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Geomtlhc Perturbation Theory and P/asma Pnysfc,* 

Stephen Malvern Omohundro 

ABSTRACT 

Modern differential geometric techniques are used to unify the physical asymp-

totics underlying mechanics, wave theory &ud statist ;cal mechanics. The approach 

gives new insights into the structure of physical t! *.- ir es and is suited to the need.* 

of modern large-scale computer aimulati^a mA symbol manipulation systems. A 

coordinate-free formulation of non-singular perturbation theory is given, from which 

a new Hamiltoaian perturbation structure is derived and related to the unperturbed 

structure in five different waye. The theory of perturbations in the presence of sym

metry ts developed, and the method of averaging is related to reduction by a circle 

group action. The pseudo-forces and magnetic PoLsson bracket terms due to reduc

tion are given a natural asymptotic interpretation. Similar terms due to changing 

reference frames are related to the method of variation of parameters, which is also 

given a Hamiltonian formulation. These methods arc uaed to answer a locg-st adding 

question posed by Kruskal about nearly periodic systems The answer leads to a 

new secular perturbation theory tha- contains no ad hoc elements, which 15 then ap

plied to gyromotion, Eikonal wave theory is given a Hamihonian formulation tha-

generaiizes Wbitham's Lagrangian approach- The evolution of wave action density 

on ray phase space is given a Hamiltonian structure using a Lie-Poisaon bracket 

The relationship between dissipativc and Hamiltooian systems b dise&ssed A the

ory motivated by free electron lasers gives new restrictions on the change of area of 

projected parallelepiped.* under canonical transformslion* A new type of at tractor 
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is defined wbkb attracts both forward and backward in time and is fhown to occur 

in infinitp-dimcnftonaJ HarniHonian sytems with disaipative behavior. The theory of 

StnaJe horseshoe* is apphed to gyromoticm in the neighborhood of a magnetic field 

reversal and the plieBosieSQD of reiBsertioo w area-preservisg horseshoes is intro

duced. The central limit theorem is proved by rcnormalizatioB group techniques. A 

natural symplectic structure for thermodynamics is shown to arise asymptotically 

from the maximum entropy formalism in the same way the structure for classical 

mechanics arises from quantum mechanits via path integrals. The new structure 

for thermodynamics is used to generalise Maxwell's equal area rule. 



Acknowledgements 
It is a pleasure to here thank those people who made this thesis possible and 

this period of my life positive, productive, and exciting. 

My mother, Hope G. Wallace, who through her example has taught me to 

be persistent, organized, and to love terming, and who has given me her love and 

eupport in every possible way. My father, Stuart W. Omohundro, who tr.ught me 

to pursue philosophical questions and to love oration and vigorous discussion, and 

who with his wife Astrid Omohundro, has helped support me financially over the 

years. My stepfather Dr. Leon Wallace, who by example showed me how to pursue 

scientific thought and research, and who I as always given generously to me, both 

financially and emotionally. 

To my advisers I owe a great debt of thanks. They have influenced every aspect 

of this thesis, both in spirit and in content and many of their ideas appear within 

it. 

Allan N. Kaufman has created a near perfect research environment at the 

Lawrence Berkeley Laboratory, with just the right mix of individual freedom and 

group endeavor. He has been an idea] mentor, constantly including me in his 

research, beginning with his stimulating year and a half plasma course, on through 

the great ferment of ideas he is continually generating ("Let me show y u this great 

idea I thought of at 3:00 this morning!") in the development of his unique unified 

approach to theoretical plasma physics. He has given me immense freedom and 

has been extremely supportive of the paths I have taken, even when they didn'i 



AcknowledgrmeDts [\ 

seem to be along the main thrust of our group's research (eg. cellular automata, 

knotted dynamical orbits) He has been very innovative in bringing into physics 

ideas from other disciplines through his wonderful free-for-all dynamics seminar, in 

which we tackled head on some rather abstract mathematics reading, and through 

his close contact with mathematicians, bridging some traditionally wide gaps. With 

his deep insights into physics, his interminable curiosity, and continual probing into 

the structure of basic theory, Allan has taught me to be a physicist. 

Alan Weinstein, through his course on geometrical mechanics in my first year 

of graduate school and through bis insightful comments and lectured since, has 

taught m: differential geometry and its absolutely central place in physical thinking. 

Through his example, I have learned that a good picture can be worth a thousand 

equations and that parsimony axd elegance often arise from abstraction. At weekly 

meetings with his students, Alan continually makes those short insightful remarks 

that change the whole direction of research. Through his patient explanations and 

striking insights, Alan has taught me mathematics. 

Maureen Saunders for her love and eupport during often stressful times, and 

for enlivening my life even during her own struggles at medical school. 

Peter Blkher, my roommate during all five years of graduate school for hun

dreds of great discusaions about everything (including many of the ideas in this 

thesis) and for firsthand advice on using TgjX for writing a thesis. He and Lynn 

Hall are responsible for my going out to dinner and seeing movies many more times 

than I would have otherwise. 

Jerry Marsden for many helpful comments and discussions on the material of 



Acknowledgements iii 

this thesis, especially for suggesting averaging as an interesting procedure 10 look at 

geometrically, and for including me in many seminars, gatherings and conferences 

which have really shaped my understanding of mathematical physics His excellent 

profuse writings and boundless intellectual energy will always serve as an example 

for me. 

Robert Littlejohn, for insightful discussions on many subjects, particularly for 

his explorations into eikon.il wave theory and for the observation of the many sim

ilarities between wave theory and statistical mechanics. His writings on guiding 

center theory have served to stimulate me (and many other people) to think about 

perturbation theories in new ways. 

Richard Montgomery for being a sounding board for virtually everything in 

this thesis and for his contributions which appear throughout (especially in the sec

tions on geometric perturbation theory and guiding center theory). At our weekly 

meetings he suggested many useful diiections and explained many mysteries to me. 

Debbie Lewis for her friendship and encouragement, Bruce Boghosian for many dis

cussions and ideas (especially on dissipative Hamiltonian systems, reversibility, in

finite dimensional Lie transforms, and relativistic guiding center theory), Jonathan 

Wurtele for many discussions and for explaining FEL's to ne , Andy Scswler for sug 

gesting the questions about the projection of area under Hamiltonian flow. Philippe 

Similon for many discussions, especially oii ponderomotivc stabilization, adiabatic 

invariants and guiding centers, Ted Courant for discussions of Hamiltonian mechan

ics and guiding centers, John David Crawford for many discussions and insights into 

dynamical systems and plasma physics and for collaborating ou jCrawford and 

http://eikon.il


Acknowledgement? iv 

Oniohundro. 1984]. 5tevo McDonald for his insights into eikonal wave theory, Celso 

Grebogi for discussions on dynamiral systems and ponderomotive theory, Darryl 

Holm for being responsible for a wonderful summer that I spent at Los Alamos and 

for his constant interest in and encouragement of my work, Doyne Farmer who has 

given me many insights into life, dynamics and statistics and who has invited me 

back to Los Alamos for several great stays. Norm Packard ar i j!m Cmtchfield for 

many discussions of dynamical systems theory, Alice ROOB for insights into inte-

grability and foi sharing her perspectives on perturbation theory, Bill Baird whose 

drive for knowledge and quest for insights is truly inspiring, and Yukkei Hui and Ina 

Chang who are continuing the application of modern mathematical tools to plasma 

physics. 

This thesis was written on the ccc machine at Livermore using Donald Knuth's 

excellent mathematical type^tting language T£X and on an Apple Macintosh com

puter. These tools have allowed me to proceed much more quickly and with much 

greater ease than I might have otherwise. 

The work reported in this thesis was supported by the Office of Basic En

ergy Sciences of the U. S. Department of Energy under Contract No. DE-ACOS-

76SF00O98. This support is due to the far-reaching insight of Oscar Manley who 

has the vision to support research mto basic issues. 

The writings of Vladimir Arnold and, in modern guise, the fundamental ideas 

of Leonb-: .d Euler and Henri Poincare have constantly served me as inspiration. 



Short Tableof Contents 
Chapter 1. Introduction 1 

PART I: MECHANICS 75 

Chapter 2. Survey of Geometric Perturbation Theory 78 

Chapter 3 . Pseudo-forces and Reduction 167 

Chapter 4. Hamiltonian Structures in Perturbation Theory . • 183 

Chapter 6. KruskaTs Theory of Nearly Periodic Systems . . . . 231 

Chapter 6. Ponderomotive Force and Gyromotion 251 

PART H: WAVES 299 

Chapter 7. Asymptotic Wave Theory 300 

Chapter 8. A H&rnlltonian Approach to Wave Modulation . . . 338 

Chapter 9. A Lie-PolBson Bracket for Wcve Action Density . . 356 

PART HI: DISSIPATION A N D STATISTICS 364 

Chapter 10. Imbedding and Projection Theorems 365 

Chapter 11. Projected Area and Canonical Transformations . . 378 

Chapter 12. Reversibility vs. Irreversibility 404 

Chapter IS. Hamilton ian Dissipation in Infinite Dimensions . . 407 

Chapter 14. Reinsertion in Area-Preserving Horseshoes . . . . 424 

Chapter 15. Renormaltaatlon Croup 439 

Chapter 16. Symplectlc Thermodynamics from Maximum Entropy 456 

Chapter 17. Glossary of Term* 528 

Chapter 18. Bibliography 536 



vi 

Table of Contents 
C h a p t e r J- In t roduct ion 1 

1.1: Summary and Motivation 1 

1.2: Philosophical Approach 15 

1.3: Guide for the Reader 19 

1.4: Int'iitive Discussion of the Conceptual Framework 23 

1.4.1: The Analogy Between Entropy and Action 25 

1.4.2: Adiabatic Invariants and Pseudo-forces 26 

1.4.3: Symmetries and Exact Invariants 29 

1.4.4: Thermodynamic ForceB 30 

1.4.5: Wave Action 31 

1.4.6: Action, Entropy and Asymptotics 34 

1.4.7: Steepest Descents, Stationary Phase, and Averaging 35 

1.4.7.1: Resonance 36 

1.4.8: The Key Examples in Mechanics, Waves, and Statistics 37 

1.4.9: Mechanical Systems 38 

1.4.10: Mechanical Systems: Separation of Time Scales 38 

1.4.10.1: Gyromotion and Asymptotics 39 

1.4.10.2: Oscillation Centers and Ponderomotive Torces 41 

14.10.3: Geometric Perturbation Theory 42 

1.4.11: Averaging in Statistical SyBtems 44 

1.4.11.1: Matched Asymptotics 46 



Table of Contents 

1.4.12: Averaging and Local Fourier Transforms 47 

1.4.12.1: Scales in Differentiation 49 

1.4.13: Symplectic Asymptotics in Thermodynamics and Mechanics . . 50 

1.5: A Hundred Further Questions, Conjectures, and Suggestions 56 

PART I: MECHANICS 75 

Chapter 2. Survey of Geometric Perturbation Theory 76 

2.1: Historical Background 76 

2.2: Geometric Perturbation Theory 81 

2.2.1: Manifolds 81 

2.2.2: Dynamical Systems 82 

2.2.3: Perturbation Theory 83 

2.2.4: First Order Perturbation Equations 88 

2.2.5: Functions, Covectore, and Cotangent Bundles 89 

2.2.6: Vectors and Tangent Bundles 89 

2.2.7: The State Space for First Order Perturbation Theory 91 

2.2.8: Flows and Derivatives 92 

2.2.9: Dynamics for First Order Perturbation Theory 92 

2.3: The Geometry of Jth Order Perturbation Theory 95 

2.3.1: The Path Space 95 

2.3.1.1: Spaces of Shorter Paths 97 

2.3.2: The Space of Germs of Paths 98 

2.3.3: The Space of Jets of Paths 100 

2.3.3.1: Coordinates on the Jet Space 100 



Table of Contents viii 

2.3.4: Tangent Vectors to Path Space 101 

2.3.5: Tangent Vectors to the Quotient Spaces 103 

2.3.5.1: Coordinates on the Tangent Bundle to the Jet Space . . . 103 

2.3 5 2: Coordinate Relation Between Path and Jet Vectors . . . . 104 

2.3.6: Dynamics on Path Space 105 

2.3.7: Dynamics on Jet Space 106 

2-4: Geometric Hamiltonian Mechanics 108 

2.4.1: Poisson Manifolds 109 

2.4.2: Hamiltonianfl and Bamiltonian Vector Fields 110 

2.4.3: Symplectic Manifolds 110 

2.4.4: Symplectic Leaves and Bones and Casimir Functions 11. 

2.4.5: The Natural Symplectic Structure on Cotangent Spaces . . . . I l l 

2.5: Hamiltonian Systems with Symmetry 114 

2.5.1: Generalized Noether's Theorem 115 

2.5.2: Circle Actions 116 

2.5.3: Reduction by a Circle Action 11" 

2.5.3.1: The Reduced Phase Space 117 

2.5.3.2: The Reduced Hamiltonian 119 

2.5.3.3: The Reduced Poisson Bracket 1-9 

2.5.3.4: Coordinate Calculation of the Reduced Space 120 

2.S: Example: Centrifugal Force 121 

2.6.1: Angular Momentum Generates Rotations 121 

2.6.2: The Reduced Space and Bracket 123 



Table of Contents ix 

2.6.3: The Reduced Hamiltonian Gives Centrifugal ? o.rc 125 

2.7: Higher Dimensional Symmetries 127 

2.7.1: Hamiltonian Symmetry . . . 127 

2.7.2: The Momentum Map 128 

2.7.2.1: Linear and Angular Momentum as Momentum Maps 129 

2.7.3: Non-commutativity as the Obstruction to Reduction 129 

2.7.4: The Adjoint and Coadjoint Actions 130 

2.7.4.1: Equivariance of the Momentum Map 133 

2.7.5: Multidimensional Reduction using a Coadjoint Isotropy Subgroup 134 

2.7.6: Multidimensional Reduction using Coadjoint Orbits 135 

2.7.7: The Lie-Poisson Bracket and Group Configuration Spaces . . . 135 

2.7.8: Euler's Equations for the Free Rigid Body 137 

2.7.9: Euler's Equations for a Perfect Fluid 139 

2.7.10: Gases and Plasmas 141 

2.8: Geometric Hamiltonian Perturbation Theory 145 

2.8.1: Linearised Dynamics at a Fixed Point from Jet Bracket . . . . 147 

2.8.2: Symmetry and Perturbation Theory 150 

2.9: The Method of Averaging for Hamiltonian Systems 152 

2.9.1: Approximate Noether's Theorem 153 

2.9.2: Hamiltonian Averaging as Reduction by a Circle Action . . . . 153 

2.9.2.1: Averaging ?nd the Jet Picture 155 

2.9.2.2: Extensions from Loops to Tori and Energy Surfaces . . . . 156 

2.9.3: Pseudo-Potentials and Adiabatic Invariants 157 



Table of Contents x 

2 9.3.1: Ping-pong balls and One-dimenaional Gases 159 

2.9 3.2: Oscillatory Stabilization 160 

2.9.3.3: Multiple Space and Time Scales 161 

2.10: Exarrple: E x D Drift 164 

Chap te r 3. Pseudo-forces and Reduction . . 167 

3.1: Pseudo-forces and Reduction 167 

3.1.1: Fictitious Forces 168 

3.1.2: Rotating Coordinates 169 

3.1.3: Reduction of Simple Mechanical Systems 171 

3.1.4: Circle Actions on Simple Mechanical Systems 173 

3.1.5: Fictitious Forces as Reduction 174 

3.1.6: Fictitious Forces with Momentum Shift as Reduction 176 

3.2: Geometry of the Method of Variation of Parameters 179 

3.2.1: Hamiltonian Variation of Parameters 181 

Chap te r 4. Hamlltonian Structures in Perturbation Theory . . . 183 

4.1: Introduction 183 

4.2: First Order Hamiltonian Perturbation Theory 186 

4.3: Path and Jet Spaces 193 

4.3.1: Path Space Symplectic Structure and Hamiltonian 194 

4.3.2: The Path Space Dynamics is Hamiltonian 194 

4.4: Coordinate Desc'ption of the J-jet Structure 196 

4.4.1: The Jet Hmniltonian 197 

4.4.2: The Jet Poisson Bracket 197 



Table of Contents xi 

4.6: Relation to the Iterated Tangent Bundle 198 

4.5.1: Injecting Jets into the Iterated Tangent Bundle . . . 198 

4.5.L.l: Coordinate Description of the Injection 199 

4.5.2: Symplectic Structure on the Iterated Tangent Bundle . 200 

4.5.2.1: Coordinate Description of Sympat ic Structure 200 

4.5.3: Pulled Back Symplectic Structure on the Jet Space 201 

4.6: Relation to the Path Space Bracket 202 

4.6.1: Weighted Path Bracket and Hamiltonian 202 

4.6-2: Jet Bracket Arises from Derivative of Delta Function Weighting . 204 

4.6.3: Jet Hamiltoniao. from Derivative of Delta Function Weighting . . 205 

4.7: Jet Space as Derivative 206 

4.7.1: The Sheet Quotient Spaces 206 

4.7.2: Sheet Symplectic Structure and Hamiltonian 206 

4.7.3: Map Between Sheet Space and Jet Space 207 

4.7.4: The Pulled Back Sheet Syraplectic Structure and Hamiltonian . 207 

4.7.5: Sheet Structures Asymptote to Jet Structures for Small Spacing . 208 

4.8: Jets and Symmetry 211 

4.8.1: e-dependent Group Actions on M 211 

4.8.1.1: Lift to G Action on the Path Space 212 

4.8.1.2: Lift to G Action on the Jet Space 212 

4.8.1.3: Maps from the Lie Algebra to Vector Fields ou M. PM, and JM 213 

4.8.1.4: The Momentum Map 213 

4.8.1.5: Momentum Map on PM 214 



Tabic of Contents xii 

4.8.1.6: Momentum Map on JM 214 

4.8.1,7: Equivariance of J M ' s Momentum Map 214 

4.8.2: The Path Group: PG 215 

4.8.2.1: The Path Lie Algebra: Pg 216 

4.8.2.2: The Dual of the Li- Algebra of the Path Group . . . . . . 216 

4.8.2.3: The Action of the Fath Group on the Path Space 216 

4.8.3: The jet Group: JG 217 

4.8.3.1: The Lie Algebra of the Jet Group: Jo 218 

4.8.3.2: Homomorphism from Jg to Vector Fields on JM 219 

4.8.3.3 The Dual of the Jet Lie Algebra: Jo" 220 

4.8.3.4: The Jet Momentum Maps 220 

4.8.4: When M is a Coadjoint Orbit with the KKS Symplectic Structure 221 

4.3.4.1: Coadjoint Action of PG 222 

4.8.4.2: The KKS Symplectic Structure on Coadjoint Orbits in Pg' . 222 

4.8.5: Natural Projections and Injections of G, PG, and JG 223 

4.8.5.1: Projections and Injections of the Lie Algebras and Duals . . 224 

4.8.6: The Lie Poisson Bracket on g' 225 

4.8.6.1: The Lie Poisson Bracket on Jo* 225 

4.8.6.2: Jo" as J-jets of Paths in »• 225 

4.8.6.3: Coadjoint Orbits in J g - 226 

4.8.6.4: JM is a Coadjoint Orbit iu Jo" as a Manifold 227 

4.8.6.5: The KKS Symplectic Structure is the Jet Symplectic Structure 227 

4.8.7: J C a s i Semi-Direct Product 229 



Table of Contents xiii 

4.8.8: Jet and Pa;!1 deduced Spaces arc Reduced Jet and Pdih Sparc;- 230 

Chap te r 5. KruskaPs t h e o r y of Nearly Periodic Systems 231 

5.1: In'-eduction: KruskaTs Approach 231 

5.2: The New Approach Expressed in Coordinate-. 23', 

5.3: The Geometric Version of the New Approach 240 

5.4: Extensions and Limitations of Kruskal's Theory 242 

5.4.1: Secular Perturbation Theory 243 

5.4.1.1: Lie Transforms 245 

5.4.1.2: Two-Timing 245 

5.4.2: 1/e Time of Validity for Kruakal's Technique 246 

5.4.3: Averaging with Mu.'<iple Frequencies 248 

5.4.4: Averaging Over Ergodic Orbits 249 

5.4.5: Non-uniqueness of Symmetry for Finite Perturbation 249 

C h a p t e r 0. Ponderomotive Force and Gyromotion 251 

6 .1 : Pondtromotive-like Forces 251 

6.1.1: Intuitive Treatment . 253 

6.1.2: Introducing the Asymptotic Scaling - 256 

6.1.3: Using the Kniskal-hke Perturbation Method . 2 6 0 

6.1-3.1: The Coordinates i , v x , 4 ,0 260 

6.1-3.2: Result of the Method of Averaging . ?62 

6.1.3.3: Calculation of the Roto-ratc Vector Field 263 

6.1.3.4: The Hamiltonian Structure 266 

6.1.4: Obtaining the Action to First Order 268 



Table oi ('omenta xiv 

6.2: Some Comment? ou Perturbation Calculations 270 

6.3: 2D Gyromotiun via the New Kmskal-hke Method 274 

6.3.1: The Four Components of J2i 278 

6 3.2- The Four Components of 7?2 281 

6.3.3: Summary of the Calculption 287 

6.4: The Hamiltonian Structure of Gyromotion 289 

6.4.1: The Poisson Bracket 289 

6.4.2: The Symplectic Structure 290 

6.4.3: Uniqueness of the Generator for a Vector Field 292 

6.4.4: Comparison With Robert Littlejohn's Results 293 

6.4,5: Prospects for a Fully Hamiltonian Theory 297 

PART II: WAVES 299 

Chapter 7. Asymptotic Wave Theory 300 

7.1: Wave Asymptotics and Approximate Symmetry 300 

7.1.1: Eikonal Waves 302 

7.1.1.1: Sources with Time Scales Generate Eikonal Waves . . . . 305 

7.1.1.2: Dispersive Media Create EikonaJ Waves 307 

7.1.1.3: Whit ham's Generalization to Nonlinearity 307 

7.1.1.4: Sinusoidal Waves 308 

7.1.2: The Local Fourier Transform 309 

7.1.3: Stati 'jary Phase, Laplace's Method, and Steepest Descents . . . 311 

7.1.3.1: Heisenberg's Uncertainty Principle 314 

7.1.3.2: Asymptotic Waves wi'h a Definite k and y 317 



Table of Contents w 

7.1.4: Eikonal Waves and Lagrangian Submanifolds 321 

7.2: WKB Theory and Asymptotic Equations . . . . . . . 324 

7.2.1: The Structure of First Order P.D.E.'s 327 

7.2.2: Hamilton-J acob : Tbi-ory and Sympiectic Manifolds 330 

7.2.3: Cotangent Bundles, Contact Spaces, and Jet Spaces 333 

7.2.4: The Contact Bundle and the Conormal Bundle 334 

7.8: Limitations of WKB Theory 335 

Chap te r 8. A Hamlltoniaxi Approach to Wave Modula t ion . . . 338 

8.1: Introduction 338 

8.2: Periodic Solutions 340 

8.2.1: The Hamiltonian Restricted to Periodic Solutions 340 

8.2.2: The Sympiectic Structure Restricted to Periodic Solutions . . 341 

8.2.2.1: A Degenerate Poisson Structure on the Periodic Solutions 342 

8.2.3: The Action of Periodic Orbits 343 

8.3: Modulations 344 

8.3.1: Stationary PhvM.-Integrals 344 

8.3.2: The Modulations! Poisson Brackets . 345 

8.3.3: The Moduiational Hamiltonian 346 

8.4: Global Symmetry Implies Local Conservation La* 347 

8.5: The Nonlinear Kiein-Gordou Equation 350 

Chap te r 9. A Lie POLBF^D Bracket for Wave Action Dennity 356 

9.1: Explicit Calculation of the Ln- POIHHOU Bracket 356 

9.2: The Geometrical Picture 361 



Table of Contents xvi 

P A R T HI: DISSIPATION AND STATISTICS 364 

Chap te r 10. Imbedding and Projection TLeorems 365 

10.1: Imbedding in a Haniiltonian System 365 

10.2: Projection from a Hamikonian System 368 

10.3: Dangerous Operations with Unbounded Variables 370 

10.3.1; Eg.: Surreptitiously Changing Damping to Driving 370 

10.3.2: Eg.: Pitfalls in the Use of Lie Transforms 371 

10.4: Imbedding in Poisson Systems 375 

C h a p t e r 11. Projected Area and Canonical Trar\flfarmatlc*«i . . . 378 

11.1: Application to Particle Accelerators 379 

11.1.1: Courant's Theorem 380 

11.2: Relation to the Uncertainty Principle 382 

11.3: Weinstein's Approach 381 

11.4: Theorem for Linear Canonical Transformations 389 

11.4.1: The Geometry of Projected Parallelepipeds 391 

11.4.2: The Case of Linear Canonical Tranflfo-nations 398 

C h a p t e r 12. Reversibility vs. Irreversibility «04 

C h a p t e r 13. Hami l ton lan Dissipation In Infinite Dimensions . . . 407 

13.1: Poincare Recurrence and Aur actors 408 

13.1 1 The Lack of Recurrence m Infinite Diment: IH . . . 409 

13.2: Asymptotic an>.l Liapunov St .oility 410 

13.2 1 Almost Attractonj . . . . 410 

13.3: hi'vcrsiblo Attrartors and Infinite Dimensional HamiJtouians . . . 411 



Table of Contents xvti 

13.3.1: Reversible Almost Attractor in the Wave Equation 411 

13.3.2: The Liouville Equation and Koopmanism 412 

13.3.3: Landau Damping 413 

n.3.4: The Boltzmann Equation and the BBGKY Hierarchy 413 

•i.3.5: Dissipation from Resonance 414 

13.3.6: Resonant Coupling of Eikonal Waves 421 

13.4: The String with a Spring 422 

C h a p t e r 14. Reinser t ion in Area-Preserving Horseshoes 424 

14.1: The 2x mod 1 Map 425 

14.2: The Baker's Transformation 427 

14.3: The Horeeahoe 428 

14.4: Example of Horseshoes in Gyromotion 430 

14.5: Area Preserving Horseshoes and Reinsertioi* 435 

Chap te r 16. Renormalixat ion G r o u p 439 

15.1: Scaling and Universality 439 

1S.2: Magnetic Spin Lattices 442 

15.3: The Central Limit Theorem 446 

15.4: A Poor Man's Feigenbaum Number 450 

Chap te r 16. Symplectlc Thermodynamics from M a x i m u m Ent ropy 456 

16 1: Previous Approaches to Geometric Thermodynamics 457 

1.6.2: Seven Approaches to the Maximum En* ovy Formalism 462 

16.2.1: Axiomatic Subjective Approach 463 

16.2.2: Counting Sequences of Trials 464 



Tabic of Contents xviii 

16.2.3: Via Steepest Descents in Two Ways 466 

16.2.4: Via Probability in Three Ways 470 

16.3: The Thermodynamic Limit 472 

16.3.1 The Density oi States 473 

16.3.2: Tl'e Partition Function 474 

16.4: Maximum Entropy Applied to Statistical Mechanics 475 

16.6: Some Symplectic and Contact Geometry 479 

16.5.1: Hypereurfaces Determined by a Function 480 

16.5.1.1: The Underlying Manifold M 482 

16.5.1.2: The Graph of a Function 482 

16.5.1.3: The Cotangent Bundle 482 

16.5.1.4: The First Jet Bundle 483 

16.5.1.5: The Space of Contact Elements 483 

16.5.2: The Conormal Bundle 484 

16.5.3: The Wavefront Set 485 

16.5.4: The Space of Tangent Contact Elements 486 

16.5.5: Legendie Transforms and Linear State Spaces 487 

16.5.5.1: The Legendre Map 487 

16.5.5.2: The Legendre Transform 488 

16.5.5.3: The Legendre Transform and a Function's Graph . . . . 489 

16.5.5.4: Legendre Transforms and Projective Dualit) 490 

16.5.5.5: Legendre Transforms and Uncertainty Relations 494 

16.5.5.6: Legendre Transforms and Jets of Functions 495 



Table of Contents xix 

16.6; The Origin of the Lagvangian Submaoifolds in Physics 496 

16.6.1; Constrained Integration and Extremization 490 

16-6.2: Paths Constrained on Surfaces 497 

16.6.3: The Wavevector as a Kind of Force 498 

16.6.4: Distributions Constrained on Subsystems 499 

16.6.5: Thermodynamic Forces 500 

16.6.6: Lagrange Multipliers and Legendrc Maps 501 

16.6.6.1: Constant Force Asymptotic Systems 502 

16.6.7: Lagrangian Submanifolds and Constrained Extrerrlzation . . . 503 

16.6.7.1: Parametrizing Lagrangian Submanifolds 503 

16.6.7.2: Theorem on Pushing Forward Lagrangian Submanifolds . . 504 

16.6.7.3: Application of the Theorem to Waves 505 

16.6.7.4: Application of the Theorem to Thermodynamics 505 

16.7: Theorem on the Pushforward of Legendre Submanifolds 507 

16.7.1: The Contact Structure for Thermodynamics 508 

16.7.1.1: The Contact Form for Jets of Entropy 509 

16.7.1.2: The C/ ,y , ( l / r ) , (p /T) Symplectic Manifold 509 

16.7.1.3: The (5, V,p,T) Symplectic Manifold 510 

16.7.2: Legendre Transform? and Thermodynamic Potentials 510 

16.8: Phase Transitions and the Geometry of the Equation of State . . . 512 

16.8.1: Caustics and Phase Transitions 513 

16.8.2: Convexity and First Order Phase Transitions 513 

16.8.3: A Generalization of Maxwell's Equal Area Rule 517 



Tabic of t',uatenta xx 

16.9: Relations Between Symplectic Thermodynamics and Mechanics . . 521 

16.9.1: A) Eikonal Waves and Stationary Phase 521 

16.9.1: B) Thermodynamic Limit and Steepest Descents 521 

16.9.2: A) Waves and the Feynman Path Integral 522 

16.9.2: B) Probability and the Maximum Entropy Formalism 522 

16.9.3: A) Wave Path Integrals over a Subspace 523 

16.9.3: B) Probability Distribution Averages over a Subspace 523 

16.9.4: A) Lagrange Multipliers and Canonical Conjugacy 524 

16.9.4-. B) Lagrange Multipliers and Thermodynamic Conjugacy . . . 525 

16.9.5: A) Fourier Transforms and Legendre Transforms 525 

16.9.5: B) Laplace Transforms and Legendre Transforms 526 

C h a p t e r 17. Glossary of Terms 528 

C h a p t e r 18. Bibl iography 536 



This report was done with support from the 
Department of Energy. Any conclusions or opinions 
expressed in this report represent solely those of the 
authors) and not necessarily those of The Regents of 
the University of California, the Lawrence Berkeley 
Laboratory or the Department of Energy. 

Reference to a company or product name docs 
not imply approval or recommendation of the 
product by the University of California or the U.S. 
Department of Energy to the exclusion of others that 
may be suitable. 



1 

Chapter 1: 
Introduction 

"One of the principal objects of theoretical research in any department of knowl

edge is to find the point of view from which the subject appears in it$ greatest 

simplicity '—J.W. Gibbs 

1.1. Summary and Motivation 

This thesis presents the underlying theoretical basis for an ambitious program 

to develop a unified, coord inate-fre" theory of asymptotic perturbation methods in 

the three major areas of physics: mechan al systems, wave systems, and statistical 

systems. This program has far-reacbing consequences, both practical and theoret

ical, which we will outline here. It is quite clear that we are entering a new era in 

physics and engineering in which powerful computers will play a major role The 

two major applications of the computer will be simulating physical systems and per

forming symbolic computations. Both of these areas arc fundamentally impacted 

by our research. 

It has long been known that many of the most important problem;- in physio 

and engineering design are analytically intiacLable Recent theoretical development 

have 'liown that this> intractability can be inherent in the problem, and nut due 

simply to insufficient mathematical technique. Rigorous results from dynamical 

\vs-i-m- thenry have shown that almost all systems of interest have cliaotu behavior. 

file:///vs-i-m-
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which absolutely precludes the development of analvtit solutions (see for example 

[(Hirkeiik'inicr and Holmes. 1983J}. Recent work in cellular automata theory has 

shown that there are problems whose behavior cannot be predicted by any algorithm 

which is shorter than direct simulation [Wolfram, 1984;. 

Computer simulation is therefore destined to play a fundamental role in the 

study of physical problems. Unfortunately, the very same exponential divergences 

of neighboring orbits which cause difficulties in analytic treatments also plague com

puter simulations. For a given accuracy of prediction, the computing power required 

typically grows exponentially with the time-scale to be studied measured in units of 

the smallest important physical time-scale. Advances in parallel computation will 

inciease the power of computers by factors of about a million in the next twenty 

years. While large, this number pales against the spectre of needed exponential 

growth and the new scales posed by fully three-dimensional simulations. It is there

fore nec-asary to develop reliable analytic theories for preconditioning problems 

prior to simulation. An important example of this concept is utilized in studying 

the gyromotion of a charged particle in slowly-varying magnetic and electric fields. 

'Hie particle motion consists of fast gyrations near the gyrofrequency, on top of slow 

drifts of the center of gyration. If one simulates the particle motion directly, the 

simulation errors accumulate on the time-scale of the gyroperiod. quickly leading 

to incorrect rejults on the drift time-scale. By first introducing asymptotics and 

analytically removing the fast gyration, we obtain the so-called guidiDg center de

scription. Tl.f-e equations have significant evolution on only the drift time-scab. 

ami the simulation retains validity for much longer times with the same computing 
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resources. A similar motivation is behind the description of a partnle iti a wave 

using oscillation centers and the description of the evolution of an cikoii.il nave in 

term;- of niodulational equations. 

The need for accurate as\ mptotics performed to very high order will eventually 

be met by using symbolic manipulation programs such as MACSYMA and SMP. 

For this to be possible, it is absolutely essential that we have methods thai are 

precisely defined with a precisely defined domain of applicability, are systematic 

and require no ad hoc choices in their implementation. It is also very important 

to design simulations to take advantage of any precise knowledge of the dynamics, 

such as energy or momentum conservation. Insight into the theoretical structure of 

a physical theory leads to much more efficient and testable computer code and may 

mean the difference between a successful theory and a useless one. 

For these practical rear.ons, as well as for fundamental theoretical ones, we have 

taken a new approach to physical asymptotics. The approach we take is based on 

some revolutionary new ideas that are changing the underlying mathematical struc

ture of physics. The introduction of the vector calculus by Heaviside in 1882 led 

not only to the streamlining and simplification of calculators, but to new concep

tual insights into the structure of physical law. The application of coordinate-free 

differentia] geometry, developed primarily by Elie Car tan in the 1930s, is having 

an even more profound effect on both the expression and the conceptual structure 

of physics Coordinates are not physical, and the new formulations encourage the 

use of only physically relevant concepts, never ati hoc artifacts of some coordinate 

description. Hamiltonian mechanics has been particularly revolutionized by ihi-

http://cikoii.il
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reexpre-vion. It was discovered in the 19G0's tha!. just a.- Rieniannian ^comclr) 

drsrribe*. the structure of spare-time, sywpieciic gcimictry describes the structure 

of Hamiltonian phase spare An introduction to this theory in the context of our 

work is presented in chapter 2. The full impart of the reformulation of Hamillo-

ni.in mechanics has been felt only recently. In the past few years virtually every 

area oi physics has been Hamiltoniauized. The new perspective has shed light on 

the underlying symmetry structure of these theories (including the elucidation of 

automatically conserved quantities, called Casimir functions), has yielded improved 

nonlinear stability results based on Arnold's stability method, and has given insight 

into the reasons for the intcgrability of certain systems. 

Hamiltonian structures were originally introduced by Lagrange to simplilj and 

to check perturbation calculations. They will play a similar role in modern computer 

simulations. Most of the recent developments in Hamiltonian mechanics have dealt 

with fundamental models of physical systems and have not studied the structure of 

perturbation equations. We have initiated a study of such equations and discovered 

several important result;-. 

Our first goal was to study ordinary non-singular perturbation theory. Chap

ter 2 gives a coordinate-free description of this technique in terms of the mathemat

ical theory of jets. This is important for systematizing perturbatio. methods and 

bringing them under the purview of modern mathematical methods. Many physi

cal systems have state spaces that are naturally manifolds, and many are naturally 

infinite-dimensional. Before our work, it was not clear that one obtained the same 

perturbation expressions when cue worked in different coordinate systems and there 
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wa> no systematic means for dealing with the geometrically more complex c i ' i " 

Chapter 4 studies- this perturbation theory in a Hamiltonian context. Again WC 

find that the theory is expressible in coordinate-free language We have discovered 

that a remarkable and important Hamiltonian structure governs the perturbation 

equations themselves. The fart that the perturbation equations are Hainiltonian 

means that, for the first time, all of the powerful techniques of Hamiltonian me

chanics (including Noether's theorem, energy conservation. Liouville's theorem, and 

stability techniques) may be applied directly to perturbed systems. We have discov

ered that the new perturbation structure is related to the key elements of modern 

Hamiltonian mechanics in five different ways. (W'e have worked out the direct coor

dinate description, the relationship with natural structures on the so-called iterated 

tangent bundle, the relationship with a natural structure on a path space, a new 

sense in which the perturbation state space can be viewed as a '"derivative" which 

unities our method with previous work, and finally an extensive theory of pertur

bations in the presence of symmetry.) The theory describing the relationship of 

perturbations and symmetries extends to perturbation problems what is- perhap-

the most important idea of modern Hamiltonian mechanics': reduction This is 

a procedure, formulated by Marsden and Weisj^tcin and discussed , i chapter 2. 

which is a far-reaching generalisation of Noether's theory of amplification in the 

prepuce of symmetry. Every modi rn Hainiltonian structure, including those aris 

ing in plasma physics, magneto-hydrodynamics, fluid dynamics, general rclativiu. 

electromagnetisni. quantum mechanics, superfluidity, and MJJM n onductivity. ma> 

be obtained from underlying canonical structures by mean4, of n-diniioii In nm-i 
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nf these r;i>(".. the resulting Poisson bracket is intimately related to the M>-railed 

Lie-Poisson bracket, which arises from reduction We have broadened this theory 

to enrompas-- perturbed systems and nave shown that the perturbation structures 

are intimately related to rertain "jet-group" symmetries. Our Hamiltonian pertur

bation structure arises from the Lie-Poisson bracket of this larger group. 

Perhaps the most important application of non-singular perturbation theory is 

a? a component of a singular or secular perturbation calculation. Using geometric 

methods, we have been able to make fundamental advarces in secular perturbation 

theory as well. We first demonstrate in section 2.9 that the method of averaging 

can be viewed as an application of reduction by an approximate circle action. This 

allows the method of averaging to be incorporated into any situation amenable to 

reduction. We explicitly calculate the Poisson structure for E x B drift using thes? 

new methods in section 2.10. Nowhere in the calculation does oi * need to introduce 

the unphysiral or ad hoc elements usually required. The resultant bracket is derived 

with much less calculation than by any previous method. 

To reach higher order than the method of averaging, we reexamine the seminal 

theory' of Kruskal in the light of the new methods in chapter 5. He introduced 

the first systematic, order by order calculation of adiabatic invariants to all orders. 

His technique requires one to make changes of coordinates order by order. Each 

change, howev . , requires one to make certain arbitrary choices leading to an ad hoc 

element in the perturbation algorithm Kruskal was able to show that nonetheless 

the vector held generated by the adiabatir invariant (which we would now call an 

approximate circle symmetry) was uniquely defined to all orders This vector field 
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is the real goal of the perturbation technique and Kruskal was moved to comment 

in hU- paper: "It does not appear obvious- whether an explicit recursion formula to 

determine R [the symmetry vrctor field in terms of / jthe dynamical vector field 

can be found. If so, the whole theory of this paper might be simplified and rendered 

less deep." Indeed, our approach explicitly gives just such a formula ind relates 

it to the development in H?*~iiltonian mechanics listed above. Our algorithm is 

completely well defined with no ud hoc elements and so is ideally suited .or symbolic 

implementation on a computer. As an example, we compute the symmetry vector 

field for two dimensional gyromotion to second order in chapter 6. 

We have found that Kruskal's results (and others of the same type) are of

ten misunderstood and misused. While Kruskal showeJ that the accuracy of the 

adiabatic invariant conservation may be made exponentially small in the small pa

rameter, the time-scale over which this is valid is only the reciprocal of the small 

parameter. KruskaJ's result is often quoted as: "adiabatic invariants <.-** preserved 

to all orders in the small parameter" and wrongly interpreted to mi.an exponentially 

small error for exponentially long times. This misinterpretation can be very dan

gerous in the situations where the theorem is applied, and so we have constructed 

a number of counterexamples to illustrate the limits of the theory in section 5.4. 

We have also successfully considered the method of variation of parameters 

in this light and have explicitly demonstrated the connection with the notions of 

"pseud oforces" and "magnetic curvature terms" in the Poisson brackets of reduced 

systems in (t,apter 3. We have shown a new way of interpreting the Coriolis force 

(a.1- a term in the Poisson bracket due to reduction) which i> extendible to any oilier 
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system expressed in a changing rcfcrnii c frame 

The next class of systems we study arc those describing the asvmptolic evolu

tion of e. -. al waves. We have developed a number of new theoretical constructs in 

this- fielu including a precise asymptotic definition of local Fourier transform. These 

ideas arc presented along with a summary of the geometric approach to eikonal wave 

theory in chapter 7. We have also succeeded in our main goal, which was to develop 

a systematic method for finding a Hamiltonian description of modulational equa

tions given the underlying Hamiltonian wave system. Our technique is algorithmic 

and does not depend on linearity, nor on any other special features of the system. 

We present the theory for the Klein-Gordon equation in detail in chapter 8. Our 

approach encompasses the systems amenable to Whitham's averaged Lagrangian 

technique, but applies in addition to Hamiltonian 53'stems that do not arise from 

a Lagrangian (for example, auy of the «;. stems with Casimirs or any system based 

on a Lie-Poisson bracket). It also unifies the study of eikonal waves with the other 

Hamiltonian systems we have discussed. 

We also study the common case of linear waves described by a canonical Hamil-

tonian structure with wave amplitude and phase as conjugate variables. We have 

shown that these systems are naturally described by a wave action density on the 

entire x.k phase space. The evolution of this action density is itself Hamiltonian, 

but with respect to a natural Lie-Po-sson bracket, as is demonstrated in chapter 

9. The symmetry group underlying this theory is the same as that for the Vlasov 

equation. 

I'sing new mathematical techniques, we have discovered several novel result^ 
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regarding some long-standing questions about the relationship between di--ip.ii ivr 

and non-dissipativc sv stems. In chapter lb. we show by explicit conMruniuii thai 

any dynamical system (with any amoun': of dissipation} can be imbedded in a 

Hamiltonian system of twice the dimension or a Poisson system of only one higher 

dimension. \Y<? also show by explicit construction that there are a Hamiltoniaii 

system and a Poisson system of only one dimension greater that project (by ignoring 

the value of a coordinate) to become any arbitrary dynamical system. These results 

show at once that Hamiltonian systems are very general and that it can be very 

dangerous to indiscriminately add new variables to a system. In particular, we 

show that by introducing time-dependent changes of coordinates, one can make any 

system look integrable, or coerce Liapunov exponents to take any desired values. We 

give several explicit examples of seemingly harmless yet truly dangerous operations. 

We show in an explicit example involving a resonance that, by indiscrminate use 

of the method of Lie transforms, one can inflict mortal injury to the underlying 

physics 

In chapter 11 we use modern sympleotic geometry to study some questions 

that arise in the design of free electron lasers and other accelerators One often 

wants to force the particles in a beam into a more confined region in phase space. 

Most devices act on the particles in a (time-dependent) Hamiltonian way and so 

we consider the effect of canonical trans format ior . on regions of phase spate. Liou-

ville's theorem says that it is impossible to change the volume of the region in pha.-e 

space Often, though, we are interested in the projection of our region into some 

-ubset of the degree- of freedom (e.g.. '.he longitudinal po-itiou and mnrc'iitum 

http://di--ip.ii
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\anablr-l . One might attempt to shrir V the image of such a projection CVmrant 

addre-^ed this question fur linear systems, but only iiudrr very special conditions 

particle, in ellipsoid? or parallelepipeds with axes aligned with the coordinate axes 

both before and affr the transformation. VVeinstein has given a general theorem 

thnt applic- only for sufficiently small transformations. We generalize Courant's 

the'i. y in a fundamental way and obtain results for arbitrary linear canonical trans

formations. This is accomplished by positing and proving a new theorem about the 

structure of parallelepipeds in high dimensional spaces. We give several examples 

and counterexamples and discuss the pussibility of a generalization to statements 

about projected measures as opposed to volumes. 

In chapter 12 we introduce a new class of attractors into dynamical systems 

theory that sheds light on classical irreversibility paradoxes. By construction, we 

exhibit systems possessing a fixed point which is attracting both forward and back

ward in time. In chapter 13 we show that exactly this behavior occurs in many 

infinite dimensional Hi-miltoniao systems and is responsible for the appearance of 

dissipation in many cases. Examples include a variety of wave systems. Landau 

damping, resonant coupling, and the decay of correlations in chaotic maps. 

The fundamental mathematical strurture behind chaos in dynamical systems 

is known as Smale's horseshoe. This is a very commonly found piece of nonlinear 

mappings which guarantees the existence of orbits that hop between two regions 

according to any sequence of random l's and 0"s. Any map with a horseshoe has 

dynamics which is as unpredictable as a sequence <-f coin tosses. In chapter 14 

we -hov. thai periodically perturbed gyromotion in the neighborhood of a magnetic 

file:///anablr-l


N I.- i, \ , i-..»l lr.t.l- i.' IUIIM'SIHII1!- in tin- parti* lc dynamics. Thi- ha> ilir cim^rquriin-

;h.v :!>.-!. .u. p.ulit !<• oil.Us I hat loop from side W side uf the held rrvrrs<tl accord

ing i.> M:* i.iiidom sequence The detailed structure of horseshoes )•• cxt remeh 

. tunpli-x .iud is i>nl> beginning to be understood. Horseshoes arc responsible For 

ih.io-- in both dissipative and Hamiltonia;j systems but have been stud-M mostly in 

the dissipative case. We have discovered a fascinating apparent paradox regarding 

Hamiltonian horseshoes whose resolution indicates a much more intricate structure 

for the Hamiltonian than for the dissipative case. We call the new phenomenon 

"reinsertion" because it forces the tongues of the unstable manifold to reinsert into 

other tongues an infinite number of times. It is possible that this new structure 

is responsible ior some extremely complex phenomena that have been recently ob

served by Holmes and Whitley in the transition from dissipative to Hamiltonian 

horseshoes. 

In chapter 15 we give a dynamical systems description of the idea of renormal-

ization and prove the central limit theorem using renormalization group techniques. 

Using renormalization group methods, Feigenbaum discovered a universal scaling 

constant for period-doubling cascades. He used a Cray supercomputer to calculate 

this constant to high accuracy. In section 15.4 we present a poor man's approach 

that gives the constant to within 25 percent on the back of an envelope. 

The last type of physical asymptotics that we have incorporated i:,to our the-

oietical structure is the transition from statistical mechanics to thermodynamic?--

Thi'- is perhaps the most profound aspect of our work and introduces structures 

that arc of fundamental physical significance. As discussed in chapter Ifi. we \\nxr 

file:////nxr
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discovrrr-d that the asymptotic averaging process thai o<{Ui> in the tran-mon from 

stan.-tn a! mechanics to tlic-rmodynami'-s is exactly analogous to the asymptotic a\-

""aging process that takes us from ci';onal wave theory to rays (e.g.. from quantum 

mechanic- to classical mechanics). We show that a natural sympleclic structure 

for thermodynamics arises from this asymptotic;, in exactly thr same way that the 

sympUvtic structure of Hamiltonian mechanics (that has been so fruitful in recent 

applications) arises from wave asymptotics. Our theory now allows the same pow

erful results which have caused Hamiltonian dynamics to flourish in recent years to 

be applied to statistical systems. 

The underlying statistical foundation for the new theory is the principle of 

maximum entropy. We develop several new interpretations for this principle in 

section 16.2, in which it plays exactly the same role as the principle of least action 

plays hi mechanics. Just as the principle of least action arises asymptotically from 

the method of stationary phase applied to the Feynman integral over all paths, tne 

principle of maximum entropy arises from the method of steepest descents applied 

to an integral over all probability distributions. This formulation is new and is 

expected to lead to the same benefits in statistical mechanics that are derived from 

the path integral formulation in quantum mechanics. 

The integral over paths can be done by integrating over paths with a given 

constraint and then integrating over the constraint. This leads to the action de 

fii.ed on phase space and the description of dynamics in terms of it. The integral 

over distributions may be done by integrating over distributions obeying a given 

constraint and then integrating over the constra :nt. This leads to the entropy de-
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fined oil the thermodynamic state space and the dix nption of the equal ton of M.itr 

in term- of n We obtain the wave pha.se (which î  the action j at a given point 

by introducing Lagrange multipliers that are canonical!)' conjugate to the >-pat]al 

variable— and choosing them so that the extremal action occurs at the point of in 

terest. The value of the multiplier? is the wave-vector or munirntimi conjugate in 

the position and has a value equal to the derivative of the action. This is the origin 

of the symplcctic structure of mechanics. We obtain the entropy for given values 

of the mechanical quantities by introducing Lagrange multipliers that are thermo-

dynamicajly conjugate to the mechanical variables and choosing them to make the 

maximum entropy occur at the state of interest. The value of the multiplier? is the 

derivative of the entropy with respect to the mechanical variables. This is the origin 

of the symplcctic structure of thermodynamics. The Lagrange multipliers: cause our 

path integral to be a Fourier transform and our probability integral to be a Laplace 

transform. The asymptotic evaluation of these transforms by stationary phase and 

steepest descents, respectively, leads to the Legendre transforms that are so central 

in mechanics and thermodynamics. 

A- a first application of tbe new structure of thermodynamic, w reexamine 

the classical Gibbsian theory of phase transition? in section lG.1'2. V\c endow the 

Maxwell equal area rule with a natural geometric interpretation wiltim th'1 new 

theory. It is then generalized to describe the phase transition surfact- in an arbitrary 

direction instead of only along the isothermal surface; considered by Maxwell If 

the flood of new pra^tici?! results thai arose from the .-vmplectir interprciaiion of 

Hamihoriiari mechanics i~ any indication, we can expert thai tlii- incorporation of 

http://pha.se
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th<Trnn<h ii-tinir- mi<> itn- modern frariifv.itrk will -non yield in a m " ihe r "-ignihranl 

n - u l t -
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1.2. Philosophical Approach 

What l̂  the juh uf thcurctual p*»> ^ir--' Thr u-u.il an-ucr i- that H i- I., -ui;-

ge-' nrv. physical laws- which arc then verified h\ experiment Tin- i- mdci d u li.il 

I.- cured in the great revolutions of Newtonian mechanic1-. -]»•<• i«i] and general r. 1-

ativity and quantum mechanics. Thi? i« not what most thrt retical phy-ici-i^ du 

however. They start with the fundamental law? (be '.hey quantum electrodynamics 

or some other model) and determine what behaviors these laws imply in special 

situations. Ideally, this enterprise is one of mathematical deduction, but practically 

one must often make intuitive leaps either because current mathematical technique? 

aren't powerful enough or simply because the underlying mathematical model of the 

physical situation i= inadequate. The ultimate goal? of such studies are the predic

tion and unders'acding of physical behaviors. Sometimes these come in the form of 

numbers to compare *- -th experiment, but more often one is interested in qualitative 

features like the stability of an equilibrium state or the type of evolution expected 

of a given system. At the highest level, one finds- general principles which apply to 

ms.ay situations and give reasons for the qualitative behaviors observed. 

From this viewpoint, the enterprise of theoretical physics may be thought of a> 

the creation of a succession of model*. The highest models are extremely general m 

their domains of application but arc very intractable and. because of their f>f nerality. 

give little insight into actual behavior. The lower models specialize che general 

ones to smaller clans* of situations and make more and more precise predictions 

until finally the lowest models describe a single experimental set up and predii t I In-

numerical values of individual measurements. 

http://u-u.il
http://li.il
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Tl.f ^iiiil nf thi- ilic-i- i- in examine wr> general feature- of ihi- grand hierarchy 

of model- mat i- [>hv-i<- Tin- -oris- of ques-l ion- «I> arc interested in at.- V\ hen 

<'.<><•- .i iiiniiol -irnplifv ' What make'- a mode! -li.iplih'1 How robust arc the featurc-

<>f the -itnplih'-anon'.' 

Thf fundamental theoretical structure which unifies- the models- of physics at 

dl levels- is the Hamiltouian structure, as may be seen in the beautiful compendium 

.1. indaw arid Lifshitz. i960 1981 . The fundamental equations of physics all appear 

to be Hamiltonian and many of the simplification procedures respect this Hamil-

tonian structure. The most basic circumstance which allows simplification is the 

presenre of symmetry. Emmy Norther discovered that for systems with a Hamil

tonian structure, the presence of a dimension of symmetry allows one to eliminate 

two dimensions of state space from coc-ideration. Recently, the reduction of funda-

mentai models to more specific ones has been accomplished within a Hamiltonian 

framework for many examples using the symmetries present in the underlying sit

uation 

Ma:iy times, however, we are not exactly in the symmetric situation, but we are 

close to it in some sense. The physics is described asymptotically using the diverse 

methods of perturbation theory which have come to be the mainstay of much of 

theoretical physics. One can make a case that aJJ of the actual calculations carried 

out in quantum electrodynamics, plasma physics, solid state physics and many other 

held- are expressions of divers perturbation approaches to the underlying equations. 

The other great simplifying tool is statistics. As for perturbation theory, the 

fundamental theoretical justification foi using statistical approximation- is almost 
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alwa>- lacking, and yet these te< hinque- have led ti> -DIHC of the nm-t u-clul and 

accurate theories in any domain of-tud.. 

Our purpose in tin- the-is is to examine in a new Hj;lii "-onie 'if ihe-e simplifi

cation procedures at the heart of ph\-H>. Traditionall}. physical < airillations h.nc 

been carried out in special, arbitrary coordinate sytcni!- which ma\ simplify the 

calculations but obscure the distinction between what is intrinsic to the physical 

situation and what is arbitrary. The mathematical physics community has recently 

been moving to reexpress the fundamental ideas of physics in the coordinate-free 

language of differential geometry, developed by Elie Cartan. This has led to some 

resounding successes and has identified many new structures that have direct rele

vance 10 physics. Much of the huge body of traditional work in applied mathematics 

has not yet benefitted from this new viewpoint, however. Books and journal arti

cles on perturbation methods typically describe these methods in terms of a specific 

example and little or no attempt is made to delineate what physi. a! features nf the 

model have made the method worK- The result is a morass of disconnected special 

cases. Workers in the field have develupc ' '.ntuitions as to what will work where, 

hut this ha.- not been codified into a theory. 

The underlying philosophy here is that there is no magic If a situation sim

plifies, if a problem is tractable, or if there is some effect which is UIIIMT-.II enniieli 

to he given a name, then there must be a definite physical reason for n We wi-h 

to understand these reasons. This thesis, of course, i- only a beginning in thi-

direc;ion We find the underlying geometrical 'ontent uf s,»me of tin- <entral per

turbation method- u-cd in physical situation- We rel.ne rhi- t<- ihe HamJltorii.ui 
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' - t r u r t u r e - involved, r rdu < IASSK al derivation:- and produce new r r -u l t - . To make 

t i n - work Munewhrfl self-contained, we give intuit ive . e r ^ o n * of needed background 

ni i i ihci i ia tu a! re.-ult:- We -^liow hou they fit into the p ic ture presented here wi thout 

t . io mu< h dupl ica t ion of m a t e r i a ' t ha t can ho found in s t a n d a r d reference works . 
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1.3. Guide for the Reader 

rnfiirliiiMlclv unification- of frontier materia! ln-tn difii- <iit -ubjr. i- do ::<>t 

ofti- i make for ens} reading We ha\ r tried to alievi.ve tin* pn>i,lrrn hen HI - \ei.d 

ways. Throughout the thesis, we use concept <- from differential grnnietr\ gemm'tri' 

mechanic-, and dynamical system- thc.-y Whenever «e HM a new concept from 

these fields, we give an intuitive discussion of the basic idea.-- involved and rctere M'.-

to more detailed discussions. Fortunately, this background material is becoming 

widely ''nown and used in the physics community primarily because of the existence 

of several excellent texts. 

