Y :

$$
\begin{equation*}
[X, Y]=X Y-Y X=0 \tag{10.26}
\end{equation*}
$$

since Y is constant. Because

$$
\begin{equation*}
Y \cdot h=\frac{\partial}{\partial h} h=1 \tag{10.27}
\end{equation*}
$$

we see that for any f

$$
\begin{equation*}
\{f, h\}=X \cdot f \tag{10.28}
\end{equation*}
$$

Thus with this Poisson bracket and h as Hamiltonian we obtain the original dynamics given by X. Here, each of thr level sets of h has the original dynamics and so
both each injected level set and the projection along $\mathbb{R}_{\text {give }}$ the original X dyuamics on Q. The symplectic leaves are the products of \Re and the non-fixer-point orbits of X. Each fixed point of X yields an interval of poiut symplectic bones along \Re. We have shown that by adding one extra dynamical variable, we can make any system into a Hamiltouian system on a Poisson manifold.

Let us give an explicit example. The simplest dissipative dynamical system is given by

$$
\begin{equation*}
\dot{\boldsymbol{x}}=-x, \tag{10.29}
\end{equation*}
$$

where x is a point on the real line. This type of system is used as a model for linear relaxation in non-equilibrium thermodynamies, where $x=0$ is x 's equilibrium value. If we introduce another variable y, then the (x, y) plane is a Poisson manifold with a Poisson bracket given by

$$
\begin{equation*}
f_{1} g=x\left(\frac{\partial f}{\partial y} \frac{\partial g}{\partial x}-\frac{\partial f}{\partial x} \frac{\partial g}{\partial y}\right) . \tag{10.30}
\end{equation*}
$$

If we consider the Hamiltonian

$$
\begin{equation*}
\boldsymbol{H}=\boldsymbol{y} \tag{10.31}
\end{equation*}
$$

then the Hamiltonian dynamiss is

$$
\begin{equation*}
\dot{f}=f, G=-2 \frac{\partial f}{\partial r} \tag{10.32}
\end{equation*}
$$

This gives the dynamical equations

$$
\begin{equation*}
\dot{x}=-x \quad \dot{y}=0 . \tag{10.33}
\end{equation*}
$$

The original dissipative system: $\dot{x}=-x$, is both imbedded as the dynamies on any of the submanifolds: y =constant, and the result of piojecting along y (i.e. forgetting the value of y).

Chapter11:

Projected Area and

Canonical

Transformations

Tourist: Can you give me the directions to Omaha?
Farmer, scratching his bead: You can't get there from here.-Anon.
Much of this thesis has been about simplifying the deacription of physical systems by projecting their dynamics down to various subspaces. A classicel theoreris of Licuville states that the dynamies of a Hamiltonian aystem preserves a certain canonical volume element in phase space. In modern parlence this theorem is very easy to prove. The Hamilonian flow preserves a symplectic structure ω on phase space (i.e. it is equal to its pullback along th: How for any time). Since the operation of pullback of differential forms commutes with the operation of wedging them together, the Hamiltonian flow also preserves $\omega \wedge \omega, \omega \wedge \omega \wedge \omega, \ldots$, and finally in N dimensions: ω^{N}. It is easy to see that this last is a volume element, and in fact is the generalization to manifolds of the one de ribed by Liouville. This volume prescrvation property of Hamiltonian flows has many significant consequences for pbysical systems. It is the key ingredient for the Poincaré recurrence theo-
rem [Arnold, 1978]and is responsible for the absence of attractors in Hamiltonian systems. It is also the basis for much of staistical mechanics.

11.1. Application to Particle Acceleratora

When we project our dynamies to a smaller space, the volume preservation is is ;-meral lost, but some remnant remains to impose constraints on the projected dynamics. There are many physical situations where these constraints lead to very interesting consequences. Andy Sessler has descrihed to me the relevance to the design of free-electron lasers of any theorems constraining the ability of a Harniltonian system to change the volume of projection of a region. The time evolution of the particles moving through an FEL is often described by linearizing ahout some known orbit, leading to a time dependent linear canonical transformation on single particle phase space. If the particles in the beam are sufficiently noninteracting, the device applies this Hamiltonian transformation to all particles simultaneously. The phase space for a particle is a product of a 2-dimensional longitudinal phase space and a 2 or 4 dimensional transverse phase space. The source of the beam going into the FEL typically produces a particle distribution with longitudinal and transverse distributions uncoupled, and a uniform spread over some range of momenta and some range of positions. Thus we can think of the incoming beam as a uniformly filled in parallelepiped lined up along the transverse and longitudinal phase spaces. We send these particles through the FEL and get a distorted and bent over parallelepiped in phase space out from the other end. Quite often we are more interested in some of the phase space coordinates than the other ones. For instance, we may
want a be 2 m with very small transverse spread in space and monentum, while not caring about the longitudinal spatial spread, to get a well defined beam axis. (Or sometimes the other way around if we want well defined buckets to increase the efficiency of encrgy transfer between a wave and the beam). While we know that the total volume in the parallelepiped must remain constant, we are interested in the possibuity of trading some transverse phase space volume for longitudinal phase space volume.

11.1.1. Courant's Theorem

[Courant, 1966] has looked at this question and arrived at the following theorem: "An ellipsoid in phase space whose principal axes are the canonical coordinate and momentum axes can be transformed by a linear canonical transformation into another such normally oriented ellipeoid only if the areas of the projections of the Irst eliipsoid on each of the (q_{i}, p_{i}) planes are separately equal, one by one, to the corresponding projections of the second ellipsaid. The transformation is then the direct sum of N separate area-preserving, two-dimensional transformations." This statement of his theorem assumes that all the projected areas are different. When two are the same, the symplectic transformation may couple them. It is also important to note that the "corresponding" projections that have the same area need not be along the same sets of axes. In particular, we may exchange two sets of axes. This ruay be all that is needed for certain circumstances in the accelerator setting. If the phase space is ($q_{1}, p_{1}, q_{2}, p_{2}$), then the Hamiltonian

$$
H=q_{1} p_{2}-q_{2} p_{1},
$$

has a flow which just rotates the $\left(q_{1}, q_{2}\right)$ and $\left(p_{1} . p_{2}\right)$ planes. (this is the angular mot mentum for a point particle in the plane and we know its action is jnt rutat:ons). Thus after ati appropriate armount of time we will have exchanged η_{1} with q_{2} and p_{1} with p_{2}. Courant then states that the same throrem is true for the rectangular pa. allelepipeds tangent to and surrounding the ellipsoids Linfortunately. this theorem is restricted to the case wuere the final set is lined up the same way as the initial set is, which is likely to be a rather rare orcurenee. We would like to geteralize it to the projections under arbitrary transformations.
(Note added in proof: In a very recent preprint, M. Gromov has shown that the unit ball in $\Re^{2 N}$ cannot be mapped into a cylinder over a disc in (x, p_{s}) space with radius less than one by any canonical transformation. This landmark work resolvemany unsolved classical problems in symplectic geonerry using very sophisticated arguments combining minimal surface throry from Riemannian geometry. elliptic P.D.E. theory. complex analysis in many variables. and the Atiyah-Singer index theorem. It is available as a preprint dated January 1985: "Pseudo-holomorphic Curves in Symplectic Manifolds" from Institut des Hautes Etudes Srientifiques. 35. route de Chartres. 91440-Rures-sur-ivette, France.)
11.2. Relation to the Uncertainty Principle

Semi-classisal mechaniss allows us to construct certain asymptotic relations between eikonal waves, say evolving under the Schrödinger equation. and Hamiltonian dynamire on a rorresponding classical phase space. Every wave function has a corresponding Wigner distribution on the classical phase space. We may use this to as-mptotically assign to wave functions, those regions in phase space which contain most of the censity of their Wigner function. It is a folk theorem in physics that in N^{N} dimensional systems, these regions are of volume h^{N} (where h is Plank's constant) A classical theorem of Weyl shows that as the energy E approaches infinity, the number of eigenstates of a Hamihoman corresponding to a bounded classical system, with energy less than E, asymptotically approaches the volume of the region in classical phase space with energy less than E, measured in units of h^{N}. The exact relation between the classical regions and the quantum iates is being clarified with the techniques of micro-loral analysis [Fefferman, 1983]. Even though the volume of a wave-packet is always the same in phase space, we are usually interesied in its extent in position space or in its Fourice transform's extent in momentum space. As the wave packet evolves, it typically strntches out in a "Ciagonal" direstion in phase space, making both of these projections grow. This is the well known quantum spreading of wave packets (or any other waves with dispersion). There is a rigorous lower bound on dow tightly we can compact a wave packet in both a uqatial direction and the corresponding momentum direction, given by the uncertainty primiple. This says that the product of the q dispersion and the p dispersion ruth- be greater than h for each coordinate. In particular. we may not arbitrarily
give up phase volume in one set of coortinater ar the behest of atother eet Thuto the extent that the emmiclasical connection is valid. we would expect there to be limitations on shrinking projected volume under Hamitoman Hown. If we could find such a shrinking fow, we could apply the eorresponding quantum Hamiltonian to a wave packet and make measurements that give mone information than allowed by the uncertainty principle ahout position and momentum at an carlier time.

11.3. Weingtein's Approach

The bawic ided of Weinstein's approarh (unpublished is to reduce the question of reduring projected area to a known theorem about Lagrangian tori. He hinds a Lagrangian torus in the region of interest which projects to a circle. If the area enclosed by this tircle shrinks under a ranonical transformation. w may cause the image of the circle to be disjoint from the circle itself. This imples that the Lagrangian torus is also disjoint from its image. This is disallowed by a kuown theorem for sufficiently small canonical transformations. Therefore the projected area cannot shrink for small enough canonical transformations. Let us now go tbrough this argument more precisely.

Consider the symplectic manifoid S, formed as the product of two symplectic manifolds $S_{1} . \omega_{1}$ and S_{2}, ω_{2}. Take S_{1} to be two-dimensiona! and S_{2} to be arbitrary. For the product symplectic structare we use $\omega=\omega_{1}+\omega_{2}$ (here we are identifying $\dot{山}_{1}$ and ω_{2} with their pullbacks along the natural projections). Consider connected. simply-connected regions $R_{1} \subset S_{1}$ and $R_{2} \subset S_{2}$. Their produc:

$$
\begin{equation*}
R \equiv R_{1} \times R_{2} \tag{11.2}
\end{equation*}
$$

will be our initial region. Its projection down to S_{1} has area equal to the area of R_{1}. Weinstein has shown that under arbitrary (i.e. nonlinear) canonical transformations, that are sufficiently close to the identity, the projection of the transformed R to S_{1} has an area that is greater than or equal to the initial area. Furthermore. there appear, to be a "rigidity" theorem which says that if the area is the same. then. in fart, our transformation is a product of a symplectic tratsformation on S_{1}
and ont on S_{2}. Any coupling between the two sets of degrees of freedom must cause the projected area to increase. This is reminisecte of the increase of coarse-graiued or prififeted eftropy in statistical mechanics.

The proof of the first part rests on some Lagrangian intersection theory. Let us sketch the basic idea bere. The boundary of R_{1} is topologically a circle. Sinse S_{1} is 2 dimeusioual, we may apply a canonical tranformation that takes any such region to any other one with the same area as was shown iv \{Banyaga, 1977]. The circle is a Lagrangian submanifold of S_{1} (i.e. ω_{1} vanishes on it) as are all 1 dimensional submanifolds. Choose a Lagrangian torus in R_{2} (say by taking a product of sufficiently small circles in each of the canonical planes formed by a canonical basis in some little region). The product of these two tori will be a Lagrangian torus in R with respect to u. This corus projects down to the circular boundary of R_{1} in S_{1}. Assume we could apply a near ide..tity canonical transformation to R such that its projection to S_{1} had a smaller area tha" R_{1}. By a canonical transformation of S_{1} we can force this image to be stric:ly inside the boundary of R_{1} (say by making it look like a smaller circle concentric to the boundary of R_{1} in somic coordinates). But this mrans we bave a near-identity canonical distortion of a Lagrangian tornm whone projection doesn't intersect the initial torus. If the projections don't intersect, then neither do the Lori. But this is known to be impossitle.

In fact, recent technical advances have shown that even (${ }^{(0)}$ small canonical deformations of Lagrangian cori must intersect the initial torlis: ©onley and Zehnder. 1983 and (Chaperon. 1983: This result is one of a number of related result, about

from a rombination of topological and symplectic properties. These deat had their beginnang in Poincare conjecture that an area preserving map of an annulus to itself that twisted the bounding circles in opposite directions must have at least two fixed puint- 'Poincare. 1912'. Poincaré used his theorem to show the existence of infinitely many periodic orbits in the neighborhood of an elliptic periodic orhit in relestial mechanirs. Puincarés theorem was proved in [Birkhoff, 1913] and partially generalized to certain compact symplectic manifolds in (Arnold, 1965). Since then many fascinating developments have occurred as surveyed in [Weinstein. 1984a].

Let us sketch the proof for C^{\prime} small deformations (as in (Arnold, 19:8] p.420). A small meighborbood of any Lagrangian submanifold is symplectomorphic to a neighborhood of the cotangent buadle of that Lagrangian submanifold with the canonical cotangent symplectic structure (Weinstein, 1971]. In this representation, the initial Lagrangian torus is the zero section. A sufficiently close Lagrangian torus will project diffeomorphically onto this under the canonical cotangent projection. In fact it is actually the graph of the differential of a smooth function on the initial torus. Pecause it is Lagrangian it must be the graph of a closed form. (It is easy to check that the pullback oi the canonical one-form on a cotangent bundle from the graph of a one-form o back to the zero secticn is exactly that one-form c. Being Lagrangian means that the differential of the canonical one-form vanishes on the mamifold, and so its pullback's differential must also vanish. which just says that a is clored.) Because the canonical transformation extends to an open ball containing the torus. this form must actually be exact.

Poincarcts lemma telle us that locally every closed one-form is the differential
of a function. The only problem might be that when we go armund the fumbamental uncontractable loops of the torus, the function might not returi tin the imital valut If we think of the initial torus and its deformation in the original phane spare, the canomical transformation is defined over a topological ball containing them. We may thus find 2-dimensional discs whose boundaries are the fundamental loas oth the torus. The integral of the symplectic form over the initial dise is thercfore equal to its integral over the deformed disc. of we make a closed cylinder (no boundary) from the two discs and the sheet swept out by a loop under the deformation, Stokes. theorem says that the integral of s over the cylinder is zero. Since the two dise contributions cancel, the integrai of 2 over the cylinder swept out by the loop is itself zero. Stokes' theorem then tells us that the integral of a one form whose differential is ω in the region ll.e sheets sweep out, must have the same integral over the loop and its deformation. In general, canonical deformations with this property are known as exact deformations. The canonical one-form in our cotangent represeptation has w as its differential in this region. But since the intial torus is the zero section. the integral of $p d q$ around any loop must be zero. We may then conclude that its integral around any loop of the deformed torus is also zero. There is therefore no obstruction to finding a function on the deformed torus whose differential is the canonical one-form.

The points of intersection of the deformed torus with the initial corus are exactly the places where this differential vanishes (and so its graph hits the zero section). But these are the critical points of the function on the torus. But being compact, the torus force any function to have a maximum and a mimimmm (and
at least one posibly deenerate sadde by Lustermik Shmelman categery theory whach [ures interection. (haperongive the criterm that any exact deformation of the torn on which the q_{1}^{2}, p_{1}^{2} all remain positive (and so there is some loop that ian t puiked through zero) mubt tanse the image to intersect the initial torus.

11.4. Theorem for Linear Canonical Transformations

We would like to generalize this rasult from near-identity transformations to arbituary transformations. Unfortunately. it cannot be true in general as the folluw. ing example shows. Let us consider $\Re^{2} \times \Re^{2}$ and take our region to be a large area in S_{1} tinnes a small area in S_{2}. There is a canonical transformation which exchanges S_{1} and S_{2} and so makes the projection onto S_{1} smaller. This exchange is a "large transformation" and by the above, the projection must first increase and then decrease. We can get around this example in a number of ways. We may consider regions whose projected areas are the same or wo may study the sum of the areas or the minimal area under the different projections. Below we prove a theorem for arbitrary linear transformations on the increase of the sum of the projected areas. This generalizes Courant's theorem to arbitrary linear canonical transformations (but so far only in \Re^{q}) and is not restricted to be near-identity. One would like to extend it to higher dimensions, non-parallelepiped initial conditions, and nonlinear transformations. We develop the theory of projected parallelepipeds for arbitrary dimensions. The nonlinear situations are locally linear and we may chop our region into parallelepipeds to which the theorem applies. Unfortunately, the little parallelepipeds obscure one another under projection and this must be understood for a nonlinear theory.

Another lack to take is to not look at the projected area. but re rher the projected measure (i.c. we want the volume in the region that sits over each little arca in the two-dimensional space). Pbysically. it is often important to know not just that some particle's state project- to a givell region. but atso hou many particles.

Perhape the entropy (i.c. integral of ($-p \log p$) over the projected region) of this distriturion furction must increase. In this situaticn as well the geometry of parallelepiped, appears relevant. One plare to see the possible condection is through the central limit theorem. If we project a cube to a real line parallel to its longest diagonal. then the projected measure along the line is the multiple convolution of a rectangular pulse, with one pulse for each dimension of the cube. In the limit of large dimension, this approaches a Gaussian. The measure of lides on which the projection is close to a Gaussian asymptotes to one as the dimension grows. Futhermore, the entropy of a Gaussian is a maximum for all distributions with the same dispersion. A cube projected to its diagonal is in some sense maximally sensing each of the degrees of freedom (perturbing a point along any of the orthogonal axes of the cube is reflected by a perturbation in the image of the projection; if the projection isn't diagonal, then some axes are short-changed because their projections are less: important than others). Any rotation which lines the projection up more along an edge rill decrease the entropy of the projected measure.

If such a theorem guaranteeing the increase of entropy under coupling is true in infinite dimensions, then it might shed light on the increase of entropy under the evolution of Boltzmann's equation. Bogoliubov derived Boltzmann's equation as the first order term in an asymptotic expansion of the BBGKY hierarchy. The essential part of the argument obtains the evolution of the two particle distribution function as the Liouville equation fo: two interacting particles (the coneribution of the three-particle and bigher distributions is bigher order in the ordering seheme) The evolution of the two partirle distribution function is then Hamiltonian and
linear (albeit infinite dmensional). In Bogolinburs argument. we are given a spatially uniform one partule distribution whore evolution we wish to find (1te evolution equation depends on the two particle distribution). We take the two partictedistribution which is simply an uncorrelated product of this one-particle one with itself as initial conditions for the 2 -particle Liouville equation. Uader evolution the two particles will collide ereating a correlation and the infinite time asymptotics of this (i.e. when the two particles become widely separated) is used as the 2-particle driving term in the 1 -particle riolution, which becomes the Boltampan collision term. Boltzmann shows that under this evolution, the entropy of the ope-particle distribution must increase.

11.4.1. The Geometry of Projected Parallelepipeds

When we project a parallelepiped down to a lower dimensional space, the result is no longer a parallelepiped as in figure (11.1). We show here, though, that it may be decomposed into parallelepipeds in a uniform way, allowing us to get a formula for the volume of the projection. We demonstrate this decomposition using induction and a couple of simple initial lemmas. Let us be given n vectors $b_{1}, 1 \leq i \leq n$ in the k-dimensional linear space \mathscr{R}^{k}. We are interested in the region R consisting of points of the form

$$
\begin{equation*}
\sum_{i=1}^{n} a_{1} V_{i} \quad \text { for } \quad 0 \leq n_{i} \leq 1 \tag{11.3}
\end{equation*}
$$

Let $u=$ call this region the [0.1] span of the $I ;$'s.

Lemma 11.2. For any n and $k . R$ is convex.

Figure 11.1: A three-dimensional parallelepiped projects to a hexagon in two dimensions.

Proof. Consider any two points $\sum_{t=1}^{n} a_{i} V_{1}$ and $\sum_{t=1}^{n} b_{i} V_{t}$ in the region R. The line betwaen them consists of all points of the form

$$
\begin{array}{r}
\sum_{i=1}^{n} a_{i} V_{1}+t\left(\sum_{i=1}^{i+} b_{1} V_{i}-\sum_{i=1}^{n} a_{i} V_{i}\right) \tag{11.4}\\
=\sum_{i=1}^{n}\left[(1-t) a_{i}+t b_{i}\right] b_{i}
\end{array}
$$

where $0 \leq t \leq 1$. But since t and $1-t$ are non-negative and a_{1} and b_{2} are less than one, we see that

$$
\begin{equation*}
(1-t) a_{1}+t b_{1} \leq(1-t) \cdot 1+t \cdot 1=1 \tag{11.5}
\end{equation*}
$$

But this shows that all poiuts on the line between the two given points satisfy the defining criterion for R and therefore belong to R. Hence R is convex. Q.E.D.

Definition 11.1. Let us define a vertex of a subset of \Re^{\star} to be any point of the set such that there does not exist any open interval of a straight line in \Re^{k} which containe the point and lies completely in the set.

Lemme 11.3. All vertices of the set R have a unique representation as a sum $\sum_{x=1}^{n} c_{1} V_{2}$ and all of the a_{t} 's are either I or 0 .

Proof. Assume we can represent a vertex as $\sum_{1=1}^{n} c_{1} V_{i}$ where some a_{j} is not 1 or 0 . There is then an open interval around a_{1} which is contained in $[0,1]$, and therefore the correspouding vectors form an interval of a straight line lying in R, violating our assumption of verticity. Now assume that there are two representations: $\sum_{t=1}^{n} a_{1} V_{t}$ and $\sum_{\mathrm{r}=1}^{n} b_{\mathrm{n}} V_{1}$ for thr vertex, where all the a_{1} 's and b_{1} 's are neccessarily 0 or 1 . The point may then also be represented as

$$
\begin{equation*}
(1-t) \sum_{i=1}^{n} a_{1} V_{1}+t \sum_{i=1}^{n} b_{1} V_{1} \tag{11.6}
\end{equation*}
$$

where $0 \leq t \leq 1$ or equivalently as

$$
\begin{equation*}
\sum_{i=1}^{n}\left[(1-t) a_{i}+t b_{1}\right] V_{i} . \tag{11.7}
\end{equation*}
$$

But unless all the b_{1} are equal to the corresponding a_{1}, we can thereby get a coefficient which is not ! or 0 , violating the above. Thus vertices bave unique representations. Q.E.D.

Lemma 11.4. a) Let us assume that the number of vectors n is greater than or equal to the dimension k of the ambient space. The region R may thea be decomposed as a union of parallelepipeds formed by rigid translations of the ;0.1. spans of k-element subsets of the set of n vectors, such that they intersect onfy in
(k - I) and bower dimensional sets (which are of Lesbegue measure zero). There are $n^{\prime} / k^{\prime}:(\pi-k):$ such parallelepipeds.
b) Let us assume that R is k-dimensional. The boundary of R may then tee decomposed as a union of parallelepipeds formed by rigid tral lations of the $[0,1]$ spans of $(k-1)$-clement subsets of the set of n vectors, where each such span is included twice and the intersections of the translates are of dimension $k-2$ and lower.

Proof. We prove these two parts together using a double induction in k and n. The essence of the proof is shown in figure (11.2). We have shown the effect of adding an extra vector to the projection of a 3-dimensional parallelepiped's projection onto 2 dimensious (to give the projection of a hyper-cube). It adds an extra parallelogram to half of the boundary edges formed from the extra vector and 1 each of the original 3 vectors. We may gencralize this same construction to arbitrary dimensions as follows.

Both a) and b) have assumptions that prevent n from being less than k. To start the induction, assume $n=k$, where k is arbitrary. a) is now trivial since there are exactly k vectors and R is indeed equal to their $[0,1]$ span. In case b), R is actually a parallelepiped and its faces are obtained by taking the $[0,1]$ span of each set of $k-1$ vectors and basing it at zero and at the end of the remaining vector, which agrees with the statement in the lemma. We also aeed the case $k=1$ for arbitrary n (see figure (11.3)). This case is also easy, since we may just line up the n yectors starting at zero, each representing its own $[0,1]$ span and the boundary is just two endpoints which we may take as the union of the ends of the vectors.

Figure 11.2: The essence of the lemma. Adding a fourth vector adds three parallelograms formed from that vector and each of the original three vectors.

Let us now assume the theorem true for all n 's when k is less than k_{0} and for n 's less than or equal to n_{0} when k equals k_{0} and prove it for $k_{0}, n_{0}+1$. By induction this will prove the lemma as stated for all allowed $k^{\prime} 5$ and $n ' s$.

Let us begin with part a). We may assume that $n_{0} \rightarrow 1$ is strictly greater than k (simee we already did the equal case). Thus R is the ' 0,1 ; span of $n_{0}-1$ vectors. Consider the $[0, I]$ span of the first n of these and call it $S . R$ is obrained from S by adding $|0,1|$ multiples of the $\left(n_{0}+1\right)$ st vector to each point in S. In fact, we get all the extra points in R that aren't in S by adding such multiples to only boundary points of S fince to get a new point the verior must intersect the boundary and we can get the same point by adding a smaller multiple to that point

Figure 11.3: The n, k plane. The circles are the base induction cases. The open triangle is an example case. The closed triangles are the cases we must use in its proof by induction in addition to the circles.
of intersection). By induction, S decomposes into translates of the $|0,1|$ spans of the k-element subsets of the first n_{0} vectors. We need only sbow that the region in R : x contained in S is the union of translates of $\{0,1]$ spans of the $\left\{n_{0}+1\right.$) vector fith all $k-1$ element subsets of the first n_{0} vectors (up to sets of smaller dimension) to prove part a). But we may now apply part b) to S by the inductive hypothesis. Consider each set of $k-1$ vectors from the first n_{0} in turn. By part b) the boundary of S has cwo regions that are translates of their span, which are parallel (since they are rigid translates of each other). By the convexity of S (from the lemma above), S lics entirely in and on one side of the byperplane in \mathfrak{R}^{k} which
contains such a piece of the boundary. If the two regions are distinet. S musi her on opposite sides of their repective hyperplanes. The vactor $V_{\text {mot }}$ either lie: in such a hyperplane or points to one side of it when its basepoint is contained in it If it lies in the hyperplane or if the $k-1$ vectors span a space of lower than $k-1$ dimensions, then the parallelipiped it forms with the $k-1$ vectors is degenerate and so of lower dimension than k and irrelevant for our union. Otherwise, take the piece of S 's boundary such that S is on the opposite side of the hyperplane as the vector. This parallelepiped and the vector $[0,1]$ span a k-parallelepiped which is in R but whose intersection with S is of lewer dimension (since they can only intersect in the hyperplane because they are on opposite sides of it). Because 5 's boundary is filled out by such $k-1$-parallelepipeds, and R is obtained by adding $[0,1]$ multiples of the ($n_{0}+1$)st vector to the boundary, \boldsymbol{R} is the union of these k-parallelepipeds as desired. It remains only to show that they intersect each other in sets of dimension lower than k. Since these parallelepipeds are obtained by sweeping the ($k-1$). parallelepipeds in half the boundary of S along the last vector, if two of them intersect in a region of dimension k, the corresponding ($k-1$)-parallelepipeds must intersect in a region of dimension $k \cdots 1$, but this ss not allowed by the statement of b).