Geometric mechanics is, beautifully presented in Abraham and Marsden. 1978 . 

[Arnold. 1978;. and [Thirring. 197?]. ] Arnold. 1978' gives the most intuitive d i -

russions, {Abraham and Marsden. 1978' is the most complete and mathematically 

precise, and IThirring, 1978J covers several additional topics like the KAN' theorem 

Both |Abraham and Marsden, 1978. and 'Thirring. 1978' begin with intro

ductions to differential geometry. An expanded version of this introduction and 

infinite-dimensional versions of the idea? are given in Abraham. Marsden. and 

Ratiu, 1983'. We give specific citations to this referent e a.- the fundamental geo

metric concepts appear. An intuitively appealing treatment of differential geoinetrv 

may also be found m [Spivak. 1979'. 

The ideas of dynamical systems tlieory are discussed in Abraham ami Marsden. 

1978;, .Arnold. 1983;. and [Guckenheiirur and Holmes. 1983. 'Cm kenhemier 

and Holmes. 1983; gives a very nice treatment of many examples in addition to 

presenting the pure tlieory. 

file:///ei.d
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Tw. ii-cful (onipi-tidunu- of \\\v vaiums peTUir'iation methods, vnih mam 

phonal r\,uiipio ;in- Ki-w.rki.ui and Cole. 1981 and Nayfeh. 1973 The asyrnp-

ti.tn - T.f w.i\c \lu-"t\ iw si'-<'ii * n'"w 'n-ainifin in V* nil ham. 1974 (oiinemin and 

MctEilirrs. l!!?7 i< a rn li M.iinc of mat hem.ui< al UIM^M into w,iv<- but is fairly 

<\ th. id: t.. iv r td wulu.m a nialliriiiAtu aj WkRrmiiid 

A unified treatment of the classical statistical physics we need is presented in 

• l.e statistical physics volume of Landau and Lifchitz. 1900 1981]. Paynes. 1983 

presents \\lt- 'Laximuiij entropy viewpoint that is central to our approach. 

Because th"re it no index, we have made the table of contents very detailed. 

We have also provided an alphabetical list of key concepts and the sections in which 

they appear in chapter 17. 

The remainder of this introduction is intended to be readable without extensive 

mathematical background. It presents the basic conceptual structure of the thesis 

and motivates Mime of the mathematical concepts. 

The body of the thesis is broken up into three parts: I) mechanics. II} waves. 

and IIIi dissipation and statistics. While one of our goals is to connect these disci

plines, for the most part the three parts niay be read independently of one another. 

Chapter 2 is "intended to introduce the geometric approach to mechanics while 

introducing our approach to non-singular perturbation theory. It gives intuitive 

d< scripti' .is of the basic concepts of differential geometry with pointers to more 

detailed reference works. We have tried to point out the key ideas of the geometric 

approach bnd to make our disci -sions easier to follow at a heuristic level than the 

reference works. 

http://Ki-w.rki.ui
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Chapter 3 rests on detailed geometric mechanic-*- ,ind will he most ac<e--ib|i lu 

reader- with this background No other sections depend on this mater il 

Chapter 4 rests ou the materia! of chapter 2 and will be must arccs-ibic to 

reader:- with some mathematical background The philosophy and KIMC results 

were presented in chapter 2 and chapter 4 may be viewed a.- ,i reference for the' 

details and methods of the approach. The results are used in sections 0.3 and 9.3 

Chapter 5 extends some standard secular perturbation methods We give an 

introduction and critique of this theory but thtf reader may wish to look at standard 

references and the paper [Kruskal. 1962] while reading this rhapter. Section 5-3 rests 

on geometric notions from chapter 4 and may be omitted by the uninterested. 

Chapter 6 is a- application of the method? of chapter 5 to gyromotion. We 

have given fairly complete details of our calculations so "hat they may be used on 

other problems. Later chapters do not depend on this one. 

Chapter 7 \$ an introduction to ihe geometry of eikonal wave theory. Extensive 

use of the symplectic geometry introduced in chapter 2 is made in this chapter 

Chapter 8 develops a Hainillonian perturbation technique for eikonal waves 

which is founded in . je geometric ideas of chapter 7 hut takes the form of an 

explicit algorithmic calculatnn. The example he proent may serve a> a model lor 

similar problems 

Chapter 9 agai- presents an explicit calculation whose theory re-t- on the 

ideas of L c-Puisson bracket-- presented in chapter 2 The first >e<t ion m.i\ be read 

independent i> of \iii-- material (though the mot i\.H I-.N n.ighl -e<m ob-c lire; dm the 

second section rest-. hiMvily on it 

file:///iii--
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Ch.»p.er 1(1 n v - „rily the rlrmeniary idea.- of chapter 2 and should In- fairly 

<-a.-y l.. read 

Chapter 11 rests on some sympiectir geometry, but the results are easily un

der-mod and may be useful in general Htuations. The proof of the main result uses 

on!> 'inear algebra and induction 

Chapter 12 may be read mi its own and serves as the background for chapter 

13. 

Chapter 14 introduces the dynamical systems concepts necessary and may be 

read independently of the rest of the thesis. It may be useful for the reader un

familiar with the idea? of chaotic dynamics LQ consult some of the more detailed 

work.-

Chapter 15 rests oc .some ideas of probability theory, dynamical systems theory, 

and Tenmmalization group theory. It may be read independently of the rest of the 

thesis but consultation of the reie.ence works listed in that section may provide 

useful background material for the reader. 

Chapter 16 makes many references to chapter 7. It also rests on the ideas of 

maximum entropy which are quickly sketched here but may be studied in detail from 

,Jayne>. 1983 . It is also necessary ro introduce many ideas from contact geometry. 

winch cb.rify many aspects ( )f thermodynamics It might be useful to look at the 

more detailed reU'tences on this material. 
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1.4. Intuitive Discussion of the Conceptual Framework 

Plasma physics is a fascinating discipline in pari because it is ai the crossroad-

of what I consider to be the three fundamental types of models in phyMcs: mechan

ics, wave theory, and statistical mechanics. Each of these area.*- gels its ri< ln-M and 

most powerful models and elementary concepts from asymptotic approximation;-

to the real physical system. It is this asymptotks which allows us to introduce 

the concepts central to simplified descriptions of physical phenomena. This thesis 

explores some amazing relations among these three seemingly disparate disciplines 

and develops a unified way of understanding the structures that make them work. 

We are trying to understand how systems simplify. The key feature of such 

systems is that they project onto a sub-piece which moves according to its own 

dynamics which is approximately independent of the exact state of the forgotten 

pieces. The interesting physics arises from the fact that the two halves are in no 

sense decoupled, and the effect of the forgotten piece is felt in the kept piece as a 

new physical effect. Each of our three main types of sjstem can undergo such a 

simplification, and together these systems span the breadth of physics. There arc 

simple dynamical systems with fast oscillatory degrees of freedom, wave systems 

in the eikona] limit of short wavelength, and chaotic systems of a large number 

of degrees of freedom in the limit in which statistics is valid. In each, we make a 

separation of scales by first introducing a foriral parameter (often only implicitly) 

which increases the separation as it vanishes, and then by doing asymptotic^ in thai 

•arameter. 
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Figure 1.1: Some links between t.h" three disciplines of mechanics, waves, and 

statistical mechanics. 
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1.4*1. T h e Analogy Between Entropy and Action 

We will forge links between these three disciplines. Lei us first state the vanoi:1-

relationships and then give intuitive examples of them. Oddly enough, in each ca.se-

the classical notation associates the letter "S 7 - with the fundamental unifying quan

tity. The relation between quantum and classical mechanics is based on the classical 

action S along a path in phase space, which also represents the quantum phase cor

responding to that path. The information entropy S of a probability distribution 

similarly gives the connection between statistical mechanics aud thermodynamics 

in the maximum entropy approach. In the asymptotic eikonal limit, we may define 

the action 5 as a function on the space of only real dynamical paths. In the case of 

a system all of whose orbits are periodic, we may define the action S as a function 

on phase space. This function is aD adiabatic invariant for slow variations of param

eters, and this constancy forces the exchange of energy between the system moving 

thp parameters and the fast periodic oscillations. This exchange causes the slow 

system to behave as if it had new pseudoforces acting on it, which are expressed 

in terms of S and are Hamiltonian. When we think of wave systems as themselves 

being dynamical systems, we can define a local wave action density. Again, thi* 

j * ad'tabatically a locally conserved quantity, which causes energy \o move around 

so as to stay constant. In the thermodynamic limit, we CAQ view the entropy a.* a 

function S on the space of only the real equilibrium distributions. Asymptotic ally. 

in the case of ergodidty, we can assign it to be the function S on the system phase 

space given by the logarithm of the volume of particle orbits When we think of 

a statistical system a? itself being a dynamical system, this entropy become;- an 
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adiahatic invariant and leads to pseudoforces Theft- are the thermodynamic forces, 

awl they lead u> a thermodynamic syrnplectU state space on which we can define 

S. and HI terms of which we get (he thermodynamic equations of state. 

Because this sequence of connections b the central unification around which this 

thesis revolves, we will now give some easily understood examples of the concepts 

involved. 

1.4.2. Adiabat ie Invar iants and Pseudo-forces 

Lorentz was first to ask the question that led to the notion of adiabatic in-

variance. He wondered how the energy of a simple harmonic oscillator varied as 

its spring constant slowly changed. It was discovered that, although the energy 

and frequency both change, their ratio remains asymptotically constant for slow 

variations. This ratio, H/u, is an adiabatic invariant foi the oscillator. A precise 

definition ot the concept of adiabatic invariance and some of its limitations are 

given in -sections 2.9 and 5.4. H/u is equal to the action of the oscillator over one 

cycle. The action of a closed orbit is the area encircled by that orbit in the {q,p) 

phase plane, It is a quite general result that this aiea is an adiabatic invariant 

for slow variations of the parameters of both linear and nonlinear oscillators. We 

show how to understand this result geometrically in section 2.9 and how to use this 

understanding to get more refined results in section 5.4. That we consider area as 

measured in the coordinates q and p is absolutely essential here. If we had instead 

coordinatized phase space using velocity rather than momentum, the area would 

have had no special significance. 
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In higher dimensions, the action of a closed loop can be defined a> 1 lie integral 

of p'tig, around the loop where we adopt the n--ual Einstein convention that repeated 

indices are summed over. This combination p'dq, therefore has a deep phvsical sig

nificance. Geometrically, the choice of individual coordinates (/, and their ronjiiRate 

p' is irrelevant and only the combination p'dq, is significant A geometric entit> 

that one ca" integrate along one-dimensional paths is called a one-form, p'dq, is 

intrinsically built into the structure of physical phase space and is therefore called 

the canonical one-Form and is usually denoted by 8. Another way to obtain the 

action of a closed loop in phase space is to find the area of a disc whose edge is the 

loop. "Area" must be defined in a ,pecial way to get an answer that is independent 

of the means used to obtain it- Applying the (generalixed) Stokes' theorem to the 

line integral of p'dq,, we see that the action can be defined as the surface integral of 

dq,dp' over the disc. It is important here to keep track of orientation. A geometric 

structure that one can integrate over two-dimensional surfaces is called a two-form. 

The standard notation uses a wedge to keep track of orientation. The two-form 

dq, A dp' is usually denoted by w and is called the symplectic form on phase space. 

It is uniquely defined from 6 and so also is intrinsic to the geometry of phase space. 

Since the evolution of a Hamiltonian system preserves the action of closed loops 

{this it pjincare's first integral invariant), the notion of area with respect to the 

symplectic structure ~J is also preserved. From the modern perspective of geometry 

introduced in Felix Klein's Erl? .ger program, a "geometry'" is defined by a math

ematical structure and the group of symmetry transformations that preserve that 

structure. For example. Riemannian geometry studies ihc concept-* that are irivari-
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ant under the isometries of a metric tensor. The geometry of the pha.M> >parc of 

HamiltoiiiHii mechanical systems is tymplcctic geometry, since it is the symplectic 

strurturr which is invariant under the canonical transformations describing timr 

evolution 

The real conceptual and computational advantage in the phenomenon of adia-

batic invariance is that we can forget about the phase of the fast degree of freedom. 

Imagine a complex, slowly moving piece apparatus (for example, one of the designs 

of Rube Goldberg). There is a small weight attached to a string that hangs out of a 

hole in the side of the machine. As the apparatus moves, the string is slowly pulled 

in and out of the hole. The part of the string that is hanging out forms a pendulum 

with the weight. The weight rapidly swings back and forth (say thousands of times 

before the string length varies appreciably). In trying to understand the operation 

of this device, one first thinks that the exact state of the machine, including the 

phase of the pendulum, will be essential in determining the time evolution. The 

idea of adiabatic invariance tells us that we only need to know the act/on of the 

pendulum (say by observing the initial amplitude of swing) and not the phase in 

order to determine the average effect on the apparatus. As the machine pulls the 

rope in. the energy of the pendulum will change so as to keep its action constant. 

It will therefore give and take energy from the rest of the machine. The pendulum 

energy looks like a function purely of string length. From inside the machine, wc 

may regard the string as attached to a nonlinear spring whose potential energy 

represents the entire pendulum energy. The oscillations have been replaced by a 

"pseuHopotential". 
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1.4.3. Symmetries and Exact Invariants 

Onr sees similar "pscudopotcntiaK" when one forget- about coordinate- HI 

system-- with symmetry. In studying a particle moving in a centra] potential, we 

may ignore the angular position of the particle, since all angle- lead to the same 

particle behavior (i.e. there is a rotational symmetry) Noether tells us that this 

symmetry leads to a conserved quantity, namely the angular momentum of the 

particle. The radial motion must behave in such a way as to ki:cp the angular 

momentum constant. The energy iu the angular direction is not constant and so 

the radial dynamics musl supply and receive the extra angular energy. This comes 

out looking like a new radial pseudopotential that gives rise to 'he centrifugal force. 

The adiabatic invariant case is exactly analogous: we forget about the fast part's 

phase: the fast part's energy must change so at" to keep the adiabatk iuvariari 

constant; this energy must come from the slow part of the system: and the net 

result is a new "pseudopotentiaT and corresponding pscudoforce acting on \hc slow 

system. We make this connection precise in section 2-9.2 and show thai these 

"forgetting operations" are part of a procedure known a.- reduction 

In going to rotating frames of reference, ihere is a chan^t to the Poison MTUC-

ture. corresponding to the Coriolis force, in addition to the change in the Hamil-

tonian In chapter 3 we give the underlying structure behind this and «.how how 

the method of variation of parameter- extends this kir .1 of change to an asymi>-

totic setting The simplification process which is applied to asymptotic systems 

with adiabatic invariants i- therefor" cluselv nmnected iu tin- one applied to -j -

tern" with e\ai I symmetries amenable to the proves- of reduction Cim-iaui- of 
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the minion which result from symmetry are codified geometrically in the notion of 

i lie nmiiicntuiH map of a group action. Thr powerful setting in which this concept 

itmkpi- general sense is discussed in sections 2.5 through 2.7. Adiabatic invariants-

arc ihc generators of asymptotic symmetries. This viewpoint is developed into a 

powerful perturbation method in chapter 5. 

1.4.4. Thermodynamic Forces 

The next connection is with thermodynamic systems. If one slowly varies 

the parameters of a thermodynamic system in equilibrium, there is again an adi-

abatically invariant quantity known as the entropy. The entropy change along a 

path in thermodynamic phase space can be defined as the integral of the one-form 

(\/T)dU -*- (p/T)dV' (where T is temperature, p is pressure, U is energy, and V is 

volume). The choice of coordinates ( l /X) and {p/T}. thermodynamically conjugate 

to [/ and V, is absolutely essential to obtaining an adiabatically invariant integral. 

As in mechanics, this canonical one-form (l/T)dU + [p/T)d\' plays a fundamental 

role in the structure of thermodynamics. The net change in entropy in a cyclic 

prores-* can be obtained by integrating the corresponding symplectic two-form 

-.• = d C / A d ( i ) + r f l ' A d ( £ ) (1.1) 

over any .wo-dimensional disc bounded by the loop representing th<- cycle in phase 

space This thermodynamic symplectic structure is discussed in section 16.7.1.2. 

Picture a slowly moving apparatus attached to a piston that compresses a gas 

confined in a cylinder. When wr first study the system, we might think that we 
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h,w»- to keep track of the detailed dynamics of every molecule of the ga.» in order 

to understand the operation of our device. The adiabatic invarianco of the entrojn 

tell*, u*.. however, that we really need only the entropy of the gas (obtained by 

initially measuring the internal energy of the gas. say) As the piston moves, the 

energy of the gas will change so as to keep the entropy constant This energy 

romes from our apparatus, and the effect of the gas is just like a nonlinear spring 

We can forget the gas by introducing a new "pseudopotential" into the dynamics 

of the machine. This pseudopotential gives rise to thermodyntunic forces. This 

then connects thermodynamic forces with adiabatic pseudoforces. A more detailed 

discussion i.f this connection is given in sections 2.9 and 5.4.4. 

1.4.5. Wave Action 

The next connection is with wave systems. First consider the example of linear 

sound waves in a closed room. The wave evolution may be expressed as a superpo

sition of room eigenmodes, each of which are purely oscillatory at a corresponding 

eigenfrequency. What happens if we excite an eigenmode and then slowly vary 

the shape of the room? In au underlying infinite-dimensional Hamiltonian phase 

space for the waves, the eigenmode's evolution describes a closed loop (since it is 

periodic). Just as in the purely mechanical case, we may define the action of the 

oscillatory wave to be the integral of the symplectic form over a disc bounded by 

this loop. For linear waves, the action is again the energy of the wave divided by 

the frequency. As we slowly vary the room, the action of the eigenrnode remains 

constant. Because the eigenfrequency typically varies as we change the room, this 



J 4.5. Wive Action 32 

forces thr wave energy to change This extra, wave energy comes from the work 

done against the wave in altering the room. 

One might think that our eigenuiode could excite other eigenmodes as we vary 

the room. As long a> the eigiMifrequencif* are distinct, this coupling is exponen

tially small in tbv- ..lowness. of room variation. For typical one-parameter room 

variations it turns out that the eigenfrequencies remain distinct. This phenomenon 

is .sometimes called *ievel repulsion" and is due to the fact that the space of two 

by two Hennitian matrices (representing the possible couplings of two modes for 

all room parameters) is 4-dimensionai, while the subspace of matrices with equal 

eigenvalues is only 2-dimensional (parameterized by the eigenvalue and the imagi

nary off-diagonal antisymmetric element}. It therfore takes two parameters to force 

a degeneracy. 

Imagine a slowly varying apparatus which, as it moves, changes the shape of 

the room containing the eigenmode. At first we might think that we need to know 

the phase of the mode to determine the evolution. Adiabatic invariance allows 

us to get by with just the wave action. The apparatus moves as if it had a new 

pseudopotential. When the wave is a light wave, the corresponding force is the 

radiation pressure. 

The same idea may be applied to quantum wave-functions in a slowly varjing 

potential. The classical limit of the wave result applied to a particle in an oscilla

tor potential gives the adiabatic invariance results for mechanical systems that we 

discussed first. A square-well potential with slowly varying width corresponds to a 

particle bouncing back and forth between a stationary and a moving wall. The adi-
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abatu invariant is the area of die rectangle described by the parl:i le in (<y-/>) spare 

(.see section 2.9.3.1). Physically the particle energy changes because the particle is 

bouncing off a moving wall and on carh bounce conies away with a different rnag 

nitude of velocity than n had going in. The statist)- al analog is a one-dimensional 

gas and the adiabatic invariance is represented by the conservation of p\"!. : he 

wave system may be understood as a gas of quanta (for electromagnetic vsf.es, a 

gas of photons), and a quantum changes energy ID bouncing off a moving wall due 

to the Doppler shift. The de Broglie relation E = h^> for a free massless quantum 

shows th^c itie action Ef^: is the number of quanta times h. 

The •'normal modes" for a free wave are infinite plane waves- These have 

inBnite action, but there is a sense in which they have a well-defined action density 

(i.e. action per unit of volume). Such a notion becomes asymptotically precise 

when we study eikonal waves, which are plane waves with slowly varying amplitude 

and wave-vector- Asymptotically, it begins to make sense to think of the energy 

and action of an eikonal wave as being made up of additive contributions from the 

different regions of space. In chapter 8 we will show how the asymptotic wave energy-

density and wave action density arise asymptotically. We obtain the evolution of 

the wave action density in time. In the presence of slowly varying potentials, the 

wave energy density varies but the wave action density evolves as a locally conserved 

quantity. The pscudo-force on the medium due to the giving and taking of wave 

energy is the pnndercmiotive force These various relations give another connection 

between our subjects. 

We havf seen that the action in Harniltonian dynamic- and the entropy in 
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therriiud\n.iiiiii systems play very analogous rules It is interesting that the.se are 

the two concepts that often Rive students tin- most trouble when learning mechanics 

and thermodynamic. Doth are adiabatic invariants under slow variations of the 

parameters of a system. Because of this, they both give rise to the pseudoforces that 

are a characteristic consequence of eliminating degrees of freedom. They are both 

intimately related to a geometrical symplectic structure on the corresponding phase 

spaces The action motivates us to introduce canonicajjy conjugate momentum 

variables to the configuration space variables of a mechanical system. The entropy 

motivates us to introduce chermodynamicaJIy cocjugate variables to the mechanical 

observables (like energy, volume, particle number, etc.) of a thermodynamic system. 

1.4.6. Action, En t ropy and Asymptotics 

We know, however, that both classical mechanics and thermodynamics arc 

asymptotic theories that are limiting approximations to quantum mechanics and 

statistical mechanics respectively. Can we understand the geometrical structure of 

these limiting theories as arising from the asymptotic process? Do the key quan

tities: action and entropy, have any natural meaning in the detailed underlying 

theories? The answers to both questions are resoundingly affirmative and much of 

this thesis is. devoted to ferreting them out. The essential idea is that quantum 

mechanics associates to every path a wave amplitude whose phase is the action of 

that path. This \cry genera! action agrees with the classical mechanical action on 

the paths that represent real classical motions. These paths are defined asymptot

ically via the method of stationary phase and satisfy' the principle of least action. 
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Statistical mechanics (a.- wc formulate it here) associates a weight to each probabil

ity distribution This is an exponential whose exponent is the information entropy 

of the probability distribution and is defined at - Jp logp dx. This, very general 

entropy agrees with the thermodynamic citropy on the distributions that represent 

real equilibrium thermodynamic states. These distributions are defined asymptot

ically via the method of steepest -escents and satisfy the principle of maximum 

entropy. 

1.4.7. Steepest Descents, Statlcnary Phase, and Averaging 

The two main mathematical theorems which allow the asymptotic simplifica

tion are the method of stationary phase for the oscillatory and wave systems, and 

the method of steepest descents for the statistical systems. These methods connect 

line integrals in the complex plane of functions with an asymptotic parameter, to 

expressions that asymptotically depend only on the function in the neighborhood 

of certain special points. Dependence on the full details is reduced to dependence 

on only certain special features. Where does the extra eliminated information go? 

Its contribution is to things that have no long-term effect on the degrees of free

dom we are interested in. ID each of the domains studied here, we perform some 

kind of averaging that eliminates the features which have no long-term contribu

tion. Physically, we are often interested m the interactions of our system with other 

systems (like ourselves) that respond only to these averages and so they are really 

the quantities of interest. The only way a fast degree of freedom can contribute is 

for it to have a long-term effect. This can come about only if its many contributions 
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add coherently Tin;- in tnni. ca;i happen if the f t degrees of fr.vdwn repeatedlv 

cuino hark close to the same slate and MJ give a net contribution to the slow scale 

behavior In thai case, our system ha.- an approximate symmetry that maps one 

fast excursion to the next one. 

1.4.7.1. Resonance 

The regions of phase space where fast contributions add coherently are called 

re.sonanre.s in oscillatory systems and correlations in statistical ones. Long-term 

effects are represented by phenomena whose frequency lies in a region near zero (and 

with appropriate scaling, the width of this region approaches zero in the asymototic 

limit, leading to the omnipresent delta-functions in frequency). Nonlinearitie* i 

make use of rationally related frequencies to create near-zero frequency effects (the 

dynamics is then defined on tori whose orbits do not cover their surfaces densely); 

these effects are known as resonant interactions. One can even get them linearly 

if it is possible to simply add the frequencies to get zero (since then there is an 

oscillatory coordinate with zero frequency}. These resonant effects are responsible 

for most of our knowledge of phenomena on time scales smaller than the one on 

which we normally operate (eg. spectroscopy in atoms, nuclei, particles, etc.). 
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1.4.8. The Key Examples in Mechanics, Waves, and Statistics 

To give hearings, let u- list some of the key example1- wr-o-" feature- exem

plify the idea? we wish to explore. There is overlap in the technique*- of the three 

domai.is (and it is this overlap that we are particularly interested in), hut roughly 

most models can be categorized as being one of the three types In mechanics 

we have systems with exact symmetries, such as a planar particle in a rotation-

ally symmetric potential, to which we can apply INoether's theorem. We also have 

systems with approximate symmetries to which the method of averaging. Lie trans

forms, Kruskal's method, and other perturbation techniques we shall discuss can 

be applied. Exan.ples include: gyromotion, oscillation center motion, osciHatonly 

stabilized systems, and the interesting variety of systems with adi.ibatic invariants 

In wave theory, we have all the situations with short wavelength waves, includ

ing plasma waves, propagation of light rays, elastic waves, quantum mechanics, and 

the various nonlinear plasma and fluid waves. The methods of analysis include the 

classical WKB tLcory. its geometric extension by Maslov to handle caustio. and its 

extension to nonlinear waves due to Whit bam 

There arc two types of statistical models v , u i tvpe i-s concerned wivh equi

librium systems. This includes models of thermodynamics tiding either the maxi

mum entropy formalism or KLincbiu's approach via the central limit theorem Tins 

type alsr includes Brownian motion and fluctuation theory which we relate to the 

^normalisation group The other type of model studies non-equilibrium situation-

These include the vast majority of pi^ma systems The particular mod**!- of in

terest here are; the BBtiKY hierarchy Bogoliubm '- derivation of :he Bolt /maun 



equation, tli'- Hii<liiAtK»n-disMp.-uu>i] theorem the Onsagor relations, and the tech

nique- uxed in Landau damping and quasilinear-theory. Haniiltonian structures 

are lurkiji" behind virtually every asprrt of the physics of these systems and will 

therefore be a prime consideration in our exploration. 

1.4-9. Mechanical Systems 

The original example of a Hamiltonian system is given by the dynamics of point 

particles in a potential. In plasma physics, one is interested in charged particles and 

their Hamiltonian dynamics: in electric and magnetic fields. The t L ree nontrivial 

but tractable situations one often needs to study are: the gyration of a particle 

in a magnetic field, the motion of a particle in an electromagnetic wave, and the 

scattering of particles off one another (usually all three are present a* the same 

time but certain aspects dominate the particle's behavior). When there are exact 

symmetries, we may simplify the system by using reduction as we have discussed-

Usually, however, systems have only approximate symmetries. 

1.4.10. Mechanical Syetems: Separa t ion of T ime Scales 

The asympiotics in particle mechanics usually arises from a separation of time 

scales One set of degrees of freedom may have dynamics that is considerably faster 

than the others In mis rase, the effect of the f<i*t degrees of freedom on the slow 

onct- tends to be close to the average effect and the effect of the slow degrees of 

freedom on the fast ones tends to be almost as if we were holding them fixed. IF 

we introduce asymptotic*, we may obtain in asymptotic expansion a model of our 
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-v-tcm whi'h has completely -t'par.iK'd UK' tliiie-srjilc- r>f tin' -Inw ,tml fa_-t degree-

of freedum We may often underlain! t hi~ .separatum ;i> being due tu redut im:i b\ 

3". approximate symmetry (which gels bettor and better asymptotic alh A- we 

have di-cussed. \%? then get a model of the -luw -v-tem whu-o ihtitinuc- i- .-JiiT'-ii 

bj the presence of new psoudopotrntials in the Hatiiiltoin.tii and niagiirtK tf THIS in 

the Poisson brackets. These remains of the forgot ion f«is-t degrees of frcrdoni gr.e 

rise to the new physic- introduced b_. asymptotic*. 

1.4.10.1. Gyromotion and Aeymptotics 

In the case of a particle in a magnetic field, we let the asymptotic? move the 

particle faster and faster around its gyration loops in comparison to the rate of 

motion of the center of these loops. The asymptotic theory of guiding centers. 

which forgets the fast gyromotion and describes only the slow drift of the loops, 

has the new concepts of: E x B drift, curvature drift, polarization drift, magnetic 

moment as an adiabatic invariant, bouncing from a mac*--tic mirror, etc. None of 

these concepts makes precise sense for the physical system as it appear- in nature. 

Nonetheless, they have been extremely important in the design and understanding 

of plasma devices and represent truly new physical notions in the given setting To 

make the model of these useful concepts precise, we must introduce asymptotic-

Note that this is far more significant than the usual idea of perturhation theory a.-

givici better and better approximations to some underlying exact model. While it 

doeF that. I believe its real important e i- in the conceptual advance- it allow- one 

to make n understanding and utilizing physics. 
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On-1 often sees (particularly in older literature) the stated goal of perturbation 

theory a.- convergent series and the cuncoinitanl lament that most physically use

ful -eric- Are only asymptotic From the conceptual viewpoint we emphasize here. 

cnii\ergeii( c is irrelevant. We never use more than a finite number of terms of our 

verie- [u-ually the hr-t order terms suffice to give the new physics), the underly

ing model equations we are approximating are based on concepts that themselves 

are only asymptotic, and convergence is a complex analytic concept requiring ap

parently physically irrelevant complex structures in our models. Usually we only 

require our transformations to be smooth and a smooth, non-analytic transforma

tion can destroy the covergence of most series {a classical construction due to Borel 

uses C^-bump functions to construct a smooth function whose derivatives at a 

given point are equal to the elements of any arbitrary sequence of real numbers; 

using such a function to change coordinates will convert an analytic function whose 

first derivative is non-zero into one whose derivatives are any desired sequence; we 

need only choose one which grows fast enough to prevent convergence of the Taylor 

expansion at any radius). What I feel is important for theoretical understanding 

is not the actual numbers but rather the physical tendencies. Of course in appli

cations one wants numbers, but asymptotic series often yield a given accuracy of 

.- pproximation to the exact solution with many fewer terms than any corresponding 

convergent series. 
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1.4.10.2. Oscillation Centers and Ponderomotive Forces 

I I th*- cas-e "f a charged particle moving under the mHiHUH v of a high-frrquei" > 

wave who-e arnpliludr slowly varies in *jrace. wr introduce ihe asyrnpiutj' mri/ep! 

of the osci!Iatic:i center. As the wave >scillates. the particle fee!? a force fir-t in 

one direction and then in the other, causing it to oscillate as well If the wav•• 

were spatially uniform, then the excursions to each Fide would exactly cartel each 

other, yielding no net average effect. In a non-uniform wav^, the particle feci:- a 

bigger force in the region of larger amplitude and .so is pushed more away from 

such regions than into them. The average push behaves 1'ke a force on the particle 

pushing it away from higher wave amplitude regions. The reduced description gives 

the dynamics of the center o r oscillation and includes a remnant of the fast motion 

through this so-called ponderomotive force. Both the guidim. center equations and 

the ponderomotive equations are Hamiltonian. 

The second chapter shows how to use reduction by a circle symmetry in con

junction with the method of averaging, to obtain the E x B drift dynamics as 

a Hamiltonian system. The higher order theory, based on the ideas of Kruskal. 

is dicussed in chapter o, and the relation to the pioneering work on the Hamil-

toman structure of gyromotion due to Robert Little ohn is disras-cd m chapter 

6. Many other systems fit into tlie setting of these asymptotic method-, and the 

physical concepts that come out of the asymptotic- can be quite striking Sy-tein-

with constraint- can exhibit phenomena analogous to pondcronumve effect-, due t<< 

oscillations in the constrained direction One nia\ understand the o-t i!Uter> -ta-

bilization of -ysteni- like the -hakmg inverted pendulum the shaking inverted < up 
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of thud, or the r f stabilized unstable MHD modes, a,- the effect of the asymptotic 

p^-eudoforces. 

1.4.10.3. Geometr ic Pe / tu rba t ion Theory 

To make these notions pm ise. we have developed a systematic geometric frame-

uork for a.-ymptotology based on notions from the mathematical theory of jets. 

Because we are interested in systems whose phase spaces are manifolds and we par

ticularly want to study the asymptotic behavior of geometrically intricate Lie group 

symmetries, we develop the various perturbation theories in the coordinate-free lan

guage of modern differential geometry. While often useful (particularly in explicit 

calculations), coordinates are unphysical and often obscure the underlying content 

of physical theories The movement in the mathematical physics community to re-

express the fundamental physical notions without arbitrary coordinate systems has 

been very successful in mechanics and has succeeded in dramatically simplifying 

some of the classical results (eg. Liouville's theorem, Noether's theorem, Darboux's 

theorem, action-angle variables, etc.). clarifying the essential structure of the theory 

(especially the extreme importance of symplectic geometry), and obtaining many 

new ideiis and results (eg. the extension to infinite dimensions. Noethcr's theorem 

for arbitrary Lie groups, the KAM theorem, chaotic dynamics, etc.). 

Our formulation of perturbation theory is in the spirit of this movement, and 

so we summarize some of its key ideas in chapter 2. In that chapter we also give the 

iioii-Hamiltotiiaii aspert- of this geometric approach to non-secular perturbation 

theory and sketch the Hamihonian results. The Hamihonian results are given .n 
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dcta.il in ihapter -J TIHTC we ••hnv, that the riun-M-ciil.ir perturbation dwiaimc-

is it-i-lf Haiiiillunian when the un«ivrlyIUR dynamu- î  The Poison bracket h.v 

a somewhat unexpected form, in that it pair.- thi- lowe-i order variable with the 

highest order, the next to lowest with the next to highest and ><> on We <-how 

that n is. the natural structure in five different ways, each of which sheds a different 

light on the relationship between the perturbed and unperturbed system* The 

relationship between symmetry and perturbations is also given in that chapter, and 

the operation of performing reduction i.s shown to commute with the operation of 

performing a perturbative analysis. Chapter 5 uses the previous non-secular results 

to do secular perturbation theory. We develop a new technique based on these ideas 

which is simpler to apply in practice. Its application to guiding center moticn is 

given in chapter 6. 

The limitations of ..his and all general secular perturbation theories dc not 

appear to be well known in the physics community. We therefore give examples 

and explanations of why the time of validity of this and other theories is only of 

order l / ( . even though the accuracy over this time can be to all orders in c We ais< 

discus* the case of m;iny fast frequencies and the concomitant resonances Finally. 

we end chapter 5 with the case in which the fast motion is ergodic on the energy 

surface and begin to make the connections with statistical mechanics. 

http://dcta.il


i A 11 A v,r.igu\s J" .Vrfri-nrdJ Sy*tvm* • } • ! 

1.4.11. Averaging in Statistical Sybiems 

rticrr î  ,111 infrei-tuig way in which the need to average over an intermedi

al*' -><ale become- apparent in both the statistical and wave systems Consider the 

(•oiiiiruin ;ind very ii-c'\il result that says that independent measurements of a defi

nite qua. ti'v represent alive of a complex system will be distributed a* a Gaussian. 

The very general argument for this assumes only that small errors from the many 

parts of the system will contribute additively to the error in the measured quantity. 

Regardless of the how the individual errors a_.e distributed (under some very weak 

constraints), the central limit theorem tells us that their sum will be distributed as 

a Gaussian. Let us try to understand how one applies this .atement operationally 

and so see that a specific type of averaging is required to make sense of the no

tion of Gaussianity. Let us consider an actual experiment where we have made, 

say, 1000 measurements of some quantity (so as not to obscure the argument, let 

us assume that the results of our measurement are precise real numbers). Taken 

directly, our measured probability distribution is a sun: of 6-functions, one for each 

measured value (no Gaussianity here!). In practice, wo "bin" the measurements, 

i.e. we make a histogram of the number o f measurements that fall into each of a. 

set of intervals that partition the space of measurement , -alues. If we make the bins 

too small, we get the problem of the 6-dis.ributious. i.e. widely spaced bins with 

one measurement each. If we make the bins too large, then all measurements fall 

into a single bin. We see something that approximates a Gaussian only if we bin 

on an intermediate scale. This is defined using an asymptotic parameter given by 

the number of measurements. 
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•.- the number nl measurement-- got- larger. we tan make our Inn- get Mnalh-r 

ami ii i- in this a>> mptotic souse thai we s,i\ our di-tnl.utiim bei om<- I 1.111—tan If 

we make .V measurement:-, it is easy to see that the mean -pa< nig beiuei n me.L-un'd 

value:- goes as l/.V. If we bin on a scale that goes in zero more ••lowU than thi-. 

like 1 % .V. then asymptotically there v.ill be an infinite number of moaMimwtu

rn each bin. The law of large numbers tells us that asymptotically the number of 

measurements falling imo each bin will agree (with probability one) with the number 

expected from the Gaussian distribution. Furthermore, since the width of the bins is 

going to zero, we get arbitrarily fane accuracy. Also note that, while with any given 

number of measurements the observed distribution may be changed by altering 

the binning, as long as the binning is on an intermediate scale, the asymptotic* 

is bin independent. Furthermore, the range of bin choice? that yield values close 

to the asymptotic result gets wider as ,V gets larger. Another way to think of 

the asymptotic* is in terms of the convergence of the delta-function distributions 

representing the measurements, to the smooth asymptotic distribution From this 

perspective, ".he binning procedure define1- a topology on the -<pace of distributions 

It is only in this asymptotic sense that the whole notion of a probability den

sity makes physical sense at all. There arc many other situations in whiih ,i similar 

asymptoti. averaging is behind the models. In plasma ph\sics \u- define .i distribu

tion function on phase spate In. averaging the Klirmmtm K'II r-disl rituit mn !o obtain 

the smuoth Vlasm distribution {to. we Km the particles). We make precise -nix-

of tlic manipulation- we are allowed to perform on this distribution onh b\ wii-n 1 

ermg an asyrnptolics which (hops the particle- into finer and hm-rpiete- Mtmt.n 
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,i\iTAp](i« i<- behind fluid descriptions and niarrosi opir electrodynannc-. In each 

• >f thf-c -iilijid- v.c ufifii roitie acruss ^-distributed quantities (OR. point masses 

ami charge--. These are to be interpreted in terms of the asymptotic;- The real 

situation is iiol at the asymptotic limit, but the objert of interest is small on the 

large scdlc (and we ^cale it so it get? ever smaller asymptotically) and ha* finite 

mass (or charge, etc.) on [be small. We then develop consistent rules that are 

asymptotically valid and these lead to the familiar calculus of 6-functions and other 

singular distributions Similarly, real fluid velocity tunctions (which are the result 

of an average over a microscopically small region with a large number of particles) 

cannot validly have wavelengths shorter than or on the molecular scale. We model 

the velocity evolution by nonlinear partial differential equations, however, that can 

{and do) excite arbitrarily short wavelength Fourier components. If these ever be

come important, the separation of scales fundamental to our model has broken down 

and the model becomes invalid. 

1.4-11-1. Ma tched Asymptotlca 

A fundamental technique of singular perturbation theory is to insert models 

which include the physics of the small scale in regions of breakdown. For example, 

in ver\ high shear regions of a fluid, on<- need to include more kinetic effects than 

are repr'-scnted in the ,-implc Navier-Stokes model. The two important cases arise 

when these singular regions (with asymptotically small scale physics) are. 1) locU-

i/ed and get --mailer with the asvmptotus a.nd 2) spread o\er open regions but have 

a local hmni.£e[ieit> In the first case, one inserts a so-called boundary layer, which 
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is infinite on \h>- small -tale, but infinitesimal on the large '-rale (1 e it' si/e -t ale-

a^ymploticalU between the inner and tl,e outer -rale] One then perform- the mix r 

and outer analyi-o separately, with the boundary condition arising from the man h-

ing of the asvmpotich of the inner region at infinity with the >fiter region at zero 

The case where the small scale effect? are not localized, but are huiuc, rene.iu-. le;id-

to the eikoual techniques we shall discuss next, m which we have slowly modulated 

fast behavior which is regular OD the sniaJI scale at each large scale point (eg. local 

plane waves}. 

1.4.12. Averaging end Local Fourier Transforms 

The idea of averaging over an intermediate scale that arose in trying to under

stand the notion of probability density also arises in trying to define the frequency 

or wavelength of a slowly varying wave. When we talk about a wave having a cer

tain wavelength or a sound having a certain frequency, we are always talking about 

a loo} Fourier tran: form No sound lasts forever and we usually are not interested 

in the properties of a wave in the next galaxy. What do we mean by a local Fourif r 

transform" Operationally we usually work with the Fourier UAtisform of a signal 

multiplied by a window function. 

FU.^-js J fU-r)W(r), -•,!-. .1.2) 

We might have a spectrum analyser that works on a finite segment of the signal 

(and smoothly damps the on and off "dges of the window to minimize spurious edge 

effects) As in the caic of binning, the shape and si/'1 of the window funi tio:i H'(r ) 
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affect- the rt-Miitins ltn.il Fourier trari-furin. If we make the window too wide, we 

i,. i cuninlnMiDii'- from part- of the signal we aren't intersted in (eg. the .spectrum 

of the ruw- r-roadcaM after the renrert) If we make the window too small, we 

don l sample enough wavelengths (perhaps not even one) to get a good fix on the 

frequent y , turning the radio on and off quickly results in a click with all frequencies). 

If we are trying to say that a frequency (or frequencies) is present at a given time 

(a> in describing a piece of music in music notation), th-n that frequency should be 

distinctive To make precise the manipulations allowed, we embed the given wave in 

an asymptotic family, which makes the frequency of interest rn^.e and more distinct 

as a parameter approaches its limit. We make the number of wavelengths occuring 

in a region of significant wavelength change become infinite by making the scale 

length longer for fixed wavelength, the wavelength shorter for fixed scale length, or 

both. We introduce a short scale given by the wavelength and a long scale given by 

the scale length den. --d so that asymptotically their ratio vanishes. The operations 

and concepts we are allowed to use in describing our wave are those which make 

asymptotic sense. As the parameter approaches its limiting value, the domain of 

validity of such asymptotic concepts gets larger and larger. For any real situation, 

oue must make sure that one doesn't have physics which violates the separation of 

scales and thus the validity of this kind of model. 

The local Fourier transform above can be made precise asymptotically. We let 

the window function H" scale with the asympotics between the fast and slow scales. 

On the slow scale it looks nu re and more like a e-function and in the asymptotic 

caicuiu- we may treat it a> such. On the fast scale it looks more and more like 

http://ltn.il
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a constant and so the local Found transform asymptotic ally look- Incalh like the 

Fourier transform whose useful relations then carry over to the a.-ympt.uic ralrulu-

1.4.12.1. Scales in Differentiation 

Many o:her areas of study have this same large vs. smaii scale dichotomy. 

Robert Littlejohn suggested the example of optimal algorithms for numerical dif

ferentiation (see [Stoer and Burlirsh, 1980]). Assume we have some function repre

sented n a computer as an algorithm that can calculate values to some ao uracy. 

What is the optimal way to calculate its derivative at a point numerically'* We 

can evaluate the function at two nearby points, take the difference and divide by 

the distance between the points. How do we choose this distance? If it is too 

wide then we won't get the derivative at the point of interest, but rather something 

averaged over a region in which the function may have signifcant change. If it is 

too small, then the division by & small number blow up the errors until they are 

arbitrarily large. Given some criterion oi goodness in these two respects, there is an 

optimal distance. We identify- the asymptotic limit with increasing the numerii a! 

accuracy of the calculation. If wt take the distance between the points of evaluation 

to shrink on an intermediate scale (i.e. they becume mfiuitely close as far a- the 

variation of the funriion is concerned, but are far enough apart that the division 

algorithm hi < omes infinitely accurate asymptotically) then in the limit we get the 

actual derivative. This idci may even be used to define the ilenv-wiw (and I*- es

sentially the .same as. the mathematical definition, given that real- -.re defined <v-

lirnits of rational? and th*' arithmetic np.Tation- are drhned in tern:-- of the precis 
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operations on rational*). The ver\ same issues are relevant in any physical situation 

in which v.*- lake a derivative, and this kind of approximator n is almost always what 

we really mean (eg. the strain is tbe derivative of the displacement in elasticity, 

but displacement as a smooth function is an asymptotic idea as the molecules of 

material become more and more numerous). 

1.4.13. Symplectic Asymptot ics in Thermodynamics and Mechanics 

The last part of the thesis discusses the relationship between eikonal wave 

asymptotics and the particle number asymptotics of statistical mec! anics. Both 

theories reduce to asymptotic theories with natural symplectic structures: classical 

mechanics in the case of waves, and thermodynamics in the case of statistical me-

chaaics. The description of a state is given by a submanifold of these asymptotic 

state spaces in both cases. It turns out that this submanifold of states always has 

a very special relationship with the symplectic structure (the symplectic form ac

tually vanishes when restricted to the submanifold). Such submanifolds are called 

Lagrangian submanifolds and give rise to a rich theory (see section 7.1.4). The 

role of the Fourier transform in wave theories is played by the Laplace transform 

in statistical mechanics. The simplification provided by the method of stationary 

phase in wave mechanics is provided by the method of steepest descents in statistical 

mechanics. The rol.- of the action is played by the entropy. Canonical!}' conjugat.-

variables correspond to thermodynamically conjugate variables. The analog of the 

Heisenbcrg uncertainty principle in the asymptotic limit is the fact that the disper

sion tensors of thermodynainically conjugate variables are in\crses of each other. 
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Non-degrneraLe critical point? give the rays in vr mechanic^ and the <ia\ih«-ian:> 

in statistical mechanics. 

Heisenberg. and Fourier before him prevent us from locat ing states in i.k 

space. But. by letting k go to infinity, we can make the relative dispersions in both 

x and k go to zero (by relative dispersion in k we mean &k/k where Afc is the 

absolute dispersion}. So by rescaling (i.e. going to slow variables) we get states 

whose local Fourier transform i-; asymptotically a c-function in phase space. 

Given a definite mean energy U (or any other extensive quantity from the un

derlying mechanical system) the maximum entropy formalism gives an exponential 

distribution parameterized by the conjugate variable {inverse temperature 0 in the 

case of energy)- A definite temperature corresponds to a (canonical) distribution 

of energies. A definite energy corresponds to a distribution of temperatures. We 

may use Bayesian statistics to see that the temperature and energy distributions 

are related by essentially a Laplace transform. The analog of Heisenberg's principle 

says that Wv* cannot localize a distribut :on in U, $ space. If we let U go to infinity, 

however, we can make both relative dispersions go to zero. By rescaling, we get an 

asymptotic delta-function on thermodynamic phase space. 

Eikonal waves have fc's at each x that fit together into a Lagrangian submani-

fold. This manifold is locally the graph of the differential of wave phase, which for 

mechanical systems is the ac'.on. If we view k as the base coordinate, this manifold 

is the graph of the differential of a function of k that is the Legendre transform 

of the phase. This Legendre transform results from applying stationary phase to 

the Fourier transform of our eikonal wave Asymptotically wo obtain the LeRen-



1.4.13 Syniplcctic Asymptotic* hi ThiTinutlyiinmics and Mechanics 52 

dre relation between function? of T and of k because only the stationary points 

contribute. 

Tlir state of an equilibrium statistical mechanical system is restricted to lie in 

a Lagrangian submanifold in thermodynamic state space. For simplicity, let us just 

consider (£'. d) space {where we have introduced the inverse temperature 8 = 1/T). 

This manifold is locally the graph of the differential of the entropy 5 as a function 

of U. In other words, only those points in (C/,/3) space which satisfy 

» = m (I-3' 
correspond to thermodynamic states. To write this as the graph of the differen

tial of a function of 0, we again introduce the Legendrc transform. This Legendre 

transform results from applying steepest descents to the Laplace transform of our 

distribution function. Again only stationary points contribute asymptotically. The 

usual Legendre transforms of thermodynamics are of the energy instead of the en

tropy. These give the Helmholz and Gibbs free energies and the enthalpy. They arise 

from taking the entropy instead of the energy as the observable extensive variable 

in phase space. The two pictures are related to a large one containing the exten

sive and conjugate intensive variables and the entropy. This has a natural contact 

structure given by the first law of thermodynamics (conservation of energy). The 

equation of state is a Legendre submanifold with respect to t h r contact structure 

and turns into a Lagrangian submanifold when we project onto either of the natural 

symplcrtic thermodynamic state spaces. 

We may understand the relation between the underlying infinite dimensional 

wave and probability density spaces and the resulting symplectic phase and ther-
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linn \ nainic spares heller using a theorem about Lagrangian manifold- The detail"-

of tins theory arc given in section 1G.7.3. Wo arc given a fibration of one manifold 

over another (i.e. a projection so that llie iii''er?c images of points all look th< 

same) and a function 5 on the first manifold. The graph of the differential dS is A 

Lagrangian submauifold of the cotangent bundle of the first manifold The push-

forward of this submanifold to the cotangent bundle of the second manifold consist:-, 

of solutions to a constrained variational principle, that is. it U the push-foi *ard 

of extrema of 5 restricted to each of the fibers. From a more general result, one 

may show that this resulting pushforward is Lagrangian iff all of S's critical points 

are non-degenerate (i.e. 62S is invertible). The more general formulation is1 if we 

are given a map from one space to another one. then a Lagrangian submanifold of 

the cotangent bundle of the first space pushes forward to a Lagrangian subman

ifold in the cotangent bundle of the second space if and only if it intersects the 

pull back of the second cotangent bundle transversally. In the case of a ribiation 

and a Lagrangian submanifold given by the graph of the differential of a function, 

the extrema of the function restricted to each fiber represent the intersection with 

the pull-back and so push forward to a Lagraugian submanifold (non-degeneracy 

corresponds here to transversal intersection). For the case of waves, we consider the 

space of paths originating on some source region. The image space is l)?1 and the 

projection sends a path to its final endpoint. The fiber over a point in W' consists 

of all paths that end at that point. For the fun'uon 5 on path spare, we take 

the action along each path. In the Fey 11 man path integral formalism, tin*- function 

is the phase associated with each path. The differential dS define-- a Lagrangian 



1.4 I'S >wnpletti< Asymptotic- in Thermodynamic* nui) Mrrhanirs 54 

-ubmamfold in th< cotangent bundle of path spare, Doing thf Frynman integral 

p\\r> w- a wave on 3?' whose phase is determined at each point by stationary phase 

in be that of the paths of extremal action, when- we consider variations restricted 

to the fiber (i c lo path? that end ai the point of interest). This is exactly the 

push forward of the Lagrangian subinanifold dS and give? the Lagrangian subman

ifold in the space of ( J . k)'s (i.e.. the cotangent bundle of 5R3) which represents an 

eikonal wave. For statistical mechanics, our first space is the space of probability 

distributions on phase space. The entropy of a distribution (defined by the integral 

of —p log p) is a function on this space. The map to a space of observables given by 

the mean value is a fibration. The maximum entropy formalism says we extremize 

the entropy on the fiber (i.e., all distributions with the given mean values) and 

the theorem says that this determines a Lagrangian submanifold in the cotangent 

bundle of the observables (i.e. thermodynamic state space). 

In wave dynamics, we start with a theory of arbitrary waves, and specialize it 

to the important special case of eikonal waves. To make the ideas of this special

ization precise, we introduce an eikoual parameter that specifies the separation of 

scales between the local wavelength and its slow variation. We may either think 

of the wavelength going to zero for given scale length, or (as I prefer, since the 

actual wavelength often has physics in it) the scak length going to infinity for given 

wavelength The waves we want to study the dynamics of aie viewed as asymptotic 

families and we utilize the asympt otology to introduce new physical concepts- which 

apply only approximately to the real waves, but show the tendency of the behavior 

a- the separation of scales becomes greater. The key simplifying idea in the calculus 
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of asymptotir waves is the method of stationary phase. Integrals (such a.- those in 

thr description of wave propagation', which really depend on the entire state of the 

wave, asymptotically depend on the state only in thr local neighborhood (if a point 

The key asymptot'<" information about the wave at a point is the wave-vector k and 

we obtain .•ays" in (k. r) space, to which the dependency of a portion of a wave is 

restricted asymptotically. This is a notion which is precisely defined by the spatial 

Fourier transform in the case of plane waves, but that h^s only asymptotic meaning 

for our eikonal waves. The asymptotic local Fourier transform makes precise the 

notion of a wave whose wave-vector spectrum depends on x. 
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1.5. A Hundred Fur ther Questions, Conjectures, and Suggestions 

Arid time for all the works and days of hand*-

That lift and drop a question on your plate; 

Time for you and fi'me for me. 

And time yet for a hundred indecisions. 

And for a hundred visions and revisions, 

Before the taking of a toast and tea.. 

- from The Love Song of J. Alfred Prufrock by T. S. Eliot 

This section presents a number of questions and suggestions for further work 

related to the topics covered in this thesis. Some of them appear to be fairly 

straightforward and some appear to be quite difficult. They are presented in the 

order the subjects appear in the thesis and we make reference to the relevant sections 

for each question. 1. Answer the question posed in section 2.1: Does the KdV 

Poisson bracket naturally arise from the one for the Boussinesq equations? 

2. Is there a natural way of working directly with the germs of paths, and can 

one use this to get information on exponentially small effects in the perturbation 

parameter c (such as tunneling)? (section 2.3.2) 

3 . Does Newton's approach to centrifugal force, outlined in section 2.6.3, 

extend to any other situation?? 

4. Find physical systems that utilize the KKS symplectic structures on the 

spaces of measured loops and measured Lagrangian submanifolds introduced in 

section 2.7.10 (see for example the eikonal wave systems discussed in chapter 9). 

5. Vse the symplerlir structure on some of the coadjoint orbits of the group of 
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i-yn p]pclomorphism> not discussed in section 2.7.11) {eg some -4 the "water-baf;" 

models in plaMiia phyMc:- naturalh live in tl'rse orbit:-). 

6. Apply the J-jet strut urea of chapter 2 to a variety of problem.--

7. Can one exteud the Arnold stability method from fixed point1- tti peii-

odic orbite (or even orbits which limit on compact objects such as tori) by adding 

Casimirs to make the Hamiltonian quadratically maximal or minimal on the orbit 

in question? 

8- Richard Montgomery has shown that there is a natural Poisson structure 

on the space of 2-jets of a Poisson manifold (see section 4.8.6.5).The construction 

given in section 2.8.1 "explains" the fact that the linearization of a symplcctic 

Hamiltonian system about a fixed point is Harniltonian. Can wr apply the same 

construction to linearize a Poisson Hamiltonian system about a fixed point? [ To 

linearize at a point in a symplectic leaf, one need only add Casimirs to eliminate 

any linear piece in the Hamiltoiiian, take the Poisson structure at the fixed point 

and the quadratic piece of the Hamiltonian. To see that there aie problems near 

bones, ju*t consider the Lie Poisson bracket on the dual of the Lie algebra of the 

rotation group. This Poisson structure vanishes at the origin, yet the linearized 

d>namics can be non-trivial. The approach suggested here via the jet bracket- may 

give a solution even at the bones.] 

9. Apply the linearized structures of section 2.8.1 and the previous- question 

to any of the numerous physical systems in which one linearize* about a fixed point 

(eg. the linearized Vl<s.sov equation about thermal equilibrium. linear wave theun 

in fluid mechanic or elasticity, linear surface wave:-. et< .). 
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10. Apph ilir linearized Haniiltonian structure about a given orbit (a? opposed 

to a fixed point) described in ruction '2.8.] to physical situations (eg. study the linear 

evolution of small perturbations about a nonlinear wave solutioD. Jerry Marsden is 

applying this to general relativity). 

11 . Tse tlir same techniques as in the previous question and section 2.8.1 

to understand the Hamiltonian nature of the lift of Hamiltonian dynamics to the 

symplectic f*.ime bundle which has arisen in Robert Littlejohn's and Yukkei Hui's 

work on extending coherent s:ates by including metaplectic corrections (see also 

section 7.1.3.2). 

12. As in section 2.8-1, extend the previous four questions to J th order struc

tures (as opposed to just linearizing) and apply to examples where higher order 

effects are important. 

13. Use the approach to oscUlatory stabilization discussed in section 2.9.3.2 to 

study various r.f. plasma stabilization schemes in a Hamiltonian manner. 

14. Use the connection between averaging and reduction to treat more prob

lems like that discussed in section 2.10 in a geometric way. 

15. Use the method of averaging given in section 2.10 to find the "pseudo-

puteutiaT felt by a deforming elastic body due to the presence of elastic waves 

(i.e. the elastic analog of ponderomotive forces- as we deform the body the wave 

spectrum changes. caus-ug energy to be transfered between the body and the waves). 

16. Use the method of averaging given in section 2.10 to study the Stokes' 

drift of a fluid parr 1c under the influence of surface waves (fluid particies move 

in approximate circles in the presenre of small amplitude surface gravity waves >r. 
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a fluid the cirrlcs arc big near the surface and set smaller with depth -i p.innlc 

then move- un a larger circle near the lop than near ;hc huUuin <>f u^ urbii, jn-t .i> 

in gyrurnoiion the re>ultam particle path ha.-- a drift parallel u> the Mirf.ne of the 

HuidJ. 

17. Use the connection between averaging and reduction gneu in -cf timi 2 H) 

to prove the A' - \ theorem relating the linear susceptibility of a plasma to wavt s 

and the ponderomotive pseudo-po' 'ntial in the plasma dynamics due to the wavr< 

after reduction 

I S . The explicit calculation technique of section 2.10 utilized a section of the 

circle bundle defined by the approximate symmetry. Develop explicit techniques for 

treating nontrivial bundles (these are covered by the abstract theory). An example 

might involve a perturbed rigid body where the circle action is rotation about a 

given body-fixed axis the nontrivial projection to the orbit space is the Hopf map 

19. Can one tre^t the conversion from a Lagrangian to an Eulerian description 

cf a fluid with the concomitant introduction of convective terms as an example of 

the change of reference frame operations introduced in chapter 3? 

20. (A generalization of the previous question): Can one extend the results of 

chapter 3 into a general theory connecting the process of reduction and the process 

of changing reference frames (this is carried out explicitly in section 3.1.6 for the 

Coriolis force)? 

2 1 . Apply the methods of se. ion 3.1.6 to develop natural Poisaon structures 

for a variety of rotating system" Jebbie Lewis is currently studying the itifii ite 

dimensional fluid dynamics of rotating liquid drops (such as stars or nuclei] from 
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this per-pertivr. Another ex ample of interest might be a cold non-neutral elec

tron pl.wna in a cylitidnrally symmetric "tin can" with axial magnetic field the 

flertn.ii- K • H drift around the axis making a naturally rotating reference frame. 

22. Wc the Hamiltonian structure introduced into the method of variation of 

parameter in action 3.2 to redo in a geometric way physical derivations based OK 

it (eg. the usual derivation of Fermi's golden rule in quantum mechanics). 

23. Does the natural symplectic structure introduced ID section 3.2.1 on the 

group of (compactly supported) canonical transformations of a symplectic phase 

space have any other physical applications? 

24. The perspective on J t a order non-singular perturbation theory that is 

taken in chapter 4 is to view the perturbation dynamics as an ordinary vector field 

on a perturbation extended phase space {i.e. the jet space). Another perfectly valid 

perspective is to introduce J-jets of vector fields on ordinary phase space, whose 

flow is a uJ-jct of a diffeomorphism" and so on for the rest of the objects in a 

theory. Pursue this alternate route and redo the various calculations of chapter 4 

this way. Are there advantages or disadvantages to one or the other of these two 

perspectives? 

25. Does the binary notation for iterated tangent bundles which was so con

venient in section 4.5 have any other natural applications? 

26. The technique of going from the path space bracket 10 the jet bracket 

introduced in section 4.6.1 by quotienting out the degenerate piece is very powerful. 

Are there other applications of this? In this example when one tried to push forward 

the original bracket along the projection, one obtained products of delta functions 
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aii ' othei ve-y singular thing:-. Similar singular bracket- have been found In Brute 

Bughosian in attempting to find a Hattiiltiiniati linearization for the l'oi--mi-VlaM>\ 

equation. Pan one use a similar solution in that situation? 

27. The sheet quotient spaces introduced in section 4.7 extend to J th order a 

construction given to first order in [Kijowski and Tuleryjew, 1979i. In that reference 

they extend this construction in another direction: by making the sheet parameter 

be larger than one-dimensional. (In their work they were interested in time as the 

parameter and the txtension is lo space-time and field theories). Can one apply the 

extension to J-th order derivatives given here in the field context? 

28. As in the previous question, can one introduce more than one parameter 

but now treating them all as perturbation parameters. Thus one should redo all 

calculations in chapter 4 replacing paths by higher dimensional submanifolds, and 

path jets by jets of maps of these higher dimensional submanifolds into phase space. 

Use this extension to treat perturbation theories with more than one small param

eter. In particular this should jive a context in which to explore various relative 

scalings of multiple parameters. (All the constructions including jet groups and 

Lie-algebras appear to extend in this way.) 

29. Can one extend the perturbation structures developed in chap.T 4 to 

Poisson manifolds, as opposed to symplectic manifolds? (This is important fr-r 

application to many of the physical systems of interest.) 

30. ID particular do the jet spaces of Poisson manifolds inherit a Tuisi-wii 

structure from the Poisson .-truelure on the iterated tangent hundlei- di-ru-sed m 

section 4.8.6.5? 
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31 . As asked in section 4 S.G.o. dors the Lit- I'oisson bracket on the dual of the 

Lie alp'-bra of ,' - jrt.-< of paths in a Lie algebra g agree with some preemption for 

extending j7* "s Lie Poi? bracket to the space of its J - jets'! (This is. important 

since mam physical systems have H ami] torn an structures derived from Lie-Poisson 

bracket*-.} 

32. ("an one explicitly wriie down the '"magnetic terms" in the symplectic 

structures on the jet coadjoint orbits defined in section 4.8.7? 

3^ . What is the relationship between the Lie algebra of jets of paths in a Lie 

algeh'a (which arises in perturbation theory) and the Lie algebra of jetf of functions 

on the dual of the Lie algebra which is described in section 4.8.7 (and is useful iu 

many contexts such as geometric quantization)? 

34. Use the extension of Kruskal's perturbation technique given in section 5.2 

to analyse a variety of physical systems. 

35. Implement the explicit algorithm given in section 5.2 on a symbolic manip

ulation program such as MACSYMA or SMP and carry cut any of the calculations 

of the last question to arbitrarily high order. 

36. Combine the new Kruskal method with its well defined operations with a 

change of coordinates (as used in Lie transforms) to obtain a precise method that 

is easy to carry out by hand, (section 5.2) 

37. Can on" find a coordinate-free interpretation of two-timing or the method 

of multiple scales'' Are there situations to which thir- method applies which do not 

fall under Kruskal's method? (section 5.4.1.2) 

38. Reexamine the attention given to the l/< validity of Kruskal's method in 
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var iou- s i tua t ions whe re it is used (for example in the var ia t ion uf tin- Aiiiabatic 

invar ian t in magnet ic mi r ro r s ) . If the adiabatic invariant aj pear? to he invariant 

for t ime? longer t h a n l/< rind out wh\ and develop a ntw per tu rba t ion me thod 

based o n t h e reason, (sect ion bA.2) 

3 9 . Find physical s i tua t ions with more t han one fast frequency in which 

A r n o l d ' s no t ion of " a l m o s t adiabat ic invariant*" (discussed in section 5 .43) is re

ally physical ly a p p r o p r i a t e and apply the m e t h o d of averaging keeping track of t h e 

m e a s u r e of the " t r a p p e d particles"' . 

4 0 . S tudy [Ot t , 1979] and [Kubo et al . . 1965] and develop a precise form of 

the a r g u m e n t sketched in sect ion 5.4.4. O t t c la ims to be able t o get an expression 

for t h e var ia t ion of t h e ad iaba t i c invariant . C a n his a r g u m e n t be made invariant!}-

a n d w h a t a r e the l imi t a t ions on its validity? 

4 1 . Section 5.4.5 shows t h a t t h e reduc t ion for finite p e r t u r b a t i o n s may not be 

u n i q u e . W h a t a r e t h e phys ica l consequences of th i s fact a n d w h a t does it say a b o u t 

the r e su l t of choosing different a sympto t i c se l l ings away from the u n p e r t u r b e d 

s y s t e m ** 

4 2 . C h a p t e r 6 discusses the impor t ance of making t h e unpe r tu rbed sys t em 

consist of only per iodic o r b i t s when one w a n t s to do s ingular pe r tu rba t ion theory. 

M a n y de r iva t ions in t h e l i t e r a tu re do not have such an u n p e r t u r b e d system ( , ; ome 

do no t even have u n p e r t u r b e d dynamics ) . C a n these sys tem? be converted (say by 

a c h a n g e of coord ina tes ) t o sys tems where secular p e r t u r b a t i o n theory is val id? If 

no t . is t h e p e r t u r b a t i o n valid for t ime l/<7 If it is valid, is t he r e a fundamenta l ly 

new p e r t u r b a t i o n m e t h o d hidden in the der iva t ion? 
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43. Extend tlie analysis of gyrumotiun in chapter C to three-dimensional, 

time-varying magnetic geometries. 

44. Can one understand the Hamiltonian structure of gyrokinetic equations as 

reduction hv a "gauged" circle action? (The way the formal structure of gyrokinetics 

arise-- from the single particle picture in chapter G is very reminiscent of the way 

the eikoiial theory" of chapter 8 is related to strictly periodic waves.) 

45 . Section 7.1 sketches heuristically the connection between KruskaJ's secular 

perturbation theory and WKB theory. Can this connection be made precise using 

the coord in ate-free formulatioD of chapter 5? 

46. Develop an analog of the local Fourier transform of section 7.1.1.3 that is 

appropriate for nonlinear wave systems (i.e. given the wave family, reproduce the 

expression in terms of periodic solutions with slowly varying parameters). 

47 . Apply the variational approach to ihe Heisecuerg uncertainty principle 

given in section 7.1.3.1 to other inequalities (and ao get new insights into them and 

perhaps new results). 

48 . Does the approach to coherent states in terms of momentum maps given 

in section 7.1.3.2 extend to larger groups (eg. the Heisenberg group semidirect 

product the metaplectic group) to give approximations to the wave dynamics which 

are better than classical mechanics (eg. include the dispersion of the Gaussians in 

addition to motion of their 'enters in :_ihase space)? 

49. The approach to robereDt states given in section 7.1.3.2 does not need the 

base state to be a Gaussian. Can anything be gained by using "coherent states" 

which art- the orbits of states other than Gaussians under the Heisenberg group? 
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'iO- Can one use the approach of section 7 1.3.2 in nei a theory aiMlognu- in 

(oliererit si Air* for nonlinear e q u a t i o n s ' 

5 1 . Dues Ma>lev'>- theory extend to nonl inear waves.' Net Hon 7 1 4i 

5 2 - ("an one treat t unne l ing in a geometr ic fa.-hion' p o e - it make w-ii-e m t reai 

wave p h a s e space a< a complex manifold and so t rea t evanescent waves' ' (chapter 

7) 

f»3. C a n diss ipat ion be incorpora ted in to the geometric V» KB picture'.' (chap

te r 7) 

54. What is the time of validity of the VVKB approxiniatioii'* Is it \/'c a± 

conjectured in section 7.3? 

55 . Arc there asymptotic theories with asymptotic validity for longer tmiev 

than WKB. perhaps in special situations? (section 7.3) 

56. How does WKB theory'= unite time of validity relate to infinite time 

concepts such as the eigenvalue spectrum and quantum chaos? (section 7.3) 

57. Are there physical situations in which the example of dispersion given in 

section 7.3 that is no., accounted for by WKB play:- an important physical role'' 

5S. Is there an analog of geometric diffraction theory for nonlinear eikona! 

waves'' (section 7.3) 

59. Apply the Hamiitonian technique1- of chapter ? to a physical sv.-teni ex

pressed in terms ' * a non-i anouical Poisson bracket (Mich a> the Maxwell-Vla>i,v 

sy.nem) to obtain results not available with Whiihain'- averaged Lagrangian tech

nique Can the inelegant V - of set I ion b22 be rxpungfii ' ! A- Wrm-tem a.-k-

"Ain't l here tin eleganter way in do i+"'" j 

file:///nrc-
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60. What i- the .in,i|(,^ ,iF c»u*tn> for nonlinear wave-'' Are they cla>-ihed by 

-oitiethint; ;ii);tl(ig<nî  to talaMrophe theory'.' Whai are the corresponding ">pecia' 

flint tiun^" ,inalrf(;mis to the Airy function or t'eareey's function? (Chapter 8) 

6 1 . \Ur;e the argument given in section 8.2.2.1 relating degenerate symplectic 

structure:- to Pois>u!i manifolds with Casimirs into a general theor (a very similar 

situation occur:- in the example of guiding center motion given in chapter 5: In a 

Poiss-on formulation we have a degenerate bracket pertu rbed by a canonical bracket. 

In a iymplectic formulation we have a degenerate symplectic structure perturbed 

by a canonical one. In the Poisson case we g?t zero order dynamics but no unique 

choice of Hamiltonian or symmetry generator. In the symplectic case we get a 

rnicjue Hamiltoiiian but no zero ordt. Jvnamics. The first order piece somehow 

defines a natural association between the degenerate zero order structures since the 

bracket and pymplcctic structure are nondegenerite and are "inverses of one another 

when ( doesn't vanish.) 

62. We the Lie Poisson structure obtained in chapter 9 to study a system 

wherf wave action densitv on phase space is important (for examples see Dew^r. 

1972b l 

6 3 . Kind examples of dissipa" s systems that sit inside Kamiltonian systems 

as invariant submanifolds as suggested in section 10.1 (John David Crawford and 

Bruce BnghoMan have suggeste.l that the dissipation in Landau damping is of this 

l M K ' l 

64. I- il ever useful to convert dissipative systems to Hamiltonian -ystems 

with iimre variable-; a---shown in chapter 10'* (Thi^ doer allow one to use variational 
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formuiatmn-- for i n h u m e : 

6 5 . f i n d an example of tin- iiu-a;)plu at n>i. nf Lie t l a ' s - i n u n - ID ih r l i teraiur ' -

in thf - a m e vein a> *-t-t tu>ii ID 3 2. demou-Waie the u n p l n - n a l i on-eq^eiii i - and 

correct the a n a h - i s 

6 6 . R e . - . n t h . Alan Wem-ie in ha.- s | n m n that 1 h< P o i s o n - J - I M I I ftwu in 

sect ion 10.4 is a spei ial case of a very gcaer il con- t rm t icn (i ivcn a i,i< g roup 

ac t ing on a Pois-on manifold, consider the act ion -m the p roduc t of t h a t manifold 

wi th t h e cotangent bund le o r 'hi- group [where the action on the (o tangeni bund le 

is t h e lift of left t r an s l a t i on ) . On? ob ta ins a new bracket on the orbil s p a t e of 

this ac t ion by reduct ion . When the g roup i^ the real line ac t ing by the flow of a 

vector 6eld. this reduces t o the example in 10 4. Use the more general brackets to 

u n d e r s t a n d o the r physical s i tua t ions 

6 7 . Can one use the (very clever) t e chn ique - used in G r o m o v ' s proof to get 

any ins igh t s in to t h e phys ics of t h e projected a rea s i tua t ions of chap te r l l 7 

£ 8 . Can the in tu i t ive a r g u m e n t given in section 11.2 for Gromov ' s t heo rem 

based on t h e unce r t a in ty pr inciple be m a d e precise? 

6 9 . Can one m a k e t h e connection between Bogol iubov ' - der ivat ion of the 

B o i t 2 m a n n equat ion via B B G K Y and projected measures tha t i.- suggested in section 

11.4 p re t ise? 

7 0 . Can one oesign a be t t e r p a r t i c l ; accelera tor based on t in a b s t n u t con 

si r uc t i on for shr ink ing projected measure given in section I I 4.21? 

7 1 . Can one place any cons t ra in t - on t h e projected m e a s u r e - of region- under 

c a n o r . u a l t r a n s f o r m a t i o n s ' For example , t h e i o i . - tnn tioo ]:• II 4 '.' for •-hriiik ui^ 
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mcA>i]rc in oi.e direr ti'.n of proirciion strrtche- it considerably in the oilier direct inn 

of pri;j'-'Hun 1* i> almost true that the Mini of die information entropies of tin' 

projects! tii'.u-ur'^ is minimized for a subset which i- a product, Is there sonic true 

-MteitifSit >if thi- type which would place classical constraints on one'-- uincrtamty 

m nif,'L-urniE pairs of projected quantities'* 

72. ( '̂LIX vim find finite dimension?! vituation- wh'Te the tim*"-reversiblf almost 

at tractor introduced in chapter 12 is directly responsible for irreverible asymptotic 

behavior in a time-reversal symmetric situation? 

73. Implement the approach lo the tbiee-wave interaction of eikonal waves 

discussed in section 13.3.6. Does this invalidate the usual approach in terms of 

infinite plane waves? 

74. Can one explicitly analyze the Landau damping equations using the notion 

of an almost attractor in an inhnite dimensional Hamiltoman system? (section 

13.3.3) 

75. Section 13.3.5 introduced a very general mechanism for obtaining dis-

sipative behavior from resonant Hamiltonian systems. Can one find an abstract 

setting in which the precise characteristics of systems exhibiting this phenomenon 

;i -e staled? Can one analyse Landau damping with these techniques? 

76. Many infinite dimensional linear physical systems have a continuous spec

trum making analysis difficult (especially bifurcation theory). The "eigenfunctions" 

are often singular (for example the van Kampen modes in the Poisson-Ylasov sys

tem). Whether the spectrum is continuous or not is physically detectable only 

aft'T an infinite time. Physically one often is not interested in "normal" modes but 
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rat 1 j- : eikonal brh«% i<>r '"hi- driven haniioriH o-i ilUtur of -pcuon 13 3 J ha> <in 

infinite response to tin resonant mode, making anaKsi^ in t r ica te ai.d nmi-phjsit al 

T h e e ikonal analysis of sect ion 13.3.5 does nut suffer this defei i Can one a p p k .1 

similar analys is to o ther problem,- of this t y p e ' 

7 7 . Can one ana lyze t h e dissipation due t o bulk viscosity in -> manner anah>-

gous t o t h a i used in sect ion 13 4? (Bulk viscosity results from the t ime lag fur the 

ro ta t iona l degrees of f reedom a gas to reach equi l ibr ium with the linear degrees of 

f reedom under compress ion . Imagine a gas in a cylinder wi th a pi- ion v hich you 

quickly move in a n d o u t . As you push down t h e gas has a higher pressure t h a n u 

would in equi l ibr ium since less energy is m t h i ro ta t iona l degrees of freedom t h a n 

should be . When you pull t h e piston out , t h e pressure is less, . han in equi l ibr ium 

b e c a u s e more of t h e energy is in rota t ional degrees of freedom t h a n should be T h e 

net resu l t is t h a t t h e work d o n e on the downs t roke is greater t han t h e work re tu rned 

on t h e ups t roke : t h e gas absorbs energy and therefore appea r s dissipat ive. A very 

s imilar k ind of thing is beh ind the dissipat ion d u e to the s t r ing. ) 

7 8 - C a n one use t h e m e t h o d of Melnikov to hud horseshoes in s i tua t ion- of 

p l a s m a physics o ther t h a n t h e s i tuat ion s tud ied in section M.4 (eg. other mag

netic geomet r ies , par t ic le dr iven by e lec t romagnet ic wave, wave dvi iauiKs. -ohton 

d y n a m i c s ) ? 

7 9 - ( ' an one use t h e knov n stat is t ical proper t ies of h o p e-hoe- s tudied m 

ergodic theory to explici t ly d o a s ta t is tn al s t udy of gyrok:nctu> near inagiiclu held 

reversals'. ' (secturn 14-5) 

8 0 . Doc- the p h e n o m e n o n of reinsert ion in ^ I M p n - r r v i i i g homo, lu..< m a p -
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fxplait: thf complex behavior i!iMi>vcrcd in Holmes and Whitley. 1984 a.- one goes 

from di—ip.iim' to Hrca pn-erving hnmorlinic tangerines? (section 14.3) 

81 . ('a.' you find univcisal structure in homoclinic tangles and homoclinic 

bifurcation- using reriormalization group techniques? (chapters 14 and 15) There 

•ire many reuoriiirf.li/.atioii type mappings at work in homoclinic dynamics. The 

•Yrus--se' lion" of a piece of stable or unstable manifold is a Cantor s"t (with cor-

rc-ponduig scaling properties) and homoclinic tangencies occur when the stable 

and unstable manifolds' Cantor sets intersect. Each homoclinic tangency causes an 

infinite number of period doublings for which we know there is universal behavior.) 

82. Study the fractal •• that arise in nature using renormalization. For example, 

a classic Cantor set {remove the middle third of an interval recursively) corresponds 

to a periodic orbit as we continuously blow up the scale. A fat Cantor set (eg. re

move mK.iile third, then middle ninth, then middle 27th, e tc ; this type of fractal 

occun- as the set of parameter values at which hump map orbits are chaotic after 

criticality) asymptotically approaches the stable fixed point represented by a solid 

line. An undernourished Cantor set (eg. remove middle third, middle square root 

of 3rd. middle cube root of 3rd,etc.) approaches the stable fixed point representing 

a single point in empty space. The set obtained by removing the rationals from the 

unit interval and separating the two sides around each rational p/q by a distance 

1/t/'' (the KAM tori lie in phase space like the points in this set in an arbitrary 

perturbation of a Hamihoinan system away from criticality) scales at each point 

according to terms in the continued fraction expansion of the point (Liouviilc num

ber- w liirh are ea>\ to approximate by rationals approach a fixed point representing 

http://reuoriiirf.li/.atioii
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an isolated point IT1 enipt\ *pa<e. number* which .in- haid to approximate 1A ra

tion U- i-uctl a.* DlophatlUllo liumbei*| a>\mptote to tli< luir -r^niHit l)\ed point, 

othi r number:- hop around m A complex m an nor and lead to < ham i< reiiormahzalio;i 

orbit*1 [chapter 151 

83. Ca.i one gel c-s'.imat "s on the rate of appPMi li to (.,ur* i,U.it> in i entral 

ismit situations from the eigmvalut's of the stable fixed ]><wA in the ren»>rT])̂ lizaii'U) 

approach of section 15 S' 

84- Can one use the renorinalizalion group approach pi*on m section 1 J 3 to 

derive the Boltzmanu factor e'3E using renormalizatiun? 

85. Similarly, can one derive the standard probability distributions other than 

Gaussians (such as Loientzians, Zipfians., Bradford's distribution. Lotka's distribu

tion, Pareto distributions. 1 / / noise, log normal distributions and the other "long 

tail" distributions so important in modern statistical physics) using renormahzatiun 

but with a renormalization operator constrained by other criteria than having a pre

scribed normalization, mean, and dispersion? Do the renormalization eigenvalues 

give scaling rates for these examples? (section 15.3) 

86. Some of the distributions of the previous question will correspond to unsta

ble fixed points. Can we understand physical systems with statistic- which behave 

according to one of these distributions for a long range of scales hut asymptotic ally 

behaves differently, in terms of the renormali/.atioii orbit starting near the stable 

manifold of the corresponding fixed poinf, approaching the fixed point for a lour; 

time, and finally feeling the effect of the unstable- manifold and getting attracted 

lo a more stable Ji.-iribution at some stale fi e afn r -ome number of application* 
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of tin- rc[H)iiti.ili7aii.m operator)'.' Can we use 'he relative values of the renormal-

izrttion eigenvalue-- it* predict the range of M ales which are described by the fixed 

jHiini'' ( An example of this* type of behavior occurs in any of the extremely large 

number of >ystems well described by \'< j noise, this distribution is. not normaluable 

,Uid so must really turn mio another distribution at stmie scale ) (section i5.3) 

87. Find '"poor man" approaches- to other renormalization calculations, such 

a.- area-preserving period doubling, breakdown of circle maps, breakdown of KAM 

tori, (section 15.4) 

88. l ' se the new formulation of maximum entropy given iu section 16-2.3 

in terms of an integral over all probability distributions to get new insights into 

statistical mechanics, just as the path integral formulation gave new insights into 

quantum mechanics ISchulman, 19811. 

89. Nothing in the maximum entropy formulation (section 16.2) either requires 

c disallows lime-dependence of the studied quantities. [Jaynes, 1983J derives some 

aspects of non-equilibrium thermodynamics from the maximum entropy criterion. 

Can oue use this derivation and the sympketic structures introduced in chapter 16 

to obtain a symplectic analysis of non-equilibrium thermodynamics? 

90. The Onsager relations have been discussed in terms of Lagrangian subman-

ifolds in [Abraham and Marsden, 1978]. Can this discussion be given a fundamental 

basis using the ideas of the last question? 

9 1 . Allan Kaufman has discovered many non-equilibrium systems whose evo

lution is governed by a Lie Poisson bracket plus a so-called dissipative bracket which 

i- -.yrniiietric The generator of the dynamics becomes the Hamiltonian plus the en-

file:///nijrt
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trop. <md in soun ca.se- the action plus the entropy v. hit h ma\ I. i onnested wn li 

I Li- deep relation?- between these quantities discns-ed in chapter iG) Can one derive 

the dj—.ipative bracket formulation using maximum entropy ' 'Then- .lppedr- to lie 

a perturbation expansion in ti-t strength of dissipation n^ulved Mine if •- Ousager 

relations appear naturally.) 

92- Can one introduce ">uper-reduction" which starts with a large-dimensional 

underlying system, performs reduction by an exact symmetn, m some variable^, re

duction by an approximate ymmetry in some others, and reduction by a ".statistical 

symmetry" (via maximum entropy) in some others, and end up with the standard 

physical models ;n plasma physics, gas dynamics and fluid mechanics? 

93. Based on the results of the last few question - can cme obtain a geometric 

forr.iulation of tDe Buctuation-dissipation theorem? Is this a statistical analog of 

the K - \ theorem'.' 

94. Can one connect the approach of the lam few questions w-ith the test 

particle theorem and £ad a treatment of tins technique a- 3 systematic perturbation 

technique? 

95. There is a very "symplectic'" looking reciprocity that arises from the 

test-particle theory theie is ;• detailed balance betweer. Cerenknv radiation and 

Landau damping, between synchrotron emission and cylotroii damping, and be

tween Brem-st rah lung and collisional damping Can one understand ihis it c p n "• y 

within a general theory'' 

96. K there a precise mechanical statement .Hid [ : >of of S/iUr•!'- re-oliitiuii 

of the Maxwell deni..[j paradox'' Hi- argument -huuid thai I n nian\ -million-

http://ca.se-
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niic'- tiif.L'iiruig 'iowic iivc- up more entropy m deriding where a parti* le i- than 

c.ui hi reiburnol <»n the ha.-is «,f t} J ( li knowledge. I For example. Maxwell V demon 

might '.!)-crv« thf -'altering of a non-equilibrium photon to detect fast particles 

appr.iat lung hi- door the entropy lost m scattering the photon i? more than the 

*Titrop\ n:unf*d in forcing the fan par.icle to be on one side of the partition.) This 

argument is \cr> similar to tbe maximum entropy version of the second law of 

thrrniod\ nainic- given in section 16 4 Can the connection be made precise? What 

i« t ,\c relation to projected area concepts discussed in chapter 11? What is the 

connection with quantum measurement limitations? 

97 . Is Youngs inequality for the Legendre transform (section 16.5) related to 

the Heisenberg uncertainty principle (section 7.1.3.)) in the eikonal limit? 

98. How much of the geometric theory of first order phase transitions given in 

section 16 8-2 extends to the more difficult situations where rcoormalization theory 

is required (eg. critical points)? 

99. .' pply the extension of Maxwell's equal area rule for first order phase 

transitions given in section 16.8.3 to nontrivial problems. 

100. Is there a deep reason for the remarkable parity between the asymptotic 

structure of eikonal wave theory and statistical mechanics as presented in section 

10 9" 



PART I: 
MECHANIC 

". .he couched his discussion in the raoM sophisticated language known to 

physirs, not all weighed down by Jumps of data like Joule's heavy-handed labo

ratory reports, aor confined to the primitive numerical rquiva/cnfs of Mawr. hut 

in tije graceful, taut, and lissome differential equations of classical dynamic?-.. 

Gillespie referring to Helmholz jHirsch, 1984' 
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Chapter2: 
Survey of Geometric 
Pertwbation Theory 

~1 completed my course iu engineering and I would like to try to explain the 

offer: of this engineering training on me. Previously, I was interested only in exact 

equation**. It seemed to me that if one worked with approximations there was an 

intolerable ugliness in ones's work and I very much wanted to preserve mathematical 

beauty. Well, the engineering training which 1 received did teach me to tolerate 

approximations and 1 was able to see that even theories based upon approximations 

could have a considerable amount of beauty in them"—P.A.M. Dirac (p. 112 of 

;Dirac. l'iV7i) 

2 .1 . Historical Background 

In this chapter we survey ideas from the rest of the thesis, particularly chapter 

4. intuitively and heuristicaily. In chapter 4 we assume a background in geometric 

mech.-.ms and give detailed proofs. Here we will give the flavor of the structures 

and develop the needed background material. We will state results and indicate why 

they ; .• true without detailed proof- We begin with some introductory remarks, dis

cus:- a geometric picture for non-singular perturbation theory, introduce the needed 
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Han .Hernial) mechanics including ll 'c crucial p io i e s s ot reduct ion m the pre-ence 

of s> inn ie t ry . describe the Hai iu l tonian s t ruc tu re of non — insular pe r tu rba t i on the 

on, a n d close with >o;ne discussion of these idea.-- in connection wi th thf method of 

averag ing Th i s chapter is an expanded version of the panel 'Ou io l iundn . l!)K4b 

It is of interest to list the seminal idea- tha t form the background of the present 

work. In 1808. Lagrange in t roduced the descr ip t ion of the d y n a m i c s of cele.-tud 

bod ies in t e r m s of what we today call Hami l ton ' s equa t ions ( [Lagrange. 1808 and 

[Weinste in , 1981]). His mot iva t ion was the r educ t ion of the e n o r m o u s labor involved 

in a s t r a i g h t f o r w a r d p e r t u r b a t i o n analysis , which required t ed ious computat ion- 1 to 

be p e r f o r m e d on each c o m p o n e n t of the dynamica l vector held, t o man ipu la t ions of 

a single funct ion: the Harrril tonian. T h e descr ipt ion in t e rms of Lagrange brackets 

led to severa l o ther benefits. La^-- j ige showed t h a t the value of the Hani i l tonian 

and t h e s t r u c t u r e of the b racke t s were both invar iant under t h e dynamic,- , leading 

to a useful check of the complex calculat ions (which at tha t t ime were of course done 

hy h a n d ) . In add i t ion , he w a s able t o show t h a t t h e invariant r nf the Hamil ton) . -

i ould be used to prove the s tabi l i ty of cer t . Jn equil ibr ia A- the cen tury pr<>gre--ed. 

H a m i l I o n i a n mechanics was' refined and the connec t ions with var ia t ional pr inciple-

and op t i c s were made By t h e t u r n of the century Point are {a> in Ponu are. lf-9',2 

had deve loped very powerful Hajnil touiaij p e r t u r b a t i o n m e t h o d s iiuliyiiijj genera t 

ing funrtio.-is. ..:< oduced t h e not ion of a sympto t i c e . \pan-ion, ami begun the geo

metric rtj.<i topological a p p r o a c h to d> namics In i\)lt^ K m i m Noel her made tin 

< "line, iinij bet wren syniliu m e - and H I I I T I M - I I quant J tie- Noe ih ' - i . l'.ll> I h' 1 d-

veJopifi'Tit "f <|iifi(-itj,n IIICI fi-.riff - re-led }».nil> ..|> th ' H.un.i . .man fi atnrw • >! k .,.-
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in Dirac. 1958 ] l>y analogy with optic- and -erved to put Hamilloniati stnuturc-

firinh al the rf-tucr of the- modern formulation of fundamental physics. !l andau and 

Lifshiw. 10011 I9H Dunns the 1960V the coordinate-free description of Harril-

inniaii iiu'diaincs m tcnti- of symplcctic geometry was developed, as described in 

Hermann. 1968 . Souriau. 1970a;. ;.Abrahain and Marsden. 1978; and [Arnold. 

1978 . About this tunc the method of Lie transforms greatly simphhed Hamil-

tuinAn perturbation theory t'ary. 1981 . The 1970's saw enormous developments 

in tlie gejmetne approach to mechanic*' and largely as a result of these, an ever 

wider range of physical systems have been d-scribed In Hamiltonian terms. Some 

examples are: quantum mechanics- jCbeinoff and Marsden. Y974j. fluid mechanics: 

•Morrison and Greene. 1980]. i Marsden and V.'einstein, 1983], and [Marsden. Ratiu. 

and Weinstein. 198-1 . Maxwell's equations: [Pauli. 1933' and [Marsden and Wein-

stein. 19J*'2 . the Maxwell-Vlasov and Poisson-Ylasov equations of plasma phvsics: 

Morrison. 1980 . [Marsdeu and WVinstein, 1982:, and (Kaufman. 1982], relativis-

tic plasma waves- Kaufman and Holm. 1984]. gyrokinetic models: [Kaufman and 

Boghosian. 1984 . elasticity theory. 'Marsden and Hughes, 1983[ and [Hoirn and 

Kuper-hnudt. 1984a'. general relativit> 0 Marsdeu and Hughe-. 1983 . magnetohy-

dro'i*. naunc- 'Morri^m and Greene. 1980] and Holm ami Kupershniidt. 1984a. 

multi-Auto plasmas Spencer and Kaufman. 1982] and 'Holm and Kupershmidt, 

1981a . chromohydrodynarnics: [Gibbous. Holm and Kupershmidt, 1982., superflu-

id- and ^.ipercond'-' tors :iolm and Kupers],,..>dt. 1984b . the Korteweg de Vries 

equation Taddeev and Zakharov. 1971 , etc Thtsc developments have shed light 

on l)ie underlying ->nimetr> structure of these thcu-ie-. have yielded improved 
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stabilin results based on Arnold's stability method Holm. Marsden. lUtni. and 

Weinsicm. 1984 . and have given insight into the realms for the integrabilin i<f 

certan, M .-terns ;Guillcmin and Sternberg. 1984]. 

For the most part, however, these structures describe fundamental underlying 

model.* in the various' fields. In actual applications we almost always make nu

merous approximations which may or may not respect the underlying Hamiltonian 

structure. It is folklore within the particle physics community and elsewhere thai 

perturbation methods which respect the underlying symmetries and conservation 

laws yield much better approximations to the actual system than those which do 

not. It is of interest, then, to try to do perturbation theory within the Hamiltonian 

framework and to obtain structures relevant to the approximate system. One may 

thus hope to understand the relation between the structures of systems which are 

limiting cases of known systems (eg. does the KdV Poisson bracket arise naturally 

from that of the Boussiuesq equation;.?) [Olver, 1984; The history of Hamiltonian 

mechanics is inextricabU- tied to perturbation methods. For the most part, though, 

the Hamiltonian structure was used to simplify th'. perturbation method and the 

geometric structure of the perturbation method itself was not explored. VYn have 

found in several examples that taking this structure into account leads to simplifica

tions (as in the problem of guiding center motion discussed later in this chapter) and 

to deeper insight into the approximate system (as for the rnodulational equations 

For waves in th ' eikonal limit studied i.; [Omohundro. 1984cj and chapter 8) 

We have therefore been engaged in a program of investigating the Hamiltoriian 

structure of the various perturbation (henries used rn practice. In the- chapter 
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\vr describe the Reometn of a Hamiltonian structure for non-singular prrlurbation 

theory applied to Hamilto lian syslrms on symplrctic manifolds and the connection 

Willi sinj; ilar perturbation techniques based on the method of averaging Chapter 

5 dis<u--es a singular perturbation technique based on a method introduced by 

Knr-kal 
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2.2. ( ieomctr ic Per turba t ion Theory 

In thi*- section we will place perturbation theor*. into the context of the geo 

metnr dynamics that has proven so fruitful in recent years We will give intuitive 

discussions of the geometric concepts of dynamics and explicitly put non-singular 

general first-order perturbation theory int. this framework. The next section will 

do the same for higher order perturbation thi ory and chapters 4, 5, and 6 will focus 

on Hamittonian and singular perturbations. 

2.2.1. Manifolds 

The modern setting for describing an evolving system is that of a a dynamical 

system. The state of the system is represented b\ ? point in a manifold M A 

manifold is a space which locally looks like Euclidean space and in which there is 

a notion of derivative (for more details see [Abraham. MarsrV:.. and Ratiu. 1983 

p. 122). Globally a manifold may be connected together in a non-tmial way. as 

ocenrs in the examples o ' the sphere and the torus 

Many of the standjjd systems studied in physic- have state spaces that are 

naturally manifolds and have apparent singularine-- M'hen on trie- to model them 

as Euclidean spaces. A simple example of this is given by the rigid bmh The 

standard description of the configuration of a rigid bnd\ rtiii.c- the Euler angles 

Tin*- description is fraught with singular behavior (eg more than one set of EUIIT 

anglf- ran describe the same configuration at extreme- of i be angle-) The singu

larities •![•(• .ii, artifact of the description and do not r orre-pond t,, ,in\ tlntij* in llie 
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j.liy-Kal :->MCIN \\r will -cc tliiit similar thing-- h;i] ;HMI ITI ilic infinite--LmniMonal 

(oiihciiratuHi spare of fluids and pl;iMnas 

2.2.2- Dynamical Systems 

"Among all mathematics] disciplines the theory of differential equations is the 

most important... U Furnishes the explanation of all those elementary manifestations 

of nature which involve time."—Sophus Lie (1895) [Hirsch, 1984} 

If you know nhcre you arc in a state space, a dynamical law tells you where 

you iv going. 

Figure 2.1: A ilynamiral system 



2.2.3 PcrturiiAtitm Tltrnn 83 

A d> namical law is represented by A vet tor held on the manifold of -talc- A 

dynamic A\ system is a manifold with a vector Held denned on it. a.- in figure ''J 1 : 

hoc Abraham. Marsdei. and Ratiu. 1983" p. 184l. In coordinate-. \he dyn.inii< al 

vector field is described by » .i". ot first order O.D.C.-. one for each ; oordinai-' 

Typiral d> namical systems with state -pace- of three dimensions or greater have 

chaotic dynamical behavior with extremely complicated trajcctor.es In many CHM— 

one can actually prove that there is no exact description of the solution curve- in 

closed form (see [Gucker.heimer and Holme:-. 1983)). If the evolution simplifies, then 

there is. some physically relevant special feature, such a*- a symmetry, which causes 

the simplification. 

2.2.3. Perturbation Theory 

In important physical applications, we often find ourselves close to a system 

which simplifies, and we are interested in the effect of our deviation frum it. We 

express this deviation in terms of the small parameter (. 

In many physical situations we are faced with an apparently different piohlem 

in which we have but a single dynamical system and we are interested in solutions 

whose initial conditions are close to a known equilibrium point. The parameter 

( expresses t'.e distance of the initial condition from the equilibrium point One 

common situation of this type, which appears repeatedly in plasma physics, ha> 

thennal equilibrium as the equilibrium point and -Indies the time evolution of 

deviations of initial size < from it. 

http://trajcctor.es
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We may easily convert this type of problem w ;th asymptotic initial conditions 

in ?_n unsolvable dynamical system, to an asymptotic system whose limiting case 

is solvable This transformation is commonly made by expanding the dynamical 

vector field F.bout the equilibrium and re-expressing the dynamics in terms of scaled 

quantities This leads to a linear system at the lowest order, which is often solvable. 

Because thermal eq'iUibrium is stable, this lowest order linear evolution is given 

by (p'jssibly damped) oscillating normal modes {i.e. there can be no unstable modes 

in thermal equilibrium). These often take the form of travelling waves. The second 

order terms in c represent two-wave coupling, the third order terms represent three-

wave coupling and so on. 

To keep a simple model in mind as we proceed, let us focus on the excitation 

of ?. single mode which nonliiiearly couples only to itself. This reduces to a system 

of the form 

i = /(„). (2.1) 

If u = 0 is to be the equilibrium solution of interest, then we have /(0) = 0. Let us 

assume that / is an odd function in u, since tbii is a common occurance. To write 

our equation as a dynamical system, we introduce v = it and so obtain the system 

u = v i = f[u). (2.2) 

We want to study the evolitio' of small values of u and t , so we choose an asymp

totic initial condition: 

u ( i = 0 ) = €«° v[t = 0) = tv°. (2.3) 
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We now have a hard problem with an initial condition that asymptotic ally 

approaches an intitial condition whose evolution we can solve for We want to 

convert this to a family of problems that asymptotically approach one which wr 

can solve. Let us introduce scaled variables1 

l< = "- V^V-. (2.4) 
t ( 

The in'tial condition in terms of U and V is constant: 

U{t = 0) = v° V ( ( = 0 ) = t > ° . (1.5) 

The dynamical system in the new variables has become an asymptotic family: 

U = V V = M1. (2.8) 

The limiting system as c —* 0 is 

U = V V = / ' (0)-E/, (2.7) 

which is linear. If we express / as an asymptotic series (and remember that / is 

odd), then we see that our system is asymptotically equivalent to 

U = V V =f'(0)-U+lc7f"'{Q) U2r..-. (2-8) 

6 

If we redefine t, u, and v and assume that higher order terms .anish. then this 

system reduces to the Duffing equations for a nonlinear spring: 

6 = v v = -u - fu 3 , (2.9} 

with initial conditions that are independent of <, say for example 

u(t=0)=o v ( < = 0 ) - 0 . (2.10) 
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We shall use this system as an illustrative example as wc proceed. Let us return 

DOW to the abstract setting which we have just motivated. The class of problems 

which require study of a small neighborhood of an equilibrium leads to linear zeroth 

order equations- Examples like gyromotion have nonlinear zeroth order equations 

which are nonetheless solvable due to sym^^tries. 

In general, we are given a dynamical system of the form 

i = X0 + CXi+^X, + --- (2.11) 

in terms of the vector fields X, with initial conditions described by 

x(t,t=Q) = y{c). (2-12) 

We attempt to cypress the solution as an asymptotic series in e: 

x(t) ~ xQ(t) + txx{t) + ~x2(t) + •••. (2.13) 

Choosing coordinates xa (1 < a < N) in a local patch of the state space manifold 

and plugging this assumed asymptotic form into the equation of motion gives 

i o * * - " ! + 2 ? ^ + " = X o ( * o + " i + yZi + •••)+ 
2 

+ <A7( Io + " 1 + - - -2 + •••)+ t 2 - 1 4 ' 

i1 I2 

+ jjJfS(m + «i + y + •••) + ••• 

Asymptotic expansions are unique (see for example [de Bruijn, 1981i), so we can 
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equate coefficients of equal powers of t to get equation? For xo. * i . ^2-

••>• , v „ 

*; = Espfi<*.>*s-E £!<*>> 4 ( 2 , 5 I 

If yff) = po + f l/i + Vs-a + - - • is an asymptotic expansion for the initial condition 

y(f), then the initial conditions for these equations are 

*>(<=<>)= jo, i i ( l = 0) = y i , -.. (2.16) 

The Duffing equations yield the following equations by this prescription: 

uo =fo "o = -«o 

uj =u, 0, = - u , - u | 
(2.17) 

U 3 =V2 t>2 ~ - U 2 ~ 6UQUI 

with initial conditions given by 

uo(! = 0) =o u 0(( = 0) = 0 

t i i ( ! = 0 ) = 0 t,!(i = 0) = G 
(2.18) 

u 2 (( = 0) =0 v2{t = 0) = 0 



2.2 4. First Order Perturbation Equations 

If the Duffing model is itself a truncation of a system with a more general nonlin-

earitv, then it may not be meaningful to carry out the perturbation analysis to too 

many orders. 

These equations immediately raise a number of questions. They are denned in 

terms of j. 'tysically irrelevant coordinates; is the perturbation structure independent 

of these coordinates? If the original equations are Hamilt >nian, aro these equations? 

In J t h order perturbation theory, how are we to interpret this evolution of many 

variables i 0 , i j , . . . , i j ? One goal of this work if to answer these questions. 

2.2.4. First Order Perturbation Equations 

Let us turn to the geometric interpretation of these equations. It is easiest to 

understand the first order perturbation equations. 

For the Duffing example, the first order system is 

«i =f i t>i = - t i i -ul 

u0(t=0}=a v 0(r = 0 ) = 0 
(2.19) 

U l ( ( = 0) =0 vt[t = 0) = 0 . 

In general, the first order equations have the form 

±Q = .Xo(xo) 

b = l 

xo{t = 0) = yo i i (* = 0) = yi. 
We would like to determine the geometric nature of the quantities io and i j . To 

understand what wc mean by this, let us recall the relationship between geometric 

quantities and coordinates. 
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2.2 5. Functions, Covectors, and Cotangent Bundles 

A function on a manifold is an intrinsically defined thing; it assigns a real 

number to each point of the manifold. A coordii^te system on a region of an .%' 

dimensional manifold is a collection of Ar real valued-functions x ' , . . . , z A ' defined 

on that region, whose differentials are linearly independent 1 each point. In these 

coordinates, the gradient of a function is a collection of N numbers: the derivatives 

with respect to each of the xa. Geometrically, however, it is wrong to think of these 

as just real numbers, because they change if we change our coordinate system. For 

example, if we choose coordinates whose values at each point of the region are twice 

those of i 1 , . . . , ! " then the components of the gradient of a function are halved 

We introduce a geometric object whose relationship to the manifold at a given point 

is like that of the differential of a function and we call it a covectoi or one-form 

(see [Abraham, Marsden, ?nd Ratiu, 1983) p.286). In this context, the gradient is 

usually refered to as the differential of the function. The collection of all covectors 

at a point is defined to be the cotangent space at that point and the collection 

of all cotangent spaces taken together form the cotangent bundle (see [Abraham, 

Marsden, and Ratiu, 1983] p. 285). 

2.2.6. Vectors and Tbngent Bundles 

Similarly, the values of the components of a vector ai a point are doubled 

when we double the values oi the coordinates. All vectors at a point taken together 

form the tangent space at that point and all tangent spaces taken together form 

the tangent bundle TM of M (sec [Abraham, Marsden. and Ratiu. 1983) p. 150). 
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Pictorially, we think of a vector as a little arrow whose end is at the point of 

interest as in figure (2.2a). A covector may be thought of as a pair of parallel planes 

representing local level sets of a function whose gradient is that covector ( [Misner, 

Thome, and Wheeler, 1973] and |Burke, 19S0]) as in figure (2.2b). The distance 

between planes gets smaller as the gradient gets larger so that the amount of a 

vector starting at the fij-st plane that is cut off by the second plane is independent 

of thtf scale (and so defines an invaru it pairing between vectors and covectors). 

Covectors have been referred to aa lasagna vectors because of this picture (Jim 

Napolitano, private communication). 

Figure 2.2: a] A picture of a vector, b) A picture of a covector. 

Vectors and covectors are different objects when we consider more than one 

coordinate system, even though they both have N components in any given system. 

If we have two curves in a manifold through a given point, in any coordinate system 
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we may determine if the curves go through the point at the same rait and in the same 

direction (i.e. if they are tar.gcnt to first order) It lure* out that this determination 

is independent of which coordinates are used. In differentia] geometry, one usually 

defines a tangent vector at a point to be an equivalence class of curves whkh are 

tcngent to first order. The invariant pairing between vectors and covectors is thin 

used to define coventors as elements of the duaJ space to the tangent space at a 

point. The dual space V* of a vector space V is the vector space of linear functions 

on V. Our interest here will be to find out whether the quantities x%,..., x° for 

1 < a < N have any geometric structure that is independent of a given coordinate 

system 

2.2.7. The State Space for First Order Perturbation Theory 

Intuitively, the first order quantity i j repiesents a small deviation from the 

unperturbed quantity Xo- Because XQ can vary over the whole manifold M, we 

expect it to represent a point in the manifold. As c geta smaller, xQ 4- eij approaches 

the point XQ. The variable i i measures the first order rate of approach to x<>. Two 

different paths in the manifold approaching the point IQ ase approaches zero have 

the same x\ if and only if they are tangent at xo- This, however, is the defining 

criterion for a vector at the point xo. We thus expect x t to lie in the tangent space 

to Af over the point XQ. The (xo,ii) dynamics then takes place in the tangent 

bundle TM. We will describe this dynamics on TM intrinsically in tor*ns of vertor 

fields derived from X{t) on M. 
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2.2.8. Flows and Derivatives 

The solution of a system of O.D.E.'a tells us the state at each time t of a system 

which began with each initial condition. Geometrical!}', this is a mapping of M to 

itself for each i. If the solution doesn't run off the manifold, then the uniqueness 

and smoothness of solutions with given initial conditions tells us that this map is 

a diffeomorphism (i.e. a smooth, *-l, onto map with smooth ravnse, 1 Abraham, 

Marsden, and Ratiu, 1983] p. 102). This one-parameter fami'y of diffeomorphisms 

labelled by tis called the flow of the dynamical vector field {see [Abraham, Marsden, 

and Ratiu, 1983] p. 185). As e varies, the corresponding flows of X{t) will vary. 

Perturbation theory describes that variation. Any time we have a mapping / from 

one manifold to another, we may define the derivative map Tf, called the tangent of 

/ (see {Abraham, Marsden, and Ratiu, 1983] p. 153). This is a map chat takes the 

tangent bundle of the first manifold to the tangent bundle of the second. It descr.bes 

how infinitesimal perturbations at a point are sent to infinitesimal perturbations at 

'be image point. In coordinates, it acts ox? the tangent space at a point via the 

Jacobian matrix of / at that point-

2.2.9. Dynamics for First Order Perturbation Theory 

Let us denote the flow of the unperturbed vector field XQ by xo(t). x0{t,yo) 

is the point to which j/o has flowed in time t under XQ. A small perturbation in 

M h-om a given orbit will evolve under Xo according to the derivative of this flow: 

Txa[t). This derivative is itself a flow on the manifold TM. The vector field of 
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whi' i. it is the Sow may be written 

XQ= ~\ Tx0(t). 12 21, 

A'0 is a vector field on TM, defined without recourse to coordinates, that repu^eot--
the effect of the unperturbed flow on perturbed orbits In coordinates, A'o ha.c 

components given by 
^o = ^ o ( I o ) 
-« V ^ * S , . „ (2.22; 

6=1 

These dynamica] equations represent exactly that part of the perturbation equations 

(2.20) which depends ou XQ. 

For the Duffing example, these equations give 

" 0 = " 0 ^0 — —VQ 
(2.23) 

" 1 = V l i>l = - U i -

The last two of these describe the evolution under the zero order equations of a 

little perturbation along («i, f i ) . We now set that (ui,i ' i) gives the coordinates of 

a tangent vector based at (uo,i>o)- The (u^ui) equations are of the same form as the 

(uo.Vo) equations. This is because the zero order system for the Duffing oscillator is 

linear and the derivative of a linear r ip is tLe identity when 've identify the linear 

space with its tangent space. 

The part of the dynamics which depends on Xi may also be defined intrinsically 

For any i e A f and v € T, M, we define 

.*- • (* , ' • ) - j , I ( v - ( . v , ( i l ) . <Xii) 
d'\,-o 
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The A'i dynamics for the Duffing system i*> 

uo =0 t'o - 0 
(2.25) 

Uj =0 TJ, = -lijj. 

This represents the additional effect of the perturbed equation without including 

the effect of ihe unperturbed system. 

The entire first order perturbation dynamics on Thi is given by 

A u + X i . (2.26) 

We have therefore succeeded in finding a geometric, coordinate-free inter;1*-etation 

for first order per" urbation theory. 
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2.3. Tue_ Geometry _of Jth Order Per turba t ion Theory 

WY now would like to extend thb picture to higher orders The geometric 

object that arises is called a jet. To understand the setting, we discuss a number of 

relevant spaces. 

2.3.1. T h e P a t h Space 

How are we to think of the exact equation for the evolution of an e-depeodent 

point x(e) under e-dependent evolution equation^ i(e) = X((,x) with f-dependent 

initial conditions y[t)? It is useful to think of the (-dependent point x[() as a curve 

in the apace / x M, where / is the interval (say [0, lj) in which t takes its values 

(as in figure (2.3)). We ehall call such curves paths (aa this is the standard mathe

matical tenninology). Moving along a path corresponds to varying the asymptotic 

parameter e. 

If we think of z(e) as a map from / to A/, then the curve is the graph of this 

map. The dynamical vector field X{t) naturally Uves on I x M and its J component 

is zero everywhere. The flow of X(e) on / x M takes paths to paths by letting each 

point of a path move with the flow as in figure (2.4). Our initial conditions are 

represented by paths (if they are independent of c then they are straight lines). The 

true dynamics takes paths to paths. Even if the intial conditions are t-independent, 

the c dependent dynamics bends the path over as in 6gure (2.5). 

Thus we really should think of our dynamics as UviLg on the infinite dimensional 

pa tii space 

PtM = I space of all paths p : / — / x M of the form p : t — ( t ,x(0) }. (227) 



2.3.1 Tbr Path Space 

Figure 2.3: Curve in / x Af. 

where, as before, / = [0, l] . For the Duffing example, this is the space of curves in 

(u,v,c) space that project diffeomorphicaUy onto e. Each curve represents u(e),v(e) 

for e m I. 

This space projects naturally onto 

P0M = I equivalence classes in P\M where pi — pa iff Pi (0) = P2(0) >. (2.28) 

The projection sends a curve to its t = 0 endpoint which represents the point 

about which the perturbat ;_in is taken. PQM is naturally isomorphic to M and 

represents the domain of the unperturbed dynamics. The equivalence classes forget 

all perturbation information and only remember behavior at t = 0 as shown in 

figure (2.6). 
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Figure 2.4: A path moving under the influence of a vector field X{t). 

2-S. l . l . Spaces of Shorter Paths 

We are interested in spaces through which this projection of actual to unper

turbed dynamics factors (i.e. spaces which are the image of a projection from the 

first space and the domain of a projection to the second space, such that the com

position of these two projections gives the original projection from the first to the 

second space). Perturbation theory tries to study behavior infinitesimally close to 

(• = 0 without actually getting there. For each 0 < a < 1 we may define 

PQM = < equivalence classes in P\M 
(2.29) 

where p] — p 2 iff PiiO ~ pi{t) V 0 < i < r> >. 

The^e allow us to consider more and more restricted domains of t. but there i? always 
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Figure 2.6: An e-independent initial condition becoming f-dependent. 

a continuum of e'a to traverse before reaching i = 0. For each 1 > c»i > a 2 > 0 we 

have the natural maps 

PiM ^P0iM - PaiM - PDM. (2.30) 

2.3.3. The Space of Germs of Paths 

We are interested in structure between "even the smallest PaM with a ^ 0" 

and PQM. We may introduce germs of paths: 

GM = < equivalence classes in PtM where pi ~- p 2 iff 
1 (2.31) 

5 n n > 0 such that pi(t) = p2(<) V 0 < i < a 1 2 >. 
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Figure 2.6: The projection of a path to its e = 0 endpoint. 