Let us now prove b) under the same inductive assumption as above and using the result of a) (this is uk since the proof of a) only used b) on lower inductive cases). Since we have added \dot{k}-parallelepipeds to S to get R, balf of the original k - 1 paralieiepipeds in S^{\prime} 's bonndary have remanoed and the other balf have just been rigidly translated by the last vector. Thus we have two parallel copies of each
of the $(k-1)$-parallelepipids generated by the first n_{0} vectors, in the boundary of R ak desired. Extra boundary sufares arcse when we translated one parallelepiped by the last vector but not its neighbor. Consider the projection from $\sin ^{k}$ to 5^{k-1} along the last vector. Both S and R have the same imnge and the extra part of R 's boundary is exactly formed by translating by the last vector that part of S which projects to the ioundary of the image. We may apply part b) to the projection of S to see that this boundary may be decomposed into pairs of translates of all $\lfloor 0,1\rceil$ spans of the projection of $k-2$ vectors (since the induction hypothesis applies to this lower dimensional space). The subset of S that projects onto this boundary is then decomposed into unions of $[0,1]$ spans of $k-2$ vectors up to things which point along the last vector and are therefore degenerate with it. So indeed the extra part of the houndary of R is decomposable into translates of parallelepipeds formed from the last vector and all $k-2$ element sets of vectors from the first no. Together with the origigal decomposition of S 's boundary these give us the desired decomposition of part b). Q.E.D.

11.4.2. The Cage of Linear Canonical Transformatione

The way we wish to use this lemma is as follows. We get subsets that are $[0,1]$ spans of vectors as the projected image of a parallelepiped is a lower dimensional space. The volume of this projection: is the sum of the volumes of all parallelepipeds formable by these vectors, by the lemma. For $2 N$-dimensional symplectic vector sparec, the volume of a $2 N$-dimensional parallelepiped is given by ioserting the generating vectors into the N ith wedge product of the symplectic form with itself.
giving a natural volume element. Let us now use the to prowe the theorem of intetest.

Let $S_{1} \geqslant R^{2}$ bave the coordinates $\left(q_{1}, p_{1}\right)$ and the symplectic form: $-1=$ $d q \wedge d_{p}$. Let S_{2}, \mathcal{L}_{2} be defined minarly. Consider the symplectic manifold

$$
\begin{equation*}
S \equiv S_{1} \times S_{2} \tag{11.8}
\end{equation*}
$$

with the symplectic structure

$$
\begin{equation*}
\omega^{\prime} \equiv \omega_{1}+\omega_{2} . \tag{11.9}
\end{equation*}
$$

Here the ω_{1} are thought of as pulled back to S. We are interested in how the area of the projection of a set down to S_{1} changes under canonical transformations. We may prove the following theorem for product parallelepipeds under linear symplectic transformations. This is a physically relevant setting for many physical situations and is the local picture for the general case.

Theorem 11.5. Let us be given two vectors u_{1} and i_{1} in S_{1} whose $\{0,1\}$ span is a parallelogram of ais A_{1} and similarly for u_{2} and v_{2} in S_{2} with area A_{2}. Consider the parallelepiped : ' in S which is the product of these two parallelograms. Under an arbitrary linear cancnical transformation L of S, the sum of the projected areas of $L \cdot P$ in S_{1} and S_{2} is always greater than or equal to $A_{1}+A_{2}$. Furthermore equality only bolds if a certain restrictive condition listed below holds.

Proof. We have sted above that the projer'ed area of $L \cdot P$ in S_{1} is equal to the sums of the areas of the parallelograms spanned by the projections of $\left(L \cdot u_{1}, L \cdot u_{2}\right)$. $\left(L \cdot u_{1}, L \cdot v_{1}\right),\left(L \cdot u_{1}, L \cdot u_{2}\right),\left(L \cdot u_{2}, L \cdot v_{1}\right),\left(L \cdot u_{2}, L \cdot r_{2}\right)$, and $\left(L \cdot r_{1}, L \cdot v_{2}\right)$, The area is just the absolute value of the result of insering the projected vectors inter
-1 But this is the wame as inserting the vectors into the pullhack of along the projecturn which wr are denoting again ty -1 . Thus the sum of the projected areas in S_{1} and S_{2} i given by

$\left|-\mathcal{H}_{1}\left(L \cdot u_{2}, L \cdot \tau_{1}\right)\right|+\left|-1\left(L \cdot u_{2}, L \cdot \tau_{2}\right)\right|+\left|\omega_{1}\left(L \cdot v_{1}, L \cdot v_{2}\right)\right|+$
$\left|u_{2}\left(L \cdot u_{1} \cdot L \cdot u_{2}\right)\right|+\left|u_{2}\left(L \cdot u_{1} \cdot L \cdot \mathbf{v}_{1}\right)\right|+\left|\mathbf{u}_{2}\left(L \cdot u_{1}, L \cdot v_{2}\right)\right|+$
$\left|\mu_{2}\left(I \cdot u_{2}, L \cdot r_{1}\right)\right|+\left|\omega_{2}\left(L \cdot u_{2}, L \cdot v_{2}\right)\right|+\left|u_{2}\left(L \cdot v_{1}, L \cdot v_{2}\right)\right|$.
Applying this formula in the original situation, where L is the identity, and using the fact that w_{1} annibilates u_{2} and v_{2}, we see that

$$
\begin{equation*}
A_{1}+A_{2}=\left|u_{1}^{\prime}\left(u_{1}, v_{1}\right)\right|+\left|w_{2}\left(u_{2}, v_{2}\right)\right| . \tag{11.11}
\end{equation*}
$$

Decause L is symplectic on S, ω is preserved by it. This means that for any two vectors w_{1} and w_{2} in S, we have

$$
\begin{align*}
& \omega\left(L \cdot w_{1}, L \cdot w_{2}\right)=\omega\left(w_{1}, w_{2}\right) \\
& =\omega_{1}\left(L \cdot w_{1}, L \cdot w_{2}\right)+\omega_{2}\left(L \cdot w_{1}, L \cdot w_{2}\right) \tag{11.12}\\
& =\omega_{1}\left(w_{1}, w_{2}\right)+\omega_{2}\left(w_{1}, w_{2}\right)
\end{align*}
$$

Let's assume that u_{1}, v_{1} and u_{2}, v_{2} are in the right order so that ω_{1} and ω_{2} give positive answers when acting on them. Then we see that

$$
\begin{align*}
& A_{1}+A_{2}=\omega_{1}\left(u_{1}, v_{1}\right)+\omega_{2}\left(u_{1}, v_{1}\right)+\omega_{1}\left(u_{2}, v_{2}\right)+\omega_{2}\left(u_{2}, v_{2}\right) \\
= & \omega_{1}\left(L \cdot u_{1}, L \cdot v_{1}\right)+\omega_{2}\left(L \cdot u_{1}, L \cdot v_{1}\right)+\omega_{1}\left(L \cdot u_{2}, L \cdot v_{2}\right)+\omega_{2}\left(L \cdot u_{2}, L \cdot v_{2}\right) \\
\leq & \left.\left|\omega_{1}\left(L \cdot u_{1}, L \cdot v_{1}\right)\right|+\mid\right\lrcorner_{2}\left(L \cdot u_{1}, L \cdot v_{1}\right)\left|+\left|\omega_{1}\left(L \cdot u_{2}, L \cdot v_{2}\right)\right|+\left|\omega_{2}\left(L \cdot u_{2}, L \cdot v_{2}\right)\right|\right. \tag{11.13}
\end{align*}
$$

But in the expression above for the new sum of projected areas. this last expression appear: with some positive or zero terms added to it. Thus the sum of the new
areas is greater than or pqual to the original sum. We ran grt a uermsary condition for the sum to be equal. since all the extra terms in absolute value must separately vanish. So $د_{1}\left(L \cdot u_{1}, L \cdot u_{2}\right) \cdot \omega_{1}\left(L \cdot u_{1}, L \cdot v_{2}\right), \omega_{1}\left(L \cdot u_{2}, L \cdot \tau_{1}\right), \omega_{1}\left(L \cdot r_{1}, L \cdot r_{2}\right)$, $\omega_{2}\left(L \cdot u_{1}, L \cdot u_{2}\right), w_{2}\left(L \cdot u_{1}, L \cdot *_{2}\right), w_{2}\left(L \quad u_{2}, L \cdot v_{1}\right\}$, and $\left.山_{2} L \cdot v_{1}, L \cdot v_{2}\right)$ must all vazish. Q.E.D.

Courant's paper containe an apparent counterexample to this kind of theorem for sonlinear dynamics. A technique used in certain accelerators is to insert a knifeedged septum into a recirculating beam to strip off a than outer band and cause the inner region to continue to recirculate. In this way one can make the spatial width of the beam smaller, without iucreasing its momentum spread. The knife edge is really a very sleep potential. Even though the number of particles that hit it is small, they are given a very large momentum kick (this sounds like some of the classical arguments for the uncertainty principle). Thus the actual region in phase space is probably very spread out. The physically important quantity in this example, however, is the particle distribution function. If designed properly, one could presumably make the measure of the wild particles small. This kind of example indicates that one must be very careful in any distribution function version of these theorems.

Another construction that such a theorem will bave to beat is as follows It is well known that there exists a canonical transformation that moves any N distinct points of phase space to any other N distinct points. If we force most of the measure to be near these points, then we can line them up to project to any kind of distribution we desire. How do we get the measure to be near points in a product
distribution? Consider the phase spare to be \mathbb{R}^{6}. All canonical transformation: will take place no only the \mathfrak{g}^{9} furned by the first 4 coordinates. The lest two coordicates are needed only to make the measure large near the specified points in the firat four dimensions. We choose points in the first and second \Re^{2} so that the points in the product \mathbb{R}^{4} don't all lie over single point in the first \Re^{2} (for example we can choose 9 points arranged in three rows of three). We choose a volunse in \mathfrak{R}^{6} which is very extended in the last two dimensions near these points. This may be constructed as a product of a region in the first 2 dirsensions times a region in the last 4. We now use a canunical transformation in the first 4 coordinates which makes the points line up along a single fiber of the projection to the first two coordinates, letting the last two dimensions just go along for the ride. The projected distribution can then be made to vary in any way we wish.

An even simpler exaraple can be constructed in \mathfrak{R}^{4} which we assume to be coordinatized by $\left(x, p_{x}, y, p_{y}\right)$. Let our initial set be the unit ball in \Re^{4}. We chop the ball into 3 pieces: tbe part B_{1} with $-1 \leq x \leq-f$, the part B_{2} with $-t \leq$ $x \leq$ e and the part B_{3} with $\in \leq x \leq 1$. By making e small enough, we can make the measure of B_{2} arbitrarily small. By a simple canonical transiation and rotation defined on a region including B_{3} but in the complament of B_{1}, we can make B_{3} "sit above" B_{1} so that they project to the same region in the (x, p_{x}) plane. This is easily extended to a canonical transformation on all of $\mathbb{R a}^{4}$ which leaves B_{1} fixed (say by extending the tinae dependent Hamitonian vector feld defining thr transformation usiag a partition of unity). By Gromov's theorem, we know that B_{2} must be stretched in some wild way so that its projected area is large for at
ieast its image surroumds a large artal But me hawe constructed $B_{\text {a }}$ su that its meavure in R^{4} is small By repeating this construction, we can make an arbitrariby large percentage of the measure of the ball projert to arbitrarily small regions if a canonical transformation.

Chapter12:

Reversibility vs. Irreversibility

The seeming paradox of reversible underlying dynamics leading to irreversible macroscopic behavior has been wrestled with since the time of Boltzmann. For the case of gas dynamics, Boltzmann derived his famous equation on the basis of the questionable statistical assumption of "Stosszahlansati". From the Boltzmann equation one may derive the " H theorem" which says that the time derivative of the entropy is greater than or equal to zero. The "Stosszahlansatz" or "moiecular chaos assumption" says that the probability distributions for colliding molecules should be uncorrelated. As has been pointed out many times (see for example: pp. 46-88 of [Chapman and Cowling, 1958] and pp. 28-32 of the Statistical Physics volume in ;Landau and Lifshitz, 1960-1981]), because the underlying dynamics is reversible. for every state with its entropy increasing. there is a corresponding state with its entropy decreasing. In fact, one may show from this argument that the stosszahlansatz can hold ouly when the time derivative of entropy is zero. There Is no intrinsically special direction in time: If one starts with a random state with low entropy, the ntropy increases if one follows the evolution of the state either backward or forwards in time. There are many more states with high entropy than
low. and so a system is likely to be in a high entropy state regardless of the time.
There is a simple dynamical system which exbibits some of the secmingly paradoxical features of these complex statistical systems. Consider the differential equations

$$
\begin{align*}
& \dot{x}=-x y \\
& \dot{y}=x^{2}-y^{2} . \tag{12.1}
\end{align*}
$$

A sketch of the dyannics in the x-y plane is shown in figure (12.1).

Figure 12.1: The phase portrait of the equations in the $x y$ plane. The origin acts like an ariractor both forward and barkward in timer.

Consider the evolution of the radius: $\sqrt{x^{2}}+\overline{y^{2}}$. For every point (x, y) where the radius is getting smaller, there is a corresponding point ($x,-y$) where it is getting larger. That is, if you look on a circle of radius r, the length of are where the vectorfield points outward is the same as where it points inward. Nonetheless almost every initial condition (excluding the y axis, which you have zero probability of hitting) leads to the eventual decrease of the radius asymptotically to zero. Notice that this decrease takes place not only forward in time but backwards. The origin is almost an attractor for both the true and the time-reversed dynamics.

Chapter 13:

Hamiltonian

Dissipation in Infinite

 Dimensions"We now have an example of a so-called irreversible thermodynamic process, such as does not occur in mechanics: in all natural processes the entropy increases. ... Irreversible processes can in no way be simulated by purely mechanical processes."- [Klein, 1928] p. 203.

In this section we will examine some interesting facets of the dynamics of infinite dimensional Hamiltonian systerns. One of the key simplifying aspects of dissipative dynamics is the presence of attractors whose behavior dominates the time asymptotics of all nearby initial conditions. In Guite dimensions. Liouville's theorem regarding the volume preservation of Hamiltonian dynamics leads to the Poincaré reccurence theorem. This says that under the time-one map of a bounded Hamiltonian system every reighborbood of every initial condition has points that return to that neighborhood and furthermore almost every point comes back infinitely often arbitrarily close to its startiug point. The proof rests on the pigeon hole principle which says that with N pigeon holes and $N+1$ pigeons. there must
be at least one pigron hole with more than one pigeon. In a finite volume region. there is only room enough for a finite nutuber of images of a non-zero volume region mulet a volume preserving mapping. Eventually two images must intersect and by mapping the intersection region back to the starting region, we find points that recur. This precludes the presence of attractors in finite dimensional Hamiltonian systems (no smail region can be special since almost all points go back to where they came from). We will see that infuite dimensional Hamiltonian systems can have attractors of a certain kind.

13.1. Poincaré Recurrence and Atiractnra

The fact of recurrence is behind Ze'melo's objection to Boltzmano's \boldsymbol{H} theoremproving the increase of entropy for the Boltzmann equation. She fact of the matter is that the recurence time is quite long. For merely 10 harmonic oscillators with frequencies about 1 cycle per second and irrationally related, the room in the eorresponding 1 :- torus is so vast that the typical time to returo to within one percent of their initial conditions is 10^{20} seconds which is longer than the age of the universe. Boltzmann's retort to Zermelo was purportedly: "You should live so long", [Kac, 1959]p. 62 (in response to Loschmidt who objected to getting an irreversible equation from reversible underlying dynamics he replied: "Go ahead, reverse thent $h^{\prime \prime \prime}$). These long times also indicate that true ergodicity is not responsible for the experimental validity of statistical mechanics fir we consider a state of a cubic meter of air to be the number of molecules in each cubic millimeter and if
the dynamics is ergodic, the gas visits every state only once in about 10^{100} times the age of the universe).

13.1.1. The Lack of Recurrence in Infinite Dimengions

Reccurrence is a characteristically fintie dimensional phenonmenon. As the dimension gets higher the recurrence time-scale grows exponentially. If we are interested in Guite (but perhaps long) times, it is often physically valid to introduce asymptotics even if it leads to infinite dimensional models. Sometimes the analysis of infinite dimensional systems is easier because the structure "at infinity" organizes the dynamics. The wave equation is easier to deal with than the underlying molecular dynamics. When we make such models we must he careful not to befieve them when they depend crucially on asymptotic aspects beyond the value of the limiting parameter at which the modelled system really is. (For an analysis of some very interesting phenomena that occur near molecular wavelengths in a systera asymptotically approximated by the wave equation, see [Masiov, 1976] p. 58). The time to recur grows with the dimension and infinite dimensional systems need sot recur. There is no general Lionville theorem in infinite dimensions and orbits need not recur (they can "head off to infinity" along higher and higher dimensions still staying close to the origin). While we have argued that when the system is in too high a dimension the model beromes unphysical, the behavior on the way there rill reflect the real behavior and properties of the infinite dimensional system may be properties of the real system for long times.

13.2. Agymptotit and Llapunov Stability

For firite dimensional dytiamical systems there are two standard notions of stability of an invariant subset. The weaker of the two is Liapunov stability which says that given any neighborhood or the set we can find a (possibly) smaller neighborhood all of whose points have future time orbits lying inside the given neighborhood. This says that if we perturb a point slightly from our set, it hangs around forever. An example is the equilibrium of a simple harmonic oscillator. The stronger notion is that of asymptotic stability. This says that there is some qeighborhood V of our set whose forward time images all lie in V and such that each orbit asymptotes into our set. Asymptotically stable sets are called attractors and the poists which limit on them form the basin of attraction. If an attracting set is a fractal (with respect to your favorite defnition of dimension), then it is a strange attractor.

13.2.1. Almost Attractora

Recent work of Grebogi, Ott and Yorke has shown that strange attractors can exist without chaotic dynamics (Grebogi, Ott, and Yorke, 1984]. For this they needed a definition of attractor which we shall also use. We call a set an "almost attractor" if for small enough neighborhoods, almost every point eventually asymptote to our set. We have seen in the example of a vector field on the plane along dipole field lines that it is possible for a point to be an almost attractor both forward and backward in time. By Poincaré recturrence, this is not possible for finite dimensional Hamiltonian systems.

13.3. Reversible Attractors and Infinite Dimensionai Hamiltonians

Infinite dimensional Hamiltonian systems. on the other hand. can have almost ateractors and if the system is time reversible (as most physical systems are) then it is of the time reversible type. This type of structure is responsible for most of the dissipative models in physics that I know of. The resolution of Loschmidt's paradox here lies in the fact that the infinite dimensional model is valid only asymptotically and becomes a bad representative of the underlying finite dimensional system after a long but finste time. Until that time it represents the system well and its dissipation represents real tendencies of the underlying system (when they ultimately break down due to recurrence, we call it a fuctuation).

13.3.1. Reversible Almost Attractor in the Wave Equation

A simple example to think about merely consists of the wave equation on a one-dimensional string. It is well known that this system is Hamiltonian. Let us define the state space of the system, to be those displacement and velocity fields which die off exponentially at infinity. This class is preserved by the time evolution for finite time (whick jusi translates a wave). Let us assume we are more interested in what the wave is doing under our noses near the origin than what it is doing far away. We will thus put a norm on our space which says that the size of a wave is the integral of the sum r, the absolute values of the displacement and velocity fields over the line weighted by a Gaussian centered at the origin:

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left(\mathrm{i} f(x)|+|v(x)|) e^{-x^{2}} d x .\right. \tag{13.1}
\end{equation*}
$$

Since the dynamies is frst translation, cventually every wave in our class gets "pushed into the wings" far enough so that its norm decays rianotonically to zero. Note that this happer both forward and backward in time. Thus the quiescent string is a reversible almost attractor for this system. In bigher dimensions, compactly supported waves decay even in the uniform norm (i.e. the size of a function is the maximum of its absolute value over all space).

This example has many of the characteristics of the dipole vector field in an infinite dimensional Hamiltonian context. While everything eventually comes into the origin, for any given time there are always states which haven't come close yet.

13.3.2. The Liouville Equation and Koopmaniam

A natural situation in which this sort of system arises occurs when we consider the Liouville equation of a dynamical system, which is known to be Hamiltonian (albeit with respect to a Lie Poisson bracket). This looks at the evolution on the space of probability distributions on a manifold given by pushing a distribution forward along a measure preserving map. Koopman suggested studying dynamical properties of the underlying system by the spectral properties of the Liouville operator(see [Cornfeld, Fomin, and Sinai, 1982] p. 323). John Cary and John David Crawford have looked at the Liouville evolution of probability distributions on Arnold's cat map. What one finds is that the riap's effect on distributions is merely to shift Fourier components along hyperbolas in Fourier space except for the zero wavevector component which is invariant. If the original distribution is smooth. then its Fourier series dies off exponeutially. If we put a norm on the distributions which
weigh: the low Fourier components more heavily (say our data is run through a low pass filter. i.e. we perform some kind of averaging or binging), then as our distribution's spectrum goes trotting off to infnity, its porm goes to zero leaving only the constant part and we again have a reversible attractor up to a constant. They show that this leads to the exponential decay of the autocorrelation of smooth functions,

13.3.3. Landau Damping

Similar phenomena are responsible for Landau damping (which damps both forward and backward in time) of whees in plassnas. We start with a distribution of particles (as in figure (13.1)) in the bottom half of the "eye" of the pendulum dynamical vector field (as in starting with particles in a strip in velocities slower than the wave, and evenly spread out in phase relative to the wave). As time goes on the dynamics inside the eye is like a shearing harmonic oscillator, which soon smears the inital distribution uniformly through the eye. The effect of this is that the average energy of the particles has gone up (and so the energy of the wave must go down causing damping). This sarne shearing will occur backwards in time.

13.3.4. The Boltzmann Equation and the BBGKY Hierarchy

The same kind of phase mixing is responsible for the dissipative aspects of the Boltamann equation as derived from the Hamiltonian and reversible BBGKY' hitrarchy (see volume 10, Physical Kinctics of (Landau and Lifshitz, 1960-1981]). We rewrite the Liouville equation for the distribution function of all the particles

Figure 13.1: The evolution of the distribution function near the wave velocity.
as a hierarchy of equations for 1-particle, 2-particle, ... etc. distribution functions. If we truncate at any stage, we obtain the Liouville equation on the phase space of that many particles. The contribution of the higher order correlations phase mixes away as above leaving only the Boltzmann collision term to first order.

13.3.5. Dissipation from Resonance

The same scencrio applies to the raudom phase approximation for interacting waves. The essential idea here may be seen by considering resonances. One of the most interesting examples is the simple resonantly driven harmonic oscillator. The solution to this problem is given in nost elementary mechanics texts but I have never seen any discussion of its rather paradoxical properties. Let us consider a
particle in one-dimension moving in a unit-frequency harmonic oscollator potential which is driven simusoidally at the same frequency:

$$
\ddot{y}=-\mathrm{x}-\cos t .
$$

For this kind of linear differential equation with an inhomogeneous term, the usual method of solution is to find a particular solution to the inhomogeneous problem and then to add to this an arbitrary solution of the bomogencous one. In this case this procedure leads to the general solution:

$$
x(t)=A \sin t+B \cos t+\frac{1}{2} t \sin t
$$

This solution is reaily quite remarkable. Regardless of the initial conditions (which are specified $t_{j} A$ and B), the t sint term eventually dominates and the amplitude of oscillations grows indefinitely with time. But the equation is invariant under $t \rightarrow-t!$ This means that the same behavior occurs as t approaches $-\infty$.

It is interesting to try to visualize the orbits in the three dimensional (x, v, t) space. On the one hand we lnow that each orbit winds to larger and larger x and v values as I goes toward both positive and negative infinity. This means that an individual orbit winds on what looks like a one-sheeted hyperboloid of revolution along ceatered on the t axis (or a cone if ever both the position and velocity vanish on its trajectory). On the other hand, the entire system is invariant under the translation $t \rightarrow t+2 \pi$. To get some feel for the way this orbits can f : together in this way, consider all orbits that intersect the 1 axis. These form an invariant 2 dimensional submanifold which includes the t axis. Imagine taking the t, r plane and twisting it about the t axis so that it makes one twist every 2π in t. The dymamic:
on the unwound plane is made of parallel straight lines that intersect the t axis at mone angle. They leave the t axis linearly for both positive and negative time and yet the whole field is translation invariant in time. When we wind this plane up. the orbits lie on cones. Th other orbits do a similar thin" on hyperboloids.

Let us think of the harmonic oscillator as being a piece of a larger system and the driving as arising from the rest of the system. Time asymptotically the oscillator only sucks energy from the rest of the cystem and this is tiue both forward and backward in time. Let us calculate the time variation of the average energy in the oscillator for long times:

$$
\begin{align*}
E= & \frac{1}{2} \dot{x}^{2}+\frac{1}{2} x^{2} \\
= & \frac{1}{2}\left(\frac{1}{2} \sin t+\frac{1}{2} t \cos t+A \cos t-B \cos t\right)^{2} \tag{13.3}\\
& +\frac{1}{2}\left(A \sin t+B \cos t+\frac{1}{2} t \sin t\right)^{2}
\end{align*}
$$

For times large compared to A and B (we can make this comparison because we have made everything dimensionless), only terms with an unadorned t in them are important:

$$
\begin{align*}
E & =\frac{1}{8}\left(t^{2} \cos ^{2} t+t^{2} \sin ^{2} t\right) \\
& =\frac{t^{2}}{8} \tag{13.4}
\end{align*}
$$

Thus the oscillator energy grows without bound as t goes to either positive or negative infinity.

In real closed Hamiltonian systems, the energy that the oscillator is suckir. 6 out of the rest of the system will eventually cause the damping to change. In nonlinear systems the frequency of driving will in pushed away from resonance. In linear systems the amplitude of driving will go down until eventually the oscillator
drive vie rest of the system bading to ostilation on long time seales. The slowly changing amplitude of driving can also be viewed as having energy in frequencies slightly away from resonance. As long as we are in a situation where the rffect of the oscillator on the rest of the system is small, however, the solutions will be close to the resonant one. In such cases we get time-reversible dissipative behavior for long times.

This is exactly the sense in which non-equilibrium thermodynamics is dissipative. If we are far from equilfbrium then there are many more ways to be perturbed closer to equilibrium than away from it. Statistically the motion appears to go in one direction (eg. entropy increares). The same increase occurs backward in time, however, since the same statistics applies. If we are in a state with low entropy, then it is most likely that a few moments ago we had higher entropy and that a few moments hence we will also have bigher entropy. As we get closer to equilibrium. the imbalance in the number of perturbations toward and away from it diminshes. Exactly at the bighest extropy state the oaly way you can go is down. In equilibtium the dissipative properties dissappear and instead we have fluctuations. Since exactly the same mechanisms cause dissipation far from equilibrium and fluctuations in equilibrium, the corresponding rates are related. This is the content of the Auctuation-dissipation theorem. (As an example, a Brownian particie satisfying the Langevin equation:

$$
\frac{d v(t)}{d t}=-v v(t)+\delta F(t)
$$

in a keat bath at temperature T which causes the partide's tnotion to be damped at rate ν and driven with random force $F(t)$, the Guctuation dissipation theorem
says that

$$
\begin{equation*}
\nu=\frac{M}{2 T} \int_{-\operatorname{in} / t_{\psi}}^{\infty} d t(\delta F(0) \delta F(t)\rangle . \tag{13.6}
\end{equation*}
$$

)
The mechanism of time-reversible dissipation due to resonance underlies many important plysical processes. In many of these situations, the driver changes frequency so as to slowly pass through resonance. An example might be an eikonal bight wave passing through a medium whose electrons are hound like harmonic oscillators. The light wave loses energy to the resonantly excited oscillators (note that here it might be that the wave is of constant frequency but the oscillator frequency changes slowly as we progress through the medium; the physics of this situation is identical). For frequencies of driving which are cot exactly resonant, the oscillator begiss by removing energy, but eventually gives it back (on a time scale of the reciprocal of the frequency deviation from resonance) leading to an oscillatory overall hehavint which does not change the average energy of the driver. If we watch the systum for time T, then all frequencies within order $1 / T$ of the resonant frequency will behave as if they are resonant. As we slow the frequency yariation of our eikonal wave asymptotically and watch the effect for longer time we have two effects: 1) we are in resonance for a longer time causing a larger dissipation and 2) since we are watching longer, less of the nearby frequencies contribcte any dissipation. As time goes to infinity there is net dissipation which arises from arbitrarily small peighborhoods of the fesonant frequency.