For any Q > 0 we have PaM —» CM ~* PQM. The germs capture behavior closer to 

c ~ 0 than any given e, but still contain much more information than perturbation 

theory gives us (genrs depend on features of functions in a little neighborhood that 

may not be raptured in a Taylor series.) 
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2.3.3. The Space of Je ta of Pa ths 

Kinalh we may introduce spaces of jets of paths at < = 0 with integer 1 < J < 

X-

J Si ~ I equivalence classes in P\M where pt -^ p 2 iff 

V C™5 functions / on / x M we have (2.32) 

^71 / ( P i ( 0 ) = | T | /(P2t0) f o r O < i < j | . 
0 i l«=o d f \t=o ) 

Notice that ooAf is the space of infinite formal power series by this definition. The 

apace of J-jets gives the first J terms in a Taylor expansion of the curve around 

e — 0 in any coordinate system. Clearly, 

GM — ooA/ — IM — JM — P0M for I > J. (2.33) 

Thus the jets focus on information c.ceer to < = 0 than even the germs. 

In the Duffing example, the J-jet of (u(c),t>(f)) consists of the values of the first 

J derivatives with respect to e of u and v. We called these iicUotUiiVi, **J,VJ-

2.3.3.1. Coordinates on the Jet Space 

If i ° for 1 < a < N are coordinates on M « PQM KS OM, then we may 

introduce coordinates {zg , ! " , . . . ,1^} for 0 < J < oo on JM to represent the 

equivalence class of the curve: 

in / x hi (near t - 0 this won't leave the chart on which the x° are defined). 
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The claini here is that JM reprc;-eiiU geometrical)} *he perturbation ipantitie> 

.-_ TJ it may seem strange to go through the infinite dimensional space P\ M 

-.L, g-?: 10 it. but we shall see (especially when looking at the Hamiltoni;oi striKture] 

iha; II organizes and simplifies the structures of interest. It is a completely intrinsic 

ind natural (or in modern parlance: functorial} operation to go from the original 

dynamical manifold M to the path space PXM to the jet apace JM. We shall 

Doa show that the dynamics on M also induces natural dynamics on P\ M and 

then projects from there down to JM where it is the perturbation dynamics we 

are interested in. Later we will see that a Hamiltonian structure on M leads to 

Hamihonian structures on P\M and JM. 

The dynamics i = X((,x) takes elements of PXM to other elements of P\M 

and in fact taJ'es equivalence classes to equivalence classes for each of PaM', GM, 

x.M. JM, and M. This is what allows us to obtain an induced dynamics on each 

of these Hpaces. To determine this dynamics explicitly, we must understand what a 

tangent vector on each space is. 

2.3.4. Tangent Vectors to Path Space 

Intuitively, a vector represents a little perturbation fo a point. We define it 

precisely as an equivalence class of tangent curves, where the curve represents the 

direr'ion of perturbation and the equivalence class ensures that only t h ' first order 

motion is reflected in the tangent vector. A point in the path space PjAf represents 

a path in / x M. A small perturbation of this point represents a nearby path. Each 

poic: of the path is perturbed a li'tle bit and we are interested m the first order 
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perturbation We therefore expect a tangent vector to a point in path space to 

he a vector field along the corresponding path aa in figure (2.7). By a vector field 

along a path, wf me:m a cboire ot tangent vector to M at each point of the path. 

In general, a vector field along a map / from a manifold M to a manifold N, is 

a smooth choice of image-space tangent vector in Tj^jN for each point x in the 

source space M. 

Figure 2.7: A small perturbation of a path in / x M is given by a vector field 

along that path. 

A curve p(i) in PiM parameterized by ~i defines a curve p{t.l) for each e 

.hrough p(t, ' j = 0) in / x M. The equivalence class of curves m P\M defining 

a vector thus reduces to an equivalence class of curves in M for each *. v . t may 

identify a tangent vector to p in P\M with a field of vectors over p in / x M such 
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that each vector has no £ component. For p e Pi M a vector V t" T p(P]A/) i*. a 

map 

V i - I x r.W (2 35) 

taking t — (<,V(0) where V(e) e T p ( , ,M (i. e a path in I'M) 

For the Duffing example, a tangent vector based at the path (u(0.'•(<)) has 

the form (*5«(f),iv(()) and represents the vector field 

MO I-1 + M o | - | (2.36) 

along the path (u(e),v(0). 

2.3.5. Tangent Vectors to the Quotient Spaces 

The tangent spaces to the quotient spaces are defined by taking the derivatives 

of the natural projections. Because PQM as M, we see that TF^M »s TM. Because 

the first jet apace is isomorphic to the tangent bundle: \M ^ TM, we see that 

TIM A= TTM. Thus the first order perturbation space \M is naturally TM and 

the dynamical evolution is given by a vector field on TM as we saw in section 2.2.9. 

2.3.5.1. Coord'uates on the Tangent Bundle to the Jet Space 

As with . U tangent bundles, TJM has a natural coordinate chart, derived 

from the coordinates {z£ ...,xtj) , 1 < a < N on J M d'Jned earlier. We obtain 

coordinates { ig , . . . , i ^ , ug, • • •, f ° } by writing the corresponding vector as 
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We would like to know to which set of components {VQ, ... , Vj}, the equivalence 

clash of a vector \'{t) on PXM corrfsponds. For the Duffing example, a tangent 

vector to the apace of ./-jets looks like 

c u 0 - — + 6v0~— + .. . + 6uj .— + 6vj-—. ('2.38) 
du0 dvo o-tj avj 

2.3.5.2. Coord ina te Relat ion Between Path and Jet Vectors 

To the path xa{() representing a point in P\M corresponds the point coordi-

natized by 

xl=^—\ z°(c), i<a<N, 0<k<J (2.39) 
d t l.=o 

in JM. To the curve of paths xa[(,~f) in PiM corresponds the curve 

Ik(l)=^i\ i a ( £ . l ) . 1 < « < JV, 0 < fe < .7 (2.40) 

in JM - The vector tangent to this curve in TP\M has coordinates 

In TJM this corresponds to 

a! id' 
a~l \ a l l - ° ( ' .T) ) 

SL(*L« 



2.3 6 Dynamic- on Path Space 

For ihe Duffing equation, the tangent vector represented by (ri<(t). .** \>)} project *-

to the jet span vector 

(2 4 3 t 
r> d d 

- e-v 
OUQ dv0 

J,luj 

6uj =^-6u(e)l«=o ftvi - --6t-((), ^o 
Of Oi 

dJ dJ 

b u j - ^ J 6 U ^ ' ^ ° 6 v j = i j ^ ( ( J U o 

2.3.6. Dynamics on Path Space 

Lot us now consider the effect of the dynamics r = A*(t, T) on paths This lift? 

to a vector field on P\M given by 

X where X{p): c — X(<.p(<»- (2.451 

This is the path space dynanuc&J vector field. Note that this vector field is of a 

very special type and not every vector field o-i Pj AY can arise in th l s way For the 

Duffing example, the path space vector field (6u(<), ^'(Ol'u.v a t t n c P°int (u. v) is 

equal to 

bu\i) = v[t) 6t(<) -= - u ( f ) - ( i i 3 ( r ) . (2 ,6) 
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2.3.'.'. Dynamics on Je t Space 

11: coordinates, the corresponding vecLor field on JP i 

dk I iJ 

V£{x<i, ...TJ)=~\ Xa{t,zo + txl + •••+ --xj) 

%' x'u.IB),k^\ E a ? A " ( ( ' I o ) I ? + - • {2A1) 

which is exactly the perturbation dynamics up to order J obtained in equations 

(2.15)' 

For example, we calculate that 

V 0 °( i , . ...u) = A'°(0. i o ) 

- I X 

£ 
at 
, i 
•a . 

V?(x° *j) = |-1 A " ' ( 1 , i 0 ) ^ / i r A " ' ( 0 , x „ K 

VJ°(IO.- • ,ZJ) = j - 5 A""(f,i 0) 

(2.48) 

ID the Duffing example, we see that the jet vector field 

6 u o A , 6 l . 0 1 - + ... + * U J - - + *tV ~ (2-49) 
dun dv, ouj dvj 
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has the components: 

6u0 =tv{0) "- t-(0) 

6 U O ^ L - ( 0 ) - -tx(0) 

bu,= | - | ( = = 06u(<) + ^-1 N 0 ) ] t n + I-1 (^{0) ;M 

=0 + 0 + 1 - 1 ' ! = V l (0 ) ( 2 - 5 °) 

6vx = I - i 6v[<) + £-\ (6v(0))ux + | - 1 (6«(U))wi 

= - u 3l0) + ( -1 - 3 (u 3 ) | « = 0 u , = -u 3 (0 ) - U l 

We have thus found the natural geometric Betting for J th order perturbation 

theory in a certain jet bundle. The picture of the dynamics of paths in / x M is an 

extremely fruitful one One can prove that the solution of the perturbation equa

tions (2-15) really is ttiv asymptotic expansion of the true solution just by noting 

that they are the equations of evolution of the jets of the paths evolving under the 

true dynamics. The coordinates in which the dynamics are expressed are irrelevant 

as regards the perturbation dynamics and therefore we can do perturbation theory 

on manifolds and in infinite dimensions as is required for many physical systems. 

Next we will review modern Hamiltonian mechanics and indicate why the pertur

bation dynamics is Hamiltonian in a natural way if the unperturbed dynamics is. 



2.4. Geometric Hami/ionian Mechanics 

2.4. Geometr ic Hamil tonlan Meghanicei 

"The next morning, I hurried aJong to one of the libraries as soon as it was 

open and then J looked up Poisson brackets in Whittaier's 'Analytic Dynamics' 

and 1 found that they were just what / needed"—P. A. M. Dirac in [Dirac, 1977] p. 

122. 

The evolution of mechanical systems is traditionally described in terms of gen

eralized coordinates q, and their conjugate momenta p.. One introduces the Hamil-

tonian function 

ff(«i.-.-,«».Pi P.) <2-51) 

and the Poisson bracket 

of two functions of qx and p,. Any observable / evolves according to the evolution 

equation 

f = V,H). (2.53) 

For the Duffing example, we may use the Poisson bracket 

du dv dv dv. 

the Hamil tonian 

Together these give rise to the correct equations: 

(2,55) 

{ « , ; / } = — = « (2.56) 
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am: 

i={v.H) = — ---«-,J. (2.57) 
on 

2.4-1. Poisson Manifolds 

For a detailed description of the modern approach to mechanics see references 

[Abraham and Marsdcn, 1978], [Arnold, 1978], and [Marsden, 1981]. The mod

em perspective regards the particular coordinates pt and g, as physically irrelevant. 

Just as general relativity isolates the physically relevant essence of local coordinates 

in a metric tensor, modem classical mechanics views the Poisson bracket structure 

(not necessarily expressed in any coordinate system) as the physical entity. Just 

as physics in spacetime is invariant under transformations that preserve the met

ric, physics in phase space is invariant under the canonical transformations which 

presen'e the Poisaon bracket. In the modern viewpoint one proceeds axiomatically 

and does not require canonical coordinates. Dynamics occurs on a Poisson mani 

fold. This is a manifold of states with « Poisson bracket defined on it. From this 

viewpoint a Poisson bracket is a bilinear map from pairs of functions to functions 

which makes the space of function; into a Lie algebra and acts on products as a 

derivative does: 

I. BUinearity: {aft +• fa/2l3} = a{ / i , g) + b{ / 2 , g) 

II. Anti-symmetry: {/iff} = ~{u,f\ 
(2.58) 

III. Jacobi's identity: {/,{», Ml + {S.C>./}} + {A, {/,»)} = 0 

IV. Derivation property: {/-?M - {/.ff}^ + {/. h}§ 
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2.4.2. Hamil tonian8 and Hamiltonian Vector Fields 

The Hami/(on;'an is a function on the Poisson manifold- The evolution of local 

coordinates 2' is obtained from a Hamiltonian H and the Poisson bracket {,} via 

i' = x H . z * = {z\H}. (2.59} 

A'H is 1-he HamUtonian vector field -associated with H and defines a dynamical 

system. The fourth property of a Poisson bracket implies the useful expression 

Thus the Poisson bracket is equivalent to an antisymmetric contravariant two-tensor 

J ' ' = {*',*»}. (2.61) 

2.4.3. Symplectlc Manifolds 

If this tensor is nondegenerate, its inverse ui = J~l is a closed, nondegenerate 

two-form called a symplectic structure. In this case our Poisson manifold \& known 

as a syxnpJectic manifold (see [Abraham, Marsden, and Ratiu, 1983] p. 463). The 

terminology is due to Herman Weyl. The syraplectic group is related to "line 

complexes" in projective geometry and so w was originally refered to as a complex 

structure. There is another object that naturally has this name in the study of the 

complex analysis of many variables, however. To eliminate this confusion, Weyl 

took the Latin roots com and plex and converted them to their Greek equivalents 

57m and pJectic. 
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2.4.4. Symplectic Leaves and Bones and Caeimi Functions 

Because we do not require nondegeneracy, a Poisson manifold is a more general 

notion than a symplectic manifold. If J is degenerate, then there are directions in 

phase space in which no Hamiltonian vector field can point. The available direction-

lie tangent to submanifolds which fill ou> the Poisson manifold and OD which J is 

nondegenerate. The highest dimensional of these form a foliation of their unicu and 

so are known as symplectic leaves. The only prior usage of the term symplcctic in 

English is to describe a Bmall bo- ' in the head of a fish. Because Poisson is French 

for fish, the lower dimensional symplectic Bubmanifolds are sometimes known as 

symplectic bones (these notions were introduced in [Weinstein, 1983a]). Together, 

the symplectic leaves and the symplectic bones fill out the Poisson manifold, and 

any Hamilton!an dynamics is restricted to he on a single bone or leaf. Any function 

which is constant on each bone and leaf Poisson commutes with every other func

tion. Any function which Poicson commutes with every function is automatically 

a constant of the motion, regardless of the HanuV&nian and is called a Casimir 

function. 

2.4.5. The Natural Symplectie S t ruc ture on Co ' angen t Spaces 

A natural symplectic manifold arises from each LagTangian mechanical system 

on a confirjration space C. The Lagtangian L lives on the tangent bundle TC 

[velocities being tangent to the curves of motion in c -.'jguration space are naturally 

tangent vectors). Hamiltonian mechanics takes place on the cotangent bundle T*C 

(momenta, being derivatives of L with respect to velocity, are naturally dual to 
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velocities and thus are covectors). At each point x of C, the set of velocity vectors 

v in TjC are identified with corresponding momenta p in T*C by a Legendre map 

defined by L (the classical concept of a Legendre map is described in modern terms 

in section 16.5.11): 

P = ^ . (2.62) 
av 

The HaJniltonian is a function on the cotangent bundle which on each cotangent 

fiber is equal to the Legendre transform (described in section 16.5.5) of the the 

Lagrangian restricted to the corresponding bber of the tangent bundle. 

T'C has the natural symplectic structure 

u=-d9 (2.63) 

where 8 is an intrinsically defined one-form on T'C (see [Abraham, Marsden, and 

Ratiu, 1983] p. 465). 6 must pair with a tangent vector v in TT'C based at (x,cr) 

In T'C to give a real number. To define this we use the natural projection 

x : T'C - C (2.64) 

which takes a covector to its basepoint in C- The differential of TT sends TT'C to 

TC and may be applied to v to get a vector tangent to C. Q is a one-form on C 

and may be applied to this vector. Let us define the pairing of 6 with v to be the 

pairing of a with the image of v under TT: 

6(v) = a{Tvv). (2.65) 

In coordinates qa on C, this takes the form 

6 = padqa (2.66) 



2.4 :> The .VaturaJ Svmplcctii Structure on Cotangent Space* 113 

and ,' ads to the symplectir form 

-• - dq" Adp 0 . (2 67) 

This construction generalizes the asuaJ structure in tercn> of canonicaJ p'*- ami q's lo 

configuration spacer which ire manifolds. Symmetry is responsible for the simpl'Jed 

systems about which we perturb and plays an intimate role in our geometric theory 

We therefore next introduce some key modern ideas and basic examples relating to 

Hamiltonian symmetry. 
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3.5. HamiUoniaa SyBtems with Symmetry 

Perhaps the central advantageous feature of systems with a Hamiltonian struc-

tu pe L-i a g'-ncralizatiou of Soether's theorem relating symmetries to conserved quan

tities. Noether considered symmetries of the Lagranfian under transformations of 

configuration space. One may introduce generalized coordinates (g i , . . . ,qn) where 

(<?2- • • • • Qn ) S-fP constant under the symmetry transformation and q\ varies with the 

transformation. For example we might take the configuration space to be ordinary 

Euclidean 3-spare where the action of the symmetry is translation in the x direction, 

and utilize the coordinates 

gi = x, qi= y, g 3 - 2- (2.68) 

That L is invariant means that it does not depend OQ 

coordinate. The Euler-Lagrange equations 

d_ /dL\ dL 
dt \dq) dq *~ 

show that in this case the momentum 

dL 

conjugate to q\ is actually a constant of the motion. 

*7i, i.e. gi is an ignorable 

[2.69) 

(2.70) 
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2.5.1. Generalized Noether'B Theorem 

By going to a Hamiltonian description in terms of Poisson bracket* we mav 

extend Noether's theorem in a fundamental way We may consider a one-parameter 

symmetry transformation of the whole phase space as opposed to just configuration 

space. If this transformation preserves the Hatniltonian and the Poisson bracket 

(i.e. is a canonical transformation) then it is associated with a conserved quantity. 

We will see that this extension of Noether's theorem is essential in the case of 

gyromotion and in ot'ier examples. 

One-parameter families of canonical transformations of this type may be repre

sented as the "^ime" o evolution generated by some function J, treated momentarily 

as a Hamiltonian. Parametrizing our transformation by e and labelling points in 

phase space by z_, the solution z[e) of 

g = U , J } 2(. = 0 ) = a (2.71) 

is the family of canonical transformations generated by J. 

If the transformations generated by J are symmetries of H then 

di? _ y ^ 3H dzx 

ds ~ 2-* Qzl de 

= (B,J) 

= -j. 

(2.72) 

So J is a conserved quantity. 
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2.5.2. Circle Actions 

We now consider the case in which the solutions of 

dz 
d, = U,J) (2.73) 

are all closed curves with the same period We will call these closed orbits loops. 

The symmetry transformation is then said to be a circie action on phase space. 

e 
>i f\ /', /\ f\ f\ f\ f\ j 

J 
Figure 2.8: The circle action on J,6 phase space. 

For example we might consider rotation by 9 in J, 8 space. In this case phase 

space looks like a cylinder (as shown in figure (2.8). The Poisson bracket is 

U t 9 i 30 dJ dj'dB' 
(2.74) 
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J generates the dynamics 

de 
~d* 
dJ_ 
'do 

which just rotates the cylinder. 

2.5.3. Reduct ion by a Circle Action 

In studying the dynamics of a Hamiltonian H symmetric under a circle ac

tion generated by J , we may make two simplifications which toge'.hei comprise 

the process of reduction. This procedure was defined in [Maisden and Weinstein, 

1974] io a more general setting that we will describe shortly. The process unifies 

many previously known techniques for simplifying specific examples of Hamiltonian 

systems. 

2.5.3.1. The Reduced Phase Space 

1. Because J is a constant of the motion, the surface J =constant in phase 

space is invariant under the dynamics and so we may restrict attention to it. 

2. The symmetry property of H implies that if we take a solution curve z{l) 

of the equation z — {?•#} and let it evolve for a "time" s under the dynamics 

i = {z,J} then we obtain another solution curve of z = {z,H\. In fact th • 

dynamics of H takes an entue loop into other entire loop?. 

The dynamics around loops is easy to solve for because 

= {e.j}-- i 
(2 751 

= 0, 
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Notice Ciat 6 is not uniquely defined but 9 is. We are interested in the problem of 

finding the dynamic? from loop to loop. We want to project the original dynamics 

on ph, -pace P down to a space P / S 1 whose points represent whole loops in P 

Let u^ <AI1 P/S1. the space of loops and -n : P —* P/S1, the projection mapping 

loop? in P to points in P/S1. For example, when P = J.6 space the projection 

mapping takes J,Q to J. This projection is shown in Gguie (2.9). Thus the second 

simplifii ation is ' o consider dynamics on the apace of loops P/S'. 

I fa{ fa{ faf fat fat fat fa 
I \ i \ I \ I \ i \ t \ t 

: : : " 
1 i 1 1* i 1 I* i i I* >L 

m u m 
Figure 2.9: The projection of J, 6 space to the space of loops 

Performing both of these operations- restricting to J =constant and consid

ering the space of loops— leaves us with a space, 

R~ P/S'\j_ (2.77) 
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of two dimensions lesv than P. called thr reduced space 

We have seen that the dynamics on P naturally determine* dynamic- on R The 

key importance of R is that R's dynamics is itself H&miltoiii&n For this statement 

to make sense we need to find a Hamiltonian and a Poisson bracket on R These 

are the so-called rec'ueed HanuVtonJan and reduced Poisso:. bracket. 

2.5.3-2. The Reduced Hamilton is n 

The original Hamiltonian H on P is constant on loops by the symmetry con

dition. We may take the value of the reduced Hamiltonian at a point of K to be 

the value of H on the corresponding loop in P. 

2.5.3.3. The Reduced Polsson Bracket 

To obtain the reduced Poisson bracket of two functions / and g on R, we 

consider any two functions / and g on P which are constant on loops and agree 

with / and g when restricted to J —constant and projected by TT to R. The Poisson 

bracket on P of / and g will be constant on loops and its value on J ^constant will 

be independent of how / and g were extended as functions on J (because they are 

constant on loops: {/, J } = 0 and {g, J} = 0 so {f,g} is independent of df/dJ 

and dg/dJ). Thus the value of the reduced Poisson bracket on R of / and g is the 

value on the corresponding loop in P of the Poisson bracket of any two extensions 

f,g that are constant OD loops. 
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2.5.3.4. Coord ina te Calculation of the Reduced Space 

In example* we often introduce a coordinate 9 describing the position on a 

loop We may then treat P/S' as the set 0 - 0 (at least locally). In this case R is 

the subset 6 =const?it, J ^constant of P. The reduced Hamilton ian on R is just 

the value of H on this subset of P To calculate the value of the Poisson bracket of 

two functions on P on this surface, we need only their first derivatives there. 

If the functions are constant on loops (i.e. independent of 6), then the derivative 

d/d& is zero. The dependence on J is irrelevant, so we may take the derivative djdJ 

to be tero. Plugging these two expressions into the Poisson bracket on P gives us 

the expression for the reduced Poisson bracket on R. 
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2.6. I xample: Centrifufial Force 

We consider a particle on a two-dimensional plane moving in a rotational!) 

symmetric potential The phase spwc is then T'&J with coordinates ( j .y .P i .p v ) 

The Poisaon bracket is the canonical one. 

df dg df dg df dg df dg 
tfx 9p T 5p x ax ay d p v dp,, ay 

The Hamiltonian is taken to be 

/?=2^(pJ-pJ) + v(\/?T7) (2-79) 

The symmetry on phase space is given by the evolution of the equations 

dx _ dy _ 
de do 

dpx dpv 

~d7 = -p" -d7 = i 

(2.80) 

We may think of a point in phase space as a point in the plane (r,y) with a vector 

attached {px.Pf,)- The action of the symmetry is to rotate tbe plane about the 

origin, vector and all as shown in figure (2.10). 

2 .6 .1 . Angular M o m e n t u m Generates Rota t ions 

The Hamiltoniao depends only on the radial distance and the magnitude of 

the momentum vector and so clearly remains invariant under this rotation. The 

rotation is a canonical transformation with generator J satisfying 

df , , , , df df df Bf 
± ={f,J) = X7f. -yJ. + p ;

 p J (2.811 
ds dy dj dpv "dp, 
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Figure 2.10: The action of the circle symmetry on momentum \ecto.s. 

for any / . TaJdng / = x,y,px,pv gives 

3J 
dp, dPy dz ~ V v dy' 

(2.82) 

Thus we see that the generator is J = xpv ~ ypx, i.e. the angular momentum. We 

may label a loop by the value of x,px, and p„ when y = 0 and x > 0. J on this 

subset is just xp„. These then form coordinates on the space of loops F / 5 1 . Notice 

that the value of x on a loop when y - 0 defines the radial coordinate. For clarity, 

we will introduce the coordinate functions r and pT on the reduced space for rach 

J A loop is labeled by r if i - r when t; = 0 on that loop. A loop is labeled by p r 

if px — Pt when y ~ 0 on that loop. 

file:///ecto.s
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2.6.2. The Reduced Space and Bracket 

To get the reduced spact we «e*. J to the conMant value ji To g<-t tbr -eduferi 

bracket, it is easievt to envision the two- dime nsioual red in o spare with coordi-

natrs (r.p.) a.« a gubmaiiifold of the four-dimcnsioaai total space with coordinate*-

( i , p 3 , y , p v ) defined by: 
x ~T P: = pr 

„ (2-83) 
y - 0 p v = - • 

This submanifold intersects each loop transversely in exactly one point since a loop 

has y ~ 0 with x > 0 at only one point. It also lies entirely in the level surface 

J = fi since 

J = zpv-yp* = r ( £ ) - 0 - p r = /i. (2.84) 

We want to know the reduced Poisson bracket of functions / ( f ,p r ) and g(r,p r) of 

r and pr. As in section 2.5.3.3, we define the bracket of two such functions by 

introducing f{x,px,y,Pv) and g(xtpz,y,pu) on the four-dimensional space which 

are equal to / and g when restricted to the two-dimensional submanifold and which 

axe constant on loops. We take the four-dimensional Poisson bracket of / and g. 

This bracket is also guaranteed :.o be constant on loops. The restriction of the 

bracket of / and g to the (r, p r ) submanifold is defined to be the bracket of / and 

g. Since we only need the full bracket on the submanifold, we don't really need to 

know / and g everywhere; we need only their derivatives in each direction at points 

of the submanifold. We calculate these derivatives as follows. Derivatives along the 

submanifold are the same as for / and g: 

dj df 
ax or 
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and 

df df 
37, = A ,2'86) 

with .-imiiar expressions for g. Derivative* of / and g aloni^ the loops (and so 

t ransversa to the submani fo ld) must be zero since f and g are cons t an t oa loops. 

Th i s implies t h a t on the manifold 

3/1 

(2.87) 

I •ubm&nifold 
df df df df 

= x - r y - r - " ' - P I T Pv-^— 
dy dx npv " apx 

df n 3 / 3 / fi 3 / 

dy or opv r dpr 

Finally, we may ex tend / in t h e fourth d i rec t ion in any way we l i i e because t h e 

resul t is i ndependen t of th i s extension. For simplicity, let us choose 

dpy 

dy r 2 dpr 

Now we can calcula te t h e reduced bracket : 

{ / , g } R ( r . P r ) - { / . » } ( * = r . » = 0 , p T = p , , p „ = - ) 

-2LHL- 2L21 3 / dg df 3g 
dx dpr dpT dx dy dpv dpv dy 

_dj dg 3 / dg p df fl p u 3 g 
3 r d p r 3 p r 3 r r 2 3 p r r 2 d p r 

= 3 / 3 ^ _ 3 £ 3 g 
3 r 3 p r 3 p r 3 r 

(2.81 

(2.89) 

(2.90) 

T h e r educed bracket in t h i s case is jus t t h e canonica l bracket on r, p r space. 
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2.6 3. The Reduced Hamil toniac Gives CenizifugnJ Force 

The reduced HamUtoni&n is obtained by restricting the original HamiUoiiiari 

^ubmanifold and is given by 

Note the effective potential j j 2 /2mr 2 d je to reduction, that represents the centrifu

gal force. 

As an aside, it is interesting to note that N'ewton derived the centrifugal force in 

a more "kinetic" way which is related to averaging in statistical gas models [Brush, 

1983]. He envisioned the motion of a particle along a circular path as the limit of 

motions on paths on inscribed polygons as the number of sides becomes infinite. 

Imagine a circular frictionless billiard table and a billiard ball which reflects from 

the wall in each traversal about toe ed^e of the table. Equivalently a mass attached 

to a string whose other end is fixed (e.g., a tether ball) can undergo polygonal 

motion wh?re the string is tully extended only at the vertices. The centrifugal force 

is just the average radial momentum transfer per unit of time. It turns out that tbi> 

is independent of the number of bounces Newton considered the average force for 

an inscribed square. Ea - b impact transfers 2mv/y2 units of momentum. The total 

radial momentum transfer is then Ay/2mV. The distance travelled by the ball in one 

tra-. sreal is 4-j2r. The time thi« taltes is VJ[A\/2T). The average radial momentum 

transfer per unit of timr is then 

/ r \ mv~ 
" 2 "» L / - J " -r {2m) 
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which is the centri/ugaj force. (The samp result is even easier to obtain with just 

two bounce*. The momentum transfer ia 4mv and the time is '"/4r.) The first 

correct account of centrifugal force was actually given by Huygens, who is better 

known for his idea? on wave motion. 
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2.7. Higher DlmriiKititial Symmetr ies 

'The best and latest mathrmatiiaJ method* 10 ap/war on the market Lave heel) 

usi\i Mhenevrr possible Ju doing this many an old and trusted favorite of tb^ older 

generation has been forsaken, as / deemed it best not to hand dui/ and worn-out 

tools down to the next generation r - [ThirricR. 1978, p iv 

Quite often physical systems are blessed with more than one dimension of 

symmetry. In keeping with the philosophy of not making unp'uysical choices, it is 

natural to consider the process of reduction in the presence of an ij-bitrary Lie group 

of syit-metry. This program was carried out in [Marsden and Weinstein, 19/4]. 

A Lie group is a group which is also a manifold, such that the group operations 

respect the smoothnesa structure. A good example to keep in mind is the group of 

rotations of three-dimensional Euclidean space. This group is denoted by 50(3). 

It may be thought of as the space of 3 by 3 matrices (this is the 3 in S0(3)} which 

are orthogonal (this is the 0 in S0(3)) and have unit determinant (this ia the 

S, which stands for special). The group multiplication is matrix multiplication, 

and the manifold structure arises from thinking of SO(3) as a submanifold of the 

nine-dimensional Euclidean space of all 3 x 3 matrices. 

2.7.1. Hami l ton ian Symmet ry 

A Hamiltonian syste-j with symmetry consists of a Poisaon manifold M, a 

Harailtonian H, and a group G that acts on M so as to preserve both H and the 

Poisson bracket {, }. The tangent space of G at its identity may be identified with 

the Lie algebra g of the group and represents group elements innnitcsimailv close 



2 7 2 The Momentum Map 128 

to the identity The action of an iDfinitcsimal element of G on M perturbs each 

point of Si by an infinitesimal amount. Thus each element v of the Lie algebra of G 

naturally determines a vwtor field on Si. The action on M of the one-dimensional 

siibgroup tc whidi r it tangent, is given by the flow of this vector field. That the 

group action preserves the Poisson bracket, implies that this vector field is actually 

Hamilionian. 

For example, Si might be the canonical phase space of a system of particles in 

a central potential (such as planets around a Bun). H is then symmetric under the 

actian of SO[Z) which rotates the positions of the particles and the directions of 

their momenta. The Lie algebra eo{Z) represents infinitesimal rotations and gives 

rise to a vector held on M. Rotation by a finite angle is the result of flowing aloug 

this vector field for a finite time. 

2.7.2. The Momentum Map 

We may therefore associate to each Lie algebra element v, a Hamiltonian func

tion which generates its corresponding vector *ield (at least locally). If G is n-

dimensional, and we pick a basis for g, then the group action gives us n correspond

ing Hamiltonian functions on M. So as not to prefer one basis over another, we 

collect these n numbers at each point of M into a vector. This vector naturally 

pairs with an element of g (to give t^e value of the function which generates the 

action of that element) and so the collection of n Hamiltonians is a vector in the 

dual of the Lie algebra g* at each point of M. Thus with every Hamiltonian group 

action of G on SI, there is a natural map called the momentum map from M to 
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g' u l Kb collect? together the generators of the infinitesimal action of (,' on Si 'see 

;Abrah.-p and Marsdrn. 1978' p 276) 

2.7.2-1. Linear and Angular Momentum as Momen tum Maps 

For a mechanical system in r? 3 which is translation invariant, the momentum 

map associates with each poirt in phase space the total linear momentum of the 

system in that state. If the Hamiltonian is rotationally symmetric, the momentum 

map gives the total angular momentum in each state (so the angular momentum 

isn't naturally a vector in R3; rather it takes its values in the dual of the Lie 

algebra of the rotation group so(3)*). When we talked about reduction in the one 

dimensional case above, the generator J of the action was the momentum map. 

2.7.3. Non-commutativlty as the Obstruction to Reduction 

Does reduction work for higher dimensional symmetries? If the group is com

mutative, we may apply the one-dimensional procedure repeatedly to eliminate two 

dimensions of phase space for each dimension of symmetry. If we are able to elimi

nate ail dimensions of phase space in this way, the system is called integrabie (see 

•Abraham and Marsden, 1978] p. 393). If the group orbits are bounded, then one 

can prove that the group is a torus in this case, assuming that the "periods" are 

constant (see [Arnold. 1978] p. 271). Locally we ma; define angle variables on the 

toroidal gToup orbits and the corresponding action variables form the momentum 

map. Recall that there were two steps in the reduction of systems with one di

mension of symmetry, each of whic b eliminated one dimension of the phase space 



2.7 4 The Adjoint and Coadjowt Actions 130 

and that either could be performed firat. One was to restrict f« a level set of the 

generating function ajid the other waa to drop dowD to the orbit space (space of 

loops] For n.m-romniutative groups, we may again perform either of the^e two 

operations, but each gets in the way or subsequently performing the other. The 

main issue here is that while the Hamiltonian is invariant under the group action, 

the momentum map is not. Consider the example of a mechanical system in a 

spherically symmetric potential so that the rotation group acts on phase space as 

a symmetry and the momentum map is the total angular momentum While the 

enerp-" is left unchanged as we rotate the state, the angular momentum is rotated 

just like a vector in ft3. This action of SO(3) on the dual of its Lie algebra is known 

as the coadjoint action. 

2.7.4. The Adjoint and Co&djolnt Action. 

Let us digress a bit on the structure of Lie groups to make this point clearer-

We will use the rotation group 50(3) as an example. As shown in the diagram in 

figure (2.11), every Lie gTOup has three natural actions on itself. If h is an element 

of G, then we may multiply on the left by h to get the action L^- , we may multiply 

on the right by h^1 (the inverse is chosen so that Rjh = Rj Rh) to get Rh, and 

conjugate by h (i.e. c »-* hch~l) to get the action ADh- • 

Let us consider these three sxtions for SO(3) when k is a rotation by ff/2 

absut the i axis (say, clockwise looking down £). Let the actions be applied to c, 

?. rotation by TT/2 about the x axis. Lh - c = he means first rotate by c and then 

by h. r sends i to i which h sends to -y . c sends y to - i which h sends to - i . 
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Figure 2.11: Some Natural Group Actions 
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and c sends 2 to y whirh h sends to i The net result is a rotation about the axis 

containing i y -+- z by an angle of 2 r /3 . 

Rh • r - rh~' means rotate by h~ ' and then by c. h~] sends i to y which c 

send.-, to z. / i " 1 m-udb y to - f which c sends to - j . and h " 1 sends z to 2 which c 

si'iid*. t<j y Tlir ud result is a rotation about th? axis defined by x - t' - i by 2TT/3. 

.4^/, • c - h c h'1 means first do h~ ' , then c, and then h. h~l sends i to y 

whicli r Htnih< to - i which h sends to — z, h ' sends y to - i which c sends to —i 

which h sends to y, and h~l sends i to z which c sends to y which h sends to z. 

The net result is a rotation by 7r/2 about the —y axis. It is no accident that this is 

where h sei ds z a ;\ich is c's axis. 

Conjugation captures the noncommutativity of the group that is at issue here. 

ADh- leaves the identity invariant {since h e • ft-1 = e). We may therefore take 

the denvative of ADh- at the identity to get a linear map from the Lie algebra to 

itself denoted Adh- - Ad is actually a representation of G on its Lie algebra and 

L sometimes called the fundamental representation. For rotations, Adh takes an 

inl'uitfsimal rotation about an axis v to an infinitesimal rotation about the axis 

h-v. 

If we take the derivative of Adh- in the h variable, we get an action ad of the 

Lie algebra on itself. The action of an element u €. g is none other than Lie bracket 

with u, i.e.: 

advv = jti.u]. (2.93) 

For rotations, ..his action is given by the cross product. An infinitesimal rotation 

about axis u followed by an infinitesimal rotation about axis v differs from first 
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Totaling about r and then about u by an intiujiosima! rotation about ttir axi:- u • i 

We have seen that the dual of the Lie algebra g' plays an important rule in 

Harniltomaii M-mmctriPs. An1* time you have a linear transformation L adiug on a 

vector space V, you can define its adjoint L* Siting on V by requiring tli.it 

(L'-i.r) = (a, i r ) . (2 94) 

The adjoint of A<i\- is called the roadjoint action of G on the dual of iti Lir algebra 

g* and is written Ad*K. The action of the rotation group on angular momenta tnat 

•ve discovered above is an example of th-j. The rotation h acts on the angular 

momentum a to give an angular momentum Ad*h a which is rotated by h. 

2.7.4.1. Equivariance of the Momentum Map 

One usually requires that a mc_nentum mapping be e*juivariant as in thi? ex

ample (see [Abraham and Marsden, 1978] p. 269j. This means that the value of 

the momentum map varies as the group acts on the ph.TS'' 3pace according to the 

coadoint action: 

Jlg-x) = Ad;j(x). !2.95) 

The interpreiatioD of t* • for the rotation group is •<". follows' J is a point in phase 

space, g is a rotation (i.e. an element of 50(3)). g • x is the point in phase ppace we 

get to by applying the rotation g (for a mechanical system, g • J just has each of its 

position and monji-itum variables rotatt-d by o). J(ti • i) is the angular momentum 

of t ' e rotated state It is ua.urally an element of the 3-dimensional dual of the 

Lie algebra of 5(7(3) J{x] it- the angular •ntmieuturn of the original state Ad'^ 

http://tli.it
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is the <-(,. -ijoint action of the rotation q on the dual of the Lie algebra of 50(31. 

Here this action just rotates the angular momentum vector by g. That the action 

i* eqtmariant says that the angular momentum of the system rutated by g is the 

rotation by g of th*1 original angular momentum. 

2.7.5. Mul t id imens iona l Reduct ion using a Coadjoint Ieotropy Subgroup 

Î et us now try to mimic the reduction procedure in this noncommutative case. 

First we restrict attention to the s lbset of phase space 

J = V* (2-96) 

where fi t a constant element of g*. The dynamics restricts to this subset because 

J is a constant of t i * motion. The whole group G does not act on this subset 

Lowever, because a genera] element of G will change the value of J- The subgroup 

of G which leaves /J invariant under the coadjoint action (known as /J'S isotropy 

subgroup Gp) will act on this subset, and we may drop the dynamics down to its 

orbit space The resulting space, 

J - ' W / C M , (2-97) 

has a natural symplectic structure, and the Hamiltonian restrict: ' to it generates 

the projected dynamics For the rotation group example, we restrict, to states with 

a given total angular momentum (eliminating 3 dimensions) and then forget about 

the ar gle of rotation about the axis denned by that angular momentum (eliminating 

one more) The result is a phase ipace of four dimensions lower than we started 

with 
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2.7.Q. Mult idimensional Reduct ion using Coadjoint Orbits 

We may obtain the rame result in another way Onsidrr thr orbit of a par

ticular element fi of the dual ot the Lie algebra under the coadjoint action ThLs 

coadjoint orbit O^ has a natural sympleeuc strurture whirh we will discuss mo

mentarily (see [Abraham and Marsden, 1978] p. 302). For the rotation group thr 

coadjoint orbitB are spheres of constant total angular momentum (and the origin). 

This is because the rotation group acts on elements of the dual of the Lie algebra by 

rotating them, and the set of all vectors reachable by rotation from a given vector 

is a sphc.e. The orbit space of M modulo G has a natural Poisson structure (the 

bracket of G invariant functions is G invariant) which is not typically symplectic. 

The symplectic leaves of this structure project onto the coadjoint orbits under the 

momentum map. The mverse image of a whole coadjoint orbit under the momentum 

map is invariant under the group action on M. The orbit space 

J-^OplG (2.98) 

is the same reduced space we constructed above. For the rotation group this consists 

of restricting to states with a given total magnitude of angular momentum and then 

moddin^ out by the whole rotation group. 

2.7.7. The Lie-Poieson Bracket and Croup Configuration Spaces 

An important example of reduction applies to mechanical system* whose con

figuration space is the symmetry group itself. We will see that the free rigid body 

and the perfect fluid are examples of this type in the next two sections, a fact Brst 
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discuswd in [Arnold, 1966]. The phase space M is then T'G and the G action is the 

canonical lift to T'G of left or right multiplication. The G orbits have one point in 

each cotangent fiber (i.e. the group action associates with a given momentum in a 

given configuration exactly one momentum in each other configuration) and so we 

may identify the orbit space with the cotangent space at the identity, i.e. the dual 

of the Lie algebra. If the group identity represents a reference configuration, then 

we may use the group action to identify momenta in an arbitrary configuration with 

momenta in the reference. If we apply the process of reduction to this setting, this 

shows that the orbit space of G acting on T*G may be identified with the dual of 

the Lie algebra g*. If we forget about the configuration and identify momenta with 

momenta at the reference, then our phase apace becomes the space of momenta at 

the reference. 

The momentum map for the group action is then the identity. The coadjouit 

orbits receive a natural symplectic structure, being the reduced spaces. These syn)-

plectic structures are known as Kirillov-Koetant-Souriou (KKS) symplectic struc

tures. If we just consider the orbit space T'G/G, then we obtain a n^U-ral Poisson 

bracket on g* already known to Sophufl Lie ( [Weinstein, 1983b]) and so ailed the 

Lie Poisson bracket. Explicitly t is 

</,9>(a) = <a , [ f I , | » ]> , ' (2.99) 
da da 

where a € y*, / and g are functions on g*, [,] is the Lie algebra bracket, and (,) 

is the natural pairing of g and g*. This bracket is behind many of the nontrivial 

Poisson structures recently discovered in various areas of physics. 
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2.7.•*>. Eulcr'fl Equat ions for t he Free Rigid Body 

As an example, let us consider Euler's equation? for the free rigid hock (?•'•<• 

[Abraham aod Marsden. 1978} p. 311). To specify '.he configuration of a [rrr rigid 

body, we give a reference configuration and even other configuration is uniquely 

specified by the element of the rotation group that acts on thr reference to give 

that configuration. The configuration space is therefore identifiable with the group 

SO(3) itself. As the body rotates in some manner, the representative point in 50{3) 

moves along a curve in SO(3). The angular velocity of the body (i.e the velocity in 

this configuration space) in a given configuration represents the first order change 

in configuration as we let it evolve for a short time. Two evolution curves through a 

given configuration point have the same angular velocity iff they are tangent to first 

order. In section 2.2.6 we defined a tangent vector to be just such an equivalence 

class of curves. Geometrically, then, we may identify the angular velocity in i given 

configuration with a tangent vector to SO(3) based at the point representing that 

configuration Therefore the state including the angular velocity is naturally a point 

in TSO{Z). 

The angular momentum is obtained by acting on the angular velocity ty the 

moment of inertia tensor. Since the moment of inertia tensor pairs with two copies 

of the angular velocity u. give the kinetic energy which is a scalar, we see that 

both of its indices are covariant (i.e. it has two slots for vectors). Thr- angular 

momentum arises from filling only one of the slots and is therefore a covector (i.c 

a one-form) For general Lagrangiau systems the momentum is defined in term* of 

the Lagrangian as p - ^_. Since L is a scalar, thu- again shows thai ;> is a one-
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form (which pairs with vector, to give the first-order change in L when the velocity 

i? varied along the vector.) In section 16.5.U, this kind of map is defined as the 

Legend re map gen -rated by L from the tang*"1! space to the cotangent space. The 

moment of inertia tensor (and in general the bilinear kinetic energy form) plays the 

role of a metric on configuration space which converts velocity vectors to momentum 

one-forms For example, in the simple free particle relation p = mv, we should view 

the mas*- as a tensor (we can see that it is not a scalar by considering multiple 

particles with different masses). Therefore the state including angular momentum 

is a point in T'SO(5). This is then the natural phase space for the rigid body. • 

A priori, there is no way of comparing the angular velocity or momentum 

in one configuration with that in another. Using the group action, however, we 

may push all velocities to velocities at the identity (i.e. velocities on the reference 

configuration) which may be identified as elements of the Lie algebra. Both left 

and right multiplication can bring us to the identity since they each act on the 

group transitively. Consider a path at the identity (for example a rotation about 

the z axis) to which a given element of g is tangent. Left multiplication by h € G 

means move along the path and then rotate by K. Thus the path is associated with 

the bcK , and we get the angular velocity in the body-fixed frame. Multiplying 

on ..he right means rotate first by h, then follow the path. The path applied is 

in-impendent of the configuration of the body (described by h) and BO its tangent 

represents angu'ir velocity in the space-fixed frame. Similarly, left multiplication 

givrs angular momentum in the body-fixed frame and right multiplication gives it 

in the ppace-fixed frame. At a configuration represented by h 6 G, the map from 
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g to g that takes spatial angular velocity to body angular velocity is the adjoint 

action of h. Similarly, thf map from g* to q* that takes spatial angular momentum 

to body angular momentum is the coadjoint action. 

The energy depends only on the angular momer *.uw in the body (the orienta

tion in apace is irrelevant for a free rigid body) and so the Hamiltonian on T*SO(Z] 

i« invariant under the cotangent lift of left multiplication and we are indeed in the 

situation described above. If we drop down to the orbit space of this left multipli

cation, we get a. Poisson bracket and Hamiltonian on the three dimensional space 

of angular momenta in the body. The dynamics on this space is exactly Euler's 

equations. Tbe Poiss a bracket is explicitly given by 

{J*,JV) = J. (2100) 

plus cylic permutations. The total angular momentum J\ + J* + J* is a Casimir 

function aud so is automatically conserved. The coadjoint orbits (and so tbe sym-

plectic leaves and bones) are the spheres of constant tot . angular momentum and 

the origin as shown in figure (2.12). The area elemeni on each sphere is the two-form 

representing the KKS rymplectic strucuture. 

2.7.9. Euler'e Equations for a Perfect Fluid 

In *r exactly analogous way, we may consider the Hamiltonian structure of a 

perfect fluid. If we choose a reference con! guration, then to get any other config

uration we apply a unique difieomorphism ;is in £^ure (2 13) (volume preserving if 

the fluid is incompressible). Thus the configuration sparr may he identified with 
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Figure 2.12: The coadjoint orbits of the rotation group. 

the group of diffeormophisms of the region in which the fluid resides. The state of 

the fluid plus its velocity field is represented by a point in the tangent bundle of this 

group. Points of the phase space represent the state of the fluid and the momentum 

density and so lie in the cotangent bundle of the group. Again we may identify 

velocities and momenta with, elements of the Lie algebra and its dual by left or 

right multiplication. Right multiplication gives the Eulerian velocity or momentum 

field in apace. Left multiplication gives them for material points in the reference 
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configuration. Here, in contrast to the rigid body ca>e. the enerRy depends onh on 

the spauaJ momentum (which fluid particle L*- where is energetic .dlv irrelevrur ) and 

so the Hamiltonian is right invariant Dropping to the orbit spare gives us dynamic?-

for the spatial momentum density, i.e. Eulcr's fluid equations, in Hamiltoni.-n form 

Figure 2.13: A configurauon of the fluid specific', by a diffeomorphism. 

2.7.10. Gases and Plasmas 

For gases and plasmas, the state of the sv_,tem is represented by the parti

cle distribution functjon on sin^le-partirie phase space. This distribution function 

evolves by the action of svrnplectomorpuisms u e laiionical transformations! of 

this pha.'ve space (see Weinstein, l9Sih\ fcr more discussion ar 1 reference*!. The 
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group of sympWtomorphiairui ha? the Hamiltonian vector fields as its Lie algebra. 

VW IIUJ idrntify thL** with the space of func .ions on the phase space where the Lie 

bracket i> the Poisson bracket of functions. The dual of the Lie algebra is then den

sities <>n phaw spare, which we may use to describe ;he kinetic state of plasmas and 

gase> The coadjoiot action just pushes the density around by the symplectomor-

phism One coadjoint orbit comes from considering a delta distribution on phase 

space. The symplectomorphisms push it all over phase space to give a coadjoin* 

orbit thai is identifiable with the original phase space. In fact the KKS symplectic 

structure is exactly the original symplectic structure. This shows that every sym

plectic manifold is a coadjoint orbit (albeit in the dual of the Lie algebra of the 

infinite-dimension J group of canonical transformations of that manifold). 

It is interesting to consider some of the other coadjoint orbits for this system. 

In chapter 9, eikonal waves are associated with certain distributions on {xtk) space 

whose support (i.e. the closure of the complement of the region T^here the region 

vanishes) is a Lagrangian submanifolu (an N-dimensional manifold on which the 

symplectic structure vanishes, see section 7.1.4). The space of sucb distributions is 

a union of coadjoint orbits of the group of svmplectomorphisms. 

Any local piece of a Lagrangian submanifold can be made to coincide with 

a local piece of any other Lagrangian submanifold by a canonical transformation 

[Weinstein, 1977). In fact, the symplectic structure of a small neighborhood of a 

small piece of Lagraagian sub-nanifold b> identifiable with the canonical symplectic 

structure of a small neighborhood of the zero-section of the cotangent bundle of the 

piece of LagTangian submanifold In other words, small regions of any Lagrangian 
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submamfold may be straightened out to a pinr of *£ N : 5R2'V Thi-- mcajis that 

tb**rc axe no local invariants m a syniplectic manifold other than duneus-jon and no 

iocal structure associated with a Lagrangmn submanifold other than the property of 

being Lagrangian. (As a simple example of something with no local con.^'raints yet 

still obeying a global constraint, consider a water balloon The surface of the balloon 

is arbitrary locally but globally must enclose a given volume.) This brha\ior is in 

great distinction to the case of Riemannian geometry where local pieces of space are 

invariantly characterized by various curvatures a.nd even flat subrnanifold" may sit 

in spare in locally different ways The less rigid nature of syrrplectic geometry helps 

to give it its characteristic feel and makes the study of phase sp" Q quite different 

from the study of spacetime. 

ID section 10.1 we show that an arbitrary diffeomorphism of a manifold M 

may be extended to a symplev.omorphism of T*M which acta on the zero section 

according to the original diffeomorphism. We may use this type of map to vary the 

•"alue of a distribution with Lagrangian support while leaving the support manifold 

invariTut. There are global constraints on the image of a Lagrangian submanifold 

under a canonical transformation as well. In S 3 W one can associate with each 

Lagrangi&n torus, the actions of each of the non-contractible loops lying in it. These 

actions cannot change under a symplectomorphism. In non-trivial topologies, one 

must talk about the change in action of a loop under a deformation because there 

may be no disk with the loop as its boundary (the change in action is simply 

the symplectii area of the regioD swept out by the loop under d''formatmn ]. If 

the deformations are exact symplertomorphisms (e. g. symple^tomorphism^ of a 
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simply Conner ted region), then the action cannot cLange. One may show that, other 

than this constraint on actions, each Lagrangian torus can be taken to every other 

nearby Lagrangian torus 

There are -::,rr\e subtleties in generalizing from a delta function at a point to 

delta functions defining a submanifold. In general, a distribution is a linear func

tional satisfy ng ceitain continuity criteria that associate a real number with each 

smooth function (satisfying certain vanishing criteria, see for instance [Hormander, 

1983]). We think of a distribution as something we may integrate smooth functions 

against. A delta function at a point p € M in a manifold just assigns to each 

smooth function / its value f(p) at the point p. The analog of a delta function 

whose support is a Lagrangian 3ubmanifold would associate with each function on 

M its integral over the Lagrangian fubmanifold. This requires a measure on the 

Lagrangian sub. ' iifold. The space of Lagrangian supported delta-like distribu

tions may be identified with the smooth Lagrangian embeddings of JV dimensional 

manifolds with measures on them. Let us call thew measured Lagrangian submani-

folds. The space of measmed Lagrangian tori with given actions is thus a coadjoint 

orbit. Similarly, the space of measured loops with given action is a coadjoint orbit 

and therefore a symplectic manifold. 
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2S<. ' Teometric Hamiltonian Perturbation Theory 

Let us now relate this geometric Hamiltonian m«*chanics= io thr geometric per

turbation theory we discussed earlier We will see that the Jlh order perturbed 

dynamics? has a natural Hamiltonian structure if the exact dynamics* doe** More 

details on the ideas of this section are given in section 4 6 

The first thiiiR to note is that the path space dynamic? is Hamiltonian This 

is not surprising if we think of the path space as a kind of direct uv.egral of the 

phase spaces at each e. The dynamics at different f's are completely independent 

(except for the fact that the paths are smooth). If we had the product of only 

two Hamiltonian systems (instead of a continuum of them) then we would get the 

correct dynamics from a syinplectic structure which is the sum of the pullback to 

the product of the individual symplectic structures and a Hamiltonian which is the 

sum of the puL'ed back Hamiltonians. Extending this construction tr a continuum 

of multiplicands -As to the symplectic structure 

w p { V , > a ) = f -•p(t)(V1U,p[t)).V7U.Pxi)))d< (2-101, 
Jo 

The analog of the sum of Hamiltonians is 

H>p) = I H[t.pU)) dt (2 1021 
JO 

^he dynamics these two generate i- ..deed the correct path s-p-icr dyt amies ID U'e 

ra.se of a product of a 6mte number of H ami] toman systems, we are actuaJ.v allowed 

t take any linear combination of the symplettif structures (msirad of a Mraiphi 

*un. as lors; as DO coefficient vanishes- and we t̂ '-.c the srum linear combination 

http://ra.se
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of Hamiltomans. !f ? coefficient vanishes, that factor has no dynamics. For our 

[lTturbatmn dynamics then, we want to ignore the region in the interval that is 

away from f ~ 0 

Tn fact if we insert the J th derivative of a delta function into the integrals in 

(2 101) and (2.102) we get the correct perturbaticn dynamics on JM. If the Poisson 

bracket on M is {xa>xb} — Jab then the bracket on JM is 

{zl.xt„)=J^!^St.j.m (2.103) 

and the Hanultonian u 

H{z0,...,zj) = £ J ff(c,i0-r«i +--- + %:xj). (2.104) 

Together these give the correct perturbation dynamics. Notice that the Oth order 

variables are paired with Jth order variables, 1st order with J — 1st order, etc. 

From the above coordinate description it is not clear that this bracket is in 

fact intrinsic. We may thow this by considering the iterated tangent bundie to M. 

The tangent bundle to a symplectic manifold has a natural nymplettic structure. 

if _ is the structure on M, then we may use it to identify TM and T*M. T*M 

has a natural symplectic structure, which wc ^fined in section 4. The structure 

on TM is obtained by pulling T'Af's back using the identification supplied by u>. 

This o; eration may be iterated to give symplectic structures on tht "*,erated tangent 

bundles TTM, TTTM, TTTTM, etc The J t h order jets naturally embed into 

the J th iterated tangent bundle. If th" symplectic structure on TJM is pulled back 

to J SI wc obtain the jrt Poisson bracket in equation (2.103). 



2.8.1 ' >cean/ed DyuAinif- a ' a Fi\cd Poiri how J< : K-a(X<t IV, 

The p \n ip lec tK si rut t u n <m 7'A? IIJ.IV b« Umwphi <>f as lln hr>l drnvcitiv-e of 

the original -\ mplec t . . M r u a u n h i jou^k i and Tul< 7>j'-* 1979 Tin JCI I P T ^ I M : 

ma> be thought of as the ' i l l dcrivAln.e '• lion-.- J s h c i - -p<n<>l <\-;.l;. ;i .' • A: 

T h e pdtl . l v u i n m 1 - piuje. l- d o * n to Ui<- p r M . i i t <-! t!.— - -!.-•*: '^ • :].-<• :••>;• 

the pr.H'iiH t >wnpbf U- - trut ujrr ;,, J \1 w ith a.~hit.ai\ "< 'i.> .• '..•- i ' r - l " ""' ' ' '" 

mdividuoj '-uiiLiiiaiid sjnipl* 1 ' tic ' Lruc tu rc - If ' t u x •••'"< \-"..~ -..• .-•-<;. '- /• •-

a oons inruJa j resultaii*. svuiplect ir <-tnirtiire a,- the ^-h'---; spacing goes "-• zc-r- v-t 

again obtain t h t je t s> mplectir s t ru t tu re and Hamilton-.an ?uch an a j£ 'nni" i t . £ivc[, 

in detai l in section 4 7 shows t h a t t h e pe r tu rba t ion Srackc . and Harnj ' tun iaa a n m 

essence . / th derivative;- of the p a t h s t ruc tures T h i s approach is e miliar IO studies 

of finite differences as a p p r o x i m a a t s of ordinary der iva t ives 

2 . 8 . 1 . L i n e a r i s e d D y n imicB a t a F i x e d P O I L L f r o m J e t B r a c k e t 

We h a y seen t h a t when t h e Poisson bracket is degenera te , non-degenera te 

symplect ic leaves and bones axe injected into the Poisson manifold as submanifold? 

If a closed two-form is d e g e n e r a t e , m e n we project out the degenera te direct ions 

t o ob ta in a symplec t i c manifold . T h e fact t h a t t h e two-form is c los td implies 

that the . nihilated d i r e c t i o n 0 satisfy the condi t ions of Frobenius 's Theorem and 

so lie t angen t t o s m o o t h submani fo lds which we may then project a long (at least 

locally). We h a v used an e x a m p l e of th is cons t ruc t ion above. If we inser t the J t b 

derivat ive of a de l t a function into t h e pa th symplect ic integral (2.101), we obta in 

a degenera te , closed two-iorro on t h e pa th space P\M. T h e project ion ehj iuual ing 

t h e degene ra t e d i r ec t ions is exac t ly the projection from pa th space down to the jet 
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epacc J Si Th- result IU;* svmpWtir s-tructurc 1? the jet perturbation structure If 

v( L.ivr i Hainiltoijian system with AU invariant siibmanifold, we may attempt to 

f>*)lam the rf-vtnclcd dynamic- m Hamil'onian form by pulling back the symplectic 

*-tru<t::r' I \,r n— lilting twu-fnn:] w]H be closed but may not be non-degenerate 

If t'ni <•- Arc in'.- globally, wc may apply the above projection A special case of 

t hi- \i-.u< i.-Trtte*. thai '.he jet construction contains as a special case the Unearned 

dynanu..- of A Haniiltonipji system around a fixed point. We consider the 2-jet space 

*JM The ?ubmanifold of jets with base poi . equal to vhe fixed point is an invariant 

s-ihrnanifcld Because the zero order base directions are paired *"ith the second 

order direction.1- in (2 103), restricting to a given basepoint makes the second order 

directions degeoerate. Projecting these out leaves us with only the first order jets 

at the fixed point (i.e. the tangent space there). These are paired with themselves 

by the second order bracket according to the original symplectic structure at the 

fixed point. The second order Hamiltonian (2.104) gives the quadratic piece of the 

Taylor expansion in the Z\ variables. Together these give the linearized flow in the 

tangent space of the fixed point as a Hamiltonian system. The situation in Poisson 

manifolds is more complex IWeinstein, 1983a]. If the fixed point is in a symplectic 

leaf (as oppoeed to a bone), we take the Poisson bracket at the point, the quadratic 

part of the Hamiltonian in the leaf direction, and the linear part of the Hamiltonian 

across leaves. The bones are more difficult. 

We can also consider the same approach to the evolution of J-jets based at a 

2ero order fixed point. The zero order variables are now paired with J-th order 

variables. When we restrict to a given zero order point, the .7-th order directions 
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hn-. -:ir d e g e n e r a t e for the J - je t « \n ip l t i l i c s t r u c t u r e When wi- quot ient out tln.-

d e g e t c r a r y we arc left with onK the BrM th rough J lM order variable;- Tin 

^ y m p l f ' i c s t r u c t u r r i> t h r J - 2 jet s t ruc tu re up i • numerical 'orfhi iruf- an ' 1 t in 

HamiltoDi?_i is t h e J - t h derivat ive 

We ma> also use this a p p r o a t n t o ob ta i r a svmplect ic s t ruc tu re fur l m e a m i n g 

a b o u t a single non-6xcd u n p e r t u r b e d orbit We res t r ic t the spare of 2-jet? to jet? 

t h a t originat* rra t h e orbi t of in te res t . There is iiow a 2.V - 1 dimensional degenera te 

foliation which we mav quot ient by. T h e result is a symplec t ic space whose points 

ind ica te pos i t ion a long t h e u n p e r t u r b e d orbi t , an e lement of the t angen t space at 

t h a t pos i t ion , a n d a single quo t i en t ed 2-jet var iable t h a t pairs non-tr ivial ly with 

t h e orr.ii. pos i t ion var iable . T h e Hami l lon ian is again t h e second der iva t ive of the 

original H a m i l t o n i a n : 

ff(zo,l3,r3)= — - | S{€.X0 + €Xi + — 1 2 ) 
d ' . « = D 2 

rf2 I („. , dH , ^ < 2 3 ' t f , , 2 i2 fill \ 

^ - | ^ * ( ( , , 0 , + < — ( , , * 0 ) r 1 + - — ( e . I O ) I l + - _ I 2 j 
d1H „ , d dH , d7H , 3H 
o*. OXQ at dz£ OZQ 

(2.105) 

The dependence of this on j ; it only through the term 

OX0 

H is thus constant under variations of i^ in the annihilator ^ubsparc ol dH. But 

these arc exact 1} the d'rections symp lexically orthogonal to the zero order orbit and 

so span the degenerate f . ation. The hnea-iz'-d dy-jamic? about au unperturbed 

orbit therefore has an invariant formulation. 

file:///-V.i
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2.8.2. Symmet ry and Per turbpt ion Thpory 

Wc have seen how important symmetry and its related concepts are in Hamil-

touian mr< banirj, How do the symmetry operations intermix with the perturbation 

operation?'' A H^miltoni^D G action on M lifts to both the path space PM (just 

pu?h the whole path around by the gTcup action) and the jet space J M (just push 

the jet around). The corresponding momentum maps are just the integral along a 

patb of the M mumeoturi! map and the same integral with the J th derivative of a 

delta function thrown in. Both are equivariant. 

When considering reduction we quickly see that these groups are not of high 

enough dimension A 4-dimensionaI phape space with a I-dimensionaJ symmetry 

drops down • J 2 dimensions. The 6rst order perturbation space has 8 dimensions. 

In the presence of symmetry we expect to be able to drop this down to the first 

order perturbation space of the 2-dimensional reduced space. The above group 

action can only eliminate 2 dimensions instead of the needed 4 and so we expect a 

larger froup to act. This is indeed the case. It makes sense to multiply two paths in 

a group by multiplying pointwise. Thus PG is an infinite dimensional "Lie" group 

and its "Lie r algebra is the path space of G's Lie algebra g. PG has a Hamiltonian 

action on the path space PM by multiplying the point p{t) by the group element 

g{t). The momentum map sends a path in M to a path in g' gotten by applying 

M's momentum map to each t. In an exactly analogous way, we may define the 

grcup JG of ./-jets of paths in G with Lie algebra being ./-jets of paths in g. This 

acts in a Hamilionian and equivariant way on the perturbation space JM. The 

momentum map •'- obtained by extending a jet to any consistent path, taking the 
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path momcutum map to T'g* an<l dropping down t<. J n' 

The process of reduction commute- with taking the path space or jet space 

Thr jet or path spare of tin reduced space is the reduced spac- of the jet or path 

space by the jet or paiti group. 

We hive seJll t n P f e n t r a l importance of the dual of the LIP algebra sjid the 

coadjoint orbits with their KKS symplectic structure for physics We have seen 

that any symplectic manifold may be thought of as a coadjoint orbit in the dual of 

the Lie Jgebra of some group. It turns out that if M is a cuadjoint orbit in the 

dual of Ce Lie algebra thee the perturbation space JM with the jet symplectic 

structure are naturally a coadjoint orbit in the dual of the Lie algebra of the jet 

group/f^and the jet Jracket '2.103} is the natural KKS symplectic structure. This 

is shown in section 4.8.6. 

These relations are at the heart of a uew framework for singular Lie transform 

perturbation theory about which we will report in chapter 5. Here we discuss only 

the first order method of averaging. 
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2.9. The Method of Averaging for Hamil tonian Systema 

Maj]\ of the interesting physical regularit irs we Eud in diverse systems are 

i auwi \>\ the prttifticf of process**? that operate on widely separated time scales. 

The basic fimpiifkalioo that this separation entails is that the fast degrees of free

dom act alinob' &' if the slow variables are constant and the slow degrees of freedom 

arc affected only by the average behavior of the fast variables. Bogoliubov in par

ticular hap used tbi r separation of scales with great success in many examples. 

For example he obtains the Boltzmann equation from the BBGKY hierarchy of 

evolution equations for correlation functions by Lolding the 1-particle distribution 

functions fixed while determining the fast evolution of the higher correlations, and 

then substitut ;ng the result in as the collision term driving the 1-particle evolu

tion. One makes a similar separation in calculating fluid quantities like viscosity, 

thermal conductivity, diffusion or electrical conductivity from an underlying kinetic 

description. In studying complex situations with slow, heavy nuclei and fast, light 

electrons in molecular and solid state physics, one often holds the nuclei fixed, cal

culates the electron ground Etate and energy as a function of the nuclei positions 

and then uses them to define an effective potential in which the nuclei move (this 

is the Born-Oppenteimer approach). 

We have seen that in the presence of an exact symmetry, the symmetry direc

tions may be comp'etely eliminated by the process of reduction. We will now discuss 

how the averaging underlying the systems with separated scales can be viewed as 

reduction by an approximate symmetry. One often finds that the effect of "for

getting" these degrees of freedom is to introduce an amended potential into the 
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Hai; . t .man and a "magnetic" p»t e to 'he Pmsnou bracket of the reduced ••y*-tciii 

In tin !-v*tem> with approximate *yiimietry. these extra ternr- encapsulate the nrv. 

ph> sio revealed ny the av< raging pru<edurr Earlier we saw the centrifugal force 

coming out a.1- an effective potential We give a version of thi.- redurti >n pruredun 

which begins bj including the "angle of the earth" a? a dynamical vanabh and 

reduce*- by the earth"? rotation and the rotation of the system together in the next 

chapter The resulting reduced space gives the centrifugal force as an amended 

potential in the reduced Hamilton an and the Coriohs force at a new term in the 

Poissoo bracket. 

2.9.1. Approximate Noetlier's Theorem 

When we introduce a perturbation which break? a symmetry wc no longer have 

exactly conserved quantities. It is easy to prove an "approximate Noether's theo

rem*" , however, which says that the momentum map for a slightly broken symmetry 

evolves slowly: 

Xj H = {H,J} = < implies J ^ {J,H) = -i. (2.106) 

2.9.2. Hamiltonian Averaging as Rxluction by a Circle Action 

In the special case where the unperturbed dynamics is e.,tirely composed of 

periodic orbits, the action of the orbit through each point i." the momentum map of 

a circle symmetry of the unperturbed Hamiltonian. As we turn on a perturbation 

whirh break.-- lbi<- symmetry, the motion will still be primarily around the l-jop*. 
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but it will slowly drift from hmp to loop Because th<- symmetry is broken, different 

point:- on a loop w,ll move toward different loops As the perturbation is made 

.-niallf.. though, phase point;- orbit many time? near a given loop before drifting 

w a ; Tin.- nogg^ts- (correctly) that the \ • rturbation a point feels will asymptoti

cally be the same a.̂  the average around an unperturbed loop. Because this average 

in the same for all points on a loop, for small perturbations entire loops drift onto 

other entire loop*. We may therefore drop the dynamics down to the loop space. 

In fact one can prove that for a general (even dissipative) system where the unper

turbed dynamics ,Yo is entirely composed of periodic orbits, the motion of a point 

under the flow of XQ + iX\ projected down to the loop space remains within e for a 

time 1 /( of the orbit of a corresponding point on the loop space under the flow of the 

average of X[ around each loop projected down [Arnold, 1983]. In the Hamiltonian 

case we break the circle symmetry of H0 to get the perturbed system Ho + f.Hx. 

We average H\ around the loops to get H\. HQ + tHi is again invariant under 

the circle action and so we may perform reduction. The reduced dynamics is the 

slow dynamics on the reduced space and the fact that we may restrict to a constant 

value of the momentum map shows that it is actually conserved to within order t 

for time l/c. The momentum map for the circle group sends each point of phase 

space to the action of the loop it belongs to. The action of a loop is the integral of 

the symplectic form w over a disc whose boundary is the loop. Since w is invariant 

under a canonical transformation, so is the value of the action of a loop (this is 

PoiDcare's first integral invariant). If the dynamics was represented by a canon 

transformation that took loops exactly to other loops, then the action would be an 



2 9 2 1 AvFTAfftDg and the Jrt I'u tun- 155 

exact constant o{ the motion Th<' true d\nanu ;• takc> loop« to only within < of 

another loop after time 1 •< Thi> say;- that the *i tion of the loop a pha>n spa <• 

point L- on change unh by < a." we follow the pha^e pmut for tune l,'i The _^ii"N 

i.- riot invariant but is adiahaticaiJy invariant (i e the error i> --rrî tJl for lunger and 

longer time? ^ i - 0 Kru-sKal ha.1- shown that ther^ î  actuallj a qua/Uitj which 

is conserved to al] orders in < for time l/< [Kniskal. 196'/ (we give a geonirinr 

formulation of this result in chapter 5) Getting resuite valid for times longer than 

1/f is extremely important physically, but so far no general theory exists. Chapter 

5 includes some discussion of the relevant issues here. 

2.9.2.1. Averaging and the Jet Picture 

Let •_. relate .nib procedure t he perturbation structures we developed in 

previous sections. We have an action of the circle gr^up S1 on M. This lifts to an 

action of PS1 on PM and JS1 on JM. The unpercurbed Kamiitonian is invariant 

under the S 1 action on M, but the path and perturbation Hamiltonians are not 

invariant under PS] and JS1. We would like to change the action of PS1 on PM 

so as to leave the path Hamiltonian invariant and so allow reduction, fince the 

resulting action should still be Hamiltonian, we look for an (-dependent canonical 

transformation of / x M which is the identity at e — 0 and which pushes the P3] 

action into a symmetry. The method of Lie transforms (seeO [Cary, 1981] andO 

[Nayfeh, 1973] p. 200) attempts to do this at the perturbation level, letting the 

canonical transformation be the flow of an (-dependent Hamiltonian, which is then 

obtained orde- by order. Here we Deed only consider the first order group action 



2 0 2 2 Exi<-n.*ionh from Loop.- to Tan mid Energy Surfaces 156 

oi IS1 -- TS1 on \M • TM Wr know that thr action will be perturbed so that 

liio value of the rrdu.fnl Hamiltonian is thtk avrrajre of the perturbed Hamiltonian 

iriiuti'l 0\r untr;tn.afurm**d circles TM hah twice the dimension of M. Reducing by 

TS] eliminates 4 dimensions. The resulting dynamical vector field has no unper-

IUI bed component. One may think of this as the reason for getting results good for 

time 1/f (it is the effect of the unperturbed flow on the perturbation which causes 

tbi-« level of wocularity). In this situation it makes intrinsic sense to project the 1st 

order vector field down to M, where it represents the slow dynamics. 

2.9.2.2, Extensions from Loops to Tori and Energy Surfaces 

A l'iop in a 2-dimensional phase space (like an orbit of a simple harmonic os

cillator) may be thought of in 3 ways. It is 1-dimensional, 1 dimension less than 2, 

and half of 2. Each has an important generalization to higher dimensional Hamil-

tonian systems. In the presence of a Blowly varying Hamiltonian, we have already 

seen that the action of a 1-dimensional loop is conserved. There is an analogous 

result for half dimensional Lagrangian . j n . Kubo has shown that for a system 

ergodic on an energy surface (which has one dimension less thau phase apace), the 

volume enclosed is adiabatically invariant under slow variation jf parameters [Kubo 

et al., 1965]. Roughly: since the motion is ergodic, every orbit changes according 

to the average of the perturbation over the energy surface; thus the entire energy 

surface char.ges by the same energy ĵid so is taken to another energy surface; but 

the volume enclosed by a surface is preserved under a canonical transformation by 
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Lioi •• ili' ;• theorem f'ur a largi iiumhfr of drgji-f- of .'i-edoH. ti, l v. [r.^i. ],. ;hc 

adia1 din invariant c of tb< etitnipv u *taii«ti< aJ niei li/iiii> *• 

2.9.3- Pseudo-Potent ia ls and Adiab&tic Invariants 

The funu\ poU'ut'.aAv ajd Poisson bnirkct.1; that roult from rMudiou (.HIIAJTI 

the average effect of the fast on the slew degree* of freedom Capiunr^ thx1- efff; 

is the content of many physically useful theories. It is inieresting to note that in 

the late nineteenth ren'ury. the idea that all potential energies were really kinetic 

energies of hidden or forgotten degrees of .reedom was one the the main motivations 

fo: the development of kinetic theory. We may use averaging to see how ink- comes 

about 

Because of its direct relevance to the id^aa presented here, let us give a ion? 

quotation from Felix Klein's historical account of nineteenth century mathemat

ical physics. He first introduces Mouth's funrtion R which was m between the 

Lagrangian and Hamjitonian in that only the first m of ibe n "onfiguratiuu fpacf 

variables had their velocities Legendre transformed into momenta. He continues: 

"Thus the equations split into two groups, one of the Lagi.Logian kind am"' '.it 

of the HamiltonJaa For m =- 0 the Routk function, ari'f therewith the «ysteni of 

equations, i? the same as in tue Lagr&ngian case: while for m - n it is the same as 

ID the Hajinltom&n 

This ny>ieni of equation.1- now acquire.- parti' uiar intcnv-i through certain g-a-

erai fundarcentaJ concept? of picrhdi-to that arc nmne<u\\ with it .Yimeji. if R 
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dor.- n"t c\:>Uc illy contain the nt 'the configuration variable whosit* velocity vari

able- wf-rc Lcgfiidrr tr ui--f<>n7ied . [/KO we have the .^penai ra.se that he/mho/tz 

,'CrrlIr /id Q", /AM/ ha.̂  called \ cyclic sy.-Uein and made a deep stud> of, and 

w/)j(/j r>( i ur- *>imev>li;it eaihvi in Thtniium and Tail as a ""c/c/oidaj system". 

Jn pra.-ti.-r ihi> i d.*-c <u-i>c> H/J,-Q one 15 dealing with rotating motions of rotating 

b'uho t c $ lly -whrt h). where the angle of rotation is the "cyclic" coordinate (so 

that on!;, it- f.ore«jx>ndin# momentum loord-nate wi]] COOJP in). Jf the rotating 

bod.v i.- en' ••>"<<'. m au opaque box. tiien its "bidden motion" reveals nothing more 

than the usual behavior that the body as a whole shows as it moves in space fa 

top 01 gyrusfppej, In cases like this where outside m£uence on the motion of the 

By-wheel is excluded, the momenta corresponding to the cyclic coordinates are 

constan t. 

From these facts follow some remarkable ideas on the nature of potential en

ergy If we assume that the kinetic energy T decomposes into a part T(q) that 

depends only on the velocities q and into a part X(JT) that depends only on the 

cyclic momenta n (thus assuming that there are no terms in which velocities q are 

multiplied by momenta if), then the Routh function is 

R =7(<j) - 7(7.. - ,7 
(2.107) 

=r(« .« ) -T( , ,o - f (« ) . 

if we bear in mmd the depenn'ence of all the quantities on the coordinates q and 

replace the constant momenta TT, by the quantities c. The g m + i, • • • <4n a r e deter

mined front the differential equations 

dT[j) dp^ ^ .-)\TU) - (U + 7(c))! ( 2 1 0 g ) 

dq, ' d( dqa 

http://ra.se
http://pra.-ti.-r
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Tin.* uac gel* a MMeru of lormula,' that exai tly tor respiting [" a M.-ICIII vith U "i 

degrees of freedom And wbouc potCiJtiaJ energy ha.- t>een mi rrasrd by T[c). the 

lji)ftj( vt,vrgy of bidden nio\en>cnls The quantities I' and T{T ) are both function--

ofq with constant coefficient.-,; tbey enter i.ito the sum only together, not -< pasately 

Hence tbc question arises where we ID any ca.se have DO idea of the p.wiicr tif the 

potential energy-of whether even' quantify that appears m mechanics as 'potc.jnaJ 

energy" is actually a kinetic energy caused by a bidden, cyclic, so-called "ignored' 

motion. Like a fata morgana, the possibility of a purely kinetic theory of icat'er 

appears in tbc distance. 

This general idea was first pr-^ented in 1888 by J. J. Thomson m bis book 

Applications of Dynamics to Physics and Chemistry (Jecture at Cambridge in 1886, 

then in the Philosophical I>anaactioas 1886-87). Bui in special cases it had , ready 

been pursued by WW -n Thomson (=Lord Kelvin), for example in bis address to 

the British Association in Montreal in 1884, which be prudently titled "St^ps to a 

kinetic theory of matter" (Matb. and Pbys. Papers, VoJume 3, p. 366). This idea 

was finally worked out for closed systems in Heinrich Hertz's postbwnous work of 

1904, Die Prinzipien der Mechanit (The Principles of Mechanics] " 

2.9.3.1. Ping-pong balls and One-dimensional Gases 

If we slowly move a ping pong paddle up and down from a tible with a ping 

pong ball bouncing very' rapidly between t'je paddle and the table, then we will 

feel a varying force due to the average momenta imparted due to the impacts of 

the ball. In phase space the ball oescribrs a rectangle and so the action is given by 

http://ca.se
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J - 4LrnX whcrr L is the distance from the paddle to the tabic and V is the speed 

of the ball Berause this is invariant under alow padd'e movements, the ball velocity 

goes a.1- 1 •'/. The momentum transferred on each impart is 2mV and there are V/2L 

imparL- prr unit of linn , so the average force felt goes like V2/L ~- l /L 3 . Thus 

'.tariiKf: with no potential energy at all, we end up with a l/L3 effective potential 

for the paddle' 

It is well known that slow compression ot an ideal gas keeps the quantity pV 

constant, where the ratio of specific heats ~f depends on the properties of the gas 

(this follows from the adiabatic invariant of the entropy). Our single particle result 

U exactly this requirement for a one-dimensional gas with *y = 3. Since particles 

do not interact :-. an ideal gas, it makes sense that each particle should refiect the 

behavior of the entire gas. (A similar result holds for radiation, where the adiabatic 

compression of a container containing black body radiation acts on each normal 

mode separately and yet the overall effect keeps the spectrum black body but at a 

different temperature.) 

2.9.3.2. Oscillatory Stabi l izat ion 

For a harmonic oscillator, the energy is the product of the action and the 

frequency: H = :JJ. If we have a weight, hanging on a string and undergoing 

small amplhude oscillations as we slowly pull the string, the change in pendilum 

e-.Tgy is the change in Jw. J remains constant and u — \/g/l> so we feel a 1 /Vi 

potential We get other potentials if we ask for the force we feel if we tune a guitar 

string aj- someone plays it oi the acoustic pressure on the water if we fill up a 
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shower as someone f-iiiRs in it The effective force due ;•> itie fast degree;- of freedom 

may sometimes stabiiue :*'i unstable- fixed point of the >low system Ordinarily an 

inverted pendulum is unstable ai,d falls tu the position with the wight hanging 

downward. If we shake the support of the pendulum periodically hard enough 

f-nd fast enough, the inverted position ii stabilized! An even more spectacular 

version uf this pffect occurs if you shake an inverted cup of fliiid and stabilize the 

Rayleigb-Taylor instability which ordinarily causes the fluid to spill out (it is easiest 

to actually do the experiment with a high viscosity fluid like motor oil) The idea 

of RF stabilization is to stabilize unstable modes of a plasma (say in a tokamakl 

by bathing it in a high frequency radio wave. Some of the modern airplanes with 

wings In a forward .'acing delta are actually op;rated in an aerodynamic ally uns ible 

regime that is siabilL"^ by the fast dynamics of a computer controlled feedbr.ck 

loop. This allows for great maneuverability (since the plane would like to turn 

tnyway!). 

2.9.3.3. Multiple Space end Time Scales 

Quite often it is very useful to split out the main dynamics of a system ..'id 

hnraru,e the rest, treating them as fast oscillations. Thus one takes a fluid, elas

tic, or plasma medium and treats its evolution as slow overall development of the 

background medium with fast -filiations occuring on top of it. The effect of the 

oscillations is to change or reuormsJizc the dynamics of the ba' kground N l'i van 

Kampeu has called into question the usual treatment of constrained mrt hatn< al 

syeteins Ivan Kainpeu. 19S? Our UMially just wiitt- dnui. the Lagratigian f.»r 
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surh a system in generalized coordinates which respect the lonntrainls. Physic ally, 

though, one supposes that there L« som** large potential normal to the constraint 

surf are The system will execute rapid osrillatiou m the normal diriction and slow 

-volutKiu along it If the width of the constraining potential we'l varies with the 

mechanical coordinates, then as we have seen the adiabatic invariance will give rise 

to a new pseudopotenriai which affects the mechanical motion. In a plasma we treat 

the slow I. varying background as a dielectric mediuri in which waves propagate ac

cording to WKB theory The waves affect the background (introducing a radiation 

pressure in the dynamics) via ponderomotive forces. If we have a charged particle 

in the presence of a wave with a slowly varying amplitude, the particle will oscillate 

back and forth with the wave. It feein more of a pu3h in going down an amplitude 

gradient than in going up one, leading to — overall average force described by the 

ponderomotire potential This kind of separation is the basis of plasma quaailinear 

theory. We have extended the geometric perturbation theory to some of these singu

lar perturbation problems. Chapter 8 gives a Hamiltonian treatment of an eikona! 

theory for linear or nonlinear waves (which ia related to the averaged Lagrangian 

treatment of Whitham [Whitbam, 1974]). Here let us demonstrate the efficacy of a 

global geometric apprcach only with the simple example of E x B drift. A charged 

particle restricted to a plane with a constant perpendicular magnetic field executes 

perfect circles If there is, in addition, an electric field then the radius of the circles 

is greater in low potential regions and smaller in high potential regions. Thus the 

rumlai orbits do not close and the particle drifts perpendicularly to tac electric 

held A Haniiltonian treatment of more ecu.plicated versions of this so-call d guid-
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ing center motion has been previously given [Littlejohn, 1983). This work required 

great cleverness in the choice of physically relevant coordinates. We would like to 

demonstrate, in this simple version, how a coordinate free approach would lead us 

to the correct answer, with no previous knowledge. 
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2.10. Example : E x B Drift 

In the simplest situation we have a charged particle in the x, y plane moving 

in the presence of a constant magnetic field B which points in the z direction and 

a small constant electric field tE which points in the x direction. We introduce the 

phase space P ~ T*R2 with coordinates (x,y,pX)py) (we use mechanical momenta 

p = BID here). The correct dynamics in the presence of a magnetic field may be 

described in a Hamiltonian formulation in two ways. The standard approach is to 

introduce the unphysical vector potential A and to work with canonical momenta 

p = my — (e/c)A. Here we use the physical momenta and magnetic field, but a 

noncanonical Poisson bracket: 

eB 
{/,?} = f*9P. ~ fp.9* + fV9P, ~ fp,9v + ~(/P.9P¥ ~ fp,9P.)- (2.109) 

We obtain the correct dynamics in this case with the Hamiltonian 

B^Bo + tH^^tol+pD-ccEx. (2.110) 

The dynamics is then 

cB eB 
px = —-p, + (tE p, = - — p * . 

tnc mc 

(2.111) 

The unperturbed situation here is just a charged particle on a plane in a constant 

magnetic field. Every orbit in this situation is a closed loop. Thus the unperturbed 

system has a circle symmetry: 

?B eB ' 2 1 l 2 » 
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The generator of this symmetry (i.e. the momentum map) is none other than the 

unperturbed Hamiltonian itself: 

This is because non-relativistic motion in a constant magnetic field has the re

markable property that the peiiod of all orbits is the same (we could introduce a 

normalization constant to make it 1 or IT if desired). Let us obtain the reduced 

phase space and Poissc a bracket for this symmetry action. First we look at the space 

of loops P/Sl. Each circular particle orbit has exactly one point where pv = 0 and 

Px 5 0. We may label a loop by the values of z, y,px at this point. Next we restrict 

to the set where the momentum map is a constant: H 0 = a. The reduced space is 

R = P/S1\Ho~o (2.114) 

and may be coordinatized by the values of x and y when px = \/2ma and p v = 0. 

The reduced Poisson bracket { ,} 0 of two functions f{x,y) and g[x,y) is obtained 

by extending them to P in such a way that 

0L 
3Pr 

= 0 (2.115) 
<J2ma, p v = 0 

and 

, / , i r , } . o = ! ^ ^ - ' * v 5 S = | / (2.H6) 
m ai mc apv 

Thus we replace djdpx by 0 and d/dpv by (c/cB)d/dz to get 

{/.»}. = S ( / , » . - / . J „ ) . (2117) 
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Thus we see that the original spatial coordinates x and y now play the role of 

casonically conjugate variables in the reduced space. The factor of IfB in the 

bracket appeared in Littlejohn's work [Littlejohn, 1983]. The full system is not 

invariant under our circle action. If we average the perturbetion Hamiltonian Hi 

around the circles, we do obtain a tin.',? symmetric system. The average of the 

potential tcEx around a loop m just the value when pv = 0. Thus the reduced 

averaged Hamiltonian is 

# « ( * , » ) * a - « E s . (2.118) 

The reduced averaged dynamics is then 

x = {x,Ba}a=0 

This is indeed the E X B drift dynamics-
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ChapterS: 
Pseudo-forces and 
Reduction 

"Philosophy is written in this grand book, the universe, which stands a-• linu-

ally open to our gaze. But the book cannot be understood unless one first /earns to 

comprehend the language and read the letters in which it is composed. It is written 

in the language of mathematics, and its characters are triaa&tes, circh-k, and other 

geometric figures without which it is humanly impossible to understand a single 

word of it; without these, one wanders about in a darit labyrinth."—G*iiko in The 

Assayer 

3.1. F«eudo»forces and Redaction 

II you have a system that is coupled to some subdynamics and you forget about 

the subdynamics, the original system may evolve with new "pseudo-forces" acting. 

For simple mechf-iica! systems with symmetry, these take the form of "magnetic" 

terms in the PoUson bracket (by analogy with a Hamiltonian description of parti

cles in magnetic fields) and new "effective potentials" in the Hamiltonian. These 

farces may stabilize previously unstable dynamics, just as a free charged particle at 
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rest in the plane is stabilized by a perpendicular magnetic field (magnetic stabiliza

tion). Ons Sods these pseudo-forces also in situations where the observer's motion 

is included in the dynamics. In more complex examples these forces seem to lead 

to "convective" terms in Eulerian continua descriptions, drifts and pondermotive 

forces, "forces" that bend light rays in inhomogeneous media, pressure and other 

thermodynamic forces in statistical mechanics, "renormalized" masses for quasi-

particles, etc. Near the end of the last century, there was a school of thought that 

held all potential energies to be merely the kinetic energy of "hidden" degrees of 

freedom. This gave great impetus to the kinetic theory of matter as we discussed 

in section 2.9.S.1. 

3.1.1. Fictitious Forces 

Our goal in this chapter is to give a coordinate-free interpretation to the process 

of changing reference frames and to the concommitant new physical effects. We first 

consider the effect of a time dependent change of phase space. A single state in the 

new frame corresponds to a time-parametrized curve of states in the old frame 

(e.g., a given configuration of particles and their velocities fixed in a rotating frame 

corresponds to a whole circle of states in a fixed frame as time evolves). We therefore 

have a time-dependent identification between the original phase space and the new 

one. The time dependence of the identification diffeomorphism may be expressed 

as the flow of a vector field Y (for example, a rotating reference frame is described 

by the vector field we discussed in section 2.6). 
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Let FX, be the Sow of X for time t, and FYt the flow of V for time t, on M. 

FXt is viewed as the dynamics and FYt as our "changing point of view", so the 

dynamical evolution we observe is FYt oFXt. This is the Bow of the time-dependent 

vector field 

X=FYt* X + Y (3.1) 

by the chain rule (the lower star means push-forward by the map FYtt and represents 

the image of X at each point under the differeniia! of FYt). If X is V-invariant, 

then 

X~X + Y. (3.2) 

If A" is Hamiltonian Xfj and Y is a symmetry generated by J, then the combined 

Sow has HamEtosiaa 

H = H + J. (3.3) 

J represents fictitious forces in the Hamiltonian due to our chanrring perspective. 

3.1.2. Rotating Coordinates 

In this section we will demonstrate these ideas on the example of a rotating 

coordinate system for a particle in the plane. A very important subtlety arises 

from the question of what the velocity and momenta are in a rotating frame. One 

perspective takes some given inertial frp-jae and always talks about velocity v in 

that frame with corresponding momentum mv. The other perspective measures 

velocities with respect to the observer's coordinate system. K we do this and still 

define momentum as mass times velocity, then the Pofeson structure will change in 
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general as we change coordinates. We take this approach here and will identify the 

new piece in the Poisson bracket as the Coriolis force. In older times the notion of 

a non-canonical Poisson bracket was not in widespread use. To keep the bracket 

definition invariant, one had to say that momentum did not change under change 

of reference frame (see for example p. 129 of the mechanics volume of [Landau and 

Lifshitz, 1960-1981]). 

Let 

H = ^(pl + pj) + V{J*+?) (3.4) 

be a rotationally symmetric Hamiltonian on T ' S 2 and 

J - w(zp„ - ypx) (3.5) 

generate rotations. Since H is invariant under the symmetry here, 

H-H + J, (3.6) 

This captures the observer's rotating reference, but does not include the fact that 

due to his motion the obeerver will measure a different set of values for the momenta. 

(In some sense, the tranflformation thus far has given us valid orbits of the observed 

system but has changed which orbit we are looking at). We must change coordinates 

hy 

i-y 
(3.7) 

P . =Px - » « l 
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to get the momenta as seen in the rotating frame. Here wc define the momentum 

p to be m times the observed velocity. The observed x-component of the velocity 

will be the velocity vx measured in the fixed frame minus the i-component of the 

velocity of the observation point in the rotating frame, which L" u/y, Similarly, 

the observed y-component of the velocity is vv minus -UJX. The dynamics is now 

described by 

B=~(pl+pl) + V(y/^T^)-^p-[i' + y") (3.8) 

with the Poisson bracket 

The centrifugal term 

— d ' + y1) (3.10) 

makes an effective potential or pseudo-force and the Coriolis term in the Poisson 

bracket is of the "magnetic" type which causes drifts. 

3.1.3. Reduction of Simple Mechanical Systems 

We have seen how changing coordinates can lead to pseudo- potentials in the 

Hamiltonian and magnetic terms in the Poisson bracket. Asymptotic systems get 

pseudo-forces by reduction by an approximate symmetry. Here //e give the context 

in which pseudo-forces and magnetic terms in the Poisson bracket may be seen 

to arise from the process of reduction. We specialize this to circle actions in the 

next section. In the following 3 sections we show how changing coordinates may be 



3.1.3. Reduction of Simple MechanicaJ Systems 172 

vkwed as reduction of a larger space which includes the observer's state. This unifies 

these two sources of pseudo-forces. The argument is of necessity a bit abstract and 

so some readers may wish to skip the details. Let us start with the general setting. 

If the phase space is T'Q, where Q is Rieinannian with metric K and the 

Hamiltonian is of the form 

H = K' + n'V, (3.11) 

where we moved K to T*Q and 

V :Q->X (3.12) 

is a real valued function on Q which we lift to T'Q along the natural projection 

it : T'Q — (?, (3.13) 

then we have a simple mechanical system (see [Abraham and Marsden, 1978] p. 

341). A group action of G on Q by isometries that preserve V lifts to T*Q to 

preserve H. If we reduce at ft G g* with the momentum map 

J : T'Q -+ g', (3.14) 

the reduced space is 

( r e ) , = J- '((I)/G„ (3.15) 

where G p is the isotropy subgroup of fi under the coadjoint action. We may Identify 

this reduced space with the cotangent bundle T*{QIGp) with a ni,w Poisson bracket 

(the old one plus "magnetic terms'1) and a new Hamiltonian (the old one with a new 

"effective potential"). Using the metric, we choose a one-form a^ on Q to behave 
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on vectors tangent to the orbit of G M in Q the way n behaves ou ihe corresponding 

elements of the Lie algebra, and to annihilate vectors perpendicular to the orbit. a M 

induces a^ on Q/GM and by lifting, on T*(Q/GV). The new symplectic structure on 

T'{Q/Gn) is the old one plus the magnetic piece da,.. The Dew Hamiltonian is the 

old one {H is G invariant and so is defined on T*{QjG^)) plus a pseudo-poteutial 

K*{aM[q)) (for more details see [Marsden, 1981) p. 33). 

3.1.4. Circle Actions on Simple Mechanical Systems 

With the notation above, if G is a circle and the vector field generating its 

action on Q is £, then there are some simplifications. The momentum map 

J i T ' O — S (3.16) 

may be taken to be 

« , ~ a , ( 0 - (3.17) 

The G-action on T'Q is then generated by Xj. a„ is then simply 

so the effective potential is 

K(-,«), (3-18) 

(3.19) 

In this case the reduced space is identifiable with T* (Q/S:) with its modified struc

tures. 
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3.1-5. Fict i t ious Forces as Reduct ion 

We now describe a setup which unifies some of these constructions. Assume 

we a." given, as above, a Riemansian Q with metric K and symmetry generated 

by £ which also leaves V : Q — £ invariant. £ lifts to Xj, which is generated by 

J(q>P)~pti(Q)) (3.20) 

and leaves H *= K' + V on T'Q invariant. Above we reduced by Xj to get a lower 

dimensional system. The approach to fictitious forces given iii section 3.1.1 treated 

the rotating phase space as being of the same dimension as the fixed phase space. 

Here we increase the dimension by 2. Now we introduce a "rotating observer", 

described by a point 9 of a circle Sl and a rotation action pa in T*Sl. A circle acts 

on this S1 generated by d/d& and lifts to T*Sl generated by p6. Call 

j = ^ + J (3.21) 

on S 1 x Q and lift it to Xj on T'lS1 x Q) generated by 

j = pe+ J. (3.22) 

£ rotates the configuration space without changing 8 (the state of the observer), 

d/d9 rotates the observer without changing configuration space, | rotates the two 

together (twisting together the two circle actions), Xj rotates particle phase space 

alone, XPt rotates the observer alone, and Xj rotates the particle phase space and 

the observer. 

We have the Hamiltonian 

H = H + i p I (3.23) 
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on T"(SX x Q) which generates the real dynamics on T'Q and rotates the observer 

with speed p6. It Poisson commutes with p$, J (thought of ou 7"*(5' x Q)) and 

J. We want to consider the orbit space of the Xj action, but to look at the teve! 

surfaces of pg (as opposed to J ) since we want to study a given speed of rotation 

and we don't want to mix up different speeds in the same phase space. We may 

identify 

n s 1 x 0 ) U m „ . w / X , (3-24) 

with T'Q by identi%ing (B^ps,p) to the (q,p) oa the X$ orbit through it at the 

point 8 =» 0. Since 

and 

* J = * V + | > (3.26) 

the dynamics on T'{Sl x Q)/Xj identified in the above way is given by 

X„-teXj. (3.27) 

The Poisson bracket of two functions is seen to be 

{/,»} •*{/.»} - ^ - / # + ^ - » - <*•»» 
If we now restrict to ps =constant. and identify with T'Q, we get a Hamiltonian 

system with the original Poisson bracket and Hamiltoniao 

B-feJ, (3.29) 

showing —psj to be a fictitious force. 
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3.1.6. Fictit ious Forces with M o m e n t u m Shift as Reduct ion 

Now we apply the ideas from section 3.1.4 to the setup m section 3.1.5. The 

orbit space of £ on S 1 x Q is identifiable with Q by sending an orbit to its q value 

at 6 = 0, call it ( S 1 x Q)/i- We would like to compare the T'Q obtained in section 

3.1.5 by quotienting T ' f S 1 xQ) by Xj and holding p$ fixed, with the T 'Q obtained 

by taking the cotangent bundle 

T|<S' x Q)/i) (3.30) 

and so obtain its relation to the original T'Q dynamics. We use the fact that on 

the cotangent bundle 

T'lS1 x Q ) / | l « T * Q (3.31) 

with metric K on Q, the momentum p should be related to the velocity via K: 

p = 2K(. , j ) . (3.32) 

Here g is the projection of the dynamics on T'Q down to Q. This gives us a map 

TQ^T'Q, by ( « , p ) - t a , p ) (3.33) 

where (q, p) is a representative of a point in 

r-(s ' x Q)/Xj\nnmMM 

and (<?,p) in 

r\(s' x Q)ii\. 
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Since the Hamiltonian is now H — peJ, we see that 

? = ^ ( / ? - P 8 f f ) 

K is quadratic, so 

and so 

In the case Q = S 2 , 

is a tot at ion, and 

on TQ and 

on T*Q, we see that 

and 

If we identify 

= ^ ( « - ( P . P ) + V ( 9 ) - p 8 p ( f ( « ) ) ) (3.34) 

= ̂ K " ( P . P ) - ? .£ (? ) • 

2 K ( - , | - i f ( p , p ) ) = p (3.35) 
'dp 

» = 2 J f ( - , ^ ) 
dP (3.36) 

=P-p 82A-(.,e). 

<='£-»£ ( 3 - 3 7 » 
K = -(d2* + d v

2 ) (3.38) 

* " = ^ ( p = + p j ) (3.39) 

P i = P i + P s m K (3.40) 

P» = P y - P o n i z . (3.41) 

(3.42) 



3.1.6, Fictitious Forces whh Momentum Shift as .Reduction 178 

then this is exactly the setup in section 3.1,2. Thus the Coriolis force and centrifugal 

force obtained in 3.1.2 are identified with magnetic terms in the Poisson bracket 

and a modified potential in the Hamiltonian arising from reduction. 
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3.2. Geomet ry of the M e t h o d of Variation of Parameters 

Lei u> now consider the powerful and commonly used perturbation technique 

knowaas the method of variation of parameters. A good description of the technique 

may be found in [Nayfeh. J973] on p. 59. This method define? the evolution of the 

perturbation in terms of quantities at the unperturbed point. We expect to be 

0(1) away from this point ID time I/e (since the size of the perturbation is 0{t)) 

and so cannot get a correct description on this time scale. To extend the time of 

validity, the orbit of the unperturbed system to which we compare the true R- w 

must be allowed to vary. If we label unperturbed orbits by their initial conditions, 

then we may rewrite the perturbed orbit's drift from unperturbed orbit to orbit in 

terms of a drift of initial conditions. Often this slow drift may be further simplified 

(eg. via averaging) and results in a usable perturbation theory for time l / c Let us 

formulate this dynamics geometrically. 

Any dynamical system 

x = X{z) (3.43) 

on SI gives rise to a natural dynamics on the group Diff{M) of diffeomorphisms 

of M. We view X as an element of the Lie Algebra dtff{M) and we get the right-

invariant dynamical vector field by right translation to each point of Diff(M). 

In general, we get a right-invariant vector field on a group containing the vector 

t at the identif-, by considering the first order infinitesimal Jeff translation by 

the 1-pararneter subgroup to which v is tangent. The resulting flow on Diff(SI) 

has the following interpretation: The time-* evolution of / € Diff(Sf) is the 

diffeoniorphism obtained by first applying / and then letting A" flow for tmie-r 
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Now rousider a perturbed vector field 

A'u-f «,Y, (3.44) 

on M. Lot T, rcprcscut the time * flow of the unperturbed dynamics -Yo- If x[t) 

is to be the ^evolution of initial conditions' that variation of parameters produces, 

then /,(.r([)) is a solution to the full equation 

!r,(i(<)) = *o(7«M0)) + <*i(7.(*(0)). ( 3-«) 

By definition, the left hand side is 

= .Xo(7,(i(0)) + *W; •(*(<))• (3-«) 

Thus 

±{t) = <DK,(x!t)) • XdteM) = < / _ , . * , . (3.47) 

We may view this as a time dependent evolution equation or consider dynamics on 

Diff(M) x M given by 

X:(f,x)~(X0°f,if-lX1) (3.48) 

with initial condition (identity,XQ + IXI). If Tt is periodic then i J-t,X\ is periodic 

and the method of averaging is to average it over a period. We discuss the method 

of averaging in greater derail in section 2.9-



3-2.1. Hamihonian Variation of Paramrtrt 

3-2.1. Hamiltonian Variation of Parameters 

If A/.-- is symplectic and 

XHo + iXH, (3.49) 

is Hamiltonian. then we may work on the group Symp(M) of symplectomorphisms. 

If / € Symp(M) and Xn0 is Hamiltonian, then so is XH0 ° S• We may define a 

right invariant symplectic structure on Symp(M) by 

w/(X, o / , X 2 o / ) = f u{XltX2)dx. (3.50) 

We would like to find a Hamiltonian on Symp(M) whose corresponding vector field 

at / e Symp(M) is XnQ of. We first determine the one-form obtained by inserting., 

this into Cj: 
» j ( X » , o / J » / ] = f u(XHa,X)dz 

JM 

= I dH„(X)tfa (3.51) 
JM 

= / X(H0)dx. 
J M 

Thus we may take the Hamiltonian on Symp[M) to be the right invariant function 

Half) = J H o / A,. (3.52) 
To check that this gives the correct dynamics, notice that the vector A' = / acting 

on this is 

dc 

- f X{H„)dx 

d H(f + tX) = / ±H{f + <X)dx 
1 * (3.53) 

as desired. Now notice that 

( /r ' -Y/, , =tXf.Ht- (3.54) 
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So with a symplectic structure on Syrnp(M) x M given by 

i X u;, (3.55) 

and a Hamiltonian H . Symp(M) x M —* 9t giveD by 

H:{f.x,~ f ffo°/<** + <#.(/(*))> (3-S6) 

we get the variation of parameter dynamics. 

We may see from this that if Xn0 has all periodic orbits then the averaged 

dynamics is Hamiltonian with Hamittooian H% (/(z)) averaged over the evolution 

/ • 
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Chapter4: 
Hamiltonian 
Structures in 
Perturbation Theory 

"Schrodinger and I both had a very strong appreciation of mathematical beauty 

and this dominated all our work. It was a sort of act of faith with us that any 

equations which describe fundamental laws of Nature must have great mathematical 

beauty in them. It was a very profitable religion to hold and can be considered the 

basis of much of our success."—P. A. M. Dirac on p. 136 of |Dirac, 1977] 

4.1. Introduction 

In this chapter v.e describe the geometry of a Hamiltonian structure For non-

singular perturbation theory applied to Hamiltonian systems on symplectic man

ifolds. This is limited in two respects: I) Many systems of physical interest re

quire more sophisticated singular perturbation methods as in [Nayfeh. 1973J and 

[Kevorkian and Cole, 1981] and 2) the Hamiltonian structures of many systems are 

given in terms of more general Poisson manifolds [Weinstcin. 1983a; Some exten

sion of the present chapter to these cases is given in later chapters The result-
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in thi;- chapter are relevant to these investigations though. Most singular pertur

bation methods have a nonsingular expansion underlying them. Poissrti manifolds 

are stratified by symplcctic manifolds and many of the symplectic constructions 

considered here are susceptible to generalization. 

If we are given dynamics in the form 

x = X0 + tX1 + t-X2+--- (4.1) 

wher- each of the vector fields X, :s Hamiltonian with respect to a common Poisson 

structure, we may attempt to express the solution as an asymptotic series in e: 

x(t) = x0{t) + exl[t) + t-x2{t) + -- . (4.2) 

Plugging this form into the equation of motion and equating coefficients of powers 

of t gives us equations for z o . i i , . • •• The main result of this chapter is that the 

equations for z 0 , . . • , x j form a Hamiltonian system for any J. 

These results were discussed in chapter 2 but are proved here in full detail. 

The background material and non-Hamiltonian perturbation structures introduced 

in chapter 2 will be needed in this chapter. The reader not familiar with geometric 

mechanics at the level of [Arnold, 1978] may find sections of this chapter rough 

going. Except for parts of chapter 5, the rest of the thesis is independent of the 

detailed derivations given here. 

We study the perturbation Haniiltonian structure in five different ways, each 

of which sheds a different light on it. In the second section we do the case of first 

order perturbation theory explicitly, where it is easier to understand the structure. 

The extension to arbitrary order necessitates the introduction in the third section 
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of certain path spaces and jet bundles. The fare invest igailu> approachc-v tlu-n 

follow. 1) In the fourth section we give the desired Hamiltonian structure in local 

canonical coordinates. 2} The fifth section shows that this structure U coordinate 

independent by imbedding the jet bundle in an iterated tangent bundle 3) The 

sixth section obtains the structure from a natural one on the infinite dimensional 

path space, 4) The seventh section shows in what sense the structure is the J th 

derivative of a product structure. 5) The eighth section shows that if the original 

symplectic manifold is a coadjoitrt orbit in the dual of a Lie algebra with the KiriUov-

Kostant-Souriau (KKS) Lie symplectic structure, then the jet bracket is a KKS Lie 

symplectic structure for a coadjoint orbit of a certain jet gioup. We close with a 

discussion of the process of reduction applied to perturbed systems with symmetry. 
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4.2. FirBt Order Hami l ton ian Pe r tu rba t ion Theory 

Lei us recall the geometric structure of Hamiltonian mechanics. The phase 

space will be a 2.Y-dimensional symplectic manifold M (many of the constructions 

work in infinite dimensions and many ot the interesting physical examples are infi

nite dimensional [Marsden, 1981], but this entails technicalities which we will not 

consider here). This is a manifold with a distinguished closed non-degenerate 2-

form u which geometries the classical Lagrange bracket. The Ilamittonian is a 

distinguished function H on M which we take to be a function of t as well. Usually 

we assume that < e / = [0, Ij and so we can view H as a function on / x M. For 

each value of c we obtain a vector field A(e) on M by the Hamiltoman prescription. 

This says that at a point x 0 € M, A(e,xo) is the unique (since w is nou-degenerate) 

vector at io which gives the one form dH\XOtl when inserted in w | = 0 1 i.e. 

iXU)u = dH. (4.3) 

We will discuss the flow of X(t) as though it were complete, though ihis need not 

be the case (a vector field is complete if aohilioo cun'cs don't run off the manifold 

in fir.!te time). Let us assume that H may I * represented in an asymptotic series 

as ( — 0 which is uniform in x, i.e. 

H(t,x) - H0{x) + tHAx) + ~jH2ix) + • • (4.4) 

where the first derivatives of each # , are uniformly bounded in x. Because of the 

linearity in going from functions to their Hamiltonian v*.aor fields, v.e afco have the 

asymptotic expansion 

A ' (< . j ) - . \ G ( j r ) + < A ' , ( r ) + - A ' 2 ( 2 ) ^ ••• (4.5) 
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as < — 0. In this expression, A\ represents the Hamiltonian vector field correspond

ing to Ht. Hamilton's equations are 

±(t,t) = X(t,i(t,t)). (4.6) 

v.'t the initial conditions be given as x(i,t = 0) — y[t) and assume that y has an 

expansion y(t) ~ y 0 + *V\ + {<2/2!)y2 + • • •. 

As we have seen in chapter 2, non-singular perturbation theory asks for the 

flow representing the solution at; an asymptotic series in v. 

s ( e , 0 ~ * o { 0 + « i ( 0 + 2 j * 2 ( 0 + --. asc - 0 . (4.7) 

In chapter 2 we substituted this representation into the equations of motion, equated 

coefficients of equal powers of c, and so obtained differential equations for xo, x\, • • • 

with initial conditions given by x,-{t = 0) — j/ , - . The solution of these equations gave 

us an asymptotic representation of the true solution, but in general it was non

uniform in (. To deal with times (like \) longer than some bounded value as c — 0, 

we must use more sophisticated perturbation techniques such as Lie transforms or 

multiple time scales and so lose the generality of the problems we may treat. We 

discuss these singular or secuJar perturbation theories in chapter 5. 

The goal in this chapter is to determine th<i geometric nature of the quantities 

20,21, • • • and to determine a Hamiltonian structure for their evolution equations. 

It is easy to relate these asymptotic expansions for the abstract vector fields and 

their Hamiltonians to a coordinate representation of them. If we introduce a local 

coordinate system 2 1 , . . . , x2fJ on a chart of M, we may express 

X((,x) = X > - a ( t l I ) — (4.8) 
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8 
A',(i) = V X ° ( i ) — - for 0 < •" < oc. (4.9) 

^ d l ° 

We will use a convention where the upper index from the beginning of the Latin 

alphabet (e.g. a,b,c,...) gives the coordinate on M and the lower index from the 

middle of the Latin alphabet (e.g. ij,k,...) gives the order of perturbation. The 

components of X in this coordinate system have the asymptotic expansion 

Xa(t,x)^ XS(x) + cX?(x) + --. as e —0 for l<a<2N (4.10) 

as may easily be seen. The equations of motion are 

xa=Xa(t,x) with x°(( = 0) = y f l for 1 < a < 2JV. (4.11) 

We saw in chapter 2 that the first order perturbation approximation to these 

equations is 
XQ = X Q ( I Q ) 

- $rdX3t i ^ v - f i ( 4 - 1 2 ) 

xi=l^ "a id 1 0 * • x i + xiM 

with initial conditions ig(( = 0) = yg and i°(t = 0) = y°. A solution xo(t)> z i(0 t o 

these equations with the correct initial conditions will form a first order asymptotic 

solution xo(l) + cxi(t) to the original equation at each fixed t (and so uniformly 

over bounded time intervals). 

We have seen how to formulate this procedure in terms of coordinate free 

objects. The true dynamics takes place on M and for each t the flow x{t) is a 

diffeomorphism of M to itself taking initial conditions to their time t evolution. 

A'o and A", arc vector fields on M. xo[t) gives the flow of the unperturbed vector 
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field A'o- Because ^i represents a small perturbation to r 0 as t vanishes, ii !ivt> 

in the tangent space to M at x0. XQ,X\ represent an equivalence class of Hows-

parameterized by t, where we identify flows which asymptote to the unperturbed 

flow with linear rate X\ as c goes to zero. If we pick a time / and an initial condition 

then each flow defines a _urve parameterized by (, which passes through x0(t) when 

c = 0. The equivalence relation on flows leads to an equivalence relation on curves 

through x0(t) that is exactly the defining relation for a tangent vector based at xo(t). 

In local coordinates on M, we see that x%,x\ for 1 < a, 6 < 2JV aie coordinates on 

the tangent bundle TM where x 0 coordinatizes the base and xi the fiber over x0. 

Equations (4.12) are to be thought of as locally defining a vector field on TM. 

We showed in chapter 2 that they are actually coordinate independent by defining 

vector fields Xo and X\ on TM from Xo and X\ on M. If XQ(() is the flow of XQ on 

M, then its derivative Tx0(t) defines a flow on TM. We defined the corresponding 

vector field on TM: 

A ' „ H ^ | TioM- H-13) 

Xo defines the linearized flow of Xo (see [Abraham and Marsden, 1978], page 252). 