Let us see this explicitly in an example. We consider the driven oscillator:

$$
\begin{equation*}
\hat{x}=-\bar{x}+F(\epsilon t) \cos (\psi(r t) t), \tag{13.7}
\end{equation*}
$$

where we assume that the resomance occurs at ! - 11 (and nowhere che)

$$
\begin{equation*}
-(0)-1 \tag{13.8}
\end{equation*}
$$

and that we pass through resonance with non-zero speed:

$$
\begin{equation*}
\left.\frac{d\lrcorner^{\prime}}{d t}\right|_{t=0} \equiv w^{\prime}>0 \tag{13.9}
\end{equation*}
$$

Let us denote \dot{x} by \boldsymbol{v}. We wish to solve this asymptotically as $\epsilon-0$. We begin (as in the methods discussed in chapter 3) by going to a "rotating" system of courdinates in phase space:

$$
\begin{equation*}
X=x \cos t-v \sin t \quad V=v \cos t+x \sin t \tag{13.10}
\end{equation*}
$$

The dynamics of these coordinates is

$$
\begin{align*}
\dot{X} & =\dot{x} \cos t-x \sin t-\dot{v} \sin t-v \cos t \\
& =-F \cos \left(\omega t_{1 \sin t}\right. \tag{13.11}\\
& =\frac{-F}{2}(\sin ((\omega+1) t)+\sin ((\omega-1) t))
\end{align*}
$$

and

$$
\begin{align*}
\dot{v} & =\dot{v} \cos t-u \sin t+\dot{i} \sin t+r \cos t \\
& =F \cos (\omega t) \cos t \tag{13.12}\\
& \left.=\frac{F}{2}\left(\cos ^{\prime}(\omega+1) t\right)+\cos ((\omega-1) t)\right) .
\end{align*}
$$

W. may integrate these equations using the method of stationary phase. which was: discussed in section 7.1.3. Introducing the rescaled time $\overline{\text { a }} \equiv$ of and using stationary phase. we see that to leading order the change in X in paswing through the resonance
is:

$$
\begin{align*}
& \left.\Delta X=C^{\prime}+\int_{-T / /}^{T / /}-\frac{F}{2}(\sin (l-1) t)+\sin \left(\left(\omega^{\prime}-1\right) t\right)\right) d t \\
& -C+\int_{-T /,}^{T / T} \frac{-F}{2} \sin ((\omega-1) t) d t \\
& \sim C+\int_{-T /,}^{T / /} \frac{-F}{2} \sin \left(\omega^{\prime} t^{2}\right) d t \\
& \sim C-\frac{1}{\epsilon} \frac{F(0)}{2} \int_{-T}^{T} \sin \left(\omega^{\prime} \frac{\tau^{2}}{\epsilon}\right) d \tau \\
& \sim C-\frac{1}{\epsilon} \frac{F(0)}{2} \int_{-\infty}^{\infty} \sin \left(\omega^{\prime} \frac{\tau^{2}}{\epsilon}\right) d \tau \tag{13.13}\\
& \sim C-\frac{1}{c} \frac{F(0)}{2} \Im \int_{-\infty}^{\infty} \exp \left(\frac{i \omega^{\prime} \tau^{2}}{\epsilon}\right) d \tau \\
& \sim C-\frac{1}{\epsilon} \frac{F(0)}{2} \Im \int_{-\infty}^{\infty} \exp \left(\frac{i \omega^{\prime} \tau^{2}}{\epsilon}\right) d \tau \\
& \sim C-\frac{1}{\epsilon} \frac{F(0)}{2} \Im\left(\frac{\sqrt{2 \pi \epsilon}}{\sqrt{2 \omega^{\prime}}} e^{i \pi / 4}\right) \\
& =C-F(0) \sqrt{\frac{\pi}{8 \cdot \omega^{\prime} c}} \text {. }
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\Delta Y=C_{2}+F(0) \sqrt{\frac{\pi}{8 \omega^{\prime} c}} . \tag{13.14}
\end{equation*}
$$

Thus asymptotically there is a net dissipation which grows as the reciprocal of the square root of the eikonal parameter. Notice that for any real system the initial conditions will determine whether the oscillator takes or gives up energy for a time independent of c. The asymptotics we have introduced always beats this time for some value of ℓ. Thus the asymptotic system can have dissipation without constraint on the initial conditions whereas any real system may not have this behavior. I think this is a good example for sceing why an asymptotic approximation to a system (say Boltzmann's equation) may have propertics like irreversibility and lack of reccurence
whirli are not possessed by any real system. These are new anymponf concrptwhich validly apply to the system whenever the asymptotics is valid

13.3.6. Resonant Coupling of Eikonal Waves

For this kind of experiment pe must really use eikonal driving since we are interested in the response as we turn on the oscillations. Traditionally in plasma physic: one uses a linear analysis in a uniform system and so finds the normal modes for the evolution operator. These will be unphysical infinite plane waves and lead to subtleties like a singular spectrum (as in van Kampen modes) which obscures the physics of the analysis. It is interesting to rethink these analyses in terms of eikonal waves. For example, the response function of a harmonic oscillator at its natural frequency is infinite. If we excite it with a slowly varying frequency, we may use stationary phase to study the passage through resonance and we see that there is no infinity. Only in the asymptotic limit does the response lead to a pole on the natural frequency. In traditional analyses of the three wave interaction (which arises by retaining third order terms in the nonlinear coupling of waves) one studies the response of an infinite plane wave to the piesence of two other infinite plane waves. In reality, given two eikonal waves in three dimensions, the resonance condition can only be satisfied on a 2-dimensional spatial surface which moves through space. The generated wave will include these geometrical aspects.

13.4. The String with a Spring

Let us now give an interesting example which shows how the effect of an infinite dimensional system on a finite dimensional piece ray sometimes be modeled by dissipation. The idea is that, asymptotically in time. the infinite number of modes will only suck energy out of the system, learing to the appearance of dissipation.

The simple system we have in mind is a half infinite string whose end is attached to a mass on a spring (or any other shaking system). If we consider only string displacements which are damped at infinity, then asymptotically the string behaves as if it were quiescent (any energy going away from the end doesn't affect us, and all the energy going toward it reflects and is eventually leaving it).

Let the string's displacement w and its velocity v be functions of the position I along the string. Let the tension in the string be T (i.e. the force along the string) and the mass density be ρ. The transverse force that the string applies at its end is given by the transverse component of the tension, and for small displazements this is just the tension times the slope:

$$
\begin{equation*}
T \frac{\partial w}{\partial x} \tag{13.15}
\end{equation*}
$$

The wave equation arses from Newton's equation for a little piece of string, where the transverse force is the difference of the force due to the string on the left ard th - string on the right. Asymptotically this is proportional to the second derivative of the displacement, leading to the usual wave equation:

$$
\begin{equation*}
\rho \frac{\partial^{2} w}{\partial t^{2}}=T \frac{\partial^{2} w}{\partial x^{2}} \tag{13.16}
\end{equation*}
$$

This is known to be Hamikonian. The solutions anay from the end are sumb of a function translating rigidly to the left and to the right with velocity.

$$
\begin{equation*}
c=\sqrt{\frac{T}{\rho}} \tag{13.17}
\end{equation*}
$$

For a quiescent string. if we shake the end according to

$$
\begin{equation*}
u(0, t)=y(t) \tag{13.18}
\end{equation*}
$$

then we get only a wave travelling away and the string displacement for all time is

$$
\begin{equation*}
w(x, t)=y(t-x / c) \tag{13.19}
\end{equation*}
$$

What then is the force the string applies to our shaking apparatus? From the above it is

$$
\begin{equation*}
\left.T \frac{\partial u}{\partial x}\right|_{x=0}=\left.T \frac{d}{d x} y(t-x / c)\right|_{x=0}=-\frac{T}{c} \dot{y}(t) \tag{13.20}
\end{equation*}
$$

If the shaker was a harmonic oscillator

$$
\begin{equation*}
m \ddot{y}=-k y \tag{13.21}
\end{equation*}
$$

then we could forget about the string if we changed the equation to

$$
\begin{equation*}
m \ddot{y}=-k y-c \rho \dot{y} . \tag{13.22}
\end{equation*}
$$

This is just a damped oscillator. Thus an infinite dimensional piece of \perp Hamiltonian system is replaced by an effective dissipation in the evolution of a finite dimensional piece. Votics that the exact form of the system to which the string is coupled is completely irrelevant. It is this fact which makes such replacement physically relevant (if it behaved dissipatively only in extremely special circumstances we would have no reason to think of it as a replaceable piece during simplification).

Chapter14:

Reinsertion in

Area-Preserving Horseshoes

"It is said that Newton communicated to Leibniz an anagram somewhat like this: acaaabbbececii, etc. Leibniz naturally understood nothing at all of this; but we Who have the key know that this anagram meant, translated into modern language: I know how to integrate all differential equations; and this suggests to us that either Newton uas very lucky or else he beld a peculiar illusion."-Poincaré (1908) [Hirsch, 1984:

Over the last ten years, the idea of intrinsic stochasticity in the deterministic dynamies of low dimensional dynamical systems has joined the mainstream of physical thought. Every month physics journals carry many reports of chaos (as the phenomenon has come to be known) in new physical situations. Applications to piasma physics are given in [Srith and Kaufman, 1975]. [Smith and Kaufman, 1978!, and |Kau[man, 1979]. The chaos has always been there, but until recently the mathematical tools for noticing it were not well known in the physics community. Every example of chaos that I know of has within it a construction dubbed
by Smale the borseshoe in íSmale. 1967. The esstnital phenomena may be ween in a taffy puller (and indeed Otto Rössler designed his attractor based on it) The key feature of a zaffy puller is its continual stretching af the taffy. To keep it in a finite voilume, the tafy must also be bent over. These two features lead to dynamics where the taffy is tboroughly mixed together. (This may be secn somewhat grotesquely by considering the fate of a fly which lands on the sweet, melling taffy. In on the order of ten cycles, there will be a piece of the fly in each piece of the taffy.)

14.1. The $2 x$ mod 1 Map

The basic mathematical model of this stretching and mixing is the map from the circle to itself given by

$$
\begin{equation*}
x \mapsto 2 x \bmod 1 \tag{14.1}
\end{equation*}
$$

This dynamics has periodic orbits of every period, dense orbits, and orbits which hop from the interval: $\{0,1 / 2\}$ to the interval: $[1 / 2,1\}$ according to any desired (possibly random) sequence of L 's and R 's (p. 106 of 'Cornfeld, Fomin, and Sinai. 1982]). This is easy to see by the method of symbolic dynamics. Call the left interval 0 and the right one 1. The interval in which a point lies is given by the first digit in the binary expansion of the aum 3 er corresponding to that point. Since $2 x$ mod 1 just shifts the binary point and lops off the integer part, we see that the sequence of hops is given by the sequence of digits in the binary expansion, but this is arbitrary. This map cannot appear in ien! dynamics since it is 2 to 1 (but variants
of it appear in projected dynamics all the time, for example. Lorenz's equations as in (Civckentimer and Holmes. 1983ip. 276).

14.2. The Baker's Transformation

The trouble, of course. is that we are continually losing information about our intitial condition, so knowing where we are isn t enough to tell us where we came from. We can remedy this by adding another variable which keeps track of the lost information. The symbolic dymamics model is the space of doubly infinite sequences of l's and 0's with the map being a shift. Tbis clearly has the same stochastic properties, but is invertible. A dynamical realization may be found in the so called baker's transformation, named because of the similarity of the map to the experiences a baker puts dough through (particularly filo dough). The baker first rolls the dough out so that it is thinner and longer, he then cuts the elongated dough into two pieces, places one atop the other and repeats the process. The corresponding map is from the unit square to itself:

$$
\begin{align*}
& x \mapsto 2 x \quad \bmod \quad 1 \\
& y \mapsto \quad \frac{y}{2} \quad \text { if } \quad 0 \leq x<\frac{1}{2} \tag{14.2}\\
& \frac{y+1}{2} \text { if } \frac{1}{2} \leq x<1 .
\end{align*}
$$

If we take y 's binary expansion backward and adjoin it to r 's binary expansion. then this map is exactly the shift on the doubly infinite sequence of the combines digits ([Cornfeld, Fomin, and Sinai. 1982] p. 9). Unfortunately, this still cannot appear as a return map because it is not continuous (due to the baker's knifc).

14.3. The Horseshoe

If instad of pushing the tho pieces of dough all the way together, we leave a gap. then wo may imibed this in a smooth map which has all the interesting stochastic properties (Guckenheiner and Holmes, 1983) p. 230). The horseshoe is such a map as shown in figure (14.1). Because of the gap (which under the map gets sent to a skinnier gap. etc.) the invariant set associated with the symbol sbift is a Can or set.

Figure 14.1: Smale's borsesboe map.

That such a map might appear in any natural systems is at first perhaps surprising, but in fact it is quite common as we now show. Consider a dynamical system whose state space is three dimensional (for example, the three dimensional
energ: surface of a two degree of freedom Hamiltonian system). We mas study the neighborhood of a periodic orbit by means of the two dimensional return map induced by the dynamics on a two dimensional surface transverse to the orbit. The orbit is a fixed point of the map and we consider the case where its linearization is hyperbolic with one eigenvilue inside the unit circle of the complex plane, and one outside. The stable manifold theorem states that there exists a smoothly imbedded two dimensional manifold in our state space consisting of all points which asymptote to our orbit as time goes to positive infinity. It must approach the orbit tangent to the linear attracting direction and the orbit. The corresponding unstable manifold theorem says a similar thing about the points that asymptote to our orbit under the time reversed dynamics. We will now see that the Poincare return map must cont ain a horseshoe if the stable and unstable manifolds intersect transversally. The first image of a point of intersection must also asymptote to the orbit both forward and backward in time, implying that the stable and unstable manifolds must intersect again, as in figure (14.2) (repeating this argument shows that they must intersect an infinite number of times). As in the figure, if we choose an appropriate rectangle. some iterate of it gives us a horseshoe imbedded in our dynamics.

Figure 14.2: A transversal intersection of the stable and unstable manifolds implies the presence oi a horseshoe for some iterate of the map.

54.4. Example of Horseshoes in Gyromotion

Let us give a plasma example which has horseshoes in the dynamics. Consider the two-dimensional x, y motion of a charged particle in a linear magnetic field

$$
\begin{equation*}
B_{2}=\alpha \psi \tag{14.3}
\end{equation*}
$$

near the region where it vanishes. Define the vector potentiar by taking $\boldsymbol{A}_{\boldsymbol{y}}=\mathbf{0}$, so that

$$
\begin{equation*}
B_{z}=\frac{\partial A_{v}}{\partial x}-\frac{\partial A_{x}}{\partial y}=-\frac{\partial A_{x}}{\partial y}=\alpha y \tag{14.4}
\end{equation*}
$$

leading us to take

$$
\begin{equation*}
A_{x}=-\frac{Q}{2} y^{2} \tag{14.v}
\end{equation*}
$$

As usuai. let us set $e-m=r-1$. The Hamiltomant is then

$$
\begin{equation*}
\left.H=\frac{1}{2}\left(\mu_{r}-\frac{\alpha}{2} y^{2}\right)^{2}-p_{y}^{2}\right) \tag{14.6}
\end{equation*}
$$

and since it is r-translation symmetrir. p_{x} is constived. The equatuons of motion are

$$
\begin{gather*}
\dot{x}=\frac{\partial H}{\partial p_{x}}=p_{x}+\frac{a}{2} y^{2} \tag{14.7}\\
\dot{y}=\frac{\partial H}{\partial p_{v}}=p_{y} \tag{14.8}\\
\dot{p}_{x}=-\frac{\partial H}{\partial x}=0 \tag{14.9}
\end{gather*}
$$

and

$$
\begin{equation*}
\dot{p}_{y}=-\frac{\partial H}{\partial y}=-\left(p_{x}+\frac{\alpha}{2} y^{2}\right) \alpha y \tag{14.10}
\end{equation*}
$$

Let us denote p_{x} 's constant value by

$$
\begin{equation*}
p_{x}=p_{x}^{0} \tag{14.11}
\end{equation*}
$$

We know that by reducing by the x translation symmetry we may get equations involving only y. The y crolution is given by

$$
\begin{equation*}
\ddot{y}=\dot{p}_{y}=-\alpha p_{x}^{0} y-\frac{\alpha^{2}}{2} y^{3} \tag{14.12}
\end{equation*}
$$

This is Duffing's equation, which has been well-studied. It represents the Hamiltonian dyuamics of a particle moving in a poteutial given by

$$
\begin{equation*}
V(y)=\frac{\alpha}{2} p_{x}^{0} y^{2}+\frac{\alpha^{2}}{8} y^{4} \tag{14.13}
\end{equation*}
$$

Let us assume that $o r$ is positive. If

$$
\begin{equation*}
p_{x}^{0}=\dot{i}-\frac{\alpha}{2} y^{2} \tag{14.14}
\end{equation*}
$$

is positive then this potential hat a single mamman. If p_{x}^{0} is negative. the the potential well has two mimma as shou in in figure (14.3a). The phase portrait for this case is shown in figure (143b). Far from the origin, all orbits are periodic and encircle the origith. As we move in, we see that there are two stable elliptic fixed points and an unstable hyperbolic fixed point. The hyperbolic fixed point bas two bomoclinic separatrices which are susceptible to horseshoes under periodic driving. In fact. using the method of Melnikov, Holmes and Marsden have shown that the driven Duffing equation has transversal homoclinic points and therefore horseshoes ((Guckenheimer and Holmes, 1983] p. 184). If we force our particle in this magnetic held with a low amplit cde wave in the y direction, it too will have horseshoes.

What do the orbits look like? For the unforced system, the particle can move in a straight line along the I axis with any velocity. as in figure (14.3c). Since the Duffing oscillator is bounded in y, every orbit has a maximal excursion in y, where $\dot{y}=0$. Let us then study the orbits with initial condition

$$
\begin{equation*}
y=y_{0} \quad \dot{y}=0 \tag{14.15}
\end{equation*}
$$

for various values of p_{x}^{0} and any x. When p_{x}^{0} is positive, the y motion is represented by a Duffing oscillator with a single minimum it its potential. The I velocity

$$
\begin{equation*}
\dot{x}=p_{x}^{0}+\frac{a}{2} y^{2} \tag{14.16}
\end{equation*}
$$

never goes negative and so :he particle moves inexorably in the positive a direction as in figure (14.3 d). When $p_{x}^{0}=0$. \dot{x} vanishes at $y=0$, but is positive elsewhere. This leads to particle motion which crosses the field reversal perpendicularly as in Ggure (14.3e). As p_{x}^{0} becomes negative, the orbits actually meve in the negative x
direction wh aner

$$
\begin{equation*}
y_{1}<\sqrt{-\frac{2}{a} p_{T}^{\prime}} \tag{14.17}
\end{equation*}
$$

as in figure (14.3 f). The Duffing equation now has two minima but we are in the ostillatory region that cacircles them. As p_{x}^{0} gets more degative, the loops overlap one another as in figure (14.3 g and b) until successive loops actually conncide to give a "figure eight" orbit as shown in figure (14.3i). As p_{x}^{0} gets still more negative, the net motion is in the negative x direction, whike still in the positive direction at the tops and the bottoms of the loops. The particle path is made of alternating curliques about the ficld reversal hine as shown in Ggure ($14, \mathrm{ri}$) and k), When

$$
\begin{equation*}
p_{x}^{0}=-\frac{a}{4} y_{0}^{4} \tag{14.18}
\end{equation*}
$$

we are on z separatrix of the Duffing equation and the particle makes but a single loop, asymptoting to $y=0$ both forward and backward in time as shown in ligure (14.3). There is another orbit eorresponding to the other separatrix which has y nesative as in figure (14.3m). For

$$
\begin{equation*}
p_{x}^{0}<-\frac{a}{4} y_{0}^{2} \tag{14.19}
\end{equation*}
$$

we are inside the separatrix and the particle executes ordinary gyration as in figure (143n). When

$$
\begin{equation*}
p_{x}^{0}=-\frac{\alpha}{2} y_{0}^{2} \tag{14.20}
\end{equation*}
$$

we are at a table fixed point of the Dulfing equation, $\dot{\mathbf{I}}=0$, and partiche notion has stopped. For p_{x}^{0} more negative, the particle gyrates in the region $y>y$ g.

Under oscillatory perturbation, there are orbits near the separatrix that go around one and then the other separatrix according to any (possibly random) sequence of $0:$ and I's. The resulting particle orbit has corresponding upward and don nuard curliques, as shown in figure (14.3p).

Figure 14.3: The Duffing potential, phase portrait, corresponding particle orbits, and a chaotic orbit.

14.5. Area Preserving Horsebkops and Refingertion

The issue that we would like to address here conceros the structure of the stable and unstable manifolds in the area preterving (as arising from a Hamiltonian system) as opposed to the dissipative case. As we extend the stable and unstable manifolds in the dissipative case, we obtain the intricate pattern shown in figure (144). We will see that the area preserving case must be more complicated.

Figure 1.4.4: The structure of the sta hle and unstable manifolds in the dissipative case.

If we try this same construction in the area preserving case (figure (14.5)), we run into problems. As in that figure, the region A bounded by the stable and unstable manifolds is taken to the region A^{\prime} of the same area. This is teken to $A^{\prime \prime}$ and so on. In real systems, this structure is often bounded between two curves

Figure 14.5: The seemingly paradoxical tongues which must intersect.
corresponding to Kolmogorov-Arnold-Moser tori ([Abraham and Marsden, 1978] p. 582) and so is constrained to a finite arca. But because the tounges all have the same area and there are an infinite number of them, they must intersect one another (and in fact an infnite number of them must intersect). Because the whole picture is taken to itself under the map, each tongue must intersect an infinite number of others, including both an infinite number of images and preimages (if tongue T interserts $M^{2} \cdot T$, then it must intersect $M^{\boldsymbol{- i}} \cdot T$ as well as one can sec by applying M^{-s} to both sets). Upon 6ist examining the figure it is a mystery how these tongues can possibly intersect. Neither the stable or tie unstable manifolds ran cross themselves (since they are injectively immersed copies of the real fine). One therefore concludes that if tongue A^{N} is going to intersect A, it cannot come
in through the top segrent of A (which is a piece of the unstable manifuld) but must come in through the bot Lom (which is a piece of the stable manifold and so is allowed to intersect the top of A^{N} s tongue). The question is: how does A^{N} get down to the bottom border of A ? The unstable manifold makes essentially a complete loop (it includes the origin as it leaves vertically, and it limits on the origin on the right), leaving no room for A^{N} to sneak through. We quickly come to the conclusion that if A^{N} is going to get inside A, then one of the lower tongues B^{M} must as well and A^{N} gets in via B^{M}.

Figure 14.6: The Re-insertion of tongues forced by area preservation.

This implies the much more complex strurture shown in figure (14.6) than ! have seen described in the literature. The number of tongues between a tongue
and the first lower tongue to insert into it is an invariant of the map. Furthermore as we constrain the area within which this structure lies, relative to the area of a tongue, fhe point at which reinsertion must take place gets nearer and nearer (since a tongue must intersect more of its colleagues), until no structure is possible when the area of a congue is larger than the total allotted area. Thus we see that Hamiltonian systems are forced to have a very intricate tongue structure. Recent work of |Holmes and Whitley, 1984| has studied the change in bifurcation sequences in "shoemaking" in going from the dissipative to the non-dissipative case. They find a continuum of different bifurcation sequences. It would be interesting to see how the intersection structure of the horsesboe tongues evolves in this sequence.

Chapter 15:

Renormalization

Group

Recentls a number of previously intractable problems in several very different areas of physics have been successfully tackled using renornalization group techniques. Running through tbese treatments is a beautiful set of ideas which are fairly easy to understand, even though the actual calculations can become quite complex. The goal of this section is to present the essential concept in simple physical sit uations, where it is easy to see what is going on. We sketch the pbysical idea of renormalization in the original context of the statistical mechanics of spin lattices and then use it to prove the central limit theorem.

15.1. Scaling and Univeraality

It is a quite common physical occurrence that certain forms appear over and over in many different contexts. In siatistical physics we see the Gaussian distribution $e^{-x^{2}}$ and the Boltzman distribution $e^{-E / k T}$ appearing again and again. In electromagnetism we have the monopole and dipole potential functions, for example. In radiation theory there are the plane wave. dipole rariation, and the Airy
function near saustics In quantum mechanics we continually see the free particle. the harmonic oserilator, and the rigid rotator. In dynamies there exist certain canonical forms for change (eg. the Hopf bifurcation, the saddle-node bifurcation. period-doubling cascades, and the breakdown of KAM1 tori) which appear in many context:

In many cases the effect of a physical system on the rest of the world is only felt on a large scale in space-time which averages over the detailed structure. It is a common tool in physics to study a particular instance of a system by thinking of it as a member of a family of relaied systems. Sometimes by looking at the family, as opposed to the individual, we see new regularitics. This is the basis for periurbation theory which studies the rase of interest by finding an easily soluble case nearby and studying bow the differences change the bebavior.

Often, one may formalize these beurnstic notions by introducing a "spacer, which is often infinite dimensional, whose points represent physical systems. For the statistical systems, we "step back" from the system (i.e. look at it from a greater distance), and treat all bebavior as if it were occuring on a smaller scale. For example, we might consider photographs of the ocean's surface taken at different beights. The rescaling is called renormalization. In the situations of interest, the renormalized system is again a member of our space, but corresponds to different values of th parameters. The ocean with a tida? wave may, from a distance, behave just like a ripple in the tide pools on the shere. The ripple may need to be in water with a different surface tension or viscosity, however. (Such ideas ase actually used for special effects in movies. Since one usually has control of the scale of space and
time but not of viscosity, the small-scale waves in orean scenes and the small-scale eddie: in explosions often do not look right.) The renormalization map that rescales a system sometimes has a fixed point whose properties can the used to study nearby systems. For example, as we get further and further from the surface of the ocean, it looks calmer and calmer.

We shall not discuss the examples of renormalization in dynamical systems here. They work in much the same way, but the renormalization usually corresponds to looking at the system through a finer and finer microscope. For example, if we zoom in on a byperbolic fixed point of a vector field, the flow becomes more and more like its linearization about the fixed point. A linear system is taken to itself under rescaling and so is a fixed point of the renormalization map.

15.2. Magnetic Spin Lattices

As an example, let us look at the Ising spin model for which Kadanoff introduced many of these scaling ideas (see, for example, the review article [Wilson and Kogut. 1974] and the references given there). We imagine an infinite checkerboard with a spin at the center of each square which may have a magnetic moment pointing either up or down. We imagine that nearby squares feel each other's magnetic felds and that it is energetically favorable for them to have their spins pointing in the same direction.

The whole system is in contact with a heat bath with temperature T. This tends to cause the spins to jostle between up and down. The bigher the temperature, the more violent the jostling. The spin-spin interaction tends to prohibit the relative jostling of neighbors. If the temperature is very high, then the average kinetic energy of the degrees of freedom of the heat bath will be much greater than the alignment potential energy of a spin due to its interaction with its neighbors. In this case the spins will wiggle hetween up and down relatively independently of the state of theis neighbors.

If the temperature is very low, then the average thermal energy will be much less than the interaction potential energy and the spins will only rarely be able to overcome it and 6ip relative to their neighbors.

When $T=\infty$ the interaction is completely negligible and the statistics of a spin are independent of its aeigbors. The prohabilities for up and down are the same and there is no correlation between the probability distributions $f x$ different spius. When $T=0$ the thermal energy is completely negligible compare : to the interaction
potential energy. The spins all point in the same direction, say up. The probabilit! distribution for an individual spin has spin up with probability one and down with probability zero. Again the distributions for the individual spins are unrorrelated Even if a spin bappened to he pointing down (an infinitely improbable event) the probability distributions for the otber spins would remain uncbanged.

Now we know the statistics of the spins in two states: $T=0$ and $T=\propto$. What do states near these two look like? If we are at a bigh but finite temperature, then spins are still kicked between up to down, the probability of each being $\frac{1}{2}$. Now, however, the statistics of one spin depend slightly on the state of its neighbors. There is some tendency for neighboring spins to flip together and one will sce little patches of spins pointing the same direction. If we know a spin is up, then its nearest neighbors are slightly more likely to point up than down. Next nearest neighbors are affected even less, and one can show that the correlation decays exponentially as we move away from the upward pointing spin. The patches of coherent spirs are finite in extent and get smaller as the temperature gets higher.

When the temperature is low but not zero, spins are still much more likely to point up than down. Now, howeyer, if a spin is flipped to down this slighty affects the neighboring spins. Nearest neighbors have a slightly higher probability for flippiag than usual. Again the effect dies off exponentially. The state looks like a sea of upward pointing spins with little islands of spins which point down. As th. remperature is decreased, the islands get smaller.

We now introduce the idea of renornalization. If nur eyes are blurry, when we step away fron the infinite chec robodrd we will only notice the average spin
over a region. If we are near $T=\boldsymbol{x}$. then as we step back. neighturify spins become a single spin to us and we are ever more unable to resolve the last vestiges of correlation among neighbors. The further we go the more the sybinm's statisties look like those of $T=x$. We may codify this idea, by introducing a (typically infinite dimensional) space whose points represent the statistical state of our spins (i.e. the space of probability distributions on the space of spins). The operation of "stepping back" or rescaling takes one distribution and gives us another one. We may therefore think of this as a mapping on this hig space and we denote it by R which stands for "renormalization group operator". The infinite temperature state (i.e. the probability distribution is just an uncorrelated product of half up and half down distributions for each spin) is a fixed point of this mapping. We have just indicated that all nearoy states get even closerto this fixed point under the renormalization map, and so it is a stable fixed point.

Similarly, the state representing zero temperature (again an uncorrclated product of distributions for each spin, each of which is probability one for being up (actually the real one is a sum of two uucorrelated states on all spins; one for up and one for down)) is a fixed point. If we are near zero, then as we step back, the "cloud" of spins that an errant spin takes with it on the rare occasion of a lip gets smaller and smaller until in the limit there is no such choud. So zero temperature is also a stable fixed point.

There is clearly a path from zero to infinite temperature labeled hy the temperature itself. At some point on this path we must leave zero's hasin of attraction and enter infinity's (it is not hard to show that there are . r stable fixed points).

We expect there to be a codimension-one surface that forms the boundery betwren these two basins. There i and it is the stable manifold of a third fixed point with a 1-dimensi. I unstable direction. While the correlation length of neighboring spinc was zero for the other two fixed points, it is infinite for this one (it must be either zero or infinity, since these are the only two numbers that are equal to themselves when multiplied by a rescaling factor). The correspooding temperature is called the critical temperature and the point on a path where it intersects the separatrix is called a critical point. Because there are fluctuations on all scales there, it is often associated with such phenomena as critical opalescence (where a normally clear substance becomes milky white due to fluctuations which can scatter all wavelengths of light). If we consider the place at which our path pierces this codimension 1 stable marifold under applications of R, we see that the path asymptotes to the 1-dimensional unstable manifold (see figure (15.1)). Thus this represents a universal path from zero to infinite temperature, and the way it crosses the separatrix will represent that of any path seen from far enough away. In particular, the unstable eigenvalue will tell how fast things scale as we cross the critical surface and may be used to calculate the universal critical exponents corresponding to this fixed point.

Figure 15.1: The space of spin probability distributions with two stable fixed points cortesponding to zero and infinite temperature and a co-dimension one unstable fixed point corresponding to the critical point.

15.3. The Central Limit Theorem

One very old example of universality is the prevalence of Gaussian probability distributions in the statistical description of physical phenomena. The mathematical theorem descr:hing the approach of the distribution of a sum of random variables to Gaussianity is the central limit theorem. Khinchin based his developmpnt of statistical mechanics on this theorem ((Kbinchin, 1949|). It is of interest to look at this theorem from a renormalization group perspective.

A typical physical example, like Brownian motion, involves some distribution of random forces on a small time scale whose average effect on a long time scale

15 of interest (see for example. Wax 1954'). One mat connder the protidem to be that of finding the foree distrabution as a function of tume wale starting with the given one on the smallest scale and hopefully anympting to a univeral one on long time scales. In our renormalization group approach we define a mapping R from the space of distributions D to itself, which istegrates out the next vinaller time scale and renormalizes the variables so as to return the problem to one of the original form. We will show how a simple version of the central limit theorem fits into this context.
D will he the space of distributions $\rho(x)$ which are normalized:

$$
\begin{equation*}
\int_{\infty}^{\infty} p(x) d x=1 \tag{15.1}
\end{equation*}
$$

have zero mean:

$$
\begin{equation*}
\int_{-\infty}^{\infty} x \rho(x) d x=0 \tag{15.2}
\end{equation*}
$$

and a constant nonzero finite dispersion:

$$
\begin{equation*}
\int_{-\infty}^{\infty} x^{2} \rho(x) d x=\sigma^{2} \tag{15.3}
\end{equation*}
$$

The distribution of $x=x_{1}+x_{2}$ where x_{1} and x_{2} are individually and independently described by ρ is the convolution

$$
\begin{equation*}
\rho^{(1)}(x)=\int_{-\infty}^{\infty} \rho(x-y) \rho(y) d y \tag{15.4}
\end{equation*}
$$

since $x=(x-y)+(y)$ for $-\infty<y<\infty$ describes all ways $:$ decomposing x into a sum. It's easy to see that the dispersion squared of $\rho^{(t)}$ is iwice that of ρ. Thus

$$
\begin{equation*}
\sigma^{2}=\frac{1}{2} \int_{-x}^{\infty} x^{2} \rho^{(1)}(x) d x=\int_{-x}^{\infty} x^{2} \rho^{(1)}(\sqrt{2} x) \sqrt{2} d x \tag{15.5}
\end{equation*}
$$

Te kerp the normalizanon and the disperatin constant we define the remormatization operator as

$$
\begin{equation*}
R_{\rho}(x)=\sqrt{2} \int_{-\infty}^{\infty} \rho(\sqrt{2} x-y) \rho(y) d y \tag{15.6}
\end{equation*}
$$

We would like to study R by looking for fixed points and studying their stability. By two changes of coordinates on D we will actually turn R into a lincar operator.

We first label a distribution by its Fourier transform:

$$
\begin{equation*}
\hat{\rho}(k)=\int_{-\infty}^{\infty} e^{t k x} p(x) d x \tag{15.7}
\end{equation*}
$$

The moment conditions on ρ turn into

$$
\begin{equation*}
\hat{\rho}(0)=1 \quad \frac{d}{d k} \hat{\rho}(0)=0 \quad \frac{d^{2}}{d k^{2}} \hat{\rho}(0)=-\sigma^{2} \tag{15.8}
\end{equation*}
$$

We see that $\dot{\rho}$ has a quadratic maximum of value 1 at $k=0$. Because convolution turas into multiplication under Fourier transform, in these coordinates the renormalization operator R becomes

$$
\begin{equation*}
R \hat{\rho}(k)=\left(\hat{\rho}\left(\frac{k}{\sqrt{2}}\right)\right)^{2} \tag{15.9}
\end{equation*}
$$

It is already easy to see why Gaussians will arise. Squaring emphasizes large values compared to small ones. After repeated squaring, only the quadratic maximum of $\dot{\rho}$ will play any role and so $\dot{\rho}(k)$'s behavior will be the sane as that of $1-\frac{\sigma^{2}}{2} k^{2}$. But

$$
\begin{equation*}
\text { as } N \rightarrow \infty, \quad\left(1-\frac{\sigma^{2}}{2}\left(\frac{k}{\sqrt{2}^{N}}\right)^{2}\right)^{2^{N}} \rightarrow e^{\frac{-\sigma^{2} k^{2}}{7}} \tag{15.10}
\end{equation*}
$$

This is very similar to the case of period doubling in one dimensional maps where the Feigentanm scaling is determined by the quadratic maximum.

To make R linear we now choose as our coordinate

$$
\begin{equation*}
q(k)=\log (\hat{\rho}(k)) \tag{15.11}
\end{equation*}
$$

7 satisfies the conditions

$$
\begin{equation*}
\gamma(0)=0, \quad \frac{d \gamma}{d k}(0)=0, \quad \frac{d^{2} \gamma}{d k^{2}}(0)=-a^{2} \tag{15.12}
\end{equation*}
$$

and R qakes the form

$$
\begin{equation*}
R_{\gamma}(k)=2 \gamma\left(\frac{k}{\sqrt{2}}\right) \tag{15.13}
\end{equation*}
$$

which is indeed linear. The "eigenfunctions" of rescaling are powers of k and so we expand $\gamma(t i)$ in a Taylor series:

$$
\begin{equation*}
\gamma(k)=-\frac{a^{2}}{2} k^{2}+a_{3} k^{3}+a_{4} k^{4}+\ldots \tag{15.14}
\end{equation*}
$$

R takes $\left(a_{3}, a_{4}, \ldots\right)$ into $\left(a_{3} / \sqrt{2}, a_{4} / \sqrt{2}^{2}, \ldots\right)$. Thus $\left(a_{3}=0, a_{4}=0, \ldots\right)$ is the unique attracting fixed point. This fixed point in the other coordinates is

$$
\begin{align*}
\gamma^{*}(k) & =-\frac{\sigma^{2}}{2} k^{2}, \\
\dot{\rho}^{*}(k) & =e^{\frac{-\sigma^{2} k^{2}}{2}}, \tag{15.15}\\
\text { and } \quad \rho^{*}(x) & =\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{v^{2}}{2 \pi}} .
\end{align*}
$$

Thus every distribution asymptotically approacbes a Gaussian with the same dispersion under this mapping.

15.4. A Poor Man's Feigenbaum Number

One of the great discoveries of the last decade was the universality c certain aspects of period-doubling cascades. Many physical systems undergo a series of bifurcations or sudden changes in their behavicr with the increase of some parameter. Typical parameters, like the Reynold's number, represent the strength of driving or energy input to the system. An example to think about is the behavior of the stream of water from a faucet at the water pressure is increased. Initially the flow is steady but at some point oscillations set in and eventually the stream dynamics becomes chantic. Another example is a flag waving in the wind. As the wind gets stronger, the flag begins fluttering and then waving chaotically. A last example is river meauders. A high viscosity river (made of honey, say) goes straight down a hill. As the viscosity is lowered, the river's path meanders frcm side to side. As discovered hy unfortunate farmers who built their farms on the rich soil hetween meanders of rivers, the meanders slowly move downstream. The state of a meandering river is therefore periodic in time (at any point on the bill the cive, nosition moves periodically from side to side). I don't know if any further bifurcations bave been observed in this example.

For small enough values of the parameter, each of these systems is in a stable equilibrium state with no time variation. As the parameter increases, a Hopf bifurcation occurs at a particular valuc ud the system undergoes oscillations described by a stable limit cycle. As the parameter is further increased in many systems, the period of the oscillation doubles at some point. On every other cycle. the system doesn't quite come back to the starting point causing the period to be twice

 a period-doubling racade. Sucressive doublings occur for roser and chere parameter values. There ss asprial paramerr value called the crivical vatue, at when an infinite number of doublings have orcured and beyond which the dynamies is wors complicated and often chaotic. Feigenbaum discovered that the period doubling parameter values approach this lifniting point geometrically, and that the rave of approach is a universal number, called Feigenbaurn's number: 4.669...
[Crawford and Omobundro, *殳of gives a geometric picture of period-doubling in the state space of the system and discusses the phenomenon of knoted perioddoubled orbits. Here we would like tu sketcin Feigenbaum's renormalization argu* ment (for more intormation, see |Guckenheimer and Holmes, 1983., p. 346 and the references given there). Feigenbaum obtained his number to tigh arcurary using a Cray supercomputer. We will show bow to obtain it to within 25 percent on the back of an envelope.

Period-doubling is usually studied by looking at the Poincare serum map for a periodic orbit. This is the mapping obtained by conmidering the cffert of the dyamics on points near the periodic orbit that lie on a codimensiun-one shect Which cuts the orbit transversally. Each point on the shert fow alumg until it hits the sheet again. We wish to study the mapping of the sheet to itself that this defires. A periodic urbit with a period near that of the one under study is represented by a haed point of the maming. Orbits of higher period are fixed points of some iterate of the mapping. Period doubling occurs when an eigenvalue of the limarization
of the mapting at a siable fixed point gees through -1. This bas the effert of
 All of the interesting behavioy norurs along the eigendirection of the rigenvalue whici goes through w. It is for this reason that period-doubling of systems with thany-dimensional state spaces may be effectively studied by considering only onedimensional maps.

Tbe key features of the period doubling cascade arise in any one-dimensional map with a quadratic maximum. We may consider

$$
\begin{equation*}
f_{\nu}(x)=1-\mu x^{2} \tag{15.16}
\end{equation*}
$$

on the interval $x \in|-1,1|$. As μ varies, the width of the hump changes and perioddoubing ensues. Lef us use the term hump map to denote even maps of the interval $[0,1]$ to itself, which have a single quadratic maximum at $x=0$ with value 1 .

The renormalization picture of period-doubling is based on the observation that for any bump map f, its first iterate f of again looks like a hump map when we consider only a smaller range of x 's and invert and nagnify the value. Furthermore. when f is undergoing the nth stage of period-doubling, $f \circ f$ is undergoing only the $n-$ lst stage. Wet are therefore motivated to introduce a renormalization operator R on the space of bump maps that takes a map to a rescaled first iterate:

$$
\begin{equation*}
T(f)(x) \equiv 0 f\left(f\left(\frac{x}{a} y\right)\right. \tag{15.17}
\end{equation*}
$$

The rescaling parameter α is chosed so that given a hump map, T produces another one. Siuce $f(0)=1$, we see that $f(f(0))=f(1)$. For this to be onc. we must define

$$
\begin{equation*}
a=\frac{1}{f(1)} \tag{15.18}
\end{equation*}
$$

Since period-doubling requires only one cigenvalue to be pushed through-1. the set of hump maps undergolag any order of period doubling is codimension-one (i.t. ane dimension less than the full space of hump maps). We noted that the renormalization operator T takes the sheet of order n period doubling to the sheet of order $n-1 . T$ has a fixed point f^{*} in the space of maps. Since the renormalization halves the period of periodic orbits, a fixed point either has no periodic orbits or orbits of every power of two period. It turns out that \int^{*} bas these periodic orbits and is at the accumulation point for period-doubling (where it has just doubled an infinite number of times). f^{*} has a l-dimensional unstable manifold and a codimensionI stable manifold. All maps that approach f under repeated application of the renormalization operator must also have just period-doubled an infinite number of times. Thus f's stable manifold is the codimension-one sheet of maps at criticality. T^{-1} takes sheets of period-doubling to sheets of higher and higher order period-doubling, which must eventually limit on f° 's stable manifold. The rate at which the approach to this manifold occurs is given by the unstable eigenvalue of the linearization of T at f^{*}, which is therefore Feigenbaum's number.

To actually calculate this number, one may employ various numerical trich.which amount to projecting the entire bunsp space onto some finite dimensional approximating space and carrying out the analysis there. We may actually carry this out by hand for an extremely crude onedimensional approximation. We consider the family

$$
\begin{equation*}
f_{\mu}(x)=1-\mu x^{2} \tag{15.19}
\end{equation*}
$$

for different values of μ as the approximating one-dimensional space. We project
arbitrary hump maps to this space by truncating their Taylor series about 0 at the quadratic turm. The action of the projerted T on this space is then

$$
\begin{align*}
T\left|f_{\mu}\right|(x) & =\alpha f_{\mu}\left(f_{\mu}\left(\frac{I}{\alpha}\right)\right) \\
& =\alpha\left(1-\mu\left(1-\mu\left(\frac{x}{\alpha}\right)^{2}\right)^{2}\right) \\
& =\alpha-\alpha \mu+2 \alpha \mu^{2} \frac{x^{2}}{\alpha^{2}}-\alpha \mu^{3} \frac{x^{4}}{\alpha^{4}} \tag{15.20}\\
& =(\alpha-\alpha \mu)+\frac{2 \mu^{2}}{\alpha} x^{2}-\frac{\mu^{3}}{\alpha^{3}} x^{4} .
\end{align*}
$$

To get this to have 1 as the constant term we must choose the renormalization factor as above:

$$
\alpha=\frac{1}{f(1)}=\frac{-1}{\mu-1}
$$

U ing this and truncating away the cubic terms gives

$$
T\left|f_{\mu}\right|(x)=1+2 \mu^{2}(1-\mu) x^{2}
$$

Our space can be coordinatized by μ and T then has the form

$$
\begin{equation*}
T(\mu)=(\mu-1) 2 \mu^{2}=-2 \mu^{2}+2 \mu^{3} \tag{15.21}
\end{equation*}
$$

The fixed point is labelled by μ^{*} which satisfies

$$
\begin{equation*}
N\left(\mu^{*}\right)=\mu^{*}=2 \mu^{* 3}-2 \mu^{* 2} \tag{15.22}
\end{equation*}
$$

We find the solution to the resulting quadratic equation to be:

$$
\begin{equation*}
\mu^{*}=\frac{1+\sqrt{1+2}}{2}=\frac{1+\sqrt{3}}{2} \tag{15.23}
\end{equation*}
$$

The eigenvalue is then obtained by taking the derivative of T at this fixed point:

$$
\begin{equation*}
\left.\frac{d T}{d \mu}\right|_{\mu^{*}}=\left.\left(6 \mu^{2}-4 \mu\right)\right|_{\mu^{*}}=4+\sqrt{3}-5.7 \tag{15.24}
\end{equation*}
$$

Tha wit too bad comederng the erudisy of the approxmathom We contd hate kept quartio or higher terms to evertually get ant deored accurary funfortunatedy there requare finding roots of quartic and higher order polynomials. which is hard without a coriputer).

Chapter 16:

Symplectic

Thermodynamics from Maximum Entropy

"The formulation is mathematically equivalent to the more usual foundations. There arc, therefore, no fundamentally new results. However, there is a pleasure in recognizing old things from a new point of view. Also, there are problems for which the new point of view offers a distinct advantage."--R. P. Feynman introducing path integrals in [Feyoman, 1948].

We have seen that the underlying geometry of classical mechanies is symplectic geometry and that many physically important structures result from this. We have also seen that these geometric structures arise in a natural way as the marhematics of the asymptotic limit of an underlying wave theory. When one looks at classical thermodynamics, one sees many tantalizing indications of symplectic geometry. The Legendre transform r^{\prime} dys an essential role, thermodynamically conjugate variables remind us of canonically conjugate variables, differential one-forms and their integral- around loops (suggesting important two-forms) abound in the theory of Cartort cycles, ete Thermodyuamics also arises as the mathematical structure of
the asmptotic limit of an underlying statistical mechanical theory. We will show that indeed the structure of thermodynamics is intimately besed on mplectis geometry and that this structure arises naturally from the underlying statistical mechanics in a way that is suprisingly analogous to the wave case. Let us begin by describing some earlier inquiries into the geometry of thermodynamics and possible relations with wave asymptotics.

16.1. Previous Approaches to Geometric Thermodynamics

In his book [Tisza, 1966] of collected oapers, Tisza describes his lifelong attempt to develop a unifed theory of thermodynamics. His sixth paper on p. 235 in this volume is entitled: "The Geometrical Interpretation of the Formalism of MTE" (Macroscopic Thermodynamics of Equilibrium). In this chapter be points out that there is no natural metric on thermodynamic state space but that there is a patural volume element. He clains that there is more structure than just a volume and so introduces an affine structure and attempts to fud symmetry groups of the theory. He claims to be unable to find out anything about the group he finds He gives the affine geometric interpretation of Legendre transforms due to Pluecker in ternis of representing a curve in the plane by either its points or by the tangent lines to it (i.e. its image in the the dual projertive space as we have discussed). He finally attempts to relate a so called "stifness moduli" to the curvature, but makes the comment that curvature in a theory with no underlying metric is puzzling (there is curvature in affine geometry. however).
(Gilmore. 1981; p. 229 attempts to introduce a metrie structure into thermodynamics using the Hessian of a certain generating fuyction as the metric. He makes sone interesting connections, but the fundamental basis of his metric appears ubscure to me. He curls with a section on page 247 entitled: "Additional Questions". There he mentions the classical limit of quantum mechanics and the reconstruction of quantum mechanics in terms of path integrals. He asks if there is a similar way to reconstruct statistical mechanics from tinermodynamics. He then gives Hamilon's equations of motion, writes some thermodynamic equations with a similar form and asks: "Is there an intrinsic geometric structure in $\mathfrak{R}^{n} \times \mathfrak{F}^{n}$ associated with this variational formulation of thermodynamics? Is this geometry associated with the sy mplectic or orthogonal group $S p(2 n)$ or $S O(2 n)$ or some related real form?" but does ant go any further in their elucidation.

In |Poston and Stewart, 1978| p. 237 they discuss thermodynamics and phase transitions in terms of catastrophe theory (apparently with the consuleation of Gilmore, as indicated in the preface). They do not discuss the underlying geometry of thermod: namics, but noting the similarity of their analysis of certain phase transitions to caustics in asymptotic optics, comment: "It is interesting to speculate on the possibility of a unified asymptotic analysis, treating phase transitions as caustics in the 'matter wave' everything is made of."

In a series of papers beginning with [Sourina, 1970b], Souriau has addressed certain aspects of statistical mechanics and thermodynamics from a geometric point of view. He focusses on relativistic and cosmological issues and does not appear to concider the questions addressed here.

 was introduced with staticic- in mind!) The time everution of the densit. matrix is given by

$$
\begin{equation*}
\rho=i, \rho, H i \tag{16.1}
\end{equation*}
$$

where H is the Hamiltonian operator Feynman. 1972. The sanonical density matrix at given temperature $T=k / 3$ is

$$
\begin{equation*}
\rho(3)=e^{-S H} / \operatorname{Tr}\left(e^{-3 H}\right) . \tag{16.2}
\end{equation*}
$$

If we introduce an un oomalized ρ. then it satisfies the equation

$$
\begin{equation*}
\frac{\partial \rho}{\partial \zeta}=\rho, H_{i} \tag{1u.3}
\end{equation*}
$$

This looks like the evolution equation where t times the inverse temserature . 3 plays the role of the time. This formal si ilarity is behind all the uses that I have seen of path integrals in statistical mechanics ws in leyuman and Hibbs. 1965. 20 [Feynman. 1972], and 0 [Schulman. 198:'. This is great for talrutating partition functions, but it is hard to see any deep physical signiticanst for their relation We will present an alternative approach based on the maximum cntropy formalism where it is very easy to see the physical significance.

The last connection between waves and statistics that I have seen mentioned by other authors is tbat the eikonal first amplitude transport equations may be writen in a form that looks like the mass and momemtum demsity fluid aramport
*quatome of Euter (which arise from monente of the statistical BBCiKi hierarche) Ond might argut that cikonal waves represent photun gases for which a huid theory is aprouprate

The book $\{\mathrm{Kijow}$ ki and Tulczyew', 1979] describes a symplectic structure

$$
\begin{equation*}
\cdots=d T \wedge d p \div d T \wedge d S \tag{16.4}
\end{equation*}
$$

on the the four-dimensional state space of thermodynamics, where (Y, p, T, S) are volume. pressure, temperature, and entropy. The authors show ihat in the case of n ideal gat. the equations of state,

$$
\begin{gather*}
p V=R T \\
p V^{\prime \gamma}=k e^{S / c \nu} \tag{16.5}
\end{gather*}
$$

define a Lagrangian submanifold with respect to this symplectic structure. If we view this symplectic manifold as a cotangent bundle with base coordinatized by $(V, 5)$ or (V, T) or (p, T) or (S, p), this Lagrangian submanifold is the graph of the differentian of the internal energy, the Helmholtz free energy, the Gibbs free energy. and the enthalpy, respectively. Unfortunately, the authors do not give any reason for this sticiture.

We will show here that the prineiple of maximunı entropy as applied to statistical mecharics leads naturally to this symplectic structure. We can sec quite easily why the equation of state manifold should be Lagrangian. If we describe a loop of states on this manifold (i.e. a Caront cycle), then the integrai over the surface bounded by this loop of $d \sigma^{\circ} \wedge d p$ gives the work done and the integral of $d T \wedge d S$ giver the beat gained. The first law of thermodynamics (energy conservation) says that theore must be equal and opposite so the symplectic atructure which is their
sum must vapish on our manifold. which in thu: Lagrangian it mentereating that each term in the symplectic structure has its own physical interpretation

16.3. Seven Approachea to the Maximum Entropy Formalism

The maximum entropy furmalism is a very powerful statistical tocl. introduced in the papers reprinted in $\{J a y n e 5,1983\}$, which gives a prescription for finding the "least biased" prohability distribution consistent with any known data. If we have a discrete number of possibilities and no data to distinguish them, then symmetry forces us to choose the distribution which makes them equiprobable. If we have some information about the distribut:on, say its mean value, then we would like a prescription to choose among all possible distributions with that mean value.

Assuming there is such a prescription that always gives the same answer in the same situation and is uniform across number of possibilities, it has been shown to te unique (p. 16 of [Jaynes, 1983|). In fact one must choose that distribution coosistent with any known data which maximizes the entropy defined as the sum over states of

$$
\begin{equation*}
--p \log p, \tag{16.6}
\end{equation*}
$$

where p is the probability of a state. It is easy to see that if nothing is known, this gives the equiprcbable distribution. The basic requirement in the general case is that if we partition the elementary events into subsets and rall membership in these subsets the elementary events of a new distribution, then applying one's prescription should give the same distribution in each situation. This is in some respects a renormalization group idea.