In coordinates, Xo is given by 

= XSixo) 

*;=£ 3XS, , „ fo: ! < Q < 2 . \ . (4.14) 

dzb 

6 = 1 

(*<>)• * i 

Because the tangent space at a point is linear, it makes sense to add a vector 

v in TM to a tangent vector in TTM over v. Thus for (r,v) G TM we may define 

A- |U , r )= j \ ( r ' I . V , ( i | l , (4,15) 
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Thi;- gives a vertical vector field on the bundle TM which is constant on each fiber. 

In coordinates A] in given by 
x£ = 0 

(4.16) 

Thus the invariantiy defined vector field XQ+X\ on TM gives the correct equations 

(4.12) in each local coordinate patch. 

Let us now assume that X 0 and A i are Hamtttoman and investigate the Hamil-

tonian nature of the perturbed system XQ 4- X\ on TM. M carries the symplectic 

two-form w and we are given Hamiltonians Ho and Hi such that 

(4.1?) 
iXlui = dH\. 

TM carries a natural symplectic structure w gotten by using w to identify TM 

with T'M and by pulling back T'A/ 's natural structure to TM ( [Abraham and 

Marsden, 1978], page 200, problem 3.31). Because the unperturbed Hamiltonian is 

a map from M to the reals, 

H0:M-», (4.18) 

we see that its differential, 

dH0 :TM - » , (4.19) 

may be thought of as a function on TM which is linear on the fibers- If we denote 

the natural projection of TM to M by n then since Hi is a function on M, we sec 

tUat rr'Ht is a function on TM. We shall see that X 0 and Xx are Hamiltoman with 

respect to £• with Hamiltonians given by dHo and it*H\. Thus 

H = dtto+ir*Hi (4-20) 
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is the desired Hamiltonian on TM for the perturbed equations (4.12). 

We demonstrate these statements in local LJarboux (canonical) coordinates 

q° ,p° for 1 < Q < .V on Si. The symplectic structure is 

.v 
u; = ] T < V Adpa (4.21) 

a = l 

with corresponding Poisson bracket: 

{q°,pe}=6°S (4.22) 

and all other combinations of g's and p's vanishing. We represent i 0 by gj-Po a n t * 

^i by gj*,p?• One can see that the natural Poisson bracket on TM corresponding 

to to is 

{lS,p1}=6°S { ? r . P ? ) = * ° 9 for l<a,0<N (4.23) 

where all other combinations vanish. In these coordinates 

ff(«o,Po,9.,Pi) = f ; ( | p ? ? + | ^ P ? ) + f f i ( 5 t i . p o ) . (4.24) 

The corresponding equations of evolution are 

dp, rfpg 

do, 3gg 

- / » S i 3 ^ V - ( » d , S d \ I d H ° \ dH< 

(4.25) 



4.2 Firtt Order liamihoniAii Perturbation Tlworv 

But A'o gives the equations 

so we see that 

a QMs. 

A'i gives the equations 

(4.26) 

U \ s „ ^ » m / 3n\ HP* I I ' 

and H has indeed given us the desired perturbation equations (4.12). 

(4.28) 
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4.3. Path nnd Jet Spaces 

We would now like to extend the first order results of the last section to arbi

trary order J. We will extend the Hamiltonian structure from the tangent bundle 

to the jet bundles introduced in Chapter 2. 

As in that chapter, we introduce the path space: 

PM = I space of all paths p : / — / x Af of the form p : c — (c, x{c)) \ (4.29) 

and from this we define the jet spaces with integer 1 < J < co: 

JM = s equivalence classes in P\ M where pi ••- p 2 iff 

V C°° functions / on / x M we have : (4.30) 

£ | /(Pi(0) = 1̂ 1 /(P2(«)) for 0 < . < A 
d t l«=0 d l tc=0 J 

If i ° for 1 < a < 2Ar are coordinates on M «s PQM SS OA/, then we introduce 

coordinates {XQ,X°,...,X^} for 0 < J < oc on 7A/ to represent the equivalence 

class of the curve 

xo + « ? + 2?*5 + ' ' • + ji 1" ( 4 , 3 1 ) 

i n / x M (near e = 0 this won't leave the chart on which the i° are defined). 

In chapter 2 we identified the tangent spaces to these and showed hnw *-

dependent dynamics on M induces dynamics on these. The induced dynamics on 

the jet space JM was exactly the perturbation dynamics up to J th order. We will 

now assume that the dynamics on M is Hamiltonian and try to find Hamiltonian 

structures for the dynamics on PM and J\i, 
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4 .3 .1 . P a t h Space Symplectic S t ruc ture and Hamil tonian 

The Hamiltonian structure on M lifts to one on PXM. As before, u is a 

symplectic form on M and H(t,x) is a Hamiltonian. There is a natural symplectic 

form !• on P\M. Intuitively, if we think of PXM as a continuous product of M's 

corresponding to each value of (, then w will just be the continuous sum of the 

corresponding symplectic structures. At a point p € P\M and with vectors V\, Vj € 

TPP\M, we define 

w P ( V i , V 2 ) s / ^ (o tVj t cp t e^ .Va te .p t e ) ) )* . (4.32) 
Jo 

Similarly, we expect the Hamiltonian to be a continuous sum of the Hamiltonians 

for each t. We define H on Pi M as 

H(p)= f Hlc,p{<))dc. (4.33) 
Jo 

4.3.2. The Path Space Dynamics is Hamiltonian 

We will now show that the Hamiltonian vector field on P\M defined by H 

and Ci is exactly the lift .\"H of the Hamiltonian vector field X H on M. In finite 

dimensions, the differential of a function pairs with a vector by taking the sum over 

components of the product of each compoijent of the vector with the derivative of 

the function in the corresponding direction. When we consider functions on a path 

space, this sum turns into an integral. The differential of H thus satisfies 

dH(Vp}= f V(t ,p(0) • H(t)dt. (4.34) 
Jo 
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V- is thr directional derivative along V, with H[t) viewed as a function on M ami 

l '((,p(()) viewed as a vector in TM. Let us see what î - !• is 

Zp(XFlV) = f u : ( . Y H , o ( P ( 0 ) . V ( £ . p ( 0 ) ) A 
Jo 

= / , v ( c p ( 0 ) - i r ( « ) * ( 4 3 5 ) 

= dH[V,). 

Thus A"// is indeed Hamiltonian on P\M. 

In chapter 2 we saw that the dynamics on P t A/ naturally projects down to the 

desired perturbation dynamics on JM. We would like to project the Hamiltonian 

and symplectic structure as well to make JM's dynamics Hamiltonian. Unfor

tunately, functions and forms may only be pulled back functonally and cannot 

be naturally pushed forward. We may write down the Poissou bracket on P\M 

corresponding to u. Poisson brackets can sometimes be pushed forward along a 

projection by pulling back the bracketed functions. In this case, however, things 

become too singular and we would be left with "products" of delta functions. In 

the next section we will find a Hamiltonian structure on JM and in later sections 

we will relate it to the structure on Pi M. 
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4.4. Coordinate Description of the J-jct S t ruc tu re 

Let us reiterate the fundamental problem. We have defined a space of J-jels 

J Si with coordinates { j j j , . . . , iaj }, 1 < a < 2A'. The correct perturbation dynamics 

is given by the vector field with components 

V k ' 1 " Z j ) = ^ [ ^ X ' { l - X 0 + l " + •+Ji.XJ)' (4.36) 
for 1 < a < 2N and 0<k<J. 

We want to know whether this dynamics on a 2N(J + I) dimensional space is 

Hamiltonian if X[t) is "rlamiltonian on each 2N dimensional space t =constant. 

Darboux's theorem [Arnold, 1978] tells us that we may choose the coordinates 

{ i 1 ,x2S} on A/ to be canonical. Thus the Poisson bracket of any two coordinate 

functions, 

{xa,xh} = Jab 1 < a,b < 2JV, (4.37) 

is a constant independent of x. The dynamics then takes the form 

X° = {xa,H} = Jab ~H. (4.38) 

The correct perturbation dynamics is then 

3 = ̂ (£L,*( ' . ' ' + «' + -" + ^ ) ) (4.39) 
tor I <a<2N and 0 < k < J 

from th<- expression in 4.36 for the perturbation vector field-

http://Coordina.lv
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4.4.1. T h e Jet Hami l tonian 

This dynamic? is Hamiltonian with thr Hamiltonian function on JM given by 

S(xo u ) s —J H ( f , i 0 l r,u) (4.40) 

with respect to the Poisson bracket introduced in the next section. All of the various 

derivatives in 4.39 are contained in this expression and the Poisson bracket picks 

out the right one for each perturbation variable. 

4.4.2. The Jet Poisson Bracket 

To discover the Poisson structure, we calculate 

dH dJ I a „ ( cJ \ 
& l " 5 ? L f c | l , r X 0 + " , + - + J ! X ' ' J 

dJ I (<kdH ( eJ \ \ 

J ! dJ~k I BH I 
~ k\(j-ky. dcJ-k\t=0ax° V ' 1 0 

(4.41) 

+ ix, + • • • + -J-XJ 

il = {*lH)JM (4.42) 

gives the correct dynamics if the jet Poisson bracket is 

J- (4.43) 
for 0 < fc, m < J and 1 < a, b < 2A\ 

Notice that for J = 1 this gives {zg.rj} — J°b. which was the bracket thai we 

found m section 4.2 for first order perturbation theory. 
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4.5. Relat ion to the Iterated Tangent Bundle 

Wo now need to show that this construction, defined in terms of coordinates, 

is really intrinsic. H is clearly intrinsic, being the J th derivative of H along any 

representative curve in P\Si of the point in J Si (all such curves give the same 

answer by definition). That the structure of the Poisson bracket is intrinsic is not 

so obvious, but may be seen as follows. 

4.5.1. Injecting Jets into the Iterated Tangent Bundle 

Recall that we are letting I stand for the interval (G,l|. If we take the J t h 

derivative of the map / —* M, we get a map of the iterated tangent bundles: 

TJI - TJSi. (4.44) 

{TJSi simply means T{T{...{TM)...)) where there are J 7"s. Each time we take 

the derivative of a map wc get a map between the tangent bundles of the two 

manifolds.) We may think of this as a curve in TJ Sf, since a curve in Si lifts to 

its tangent vector at each point in TM, this curve lifts to one in TTS1, etc. The 

point < = 0 of this curve in T3Si is then the image of dJjdtJ. As we look at all 

curves in M, we don't get all pohVs in the 2J .̂V dimensional TJM, but rather 

only a 2N{J + 1) dimensional submanifold identifiable with the jet space. This 

submanifold is made up of certain diagonals in the iterated tangent bundle which 

arise because the derivative of the derivative along a path is the same as the second 

derivative along a path. We give the details in the next section. 



4.5.1.1. Coordinate Description of the Injection 

4.5.1.1. Coordinate Description of the Injection 

If we look in coordinates, wr see that this submanifold is given by certain 

diagonals in the iterated tangent bundle: 

( I ° ) = ( I „ ) S A/ (4.45) 

( z - , ^ 1 _)=<*„,*?) 6 TM (4.46) 

/ dx'\ dx"\ tPx"\ \ „ „ m - T T W IA m\ 

(» ^Ell f̂ ll £!f!l ^!l £fl| ^ ! | —I ^ 

= (xl,x',x\,x%,x'\,xl,xl,x%)eTTTM. (4.48) 

Each time we copy the last list and then copy it again adding one to each subscript. 

To count how many of each type of derivative we get, we may write this symbolically 

as 

( 1 + | ) J . (4.49) 

From the binomial expansion, we get 

J\ 
[J - k)'.k< 

copies of x% in our list. 

(4.50) 
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4.5.2. Symplectic S t r u c t u r e on the I te ra ted Tangent Bundle 

But now recall that TM has a natural symplectic structure pulled back via -J 

from T* M. We may use this to obtain a natural symplectic structure on TTM and 

then TT^M, etc. We have just constructed a natural injection of J Si —* TJ Si, 

taking : to an appropriate diagonal. We may pullback the sympleclic structure on 

TJ M to get a natural one on JM. 

4 .5 .2 .1 . Coord ina te Description of Symplectic S t ruc tu r e 

Let us introduce coordinates {y{J} on M, {yt,y\} on TM, {j/o'yi«yiO'V?i} o n 

TTM. etc. Here v/e are using 

y5 t, (4-Si) 

on TJ M where d, = 0,1 and leading zeroes are supressed. t / j^ j are the coordi

nates in the fiber over the spare described by ydt...,d- L e t the symplectic structure 

on M be w = w06 cfyg A dy^. T'M pairs yo with yi and on TM the yj factor is 

twisted by w. Thus the symplectic structure on TM is 

w a ( ,<fy 0Adyi. ( 4 - 5 2 ) 

T'TM would pair y 0 with y ^ and yi with yu. On TTM yio and yu are twisted 

by TA/ Ts symplectic structure. Thus the structure for TTM is 

^abdyo A dyj, - uabdy" A dyi 0 = ura»(<ij£ A dj{j + dy? 0 A dy\). (4.53) 

If we think of the subscript as a binary number, then the prescription is to pair 

each y with the y whose dibits have l's and O's switched. Thus it pairs y m with 
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y2j j _„, such that the even binary number is the first in the wrdgr product. Thu:-

the symplectic structure on TJM is given by 

J.V 2 m - l 

EEi-'i 'j- '- 1 ' ' ' ' - ' 1 *- 1 - ' ' ( 4 5 4 ) 

a,b m=0 

How does the jet bundle map into T M in these coordinates? Each time there 

is a 1 in the binary expansion of m, it indicates that j/JJ, coordinatizes another 

tangent to a tangent, i.e. another derivative in t. Thus the injection of JM into 

TJM is given by 

*/m ~ ziuffl or bin&ry digits of m- (4.55) 

4.S.3. Pulled Back Symplectic Ltructure on the Jet Space 

We may get a symplectic form on JM by pulling back the one on TJ M. This 

amounts to substituting the appropriate x for each y. Since 2J — 1 - m is m with 

all l's and O's switched, the sum of the l's in 2 J - 1 - m is J minus the number 

of l's in m. Thus z£ is paired with w0(,Xj_ f c. We see that there aie J\/\k\[J - k)l) 

ways of choosing m with k l 's, and so dz£ /\ dx j _ f c will get this coefficient. The 

pulled back symplectic form on JM is thus 

Zt^jhvl"* <**<*->• (4-56) 

The corresponding Poisson bracket is exactly the one we obtained in the previous 

section. We have therefore; shown that this bracket really is coordinate independent. 
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4.6. Relation to t he P a t h Space Bracket 

In this soction we will show how JM's symplertic strunure is related to P,M'f-. 

The result is- something like the J-th derivative of the path structure. This inter

pretation will be made explicit in the next section. We saw in section 4.3 that 

PiM was essentially a direct integral of the spaces Mt as < goes from 0 to ] . The 

path space symplectic structure and HamiVtonian are integrals of the corresponding 

structures on M. 

4.6.1. Weighted Path Bracket and Hamiltonian 

Because the spaces do not interact for djJerent values of e, we may obtain 

equally viable structures by putting a weighting factor /3(e) into the integrals. As

suming that Q(() doesn't vanish anywhere, we get the correct dynamics on P\M 

with 

*0P(VUV3) = / 0{€) upU){Vi[(,plt)),V3{c>P(t))) di (4.57) 
Jo 

H0(p)= I /3(e).tf(e,p(e))de. (4.58) 
Jo 

When we project to one of the smaller spaces, we essentially take Q to vanish on 

some domain. PaM comes from taking /3(e) ~ 1 for 0 < e < a and *3(e) = 0 for 

a < ( < I. Taking 3 to be a delta function /3(e) = 6(c) gives the original structure 

on P0M *» M. 

In general, if we have a closed two-form on a manifold, it may not be symplectic 

due to degenerate directions (i.e. there exist, tangent vectors such that the one-form 

that results from inserting tbem into the two-form vanishes). The set of degenerate 
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direct ions forms a sub^pate of the tangent space at each point of I lie manifold Near 

points where the degenerate subspaces don't change in dimension, we may attempt 

to find a foliation by degenerate submanifolds (i.e. a smooth collection of disjoint 

submanifolds called leaves of the same dimension as and tangent to the degenerate 

subspaces, whose union is the whole manifold). Usually this is not possible even 

locally. Conditions under which it is possible locally are given by Frobenius' theorem 

(see (Spivak, 1979] p. 257). In the situation we are considering, the condition 

that the two-form be closed is sufficient to guarantee that the requirements of the 

Frobenius theorem are satisfied by the degenerate subspaces. We would like to 

consider the quotient of our manifold by the degenerate foliation. The quotient is a 

manifold whose points are the leaves of the foliation. It is always possible to form 

such a quotient locally and sometimes it is possible globally. The original degenerate 

two-form gives rise to a non-degenerate symplectic two-form on the quotient. The 

value of this two-form on two tangent vectors on the quotient is defined to be equal 

to the value of the original two-form applied to any two vectors on the original 

manifold that project to the two quotient vectors. The result of this is independent 

of the point we lift the vectors to because the original two-form is closed. It is 

independent of the vectors we choose at that point because thf different choices 

differ by degenerate vectors on which the two-form vanishes. 

These very general considerations apply to the path symplectic structure Z-g 

defined in terms of 0. A degenerate vector on the path space at p is a vector 

field along p on which d$ vanishes. Examining i^ 's defining integral and using 

the faci that ui is non-degenerate, we see that if Q is a function (a? opposed to a 
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distribution) then a degenerate V is non-zeru only at those < where 3 vanishes. If 

J = 1 for 0 < t < a and = 0 for a < t < 1. a degenerate vector is described 

by a V(() which is non-zero only f< r e > a. The degenerate foliation has leaves 

that are some given p(t) for 0 < < < o and all possible extensions for Q < * < 1. 

The quotient by the degenerate foliation is then exactly PaM and the quotient 

symplectic structure is £ig viewed as acting on vector fields along paths defined for 

0 < e < a. The case of distributional /3's may be studied in a similar way. 

4.6.2. Jet Bracket Arises from Derivative of Delta Function Weighting 

We claim that taking (3 to be the J*th derivative of a delta function gives us 

the J-jet structure. Consider 

^ , (V | ,Vb) = f ( ( - 1 > J ! ^ W ) "(Vi(<,pW)>",( t ,pH)) * (4.59) 

&AP) = / o ' (l.-1)'£J"M) * M 0 ) *• (4-eo) 

This structure does respect the jet equivalence classes. We take symplectic coordi

nates on M so that u? = ^u 0(, dxa A dxb and use the coordinates { i g , . . . , i j } as 

defined before on the J-jet space. Recall that a vector 

2N J -

EE^I < 4 - 6 » 
corresponds to a vector X along a curve with the same jet according to 

V?(x0

 I J ) = 5 ? E X°\i,xa + ix, + • • • + j T I J J - ( 4 ' 6 2 ) 



(4.63) 

4.6.3. Jet Hamiltonian from Derivative of Delta Function Weighting 2i)'i 

We MT that 1-j really depends only on the J-lh jet of the path and the J-lh jrt of 

tile vector field: 

= 2^k>ij -ky.u-t\d?\,=0

x^x' + •••+ r x j ) ) 

by the Leibniz rule for derivatives. 

But these derivatives give the components of the jets of X: 

*AXUX2) = \ £ _ i ~ U o 4 V,% Vlj„k. (4.64) 

So CJJ is really the pullback along PtM —* J M of the form which we discovered 

before: 

4.6.3. Jet Hamiltonian from Derivative of Delta Function Weighting 

Similarly, 

Bj[p) = ^ 7 J _ i f ( c , i o + « , -T---+ ^ x A = £(*„ Ui (4.66) 

is the pullback of H along P\M — JM. 
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4.7. Jet Space as Derivative 

In this section wo will make more explicit the sensr in which the symplectic 

structure on JM is a. derivative of _'. Tulczyjew and Kijowbki have shown how the 

natural structure on TM is a firsi derivative in jKijowski and Tukzyjew, 1979]. 

4.7.1. The Sheet Quotient Spaces 

We will need the spaces defined by 

PQJM ~ I equivalence classes in P\M where pi — pt 

1 , (4.67) 

iff p,(0) = p 2(0) and p,(6) = p 2 (S)J 

and in general by 

PQ,6, ,JiA/ = I equivalence classes in P\ A/where pi ~- p2 
1 (4.68) 

iff Pi(f) =Ps(c) fore = 0 ,« , . . . , J* L 

We require the curves to agree on sheets e = 0,6,...,J6 spaced by 6. Let us call 

the coordinates on these sheets {ZQ,ZI, •.. , ^ j } -

4.7.2. Sheet Symplectic Structure and Hamtltonian 

We get the correct dynamics on these sheets if we take the symplectic structure 

<^\d Hamiltonian to be 

*«=- £ n3k u*b dz*A rfjs* 0k¥:O ( 4 , 6 9 ) 

fc=0 
J 

J? 4(ro zj)=Y,BkU{k6.zk) (4.70) 
k=0 
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These are discrete versions of the infinite dimensional structures mentioned in the 

last section. We wan* to map JM into this space and pull Lack ~-, and fig,. We 

choose the 3k as functions of 6 so that the limit b — 0 is both non-singular and 

non-trivial. 

4.7.3. Map Between Sheet Space and J e t Space 

With coordinates {zg,. • • ,xaj} on JM we can define the map 

zk 

This identifies { io , . . . ,xj} with the points where the curve i 0 + txi + . . . + y,xj 

intersects the sheets introduced above. 

4.7.4. T h e Ful ;d Back Sheet Symplectic S t ruc tu re and Hamil tonian 

The pulled back <1>& on JM is then 

1 J Sm+n 

w * = o Yl fcm+"~r-f/5fc w a o dxa

m A dxb

n. (4.72) 

The pulled back Hamiltonian is 

H6{zo, ..,xj) = Y,0kH (kb,x0 + k6xt +•••+ [-^T*j) (4.73) 



4 7.5. Sheet Structure* Anymptatv :• .lit Structure* for Small Spacing 20S 

4.7.5. Sheet StructureB Aeymptote t o J e t S t ruc tures for Small Spacing 

Locking al the expression for / / 6 . up .see that there is no hope for xj dependence 

as c — 0 if Ak — oc slower than b' } as b — 0- We therefore assume that 

3k — he" where b^ is independent of b. b then only appears in the expression 

for 1*,̂  as Sm+"'J. Terms with m -t- n > J will vanish when 6—0. For w$ to be 

defined as 6 —• 0, we must choose ba so that the sum of terms with i = m + n < J 

must have a vanishing coefficient. Thus the frfc must satisfy 

y y *».+.. J * 0 o < i < J - i . (4.74) 

This may be rewritten 

and the binomial theorem gives I ^ _ 0 [»*!(* _ m ) * ] ~ ! = 2'/*-' Thus 

^ ~ b k = 0 for 0 < i < J - 1 (4.76) 
fc=0 

J^fc , 6 f c = 0 f o r O < i < J ~ 1. (4.77) 
fc=0 

This is J equations for J + 1 unknowns. We may take &o = 1 and remember that 

an arbitrary multiplicative factor is allowed. We solve the equations by introducing 

a generating function 

/{*) = £>*'. (4.78) 

The condition fco = 1 becomes /(0) = 1. Notice that 

(4)'f-ik'hik- (4-79) 
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So 

( * T - ) / = 0 f o r O i i < . / - 1. (4.80| 

This easily implies that 

_£_ 

Using these equations we may Taylor expand / about x — 1 

(4.81) 

/ (z ) = 0 + 0 + - - - + ^ ( z - l ) J + . . . (4.82) 

Because / is a J-th order polysomia! and /(Q) = 1, we see that C3 = J\{-\)3 and 

so 

/ ( I ) = ( 1 - I ) J . (4.83) 

From the binomial expansion 

6 " < - 1 ) ' « i 7 ^ * ) ! " , d X > ' = 3 P < ' - * > ' | , = J ! - < 4 8 4> 

The only terms left in u have m + n = J and give us 

fc,T7l=0 V ' 

= 2 £ m'U-m)' '"''"' d l™ A •"'-" , 4 8 5 ) 

just as before. 

Now 

H / ( l 0 zj) 

^>-'>*^"(»-<«>-»'.+ ---^r4 (4.86) 
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If we call S& the operator which shifts a function of f by an amount e. so Stf{t) — 

J[( -i- c), then we see that 

"' ( I° ^» = ^ o p t - 1 » ' E ( 7 ^ s * L J i r ( " 0 + " , + ' " + ^ J ) 

= l l ~ t j i ) J U (',*> +<*i+---+3i*j)- (4.87) 

As S goes to zero, the operator (1 - St)/6 becomes d/di. In the limit we have 

H(io, • • • , i J ) = -£j\ H ( e,io + t n + • • • + ~ZJ) (4.88) 

just as before. Our jet structure thus comes out of a limiting process almost 

uniquely. Similar kinds of arguments arise in ihe theory of finite differences used to 

approximate derivatives numerically. A good reference written from a theoretical 

perspective is [Stoer and Burlirsh, 1980]. 
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4.8, Jeta and Symmetry 

In this section we study Hamillonian group actions in the perturbation context 

we have been considering. We need to undersrand the perturbation analog*- of 

group actions and the process of reduction. We first show thai a Hamiltonian group 

action of G on A/ lifts to the path space PtM and jet space JM. We calculate 

the momentum maps and show that they are equivariant. We then introduce the 

group PG of paths in G and the group JG of their J-jets. These too act on t'M 

and JM and we find their momentum maps. Next we consider the case where M 

is a coadjoint orbit in g* and show that PM is a coadjoint orbit in Pg* and JM in 

Jg*. We calculate the corresponding Lie symplectic structures and show that they 

give the path bracket and jet bracket that we discovered earlier. We then study the 

process of reduction and show that the reduced path space is the path space of the 

reduced space and the reduced jet space is the jet space of the reduced space. 

4.8.1. ^-dependent Group Actions on M 

Our starting point '.s an e-dependent group action on the manifold: 

p:I x G x M - M. (4.89) 

Here / is the interval [0,1], G is the group, and M is the manifold. If e is the 

identity of G then 

p{c,L,m) = m (4.90) 

and 

/"^•ffl./»(<.ff2."i)) = /*(iiSl • 92- m). (4.91) 
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For a ronipact group <7 acting on a compact manifold M, we can eliminate the 

t-dependence of the group action by an (-dependent coordinate change in M (this 

result Udue to Palais). This is not true for non-compact G as the example of the real 

line demonstrates. In this case group actions are the flows of vector fields. Even if 

we restrict attention to arbitrarily small neighborhoods of t = 0, only the so-called 

"structurally stable5" vector fields can be made (-independent by an (-dependent 

coordinate change. 

4.8.1.1. Lift to G Action on the Path Space 

This action lifts to the space of paths PM by defining 

p:GxPM^PM by p(gtP){c) = p(ctgtp[t)). (4.92) 

4.8.1.2. Lift to G Action on the Jet Space 

This respects the equivalence classes that define the J-jet space JM. We 

introduce coordinates x a on M and x°, i = 0 , 1 , . . . , J on JM as before. The 

components of p will be written pa. The action of G on JM is then given by 

P ? ( S , ( * V l J » s ^ | />°(t,9,f«,io + «ii + - - - + ^ u ) ) - H-93) 
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4.6.1-3. Mape from the Lie Algebra to Vector Fields on A/. P.M, and JM 

Thf action of d on 1 x M gives u< a map from the Lie algebra g of (• to vector 

6^1d~ on 1 x A/ that leave < invariant. If i; € ff is tangent to a curve / — 6*. so 

v= ~\ g(t), (4 94) 
d i l<=o 

then A"t on / x A/ is denned by 

A\ , (c .m)= j \ p((,g(t),m). (4.95) 

This induces a map from g to TPM defined by 

A-„(p)(<) = *,.((,p{<)) (4.96) 

and to 1JM defined in coordinates bv 

d' \ d\ I 
* . = 0 « ' l = fl V 

(4.97) 

4.8.1.4. The Momentum Map 

In the case where M.w is symplectic and our (i anion has an (-dependent 

equivariant momentum map 

.» : / x M - . s" (4.981 

then 

ix.uJ = { « . f) (4.99) 

on each ( =constant. 
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4.8.1.5. M o m e n t u m M a p on PM 

Thi~ g\ve> u> a momentum map for d"« artion on PM with the syniplectic 

structure I- given by 

j.PM^g' by p " / J((.p(0)rf*. (4.100) 

It's easy to see that this gives the correct action and is equivaiiant because J is. 

4.8.1.6. Momentum Map on JM 

I'sing coordinates (ig , i j ) on «/Af as before where the i ° ' s are canonical, 

wc see that we in ay deBne a momentum map from JM — g' by 

j ( x 0 . . . . , x . , ) = £ _ | J ( t . ( t , i 0 + « , + - - .+ ^ A ) . (4.101) 

4.8.1.7. Equivariancc of JA/'s Momentum Map 

The equivariance follows from that of J, as follows. Equivariance of J says 

J(e,p(«,S,m)) = 4d* • J ( t .m) . (4.102) 

On J M we see 

.'((>(!>. Uo u ) ) ) = £ j | J (< .£ : 7 /> , ( s , (*o I J ' » 
(4.103) 

rfJ ' „ v - <' d' I , / ' J ")» 
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The dJ id(J\t_n allows us to neglect terms in < of higher than ihe Jxh order. But 

to this order any function f(t) is equal to its 7th order Taylor series 

J , j , | 

E T J T / ( < ) - / ( < ) • (4.104) 

Thu: 

•.&\\-x<.('.» + «> + --- + &)) ( 4 1 0 5 ) 

= Ad" -J(x0t...,xj) 

as desired. 

4.8.2. The Path Group: PG 

When we do reduction, we'll want a much larger group to work with. In essence, 

we want a symmetry that can act on different level sets of ( independently. Thus 

we define 

PG = (all paths g : J — G, g : c ^ g[c)\. (4.106) 

The product in this space is defined as 

91 •&(«) = Si (O-SztO- (4-107) 

The identity in PG is the constant path at the identity e(t) = e in G. 
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4.8 .2 .1 . The P a t h Lie Algebra: Pg 

Taking infinitesimal elements, we see that the Lie algebra is 

Pg= {all paths v :l^g, v : t • - 5 ( ( ) } . (4.108) 

The notation Pg would be ambiguous in that it could mean the path space of the 

Lie algebra or the Lie algebra of the path group, except that these two spaces are 

naturally isomorphic. The Lie bracket of two elements is defined pointwise 

l«i,«yto = (*iM,*atol- («•«») 

4.8.2.2. The D u a l of t he Lie Algebra of the P a t h Group 

The dual of the Lie algebra is< all (distributional) paths in ff': 

Pg'= {a : / - . } " , a : e ~ o ( < ) } . (4.110) 

The pairing is gr« ;;n by 

<fi ,o)s f (fi(c),S(e))ifc. (4.111) 
Jo 

4.8.2.3. T h e Act ion of the P a t h Group on t h e P a t h Space 

PG acts on PM by 

R-.PGxPM^PM R(g,p){i) = p{t,g(t),p(c)). (4.112) 

G is the subgroup of PG with g{e) = g and this action of PG on PM extends the 

action of G. The momentum map for this action is PM —* Pg* by p •— J[--,p{-)) 

where • is the parameter c to be inserted in an clement of g* to get I — g* • 
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4.8.3. T h e Je t Group : JG 

Consider paths in G which begin at the identity and remain there to ordrr < . 

i.e. g(0) = e, dk/dik\ =0<?(<) - 0 for 1 < h < J. The product of two such paths 

is such a path as are inverses and the identity. Let us call this subgroup of PG. 

PGj-fiat (since a function whose derivative at £ = 0 vanishes is flat there and one 

whose higher derivatives vanish is very fiat there, i.e. ./-flat). With the action R 

on PM. we see that this subgroup leaves invariant the J - jet equivalence classes, 

so we are naturally interested in 

PGj = PG/PGj-flat, (4.113) 

assuming that this is a group. It is easier to show PGj-jtal is a normal subgroup 

of PG by considering Lie algebras (recall that a normal subgroup H C G satisfies 

gHg~l = H for every g £ G and that this is a necessary and sufficient condition 

for the quotient G/H to be a group). 

The Lie algebra of PGj~ftat is clearly 

Pgj-flui = {v E Pg | ~\ v ( t ) = 0 for 0 < i < J}. (4.114) 
« l«=o 

To check for normality, we want to show that 

\P9>P9J-Ii«t}cPgj-flal (4.115) 

(this i= the Lie algebra analog of normality). But if 

u(r) = uo + 'Si + ••• G Py (4 116) 
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and 

'"(0 = ( 7 T 7 j i £ , J + 1 + ' " e ' r , e - ' - / i < . i (4 i i7) 

then 

["••'K') ^ ( J + 1 , , l » o ^ j - n ] + - ' - e F g j - / t a t (4.118) 

as desired. Ordinarily, there are problems in relating results about infinite-dimen

sional Lie algebras to results about the corresponding infinite-dimensional groups 

(for example, the image of the exponential map of the diffeomorphism group does 

not contain any neighborhood of the identity). Path groups are especially well-

behaved, however, and the argument here is valid in this context (for more discussion 

see Appendix A of [Freed and Uhlenbeck, 1984]). Thus we may introduce the group 

of J-jeis of paths in G: 

JG s PG/PGj-llal. (4.119) 

4.8.3.1. The Lie Algebra erf the Jet Group: Jg 

Its Lie algebra is 

Jg = Pg/Pgj-,iM. (4.120) 

As for Pg. the potentially ambiguous notation is not. by a simple theorem. We may 

put coordinates v.%, U\, ... , « j on Jg by associating ( u 0 r u i , - . . ,u j ) , u, e ff with the 

equivalence class of Uo + e"i + • • • + {(J }J\)uj. The bracket is then 

[ ( u 0 . u i . . . . , u j ) t ( v 0 l t ; 1 , . . . 1 v j ) ] 
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So 
k k' 

l(«o."i «J ) . («O, I>I :-j)U = V~ ... .„ i" . . ' - t - . i 14 122) 

This is an explicit formula for the Lie bracket of the jet Lie algebra. We shall need 

it in determining the Lie-Poisson bracket. 

4 .8 .3 / . . Homomorphism from Jg to Vector FieldB on JM 

The group JG acts on JM and so we get a Lie algebra homomorphism from 

Jg to vector fields on JM (these will generate symmetries that hold up to order 

€J i"or the full dynamics but are exact symmetries on JM). Recall that Xv is the 

image of a map from v e g to vector fields on / x M. When v depends on e as 

above, we see that 

( * ( w . v v j ) ) . = 

*(TO+<U,+ +t.,i/J!)v,) (f.*0 + <Z| +••• + JJZJ j 

(4.123) 

v * d ' I <* v i <J ^ 

<*<•*• -»>- = E ^ 7 ^ ( - ^ ) . - « 1 2 4 > 
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This gives the action of a jet Lie algebra element on the jet space of M in terms of 

•he (-dependent action of the group on M. If wc have an approximate symmetry 

in the sense that our t-uependent action preserves some structure to order J, then 

this J-jet action will be an exact symmetry. 

4.8.3.3. The Dual of the Jet Lie Algebra: Jg* 

The dual of the Lie algebra, Jg*, may be coordinated by J elements of g* 

with the pairing 

j 

( ( Q 0 , Q I , t t j ) , («o, . . - , t ) j )) = y^(a , ,v , ) for a, G g*, ti,j€ g. (4.125) 
t==0 

4.8.3.4. The Jet Momentum Maps 

By the definition given in section 2.7.2 of momentum maps on M we have in 

general that 

X ; ( c i m ) = u r t ^ j ( J ( e , m ) , « ) . (4.126) 

(4.127) 

is £-dependent, but nonetheless, 

(.7(«,m),«o+ • • •+ - !> . , ) (4-128) 

is an ^-dependent Hamiltonian on M for the correct action. We know from section 

4.4.2 that with 

{ I f . x J } = u ° b ™ 6 , , J - t (4.129) 
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we will get the correct dynamics from the J t h derivative of the Hamiltoniaii. So 

dJ i tJ 

J dJ I ' 

= ErfP JfW.,m).v,) ( 4 1 3 ( ) ) 

i=0 '*—° 

generates the (v 0 , . . . ,uj) dynamics on JAf. Thus the momentum map is 

^•••••• I J , = 5 ( 7 r o M S ^ L J ( , ' I O + " , + " - + ^ ) - ( 4 ' 3 1 ) 

This momentum map is again equivariant. This is important because this is the 

approximate constant of motion corresponding to an approximate symmetry. For 

example, we will see in chapter 5 that adiabatic invariants may be viewed iu this 

way. If we can find an exact symmetry of the dynamics on JM, then this gives a 

constant of the motion up to order J in e for the full system. 

4,8.4. When M is a Coadjoint Orbit with the KKS Symplectic S t ruc tu re 

Thus we have discovered two groups, PG and JG, that contain G. Let us 

consider the special case in which M is a coadjoint orbit of G in g' with the canonical 

Kostant-Kirillov-Souriou symplectic structure. (This is really no limitation since we 

may take G to be the group of symplectomorphisms of A/, g is then Hamiltonian 

functions, g' L distributions and we may identify A/ and its symplectic structure 

with the orbit of a ^-function and its KKS structure). 
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4.8.4.1- Coadjoint Act ion of PG 

Because multiplication in PG is e-wise, the adjoint action of PG on Pg is just 

(Adi.v){c) = Ada{erv[c) (4.132) 

and tbe coadjomt action is similar. 

4.8.4.2. The K K S Symplect ic Structure on Coadjoint Orbiti In Pg* 

Consider any path 

5 : / - » A f Cff". (4.133) 

Since M is a coadjoint orbit of G, under the coadjoint action of PG on a, at each e 

we will sweep out a copy of M. Since the different e'e are nearly independent, it it 

easy to see that the coadjoint orbit of PG through a is the path space PM of M. 

What is the Lie symplectic structure? Given an element 0 of g, we determine 

a curve of tangent vectors to M, i.e. an element V of TPPM, by identifying a path 

p with an element a of Pg*. We let 

5(e) =p(e) (4.134) 

and take 

V{p) = ad]a (4.135) 

or 

V(p(0).= <.<i; ( ( | O(0- (4.136) 
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Similarly a-vMiiiali- ii t it with (̂  € TPPM. The Lie symplectic structure is then 

-•,,([>.V) ^• (od i6 ,ad |Q) 

=(5.[i..-]) 
/•' (4.137) 

Jo 

= f ^oWO-V'tO)* 
since ^ p ( ( ) on M was the Lie symplectic structure for G. Thus we obtain our 

previous path space symplectic structure via a coadjoint orbit of the group of paths 

inG. 

4.8.5. Natural Projections and InjectionB of G, PG, and JG 

We ?j-e interested in the groups G, PG, and JG. G is naturally a subgroup of 

PG given by constant paths: 

9(0 = 9- (4 138) 

We also have a projection PG —<• G which sends a path to its endpoint: 

9 ~ 9 ( 0 ) , (4.139) 

which is also a homomorphism. PG also projects to JG by JG's definition as 

PGjPGj-fiat- G's image in PG gets sent to a subgroup of JG containing those 

points with zero jets. JG also projects onto G but is not naturally a subgroup of 

PG. 

The picture summarizing these ratural maps is 

PG ' JG , G. 
1 I (4.140) 
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4,8.5.1. Projections and Injections of the Lie Algebras and Duals 

Taking derivatives of these maps also gives us maps between the corresponding 

Lie algebras 
Pg -Jg —. g. 

I I (4.141) 

where — means a projection and +— an injection. Elen ents of Pg are paths in g. 

They project to their 7-jets in Jg and their value at c - 0 in g. Elements of g are 

sent to ./-jets whose 0-jet is the clement and whose higher order jets vanish. They 

are sent to constant paths of the given value in Pg. 

Taking duals gives 
Pg* >Jg* , g*, 

t I (4.142) 

where —* means a projection and «— means an injection. Elements of Pg* are 

distributional paths in g*. They are sent to g' by letting them act on an element 

of g by integrating their value on that element over e: 

/ {a(t),v)d£. (4.143) 
Jo 

Elements of Jg* are in the dual to the .7-jets of paths in g. We may coordinatize it 

by J — 1 copies of g* and give the pairing 

((a0,...,aj!,(vo,...,vj)) - {a0,v0) + ••• + {aj,vj), (4.144) 

( Q 0 QJ) is sent to the element 

<*oH<) - <n T I *(e> + • • • + aA~l)J TI\ 6W ( 4 1 4 5 > 
d c l , = o a t u=o 

of Pg* and to the element a0 of g*. g* injects into Jg* to send QQ to (QO,0, .. . ,0). 
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4.8.6. The Lie PoiBSon Bracket on g' 

The Lie-Poisson bracket on g* i.= 

and M is a symplectic leaf for this bracket. 

4.8.6.1. The Lie Poisson Bracket on Jg" 

The Lie-Poisson bracket on Jg' may be defined with the help of our coordinates 

as 

^ ^ . - . . ^ ( ( - . . - - . . [ ( ^ • • - ^ • ( ^ &)]) 

(4.147) 

4.8.6.2. Jg' as J-jets of Paths in g* 

We would like to identify some coadjoint orbit in Jg' as A/'s ./-jet space JM. 

For this we would like to identify ,7-jets of paths to g" with elements of Jg' • What 

is a natural pairing of J-jets of paths in g with J-jets of pat'is in <?*? If we change 

the measure on our pairing of paths to 

(a.v)j~ J ( o ( ().,.|,))(-|)-'^ 7(i(,)rf<. (4.148) 
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where a is a path in g* and r a path in g. we see that the result only depend? on 

the ./-jet of ft and the J-jet of r. i.e. it defines a pairing of the appropriate jet 

spaces. Now we would like to find the identification of 7-jets of paths in g', say 

f»o~mj -* • - • + 'J:OJ. with our previous coordinatization which gives duals of the 

components (fo.l'i t j ) of the jet of the path e 0 + euj H h '-J.VJ. We see that 

/ <J < J \ 
< Oo-fO, + •••+ —Qj , l ' 0 + tV| + • • • + j j lV ) = 

= -H (QO + I O I + 
rfrl«=o N (4.149) 

f^„ * l , .o * U o \ ' " ! • 

1=0 * ' 

Thus the J-jet of Q 0 + *&i + . . . + j y a j is associated with the element 

{jTv.aj'IT^Wvaj-' oTJi 0 0 )- ( 4 J 5 0 ) 

The J-jet space JM of M gets turned upside down when we put it into Jg'. 

4.8.6.3. Condjoint Orb i t s in Jg' 

With this identification of J-jets of g' with Jg', the ccadjoint action of JG on 

J-jets of g' is just the obvious one: pick a representative path in G with the right 

J-jet: iet it act at each e according to the coadjoist action of G on g' and then take 

the J-jet of he resulting path. 

By definition this is the way the adjoint action of G on g works. We would like 

{a~dui\adu'a)j = {v.a) (4.151) 
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for all \i e g. But since 

<arf u ( ( ,r<0.<< ( ( >a(0> - M O MO) (4.152) 

for all t, it is clear by integrating over ( against { — 1)J -£76(1) that it iy true for the 

jets. 

4.8.6.4. JM is a Coadjoint Orbit in Jg' as a Manifold 

Because the coadjoint orbit in Pg* of a ^ t h which lies solely in M is the space 

of all paths in M, the coadjoint orbit in Jg' of a J-jet of a path in M is the space 

of all J-jets of paths in M, i.e. the J-jet space JM. 

4.8.6.5. The KKS Symplectic Structure is the Jet Symplectic S t ruc tu re 

So JM is a coadjoint orbit. What is the Lie symplectic structure'.' Again every 

J-jet of a path in g determines a J-jet of a path of tangent vectors to M, i.e. an 

element of TJM, by 

V,(Q 0 + ( Q , + • • • + —Qj) 
• ( J (4.03) 
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The Lie sy'Tiplcctir structure i> thru 

*'(«„. . . . j ) l («0 t i j ) , ( f 0 rj)) -

= {'/>(i aj).[[u0 u j ) . ( ' "o VJ)\)J 

u 0 + ««i + " • + j jUj- fo + tfi +••• + ~ v j ) ( - 1 ) ' ' ^ J* t«)< '< 

= / T T I w Q ( t / 0 + £f/i -i • • • + '-j-Mj,V0 + <V, + • • • + ~ V j ) d £ , 

(4.154) 

but we have seen that this is exactly the J-jet bracket that we obtained before. 

Jerry Marsden has pointed out that some of these symplectic com -ii<-':ons 

immediately generalize to corresponding constructions on Poisson manifolas. For 

example, to get a symplcctic structure on TM from w on My we use w to identify 

TM with T'M and pull back the canonical structure. While a Poisson structure 

does not define an isomorphism, it does define a map from T'M to TM. We may 

push forward the canonical Poisson structure on T'M to obtain a non-canonical 

one on TM. Iterating this gives Poisson structures on each of the iterated tangent 

bundles. Presumably one can use these to define a Poisson structure on each of the 

jet spaces as well. It appears likely that the jet structure derived from a Lie-Poisson 

bracket on g' is the Lie-Poissoa bracket on Jg' • Richard Montgomery has recently 

shown that the second order perturbation jet structure may be extended in this way 

to arbitrary Poisson manifolds and it appears that the same methods will work to 

all orders. 
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4.8.7. JG as a Semi-Direct P roduc t 

Notice that the set of clrincr'*- of Jg of the form 

(0.0 0 . u , , u t + l UJ) (4.155) 

form a nilpotent ideal, say Jgt. We see that ig — Jg/Jgt. Thus Jg is a semi-direct 

product of ig and Jgl. Note in particular that \G is TG and has the group structure 

of the semi-direct product of G with g with the adjoint action. Alan Weinstein has 

pointed out th..t this provides an '"explanation" of why mobt of the coadjoint orbits 

of the Euclidean group (which is the tangent group of the rotation group) are the 

tangent bundle of the 2-spherc (most of the coadjoint orbits of the rotation group are 

2-spheres). Note, however, that the symplectic structure on these orbits agrees with 

the jet symplectic structure only on the orbits whose tangent vectors are tangent 

to the spheres. The other orbits have extra "magnetic terms" in their symplectic 

forms. If the conjecture at the end of the last section is correct, then the general 

coadjoint orbits of JG are the symplectic leaves of the jet lift of the Lie Poisson 

structure <_n g' 10 Jg'. It is interesting that there is another natural jel type Lie 

algebra associated with an arbitrary Lie algebra g. Consider ./-jets at the origin of 

reai valued Function.* (as opposed to paths) define on g'. The Lie Puisson bracket 

gives this jet space a natural Lie algebra structure. Its dimension is much larger 

than that of Jg and the relation hetween the two Lie algebras is not clear. 
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4.8.8. Jet and Path Reduced Spaces are Reduced Jet and Path Spaces 

Lei us now reiurn to the general setting of an < dependent action of 6' on A/,-.-. 

If we have an (-dependent invariant function H{i). it is easy to see that if the orbit 

spares for all < are diffeomorphic (for example if the G action is < independent or if G 

is compact and the variation is small enough) then PG leaves H on PM invariant. 

Its orbit space is the space of paths in the orbit space of G on M. Similarly, the 

inverse image of a point in Pg' under the momentum map J is the space of paths 

that lie in the corresponding inverse image of J at each t. Thus the reduced space 

of PG acting on PM is the path space of the reduced spaces at each e. 

Similarly JG acts on JM leaving 

~ | H{t,p{i)) (4.156) 

« l.=o 

invariant. Again the reduced space for this action is the jet space of the reduced 

space for the action of G on M. 
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Chapter5: 
Kruskal's Theory of 
Nearly Periodic 
Systems 

"All nature and the graceful sky are symbolized in the art of Geometria." — 

Kepler. Tertius Interveniens 

5.1. Introduction: Kruskal's Approach 

In 1962 Martin Kruskal published "Asymptotic Theory of Hamiltonian and 

other Systems with all Solutions Nearly Periodic" [Kruskal. 1962]. In this paper 

he generalized and unified previous results due to himself and others showing that 

many specific physical systems had adiabatic invariants to all orders in a small 

parameter expressing the separation of slow and fast time scales. This work is the 

theoretical foundation for many concepts in plasma physics <tnd elsewhere. It is 

therefore of interest to re-examine the underlying structure of the theory in thf 

light of recent developments in geometric mechanics and dynamical systems. We 

have presented in earlier chapters a geometric formulation for ordinary perturbation 

theory and showed that it leads to deeper insights into the Hamiltonian nature of 
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perturbed systems Hrrc wc will present a new version of Kruskal's result which 

lead1- to a completely unambiguous prescription for the perturbation analysis. We 

then show how the new procedure is expressed in coordinate-fr^e language using the 

geometric structure of ordinary perturbation theory. The procedure is intimately 

tied with the process of reduction in the Hamiltonian case and so is connected with 

recent developments in finding Hamiltonian structures in plasma and other physical 

contexts. 

Let us begin by setting up the problem in geometric language and then dis

cussing KruskaTs method in this framework. We are interested in studying dynam

ical systems whose dynamical vector field depends on a small parameter t in such a 

way that when « = 0 all orbits are periodic and the period is a smooth non-vanishing 

function on state space. Kruskal called the closed unperturbed orbits loops. These 

loops naturally give the state space the structure of a circle bundle. Locally we 

may express this bundle as a product: S 1 x $" . It is easy to see that we may 

choose coordinates 8 and xa, a = 1 , . . . , n such that the unperturbed dynamical 

vector field is independent of 6 and has no x component. In these coordinates the 

dynamics is given by the vector field 

X = ^x)^-nX1 + C-Xi + ..., (5.1) 

where i&(x) describes how the frequency varies with i . As we turn on the pertur

bation by letting c be nonzero, the dynamical vector field no lcger points along 

loops and the orbits in state space drift from loop to loop along a helical path. If 

we are uninterested in the dynamics around the loops then the unperturbed sys

tem projects to trivial dynamics on the base of the bundle, i.e. the x coordinate 
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dnr- not evolve. If the perturbed vector fteid did not depend on 0. then again by 

ignoring the fast 6 motion we could project the dynamics to the ba.se space leaving 

only the interesting slow dynamics. Unfortunately, typical perturbations will not 

be independent of 0 and different points on a loop will evolve to different loops, 

precluding any well defined slow dynamics on the base. Kruskal attempts to find 

t-dependent coordinates 6 and z" which reduce to 0 and xa when < vanishes, such 

that the dynamical vector field expressed in these coordinates is independent of 8. 

In general this will not be possible for finite e, but KruskaJ was able to show that 

such 0 and xa exist as asymptotic series to all ordeis in e. His technique involves 

an intricate "bootstrap" argument which links two expansions together and obtains 

terms in one from lower order terms in the other. 

The choice of coordinates is not unique beca-se we can always apply an * 

dependent dtffeomorphism to the base and rotate the fibers (i.e. choose coordinates 

y{£) and B -f / (£)) without altering the desired properties. Kruskal called the t 

dependent loop obtained by holding x fixed and letting 8 run from 0 to 2TT, a ring. 

The set of rings determines a fibration of phase space for each f and reduces to the 

original fibration when < = 0. The vector field 

fii-. (5-2) 

38 

is tangent to the rings and was denoted the roto-rate by Kruskal. He showed that a« 

an asvmptotic series, JR is uniquely defined to all orders in «. In the paper he i*.akes 

the interesting comment: "It does not ?r>pe?r obvious whether an explicit recursion 

formula to determine R in terms of / [the dynamical vector fields can be found. If 

so. the whole theory of this paper might be simplified and rendered !e?s deep," In 

http://ba.se
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this chaptor we will exhibit such a formufa and show UP geometric significance. 
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5.2. The New Approach Expressed in Coordinates 

Many perturbation methods, beginning with the Poincare-Lindstedi method 

and leading up to the method of Lie transforms, are like Kruskal's approach in 

that they work by looking for an (-dependent diffeomorphism of phase space which 

takes the perturbed system into a simpler one (equivalently one thinks of finding 

new coordinates in terms of which the dynamics looks simple). This has the advan

tage that closed loops are automatically taken to closed loops and if the system is 

Hamiltonian and the diffeomorphism is a canonical transformation, it preserves the 

Hamiltonian structure. In the present setup we will see that it is easier to explicitly 

require the rings to be closed as a constraint that helps determine terms in the 

expansion. In Kruskal's technique a similar constraint is required to ensure that 

the change of coordinates is periodic in 6. One advantage of the present approach 

over methods which change coordinates is the uniqueness of the desired expansion. 

This leads one to suspect (correctly as we will show in section 6.3) that the whole 

procedure has an intrinsic coordinate-free interpretation. Because the coordinate 

change is not uniquely specified in the standard approach, there will always \ • .n 

arbitrary and unphysical choice to be made at some point. This becomes especially 

critical in infinite-dimensions where one wishes to apply these techniques to fields 

(we will see in chapter 13 that infinite-dimensional coordinate changes may involve 

many subtle phenomena). 

We will now see that an asymptotic expansion for R can be uniquely determined 

on the basis of two constraints. The coordinate-free way of expressing the dynamic a! 
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vector field A"s independence of 0 is to say thai the Lie bracket of A" and R vanishes-: 

[/?. A"| = 0. (5.3) 

The second requirement on R is that its integral curves all be closed. Thus 

if y(t) = R then y(0) = y(2:r). (5.4) 

If we assume an expansion for R and X as above then equation (5.3) taken order 

by or ie- in ( gives us a hierarchy of equations for the terms in R: 

[Ko.X„]=0 

|is,,Xoi = - ' A , x , | 
(5.5) 

[fl 2..Y 0] = - 2 [ f i , , X 1 ] - [ f l r X2] 

Notice that each right hand side is known from before as we determine successive 

terms in R. On the left hand side we always find the bracket of a term in R with 

A'o - v{x)d/d9. The x components and the 6 components of this bracket have a 

different structure and must hn dealt with separately. 

We use y \ 1 < i < n + 1 to represent xa,0. 1 < a < n together. Recall that 

the coordinate expression for the Lie bracket of two vector fields A and B takes the 

form 

l-4.*]' = g ( ^ ' - B J a H - l5'6) 

A'o is special in that it has only a 0 component, which depends only on x. Denoting 

the x components of a vector by an x superscript and the 6 component by a 9 

superscript, we find 

i«„A',r = - t . [ I | f . (5.7) 
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Since f(x) doesn't vanish by assumption, and assuming we have alread> obtained 

all lower order terms, we may integrate this equation and find the solution up to 

an arbitrary n-componcnt function F(i): 

1 f* 
Rf = j-r I (known terms)d0 + F(x) (5.8) 

*(x) Jo 

The 6 component of the Lie bracket is slightly more complicated: 

The second term vanishes because ijr has no 8 dependence. If we are able to deter

mine Rf first then we may obtain i?f by integrating up to an arbitrary function 

G(x): 

H" ~ ~ S i b f ( ~ 5 1 | ^ ' R , ° + ( k n o w n t e r m s ) ) d6 + Gl-' ). (5.10) 

To determine F(x) and G(x) we employ the periodicity condition order by order. 