16.2.1. Axiomatir Subjective Approach

The work which introduced information theory ;hannom. 1948, giver an axiomatic characterization of the information entropy which applies equally well w the case at band. Given k possible outcomes of an experiment with the probathitife $p_{1} \ldots . . p_{k}$. one would like a measurn of the uncertanty in the value measured m each trial. Shannon requires of such a measure $H\left(p_{1}, \ldots p_{h}\right)$. that it satisfy three axiome. 1) H should be continuous as a function of the p_{t} 's. 2) If all the p_{1} 's are equal. then H should be a monotone increasing function of k (more equally likely outcomes means more uncertainty). 3) If a choied is broken into two choices. then H should be a weighted sum of the individual choices. Shannon gives the example

$$
\begin{equation*}
H\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{6}\right)=H\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{1}{2} H\left(\frac{2}{3}, \frac{1}{3}\right) \tag{16.7}
\end{equation*}
$$

Here we have three possible outcomes, say A, B, and C. with probabilities of $1 / 2$. $1 / 3$, and $1 / 6$ respectively. We may alternatively view this as two events: A and D. with probabilities $1 / 2$ and $1 / 2$. D represents tie occuramee of either B or C. The total uncertainty is the uncertainty in the A vs. D choice. plas the uncertainty in choosing $\mathrm{B} v . \mathrm{C}$ weighted by a factor of $1 / 2$ (since this choice only arises half the time).

By approximating the probabilities by rational numbers and breaking the elementary events up into a number (the least common muliple of the denominators) of equally likely events, we may reduce the problem to equiprobable distributions. But for them the third property forces H to be a logarithonir function of the mamber. For arbitrary distributions, we hind that $-p$ log p (or some multiple of it)
is the unture H satiafying the requirements. To to unbiased. we should choose That di-1 ributjoth which has the least information about our experiment that is still consistent with the knewn data. We should therefore choose that consistent distribution that maximize this entrops. This approach chooses the distribution on the base of not assuming information that we do not have and may therefore be considered "subjective". This allows it to be applied in many circumstances where the "objective" view of probability as frequency in large number of trials doesn't have any meaning. For example, we may ask for the best prediction of something on the basis of one ofmervation.

16.2.2. Counting Sequences of Triala

To see another place where the formula for the entropy comes from, we consider as elementary events, sequences of N trials of the basic experiment and let N go to infinity. The law of large numbers says that it is extremely likely for the number of trials with a given valuc in a sequence divided by N to be the probabilty of that value. Let us therefore consider all sequences with $n_{1}=p_{1} \cdot N$ eniries with the first value, $n_{2}=p_{2} \cdot N$ entries with the the second value, and so on up to the number of possible measured values k. The least biased choice of $p_{1}, p_{2}, \ldots, p_{k}$, is that which is consistent with the known data and which maximizes the number of allowed measurement sequences. How many such sequences are there for given p, ¿s? We may lay our required measurements down in N^{\prime} ? ways, but permutations of the n with the same value don't change the measurement sequence. Thus the namber
of sequences is

$$
\begin{equation*}
=\frac{N!}{n_{1}!n_{2}!\ldots n_{k}!} \tag{16.8}
\end{equation*}
$$

Maximizing this is equivalent to maximizing its logarithm. Because the p; are fixed as A' gets large, all the π 's get lage as well (if they are not zero). We may therefore asymptotically use the crudest Stirling approximation:

$$
\begin{equation*}
\log n!\sim n \log n-n \tag{16.9}
\end{equation*}
$$

for N and each of the n_{i} 's as N goes to infinity. We thus want to maximize $(N \log N-N)-\left(n_{1} \log n_{1}-n_{i}\right)-\cdots-\left(n_{k} \log n_{k}-n_{k}\right)=$ $=\left(n_{1}+\cdots+n_{k}\right) \log N-n_{1} \log n_{1} \cdots \cdots n_{k} \log n_{k}$
$=-n_{i} \log \left(\frac{n_{1}}{N}\right)-\cdots-n_{k} \log \left(\frac{n_{k}}{N}\right)$,
since

$$
\begin{equation*}
\mathbf{n}_{\mathrm{h}}+\cdots+\mathbf{n}_{k}=N \tag{16.11}
\end{equation*}
$$

Equivalently we want to maximize

$$
\begin{equation*}
\sum_{i=1}^{k}-p_{i} \log p_{t} \tag{16.12}
\end{equation*}
$$

which is the maximum entropy prescription.

16.2.3. Via Steepeat Deacents in Two Ways

The uscal proof of Stirling's Cormula used above, uses steepest descents on the integral formula for the gamma function.

Because it in perbaps the simplest example of a combinatorial quantity giving rise to nice andytical asymptotics, it is worth examining the classical application of steepert descents to the integral formulation of the gamma function to obtain Stirling's expression for x ! as x gets large. It is interesting that the form of the integral is quite similar to those appearing in statistical mechanies.

The gamma function of $x+1$ is the Laplace transform with respect to t of $\boldsymbol{t}^{\boldsymbol{x}}$ evaluated at 1 (and so the x-fold convolution of the Laplace transform of t). For large x, the expression

$$
\begin{align*}
x! & =\Gamma(x+1) \\
& =\int_{0}^{\infty} t^{x} e^{-t} d t \tag{16.13}\\
& =\int_{0}^{\infty} e^{x \log t-t} d t
\end{align*}
$$

is of a form ripe for Laplace's method. The exponent is

$$
\begin{equation*}
\pm \log t-t_{1} \tag{16.14}
\end{equation*}
$$

with derivative with respect to 1 given by

$$
\begin{equation*}
\frac{t}{t}-1 \tag{16.15}
\end{equation*}
$$

and so has its maximum at

$$
\begin{equation*}
t=x . \tag{16.16}
\end{equation*}
$$

We expand to second order about ths maximum and extend the mesratom to infinity to get

$$
\begin{equation*}
=e^{x \log x-x} \int_{-\infty}^{\infty} e^{\cdot \frac{1}{2}(t-x)^{2}} d t . \tag{6.17}
\end{equation*}
$$

This vields ac Stisling approximation

$$
\begin{equation*}
x!\sim \sqrt{2 \pi x} x^{x} e^{-x} \tag{16.18}
\end{equation*}
$$

We :- ill show here two ways in which to view maximum entropy as coming fron a steepest descents argument directly. These will allow us to make ronnections with eikonal wave theory and path integrals which use stationary phase.

In the first picture, we realize chat our system is coupled to the rest of the world. The probability distribution of our system is determined by the state of the rest of the world and all possible such states must be considered in our choice of probability distri: utio. Thus we think of our desired probability distribution as being an "integral" over til possible distributions consistent with the known data. The distributions mus* be weighted by the number of external conditions that can produce t^{\prime} em. TF s is the number of ways of rearranging states and is given by the integral over all states of the weight

$$
\begin{equation*}
\exp \left(\sum-p \log p\right) \tag{16.19}
\end{equation*}
$$

For the syst' ins we are interested in, the thermodynamic limit makes the exponent grow asymptotically (since changing the scale from x to $N=e x$ makes $d x=\frac{1}{e} d \boldsymbol{V}$: equivalently, th." number of states grows exponentially with the number of particles) and so "stecpest desemt" tells us that only the maximum entopy distrithtion con-
tribute \{The integral owr all distributoms must of course be interpreted asymp-
 application of stecpest dersents on infinite-dimensional spaces).

Thin is in the spirit of Gibbsian ensembles. but applied to the distributions themselves (i.c, an ensmble of probability distributions). One might imagine many copies of our systern and each one has its phase space populated with a swarm of particles whose density is qoverned by some distribution. How many particle swarms correspond to a given distribution? We get multiple systems by exchanging particles but must divide by the number of exchanges between particles of the same probability. Think of chopping phase space into bins. Each probability disiribution places a certain number of particles in each bin. The number of distinct Ways of obraining a given distribution is obtained by counting all permutations of the particles and dividing by the number of exchanges which leave the same particies in the bins (and so don't count as a distinct way of obtaining a distribution). Again the exponential of the entropy gives the number of possibilities in the limit as the number of particles becomes infinite and the binding becomes infinitesimal.

The second approach is an empirical one. We say that probability distributions are experimentally determined by measurement sequences and if we know only the distribution. its multiplicity should be the number of distinct measurement sequences that give ris, to it. We may make the connection with path integrals in the following way. Consider the space of our observables M crossed with an intersal in 9 . We can bink of parametrized famities of measurements as being path: in this spare. With appropriate binning (as discussed in the introduction).
each path determines a probability distritution by integrating along the intermal. Some paths are consistent with the known data, and we must consider themequally likely, others are not and they have zero probability. The expected ditribution in then an integral over those distributions corresponding to the possible paths. Wir may convert chis to an integral over possible distributions, if we include a wrighting factor equal to the "measure" of paths corresponding to each distribution. But wo have seen above that this is just $\exp \left(\sum-p \log p\right)$. Again we use "steepest descents" to conclude that the maximum entropy distribution is most likely-

It is perhaps artificial to think of measurements as parameterized by a real parameter (though time might serve this role). We night just as well consider sequences of measurements which asymptotically determine distributions. It is really the distributions that play the role of paths in Feynman's theory in any case In fact, when one does quantum field theory via path integrals, the integral is over fields and so is quite similar to our integral over distributions.

Let us explicity write down the formula for the "average" distribution which is analogous to the Feymman path integral. We want to sum over all allowed $\rho(Z)^{\circ}$ s weighted by the factor

$$
e^{-S i f(p) / v}
$$

\{the \boldsymbol{c} arises from the sealing discussed carlier in this mection\}. We want to normatize the resulting distribuison as well. If we let $D(\rho)$ represent the "mearure" an distribution space, and let C be the subset of dictributions wheyng ans impored
constrathes. then

$$
\begin{equation*}
f_{\text {avetage }}(Z)-\frac{\int_{C} \rho(Z) e^{-\int \rho(Z) \log \rho(Z) d Z / 4} D(\rho)}{\int_{C} e^{-\int \rho(Z) \log \rho(Z) d Z / 4} D(\rho)} \tag{16.21}
\end{equation*}
$$

Integrating over Z. we sec that this expression is correctly normalized (since each ρ in C is). Applying steepest descents as $c \rightarrow 0$, we pull out bie ρ with the maximum entropy from the integral in the numerator and the remaining integrals cancel leaving

$$
\begin{equation*}
\rho_{\text {average }}(Z) \sim \rho_{\text {max }} \text { שntropy }(Z) \text {. } \tag{16.22}
\end{equation*}
$$

We can get the expected value of any functional of ρ by inserting it in place of ρ in the integrand of the numerator. In each case we may use steepest descents to pull it out of the integrand by evaluating it on the maximum entropy distribution. For example, by integrating over the constant energy surfaces each distribution ρ or phase space determines a distribution of energies (i.e. the density of states). By this argument, the average distribution over energies is exactly the one determined by the maxime in entropy phase space distribution.

16.2.4. Via Probability in Three Waya

In the very interesting reference: [Tikochinsky, Tishoy, and Levine, 1984], the anhors provide three "objective" justifications for the maximum entropy procedure to complement Jaynes' more "subjectiv' ' philosophy. Their Girst technique is to consider the known data to be a sequence of experimental samples and from consistency conditions and the reproducibility of the experiment, they deduce the maximum entropy criterion. This argument is very much like the sequence space
 itork.

Theit second approach comerns the athon of most wable inference The ithea that since the data inferred from real samples is likely to be slightly off. ofte would choose that consistent distribution that is least semsitive to errors in the data. Thin too leads to the maximum antropy distribution. Intutively, this distribution is the most spread out that in can be, consisw at witb the data, and so changes the teast as the data varies.

Their last approach uses the notion of suffrie. statistics. In later sections we shall need to use Bayes theorem, which allows one to calculate the prohabihty distribution of a parameter that parameterizes a family of distribution functions. given the actual distribution. A sufficient tatistic is a function of some number of sample p sints which contains all the infromation that the samples do as far as determining tine value of the parameter. If the sample averages of the ohserved parameters serve as sufficient statistics for the mean value of those parameters, then the probability distribution of those parameters mnst in face be the maximum entropy one. Thus, if the sample average is all that can usefully be used in determining expectation values. We must have the maxinum eatropy distributan.

16.3. The Thermodynamic Limit

Our asymptetic- will consist of taking the thermodynamic limit. We want the oberevable 10 be eertain mechanical yuantities. like the volume I. the total energy l. the numbers of various particles λ_{1}, the magnetir moment μ. etc. These will all be taken at constant N. the total number of particles, because this will play the role of an asymptotic parameter. If we have n particle species only $n-1$ of the quantities N_{1} are really independent variables en our space (so pick the first $n-1$ say). We will thus assume that N is precisely known when applying maximum entropy. Let us symbolize the rest of the observables by the variable x. which is a Fector in the observable vector space O. We will assume that experimentally only the mean values of the x after many measurement trials are known. We introduce the asymptotic parameter c and let the total particle number scale as: $N=1 / \epsilon$. As N gets large, the boundary effects shrink and so the x really become extensive. and so proportional to \boldsymbol{N}. We therefore introduce the "slow" rescaled (intensive) quantitics: $y \equiv t \leq$. The behavior of the system expressed in terms of y as $e \rightarrow 0$ will give us the thermodynanic limit.

In our discussions we will often want to distinguish the mechanical variables y and their thermodynamically conjugate variables. Since the mechanical variables are additive when we couple systems, we will sometimes refer to them as "the extensive variables" (even though they are intensive with respect to the se ding of e) and their thermodynamic conjugates (like temperature and pressure) as "the intensive variathes" since these equalize in coupled sytems. This nometelature is introduced merel to keep from repeating the awkward phrase "and them thermodynamically
conjugate variables".

16.3.1. The Density of States

The density of states availabir to the system with given r s will be denoted by $\Omega(x)$. So $\Omega(x) d x$ is a density on O whose integral over a region represents the number of microstates represented by that region. If the x 's are large, the. the number of states of a system is equal to the product of the number of states in each of two subsystems into which it decomposes (since interaction becomes irrclevant asymptotically). Thus

$$
\begin{equation*}
\Omega(y)=\Omega(y-\xi) \Omega(\xi) \tag{16.23}
\end{equation*}
$$

as $c \rightarrow 0$. We may find the asymptotic dependence of Ω or e by taking the logarithm:

$$
\begin{equation*}
\log \Omega(y)=\log \Omega(y-\xi)+\log \Omega(\xi) \tag{16.24}
\end{equation*}
$$

and taking $\xi=y / 2$ to get

$$
\begin{equation*}
\log \Omega(y)=2 \log \Omega(y / 2) \tag{16.25}
\end{equation*}
$$

and by extending this to first binary fractious:

$$
\left.\log \Omega(y)=2^{n} \log \Omega\left(2^{-n} y\right)\right)
$$

and then by continuity, to all reals:

$$
\begin{equation*}
\left.\log \Omega(y)={ }_{e}^{1} \log \Omega(\epsilon y)\right) \tag{0.27}
\end{equation*}
$$

and we obrain finally

$$
\begin{equation*}
\Omega\{y\}=e^{(l o x \| / x) y / t} \tag{116281}
\end{equation*}
$$

This shows that as $t \rightarrow 0$. the density of states scales as an exponential with a $1 / \mathrm{c}$ in the exponent.

16.3.2. The Partition Function

The partition function $Z(X)$ corresponding to the density of staces $\Omega(x)$, where N $\in O^{*}$ is in the dual space (i.e. the space of linear functions) to $x \in O$, is given by the multiple Laplace transform:

$$
\begin{align*}
Z(X) & =\int_{0}^{\infty} \cdots \int_{0}^{\infty} e^{-(x, X)} \Omega(x) d^{n} x \\
& =\frac{1}{c} \int_{0}^{\infty} \cdots \int_{0}^{\infty} e^{(\log \Omega(y)-\{y, X)\} / \epsilon} d^{n} y \tag{16.29}
\end{align*}
$$

Let un now use steepest descents to get the $\subset \rightarrow 0$ asymptotic behavior. The exponent is a maximum at that value of y where

$$
\begin{equation*}
X=\frac{\partial \log \Omega(y)}{\partial y} \tag{16.30}
\end{equation*}
$$

Le: us call this point $y_{0}(X)$. Then asymptotically we have

$$
\begin{equation*}
Z(X)=\frac{1}{c} \frac{\sqrt{2 \pi}}{\left.\sqrt{-\partial^{2} \log \cap / \partial y^{2}}\right|_{\operatorname{Lo}^{\prime}(X)}} \mathrm{c}^{\left(\log \cap\left(\operatorname{vo}_{0}(x)\right)-\left(y_{0}(x), X\right)\right) / \varepsilon} \tag{16.31}
\end{equation*}
$$

So we see that the partition function, like the deasity of states, also scales as an exponential with a $1 / \mathrm{c}$ in the exponent asymptotically. Notice that so (X) defines a Legendre transformation from y space to X space generated by the function $\log \Omega(y)$ and that the exponents of Ω and Z are the Legendre translorms of each other.

16.4. Maximum Entropy Applied to Statintical Mechanics

 derote the underlying shase space of our system by I thic wall be wf the wrate of 10^{23} dimensional). We have the space P of probability dist ributumb on T and at map $0: \Gamma \rightarrow 2$ which represents the value of the observable of whertet wa given microscopic state (O is a linear space of observables discusspd abowe) Wi may integrate the O valued function o with respect to each probability distribution 10 get a map

$$
\begin{equation*}
m P \rightarrow O \tag{16.32}
\end{equation*}
$$

giving the mean values of the ubservables for each probability distribution. We also have the information eatropy

$$
\begin{equation*}
S: P \longrightarrow \mathbb{R} \tag{16.33}
\end{equation*}
$$

which is a positive real valued function on P obtained by integrating $-p$ log p over [for each measure $p \in P$. Our goal is to detine a map

$$
\begin{equation*}
E: O-P \tag{1634}
\end{equation*}
$$

representing the must likely distribution with the given mean valuen of o Thimage of $y \in O$ lies in $m^{-1}(y) \subset P$. We define it tu be the maxmutn of 5 restricted 10 this set. We may then pull back S along E to get the entropy as a furntion on ()

The constrained extremization required is most eably carried out asing lan grange multipliers X which lie in the dual space O^{*} S is a mexuman ob m ${ }^{\prime}(t)$ at $p \in P$ if and only if there exists a Lagrange multiplier If O^{*} ourh that

$$
\begin{equation*}
S-X=m \tag{16.35}
\end{equation*}
$$

1- a manmman on P^{\prime} at p We may work on the linear -pare of momomatized
 nos nalipers Thus we ohtain the requirement

$$
\begin{equation*}
\therefore p\left(-\int_{1} p(z) \log r(z) d z-(X \cdot m(p)\}-\lambda \int_{[} p(z) d z\right)=0 \tag{16.36}
\end{equation*}
$$

Inserting the definition of m and carring out the functional derivative gives

$$
\begin{aligned}
& =\frac{\dot{\partial}}{\Delta p}\left(-\int_{\Gamma} p(z) \log p(z) d z-\left\langle X \int_{\Gamma} o(z) p(z) d z\right\rangle-\lambda \int_{\Gamma} p(z) d z\right) \\
& =\frac{\hat{\delta}}{\delta p}\left(-\int_{\Gamma} p(z) \log p(z) d z-\int_{\Gamma} p(z)\langle X, o(z)\rangle d z-\lambda \int_{\Gamma} p(z) d z\right) \\
& =\frac{\dot{\delta}}{\delta p} \int_{\Gamma} p(z)(-\log p(z)-(X, o(z)\rangle d z-\lambda) d z \\
& =-\log p(z)-\langle X, o(z)\rangle d z-1-\lambda .
\end{aligned}
$$

Let ue call

$$
\begin{equation*}
\mathrm{e}^{-1-\lambda} \equiv \frac{1}{Z} \tag{16.38}
\end{equation*}
$$

We must choose $\lambda(X)$ and therefore $Z(X)$ to ensure that p is a properly normalized probability distribution. Solving for $p(z)$, we find

$$
\begin{equation*}
p(z)=\frac{1}{Z(X)},-\{X, o(z)\} \tag{16.39}
\end{equation*}
$$

The normalizetion condition shows us that

$$
\begin{equation*}
Z(X)=\int_{5} e^{-(X, o[z)\rangle} d z \tag{16.40}
\end{equation*}
$$

is the partition function.
Given $y \subset O$, we solve for $X \in O^{*}$ by requiring that the corresponding distrihution give \mathcal{y}, its mean vajue of 0 . Looking at the expression for Z. we see that thi- i- equivalent to requiring that

$$
\begin{equation*}
y=-d(\log Z) \mathrm{ix}_{\mathrm{x}} . \tag{16.41}
\end{equation*}
$$

Here we are identifying $O \approx O^{*}$. This map $L: O-O^{*}$ is the Legendre transform generated by $\log Z$. We may pull back the entropy on P by E to give a function on O. We see that this is,

$$
\begin{equation*}
S \circ E(y)=\log (Z \circ L(y))+(X, y) . \tag{16.42}
\end{equation*}
$$

And so the surface

$$
\begin{equation*}
X(y)=L(y)=d S(y) \tag{16.43}
\end{equation*}
$$

is a Lagrangian submanifold in $O \times O^{*}$.
Jaynes has given a nice demonstration of the second law of thermodynamies using maximum entropy [Jaynes, 1983]. We need oniy assume that the measured entropy for a given set of thermodynamic parameters is the entropy of the maximum entropy distribution with mean values given by the measurements (we bave just seen that this is equivalent to the Gibbs distribution giving the corsect value-the basic assumption in traditional statistital mectanics). W'e will show that if we start with a cafonical distribution corresponding to one set of thermodynamic parameters and push it forward by any canonical transformation of the underiying phase space, then the values of the thermodynamic parameters obtained from the pushed forward distribution cortespond to an entropy which is larger than that of the first set. We first recall that the information entropy of the pushed forward distribution is the same as the entropy corresponding to the initial parameters. This i: because the integral $\int-\boldsymbol{p} \log p$ doesn't change under volume preserving diffeomorphismand canonical transformations preserve volume. Next, the entrofy corresponding to the new parameters is the information entropy of the maximal entropy distribution with them as mean values (i.e. the Gibbe ranonical distribution). Since
this entropy is maximal and the pushed forward distribution is another distribution with the new parameters as mean values, the new eftropy is greater than or equal to the infory iation entropy of the pushed forward distribution. But this shows that the new eotropy is greater than or equal to the old entropy. Since information entropy measures out ignorance, this interpretation of the second law simply says that if we begin with a known (canonical\} distribution, follow it in detail under a canonical transformation, and then forget everything but the mean values of some thermodynamic parameters, we are bound to lose information for at least not gain it).
16.5. Some Symplectir and Contaet Geometry

H- cach skylark mitst divplay ats comb, so ebrery bratuch of nathemation-must finally display swoplertsation." p 74 of Ariold. 1984

In this section we will collect together some of the definitions and reasits of symplectic and cotact geometry and give some motivation for then use in the contexts we have in mind. We have seen that in wave theory we get asymptotic interals over

$$
\begin{equation*}
f^{15 / 4} \tag{16.44}
\end{equation*}
$$

where S is the action and that in statistical mechanics we get asymptotic integrals over

$$
\begin{equation*}
e^{5 / 1} \tag{16.45}
\end{equation*}
$$

where S is the entropy. By using stationary phase or steepest descenti. we asymptotically reduce these expressions to ones involving only regions with specified differential $d S$. When we are etudying fannilies of values parameterized by y (eg. the point in space we are observing our wave or the thermodynamic observable we often obtain S as a function of y and are interested in points where $d S$ han a value equal to a Lagrange multiplier in tbe dual space of y. The lever sets of sive often have physical interest (eg. the wavefront on the inentropic atates). Thus. wo are motivated to study the geometric structures associated with the differentidib and level sets of Eunctions.

Figure 16.1: Spaces associated with a function on a manifold.

16.5. I. Hypersurfaces Determined by a Function

Every function S on a manifold M of dimension m, determines two natural kinds of hypersurface (a hypersurface is a codimension-1 submanifold (i.e. of one dimeusion less than the ambient suace it lie in)). For example, consider the function $S(x, y)=s^{2} \div y^{2}$ defined on the 2-dimensional plane coordinatized by I and y. Its level sets form a family of hypersurfaces of M parametrized by S (with occasional non-submanifolds tbat are of measure zero generically. by Sard's theorem). For $S=x^{2}+y^{2}$, the level sets are the carcles $x^{2}+y^{2}=$ constant. On the other hand. S grayt is a hypersurface in $M \times 9$. For $S=x^{2}+y^{2}$, the gragh is a paraboloid of revolution in (x, y, S) space. The differotid) $d S$ of S is a cue-form on M (which
eometrically represents the gradient of S). For $S=x^{2}+y^{2}$. He ser that $d S=$ $2 x d x+2 y d y$. This gives the first order behavior of S near earh point of M. The first order behavior of a hypersurface at a point in a manifold in represented by a hyperplane in the tangeat space of the manifold at that point (i.e. a codimension one subspace of the tangent space). We may thus form the set of all hyperplanes in $T M$ that are tangent to level sets of S and the set of all hyperplanes in $T(M \times \Omega)$ tbat are tangent to the graph of S. The tangent hyperplanes to the level sets are exactly those vectors which $d S$ annihilates. Thus this set of hyperplanes contains all the information that $d S$ does except its length. For $S=x^{2}+y^{2}$, the vectors which are scalar multiples of

$$
\begin{equation*}
y \frac{\partial}{\partial x}-\tau \frac{\partial}{\partial y} \tag{16.46}
\end{equation*}
$$

are annihilated by $d S$. At each point, this vector spans the tangent space $10 S^{\text {t }} s$ level set. The tangent hyperplanes to the graph of S give all the information of $d S$, but in addition, the place they are based at tolls us the value of 5 (which isn't known from just $d S$). The tangent byperplane to the graph of $S=x^{2}+y^{2}$ at the point (x, y, S), assumed to be away from $z=0, y=0$. is spanned by the vectors.

$$
\begin{equation*}
y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y} \tag{16.47}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2 x} \frac{\partial}{\partial x}+\frac{1}{2 y} \frac{\partial}{\partial y}+2 \frac{\partial}{\partial S} . \tag{16.48}
\end{equation*}
$$

16.5.1.1. The Underlying Manifold M

We thut get spveral natural additional spaces of interest when we begin to ronsider functions on a manifold. Let the coordinates q represent points in M. The space of all q 's is M and is of dimension m.

16.5.1.2. The Graph of a Function

The space whose points give both q and the value of a function S at q is $M \times \Re$. This is ($m+1$)-dimensional and is where the graph of S lives.

16.5.1.3. The Cotangent Bundle

The space whose points represent q and the differential $p=d S$ of a function at q, is the cotangent bundle $T^{*} M$. This is 2π dimensional and as we bave seen earlier bas the canonical one-form $p d q$ and a natural symplectic structure $d q \wedge d p$ defined on it. We defined an m dimensional submanifold of $T^{*} M$ to be Lagrangian if the symplectic form vanishes on it . We bave seen in section 7.1.4 that the graph of $d S$ 15 a Lagrangian submanifold. For waves this represents the local wavevector as a function of position in an eikonal wave (in spacetime the manifold represents the solution to the intial value problem). It is important to represent this in the space of both y 's and k 's, because even though this surface is smooth, its projection may not be, and our wave can develop multiple branches and caustics. For thermodynamics it gives the intensive variables as a function of the extensive ones (recall the nommendature convention from 16.3 . $)$. We may think of it as the equation of state.
 1t: projection onto the mencive vartables berome sumblar at phase transtion-

16.5.1.4. The First Jet Bundle

The space whose points represent q, the differential $p=d S$ of functions, and the value S of functions. is the first jet bundle $J^{1} M$. This is $(2 m+1)$-dimensional and we saw earlier that this has a natural contact structure on $i t$. defined as the set of tangent hyperplanes annibilated by the one-form: $d S-p d q$. Any function S defines an m dimensional submanifold of $J^{1} M$ by $q \mapsto(q, d S, S)$. An m dimensional submanifold of a contact manifold is called a Legendre submanifold if it is tangent to the contact planes at each point. The submanifold of $J^{1} M$ determined by a function S is Legendre. For waves this means including the value of the phase with the position and wavevector. When we forget about it (by reduction), we get the Lagrangian submanifold above. For thermodynamics. this gives the relation between the entropy and the intensive and extensive mechanical varibles.

16.5.1.5. The Space of Contact Elements

The set of hyperplanes in a linear space of dimension m_{l} forms a smooth manjfold of dimension $m-1$ (eg. the set of lines through tize origin in a plane may be thougit of as a circle). A byperplane of the tangent space of a manifold at some point is called a contact element at that point. The set of all contart elements of 11 forms a manifold of dimension $2 m$ - I whose points repremput a pout q of 11 and a tangent hyperplane there. We have sren that this manfold of contact element- is

If andi a contert manifold A tangent vertor to the -pace of contact elements, which
 loard at. is whe whe contact inture if the velocity of the basepoint of the contact elenuent lies in ithe contart elen ent. The set of contact elements which are tangent to a level set of 5 forms a submanifold of the space of contact elements of M that is of dimension m and is in fact a Legendre submanifold. We may thank of this as parameterizing the wavefonts, including the direction. When a wavefront begins to cross itself (as at a caustic), it is important to keep the direction of the wavefront as well as the position. The Legendre submanifold is always smooth, even though the wavefront may develop cusps and self intersections.

Similarly, the set of contact elements of $M \times \mathfrak{R}$ is a contact manifold of di*ension $2 m+1$. The set of contact elements that are tangent to the graph of S forms an m dimensional Legendre submanifold. This set will be important to our understanding of the Legendre transform.

16.5.2. The Conormal Bundle

If we are given a codinension n submanifold N of M (that is thus of dime .sion m - n). we may think of it as the simultancous level set of n linearly independent functions (lorally) This motivates us to consider the set of all covectors in $T M$ hased on N, which annihilate the tangent space to N. This is called the conormal buadle of X in M. (If M had a metric, then this would be all vectors that are perpendicular to N). This is a Lagrangian submanifold of $T^{*} \mathrm{M}$. In the limiting case where X is a peint of W. the conormal bundle is just the set of covectors based
at that point If N is the whole of K. then it \mathcal{N} the zerosection of $T^{\circ} .11$ If were Riemannian, then there is a natural projection of the (co) vormal burdle of N into M given by seading (q, p) in the normal bundle to the point a distane p along the geodesic in M starting at q in the direction p. This gives the set of rays in M that are traversed by light emitted by N, where the metric represents the (atisotropic) index of refraction. The singularities of the projection from the normal bundle to M represent the caustics. They are the points which lic at the center of curvature of some direction on the surface (|Arbold, 1983| p. 83).

16.5.3. The Wavefrout Set

This map is also related to the wave front set of a distribution d on If introduced by Hörmander ([Hömander, 1983] p. 252). We associate with d a Lagrangian su'unanifold of $T^{*} M$ by saying that a covector p is in d^{\prime} s wavefront set if the pushforward of d to \mathbb{R}^{3} along any smooth function whose differntial is p is still singular (i.e. there exists a smooth function on $\mathfrak{p r}^{1}$ whose integral with respect co the pushforward of d doesn't approach zero as the regron of integration vanishers . Thus a puint δ-function at q on M has a wavefront set that meludes all covertor: at q while a δ-function supported on a submanifold Whas a wavefront set that includes only the conormal bundle of N This is of inerest because the singularitif: of the solution of a byperbolic P.D.E. with singular intial conditiont must lie on the projection to M given above of the wavefront set. Thus for the wave equation on a Riemmanian manifold. a b-function intial condition will lead to singulariter on a growing sphere (with respect to the metric) whirh we recongize as slices of
the light rone A singular hypersurface moves like a wavefront and propagates only in the direction of the rays. We can understand this close relation between high frequency asymptotics and the evolution of simgular distributions by recognizing that the singular aspects are due to the infinitely higb frequencies, and a singular distrihution can be represented as an integral over the asymptotic parameter of a family of eikonal waves. This can be related to Huygens principle. The fact that singularities move on rays is behind a beautiful discussion on p. xi of |Guillemin and Sternberg, 1977; explaining why the frequescy of a bowed violin is the same as that of a strummed one (a priori, the frequencies of driven oscillations should bave nothing to do with free oscillations). The explanation is that when the string snaps away from the bow, a singular kink is generated which goes down the string and back to kick tue string off the bow again. geverating a frequency equal to that of the normal mode corresponding to that periodic ray. The reference gives figures showing the sting motion.

16.5.4. The Space of Tangent Contact Elements

We may also consider the set of all contact elements of M which are tangent to N (i.e. which contain N 's tangent space). This set is a Legendre submanifold of the space of contact elements of M. This represents the local piewes of the wavefront that will be emitted from N. Even if N is lower dimensional, like a point, the emitted wavefront will be n dimensional (like a sphere about the point).

16.5.5. Legendre Tranyforms and Linear State Spares

 totics stretches the underlying manifold M in both the wave case (where we werl 10 a slow space) and in the statistical mechanical case (where we went to resealed mechanical variables). Asymptotically, any non-trivial manifold structure disappearand we are left with \Re^{m}. In this case the cotangent bunale becomes $\mathbb{R}^{m} \times \Re^{m}$. When the hase space is linear, there are more geometrical uperations which we may perform. The new freedom is to project not only "vertically" to \mathbb{R}^{m}. hut also "horizontally" to $\Re^{m \times 4}$. Essentially wa bave decided how to identify all the co:angent spares at different points of M. We mey do this by choosing coordinates on M. which gives such an identification but de sends on coordinate choice. As e -0 . however, all smonth coordinate systeme lead to the same asymytotic identification. This asymptotic identification of cotangent spaces is non-uniform in q. but all our operations. like local Fourier transform. always include a window which scales so as to eliminate the not-uniform parts.

16.5.5.1. The Legendre Map

Given any function S on \mathfrak{R}^{m}, its differential takes its values in $\mathbb{R}^{m *}$. Thus d S is a map from \mathfrak{R}^{m} to its dual space, which we may call the Legendre map. In the case of waves, this maps y space into k space. For themodyumics, it taker a set of extensive variables into their thermodynamically conjugate intensive variables. We have sen that these are the stationary points for the Fourier and Laplace transforms respectivels.
16.5.5.2. The Legendre Tranaform

When $=A$ atrictly comvex (ut- Hessian (second derivative matrix) is positive detinite) then the map is one to one. If 5 is bounded below by some quadratic form, ther it is a diffeomorphism. In this eave it makes sense to ask for the function $T(p)$ on $\Re^{m *}$ whose corresponding Legendre mapy is the inverse of the one generated by $S(q)$. One see. that in this case:

$$
\begin{equation*}
T(p) \equiv\langle p, q(p)\rangle-S(p(p)) \tag{16.49}
\end{equation*}
$$

Where $q(p)$ is the inverse of the first Legendre map, generates the inverse.
Let us show this explicitly in the soordinates q^{2} where $1 \leq i \leq N$. Let us use L_{s} to denote the Legendre map $L_{s}(q)=d S(q)=p$ defined by S. In coordinates this reads

$$
\begin{equation*}
p_{x}=\left(L_{S}(q)\right)_{2}=\frac{\partial S}{\partial q^{\prime}} \tag{16.50}
\end{equation*}
$$

By the condition imposed on S, this map is invertible. We denote the inverse by L_{S}^{-1} and the function T we defined is then given by

$$
\begin{equation*}
T(p)=\left(L_{S}^{-1}(p)\right)^{1} p_{1}-S\left(L_{S}^{-1}(p)\right) \tag{16.51}
\end{equation*}
$$

We want to show that the Legendre map L_{T} defined by the function T is actually the inverse of L_{S}. This Legendre map is expressed in coordinates as

$$
\begin{align*}
\left(L_{T}(p)\right)^{2} & =\frac{\partial T}{\partial \mu_{1}} \\
& -\left(L_{S}^{-1}(p)\right)^{2}+\mu_{J} \frac{\partial\left(L_{S}^{-1}(p)\right)^{\gamma}}{\partial p_{1}}-\frac{\partial S}{\partial q^{\prime}}\left(L_{S}^{-1}(p)\right) \cdot\left(\frac{\partial}{\partial p^{\prime}}\left(L_{S}^{-1}(p)\right)^{\prime}\right) \tag{16.52}
\end{align*}
$$

We have used the Leibniz rute to do the derivative of the first te, in in T and the chain rule to do the second term. Nou recognize that

$$
\begin{equation*}
\frac{\partial S}{\partial q^{\prime}}\left(L_{S}^{-1}(p)\right)=p \tag{16.53}
\end{equation*}
$$

to see chat the last two terms can.el. We are finally left with

$$
\begin{equation*}
L_{T}=L_{S}^{-1} \tag{16.54}
\end{equation*}
$$

as desired.
In general we may define:

$$
\begin{equation*}
T(p)=\sup _{q}[(p, q)-S(v)) \tag{16.55}
\end{equation*}
$$

to be the Legendre transform of S (|Aroold, 1983; p 19). The previous definition agrees with this one in the situations to which it applics. If S is (strictly) convix then so is T. We shall see that this is important for thermodynamics. uince $-s$ must be a convex function of the extensive variables.

16.5.5.3. The Legendre Transform and a Function'a Graph

If we ara given a number T and a vector $p \in$ rem* then the equation. m.

$$
\begin{equation*}
T=\langle p, q\rangle-S \tag{16.56}
\end{equation*}
$$

detines a byperplanc $n(q, 5)$ space (i.e. $\left.\Re^{m} \times R\right)$, The equation above say that the graph of S in $\mathrm{f}^{\mathrm{m}} \times \mathrm{g}$ hits this hyperplave at the point where it ha the shope p The value of T is misus the S intercept of this hyperplane (i.e. the point whete
it hits the axit $q=0$) as is shown in figure (16.2 a). We parameterize the space of non-ver* al (i.e. they don't contain lines parallel to the $q=0$ axis) byperplanes it ($q . S$) space by (p, T) as above. These are called Pl. ker coordinates (see for example p. 88 of (lenner, 1963]). The map that sends points of the graph of S in ($q . S$) space to the hyperplane tangent to the graph there, goes to $p=\partial S / \partial q$ which is image of q under the Legendre map and T which is the value of the Legendre transform of S at p.

16.5.5.4. Legendre Tranaforms and Projective Duality

The map which sends points of a hypersurface to the byperplane tangent to the surface there has been the object of mathematical study for a long time. it is behind the notion of projective duality where, for example, all theorems of geometry in the (projective) plant nay have the woris "point" and "line" exchanged (eg. two points determine a line, two lines detrmine a point). To make this work out, one must tack on directions at infinity" to R^{m} so that parallel lines really interse:" at infnity. This leads to projective geometry, where the m dimensional projective spare $R P^{m}$ is defined as the space of lines through the origin of R^{m+1}. A line through the origin of \Re^{m+24} defines a linear form on \Re^{m+1} up to magaitude, whic ${ }^{L}$ may be identified with thr hyperplane through the origin of $\mathfrak{R}^{(\boldsymbol{m + 1}}$ on which it vanishes. This in ture is made up of lines through the origin, and may be thought of an an arbitrary hyperplane in P^{n}. Therelore we call the syace uf hyperplanes in fmit-projectivel, tual spare $P^{m *}$.

Figure 16.2: Various aspects of Legendre transforms and projective duality: explanations are given in the text.
 fare is $f^{\prime \prime \prime}$ defined an all hyperplanes that are tangent to the first hypersurface. The original hypersurface is the envelope of the planes defined by its dual (e.g.. the tangent lines to a curve as shown in figure (16.2 b) themselves form a curve in the space of lines). This relationship is involutive in the sense that the dual of the dual bringe you back to the uriginal. The graph of the Legendec transform of a function is the dual of the graph of the function in this sense (p. 20 of (Arnold. 1983|).

F'at places in the surface, where it includes straight line segments and so there is an interval of different points with the same slope, correspond to corners in the dual surface, which has an interval of different slopes at the same point. For example, in figure (16.2 c) the graph of S is made of 3 straight segments joined at two corners. The graph of T, its Legendre transform, is made of 2 straight segments (corresponding to the corners in the graph of S) and 3 zorners (corresponding to the segments of S). The entire graph of S for $q \leq 1$ has slope 0 and S intercept -1 and therefore corresponds to the single point $p=0$ and $T=1$. As we follow s 's graph around the corner at $q=1, S=-1$, the slope goes from 0 to 1 and the intercept from -1 to $\mathbf{- 2}$. This single point therefore corresponds to the whole line segment over $0 \leq p \leq 1$ in the graph of T. The line segment corresponding to $1 \leq q \leq 2$ in S 's graph again has a single slope and intercept and corresponds to the point $p=1, T=2$. The corner at $q=2, S=0$ gives rise to the line segment over $1 \leq p \leq 2$. Finally the entire line over $2 \leq q$ corresponds to the single point $p=2 . T=4$. This entire analysis may be applied in reverse to go from $T(p)$ to $S(q)$ showing that Legendre transforms are involutive. For example. the line segment in
$T:$ graph over $1 \leq p<2$ has slope 2 and intercept 0 and so corte ponds to the single point $q=2, S=0$ in the graph of S. This is important in thermodynamis: where flat places in the graph of the entropy as a function of the cxtensive variablen correspond to phase transitions.

Double tangents (i.e. when a hyperplane is tangent at two points of the surface) correspond to points of self intersection of the dual surface (an example is shown in figure (16.2d)). In thermodynamics, we take the convex hull of the region below the graph of entropy, and so places with double tangents get turned into that regions as shown in figure ($16.2 e$). The dual surface replaces the intersection of two surfaces by their coming together at a corner and stopping.

Surfaces defined by algebraic equations have duals defined by algebraic equations. In the 2-dimensional plane, a curve with an inflection point (i.e. flat to the second order) has as its dual a cusp (whose edges are tangent to the second order) as shown in figure (16.2f). A conir section in the plane gets taken to a conic section. As shown in figure (16.2 g), ellipses go to hyperbolas and parabolas go to parabolas. The duals of polyhedra in 3 dimensions have vertices corresponding to the original faces and faces corresponding to the original vertices (eg. a cube and an octahedron, an icosahedron and a dodecahedron, and a tetrahedron and itself are dual as shown in figure ($16,2 \mathrm{~h}$)). The graphs of q^{a} / a and p^{b} / b are dual when $1 / a+1 / b=I$ and so they are Legendre transforms of earh other. A norm $\int(q)$ on a linear space may be defined by the unit sphere it defines. There is a natural norm on the dual space given by $g(p)=\max _{f(x) \leq 1!}!(p, x)$. It unit sphere is the duat of the original one (this exemplifies the relationsbip between hypersufaces defined by

Ievel sets and by graphe of functions).

16.5.5.5. Legendre Transforms and Uncertainty Relations

Since q and p are dual variables, acting on one by an invertible linear transformation A is equivalent to acting on the other by the inverse A^{-1} of that transformation. This means that the Legendre transform of a function $S(A \cdot q)$ is equal to $T\left(A^{-1} \cdot p\right)$ if $T(p)$ is the Legendre tra+.sform of $S(q)$. This is the asymptoric formulation of uncertainty principles for the Fourier and Laplace transforms. If $S(q)$ is a quadratic form, then its Legendre transform is also a quadratic form. In fact these are the unique functions for which the value of the Legendre transform is equal to that of the function at the corresponding point. The widths of the forms (and so the volume of the unit spheres they define) are inverses of each other. Since the exponential of a quadratic form is a Gaussian, this says that in thermodynamics, when tbe probability distribution of an extensive variable is Gaussian (as is commonly the case in fluctuation theory), then the asymptotic distribution over the conjugate intensive variable is also Gaussian with the inverse dispersion. The more precisely you know the temperature, the less precisely you know the energy and vice versa.
16.5.5.6. Legendre Transforms and Jets of Funct $n=$
 1978 : Let us call a map from one contact manifold to another of the same dinnension that takes cob: act planes to contact planes. a contact transformation. If we consider the first jet space of M. then the map

$$
\begin{equation*}
(q, p, S)-(p, q,(p, q)-S) \tag{16.57}
\end{equation*}
$$

is a contact transformation which takes the graph of $d S$ and 5 into the graph of ith Legendre transform,
16.6. The Origin of the Lagranginn Submanifolds in Physieg

In the mex thon we will state the theorem from symplectic geonetry which may be viewed a-being responsible for the Jagrangian submanifolds in both wave theory and thermodynamics In both these cases we have reduced the quantitios of interest to integrals of asymptotic exponentials over large spaces which we then reduce to a variational principle for the exponent by stationary phase or steepest descents. In the wave case. we obtain the wave at a given point as an integral over all paths of an exponential with the action S of a path in the exponent (see50 [Schulman. 1961), leading to the priaciple of least actic : (or actually stationary action). In the statistical case we obtain the probability of a given set of measurable quantities as an integral over all distributions of an exponential with the entropy S of a distribution in the exponent, leading to the principle of most entropy (maximum entropy).

18.6.1. Constrained Integration and Extremization

In both cases we have an integral over some space, typically defined by some constraints (the end of the path is at the observation point, or the distributions have given mean values for the quantities of interest ? . If we project this space to a smaller one, we may first integrate over the fibers of the projection. and then over the smaller space. This leads to a variational principle where we first extremize S over the fibers, giving a function S on the smalicr space whose extrema represent the contributions we are interested in.

We discuss the physical examples in the next few sections. To see what is going on geonetrically, consider the projection from \mathbb{R}^{7} to \mathbb{R} taking $(x, y) \sim x$. If we want
the extremal value of

$$
\begin{equation*}
S(x \cdot y)=15+(x-1)^{2}+(y-2)^{2} \tag{16.58}
\end{equation*}
$$

we may first extremize $S(x, y)$ at each x, bolding I foxed and letting y vary. The stationary points undes this constrained variation satisfy

$$
\begin{equation*}
\frac{\partial}{\partial y} S(x, y)=0=2(y-2) \tag{1659}
\end{equation*}
$$

The surface $y=2$ is made up of the constrained critical points. S restricted to this surface is

$$
\begin{equation*}
S_{c}(x)=15+(x-1)^{2} \tag{16.60}
\end{equation*}
$$

which we may think of as living on the projerted space. We now extremize over I yielding

$$
\begin{equation*}
\frac{d}{d x} S_{c}(x)=0=2(x-1) \tag{16.61}
\end{equation*}
$$

Thus $x_{c}=1$ anc the critical value of $S_{\text {s }} S_{e}(1)=15$.

16.6.2. Pathe Congtrained on Surfaces

For example as in figure (16.3). we may firs sum over pathe which go through given points on the surfacs: $P_{1} \ldots P_{1}$ in space before raching the point of otrservation. We extrmize over pat lis subject to these constrants and son obtain the action as a functiou on

$$
\begin{equation*}
P_{1} \times \cdots \times P_{3} . \tag{16.62}
\end{equation*}
$$

We may now find the critical points on this space to find the actual paths taken. This finite dimensional integral and variational principle make good mathematiral sernse. We actually define the "integral over all paths" in terms of finer and finer approximations by surb pierewise paths as the asymptotic parameter vanishes. Thysically, the rays don't mean anything on a scale smaller than a wavelength. and as wr do our scaling, the pieces of path we sum over should get smaller and smaller while including more and more wavelengths.

As we let the number of constraint surfaces on which we specify the point of intersection with a path increase to infinity, we more and more precisely constrain the ray. One can imagine this limiting to the case where giving a point in the surface product space uniquely specifies a path. This is the sense in which the path space can be thought of as an infinite product of interposed surfaces (that foliate space).

16.6.3 The Wavevector as a Kind of Force

We see in this example that the true paths wiil be those which come into and leave a surface with the same slope, hinting that the dual space of a "rface is important. For an extremal ray, when we perturb the point on the surface. the charge of S on the incoming part exactly cancels the change of S on thic outgoing part to first order. Tbus the derivative of the action of a part of the ray with respect to changes in its endpoint acts as a kind of "force". For a valid ray the "forces" on the incoming ray and outgoing ray must balance. We will see the analogy with thermodynamic forces momentarily.

Figure 16.3: Some paths that go through a given point on the surface P.

16.6.4. Distributions Constrained on Subsystems

In the statistical case, we may imagine different picces of our thermodynamic system to be forced to have given values for their extensive quantities. For example as in figure (16.4 \}, we might have a box with a movable partition which allow: the transfer of volume between its two balves and is thermally conducting and so also allows the transfer of energy. We may first do our integral over distributions with a given energy and volume in the left portion. We maximize the entropy subject to this constraint and so obtain an entropy on the finite dimensional space of values of the left side's energy and volume. We extremize this entropy on a finte dimensional space to find the actual equilibrium values of the constrained quantitics.

This finite dimeasioral integral and variational principle makes good mathematieal some. Wo arcuall. frone the "integral over all distributions" in tems of finer and finer partitions of our system as the asmoptotic parameter vanishes. Physically, the tixisbutione don's mean anytbing for too few particles, and so as we do our scaling the distributions we sum over should be constraincd to give definite values to smaller and smaller parts of the system while including more and more degrees of frecdom. This kind of averaging was discussed in the introduction.

As we let the regions of phase space over which the probability distribution averages are specified become smaller and smaller, we more and more precisely conserain a distribution. One can imagive this limiting to the case where giving a point in the region average product space uniquely specifies a probability distribuLion. This is the sense in which the space of distributions can be thought of as an infinite product of spaces of averages at points of phase space.

16.6.5. Thermodynamic Forcea

We see in this example that the true energy and qoume of the ieft system will be those such that the variation of the left portion's eatropy is equal and opposite to the variation of the right portion's entropy to first order, tinting that the dual space of the coustrained ubservables is initportant. The derivative of the entropy of the left t.ulf with respect to the constraint acts hike a "force" and the left and right forces must be balanced in equilibrium.

Figure 16.4: A distribution is constrained to give the left region a defirste energy and volume.

18.6.6. Lagrange Multipliers and Legendre Maps

This same idea is captured in the notion of Lagrange multiplier, which acts like a system with given "force" instead of given value for any constrained quantity. To maximize a function over a space with an imposed constraint. we may instead maximize over a new system on the whole space with an additional linear piece with given "force" that allows us to a postioni make the critical point satisfy the constraint.

For example. if we want to maximize

$$
\begin{equation*}
S(x, y)=2-\mathrm{T}^{2}-y^{2} \tag{16.63}
\end{equation*}
$$

with the constrain, that $y=1$, we might consider the rombrained variational prob-
irm of maximizing

$$
\begin{equation*}
S_{e}(x)=2-r^{2}-1=1-r^{2} \tag{16.64}
\end{equation*}
$$

over t constraint surfare. This yields $x=0$ and $S=1$. Alternatively, we may maximize

$$
\begin{equation*}
S_{L}(x, y)=2-x^{2}-y^{2}-\alpha(y-1) \tag{16.65}
\end{equation*}
$$

over all x and y yielding $x=0$ and $y=-\alpha / 2$. The proper force o to push the maximum to $y=1$ is $o=-2$. This again yields $x=0$ and $5=1$. The reason for doing this is that it is often easier to do the unconstrained variations (even with the free parameter α) than to impose the constraint explicitly. We have seen that the relation between the states and the conjugate forces is just the Legendre map geberated by S. There is a corresponding function on the dual variables which is the Legendre transform of S. If we think back to our asymptotic integrals. imposing as given $\partial S / \partial y$ in the wave case makes the integral into a Fourier transform with specified wavevector. In the statistical case we get a Laplace transform with specified intensive variables.

16.6.6.1. Constant Force Asymptotic Systems

These systems with given "forces" may often be thougbt of as asy mptotic Imits of real systems. Thus for example, a very extended weak spring atts like a constant force (a very strong inextended spring acts like a constant position (wall)), a large system in thermal equilibrium acts like a heat bath with constant temperature and infinte beat capatity, (a small system acts like a thermal insulator, it has zero heat capacily and anything cotipled to it has almost constant energy), a large battery

16.6.7. Lagrangian Submanifolds and Constrained Extremization

Let us bow give a theoretn of ymplectic geomery that dearike that kired of situation geometrically This is given in Wiontem. $1: 77$ on frige 25 aut th Guillemin and Sieroberg. 1977 on page 149. Abrwe we have seen that wo oftern want to project a space onto a smaller ene while con-jdering the critical pont of a function S. The following thenrem (16.7) sell: us that if we have a projection of If onto N. then those points in T^{*}. which pellback to points of the graple of $d S$ in T^{*} M actually form a Lagrangian submanfold of $T^{*} \mathrm{~S}^{-}$These points sit over the critical points of 5 restricted to each hber of the project'in (i.ce inverse image of a point in N.

16.6.7.1. Parametrizing Lagrangian Submanifolds

This theorem is particularly interesting when there st more than one crictal point of S on the fiber over $x \in N$. This meads that the correnponding Lagrangan submanifold in $T^{*} N^{-}$has more than oue s^{\prime} set stting over g. Thus wit may ohiain "folded" over Lagrangian submanifolds from perfectly nice ones (i.e. the graph of $d S$ in $T * M$. Weinstein show that this may alway the done locally and giveconditions for the global version. This is the kry w Ma-lov: approach to wave
arympoth la domg an eikonal sudy of a linear wave equation, we may repesent a wate de a orecalled orcillatory integral

$$
\begin{equation*}
\text { w. (u) } \int A(y, \alpha) e^{2 \theta f y, x) / d} d(x . \tag{16.66}
\end{equation*}
$$

If wiw ver our equation as defined on (y, a) space by ignoring a. solutions on the (y, c) pace project to solutions on y space (by linearity). We bave just seen that even when the Lagrangian submanifold in the cotangent bundle of y space becomefolded over and the assmprotics becomes iuvalid (i.e. nonuniform at the fold). there is a nice wave on (y, α) spare that projects to it. We may do our asymptotics there and project the answer via stationary phase to see that even the folded over Lagrangian submanifold is a representative of the wave.

16.6.7.2. Theorem ou Pushing Forward Lagrangian Submanifolds

 Let us gi ... the statement of the theorem from [Guillemin and Sternberg. 1977]:Theorem 16.6. Let $f: M \rightarrow N$ be a smooth map with df of constant rank and
 then df. A is a Lagrangian submanifold of $T^{*} N$.

16.6.7.3. Application of the Theorem to Waveg

This restricts to the case above when A is the graph of the tunctum 5 In the case of waves, we take . I to be the space of sll paths, i to be the 3 dimensional space in which we observe our waves, the projection to be that which sends a path to its endpoint, and the action S of a path te be the function to extremize. The the theorem says that the differentials of the actions of those paths with extremal action for each eadpoint form a Lagrangian submanifold in the cotangent space of obervation space \boldsymbol{N}. The fibers of the cotangent bunde are the derivative of action witb respect to the observation point and represent the wavevectors at a given point. This cotangent bundle is the wave phase space and the Lagrangian submanifold is the grapt: of the wavevector at each point for an eikonal wave with wave phase S.