We must find F{x) first without the help of Rf so that we may use Rf in its 

determination as abo*'e. The flow of y = R satisfies the integral equation 

y ( 0 = [ R{y(t'))df. (5.11) 
Jo 

Let us expand y(t) as an asymptotic series in € and substitute this into this equation: 

VoW + tyj(t) + ... = J {*o(y 0(f')) + < ( § ^ - » i + r t | ( ! / o ) ) + < 2 - - . } < * ' - (5 12) 

We again get a hierarchy of equations by collecting terms order by order in t. Foi 

reference, let us work out the integrand to order (2. We fir^t expand the lerm- in 
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i? s asymptotic expansion in Taylor serif!- to the needed order: 

R{y) - flo(»o) + — • Uvi + '-^y-i + ~y3) 

ia'Jh, <* ., <2 . i s 3 * , , 3 

- <mm) + ^ • ( w + J»2) + | ^ ( ( ! " K ' ! " ) ) (5-1 3> 

<2 , „ , , i»fi2 + ^ ( % (»o) + - 5 — -«yi) 
2 <%o 
c 3 

+ jRaM-

Now let us collect terms to get the vector field to the various orders. To order e° 

we have simply 

/Jo. (5.14) 

To order e 1 we have 

^ • » . + * . . (5-15) 
dyo 

To order c 2 we have 

13Ro 1 8 ! J ! , Sit, 1 , . 
5-3— -V2 + 5-5-3- -vi -vi + -5—91 + s f t ' I 5 1 6 ) 
2 dy0 2 dy^ c*y0 2 

Finally to order e we have 

ia.Ro ia2.Ro ia 3 i io 3 

6 dy0 2 6>yj 6 3yg 
1 dR, 1 a 2 i ? , , 1 dR7 1 -

(5.17) 

In the expression for y,((), the term t/,(t) appears only in the form y{ • (dtto/dyo) 

and all other term* are of lower order and therefore known. But RQ — (dfdQ) is 

constant and so it? derivative vanishes. Thus each y, is a well defined integral over 

http://ia.Ro


5.2. The \ e w Approach Expressed in Coordinate 

known quantities: 

«o(D=«o(« = 0) + l io«) = *„(<=<» 

:,(io,»M» 
Jo 
f'fdR, 1„ ld 2ito \ .„ (5.1S) 

V2 

We may now impose the constraint that the orbits be periodic: 

, 2 . 
! / I ( 2 T ) - S I I ( 0 ) = 0 = / fl, d0 

Jo 
f7" 3Ri / R2d0 = -l p y i < / e 

/ o Jo Olio (5.19) 

The elementary asymptotic series for y is valid since we need it only for finite 

time (in fact, only time one). Each of these equations has an x compi nent and 

a 6 component. The asymptotic series for R is uniquely determined as follows: i) 

RQ = I a n*^ R£ - 0, ii) assuming Rj known for j < i, we obtain Rf up to the 

function F ( i ) by means of equation (6.8), iii) we determine F(x) by means of the 

x component of equation (6.14), iv) using the Rj's and .ft* we determine R°t up to 

the function G(x) by means of equation (6.10), v) and finally we determine G(x) 

by usinp the 6 component of equation (6.14) giving us the entire R, and allowing 

us to continue the iteration to R1+\. 
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5.3. T h e Geometric Version of the New Approach 

Let UP now formulate the new procedure completely invariant!}-, in terms of 

the geometric picture introduced in chapter 4. Given a vector field A'{() o n / x A f 

with no d/d( component and A~(0) having all periodic orbits, we would like to find 

R{() on / x M with no djdt romponect such that X{0) and R[0) are tangent, 

[A'(c),i£(()] = 0, and all of i2(e)'s orbits are periodic of period 2TT. We cannot 

do this for finite < (due to homoclinic behavior, for example, which is discussed in 

chapter 14), but R is determined uniquely to all orders in e. 

Let V : A/ — 38 be the period function of X(Q) and assume that it does not 

vanish anywhere. Let R{0) = X{0)/4>. We have the hierarchy of jets of paths at 

( = 0: 

coM — . . . — JAf — . . . ^ 2Af — lAf — Af. (5.20) 

A*(e) determine? vector fields on each of these spaces. We are looking for R's on 

each space such that each projects to the one below. The bracket of two vector 

fields lifts to a vector field on JM which is the bracket on JM of the lifts to JM of 

the vector fields. Thus [X((.),R{t)} = 0 lifts to a condition on each JM. The Bow 

of a vector field for time 1 is a diffeomorphism of / x M preserving t. It therefore 

lifts to diffeomorphisms of each JM which project into one another. On JM the 

diffeomorphism is the time-1 flow of the lift of the vector field to JM. The condition 

y = R{y) implies y'L) = y(0) lifts to similar conditions on the lifts to each JM. 

We know from the coordinate calculations that to determine a given order of 

R, we first have to determine it modulo RQ and then use this to get the full R. Thus 

we introduce the drift tangent bundles DTJM which at each point of JM has fiber 
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TpJ-V//'Ro(p). where RQ is the lift (o </A/ of <JRt). Wc gc: the natural projections 

TJM - DTJM 
i i 

T2M - OT2M (5.21) 
1 i 

TIM - DTIM 
1 I 

TM - DTM. 

The key relation is 

[flj.zo] = [ ^ j ^Ho ! = (*j " ^)iZo + V|i2j.iZo]. (5-22) 

The first term is along Ro and so is killed by the D operation, the second may be 

solveo for R} by integrating along the flow of RQ the quantity l/t}t times the right 

hand side. Tho integral relation on D space then gives the constant of integration. 

Next, since RQ • V = 0, we see that 

{R] + fR0)V=RJ--C [5.23) 

So the first term depends only on DR,. So the RQ component of R} may be found 

by integrating: ~[-{DRj • v)iZo + r.h.».) and then the integral gives the constant. 

We will see several examples of this procedure in the next chapter. 
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S.4. Extensions and .Limitations of KruakaTs Theory 

In th^ section let m- describe some of the limitations and extensions of Kruskal's 

and other secular perturbation theories. Most of thr asymptotic theories of physics 

are based upon asymptotic rather than convergent expansions. An asymptotic 

expansion of a function of « is a formal power series in < such that the truncation 

after the ATtb. term approximates the function to order e^- Typically, as A' gets 

larger, one must go to smaller t to get a good approximation and there may be no 

i for which all the terms in an asymptotic series are helpful (and in fact most such 

series are divergent). Most of the techniques one applies in perturbative analyses 

yield asymptotic series because the exact solution we are approximating does not 

have a convergent expansion. The notion of convergence rests on a complex analytic 

structure, while smooth non-analytic coordinate changes, which should be physically 

irrelevant, can destroy the convergence of an asymptotic expression. There aro two 

limiting processes here, letting « go to zero and letting the number of terms go 

to infinity. Asymptotic series have nice limits when they ate done in that order*, 

convergent series allow us to switch the order of the limiting processes. From a 

practical point of view, one never uses more than a finite nurrber of terms of an 

expansion in any ca^e and often there are asymptotic series which approximate an 

expression much more quickly than a corresponding crjvergent series. 
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5.4.1. Secular Pe r tu rba t i on Theory 

If the coefficients of an asymptotic series are in addition a function of other 

parameters i , then one may inquire into the uniformity of the asymptotic approx

imation. We say that a series is asymptotic uniformly in i if the coefficient of 

e m in the error term of a truncation may be chosen to be independent of x for 

each m. How small we <,ave to make < to get a given approximation should be 

specifiable independently of x. Most of the asymptotic expansions in physics are 

nonuniform, otherwise known as singular or secular. If the nonuniformity occurs 

near a finite point, we may often insert a boundary layer expansion defined on an e 

dependent region about the singular x which is uniform over that region, and patch 

it to the singular expansion using the method of matched asymptotic expansions 

(see [Nayfeh, 1973] p. 111). Such a technique is used for example in matching a 

thin boundary layer where viscosity is important in an almost inviscid fluid to the 

inviscid solution in the interior. 

The most common occurrence tt nonuniformity, however, takes place as i goes 

to infinity (again note that the order of the x limit and the c limit may not be 

exchanged). A key example of this is where x represents the time in the solution of 

ordinary differential equations. We have seen that the most pedestrian perturbation 

technique is to simply expand the supposed solution of an O.D.E. in an asymptotic 

series, plug this into the equation, and solve for t!;e terms order by order. We 

saw that this technique gave asymptotic solutions over times independent of < to 

all orders in c. For even the simplest problems with recurrent behavior, however, 

these expansions are non-uniform in time and in fact are no longer asymptotic 
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expansions at all whrn written in terms of a "slow" time: T = it. We have not 

made any mistakes in our analysis of the equation as is sometimes suggested; rather 

this nonuniform behavior is a property of the exact solution. 

Consider for example the simple equation 

x= - { l + c) 2z. (5.24) 

This is just a harmonic oscillator of frequency (1 + c) and so has solutions like 

J ( 0 = sin(l + t)t. (5.25) 

If we expand this in an asymptotic expansion, we obtain 

x{t) ~ sin(() + (t cos(t) + • • •. (5.26) 

This is the asymptotic expansion of the true solution, and yet we see that for times 

of order 1/c, the second term does not go to zero as e does. This is thus non-uniform 

in t and the non-uniformity is on a scale of t = 1/e. For this example we may make a 

change of independent variable to a = (1 + c)( and we see that we get a completely 

uniform (and even convergent) expansion in terms of s. The effect of this is to 

do our asymptotics along the lines a ^constant in the (c,t) plane instead of along 

t =constant. 
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5.4.1.1. Lie Transforms 

The general technique of all secular perturbation theories is to introduce a new 

asymptotic process as in this example. For example, the method of Lie transforms 

makes an t dependent canonical transformation of an underlying phase space, such 

that in terms of the new variables the standard perturbation method yields solutions 

that are asymptotic for longer than bounded times. This technique m«iy be shown 

to work for nearly periodic dynamical systems for time l/c (see for example jCary, 

1981| and (Nayfeh, 1973] p. 200). Even here it is not completely specified what Lie 

transform one should make (since there is always extra freedom in making changes 

of coordinates). There is no general theory describing other circumstances in which 

the method works and even when the method does work, there is no algorithmic 

procedure for cariying it out. 

5.4.1.2. Two-Timing 

The multiple time scale approach (two-timing) writes the solution hi terms of 

two variables t and r (see [Nayfeh, 1973] p. 228). The expression in terms of J is 

obtained by replacing T by et, but the limiting process is performed with both J 

and r held fixed. We choose the representation so that the dependence on t is non-

secular on times of order l/< by writing the secular parts in terms of r. The result is 

asymptotics good for times of order l/«. This procedure is not given algorit^.nically, 

it is not clear what systems this approach works for and it is not clear how to 

proceed order by order even on systems where it works (though in specific example? 

the technique is often quite useful). One may sometimes get expressions for longer 
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times by introducing more slow times: t,T = 1/<,T' = l/f'J but again the 

theory M-eim- to be restricted to special examples. It appears that when we express 

quantitie- as functions of more than one variable that we introduce an essential 

non-uniqueness which may limit the precision with which one can specify what one 

is doing. 

5.4.2. 1/t Time of Validity for Kruekal's Technique 

We have seen that KruskaTs method, while restricted to perturbations of an 

exactly periodic system, is perfectly general within this context and uniform to all 

orders in e for times of order 1/e. That the time of validity is 1/t is a significant 

point, clearly stated in Kruskai's original paper, but not often repeated when this 

paper is quoted. One often hears the phrase: "Kruskal showed that adiabatic 

invariants exist to all orders in t." This then leads one to confuse the accuracy of 

the approximation with the time of validity. 

Why is the theory good for even time 1/e (we have seen that the simplest 

examples make the basic perturbation technique fail on this scale)? The idea is to 

convert our system, by hook or by crook, to one of the form 

x = cX, (5.27) 

where A' is an asymptotic vector field. In this case we may make the change of 

variables to r = et and obtain the equation in the usual form: 

£ = X. (5.28) 
dr 
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Wc may apply standard perturbation theory to this to get an expression for the 

solution that is asymptotic for bounded r. But going back to t, this is valid for t 

of time 1/t. In Kruskal's technique, we get rid of the fast oscillations by successive 

coordinate changes and so the resulting dynamics has only the slow drifts which are 

of order t and so susceptible to the above technique. There is no way to get longer 

times out of this technique in general. 

One sometimes hears the plausible argument: "Since the adiabatic invariant's 

time derivative is zero to all orders in t, it will be constant for exponentially long 

times.71 As an example to see that this reasoning is faulty, consider the expression 

j = e~l/lt. (5.29) 

If we take derivatives of this with respect to <., while holding t fixed, we see that 

J ' s time derivative is indeed zero to all orders in c. Nonetheless, J is of order 1 on 

times of order 1/e. Since when J is of order 1, J can change in times of order 1, we 

see that for this example J can undergo an order 1 change in times of order 1/t. 

To see that there are physical examples that fit into Kruskal's (and so everbody 

else's) framework and yet do not have preserved adiabatic invariants on times of 

order 1/c2 we need only consider parametric resonance. As in [Arnold. 1983). the 

simple harmonic oscillator with slowly varying frequency: 

z = - J 2 ( l + acos{et))x, (5.30) 

may be shown to be unstable for arbitrarily small t since there are resonances 

of arbitrarily high order. (An example is the child who pumps up a swing by 
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resonantly varying its length, and so its natural frequency.) It is easy to see that in 

this circumstance, the action will change significantly in times of order \/t2. 

5.4.3. Averaging w i t h Mult iple Frequencies 

If. instead of a single fast degree of freedom, we have several fast degrees of 

freedom, the motion is close to being on tori that fill up the phase space. It appears 

at first that one could just average over the tori and obtain as adiabatic invariants 

the actions correspcndtng to the fundamental loops of the tori. This is fine if the 

unperturbed dynamics covers each torus ergodically and so the average perturbation 

over a torus really reflects the time average. If any of the frequencies are rationally 

related, however, then the orbit covers only a piece of the torus and we have no 

reason to expect that the average over the whole torus should have anything to do 

with the average over the orbit. Indeed one finds that one may have "trapping" at 

these so-called resonances, where the adiabatic invariant changes drastically in time 

1/c. Fortunately, for generic Hamiltonians, the measure of the trapped regions is 

small and goes to zero as ^/t. [Arnold, 1983] introduces the notion of an aJmost 

adiabatic invariant which is a quantity that is constant to first order in c for times 

of order 1/1 except for a set of phase space whose measure goes to zero with c. 
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5.4.4. Averaging Over Ergodic Orbits 

When the unperturbed system is ergodic on its energy surfaces. jKubo el al.. 

1965. and later [Ott, 1979], showed that the volume contained inside an t nergy 

surface is preserved to order t for time \}t. This is based on an averaging similar 

to the single frequency averaging case. This is of interest because as the dimension 

gets larger, the volume being preserved is equivalent, to the entropy being preserved. 

This gives a mechanical justification for the adiabatic invariance of the entropy in 

thermodynamics. When we forget about the oscillatory directions, we have seen 

that the constancy of the adiabatic invariant in an oscillatory system forces it to 

give and take energy under a variation of its parameters* in such a way that it 

simulates a potential, leading to the pseudoforces we have discussed earlier. The 

same circumstance in the thermodynamic case leads to thermodynamic forces. We 

shall see in the last chapter of this thesis that there is a symplectic structure and 

Lagrangian submanifold that describes these forces in a Hamiltonian way exactly 

analogous to the pseudo forces of the mechanical systems. 

5.4.5. Non-uniqueness of Symmet ry for Fini te Pe r tu rba t ion 

Even though Kruskal showed that in a nearly periodic system there is a unique 

ciicle action on the perturbed dynamics to all orders in i. for finite perturbation 

there may be none or the circle action may not be unique. Here is give a simple 

example to demonstrate this non-uniqueness. Our system will be a cylinder with 

coordinates B and y. The unperturbed system will just rotate in 9: 

* , = £ . ,5 .3 , , 
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A typical perturbs! bu -shifts the orbits on the cylinder so that almost all of them 

are heli-cs. For example, we get orbits that look like the stripes on a barber pole 

for finite t with 

x=M+%- ( 5 3 2 » 
Since this vector field does not depend explicitly on 6, the unperturbed vector field 

generates a circle action which is a symmetry of this one. There are an infinite 

number of others, however. 

Let R be a vector field on the cylinder, all of whose orbits are circles. By the 

relationship of the Sow of a vector field to the Lie derivative along it, R will generate 

a circle symmetry of X if, and only if the Lie derivative of X by R vanishes. But 

for vector fields this is just the Lie bracket: \R,X), which is antisymmetric- and so 

the Lie derivative of R along X most vanish as wen. This says that if we know R 

at any place on an A' orbit, for it to be a symmetry its value anywhere else on this 

orbit must be obtained by pushing it forward along the flow of X. The orbits of X 

are a circle of helices filling up phase space. If we choose any closed loop around 

the cylinder that intersects each helix exactly once {it is easy to see that there are 

an infinite number of ways of doing this), then we can make that loop one of the 

orbits of R, For R on the loop, just choose R tangent to the loop, and to get R 

everywhere else, we push this forward by X's flow. 
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Chapter 6: 
Ponderomotive Force 
and Gyrornotion 

"The purpose of computing is insight, not numbers."—Richard W. Hamming 

6.1. Ponderomotive-like Forces 

In this chapter we will apply the perturbation techniques of the last chapter 

to some example problems. The physical plasma phenomena that underlie our 

examples are the ponderomotive force and gyromotion. We wish to keep the physics 

of these asymptotic physical effects in the foreground and so we do not work with the 

most general situation in which these effects arise. Instead, we focus on the simplest 

situations which contain the relevant physical effects, and discuss the underlying 

asymptotic process in detail. This approach allows us to explicitly compare aspects 

of these problems which are obscure in more complex settings. The insights and 

intuiti-ms gained are of course applicable to more general settings-

First we discuss a model problem that contains the essence of ponderomotive 

force. We consider a time-indepeu lent problem with two degrees of freedom. One 

degree of freedom behaves like » (<tst oscillator and the other evolve? slowly in an 
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arbitrary potential. The example we will use is 

i = fr 

V = «» 

a'(i) ian(r) a ' 6 1 ) 

"* ~ 3x ! J i * 

A, = - K , ( i ) » 

with the initial conditions 
x(0) = xQ y{0) = y 0 

(6.2) 
Vx{0) =s t ' l 0 WV(°) = "yO" 

This system is Hamiltonian v ith the canonical Poisson bracket in x,y,vx,vv and 

the Hamiltonian 

ff(i,», » „ » „ ) = i « l + 5 « ; + V( I ) + i H ' ( I ) » a . (6.3) 

A physical model with this dynamics is a ball rolling in a trough. The trough 

is a surface whose height over the ( i ,y) plane is given by V{x)+W(x)y2/2. (vXtvv) 

represent the x and y velocities respectively. Along each line i ^constant, the 

potential has a minimum at y = 0 and grows quadratically with strength W(x) as 

\y\ increases. If the rolling particle starts at y — 0 with v„ = 0, then it remains 

on the line y = 0 for all time. In this case the system behaves like a one degree 

of freedom system with potential V(x) and W(x^ P ' - no role. If there is any 

displacement from y = 0, then the particle continues to uacillate back and forth 

about the i-axis. The y 2 in the potential acts like a restoring force toward y = 0 and 

the strength W(x) varies with x. Exactly this kind of model is behind mechanical 

systems with constraints. When we say we have a particle in the plane constrained 
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to the .-axis (like a beat! on a wire), we really mean that there is a Miff restoring 

force transverse to the axis. It is sometime? implicitly assumed that if the restoring 

force is sufficiently strong, the motion of the particle is well approximated by the 

equations restricted to the constraint manifold (in this case the x-axis). To make this 

statement precise one must introduce asymptotics in the strength of the restoring 

force. We will see in fact that if W(x) is not constant, then the transverse motions 

add a new pseudo-potential to the constrained motion. 

We are interested, then, in the case where the transverse y motion is very fast 

compared to the x motion. We want to explicitly introduce asymptotic scaling with 

a parameter t into our equations of motion to maJse this analysts precise. Usually one 

is somewhat sloppy and simply proceeds intuitively. Sometimes this gives a useful 

answer but the chances of this go down as the complexity of the problem goes up. 

It is also important to explicitly state the intended scaling as this represents the 

physical effect one is trying to study. Let us give an intuitive argument and then 

see what must be done to make it precise. 

6.1.1. In tu i t ive Trea tment 

Because the y motion is supposed to be fast compared to the x motion. tK1 '/ 

motion initially behaves a:, if x is frozen at XQ. The equations for the y motion are 

now those of a simple harmonic oscillator with frequency \/H'(xo): 

y ™ Vy {. - -W[x0)y. (6.4) 
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For simplicity, we take the y initial condition to be zero: y(0) = 0. In this case the 

solution is 

v/W (io) 

The vx evolution equation 

depends on y. Because y traverses its periodic orbit many times before r or vx evolve 

appreciably, y's effect on vx 's evolution wilf be almost the same as its average over 

y's orbit. Because the average of sin 2(#) over 0 < 0 < 2ir is 1/2, the average of 

- ^ V / 2 w i l l b e 

2 dx 2W(lo) l 

If we now let u be the value of vu when y = 0, we see that the same argument 

applies to any time (not just the initial time) to give the vx equation: 

dx 2 dx 2W[x) X S 

This tells us how vx varies if we know u (i.e. y's maximum velocity). 

We may determine u from the constraint that the total energy must remain 

constant. At an arbitrary time, the average energy in the y motion is u 2 / 2 , a result 

we obtain by holding x and u 3 fixed and realizing that all of the oscillatory energy 

is kinetic when y = 0- The total energy (averaged over the y motion) is then 

ff=^ + j « ' + V ( I ) . (6.9) 

The time derivative of H must vanish, so 

H = vxvx + uu + vx^~ = 0. (6.10) 
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We substitute in the expression for r r to obtain 

H = 0 

dV 1 dW u7 

1 • u 2 

- W - . 
2 2H' 

(6.11) 

This has an integrating factor of l/{2\/W) by which we multiply to obtain: 

WW 8W ( 6 [ 2 ) 

= ± JL) 
dt \ijWJ ' 

We have found a constant of the motion, a multiple of 2 of which we shall call J 

( lince it is equal to the action of the transverse oscillations): 

\2s/wTx)) \2jW X 
This may be solved for u: 

u = TJ2JI/W 

and then substituted into the equation for vx: 
. av{x) ian'(i) u2 

"* "" dx 2 dz 2W{x) 
av(i) iaw(x) j 

dx 2 dx y/W 

The x motion beha\ es just like a particle in the potential 

/Wjx~) 
V ( I ) + J V / W ( I ) = F ( I ) + -

(6.13) 

(6.14) 

(6.15) 

(6.16) 

The ordinary putential V(x) is augmented by aT. extra pseudo-potential Jy/W(x) 

which is non-zero when there is transverse motion and has an effect on the x motion 

when W varies vith x. 

file:///ijWJ
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6.1.2. Introducing the Asymptotic Scaling 

This argument is intuitively appealing but has not been systematic. It is dif

ficult to see how to get more accurate evolution equations. We therefore wish to 

introduce an explicit < into our equations which captures the physical assumptions 

used in the intuitive discussion above as e —• 0 and which gives the correct equa

tions for ( = 1. y and vy are supposed to be fast variables. If we view them as 

varying by order 1 on a time scale of e (so the fast motion gets faster and faster 

as e — 01, then x and vx should vary by order 1 on times scales of order 1. In 

modelling constrained motion, one typically makes the constraining force stronger 

asymptotically. We therefore replace W(x) with W{x)/c2. If we keep the initial 

conditions y(0) = y0 and «v{0) = vv0t then as e —* 0 the energy of the transverse 

motion becomes infinite. Because the transverse energy is r.eally of the same order 

as the energy of the constrained motion, we must scale the transverse displacement 

with t as y(0) = cyo- This leads to a system given by 

x = vx 

. dV(x) 1 dW[x) 2 ( 6 - 1 7 ) 
V l dx 2<2 dx y 

vv = -±W(x)y 

with the initial conditions 

i(0) = io !/(0) = cy„ 
(6.18) 

Vx{0) = UJD Vy(0) = UyO-

From the equations, it might appear that vx can really evolve by order \jt on 

times of order r contrary to assumption. This doesn't happen, however, because 
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the maximal excursion in y scales as ( and so counteracts the l/(2 in the equation 

for vx. This is because the initial y has this scaling and because the total energy ie-

of order 1. That the transverse potential energy Wy7 j2(2 is of order 1 means that 

y's, maximal excursion is of order e. This argument shows that the time derivative 

of t' y is of order I ft. This system is Hamiltonian with the canonical Poisson bracket 

in x,t / ,Ui,v y and the Hamiltonian is 

IHx,y,v„v„) = \v\ + i „ J + V{X)+ ^W(z)y2. (6.19) 

This scaling has the fast motion getting very fast as ( — 0 as is physically reasonable. 

The interesting pseudo-potential has its effects in time 1 (which is presumably the 

time scale used by the observer). Unfortunately, this scaling is not a perturbation 

around any well understood system for e = 0. As f approaches zero, the equations 

of motion become singular. It is also not apparent how the operations we performed 

in our intuitive approach may be expressed systematically witl' this scaling (e.g., 

we held the x variables fixed while studying y-why could we do this?) 

One way to resolve these difficulties is to redo our study on a stretched time 

scale (i.e. imagine the clocks in your sensory apparatus getting faster as < — 0). We 

introduce ( = t/c. Tf we interpret dot to mean derivative with respect to t (while 

keeping the interpretation of the velocities vx and i y as derivatives with respect to 

()i then the equations of motion become 
x = t u r 

y = (vv 

•, - _ a v M _ 1 dWjx) 7 ( 6 ' 2 ° ) 
V r ( dx 2( dz V 

i'v=-\w[x)y 
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with the initial renditions 

x(0) - J-O y(0) = < y ( J 

(6.21) 
r r (0) = " x C j U y (0) = v y 0 . 

To get rid of the apparently singular terras, we may introduce a rescaled y defined 

by Y = y/t. The initial conditions are now f independent and the equations are 

non-singular: 

* = «, 
. = _ av{x) _ (dw[x) ( 6 2 2 ) 

"' ' Sx 2 dx 

i , = -W{x)Y 

with the initial conditions 

i(0) = io Y(0 )=yo 

(6.23) 

»»(0) = »io « u(0) = v„ 0 . 

These equations are perfectly set up for the non-Hamiltonian versions of the meth

ods given in the last chapter. They limit as e — 0 on a system with only periodic 

orbits: 
i = 0 , *" = »„, vT = 0, v, = - W ( i ) y . (6.24) 

We will study these equations momentarily. Unfortunately, they are not Hamil-

tonian with respect to the canonical Poisson bracket. They are Hamiltonian with 

respect to the bracket 

u,g'~ dzav, dvxdx + aya^ a^ar y • 
with the Hamiltonian 

»(*,»>„»,) = ii-I + i^+VW+Wjy'-. (6.26) 
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This bracket becomes degenerate (and functions of j and vT become C'a^imi^ I when 

t = 0 

One way to preserve ihe Hamiltonian nature with resped. IT the canonical 

bracket is to scale the potentials V[x) and H'(i) to vary more and more slowly, the 

strength of the restoring potential to grow and the contribution of vx to the kinetic 

energy to vanish as e — 0. This leads to the Hamiltonian 

H{x,y,vx,vv) = lively*! V{«)+ \w(tx)y2. (6.27) 

The equations of motion are 

av caw , (6.28) 

(6.29) 

{,„ = -W(cx)y 

with the initial conditions 

i ( 0 ) = i 0 »(0) = »o 

« I (0) = « l 0 f„(0) = «„o. 

Again this has nice limiting behavior as t — 0. Physically, the picture is that we 

are stretching the x coordinate, so that the trough becomes flatter and flatter in 

the x direction. If we hold vx fixed, then it takes a longer and longer time to make 

W vary substantially. 
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6.1.3. Using the Kruskal-like Perturbation Method 

Let us now obtain the adiabatirallv invariant action to first order in r using 

tin- method outlined in chapter 5. The dynamical vector field is: 

X = A'o + tXi 

44-^y 
The solution curves of the unperturbed piece X0 are all closed: 

x(t) = x0 »,(() = 0 

Y(t) = Acos[^/W(x)t) 

u„(() = -A v /H'(i)sm(v'H'(i)t). 

(6.30) 

(6.31) 

6.1.3.1. The Coordinates x.v^.A.B 

Let us define the angle on these orbits as 8 and introduce an amplitude A: 

Y = 4cos9 u„ = -A^/W{x)sm9. 

Writing these relations in the other direction gives 

(6.32) 

tan 0 = ^ = A2 = Y' + ~ 4 . (6.33) 
YjWjx) W(z) " 

Comparing these expressions with the earlier discussion we expect the zero order 

action to be given by 

(A^WU))2 _ 1 
J„--

2y/W(x) -AV"'(x). (6.34) 



6.1.3 /. The Coordinates i.v,.A.O 

We may take the time derivatives of these expressions to obtain the dvn 

vector field in the new coordinates. 

( 1 + t a n 2 

Ys/WjF) 5'2v/lv>) 2YW{x)W d l 

tan e aw /Vi[x) + tim2es/Wi.x)-iv1 2H'(i) dx ' 

(6.35) 

Similarly for A: 

leading to 

$ = \/W{,x) - cu,siriecosS aw 
2iv(x) ax' 

2AA = 2 y r + 2^y--^^i 
W\x) " W{x)2 dx 

= 2Yv„ - 2v„Y - < 
' W f x ) 2 3x 

tvzA2 . 2.3W 
-wlx)sme-bT 

A = 
'W(x)S,n S~ax-

Thus the dynamical vector field in these coordinates is 

x = Viv(i) a a (av{x) iaw(x) ,, , \ a 
'ae '3x \ ax 2 ax 

. , „ i aiv a t^/i . 2 a aw a 
civsinpcosp — -t sin 8 . w[x) ax ao 2W(x) ax aA 

(6.36) 

(6.37) 

(6.38) 

(6.39) 
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6.1.3.2. Resul t of t h e M e t h o d of Averaging 

/ 
The method of averaging says that the projection to z,vS!A space of the in

tegral curves of A' agrees with the evolution on that space of the averaged vector 

field: 

l a lav A*awix)\ VtA dW 8 ' (6.40) 

to first order in ( for a time 1/e. From this we again (though this time it is rigorous) 

see that for the averaged dynamics 

= AAyJW(x) + 
4 % / lV(i ) dz 

•OtA* dW »„/!* dW 
(6.41) 

i^/W{z) dx 4^/W[x) d x 

= 0. 

So J is exactly a constant of the motion for the averaged dynamics. This implies 

that Jo is conserved to within « for time i /c , i.e. it is an adiabatic invariant. If we 

consider a level set of J0 then the averaged vector field restricted to that level set 

has the form 

^=i«4-l(v^+J^)ak) (6-42) 

and so is Hamiltonian with an extra pseudo-potential Jy/W{x). 
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6.1.3.3. Calculation of the Roto-rate Vector Field 

Let us now find the roto-rate symmetry vector field to first orde in <. We know 

that 

«o = — (6.43) 
™ 36 K 

from the general theory. We wish to impose the requirement that 

[Rl,X0] = -\R0,X1\. (6.44) 

Let us solve this for i?i component by component. Since 

X0 = v ^ l (6.45) 

we find that 

'as 

[R„XO\* = - \ / R 7 w ^ 

= -lRo,X1}' 

36 

= 0. 

36' 
Bxi 

We conclude that 

R't = / f (T , t - I .X) (6.47) 

is a constant. The next step in the method is to impose the constraint that the 

orbits R close after time 2ir: 

/ rt,<J0 = O. (6.48) 
/o 

V.'e conclude that the constant vanishes and that 

* f =0 . (6.49) 



6.1.3.3 Ca/ru/ation of the Roto-mtc Vector Field 

Similarly, wo obtain tho r., component: 

awix 
„ A2cos0sin0. dx 

i t" awix) , - . . 
= / —j i- !

J4 2cosflsin9d'8 + / ; ' - (x ,u I ,A) 
V(x) Jo o x 

A JcosM + / f ' ( i , o „ A ) . 

/W 
1 aiV(i) 

(6.50) 

(6.51) 

4 v / ir 7 (x7 S i 
Again the integral condition forces the constant of integration to vanish and we 

R\- = - ~ ( v / M 7 W ) A 2 c o s 2 « . (6.52) 

We proceed to find Rf: 

= -£ • * ] " 
" " a s * 1 

"rA . „ „cW' 
W\X) OX 

(6.53) 

Thus we see that 

R? = 7^=7= f ^r^-in^dS + t^x,Vx.A) 
' 2S/W(x)la f ( x ) 3x 

V l X a H , c o s 2 » + / ? ( » , •.•„>!). 

(6.54) 

4W(i)V2 dx 

Imposing the integral condition gives 

4lV(x) 3 ' 2 dx 
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Finally we obtain R": 

= - l ^ - A M ' (6-561 

i , „ i aw 
= ^V:rCOs20- . 

2 IV (z) dx 
Thus we find that 

fl8 = 2 H ^ f x - { C O S 2 ^ + /r i l' l'"A) 

w . „„ 
-sin2fi 4 H ' ( i ) 3 ' 2 S i ' 

where we have already imposed the integral condition. 

Thus to first older in e, the roto-rate vector field is 

R= Ro + tR, 

_ a_ 
~ ae 

4W \x)3'2 dx a A 
<; dW . „ d sin2« — . 

(6.57) 

(6 58) 

4W(i)V2 3r dS 
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6.1.3.4. T h e Hami l ton ian S t ruc tu re 

In the original coordinates, the non-trivial Poisson bracket relation? are 

U.*:\ = < 0 ' , « v ) = l. (6.59) 

Lei us determine the Poiison bracket in terms of the variables x.vx,A and 8. 

Since neither A or 9 depend on vx, we have that 

{A,x} = {6,x} = 0 . {6.60} 

We may find the other relations most simply by using the derivation property 

of the bracket: 
2A{A,vz} = {A2,vx} 

= < y , + akj**> 
„2 

V 
awM,x. 

WW dx l X ' 

" J 
~w[xy dx 

1A2 . i„dW 

(V61) 

Thus we obtain the relation 

<*•««> = - s & ) ™ ' ' i ! r ( 6 6 2 ) 

Similarly 

(l + tan 29)(fl,t;.,j ---. ( tan9,u : 

= { VVH'( i ) 
tylTWsii id 1 dW 

2Acos0 !l'(r)3/2 dx ' 

(6.63) 



6.1 3 4 The Hamiltonian Structure 

Lastly 

2 . 4 ( 4 . 0 } ( I + t a n 2 e ) = {A 2 , tan9} 

= {>' 

< • „ SW ~ „.,., , smgcosfl ——. 2H i) d j 

1 
W(x)" Y^W[x) 

= -2Y{Y,v,)-

2 

2u„ , J_ 
'y2

vm 

2 2 

/W(x) v/ivw 
t a n 2 e , 

(6.04) 

(6.65) 

{*,<>)•-
1 

A,JW(i) 

In the new coordinates the Hamiltonian is 

v6.66) 

(6.67) : l-v\ + ]rA2W(i)sin2e + V(i ) + i w ( i ) / l 2 c o s 2 « 

= i / t 2 W(x) + - v i + V ( i ) . 2 2 * 

One easily checks that this HamiHonian generates the dynamical vector heir 

these coordinates using the above Poisson bracket relations. 
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6.1.4. Obta in ing the Act ion to First Order 

Let us- now use the Poiss-on bracket relation* to find the function J0 + iJt + 

. . which generates the roto-rate vector field RQ + iRj + . . .. From the defining 

expression 

RQ + IRI + ... = {;J0 + tJl + ...)Q + {;JQ + tJi + ..-}l (6.68) 

for the action we find a hierarchy of equations 

Ri={-tJih + {;Jah ( 6 - 6 9 ) 

A priori each J, is only determined up to Casimirs for {,}o until we get to the 

next stage. In this example, we may always take these Casimirs to vanish {is this a 

general phenomenon?). 

The zero-order vector field generated hy J is 

/ j i = dJ0 I d dJ0 1 d_ ( 6 7 0 ) 

1 , 0 d& As/W[x)dA dAA^/W[x)dB' 

Comparing this with the desired 

Ro=i, (6.71) 

we obtain the relations 

w = ° JX = A ^ - ( 6 J 2 ) 

Up to possible Casimirs, we obtain the expected zero order action: 

J„ = l-A2s/W&. (6.73) 



6.1.4. Obtaining tht .Action to First Order 

The first-order vector field generated by J has two ptrrcs. The first i> 

4 y St [1] U J 

A2 dw d 

A 2 aw a 

(6.74) 

The second term is {-, J\ }n and has the same form as in the zero order calculation. 

3 J , 1 B 
Together the two terms give 

dJi 1 
{•,-Mo+{-,./o}i = - as Jv /W^M s.i ^ v ^ W 8 * 

- c o s 2 0 ^ . 

(6.75) 

4^/WJx] dx flu,' 

We must choose J, so that this vector field agrees with R. Comparing the dfdvx 

terms, we see that they already agree (this just says that the undetermined Casimirs 

in the zero order step were act-.iUIy zero). For the 8 and A terms to agree we must 

have: 
BJ, 

and 

_ _ ) »,A aw 
dt AjWffi~ AWW dx 

ajl i _ », aw 
~aA As/\vf?)~ " w i x j w ' a l 

cos2S 

Axao. 

These are satisfied by 

(6.76) 

(6.77) 

(6.78) 

\ \c have thus shown that ihe function 

1 
J o „ J ( . ^ / i P w - , ^ !*:,!.». 

varit*;- only by order ( ' over time? uf order \ji 
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6.2. Some C o m m e n t s on Per tu rba t ion Calculations 

Let u* use the opportunity of this example to make explicit some very impor

tant point? about physical perturbation theory which are implicitly contained in 

the rest of the thesis. Since the time of Galileo, the scientific method has thrived on 

theorists making all assumptions explicit and basing the acceptance or rejection of 

a theory" on the testable validity of the assumptions and conclusions of a theory. For 

science to advance, it is important to be precise about the distinction between phys

ical assumptions and rigorous mathematical deduction. In the asymptotic physical 

theories discussed in this thesis there are two distinct phases of analysis. The first is 

the "putting the *'s in". This process requires physical intuition as to which aspects 

of a problem are physically important and should be emphasized in the scaling with 

c. One must make the assumed scaling precise at the beginning of the problem if 

one is to have hope for a self-consistent theory. Too often workers eliminate terms 

haphazardly as a calculation is progressing and the resulting theory does not have 

its assumptions made explicit. Without this one cannot build anything else on top 

of the theory and the result is the fragmentation of a field. 

Once the r's have been inserted, the rest of a derivation should be rigorous 

mathematics. One must state precisely what problem is to be solved and in partic

ular what time scale of validity is desired and obtained. Let us try to clearly state 

some facts about coordinates. When we are giv:;n a problem in *erms of physical 

variables including «, each physical state is associated with a well-defined point in 

the state space manifold with these coordinates. The dynamics is a precisely defined 

vcct'ir field on thi? manifold. When we start with a definite physical state, its time 
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evolution goes through other definite physical states, regardless of any coordinate 

system. By changing coordinates, one cannot change the evolution of the system. 

We have seen in chapter 2 that perturbation theory is independent of coordinates 

as well. This means that if we change our coordinate system, do nonsingular per

turbation theory in the new coordinates and change back to the original system. 

we always get the same result as working with the original coordinates all along. 

If the asymptotic expansion of a solution is secular in time (i.e. the coefficients in 

the expansion blow up as ( -+ oo, usually on a time scale of order 1/c), then this 

is a physical fact which cannot be changed by going to another coordinate system. 

(One can introduce fake coodinates which shrink with time making the system ap

parently non-secular, but rewriting this solution in the original coordinates shows 

that it really is secular. If the orbits are bounded, then Oseledec's theorem (see 

section 10.3) shows that one cannot do even this.) 

If one is happ/ with time scales of order 1 then one may use simple non-secular 

perturbation theory (as discussed in chapter 2) in any coordinate system one desires 

(in particular there is no advantage or need to do anything fancy like Lie transforms 

or Kruskal's method). If one wishes to do secular perturbation theory, then again 

there is a physical operation involved which is independent of coordinates. One must 

eliminatt the variable that gives rise to the sccularity, say by using the method of 

averaging or by reduction by an approximate symmetry. This is a physical operation 

which changes the identification of physical states with points in st?te space. One 

must lose the information that causes the secularity. Merely changing coordinates 

does not lose any information and cannot eliminate secularity by itself. (Changing 



6.2. Some Comments on Perturbation Ca/cuJafions 272 

coordinates can make the physical operation of reduction or averaging much easier 

to carry out in prat ice, but one muht not lose sight of the fart that it is mere 

convenience and has no fundamental significance.) 

We have seen only two rnethods for eliminating secularity expressed indepen

dently of the coordinate system: the method of averaging and Kruskal's method. 

Both of these rest in an absolutely essential way on the unperturbed system being 

made up of purely closed orbits. If we wish to use these methods, we must scale our 

system to be periodic at e = 0. Sometimes one sees the argument made that while 

the unperturbed system isn't periodic, we are only interested in the case where 

orbits almost come back to their starting point, validating averaging. If this is the 

case, it should be put into the scaling with e! The whole point of the scaling is 

to make explicit what variation is small compared to what other variation; in a 

self-consistent theory all such assumptions are put in at the beginning. 

One other point in connection with these polemics is that one must be careful 

not to expend great effort producing a long time theory for a system of equations 

which are themselves only an approximation for a short time. One place where 

this issue must be clarified is in plasma physics. One often begins with the Vlasov 

equation, assumes wave amplitudes are small, and then works with the linearized 

Vlasov equation. This is just the first order of non-secular perturbation theory, 

where the disturbance amplitude is scaled with e, and so is valid only for bounded 

times as t —* 0 as we have seen. One then often proceeds with an analysis of the 

linearized system using secular perturbation theory (say in analysing pondcromotive 

effects) which purportedly will give asymptotic answers uniformly on long time 
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sralfv If ihc Jong time scale is longer than the bounded time scale for which ihr 

linear theory is correct, then a? far as the actual physical behavior i<- concerned the 

result L- not correct- This is not to say that such studies are wrong, only that there 

is a further assumption behind them (that the scaling of the process studied using 

secular theory is such that the secular time scale is bounded as far as the original 

linearization is ccncerned) which must be made explicit. Higher order non-secular 

theory gives the two-wave, three-wave, etc. interaction equations. Again these are 

often studied using fancy secular techniques. Again the scaling which makes this a 

worthwhile endeavor must be made explicit. This will also give restrictions on the 

domain of validity of the theory. 
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*yL 2 D Gyromot ion via t h e New KruskaMike M e t h o d 

In this portion we will apply thr perturbation technique developed in chapter 

5 to thr problem of two-dimensional gyromotion, We will carry out all calculation^ 

in explicit detail, so as to provide a model for other calculations done with this 

method. This work was done in collaboration with Richard Montgomery. The 

problem we wish to consider is the motion of a charged particle in the ( i ,y) plane, 

in the presence of a purely perpendicular magnetic field: 

Stacy)*. (6.80) 

The Lorentz force law: 

» J ' ! ( « B ) (6.81) 

implies that when we set c = m = c a» 1, the exact non-relativistic equations of 

motion arise from the dynamical vector field: 

* = » « ! - + f v l - + Bvyl- ~Bvx^-. (6.82) 
dx vdy "dvx dvy 

To do a perturbation analysis, we must introduce the scaling factor <. There are 

a variety of ways of doing this, but we choose e so that the unperturbed orbits 

have their velocity vectors rotating at the gyro-frequency and the particle position 

remains stationary. This scaling is equivalent to making the charge to mass ratio 

infinite (though we rescale time so that the unperturbed system has well defined 

dynamics), This scaling is the standard one used in plasma physics. More dis

cussion may be found 'n [Northrop, 19631 a n < * * a ^ e papers (Littlejohn., 1979; 

and jLittlejohn. 1981) which are also good references for the rest of this section. 
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This dynamical vector held has only an unperturbed part. ,Y0. and a HrM-onlrr 

perturbation, A'i: 

If B doesn't vanish, the unperturbed system X0 has all of its orbits periodic. 

In this case, we are in the appropriate situation for the application of the method of 

chapter 5. The goal of the perturbation analysis is to find the (roto-r?.te) symmetry-

vector field iZ, order by order in e: 

R = Ro + cRi + —R2 + . . . 

The technique used here requires no special knowledge and makes no arbitrary 

choices. It is therefore suitable for a computer implementation which could work 

symbolically order by order to as high an accuracy as desired. 

Recall that the condition for it to be a symmetry of X is that their Lie bracket 

vanish: 

\R,X\=0. (6.84) 

We write this equation order by order. This examplo has only two term? in -Y. and 
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so earh eijnation contains two bracket?: 

i«o.-Voi = 0 

lfl..A' 0l = -lfi„..Yii 

|R2,A'oi = -2 |* , . .V, j 

ifi 3,Xoj = -3 | f l 3 ,X , ] (6.85) 

Ve saw in chapter 5 that it is convenient to introduce the coordinate 6 de-

scribn. the phase on the unperturbed orbits. This makes it simpler to do the 

integrals, but is in no way required for any fundamental reason. We introduce polar 

coordinates in the (vx,vy) plane at each point; 

9 = tan"1 (^\ v = \fT+»l- t 6 ' 8 6 ) 

The inverse relations are 

vx = v cosfl vv = -v sin9. (6.87) 

Expressed i^ these coordinates, the unperturbed dynamical vector field is 

Xo = B ^ . (6.88) 

The first order perturbation of the dynamics is 

a 
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T;.e frequency of the unperturbed orbits is 13. As discussed in chapter 6. the 

zero order symmetry Rc is parallel to these orbits, but normalized so thai all orbit-

have period 2~-. 

« = » ^ = | A „ . (6.89) 

The four components of the Lie bracket of fl, with A'c are given by 

dR" 

/ £ (6.90) 
[ f l J .Xor = - B - ^ - = - ; [ * J _ 1 , X , ] " 

These are the expressions that we use to explicitly perform the integral to determine 

each component of R3: 

«', = Jgl [R,-uXtfd6+f;{.z.y.v) 

*J'=|j[VJ-.,Jf,|»J» + /»(r. !/ .r) 

R", = ^f'[R1-,.X1]'dB + f;-{I.y.v) (6 91) 

»J = i/W,..r,! ' + f?a; 

The right hand sides of the Lie bracket equations are all of the form 

|/?j-i..Yil = !/?,-i .f costf — - v sin07,-\ (6.92) 

Let us work out the four compoiien.s of this in general, so as to make later work a 
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matter of simple substitution: 

rs, ..v,;- --

\R,. ..v,;» = 

\R,. ..v,;" = 

\R,. I . A I I = 

0 , " - R\ , cosfl- R° , r s i n 0 - v rosO — (It' ,) + v sin0 — ( « ' ,) 
' fir J d» ' 

-/?'/_ , MII» - R" _ ,r cos« - i- r o s s i i f l " ,) + f sin«|-(f l» ,) 
' dx J dv J _ 1 

cosfl- (fl' .) + i-sin« — (ft; .) 
dx dy J 

• «•»£<*•_,) + ..»•.?!.(*;_,). 

£ 
5y' 

(6.93) 

6 .3 .1 . T h e Four C o m p o n e n t s of ft] 

From the general theory, we know that RQ is given by 

* ° = W ' (6.94) 

Let us now i roceed lo 5nd the Tour components of i?j. The constants of integration: 

fi ,f",fl\fi. will be determined by the condition that the orbits of R close to first 

order. We saw in chapter 5 that this implied that 

t2" 
/ R,d6 = 0. 

Jo 

(6.95) 

We will apply this condition to each component of R\ after evaluating it. The 

components of the Lie bracket [fto,Xt\ arc 

|Rc.,X,)» = - i , surf 

(f lo,X,l" = - fcos8 

\Ro.X,\° = 0 

!fto.A':]* = 0. 

(6.96) 
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Substituting these into the general expression gives 

" J» (6.97) 

= g i - c o s » + / f ( i , y , r ) . 

Since cos0 has zero average over the interval |0,27r!. the integral condition 

Similarly, 
I f 8 

u sin6 

/ ; 

(6.98) / RfdO = 0 
Jo 

implies that the constant of integration is 

ft = 0. (6.99) 

The x component of Rx is therefore 

R* = I v c o s ^ . (6,100) 
B 

(6-101) 

The integral condition 

R\d9 = 0 (6.102) 

implies that the constant of integration is 

/!V = 0. (6.103) 

The y component of ft, is therefore 

Rv - - i r s i n O . (6-104) 
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1 [' -

=/, v ( .r .y.r) . 
The integral conditic 

The B component of R\ is therefore 

(6.105) 

(6.106) F2' 
/ R\d6 = 0 
Jo 

implies .iiat the constant of integration is 

/ ; ( x , y , v ) = 0 . (6.107) 

The v component of R\ is therefore 

R\ = 0. (6.108) 

The R\ equation uses these results: 

R? = g j (0 + B,Rt + B„K»)<» + /?(*,»,») 

= i f (2±v cosfl - ^ sine') <*» + /? ( ! ,» ,» ) (6-109) 

= g (j±v sine + ^ v co S e) + /f(x,!,,»). 
The integral condition 

/ Bjde = 0 
Jo 

implies that the constant of integration is 

(6.110) 

/ f ( x , y , v ) = 0 . (6.111) 

J?; = | i t . s i n e + | | f c o s e . (6.112) 
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Those expressions may be simplified by introdving a variable representing the 

reciprocal of the magnetic field: 

We see that 

We may then write the entire expression for R\ ES 

(6.113) 

/?, zr Cv cos0 Cv sinfl— + {-Cxv sinfl - Cvv cos0) — . (6.114) 
dx dy ad 

6.3.2. The Four Components of R2 

We will now proceed to obtain #2- The algebraic manipulations are more 

tedious than those for R\, but conceptually the calculation proceeds identically. 

We begin by calculating the four components of [ i ? l t Xi] . In these expressions 

it is convenient to use the double angle trigonometric relations (purely for case of 

notation): 

sin 20 - cos20 = - cos20 (6.115) 

and 

sine cos0= - sin20. (6.116) 

The x component is 

[R\. A'IJ* = - (~Cxv sine - Cyv cosCJr sinO - v co&0rzV cosfl + v sm0Cvv cosO 

= r 2 C x ( s i n a 0 - cos 2?) + 2v2Cv sintf cos? 

= - v2CJ co?20 -t v2Cy sin20 
(6.117) 
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The y component is 

R;. A'j;" ~{C,v sin0 + C y r cos0)f cosfl -t e cos0 C,v sinfl - r sinflC"yr sin0 

=2(" , r J sin* cosS -h C B e 2 ( cos2« - 5 in 2 9) 

= C , v 2 sin20 + Cyv1 cos20. 

(6.118) 

The v component is 

| S , , X , f = 0 . (6.119) 

The S component is 

\Ri,Xi]° = -v cosQ[--CxxU sin^ - Cvxv cos0) +v s\n6[-Cxyv sin0 -Cvvv cos0) 

=-2-Cn sin2# + u 2C,„ cos28 - —Cn sta2S. 

(6.120) 

As we saw in chapter 5, the condition that the integral curves of R close to 

second order is 

f* R2dB = ~- / ' * | * l . U° RXS\ m, {8.121} 

This will eventually determine the constants of integration. To prepare for that we 

will evaluate the right hand side using the value of Rx obtained above. First find 

the components of the 

/ Ride 

Jo 

iategraJ: 
/ R*dB = / Cv cvsB J& = Cv sm9 (6.122) 

/ R^dB^j -C'v sin0 dB = Cv cos0 (6.123) 
Jo Jo 

[ R\S = Q (6.124) 
Jo 
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I R\S = I ( - C r sine - (\r -od)d(l 
(6 1251 

=C,v cos.« - C„f sin* 

We now substitute in these results to obtain the general expression: 

dR'-t2* r2* a p 1 ^ - 1 - 6 

3y 
-Ct-

(C r» COS0 - C„f sin0))d$. do 

We now explicitly calculate the four components of this expression. 

The I component yields 

r2' r2' 
/ ftJ<W = - / (C,ti cosfl Cv sinS + C y f cos9 Cv cos0 
Jo Jo 

- Cv sine(C xi' cosS - Cyv sm6))dB 
, 2 . 

= - / ICCyi-2 cos 2« + CCvv2 sm2B)dl! 
Jo 

= - 2irCC„iA 

The y component yields 

, 2 * f 2 -
/ R%dB = - / ( - C T f sine Cu s ine - C„t> sine Cr cos* 
Jo Jo 

- Cv cos9{Czv cose - CjU sinO))rfe 

r2" 
= / C C > 2 ( sin 20 + cos2e)de 

Jo 

=2KCC,V2. 

The v component yields , 2 , 

/ R'2d0 = C 
Jo 

(6.126) 

(6.127) 

(6.128) 

(6.129) 
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The 0 component yields 

/ R",dO = - / [ ( - r „ r sinfl - C y ,v cos0)Ci, sinfl+ 
Ja ' Jo 

( - O y v sin0 - C m v ros8)Cf co50 

+ ( - & 1 - cos0 + C,v sin0)(C,v cos0 - C„v sin0)]e» 
(6.130) 

= - / | - C ' C „ v 2 sin 20 - C C „ o ' cos20 
Jo 
- C x C r u 2 cos 20 - CvC„t>2 sin2S]c<0 

= r f 2 ( C C „ + C C „ „ + C,2 + C 2 ) . 

We may finally solve for the four components of i?2- The x component is 

2 f* 
R'2=Bj ^'XtfM + ftlw) 

= • ! /" ( - " ' C cos20 + t>2C„ 3in29)<»! + /f( i , j , , t i ) < 6 I 3 1 ) 

B Jo 

= - v2CCx sin20 - » ! C C , cos2« + / J . 

We next determine the constant of integi 'ion /£• We have seen that 

Jo 
=2r/f. 

ffjew 

(6.132) 

Finally we obtain 

/ | = -CCvv2. (6.133) 

-v2CCx sin20 - v2CC, cos20 - C C , » 2 . (6.134) 
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The y component of R2 is 

1 f" *?=-g/j*...V1! 'd«+ / ? ( i . !/..•) 

- / (C,v-sin2(? + C yf 2 cos2(?)d(9+ / 2

v ( i . y,r) ( 6 1 3 5 ) 

Jo B 

= - v2CC, cos20 + v2CC„ sin20 + f![{x,y. 

The constant of integration comes from 

/2* 
•iTtCCzV2 = \ R\ 

Jo 
f2' = / fl 

Jo 

Finally we obtain 

*2=f / l«i.A-,]*-d8 + /f 

The constant of integration comes from 

I2' 
/ JtJiW = 0. 
Jo 

P. = 0. 

(6.136) 

/ | = CC.v 2 . (6.137) 

«5 = - v 2 C C , cos2fl + v7CC„ sin29 + C O 2 . (6.138) 

The v component of R2 ib 

(6 139) 

(6 140) 
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Finally we obtain 

The 0 component of Rz require? the above results and is given by 

(6.141) 

1 fe 

R2=-k (2 | f l i ,* i l 9 + BxRl + Bviq)de-< B Jo 
i c" 

= -5 I (» 2C„ sio2« + 2t>2C„, cos2» - t i 2 C m sin2« 

+ B:(-v*CC, sin20 - t>2CC„ cos2fl - CCtv') 

+ B^-v^CC, cos20 + u2CC„ Sin20 + CC^^S + /f 

= - ( - j » 2 C „ cos2« + v 2 C I y sin20 + ^C^ cos20 

+ y^BtCCz cos20 - in 2 B.CC, sin29 - BXCC^B 

- l-v%ByCCI sto2« - X-v2B,CCv cam + BjCCxtr2*) + /?(*,»,») 

= - it> 2CC r I cos2fl + t>2CC„, sin2fl + }:V7CCm cos20 

- j u 2 C | cos20 + iu 'CrC, SIE29 + CxCuvH 
+ \»*C„CX siu20 + iu 'Cj co529 - CuClV

2B + /?(z,if,») 
.2 

= " -oHCCx, - CCm +CI-CI) cos29 - (2CC IV + 2CIC„) sii>2e] + / | . 
(6,142) 

C2* 
TO'ICC,, + CC,V + Cl + Cl)= I R\d 

JQ 

To determine the constant of integration, we use 

Bide 

=2nfl 

Thus 

fl=j {CC,; + CC„„ + Cl + C 2). 

(8.143) 
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Finally we obtain 

, .2 

(6.144) 
^ - ( r c I I + c c v y - c r

2 - c ; ) . 

6.3.3. S u m m a r y of the Calculat ion 

We have thus succeeded in finding the roto-rate vector field up to second order. 

J2~ flo-rcfl, + - j f t i 
3 

cCu cosf?— 
ax 

o 
— tCv sin#— 

dy 

+ ef.-C.i- sine - C t fu cosfl)^- (6145) 

~{~v2CCx sin2C - v ^ C . cos20 - CCtiv2)^-
2 dz 
2 a 

V ( - « 2 C C , cos20 + t j ^C , , sio38 + CC z v 2 ) - J -2 3y 

y ( - y { C C « - C C W + Cl - Cj) cos20 + v2(CCzv + CXCV) sin2e 

+ y ( C C « + CCyv +Cl +C2

v))fe. 