16.6.7.4. Application of the Theorem to Thermodynamics

In the case of statistical mechanics, we take M to be the space of probability distributions, N to be the space of extensive observables that wis are studying, the projection to be that which sends a distribution to the mean value of the observables in that distribution and the entropy S of a distribution to the the function to maximize. The theorem then says that the differentials of the cntropes of timee distributions with maximal entropy for cach mean value of the ebserwables form a Lagrangian submanifold in the cotangent space of the extensive vanathes. The hibers of the cotangent bundle are the derivative of entropy wath menert the the extegsive variathe and reptesent the roniogate intenme variable The colangent
handle the thermodynamic phase space and the Lagrangian subnamifold the the graph of the equation of state for an equibibrium system with entropy S.
16.7. Theorem on the Pughforward of Legendre Submanifulds
 because the 1- a context in which we may underntand more of the stucture of thermodynami - Assuming the same transversality condition as in the lan thecorem (which is generically true). we find that for a projection $\mathrm{Mi} \cdot \mathrm{N}$ and a function S on M. the points in the first jer bundle $J^{1} N$ of N which puil back to pointe in $J^{1} M$ in the graph of 5 aud $d S$ where the derivative of S along the bbers of the projection is zero, toget her form a Legendre submanifold of $J^{\prime} N$. Let us locally use coordinates (q,a,5.p.a) on M where a parameterizes the fibers of the projection and q are coordinates on N, α and p are the correspondiug differentials, and S represents the value of a function We assume that the coordinates (q, S, p) agree with those of $J^{1} N$ on the set of pulled back vectors.

The canonical contact structure on $J^{1} M$ is given by the vectors annihilated by the form

$$
\begin{equation*}
d 5-p d q-a d a \tag{16.67}
\end{equation*}
$$

A contact form on $J^{1} N$ is given by

$$
d S-\rho d q
$$

We have seen earlier that the oneriets of S in $J^{\prime} M$ form a Legendre submanifold with respect to this contact structure. We are interested in its intersection with the set $\alpha=0$ (i.e. those points where S 's derivative vanishes along the fibers of the projection). From the expression for the contact form. we see that at these points $d S-p d q$ vanishes on S one-jets a d so the projected submanifold is contact on N.

We mas we the therorm ababe thate that the propecton hav the ame dinmension
 dimensma Thas we mat ronclade that the projertion is a Legende submanifold of $J^{1} S$

16.7.1. The Contact Structure for Thermodynamics

Let us apply this result to the thermodynamic situation. Here the manifold N is made of the asymptotically scaled extensive thermodynamic variables we are considering. We have been using y for coordinates on this and they represent such quantities as the energy U, the volume V. the numbers of the various species of particles or molecules (not including the total as discussed above) $N_{1} \ldots N_{2}$, the magnetic moment μ, the electric dipole moment Π etc. On the first jet space $J^{1} N$, the function variable is the entropy S, and the derivative directions are coordinatized by the thermodynamically conjugate variables \boldsymbol{X} to the y. The conjugate variahle to E is the inverse temperature: β, to V is the pressure over the temperature: μ / T, to \mathcal{S}_{1} is minus the i 'th caemical potential over the temperature: $-\mu_{i} / T$, to the magnetic moment is minus the magnetic field strength over the temperature: $-H / T$, to the electric dipole moment is minus the electric field over the temperature: $-E / T$, etc.
16.7.1.1. The Contac Form Ior Jets of Entropy

The contact form is then

$$
\begin{equation*}
\left.d S-\frac{1}{T}\left(d U-p d U^{P}-\sum_{1} \mu_{2} d N_{2}-H \cdot d M\right)-E \cdot d P+\cdots\right) \tag{16.69}
\end{equation*}
$$

We bave seen that ou: asymptotic theory guarantees that this form vanishes on the equation of state surface in $J^{1} N$ since it is a legendre submanifold. We recognize this as the first law of thermodynamics.

16.7.1.2. The $U, V,(1 / T),(p / T)$ Symplectic Manifold

For simplicity, from now on we shall cousider only $(S, U, V,(1 / T),(p / T))$ spare. The ot her coordinazes behave in exactly the same way if they are desised in a theary: Wie have seen that we ma; project our contact space along the S direction to obtain the symplectic manifold coordinatized by $\{U, V,(1 / T),\{p / T)\}$. The contact form given above goes into the canonical one form on this space (since it is constant on the fibers):

$$
\begin{equation*}
\frac{1}{T}\left(d I J+p d J^{\prime}\right) \tag{16.70}
\end{equation*}
$$

The corresponding symplecti- structure is:

$$
d U \wedge d\left(\frac{1}{T}\right)-d \cdot \wedge d\left(\frac{p}{T}\right)
$$

By our general theory. the equation of state surface is a Lagrangian submamifold with respect to this symplectu tructure.
16.7.1.3. The (S.l.p.T) Symplectic Manifold

We have seen carlier that a contact form gives the same contact structure when it is multiplied by any nowhere vasishing function. Let us use that freedom to get an equivalent contact form on our contact space by multiplying by $-T$:

$$
\begin{equation*}
d U-T d S+p d V \tag{16.72}
\end{equation*}
$$

This too vanishes on our Legendre submanifold. Now the form is constant along the U direction and so we may project it to ($S, V, p,-T$) space, where it becomes the canonical one-form. The corresponding symplectic structure is exactly the one given by [Kijowski and Tulcayjew, 1979] that we listed in section 12.1. We may obtain this same symplectic structure as the canonical cotangent structure by viewing any of the pairs: $(V, S),(V, T),(p, T)$, or (S, p) as the base and the other two variables as the cotangent fibers. Our Lagrangian submanifold is then represented as the graph of four different functions. As we have seen in great detail these are the Legendre transforms of one another, and are known as the internal energy, the Helmholz free energy, the Gibbs free energy, and the enthalpy.

16.7.2. Legendre Transforms and Thermodyramic Potentials

The reason for introducing these extra gencratung functions for our surface is that it is they that are extremized under different combinations of constraints. We saw that for given extensive variables the system maximizes its entropy. For adabatic variation of a system. the entropy is an adiabatic constant of the motion (we have wen that this is exactly the same situation as the adiabatic invariance of

 here and the uave actum denstry ronemothon for waven The fikt that entroph maximized when energs and volume are fixed is equivalent to the fart that enerey 1 . minimized when entropy and volume are held fixed An andagome ntuations that the shapes in three dimensions whith minimize their surface area for given volume. are the sam, as those which maximize their wolume for given surface area Thu- ty the same argument we used to show entropy was a concave function of the extensuve variables, we see that the energy is a convex function of the on ther extensive variable: and the entropy. As an example of a Legendre transform in both S and ξ^{\prime}. wer sec that the Gitbs free energy $V-T S+P V$ is minimized for given temperature and pres: ure.
16.8. Phase Transitions and the Geometry of the Equation of State
 the fumbumental equatum beratue it comams all the thermodynamic infomation
 funs tos comathe more information than the usual "equation of state" which is a yelation of the forsin

$$
\begin{equation*}
f(p, V, T)=0 . \tag{16.73}
\end{equation*}
$$

For example, in the rase of as ideal gas one needs the relaticn

$$
\begin{equation*}
p^{\prime \prime}=\text { ronstant } . \tag{16.74}
\end{equation*}
$$

in addition to the equation of state

$$
\begin{equation*}
p V=N k T \tag{16.75}
\end{equation*}
$$

to specify the bebavior of the gas.
1 will. nonetheless, call the expression of S as a function of the mechanical variables the equation of state, because if really describes the allowed relations between the intensive and extensive variables for a substance. For this example, the surfare descibing the possible states is a two dimensional surface in (U, V, T, p) space (or equivalently in (S, V, T, p) space). The usual equation of state only says that t? is surfare lies in a three dimensional one given by $f=U$ and requires another conctraint to obtain complete information.
16.8.1. atics and Phage Transitiona

We have seen that in the cikonal wave situation places where the Lagrangtan submanifold corresponding to an eikonal wave does not project nirely onto y ヶpare correspustit to caustizs of the wave field. These structures correspond tu higher order derivatives vanishing at critical parameters in our stationary phase. In the statistical mechatical context, the situation is simpler because only maxima contribute to the state as opposed to arbitrary critical points. In Rene Thom's catastrophe theory such a condition is called the Maxwell condition. The places where the thermodynamic Lagrangian submanifold does not project nicely onto the intensive variables correspoud to first order phase transitions.

16.8.2. Convexity and Firat Order Pbase Tranaitiona

For definitenetis, let us use the extensive variables U and I to descibe the ineas of this section, though any set y would do as well. |Gibbs, 18736 consicers the form of the entropy as a function of U and V. He showed that S is a concave
 in the domain of interest, we have the inequality

$$
\begin{equation*}
S\left((1-t) U_{a}+t U_{b},(1-t) V_{a}+t V_{b}\right) \geq(1-t) S\left(U_{a} \cdot V_{a}\right)-t S\left(V_{b}, V_{b}\right) \tag{16.76}
\end{equation*}
$$

If we think of the raph of S as a two dituensional surfare m (r' 9 . S) space, this just means that ibe graph of S doen not fall below a hine segment joming ans two points on it Equivalently. the regon below this graph in couves (and wo we way $-S$ is a ronvex function:

Gibbr argument rums as follows Assume we had a point $\left(V_{c}, V_{f}, S_{c}\right)$ on the graph of 5 which lay below a line segenent joiniug the two allowable states: $\left(C_{a}, V_{a}, S_{a}\right)$ and $\left(U_{6}, V_{b}, S_{b}\right)$. As the system Hants to maximize its entropy as much as possible, instead of going into a bomogeneous phase with $U_{\text {f }}, V_{c}$, it will split into two phases, one of U_{a}, V_{a} and one with U_{b}, V_{b} in such a way to have the total be $U_{r} . V_{c}$. and yet get greater entropy than S_{c}. In fact the system will try to do this in the way that gives the maximum total entropy. The combination of phases with che highest entrory will he on the convex bull of the region below S. (The convex hull of a region is the smallest convex region containing it. It contains at least all points of all line segnents whose ends lie in the original region.) Thas the actual emtron" function will be concave. "Flat parts" of its graph (where a tangent plane conzains more than a point) correspond to states which are linear combinations of the states corresponding to the extreme points which are at the boundary of the Glat regions (and represent pure phases of the sutrstance).

Notire that if the graph of the eutropy contains a straight line segment, then the corresponding derivative along that direction is constant. Thus all poipts in a flat region have the same values for the intensive variables corresponding to the flat directions. If we chooge an underlying smooth entropy function arbitrarily, it is non-generic for it to contain any straight line segments (though one wouid bave to verify that this is true of entropies that arise from physically possible statistical mechanical situations). Therefore all the phase transition type behavior comes from taking the convex hull, and we may classify the possibilities.

If we have only ote extensive quantity, say I^{\prime} (as in an isothermal Van der

 at the point- where it touches the original graple of s The endpont: of the hat segempat correspond to the liquad and gas phases (for instanes) Phyurally we think of a puddle of fluid in the bottom of a volume that we are expandije at constant temperature. As we increane the volume the Huid eqaporates at comstant pressur (the vapor pressure) until it is all gas. Thus, at we move along the segment from one to the other, the proportion changes from all of one $t=$ all of the other. The pressure is the slope, so the whole change takes place at constant pressure.

Figure 18.5: Isothermal entropy as a function of volume for the Van der Waalgas at the gas-liquid phase transition.

When we consider 2 extensive variables. say U and V°. we find weveral mor

 pure phase (like oold. liguid. and gas) and the interior points represent lincar rombinations of these pure staps. Since there is a 2-dimensional flat spot, there die two intensive varialilus that are constant, which are here the pressure and the temperature. This is thes a triple point of the sudstance The edges of the triangle bound two dimensional ruled surfaces which contan ouly 1-dimensional line segmeats (since it is not generic for the original tertain to contain line segments). (A ruled surface may be thought of as a curve in the space of lives.) These represent first ordet phase transitions between two phases as discussed above. The width of the lines can get shorter as we move along the surface and go to zero as the square root of the parametrr labeling the line segments. This disappearance is called a critical point. The more usual picture of these phenomena is given in the intensive space of T and p as in (16.60). We perform the Legendre transform to get to these variables and as we thave seen, points in the graph will correspond to tangent planes of the onginal graph. If the original is convex, then so is its Legendre transform, but if the original has flat spots, then the transiorm can have discontinuous first derivatives (i.e. corners). Since the first derivatives are discontinucus in this picture, it is called a first order phase transition. The ruled surfaces correspond to edges with a sharp corner, the flat triple print correspouds to three cornered edges coming together as in a tetrahedron vertex, and the critical point is where an edge smoothe out.

Figure 16.6: a) The entropy as a fuction of U and V^{\prime}. A flet triangle represents the coexistence of the three phases represented by the corners of the triangle. The ruled surfaces eminating from the edges represent phase transitions of two states. The parabolic end of the ruled surface represents a critical peint. b) The cntropy on T and p space giving the more usual picture as the Legendre transform of a).

18.8.3. A Generalization of Maxwell's Erual Area Ruit

 space of I-jets of functions on M, has a natural content structure. We saw in section 2.4 .5 that $T^{*} M$. the cotan* it bundle, has a natural symplectic structure . which is minus the differertal of the canonical one-form θ. There ma natural profecman
 there. Legendre submanifolds in $J \cdot 1 /$ progect 10 Lagrengian mbmanifold in T^{*} M

Any loop in J^{\prime} M which lies in a Legendre submanifold therefore propects to a loop in 7.11 with $2 e r o$ artion (i.c the integral of θ around the loop vanishes). We may gencralue this in

Lemma 16.7. Any piecenise smooth loop in $J^{1} M$ whose tangent vector at each point lies in the contact plane at that point projects to a loop with zero action in $T * M$.

Eroof. In local coordinates on $J^{l} M$, the contast planes are given by the tangent vectors annililated by the one-form $d u-p d x$ (where x are coordinates on M, u is the value of the function whose jet the point in $J^{1} M$ represents, and p its derivative). The integral of this one-form around our loop therefore vanishes (since the loop is tangent to the contact planes). The canonical one form on $T^{*} M$ pulls back to $p d r$ on $J^{T} M$. The integral of the canonical oneform is thus equal to the integral of $d u$ on cach local piece. But u is a well defined function globally on the loop. Therefore the integral of $d y$ and therefore of $\theta=p d x$ around the loop is $2 e r o$. Q.E.D.

Let us now use this lemma to generalize Maxreell's "equal arean rule for first order phase transitions, Let us be given asme smooth function S of the variables 1. Which are linear coordinates on the linear state space M. This represents the "eatropy" as a function of the extensive thermodynamic variables, but without regard for the thermodynamic stabi' y of the state it reprasents. We have seen that the entropy of the real state of the system, as a fuaction of y will be the smallest concave function S_{e} that is everywhere greater than or equal to S. Equivalently, the graph of S, is the boundary of the convex hull of the region below the graph
 in the graph of S or the grapl of S. If we are at a ponn contaned in both

 be everywhere geater than "s equal of $S .1$ We may therefore lift ou: loop to both $J^{\prime} M$ and $T^{*} M$ by sending each point to the jet or differential of the furtion whore graph it lies in. Now the tangent vertor to the original curve at cach point is almor tangent to the graph of the fuaction whose jet we use to lift. Thus the tangent vector to our curve in $J^{1} M$ a' each pont lies in the corresponding contact plane. By the lemma above, the loop in $T^{*} M$ has zero action

Furthermore, if S_{e} is strictly greater than S, then its graph must contain a straight line segment (otherwise we could lower it and still keep it concave). The derivative along this line segment is therefore constant. The Lag;angian submanifold $d S_{c}$ in $T^{*} M$ will therefore have a singular projection onto the thermodynamically conjugatr (cotangent fiber) variables along this direction. These many states with the same value for the conjugate variables represent different combinations of amounts of the various phases that can coexist with that value. The graph of $d S$ is a Lagrangian submanifold which agrees with $d S$ except in this singular region if we describe a loop consisting of the singular line in the graph of d, fremere end to the other and then back to the beginning of the line inside the giaphof dS we have just seen that the symplectic area enclused by the loop is zero.

But this generalizen the usual Maxwell equal area rule. This rule concerne the situation where we hold the temperature fixed and consider the junthemal equation
of state u the (p. F) plane For the Vat dey Waal gas, where

$$
\begin{equation*}
(1-b)\left(\Gamma^{2}+\frac{a}{(\cdots 2}\right)=R T \tag{16.77}
\end{equation*}
$$

thew monermal curwe lowk hikifige (1G.7). Maxwell showed that the arca beTworn the thu curve: lying above the phame transition line is equal to the area between them below it. Our construction generalizes thas to arbitrary loops in the thermodynamic phase space, which need not be isothermal.

Figure 16.7: The Maxwell equal area construction for the Van der Vaals equation of state.

18.9. Relationg Betwern Symplectic Thermodynamica ond Merhanica

It is time now to bring ogether the fasinating structure that we have weren atise asymptotically out of tayes and aut of statistical mecbantes. Whe have sern many tantalizing clues that these theories have much in parallel and wond liki to make these structures explicit. That there should he a connertan lefween the ${ }^{2}$ theories and some of the parallels were first suggested to me by Robert Littlejohn

16.9.1. A) Eikonal Waves and Stationary Phase

In wave theory we deal with waves it the cikonal limit where we study the properties of waves represented by many wavelengths. We introduce asymptotios which sireteb the scale length and work with quantities defined in zernes of the slow spare $y=e x$. The method of stationary phase lets us asymptotically express quantities that a priori depend on the whole wave in terms of values only near a stationary phase point.

16.9.1. B) Thermodynamic Limit and Steepest Deacenta

In statistical mechanics we deal with statis?ics in the thermodynamus hmit where we study the propertion of the siatistics of mechanical swiom reprement by many degress of freedom. We introdure asymptexu- the strmeh the nale of the extensive obscryables and wotk weth quattities defined in terms of ther recalerd values. $y=\neq$. The method of stecpest descent, lot-u* ansmptetually expros
 values only at a maximum
18.9.2. A) Wavea and the Feynman Path Integral

We may view wave mechanics in terms of the Feyman path integral. The value of the uave at a fiven point in the observation space (typically a point in three apace. but mort general thinge may occur) is expressed an an integral, over all pathe to the poist of intere-t, of the exponential of times the action. The artion S wn a given path is the integral of the Lagrangran along that path. Asymptotically. the expment seales as l/c. We apply stationary phase to see that only those paths with extremal actions can contribute asym totically.

16.9.2. B) Probability and the Maximum Entropy Formaliam

We may view statistical mechanics in terms of an integral over all observation path: (or equivaleatly all weighted probability distributions). The value of the probability density at a given point in the observation space (sometines the chree dimensional spare of eteref U. volume V^{\prime}, and number N, but often more general) is exprested as an integral (the average) of the exponential of the entropy over all probability distributions consistent with the observation point of interest. The entrops S of a given distribution is the integral of $-p \log p$ over that distribution. Asymptotically the exponent scales as $1 / k$. We apply steepest descents to see that soth that datribution with maximum entropy can contribute asymptotically.

16.9.3. A) Wave Path Integrals over a Subspace

Offen :r wave mechanion we dont do the entere path mitegral at one An example of a commmon problen is that of finding a light wave at a point in apace given it value on some initial surfare (or volume, surfare. bue of pumt, wr many of them may be emiting waves relevant to the region of anterent: in the limit we may have a continuum of source types) We may do this by integrating over all patha. but we often like to first integrate over all paths between our point and a given point of the surface, and then integrate the resulting values over the surfare ()nly the extremal path between the two points will contribute and we may introduce ant action defued on the surfare, relative to the observation foint. Which is just the action of the extremal path to that point. The remaining part of the integral :o obtain the desired wave value is a finite dimensional megral over the initial surface.

16.9.3. B) Probability Distribution Averages over a Subspace

Ofter in statistical mechanics we don't do the entire probabillty integral at once. An example of a common problem is that of finding the probability di-trubution on the space of two thermodynamic systems in contact with one another (they may exchange any or all of the extensive quantitues and there may be inany such a vupled systems: in the limit we may bave a contimum of systrons). We may do this by integrating over all distributions consistent with the contramt but we often like to first integrate over all consistent distritutions on the prodert pace for whirf the first space's thermodynamic quantitw have given vilue atul they integrate the resulting distributions over thew values For tach wet of value- on the
for-t -pact, only the maximai entrofy com-istent distributoms on the full space will
 whertalke on the first space, relative to the constraint condutions. which is just the maximat enthopy over all consistent distributions with the given values for the first space The remaining part of the integral is an integral over the observables of the first syitem.

16.9.4. A) Lagrange Multipliers and Canonical Conjugacy

For the wave system we may also decide not to impose the constraint that the end of the integ:ated paths has to end at the point we are interested in. To make the stationary points of this unconstrained problem obey the constraints, we int roduce Lagrange multipliers k that are in the dual space to the relaxed constraints. In the wave case, this asymptotically becomes the dual space of the tangent space at the point of observation (i.e. the cotangent space). We say that the variables y and k are canonically conjugate. Instead of the exponential just being of $i S / c$, it is of $i(S-\langle k, y\rangle) / \epsilon$. Here S is a function of beth the initial and final endpoint of the paths, and the integral is over both. We use stationary phase and force the result to apply to the point of interest by choosing k so that the differential of the exponential vanishes at the desired point. This gives: $k=d S$, where this S is a functuon only of the observation point (the initial point integral already having been done). Thus we see chat k is really the wavevector and the eikonal wave is naturally arsociated with the Lagrangian submanifold defined by $d S$ in the cotangent bundle of y :pare
16.9.4. B) Lagrange Multipicta and Thermodynamic Conjugacy
 that the total mean value- of the thermodynamer quantite are the wim. We are interested in. To make the maximum entropy state withe wheon-traned poblen obey the constrants. we introduce Lagrange multipliers X that are in the duat space to the relared constraints. In the statistucs case. thit abymototically beorome the dual space of the tangent space of the space of extensive quantitics at the pont of observation (i.e. the cotangent space). We say that the variabies y and X are thermodynamically conjugate Instead of the expmental just being of $5 / 8$, it is of $(S-(X . y)\}$. Here S is a function of both the thermundyannc quantitics of the Erst system and of the total system, ard the integral is over bo.h. We use sterpest descents and force the result to have the total mean values of interest hy rhoosing A so that the differential of the exponential vanishes at the desired pont This gives $X=d S$, where this S is only a function of the total mean valuet (the integra) over the values of the first system alreaty havir.g been done). Thus we see that X is really the set of conjugate thermodyantic variables and the overall equ at iot of stete is nat urally asociated with the Larrangian subnanifold defined by ds in the cotangent bundle of y space

16.9.5. A) Fourier Transforms and Legendre Transforme

In the wave case, the effect of utilizing the Lagrange multepleere k wan to notroduce as extra integration wife $e^{\text {sith }}$, We recognine the an the Fourner trathemorm

to define our wave a a function of both k and r. We bave seen that asymptoturall. we may introduce the loral Fourier transorni as a function of k and y be untroduring o window functon that approncter a offunction on the slow scale and approaches a contant on the fast wave stale. We find that appropriately scaled
 1:- an aletelute uncertamty prineiple which prevents us from finding such states in s and k An eikona! wave has a local Fourier transform that is supported on the Lagrangan submanifold $k=d S(y)$. The Fourier transform of an cikopal wave is another ciknal wave whose phasc function is the Legendre transform of the original phase function.

16.9.5. B) Laplace Transforma and Legendre Tranaforms

In the statistics casc. the effect of utilizing the Lagrange multipliers X was to introduce an extra integration over $e^{(X, v) / t}$. We recognize this as the Lapiace transform. In general. a distribution and its Laplace transform are very different and there is no way to define a probability distribution on both \boldsymbol{X} and y. We bave seen that asymptotically we may introduce the local Laplace transform as a function of X and y by introducing a window function that is an intermediate scale exponential. We find that appropriately scaled Cizussians represent asymptotic distributions with a definte X and a definite y. There is an absolute uncertainty principle that says that arymptotically the dispersion tensor in \mathcal{X} and the dispersion tensor in x are nuverses. A thermodyamic equation of state has a local Laplace transform that is supported on the Lagrangian su'smanifold $X=d S(y)$. The Laplare transform of a

 of quantities over ,

Chapter 17:
 Glossary of Terms

adiabatu invariant 1.2.1. 2.9. 5.4
adjoint action 2.7.4
almost adiabatic invariant 5.4.3
almost attractor 13.2.1
angular momentum generates rotations 2.6.1
asymptotic series 5.4
asymptotic stability 13.2
attractor 13.2
the method of averaging 2.9.2. 2.9.2.1
baker's transfor •on 14.2
basin of attraction 13.2
BBGKY' hierarchy 2.9. 11.4, 13.3.4
boundary layer 5.4.1
canonical one-form θ on a cotangent bundle 2.4 .5
canonical transformations 2.4 .1
Cantor set 14.3
Casimir functions 2.4 .5
rentral himit theorem 15.3
contrifugal force 2.6
1: (ilowary of Trms $30 ;$
chaos 14
charactristhe directum: 71
ri-rle artiets 22
roadjoint action 273.274
coadjoint orbes 270
conormal bundle $7 \div 4.10$
contact elements 723.16
contact form, θ 721
comart structuri 72.1
contaci iransformation 16
convex function 16
cotangent bundle. T. T^{\prime} 725.723
cotangent space. $T_{x}^{*} M$ 22.5
covector 2.2 .5
critical point 16
density of stafe 16
derivative of a map. Tf 2.2 .8
diffeomorphism. f. 228
differential of a function 16
drift tangent bundle: 53
Duffing osrillator 33
dynamical system こ2き
Ital spare. - * 2?
1t filemary of Terms 530
L $\cdot \overrightarrow{3}$ tint 2.10
ciknathatie 7.1 .1
rquivarjaffer of nomentart maps 2.7 .4 .1
Exter: tigud body equations: 2.7 .8
Finfer: fiutd cquations 2.7 .9
Euler-Lagrazge equatons 2.5
Feynman path integral 16
firtitions fores 3.1 .1
first jef bundIe. ${ }^{1}$ II 7.2 .1 .16
first order PDE 8.2.1
flow. J_{1} 2.2 .8
Auctuation 13.3
germs of fatbs. (;M1 2.3 .2
graph of closed one-form is Lagrangian submanifold 7.1 .4
firmotion $2.10,6,14.4$
Hamiltonian, H 2.4 .2
Hamiltonian vector Geld, \boldsymbol{x}_{H} 2.4 .2
Hamiltonian, symmetry 2.7 .1
Hamilton-Jarobi tbeory 7.2 .2
horseschoe 14. 14.3
hyperplane 16
hypersurfare 16
inf rimatum 16
17 Silonadry of Term 531
intrgrable 721
Img spin mode 152
iterated tangent bundle. T^{1} 2×45
Jacobi's identity \because - 1
jet space Hamiltonian. H 441
jet space Poisson bracket \{ \}JM 442
jets of patts. JM 233
K.AM tori 145
Kirillov-Kostant-Souriou (KKS) swmplecti structure 2.7 .7
Коормадіsm 133.2
Kruskal's perturbation theory 5.1
Lagrange multipliers 16
Lagrangian submanifold 7.1 .1
Landau damping 13.3 .3
Legendre map 16
Legendre submanifold 7.2.1. 16
Legendre transform 16
Liapunov stability 13.2
Lie algebras $\therefore .7 .1$
Lje bracket 5.2
Lie groups: 2.7
Lie-Poisson brackete 2.7 .7
Lie transforms 5411
17 (ilowary of Term $53:$
Iocal Fourier transform 712
loups 2325.1
mat netic stabilization 3.1
manifold. $1 /$ 2.2 .1
ma vimally non-integrable 7.2.1
maximum entropy formalion 16
Maxuell's equal area rule 16
Melmikor* methad 14.4
momentum map 2.7.2
natural symplectir structure on T^{+}H 2.4 .5
Vocther's theorem 2.5
non-singular perturbation theory 2.2.3
non-uniform asymptotic expansion 5.4.1
one-form 2.2 .5
oscillatory stabilization 2.9.3.2
parametric resonance 5.4.2
partition function 16
path group, $P G$ 2.8.2
path .pace, $P_{1} M_{1}$ 2.3.1
path-space Hamiltonian. \dot{H} 4.3.1. 4.6 .1
nath-space symplectic structure. 4.3.1. 4.6.1
phace transitions 16
Poincare recurrence theorem 12.1
17. Glossary of Termas 334
Poincaré return map 14.3
Poincarés theoren 113
Poisson bracket. \{.\} 24
Poisson manifold 2.4.1
ponderonotive potentials 2.933
projective duality 16
projective space 16
pseuto-forces 3.1
pseudo-potentials 2.9.3
reduced Hamiltonian 2.5.3.2
reduced phase space 2.5.3.1
reduced Poisson bracke: 2.533
reduction 2.5.2
reinsertion in area-preserving horseshoes 14.5
renormalization 15
resonance 10.1.2. 13.3.5
Riemenn-Lebesgue lemma 7.1 .3
rings 5.1
roto-rate vector field 5.1
ruled surface 16
semi-direct product 4.8 .7
simple methanical systems 313
singular or secular perturbation therers: 3.41
17. Gilowary of Tism: 534
space of loop- 2.5.3.1
stable, ferences 16
stable manifold 14.3
statjonary phase 7.1 .3
stecpest descents 7.1.3
Stirling 16
Stosszahlansatz 12
strange attractor 13.2
sufficient statistics 16
symbolic dynamics 14.1
symplectic bones 2.4 .4
symplectic Jeaves 2.4 .4
symplectic manifold 2.4 .3
symplectic strיcture, ω 2.4 .3
symplectomorphisms 2.7.10, 3.2.1
tangent bundle, $T M$ 2.2 .6
tangent map $T f$ of f 2.2 .8
tangent space, $T_{z} M$ 2.2.6
tangent $_{6}$ vector, v 2.2.6.
triple point 16
two-timing 5. 1.2
uncertainty principle 11.2
unntable manifolc' 14.3
17 filowars of 7erm- 5.5
vartation of parameters $3:$
vertor held along a maj, 234
vertax of a convex regron 1041
uavefront snt 16
Whitham: methou 7113
windou function. $W_{\text {, }}(y)$ 712
WKB theory 7.2

Chapter 18: Bibliography

[Abraham and Marsden, 1978]
R. Abraban. ard J. E. Marsden, Foundations of Mechanics, 2nd edition, Ben. $4 \mathrm{~min} /$ Cummings. Reading, Mass., 1978.
[Abraham, Marsden, and Ratiu, 1983]
R. Abraham, J. E. Marsden, and T. Ratiu, Manifolds. Tensor Analysis, and Applications, Addison-Wesley Publishing Company, Inc., Reading, Mass., 1983.
[Arnold, 1965]
V. 1. Arnold, "Sur les propriétées topologiques des applications globalement canoniques de la méchanique classique". C. R. Acad. Sci. Paris, Paris, 1965.
[Arnold, 1966]
V. Arnold, "Sur la geometrie differentie!le des groupes de Lie de dimension infinie et ses applications a lhydrodynamique des tluids parfaits", Ann. Inst. Fourier Grenoble 16(1) (1966) 319-361.
[Arnold and Avez, 1968]
V. I. Arnold and A. Avez. Ergode Problems of Classical Mechanics. W. A. Benjamin. Inr.. New York. 1968.
[Arnold, 1978]
 Math . vol, 60. S. ringer Verlag, Berlin and New York, 1978
[Arnold, 1983]
V. Arnold, Geometrical Methods in the Theory of Ordinasy Differential Equations. Springer-Verlag Sew York. 1983.
[Arnold, 1984]
V. 1. Arnold, Catastrophe Theory, Springer-Veriag. Berlin. 984.
[Banyaga, 1977]
A. Banyaga, "Farmes volumes sur les variétés a bord". Enscign. Math 20. (1977), p. 127-131.

[Birkhoff, 1913]

G. D. Birkhof, "Prool of Poincarés geometric theorom", Trans. Amer. Math. Soc. 14. (1913), p. 14-22.
[Borp and Wolf, 1970]
M. Born and E. Wolf. Pridciples of Optics, fourth edition. Permagmon Prews. Oxford, 1970.
[Brush, 1983]
S. G. Brush, Statistical Ihysirs and the Atonim Theory of hater. from Both and Neuton to Lamdau and Onsager. Primeton I'niteruty Presw. Princeton. Sew Jerma. 1983.
[Burke, 1980]
W L Burke, Spacetine. Geometry (\%osmology Iniversity Science Books, Mill Valley. California 1980
[Chaperon, 1983]
\$1 Chaperon, "A theorem on Lagrangian Intersections", preprint, École Poly" fochnique, Palaiscau (1983).
[Cary, 1981]
J. R. Cary. "Lic Transforn Perturbation Theory for Hamiltonian Systens", Plysics Reports 79 (198i), 131.
[Chapman and Cowling, 1958]
S. Chapman and T. Cowling. The Mathematical Theory of Non-uniform Gases, Cambridge University Press, Cambridge, 1958.
[Chernoff and Marsden, 1974]
P. R. Chernoff and J. E. Marsden, Properties of Infinite Dimensional Hamiltonian Systems, Lecture Notes in Math., vol. 425, Springer Verlag. New York (1974). [Conley and Zehnder, 1983]
C. C. Conley and E. Zebnder, "The Birkhofflewis Exed point theorem and a conjerture of V. I. Amold" Jnventiones Math. 73 (1983), 33-49.
|Cornfeld, Fomin, and Sinai, 1982]
I. P. Comfeld, S. V. Fomin and Ya G. Sinai. Ergodir Theory, Springer-Veriag Sex York 1982
[Cowrant, 19G6!

 ed R Marshak. Wiley Interocmer Publmber. Ben Vink 1960

[Crawforsl and Omohundro 1984 |

3. D. Crawford and $S \$ 1$ Omohundro. On the fitebal structure of Promet Doubling Flows", Physica 1301 \& 2. (1984). p. 161 184.
[de Bruijun, 1981]
N. G. de Bruijn. Asymptotir Methods in Analtsin. Dovex Publications Inc.. New York. 1981.
[Dewar, 1972a]
R L. Dewar. "A Lagrangian Throry for Nonlinear Wace Parketz in a Collssionless Plasma". J. Plasma Pbysic: 7. (1972), pp. 267-284.
[Dewar, 1972h
R. L. Derar. A Lagradgian Derisation of the Artinu Conservation Theorem for Density Waves-. The Astrophysical Journal 174. (1972). pp. 301-307.
[Dewas, 1977]
R. L. Dewar. "Energy hamentum Tensors for Dingrobe Flertmonagetic Waves". Aust. J Phys 30. (1977). pp (333-575.
[Dewar, 1983]

[Dirac, 1958]
 195:
[Dirac, 1977]
P. A. M. Dirat. Hincory of Themtheth (emury Physics. Pror. International Shood of Phym, Enrub Ferm', ©ourse $\mathbf{5 7}$. Academic Press. New York and Londor. 1977.

[Dubrovin and Novikov, 1983]

B. A. Dubrowin and S. P. Novikov, "Hamiltonian formalism of one-dimensional systems of the hydrodynamic type and the Bogolyubor-Whitham averaging metthod". Dokl. Akad. Nauk SSSR 270, no. 4. p. 781-785. i983. English translation: Soviet Math. Dokl. 27, no. 3, p. 665-669. 1983.
[Faddeev and Zakharov, 1971]
L. Faddeev and V. E. Zakharov, "Konteweg-de Vries as a Completely Integrable Hamiltonian System", Funct. Anal. Appl. S (1971) 280.
[Fefferman, 1983]
C. L. Fefferman. "The Uncertainty Principle". Dulletin of the American Mathematical Socimy 9 (1983). 129206
[Feynman, 1948]
R. P Fevinan, "Space-time approarh to nohrelativistir quantum merhanics". Reviru: of Modern Physics 20 (19.48) p 267.
[Feynman, 1972]
R P. Feyman. Statistical Mechanics. A Set of Lectures. Wi A Reajamm. inc.. Reading. Mass., 1972.
[Feynman and Hibbs, 1965]
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill Book Company, New York, 1965.
[Freed and Uhlenbeck, 1984]
D. Freed and K. Ublenbeck, Instantons and Four-Manifolds, Mathernatical Sciences Research Institute Publication 1. Springer-Verlag. New York. 1984.
[Gibbons, Holm and Kupershmidt, 1982]
J. Gibbons, D. D. Holm, and B. Kupersbmidt, "Gauge-lnvariant Poisson Brackets for Chromobydrodydamics", Physics Letters 90A (1982), 281283.
[Gibbs, 1873]
i W. Gibbs, "Graphical Methods in the Thermodynamics of Fluids". Transactions of the Connectic ut Academy II(1873), p 309-342. (ull. Wirks I. 1-32.
[Gibbs, 1873b]
J. W. Sibbs. "A Method of Geometrical Repre-entation of the Thermodyname Properties of Substances by Means of Surfaces" Tramactoons of the 'onnetunt Academy II(1873) p 382-404. Coll Works 33-54
[Gilmore, 1981]
R. Gillaure, Catastrophe Tirery for Scientists and Engmeers, John Wiley and Sons, Inc. . New York. 1981.
[Grebogi and Littlejohn, 1984]
C. Grelngi and R. G. Litulejohn, "Relativistic Ponderomotive Hamiltonian", preprint, 1984.
[Grebogi, Ott, and Yorke, 1904]
C. Grebogi. E. Otz, and J. Yorke, "Strange Attractors Without Chaos", poster session, American Pbysical Society Division of Plasma Physics meeting, Boston, 1984.
[Guckenheimer and Holmes, 1983]
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.
[Guillemin and Sternberg, 197:]
V. Guillemin and S. bternberg. Geometric Asymptotics, American Mathematical Society, Providence, Rhode Islind, 1977.
[Hermann, 1968]
R. :'"rnant. Differential Geometry and the Calculus of Variations. Academis Press, New Yosk. 1:wi3
[Guillemin and Sternberg, 1984]
 Comersity Iress. (ambndg'. 1984
[Hirsch, 1984]
M. W. Hirsch. "The Dynamical System Appratrh to Differntal Equatom-". Bull. of Am. Math. Soc 11 pps. 1-64
[Holm and Kupershmidt, 1984a]
D. Holm and B. Kupershmidt. "Poisson Brackets and Clebsch Representations for Magnetohydrodynamics. Multifluid Plasmai. and Elasticity". Physica D.
[Holm and Kupershmidt, 1984b].
D. D Holm and B. A. Kupershmidt, "Poisson Structures of Superfuids", sub.nitted to Physics Letters A.
[Holm, Marsden, Ratiu, and Weinstein, 1984]
D. D. Holm. J. E. Marsden. T. Ratiu, and A Weinstein. A Prion Estimate: for Nonlinear Stability of Fluids and Plamas", to be published in Physics Reports. (1984).
,Holmes and Whitley, 1984]
P. Holmer and D. Whitley, "Bifurcations of One and Two-Dinmenonal Map" Preprint 1984.
[Iagolnitzer, 1975]
D) lagolmatis " Mocobocal ementhal support of a ditribution and deromposition thememb an memburtmon". in Hyperfunctions and theoretical physirs. Springer Locture Note in Math. fi9. 1975. pps. 121-132
[Hörmander, 1983]
L. Hörmauder. The Analysis of Linear Partial Differential Jperators I, Springer-terlag. Berlin, 1983.
[Israel, 1979]
R. Isracl, Convexity in the Theory of Lattice Gascs. Princeton University Press, Princton, New Jersey. 1979.
[Jaynea, 1983]
E.T. Jayres, Papers on probability, statistics and statistical physics, ed. by R. D. Rosenkrantz, D. Reidel Publishing Company, Boston. 1983.
[Jenner, 1983]
W. E. Jenner, Rudiments of Algebraic Geometry, Oxford University Press, Inc., New York, 1963.
[Kac, 1959]
M. Kac, Probability and Related Topics in Pbrsical Sciences. Lectures in Applied Mathematics. Volume 1A. American Mathematical Society. Providence. Rhode Island, 1959.
[Kaufman, Cary, and Pereira, 1979]
A. N haufman. J R. Cary: and N. R. Percrira " niveral Formula for Qua-r static Densty Perturbation by a Magnetoplanma Wane". Ihys Fluid 22(4). 1979. p. 790.
[Kaufman, 1979]
A. N. Kaufman. Regular and Stochatic Particle Motion in Plasma Dyuamics". in The Proceedings of the International Workshop on Intrinsir Stochanticity in Plasmas, Cargese. Corsica. France, 1979.

[Kaufman, 1982]

A. N. Yaufman. "Elementary Derivation of Poisson Structures for Fluid Dynamics and Electrodynamics", Phys. Fluids 25(1,). 1989. p. 1993.
[Kaufman and Holm, 1984]
A. N. Kaufman and D. D. Holm. "The Lie-Transformed Vlasov Action P.'nciple: Relativistically Covariant Wave P:opagation and Self-Consstent Pondrromor tive Effects", Physics Letters 105A \#G, (1984) p277-279.
[Kaufman end Boghosian, 1984]
A. N. Kaufman and B M. Boghosan. "hit-tranbirm Drivation of the (is-
 J. Marsden Ed.. American Mathematiral Soriets Pondence. RI :984
[Kaufman, 1984]

namix:", ut The Iroserdinge of the Xill laternational Colloquium on Group Theuretiral Methods in Phystes, (ollege Park MD. 1984.
[Keller, 1958]
J B Keller, Ann. Physics 4 (1958) p. 180-188.
[Kevorkian and Cole, 1981]
J. Kevorkian and J. D. Cole. Perturbation Methods in Applied Mathematics, Springer-Verlag, New York. 19\%1.
[Kbinchin, 1949]
A. I. Khinchin, Mathematucal Foundations of Statistical Mechanics. Dover Publications. Inc., New York. 1949.
[Kijuwski and Tulczyjew, 1979]
J. Kinowski and W. Tulrzyjew, A symplectic framework for field theories, Lecture Notes in Physics 107. Springer, New York, 1979.
[Klein, 1928]
F. Klein. Voricsungen ub : die Eathicklung der Mathematik im 19 Jahrhundert. Springer-Verlag. Berlin, 1928, translation Development of Mathernatics in the 19th Contury by M Ackerman, Math Sci Press. Browk!ae. Masarhusetts, 1979.
(K ruskal, 1982)
M Kruskal. "Anymptotic theory of Hamhonian and other systems with all Goluthonear! permdic". J. Math Phys. 3. (1962) 806-828
[Kubo et al., 1985]
R. Kubo. H. Ichimura, T. Usui, N. Hashitsume, Statistical Mechanics, NorthHolland, Amsterdam, 1965.

[Lagrange, 1808]

J. L. Lagtange, "Mémoire sur la théorie des variations de éléments des plan'etes", Mémoires de la classe des sciences mathématiques et physiques de l'instiut de France (1808), pp. 1-72.

[Landau and Lifishits, 1980-1981]

L. D. Laudau and E. M. Lifshitz, Course of Theoretical Physics, Volumes 1-10, Pergamon Press Ltd., New York (1960-1981).
[Little]ohn, 1979]
R. G. Littlejohn, "A guiding center Hamiltonian• A new approach", J. Math. Phys. 20(12) (1979) p2445-2458.

[Littlejohn, 1981]

R. G. Littlejokn, "Hamiltonian Formulation of Guiding Center Motion", Phys. Fluids. 24 (1981) p1730-1749.

[Littlejohn, 1983]

R. G. Littlejobn, "Variational Principles of Guiding Centre Motion". J. Plasma Physics 29 (1983) 111.
[Littlejohn, 1983]
R. G. Littlejohn, "Geometry and Guiding Center Motion", in Fluids and Plasmas, Geometry and Dynamics, J. Marsden Ed., American Mathernatical Society, Providence, RI, 1983.
[Mackey, 1978]
G. W. Mackey, Unitary Group Representations in Physics, Probability, and Number Theory, Benjamin/Cummings, Reading, Massachusetts, 1978.
[Marsden, 1981]
J. E. Marsden, Lectures on Geometric Methods in Mathematical Physics, CBMS-NSF Regional Conference Series 37, Philadelphia, PA:SLAM, 1981.
[Maraden and Hughea, 1983]
J. E. Marsden and T. J. R. Hughes, Mathematical Foundations of Elasticity, Prentice-Hall, Englewood Cliffs, New Jersey, 1983.
[Marsden, Ratiu, and Weinstein, 1984]
J. E. Marsden, T. Rati', and A. Weinstein, "Semi-direct Products and Reduction in Mechanics", Transactions of the American Mathematical Society 281 (1984), pp. 147-177.
[Maraden and Weinatein, 1974]
J. Marsden and A. Weinstein, "Reduction of symplectic manifolds with symmetry", Rep. Math. Phys. 5 (1974) 121-130.
[Mareden and Welsatein, 1982]
J. Mareden and A. Weinstein, "The Hamiltonian Structure of the MaxwellVlasov Equations", Physica 4D (1982), 394-406.

[Mareden and Weinsteln, 109s]

J. E. Manden and A. Weinstein, "Coadjoint Orbits, Vortices, and Clebsch Variables for Incompressible Fluids", Physica 7D (1983), 305-323.

[Masiow, 19as]

V. P. Meelov, Theory of Perturbations and Asymptotic Methods, Izdat. Moskov. Gos. Univ., Moscow 1985; French tranol., Dunod, Paris, 1972.
[Maslov, 1970]
V. P. Malov, Operational Method, Mir Publishers, Moncow, 1976.
[Mianer, Thorne, and Wheeler, 1978]
C. Misner, K. Thorne, and J. Whecler, Gravitation, Freeman, San Francisco, 1973
[Morricon, 1990]
P. J. Morrison, "The Maxwell-Vlasov Equations as a Continuous Hamiltonian System", Phys. Lett. 80A (1980), 393-396.
[Morricon and Greene, 1980]
P. J. Morrison and J. M. Greene, "Noncanonical Hamiltonian Density Formulation of Hydrodynacics and Ideal Magnetohydrodynamics", Phys. Rev. Letters 4 (1980), 790-794.
[Nayfeh, 197s]
A. H. Nayfeh, Perturbation Methods, John Wiley and Sons, lnc., New York, 1973.
[Nonther, 1018]
E. Noether, "Invariante Variationsproblemen, Nachrichten kgl. Geell. Wissenachaft. Göttiogen, Math. Phys. Kl. 7 (1918), pp. 235-257
[Northrop, 190s]
T. G. Northrop, The Adiabatic Motion of Charged Particles, John Wiley and Sons, lac., New York, 1963.
[Olver, 1084]
P. Olver, "Hamiltonian perturbation theory and water waver", in J. Maraden, ed., Fluids and Planesas: Geometry and Dypamics, American Mathematical Society series in Contemporary Matheratica, Volume 28,1984; p. 231.
[Omohundro, 1094]]
S. M. Omohundso, "Hamiltonien Structurea in Perturbation Theory", to be submitted to the Journal of Mathematical Physics (1984).
[Omohundro, 1984b]
S. M. Omohundro, "Geometric Hamiltonian Structures and Perturbation Theory" in Lecture Notes in Physics volume on Local and Global Methods in Nonlinear Dypamics, ed. B. Cawley, Springer-Verlag, New York (1984).
[Omohundro, 1944c]
S. M. Omohundro, "A Hamiltonian Approach to Wave Modulation", Poster presented at April 1984 Sherwood Plasma Theory Meeting, Lake Tahoc, in preparation for publication.

- [Omohundro, 19*4d]
S. M. Omohundro, "Modelling Cellular Automata with Partial Differential Equations", Physica 10D (1984) 128-134.
[Omohundro, 1904e]
S. M. Omohundro, "Book Review of The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors by C. Sparrow ${ }^{n}$, Mathematical Biosciences 68 (1984) p. 303-304.
[Ott, 1979]
E. Ott, "Goodnese of Ergodic Adiabatic Invariants", Physical Review Letters 42 (1979) p.1628-1631.
[Palain, 1981]
R. S. Palais, "Equivalence of nearby differentiable actions of a compact group", B'll. Amer. Math. Soc. 07, p. 362-364, 1961

Pauli, 1937]

W. Pauli, General Principles of Quantum Mechanies, (1933) Reprinted in English Translation by Springer-Verlag, Berlin, 1981.
[Polncaré, 1892]
H. Poincaré, Les méthodes nouvelles de la mécanique céleste, $1,2,3$. GauthierVillars, Paris (1892); Dover, New York, 1957.
[Polncart, 1912]
H. Poinearé, "Sur un thérème de gémétrie", Rend. Circ. Math. Palermo 3S(1912), 375-407.
[Poston and Stewart, 1978]
T. Poston and I. Stewart, Catastrophe Theory and its Applications, Pitman, Boston, 1978.
[Schulman, 198i]
L. Schulman, Techniques and Applications of Path Integration, John Wiley and Sons, Inc., New York, 1981.
[Shannon, 1948]
C. E. Shannon, "A Mathematical Theory of Communication", The Bell System Technical Journal 27, (1948),p. 379.
[Simon, 1979]
B. Simon, Functional Integration and Quantum Physics, Academic Press, New York, 1979.
[Smale, 1907]
S. Smale, "Differential Dynamical Systems", Bulletin of the American Mathematical Society 73, (1967), pp. 747-817, reprinted in: S. Smale, The Mathematics
of Time: Eseays on Dynamical Systems, Economic Processes, and Related Topics, Springer-Verlat, New York, 1980.
[Smith and Kaufman, 1975]
G. R. Smith and A. N. Kaufman, "Stochastic Acceleration by a Single Wave in 4 Magnetic Field", Physical Review Letters 34 \# ${ }^{26}$ (1975) 1613-1616.
[Smith and Kaufman, 1978]
G. R. Sxith and A. N. Kaufman, "Stochastic zeceleration by an obliquely propagating wave- An example of overlapping rescoancean ${ }^{n}$, Phys. Fluids 21(12), 1978, p. 2230.
[Sourlau, 1970a]
J-M. Souriau, Structure des Syst'emes Dynamiques, Dunod, Paris, 1970.
[Sourlan, 1970b]
J.M. Souriau, "Méanique Statirtique, Groupes de Lie et Cosmologie", in Colleques Internationaux C.N.R.S., No. 237- Gtométrie symplectique et physique mathématique p. 59.
[Spencer and Kaufinn, 1982]
R. G. Spencer and A. N. Kaufman, "Hamiltonian Structure of Two-Fluid Plasma Dynamics", Phys. Rev. A 2 (1982) 2437-2439.

[Spivak, 1979]

M. Spivak, A Comprehensive Introduction to Differential Geometry, Volume One, Second Edition, Publish or Perish, linc., Berkeley, 1979.
[Stoer and Burlirth, 1980]
J. Stocr and R. Burbirsh, Introduction to Numerical Analysis, Springer-Verlag, New York, 1980.
[Taylor, 1981]
M. E. Taylor, Pseudodifferential Operators, Prineeton University Presa, Princeton, New Jersey, 1981.
[Thirring, 1978]
W. Thirring, A Course in Mathematical Physica, I: Clasoical Dyanmiod, Springer-Verlag, New York, 1978.
[Tikochinaky, Tishby, and Levies, 1984]
Y. Tikochinsky, N. Z. Tishby, and R. D. Levine, "Alternative Approach to Maximum-entropy Inference", Phyaical Review A 10, (1984), pp, 2536-2644.
[Tlast, 1006]
L. Tinza, Gezernlieed Thermodynamica, The M.I.T. Prem, Gambridse, Masachusetts, 1966.
[van Kampen, 190s]
N. van Kampen, "Constraints", preprint, March 1983.
[Wex, 1954]
N. Wax, editor, Selected Papers on Noise and Stochastic Procemer, Dover Publications, New York, 1954.
[Welnatein, 1971]
A. Weinstein, "Symplectic Manifolds and their lagrangian submanifolds", Advances in Math. (1971), 329-346.
[Weinutein, 1977]
A. Weinstein, Lectures on Symplectic Manifolds, Regional Conferences in Math. 29, American Math. Society (1977).
[Weinstein, 1978]
A. Weinstein, "The Order and Symbol of a Distribution", Transactions of the American Mathematical Society, 241 (1978) p.1-54.

[Weinnteln, 19e1]

A. Weinstein, "Symplectic Geometry", Bulletin of the American Mathematical Society 5 (1981), 1-13.

[Welnatein, 198Sa]

A. Weinstein, "「he Local Structure of Poisson Manifolds", J. Differential Geometry 18 (1983) 523-557.
[Weinutein, 1983b]
A. Weinstein, "Sophus Lie and symplectic geometry", Expo. Math. 1(1983) 95-96.
[Weinutein, 1983e]
A. Weinstein, " C^{0} perturbation theorems for symplectic fixed points and lagrangian intersections", Preprint, Univ. of California, Berkeley (1983).
[Weinstein, 1984a]
A. Weinstein, "Critical Point Theory, Symplectic Geometry, and Hamiltonian Systems", Preprint, Univ, of California, Berkeley (1984).
[Weinatein, 1984b]
A. Weinstein, notes by S. M. Omohundro, "Equations of Plagma Physics", p. 359 in Seminar on Nonlinear Partial Differential Equations, edited by S. S. Chern, Mathematical Sciences Research Institute Publication 2, Springer-Verlag, 1984.
[Whitham, 1974]
G. Whitham, Linear and Nonlinear Waves, John Wiley \& Sons, Inc., New York, 1974.
[Wimon and Kogut, 1974]
K. G. Wilson and J. Kogut, "The Renormalization Group and the e Expansion", Physics Reports 12 No. 2 (1974) p. 75-200.
[Wolfram, 1984]
S. Wolfram, "Undecidability and Intractability in Theoretical Physics", Preprint 1984.
[Yaffe, 1082]
L. G. Yaffe, "Large N Limite as Clasgical Mec'anics", Reviews of Moderr Physics 54 No. 2 (1982) p. 407-435.

[^0]: A. a first application of the new structure of thermodynamich we reexamme the classical Gibbsian theory of phase transitions in section 16.12. We endem the Maxwell equal area rule with a naturai geometric interpretatuon withon the urw theory. It is then generalized to deseribe the phase transitions surface in an arbitrary direction instead of only along the isothermal surfare: considered by .havucll if the food of new prartical results that arone from the symplectil interprotavion of Haniliomath merhanic- is any indicaton we can expert that tha- meorporation of