Let us summarize what we have done. We began with the exact equations of 

motion for a two-dimensional particle in a magnetic field. We introduced the scaling 

parameter e to emphasize the physically important dynamics in such a way that 

the limiting system for t = 0 has only periodic orbits. We then used the procedure 

presented in chapter 5 to find the roto-rate vector field order by order. This required 

ao special coordinate system, though we did introduce 6 to make the integrals easier 

http://ef.-C.i-
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to write. There may exist coordinate systems in which the calculation is simpler and 

if one IB clever enough to find them certainly one should certainly use them. The 

virtue of our method is that it requires no cleverness and by slugging away doing 

more integrals Uke the above we could continue order by order. This explidtness 

is very important when we want to delegate this labor to machines. We showed 

in chapter 5 (and Krustal showed it before) that this roto-rate vector field is the 

unique vector field whose orbits are all closed loops of period 2w to all orders in 

e and which commutes to all orders in c with the dynamical vector field X, If we 

wish to introduce guiding center coordinates X,Y,J}8, there is a lo t of freedom in 

the choice. What is not free, if the dynamics is to be independent of I , is that X 

Y and J must be constant on the orbits of R. We have calculated these orbits in 

the course of the calculation. 

In a Hamiltonian context, the roto-rate vector field is generated by the adia-

batically conserved action, which we may then determine order by order (in any 

coordinates). We turn to this issue in the next section. 
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6.4. T h e Hgml l toa iao Sfaractnre of Gyromotion 

In the previous section we studied gyromotion without using any Hamiltonian 

structures. Here we would like to introduce such structures and so make the con

nection with adiabatic invariance. There are a variety of ways to Hamiltonianize 

the equations of motion for a particle in a magnetic field. The standard approach 

introduces canonical momenta which depend on the (unphysical) vector potential A. 

In the paper JLittlejohn, 1979] an approach is developed based on a non-canonical 

Poisson bracket which itself depends on the magnetic field. The points in phase 

space represeat the true particle position and velocity and the Hamiltonian is just 

the kinetic energy v2/2. This approach allows a particularly nice formulation of 

the perturbative scaling used in the last section. The subtlety is that the Poisson 

bracket itself depends on e and becomes degenerate when e = 0. This makes for a 

much more interesting analysis and is one motivation for extending the Hamiltonian 

perturbation results of chapter 4 to singular Poisson systems. 

C.4.1. The Poiseon Bracket 

Explicitly the bracket for the two dimensional system is 

{/.»} = {/,s}o +<{/,?}> 

= B(*L2L-2L*L) + 

\dvx dv9 dvgdvx) 

e IU.1L _ HLb. + UIL _ 2L ?z\ 
\dx dvx dv* Bx By dvv dvK By J 

With tbe HamiHoniaa 

H = -ii + -v* 
2 * 2 ' 

(6.146) 

(6.147) 

http://IU.1l
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this gives the scaled equations of motion used in the last section: 

{-,/f} = {-,JTJo + <{'.*}i =X0 + tX1. (6.148) 

When ( —• 0, the bracket reduces to {, }o- This bracket is singular and any function 

of x and y alone is a Casimir. 

6.4.2. T h e Symplect ic S t r u c t u r e 

It is interesting to look at the e-dependent symplectic Btructuxe w which corre

sponds to our bracket. Since the bracket is non-singular when e isn't zero, we may 

invert it to give a well defined symplectic form. Since the bracket becomes singular 

as e approaches zero, the symplectic form must become infinite in this limit. It is 

easiest to introduce the matrix J** representing the components of the contravariant 

tensor that defines the bracket: 

v - » > - E ^ ^ - ( 6 1 4 9 > 
In the coordinates z, vx, y, vyt the matrix J has the form 

0 l 0 0 
- c 0 0 B 
0 0 0 £ 
0 ~B -c 0 

(6.150) 

If we introduce a matrix representing u) by 

u = ]TcfeViiJil2>, (6.151} 



6.4.2. The Symplectic Structure 291 

then it will be the inverse of the matrix corresponding to J. We easily see (say by 

Gauss' method) that 

0 e 0 0 \ ( ° - i / ( BA 2 0 A l\ 0 0 0 \ 
— « 0 0 B 1 l/« 0 0 0 I 0 1 0 0 
0 0 0 , - S A 2 0 0 - i A 1 0 0 1 0 
0 ~B - £ 0) V 0 0 •A o ; Vo o o 1/ 

(6.152) 

This shows that the symplectic structure is 

w = -^(Bdx Ady + tdxA dvx + tdy A dvv). (6.153) 

This is indeed singular as t —» 0, but if we rescale by multiplying by c2, we get a well 

defined form for all e. Now, however, when c —• 0 the form becomes dxAdy which is 

degenerate. This vanishes when we insert any vector which is a linear combination of 

vx and vy. The correct dynamics is obtained by the usual Hamiltcnian prescription 

for any t / 0: 

ixu =. -Bvv-dx + Bvx-dy + vxdvx vxdy 
B , 1 , 

H vlldx+ ~vudy 
e c 

= VxdVx + VyrfUy 
= dH. 

(6.154) 
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6.4.3. Uniqueness of t he Genera tor for a Vector Field 

The Poisson structure we have given becomes degenerate when t = 0. We 

must therefore study its properties carefully. First, it is not at all obvious that the 

association of vector fields with Hamiltonians is unique with this bracket (since to 

zero order, say, there are Casimirs which may be added to any Hamiltonian without 

changing the dynamics). We will show that if we have two Hamiltonian vector fields 

with respect to this bracket, which are asymptotically equal to all orders in c, then 

their EamUtonians are also asymptotically equal to all orders in t. Let us subtract 

the two vector fields in question to obtain a vector field which vanishes to all orders 

in t. We want to show that only a Hamiltonian which vanishes to all orders can 

produce such a vector field. 

The Poisson bracket has the form 

{,} = {,}o+ £{,}•• (6.155) 

The zero order piece {,}o is drgenerate and the Casimirs are exactly the functions 

of x and y alone. The first order piece {, }i is canonical and so non-degepurate. Let 

us assume that B generates the zero vector field to all orders in «. Expanding H 

in an asymptotic series 

H ~ H0 + tBx + le3H2 + . . . (6.156) 

and working out the generated vector field order by order gives us a hierarchy of 
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equations: 

l;H0}o = n 

{-,ff|}o=-{-.Ho}i 

{• ,^}o = -{•.•».>. 
1 (6.157) 

(•,ii?*>o = ^{-, #*- . } . 

The only thing the zero order bracket can produce is derivatives with respect to px 

and pv. These derivatives must be equal to the right hand sides. If any of the J?t 

depended on anything bat z and y, thee the right hand side of its equation would 

have a derivative which could not be matched on the left. So each Bk depends only 

on x and y. But these are then Casimirs for the left hand sides which therefore 

vanish. But the right hand brackets are non-degenerate and so they only vanish 

when the corresponding B^ is constant- Adding a meaningless constant to the 

energy, we see that B must vanish order by order. 

6.4.4. Comparison With Robert Littlejohn'B Results 

Let us sow show that our results dpee with the results obtained by Robert 

Littlejohn . The two references of interest here are [Littlejohii, 1979] and (Littlejohn, 

1981]. To avoid confusion, we v. Ul use the notation of these papers and refer to 

formulas witMn them. To help other workers make explicit comparisons, we will 

describe manipulations in detail. Readers without these papers available may want 

to skip this section. 
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Let us begin with (Littlejohe, 1979]. la this paper Littlejohn introduces a 

very clever method based on Darboux's theorem to manipulate the two-dimensional 

guiding center problem into a form suitable for the application of Lie transforms 

(the Lie transform is clever too, because the bracket is e-dependeot). His Poisson 

bracket is 1/t times the one we have used and his variable 0 is rotated by n/2 

from ours {ours is the clockwise angle of the velocity vector from the x axis, his is 

the clockwise angle of the gyro-radius vector from the x axis in a uniform field). 

Using the Darboux algorithm introduced in the paper, he defines a set of variables 

(XtYt6tJ), where 8 is the original 9, J is a function whose Poisson bracket with 8 

is - 1 / e to all orders in < and X and Y are coordinates that Poisson commute with 

both J and 0 to 1' orders in «. These variables are the natural ones for a uniform 

magnetic field, but other than that have no dependence on the Hamiltoman. These 

functions are obtained as asymptotic series in «. Using bis formulas 4.8, 4.21, 4.20, 

and 4.29 and letting C denote 1/J3, we find that to first order in c they are 

X = z — c«Ccos§-i-... 

Y = y + wCsmB + ... (6.158) 

J = --C - — (CcoaC* - CsinC v) 4- - - -

He then performs the Lie transform to find new variables X,Y,J,9 which have 

the same Poisson bracket relations and such that the HamUtonian is independent of 

§ to all orders in c. This then implies that / is the adiabatk invariant to all orders 

in t. We are interested only in this adiabatic invariant (since it is the only quantity 

that is uniquely determined). By the Poisson bracket relations, the vector field 

which J generates must be simultaneously tangent to the level sets of X, Y, and J . 
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The closed orbits of this vector field are parameterized by 8 and the HamUtoniari is 

constant on them (implying that the Hamiltonian vector field commutes with the 

field generated by J ) . These conditions are exactly the ones imposed on our roto-

rate vector field R and it is the unique vector field which satisfies them. Thus the 

adiabatic invariant J must generate the rote-rate vector field. We will show that 

the adiabatic invariant btroduced by Littlejohn does indeed generate the roto-ratf 

vector field we calculated (at least to first order). 

The expression 5.27 in the paper gives J. To first order in e, it is 

J = J + e - ~ g £ ^ ( o - V B ) . (6.159) 

Using the expressions for these quantities in terms of 9, x, y, and v, we find: 

- u 2 £« 3 , „BX „B„^ 

+ ^ ( - c o s O f l * - sinSB,,) (6.160) 

= 2B + 2 B 5 ( c 0 5 * B l " ™ 9 B » ) ' 

Let us check that this agrees with the much more general results presented in 

[Littlejohn, 1981]. Formula 82e of that paper gives the expression for the adiabatic 

invariant: 

M = [ ^ + -^{wGs + ~(Ge - 2G 2 ) + y f t ] , (6.161) 

To compare with our much simplified situations we utilize his expressiocs 17g, 17i, 

17c, 16g, 9b, 8, and U. These show that w = u, G* = 0, G% = 0, <?2 = 0, and 

Ff, — a • VBJB. Substituting these in we obtain to first order in « that 

a = w + 2 B 5 ( C O S " B I _ s b 9 B , , ) - ( 6 1 6 2 ) 
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This agrees with the first paper. 

Let us now determine the vector field which J (or M) generates. For this we 

need the Poisson bracket relations: 

x, v = -sin0 y, v = -cosS 

x,6 = --CQS0 y,e = -sine (6.163) 
v v v ' 

We then see the dynamical vector field generated by J to lowest two orders is 

1 d 
J = -

. n v d v d 

. y a ,\,a y a , 1 , a 
SmeTa-^B)Tv+COe0T3-y^B)r, 

J i „ a . I . a I . y a , i , a 
"•T-^rJ^Ti-v^Jay^Te 

_ i_a_ 

-i-n»|--i«-»f < 6 1 t i 4 > 
B ox B ay 

(msin9B' + i&c°seB" 

- ^ c o s < > B I + ^ s i n ( > B v ) ^ 

i a t> . „ a v „ a 
= 7 ^ - B a m 9 a 7 - 5 c o s ( V 
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If wr make the conversion (due to the diferent definitions of 8): 

- sinfi —* cosff 
(6.165) 

- cosfl — —sinB 

and multiply by t, we find that this agrees to order e with the roto-rate vector field 

R that we obtained in the last section. 

6.4.6. Prospecte for a Fully Hamiltonian Theory 

We may essentially apply the argument of the last section in reverse to obtain 

tbc adiabatically invariant action from the roto-rate vector field. Because the gen

erating function is unique, we can solve for it order by order using the express'on 

for the Poisson bracket and the roto-rate vector field. It is interesting that because 

the zero order piece of the Poisson bracket is degenerate, we can determine a given 

order of J from the corresponding order of R only up to Casimirs. These become 

determined by the next order term in R (only a piece of this higher order term 

is actually netded, so the futt calculation need not be carried out). When one in

serts R into the symplectic form ui, the e~ 2 term and the e - 1 terms vanish, though 

this is by ro means obvious a priori. Can this be shown io general? [Kruskal. 

1962] proves that if the dynamical vector field is Hamiltoui?n with respect to an i-

independent symplectic structure, then the corresponding roto-rate vector field R is 

as well, leading to an adiabatic invariant. We have seen that the same is true Wi this 

example, even though the Poisson bracket was t-dependent and became degenerate 

at t = 0. Is it always guaranteed that the symmetry vector held is Hamiltonian in 

such degenerate cases? 
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One would Uke to implement the perturbation analysis we have given directly in 

terms of the Hamiltonian structures involved instead of f\vug through the essentially 

non-Hamiltonian analysis. Such a theory would look Uke the one developed in 

chapter 4, but requires some extensions. In particular, I expect that: 

1. We roust do everything with Poisson brackets that have a singular structure 

and Casimir functions. 

2. We must deal with approximate group actions, i.e. we have an action on the 

J-jet space which does not arise from a true action. Thus, for example, our "circle 

action" is generated by a vector field given as aa aaymptotic series i s e. The orbits 

of the eJ truncation of this vectortield are only closed to order c J + 1 . We may still 

reduce asymptotically in this setting. 

3. The reduction map, which for e - 0 takes the form M -* N7 was previously 

defined from JM -+ JN. Here we would like to work with the J-jet of diffeomor-

phisms from M to N. Thus the reduction map is given aa an asymptotic ser^s, not 

the ph^se space and the reduced space. In the example at hand this will give us 

the guiding center coordinates as asymptotic series in the original coordinates. 



299 

PART II: 
WAVES 

"Before Maxwell, people conceived ofpnysical reality-insofar as it is supposed 

to represent events in naturc-as material points, whose changes consist exclusively 

of motions, which are subject to total differentia/ equations. After Maxwell they 

conceived ofphysicaJ reality as represented by continuous fields, not mechanically 

explicable, which are subject to partial differential equations."—Albert Einstein 

(1931) {Hirsch, 1984] 
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Chapter7: 
Asymptotic Wave 
Theory 

Let us now turn to the next large class of systems: waves. These systems are 

particularly interesting from a foundational point of view, because the symplectk 

structure of classical mechanics arises from a natural lymplectic structure occuring 

in asymptotic wave theory as applied to quantum mechanics. All of the elegant and 

physically important Hamiltonian notions of mechanics may be seen as examples of 

the sew conceptual structures that can arise from asymptotics, as we have discussed 

throughout this thesis. The concepts of momentum, position, energy, action, rays, 

and Lagrangian submanifold do not make sense for a given wave or w&vcpacket. As 

we separate the wavelength from the scale length, however, they take on asymptotic 

meaning and give us classical mechanics as we know it. 

7.1. Wave Asymptot ic* and Approximate! Symmet ry 

A crucial element of this simplification proceedure is the idea of approximate 

symmetry. Part of the asymptotic stretching we will perform on our Bystem will 

make it approximately symmetric under translations. In any given region of space, 

an eikonal wave looks like a plane-wave. Consider the translation group acting 
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on a plane-wave. Translations 123 a direction contained is the wave-front leave the 

wave invariant. Translations transverse to the wave-front bring the wave back to 

its initial state at integral multiples of same distance. The space of distinct plane-

waves obtainable from the initial one by translation is identifiable with the quotient 

of the group of translations by the subgroup which leaves the wave invariant. This 

quotient is a circle, and we call the angle on the circle the phase of the translated 

wave relative to the reference wave. 

For an asymptotically eikonal wave, we have an approximate symmetry given 

by translation. On the large scale this is not a real translation because we must 

translate by different amounts at different points in space. Asymptotically, however, 

it becomes closer and closer to a true translation. On the small scale a translation 

that Blowly varies cannot make neighboring wave crests exactly Use sp- Asymptot

ically, however, they will match up more and more closely. We may therefore think 

of an asymptotic circle action on our space of eikonal waves (using the philosophy of 

chapters 4 and 5, w* may define an asymptotic symmetry to be an exact symmetry 

on a jet space). It is in this s^nse that we may assign a unique asymptotic phase 

to our eikonal wave. Our eikonal methods to eliminate the wavelength scale details 

and to obtafa scale-length sized dynamics and concepts may be seen as asymptotic 

reduction by this circle action. 

The key technical tool which allows us to carry out this asymptotic simplifi

cation is the method of stationary phase. On a large scale only average behavior 

is important. Functions that obey the eikonal separation have iero average. The 

systematic effects that mount up near places where the wavevector vanishes are at-
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counted for by the method of stationary phase and so allow us to obtain targe-scale 

behavior. These eikonal structures arc intimately connected with the essentially 

mechanical material of the earlier chapters. We shall see io the last chapter that 

there is also an intimate connection with tbe statistical averaging that leads to ther

modynamics. We will develop the needed wave structures to make this connection 

clear. This is the reason we discuss contact structures and Legendre submanifolds in 

places where symplectk structures and Lagrangian submamTolds alone could have 

sufficed for waves. 

7.1.1. Eikonitl Waves 

A beautiful description of eikonal wave theory for tbe example of light waves 

in the geometric optics limit is given in [Born and Wolf, 1970J. Let us begin by 

defining what we mean by an eikonal wave. Intuitively we mean a physical field 

in space which is locally like a plane-wave. The local plane-wave is described by 

a one-form, called the wavevector fc, which is the differential of the wave phase. 

As discussed above, these notions are sot precise for a real wave. To make them 

precise, we introduce an asymptotic class of waves parameterized by e. When c is 

1 this should give the real wave. As c goes to 0, the class should emphasize the 

tendency that we feel to be physically important for the behavior of the real wave. 

For the systems we have in mind, this tendency is the separation of wavelength and 

scale length. We therefore introduce c in such a way as to separate them infinitely 

as it goes to fcero. 
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There are two natural ways to do this (though any combination of them is also 

possible). We may let the wavelength go to zero while holding the scale length fixed 

or we may let the scale length go to infinity as we hold the wavelength fixed as 

in figure (7.1). I prefer the second tactic because the wavelength often determines 

the type of wave and its fundamental physical behavior (eg. in plasmas, how close 

the wave is to the Debye length plays a fundamental role, similarly for electron 

wavelength compared to the atomic spacing of a crystal in solid state physics). The 

scale length is often something quite variable (i.e. determined by engineering rather 

than physics). We may change the size of a tokamak, silicon chip, or auditorium. 

When we feel eikonal methods provide a valid description, we are saying that we 

have made things large enough so that the waves propagate in an eikonal fashion. 

Of course we may let the wavelength go to zero without changing the wave's evolu

tionary behavior by altering the physical constants in the equation. One common 

example of this is to say that letting h go to zero in the Schrddinger equation is the 

way to take the classical limit (in reality we make the potential the particle moves 

in very slowly varying). We shall see, however, that regardless of how we do the 

asymptotics, it is often useful to introduce coordinates on the slowly varying scale, 

and many of the asymptotic concepts will make senBe only in these coordinates. 

From the geometric viewpoint we have been emphasizing, it is important to 

regard tVe wave fields as living on manifolds. There are several reasons that this 

generality is important. General relativity says that spacetime is really a curved 

manifold, and so studies of quantum mechanics o. electromagnetic radiation on a 

cosmic scale must utilize a geometric formulation. We have seen in our discussion of 
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mechanics that even when the manifold structure of spacetime is not important, the 

natural spaces of interest are products (for more than one component), quotients 

(by symmetries and ignored variables), and submanifolds (for constrained systems 

and invariant subsystems) of regions of spacetime and these often have a non-trivial 

manifold structure. (One class of rich examples arises in the study of linkages, e.g., 

a system of 3 rigid links in three-dimensions joined in a line by universal joints and 

constrained to have the two ends fixed t1 space, has a state space that is naturally 

a 3-sphere and rotations about the line joining the ends define the Hopf fibration.) 

Corresponding operations on wave systems lead to the study of waves on non-

trivial manifolds (for example, tb« Yj m spherical harmonics that arise in systems 

with rotational symmetry are the normal modes of a wave operator on a sphere). 

As we have been emphasizing, formulations of a theory that make explicit which 

structures are essential for which phenomena (e.g., what aspects of a coordinate 

system are used in an essential way in a derivation) give insight into the underlying 

physics. Lastly, coordinate-free expressions may be evaluated in any coordinates. 

This allows us to work in the system most convenient for the problem at hand. This 

is important for systems based on a complicated geometry (e.g., modem plasma 

fusion devices). 

How are we to incorporate the asymptotic scaling into the geometric structure 

of the manifold in an invariant way? The manifold structure represents slow-scale 

behavior. We therefore want to "blow up" the manifold asymptotically. For ex

ample, most invariant P.D.E.'s use a Riemannian structure on the underlying state 

space (e.g., the Laplace-Beltrami operator, which is the invariant Laplacian). The 
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metrir should depend on ( in such a way that the distance between two points 

grows indefinitely as « —> 0. The curvature of the manifold then goes to zero with 

f. Asymptotic fast-scale ((-independent) objects may be defined near a point of the 

slow manifold as if they were defined on a linear space (which invariantly is the 

tangent space at the point of interest). One way to see this without a metric is to 

use the Whitney embedding theorem to embed the manifold smoothly in ?-{2N+i 

with the point of interest sent to the origin. In 3 J 2 A r + 1 we do the scaling by sending 

x G jj2*f--i t 0 x/c. If we look in a fixed neighborhood of the origin as e — 0, 

our manifold approaches a linear space identifiable with the tangent space. If we 

change the embedding by a map / that leaves the origin invariant, the asymptotic 

linear space is changed by the Jacobtan of / at the point. This showa that the 

asymptotic linear approximation Bpace transforms under coordinate changes just 

like the tangent space. One advantage of using the other type of scaling (where 

last-scale objt. cts are scaled smaller and smaller) is that the geometric structure is 

more immediately recognizable. Two points that are fixed on the fast-scale (for 

example two crests of an eikonal wave) asymptotically approach one another in the 

physical manifold as e -+ 0. The equivalence class of all points that approach a 

given point with a given first order rate may be identified as a tangent vector. 

7.1.1.1. Sources with Time Scales Generate Eikonal Waves 

Eikonal waves appear in nearly every discipline of physics and are one of the 

most useful analytic tools. Why do they arise in practice? One reason is simply 

that the systems we wish to study have a fast natural time scale and we vary this 
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Figure 7 . 1 : Two ways of making a wave asymptotically eikonal. 

slowly. The waves that are generated are thuB eikonal. For exact ;le, a tuning 

fork has a natural period of oscillation and the dissipative processes that make the 

amplitude decay and the period change are much Blower than this. The tuning fork's 

generated sound wave is then eikonal. Musical instruments are usually considered 

to be playing with a definite pitch. The amplitude and timbre (the harmonic mix 

which determines the characteristic sound of an instrument) vary slowly during 

the note and distinguLoh different instruments. Similar examples abound in plasma 

wave generation processes, solid state waves, atomic light emmissios, e t c 
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7.1.1.2. Dinpersive Media Crea t e Eikonal Waves 

The other common reason for the prevalence of eikonal waves is the fact that 

in linear dispersive media, any bounded initial wavepacket will eventually turn into 

an eikonal wave, and the eikonality will get better and better with time. Imagine 

throwing a stone into a large lake. This will create a bounded disturbance with some 

spectrum of wavevectors. For surface gravity waves on water, the long wavelengths 

have a greater group velocity than the short ones. As our disturbance evolves, the 

long wavelengths will congregate at the outer edge of the spreading wave. After a 

long enough time, the different wavelengths present in the intial disturbance will 

have sorted themselves out radially. As time goes on, the fastest waves will go 

further than the slower ones and new wave crests will be formed in between. As we 

wait asymptotically long times, we get asymptotically long stretches of wavetrain 

close to each wavelength. 

7.1.1.3. Whitham'fl Generalisation to Nonlinearity 

Whitham has shown that many of the notions of linear eikonal theory carry 

over to nonlinear waves as well |Whitham, 1974]. The essential change is that, for 

nonlinear systems, the basic periodic solutions are not necessarily sinusoidal. When 

we make eikonal waves, they will not be slowly varying sine waves; instead, they 

will be locally like the nonlinear periodic wavetrains.... witU parameters that slowly 

vary. The nonlinearity also leads to amplitude dependent dispersion relations, which 

lead to some interesting effects. We will develop parts of this theory to encompass 

Whitham's ideas in later sections, but let us here focus on linear waves for clarity. 
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7.1.1.4. Sinusoidal Waves 

In this case we shall be interested in slowly varying sinusoids. In a typical 

situation, we are given a wave of the form 

A{x)J'W (7.1) 

and are told that the amplitude A(x) and the wavevector k = d&{x) are slowly 

varying functions of x compared to the wavelength A — l/\k\. Using the two schemes 

discussed above we may write down an asymptotic family as either 

A(i)t^'1'' (7.2) 

or 

A(«)e*<«> A . (7.3) 

Both of these give the original wave when « = 1 and the first shrinks the wavelength, 

while the second stretches the scale length. We will obtain expressions and concepts 

relevant to A{y) and k{y) which are slow scale variables (note the absence of c), if 

we take y = ex. Eilconal waves of this form are described by A: as a function of y, an 

overall phase (since k doesn't set the zero of phase), and the amplitude as a function 

of y. If we don't care about the phase (and on the large scale we shouldn't, since 

it changes by order 1 on scales of order c) then we can represent the asymptotic 

features of our wave as a distribution on y, k space, with support on the surface 

k = *{y). 
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7.1.2. The Local Fourier Transform 

This representation will result from taking a local Fourier transform. This is a 

notion one would often like to use in physical situations, but that is usually either ill 

defined or has very arbitrary components to it. When we introduce the asymptotics 

as above, however, it becomes precisely defined. The idea is to take an ordinary 

Fourier transform, but to restrict the domain of integration to the neighborhood 

of the point y we are interested in in such a way that the domain shrinks to zero 

on the large scale, but grows to infinity on the small-scale, asymptotically. We can 

implement this with a window function Wt [y) that asymptotes to a delta function of 

JJ, but a constant function of x. A convenient choice is louse a family tf Gaussians: 

W€[y) =€-"**. (7.4) 

Given an arbitrary asymptotic family, we would like to explicitly obtain its 

local Fourier transform. Let us define the local Fourier transform of an eikonai 

family T M 1 ) t 0 ^ e 

A(»,fc) = ~ |_°° e-« 3~' f c xV> ( (x + * ) dx. (7,5) 

This definition is related to ideas presented in [Guillemin and Sternberg, 1977) on 

page 394 and in [Weinstein, 1978]. If we ignore the asymptotic aspect of this defi

nition which makes the Gaussian convenient but arbitrary, this definition is related 

to the so-called lagolnitzer transform (see [lagolnitzer, 1975]). This expression bis 

many of the nice properties we desire of a local Fourier transform asymptotically. 

As one can easily see from the manipulations below, the only properties of the win

dow expf^ex 2) that are actually needed are that it is 1 when x is zero, and tbat it 
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growt with a scale greater than I but less than 1/e. Here the width of the Gaussian 

is . order 1/\A as far as x is concerned. 

A specific nice property of this definition is given in the following lemma: 

Lemma 7.1. If an elkonal wave is of the form: 

*.(y) = i4(<»)«* ( '"' /*. (7.6) 

then the modulus of its local Fourier transform is asymptotic to: 

Mv,k)\~Mv)Hk-9r{y)). (7.7) 

Proof. We will show that i>(y,k) itself is asymptotic to A^l6{k - 81) from 

which the lemma follows. Choose any smooth test function f(k). Then, letting 

f{x) represent the ordinary Fourier transform of /(fc), 

/"%,(»,*)/(*)««: = 
(7.8) 

Now change variables to X = ex: 

= ±- / " c-x*/<f(-)A(X + y)^x+^'dX. (7.9) 

Since the last three factors are bounded in magnitude at each X as c goes to zero, 

the first factor allows us to replace the integral by one over an arbitrarily small 

interval about zero, asymptotically. In fact, we get a contribution to the integral 

only when X is of order t/l. We may thus expand A and (? in 1>yIor series and 

keep only the highest order asymptotic contribution, when X is of this order. We 

obtain 

= ^-A(y)e-eM'' (" e-x'>'f{-yW'dX. (7.10) 
2 " ' J-oo [ 
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Lcl u . u.Jw S o t ^ k l i . ttitt t o o u h l l d t r J" - A' /( : 

~ • . n c - 4 ^ y ) < ' ' ( , U ' , / , / e-'x3f(x)fTe'[v)dx. (7.11) 

Now 1Bi t • 0 IU the integral to obtain the desired result: 

f Mv.WWdk ~ A(y)e*^>/V(^(v)). (7.12) 

Sine; / was arbitrary, V>«(y, Jb) is weakly asymptotic to (i.e. agrees when integrated 

against test functions) 

A{y)jHv)/*S[k-6'(y)). 

Q.E.D. 

7.1.3. Stationary Phase, Laplace's Method, and Steepest Descents 

The method of stationary phase is the central tool in doing wave asymptotics. 

It and steepest descents will be the central theoretical tools of chapter 16. There 

are many different cases and situations where one might apply this method, but 

we will restrict ourselves to the simplest cases. The basic idea of the method is 

that the integral of a short wavelength wave against a slowly varying function will 

vanish asymptotically. In fact, such integrals vanish to all orders in the asymptotic 

parameter e, as is quite easy to show. Consider, for instance, the integral 

r /(»)«»(i/A)*. (7-i3> 
J —ex-

or equivalently in terms of x — y/e, 

{ f[tx)cm(x)€dx, (7.14) 
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where f(x) is assumed to be smooth and to die off at infinity. If we integrate by 

parts, we obtain 

c/(«)f l in(x) |~ w -t I / '(Cx)sin(x)edz. (7.15) 
J~oo 

The first term vanishes and the second is e times an integral of the typs we are 

considering. Repeating this procedure puts as many e'a out in front as we desire, 

showing that the integral vanishes to all orders in c. 

If we have a slowly varying frequency in the cosine, such as cos(g[x)fe), and 

if dg never vanishes, we may change coordinates using g to get an integral with 

cos(r) and a slowly varying Jacobian of the transformation. This is the situation 

above, and we may again conclude that the integral vanishes to all orders. Thus if 

an integral of this type is to have a non-zero asymptotic value, it must arise from 

the regions where dg = 0. In fact, it is easy to see, by chopping our integral into 

one on ar„ interval around dg — 0 and one on its complement, that the width of the 

non-uniform region for the above argument is of order yfi- This shows that if g'a 

second derivative is non-zero, the v?lue of the integral will be of order yft and the 

only terms in the Taylor series of g that can contribute to leading order are those 

of the second order. The integral then becomes one over a Gaussian, which may be 

evaluated by elementary methods. That this gives the highest order asymptotics 

may also be seen by using the Morse lemma to make a slow change of coordinate 

to a quadratic (see {Guillemin and Sternberg, 1977] p. 16). 

The srjne idea may be used in integrals over an arbitrary number n of dimen

sions, and assuming a single stationary point at y = 0 leads to the formula (see 
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[Guillemin and Sternberg, 1977] p. 6) 

f HvWM/tdy -

/ ( 0 ) ( 2 * 0 " ^ c.s(0)/.+(../<)Si g o j,,(o) + o ( ( ' + " / 2 l 
v/|det 9y,(0)I 

Here we assume that the Hessian jf^ is non-degenerate and "Sign" denotes the 

signature which is the number of positive eigenvalues minus the number of negative 

ones. The term in the exponential with this factor gives rise to the "extra phase 

shifts in going through caustics" and is responsible for the notorious correction 

factors in the Bohr-Sommerfeld expression for energy eigenvalues in the old quantum 

theory (eg. the extra hu/2 for the harmonic oscillator). 

If we have a real exponent instead of an imaginary one, then we may use 

Laplace's method. Maxima of the exponent tend to completely dominate under 

exponentiation, asymptotically. In this situation, the Taylor expansion of the ex

ponent near the maxima (and possibly the endpoints) completely determine the 

asymptotic expansion of the integral (though one typically has to consider terms 

of order 2 / in the Taylor expansions to get terms of order j in the expansion of 

the integral). To highest order, if 4> has a maximum at the point a < c < b and 

4>"{c) < 0 then asymptotically 

We will use this result when we look at statistical mechanics in a way that is 

analogous to the use of stationary phase in wave mechanics. 

The method of steepest descents generalizes stationary phase and Laplace's 

method to saddle points occuring anywhere in the complex plane. The idea is to 
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deform the contour of integration in the neighborhood of the saddle point so that 

the phase of the integrand has constant imaginary part and a maximum in the real 

part. Wi can then use Laplace's method asymptotically. 

Lastly, the stationary pbaw situation with no stationary points or maxima, 

may often be converted to a situation where we can use the Riemann-Lebesgue 

iemma. This says that 

f(t)cxt/*dt-Q as c - * 0 , (7.18) 

if 

j*\f(t)\dt (7.19) 

exists. We don't have to assume any differentiablity for integration by parts in this 

situation. 

7.1.3.1. Heiflenberg'e Uncertainty Principle 

Heisenberg's uncertainty principle pots limitations on how tightly one can lo

calize a function and its Fourier transform at the same time. In quantum mechanics 

this puts fundamental limitations on how accurately one may measure the position 

and the momentum of a particle at the same time. As we discuss bisection 11.2) one 

t.an think of quantum state as corresponding to a region in phase space of volume 

hn (where h is Planck's constant). The usual proofs of the uncertainty prjjciple 

rely on inequalities that are hard to remember. Let us demonstrate it here using 

functional derivatives. 
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'rtt a^r ihr L>ir<u- iiotatioD where (^)v) represents the L 2 pairing of o and V 

SSt rtvil. mith a normalized function ^ defined on the real line: 

W>M = 1. (7-20) 

By a transformation of the form 

Ifr(x) - e

, f c o t V ( i - io) (7-21) 

we can put the mean values of x and Jt to rero without affecting the dispersions. 

We therefore assume that 

(#c|y.> = 0=«' l*W')- (7.22) 

The dispersions on which we want to put bounds then take the form 

M 1 = Mx'W (A*)2 H (Vl*2W>. (7.23) 

One easily evaluates the functional derivatives 

« ^-*"w 
6(Az)2 

KM)1 

(7.24) 

(*) = *V(*)-

Fourier transforming this last expressioD gives 

-«r-w = -5?* ( l ) - ( 7 2 5 ) 

We want to show that the product of the dispersions reaches some minimum value on 

normalized functions. We do this by showing that the Gaussian has the minimum 
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uncertainty of any wave and then evaluating its uncertainty. We formulate the 

minimum uncertainty normalized wavepacket problem as a variational expression 

with Lagrange multiplier a. With the function F defined as 

F = (A*) a(Afc) 2 - a t y M , (7.26) 

a minimal uncertainty wavepacket will be a point where F has a vanishing functional 

derivative with respect to V- So 

0 = ^ ( * ) = . V d P ) 1 + (Ax) 2 ( ~ | ^ ' M ) - «*•(*)• (?•«) 

Since (Afc)3 and (Ax 2) are just real numbers, this yields the differential equation 

We may easily solve this, and imposing the normalization condition determines a; 

imposing zero means for x and k and choosing a phase factor so that if> is real 

determines the constants of integration and gives a relation between Ax and AJb. 

We are left with the solution (which is easily checked by plugging into the equation): 

tf(ar) = [ 2 j r ( A i ) 2 r 1 / 4

C - l S / 4 ( a i ) 3 . (7.29) 

To see that tb is extremal is really a minimum, we calculate the second functional 

derivative: 

0 ( I , V ) = *V<x) (-|^(v>) + »V(v) (-^-(*>) • (™» 
When we plug in the Gaussian, both terms are positive, showing that the Gaussian 

is indeed the minimum uncertainty packet. We need only find the uncertamties for 

this packet, which entails doing some Gaussian integrals. We see that 

r x V ( z ) d x = ( 2 J T ( A X ) 2 ) - 1 / 2 r x 2

e - * a ' 3 < a r > a d x = (Ax) 2 (7.31) 
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and 
(Afc)2 = f fc2^(fc)2dfc 

1 

Thus we find the relation 

AfcAx > I-
2 

which is Heisenberg's uncertainty relation (with h set to 1). 

7.1.3.2. Asymptotic Waves w i th a Definite k and y 

Heisenberg's uncertainty principle tells us that the product of the absolute 

uncertatinty in x space and fc space (i.e. the dispersion in x and k without regard 

for the size of x or k) is bounded from below. The minimum uncertainty wave 

packet centered at a given XQ 'ind k0 is given by a complex Gaussian: 

M ^ l ' l - ' V l - ^ + 'v}. (7.34) 

The dispersion in x is given by Ax and in fc it is l / 2 A i . The relative dispersions 

are Ax/x and Afc/fc. If we let either x or fc get asymptotically large, we may make 

both of these relative dispersions vi to zero. In the stretched cordinates: (x,K) or 

(y, k) where zx — y and tk ~ K, the local Fourier transform can be an asymptotic 

^-function in both directions. Any eiKonal wave may be asymptotically decomposed 

into these 6 states. 

(7.32) 

(7.33) 
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For example, in quantum mechanics h. is often used as the asymptotic param

eter. Tbe momentum operator p, defined as 

. h d 
p B 7 f c (7.35) 

is exactly a stretched version of the wave vector k as h asymptotes to zero. We 

may therefore create wavepackets that have a definite x and p as h goes to zero. 

Heisenberg's uncertainty principle for x and p takes the form: 

Az - Ap > Ui. (7.36) 

We see then that as h —* 0 we may make both Az and Ap vanish-

These asymptotic states are intimately related to the theory of coherent states 

and have been connected with the Lie Poisson structures associated with the Heisen-

berg group. Let us quickly sketch some of tbe results in {Yaffe, 1982], but refor

mulate them in terms of momentum maps. The idea is to consider an asymptotic 

family of "quantum mechanics's" labeled by the parameter ft. For each value of 

ft we have a Hilbert space Hn of L a wavefunctions on S n and each operator (like 

p above) ib defined for each ft on H*. We choose a special state |0)K in each H& 

which will asymptotically represent the state with zero position and zero momen

tum. This is chosen to be one of our special states with vanishing position and 

momentum dispersions as ft •-* 0, such as 

(z|0)A 5 (*ft)- , / V ( * a / M > . (7.37) 

Quantum mechanics has a natural HamUtonian structure. We may consider 

1/ft times the imaginary part of the Hermitian inner product (|) as a symplectic 
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structure on the Hilbert space (being a linear spate, vc may lift this structure to 

each tangent space). The Schrodinger evolution defined by the Hermitian Hamil-

tonian operator H is Hamiltonian with respect to this symplectic structure and a 

Hamiltonian function given by the expectation value of H: 

ff(^) = bl>\H\i>). (7.38) 

There ia a natural In + 1 dimensional Lie group that is intimately connected 

with the asymptotics of quantum mechanics, called the Heisenberg group. We may 

consider group elements to lie in Scn x X"" x X with coordinates [q, p, a) (sometimes 

the a factor is taken to lie in a circle). The multiplication law is 

fa,P,«) • (o'.p'.a') = (l+ ?',P + p ' , a 4- a ' - {q,p')). (7.39) 

Here we use (,) to mean the pairing of St" with 3?"*. This is just the translation 

group on S a " with the extra a factor twisted into the multiplication. The Heisen-

berg group naturally arises through an irreducible representation on the Hilbert 

spaces Hti defined by the mapping to unitary operators: 

( 9 I P , Q ) - • e*Q/ft e»(p.*)/ft c-(i.p>/\ (7.40) 

(^,0,0) translates wavefunctions by q in position space, (0,p,0) translates the 

Fourier transform of wavefunctions by p in momentum space, and (0,0, a) changes 

the phase. 

The elements of the orbit of the special state |0 > R under this group action 

are called coherent states and are labeled by the fq,p,a) which acta to produce 
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them. The irreducibility of the group action may be used to immediately prove 

many interesting relations such as the decomposition of the identity: 

1 = <* J \q,P,a){q,p,a\, (7.41) 

where the integral is over an invariant measure on the Heisenberg group. This group 

action is Hamiltonian and we may ask for its momentum map. Each element u in 

the Lie algebra g of the Heisenberg group has an associated Hennitian operator u f t 

defined on H* which generates the action of the one-parameter subgroup tangent 

to u. As for the Hamiltonian operator, the corresponding Hamiltonian function 

simply associates to each state |\fr) the expectation value {ip\vn\1i>)- The momentum 

map J then sends $ to that element of the dual of the Lie algebra gm which satisfies 

{ J W , t t ) = Mdii|4> (7.42) 

for each u in g. We may easily see that this is equivariant since if 0 is an element 

the Heisenberg group, then 

<J(W),«> = WlfiflW) 

= WAd^- u|4>> (V-43) 

= <AdJ-J(*) ,u) . 

The dual of the Lie algegra g' is 2n + 1 dimensional. The coadjoint orbits of 

the Heisenberg group in g* consist of 2n dimensional planes labeled by a parameter 

when that parameter is non-zero and an entire plane of individual points when the 
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p.irarneter ^uishes. On each of these spaces the KKS symplcctic structure is a 

multiple of the canonical structure on S" x 9!"'. Because the coherent states are an 

crbit «1 'he Heisenberg gToup, their image under the momentum map J is exactly 

oDe coadjoint orbit. It turns out that coherent states that get sent to the same 

element in g' are not distinguishable by means of operators that have a nice classical 

limit as h —• 0 (the eliminated degree of freedom is the phase). Asymptotically, 

the 2n-dimensionaJ coadjoint orbit is the natural arena for dynamics. Associated 

-with each operator with a nice classical limit is a function on this coadjoint orbit 

whose value on an element is the expectation value of the operator in any of the 

coherent states corresponding to that element (they all give the same value). This 

real-valued function on the coadjoint orbit is called the symbol of thfl operator. The 

symbol of the product of two such operators is simply the product of their symbols 

as h —» 0. The symbol of the limit of i/h times the commutator of two operators is 

the Lie-Poisson bracket of the symbols of the operators. It would be interesting to 

extend these definitions to the entire dual of the Lie algebra {say by giving a family 

of |0 >'s, one for each coadjoint orbit). 

7.1.4. Eikonal Waves and Lagranglarj Submanifs lus 

"The correspondence it an illustration of what I might call the "symp/ectje 

creed": EVERYTHING IS A LAGRANGIAN SUBMANIFOLD."- Alan WeinMein 

on p. 5 of [Weinstein, 1981] 

We have seen that the result of our aysmptotic local Fourier transform on 

an eikona] wave family is a distribution on (y, k) space whose support is on the set 
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k - d9. We see that k is naturally a one-form based at the point y, it being equal to 

the differential of the phase function there. Geometrically we are to think of (y,fc) 

space as the cotangent bundle of y space. We have seen that this has a natural 

symplectic structure that in coordinates is minus the differential of the canonical 

one-form: ka dya. That the surface defined by our wave's singular support is the 

graph of the differential of a function is locally equivalent to the symplectic property 

of being Lagraugian (il the submanifold projects diffeomorphically to y space). 

We may see this connection geometrically as follows. If we think of an arbitrary 

one-form a on y space as a mapping from y space to its cotangent bundle, then 

the pullback of the canonical one-form back to y space yields the form a. (In 

coordinates: a = ctidy* and the canonical one form is ifc;dy*. The mapping defined 

by Q takes the point with coordinates y' to the point with coordinates (y \ a*). The 

canonical one-form on the image is a,dy* vhich pulls back to a as desired.) The 

canonical one-form restricted to the graph of the differential of a function has zero 

exterior derivative, since itB pullback to y space does (since d o d = 0 and exterior 

differentiation and pullback commute). Thus the symplectic form restricts to zero 

on the graph. This graph is of the same dimension as the base and so is Lagrangian. 

If a submanifold is Lagrangian and projects diffeomorphically to the base, then by 

Poincare's lemma the canonical one-form is locally the differential of a function. 

But then so is the one-form whose graph the manifold is. 

Thus eikonal waves are asymptotically associated with Lagrangian submani

folds that don't "bend over" in the cotangent space and so don't have a singular 

projection. When we allow an eikonal wave to evolve in time, the dynamics may 
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bend the corresponding Lagradgian submanifold over. At such times, the originally 

eikonal wave has ceased to be eikonal. The image of the points with a singular 

projection forms the caustic of the wave (so named because such places have a high 

intensity and so tend to get hot in optical fields). The straightforward asymptotics 

of traditional WKB theory breaks down at these points and, a priori, one might 

not expect the corresponding Lagrangian submaaifold to have anything more to do 

with the wave. Maslov introduced the concept and name of Lagrangian subtnani-

folds in [Maslov, 1965] while generalizing earlier one-dimensional work of Keller in 

{Keller, 1958]. Maslov was able to show that there is a more general asymptotic 

class of asymptotic families than eikonal waves which is associated with arbitrary 

Lagrangian submanifolds. The asymptotic dynamics of an eikonal wave does not 

leave this larger class and in fact the bent over Lagvaogian manifold continues to 

represent the wave. The basic idea is to treat our wave as being on a higher di

mensional space where the correponding Lagrangian submanifold is not singular, 

but still projects onto the singular one over the space we are really interested m. 

Projection of one space onto another corresponds to integrating the wave over the 

fibers of the projection. Since thd evolution equations are linear, one may introduce 

dynamics on the large space which projects to the correct dynamics on the space of 

interest. On the large space, everything is eikonal and so we get representatives of 

the caustic wave fields as integrals of eikonal waves on a higher dimensioitai space 

( [Guiifcmin and Sternberg, 1977] p. 428). 
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7.2. W K B Theory and Asympto t i c Equat ions 

Lei us quickly sketch the theory of eikonal waves for linear PJXE.'s, This 

may be generalized to vector equations, asymptotic series in fractional powers of 

the amplitude, and higher order terms (see for example (Guillemui and Sternberg, 

1977] p 50), but I want to focus on the bare essentials here. 

In the mathematical literature o» this subject (such asO [Hormander, 1983]), 

one usually is looking for asymptotic solutions to an asymptotic partial differential 

equation on a manifold. One makes geometric sense of a partial differential oper

ator as a certain class of mappings between spaces of sections of bundles over the 

manifold. One introduces a small parameter e and introduces the usual asymp

totic equivalence classes of (-dependent operators to define asymptotic operators. 

An asymptotic P.D.E. is given by requiring an asymptotic operator to vanish on an 

asymptotic function. One usually assumes that the higher derivative terms have co

efficients with higher powers of t , so that to make the terms balance, a solution must 

oscillate more and more as e vanishes. The resulting class of solutions are of the form 

of an asymptotic amplitude times an ever more quickly oscillating exponential. One 

finds a Hamilton-Jacobi equation for the phase- Is addition, one obtains series of 

transport equations, defined along the characteristics of the Hamilton-3acobi equa

tion, for the terms in the amplituje's expansion. The Hamiltonian is the so-called 

principal symbol of the operator, which invariaatly is a function on the cotangent 

bundle. Because the wavelength is getting ever smaller, the local asymptotic be

havior of the waves is unaffected by the global structure of the manifold. 

We are interested in scaling our system the other way. We want to make the 
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coefficients of our equation slowly varying as ( —* 0. If we are on a manifold, 

then the manifold should "grow asymptotically, to become more and more like 

9?" locally. This type of scaling is often the physically relevant one. Most of the 

manifolds used in physics are really only manifolds in some asymptotic sense. Even 

if spacetime really is a manifold (which is very unlikely on scale lengths of order of 

the Planck length), the state spaces for our systems come from large products of 

space with itself (representing the state of many particles) followed by projections 

and constraints. There is alwayB some "width" in the constraint direction, and the 

manifold picture breaks down on this scale. Similarly, quantum mechanics imposes 

finest scales on which it IB reasonable to look at the eilional state of a wavepacket 

as being a point in a manifold. Instead of letting this physically determined small 

scale shrink, we often mean to say that the large scale structure of the state spac^ 

is not strongiy affecting local behavior. We may represent this asymptotically as in 

section 7.1.1. 

We also want to say only that the arbitrary scale lengths in our problem get 

large, and not to change the physical relations of the eona'-mn. For example, assume 

we are studying internal waves in the ocean and want to consider slow salt gradient 

variations. We introdur asymptotics which makes t V gradient variation more and 

more gradual asymptotically. If we were to shrink the wavelength instead, we would 

be changing the physics of internal waves. 

We are theref^"1; interested in equations of the form 

^ ( « , ~ ) . V « U ) = 0, (7.44) 

where P(y,fc) is a smooth function on the cotangent bundle of y space, and we 
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as: me its gTowth in k is bounded by some power of k (so we have a finite order 

equation). Notice that we are treating y as an element of a vector space for the 

reasons discussed in section 7.1.1. 

As an example, we will consider the Klein Gordon equation in 3-dimensions: 

This could have slowly varying coefficients, but for simplicity we demonstrate only 

the effect of slowly varying initial conditions. The base space is 4-dimensional and 

is parametrized by (x, y, z, t). The equation may be written 

So the function P on the cotangent bundle is given by 

P{/x ,£y ,e 2 , r t , fc I ,k y , f c„M = -fej + k2

x + fej + k* + 1. (7.46) 

We look for solutions of the form 

^)( ^ A{tx)t^tx)f*. (7.47) 

In taking a derivative of this, we get scne terms that come from differentiating 

A(tx), and these will have as many powers of c as thert> were orders of differentiation. 

In contrast, derivatives of exp(tff («) /«) do not bring down any extra t's (though 

once a 8'(ex) has come down, any higher derivatives of it will get extra e's). If P-rp 

is to vanish to all orders in t, it must vanish term by term. The lowest order term 

has all derivatives hitting the exponential and looks like 

P ( v , ^ ( y ) ) ^ = 0 , (7.48) 

where as before y ~ ix and d6 is the exterior derivative cf 6 on y space. 
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If our solution doesn't vanish, then 9 must satisfy- the Hamilton-Jacobi equa

tion: 

P ( y , d % ) ) = 0 . (7-49) 

The analysis of such equations leads to a rich theoretical struct-ire. To see where 

this comes from, in the next section we consider arbitrary first order P.D.E.'s and 

then specialize to those of Hamilton-Jacobi type. 

For the Klein-Gordon example, the Hamilton-Jacobi equation is 

7.2 .1 . T h e S t r u c t u r e of Firs t Order P . D . E . ' B 

Most of the symplectic structures in physics may trace their origin to a natural 

structure that arises with any (nonlinear) first order P.D.E. By a first order P.D.E. 

we mean that we are given an equation of the form 

F{x,u,iix)=0, (7.51) 

where x represents a point in the n-dimensional manifold M on which the P.D.E. 

lives, u is the function on this manifold we are trying to solve for, tt x represents all 

Us first derivatives, and F is a smooth function of 2n + 1 variables. Geometrically 

the spacr on which F Uvea is the first jet space of M ([Arnold, 1983] p. 66). This is a 

manifold whose points are equivalence classes of functions defined on neighborhoods 

of points in M. Two functions have the same 1-jet at a point in M iff they have 

the same value and the same differential there. Let us use the coordinates p to 
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represent ibe differential directions of which there are n and u to represent the 

value direction. 

Given a function, the graph of it and its first differential determine an n-

dimensiond surface in this Hrst jet apace. Just as we saw in section 7.1.4 that the 

property of being the graph of the differentia! of a function in the cotangent space 

was equivalent to being a Lagrangian submanifold, being the graph of a function 

and its differentia] is locally equivalent to being a Legentke manifold in this jet 

space. Just as there is a natural sympJectic structure on the cotangent bundle, 

there is a natural contact structure on the first jet space { [Arnold, 1978] p. 349). 

This may be defined as a smooth choice of a hyperplane in each tangent apace of 

a (2n + l)-dimensional manifold, that is locally annihilated by a one-form 0 (called 

a contact form), with the property that 0 A dBn is a volume form (here dB is a 

two-form and d8n means d8A...Ad8 with n factors). If we think of the jet space 

as the cotangent bundle with an extra direction tacked on to repreaem the value 

of functions, then its natural contact form is a one-form that is the differential of 

the value coordinate minus the canonical one-form on the cotangent bundle. In the 

coordinates (x*,pi,ti), it is given by 

e = d u - P i d x * . (7.52) 

A Legeudre submamfold ([Arnold, 1978] p, 365) k an n dimensional subman-

ifold on which the contact form vanishes (the hyperplanea defined by the contact 

form just contact the surface). It is easy to see that this is exactly the condition 

that the p coordinates really represent the derivatives of a function whose jet graph 

is supposed to be the surface in question. 



7.2. J. The Structure of First Order P.D.E.'s 329 

The 2n-dimensional distribution (smooth field of subspaces chosen from the 

tangent spates at each point) defined by the -vectors that 0 annihilates is maximally 

non-integTabie. It would be integrabie if thr contact space could be filled with 

smooth 2n-diraensional submanifolds (which together define a foliation) that were 

tangent to the specified planes at each point. It requires very special circumstances 

that are spelled out in FVobenius' theorem (see (Spivak, 1979] p. 257) for 6 to define 

such 2n-dimensional surfaces (in fact. 8 must be the differential of a function locally 

for these surfaces to exist). It turns out, however, that there always exists an n-

dimensioaal foliation everywhere tangent to 0's annihilator. For the contact planes, 

this is in fact the largest dimensional foliation you can find (this is the meaning of 

maximally non-integrable). The two-form d0, acting on vectors in a characteristic 

plane, gives a measure of the nonintegrability there. If dB doesn't vanish on two 

vectors, theo it is not possible to deform the parallelogram they form to be tangent 

to the contact planes. That a contact structure is maximally nondegenerate says 

that dB is nondegenerate on each contact plane (i.e. is a symplectic bilinear form 

on each plane). 

The P.D.E. in this picture simply states that the jet graph of the solution 

function u must h> in the 2n-dimensional set given by F = 0- That an n-dimensional 

surface is a jet graph of a function says that it is tangent to the contact planes at 

eacii of its points. If both of these conditions are satisfied and the surface projects 

down to M diffeomorphically, then we have a local solution to the P.D.E.. 

Any such surface must include a certain direction in its tangent plane at each 

point, called the characteristic direction. This direction is defined as follows. The 
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?n-dimensional tangeut plane to the surface F ~ 0 at each point intersects the 2rc 

dimensional contact plane generically in a (2n — l)-dimenaional subspace. When 

d$ is restricted to this subspace it has a single degenerate direction (just as in 

H-imiltonian mechanics, where the degenerate direction of the symplectic structure 

restricted to an energy level surface gives the direction of the dynamics). This di

rection is the characteristic direction that must be included in any solution (since 

dB is nondegenerate on the (n — l)-dimensional quotient by the characteristic direc

tion and must vanish on our n-dimensiocal surface, that surface must include the 

characteristic direction). 

It is now easy to see how to solve the Cauchy initial value problem for our 

P.D.E. The initial surface on which the value of ti is given, is an (n — l)-dtmensional 

submanifold of M. The initial data plus the constraint that it lie in F = 0, de

termines an (n - l)-dimensional submanifold in the jet space which our solution 

surface must include. As it must also include the characteristic directions, if these 

are not tangent to the intial manifold, we get & local solution by just flowing the 

intial manifold along the integral curves of the characteristic direction field (see 

[Guillemin and Sternberg, 1977] p. 34). 

7.2.2. Hamilton-Jacob! Theory and Symplectic Manifolds 

In the special case of a first order P.D.F. which does not explicitly depend on the 

value of the function u, we obtain the Hamilton-Jacobi theory (see [Abraham and 

Marsden, 1978] p. 381). We saw above that it is exactly this kind of equation that 

arises from eikonal solutions of linear P.D.E.'s. The whole point to the separation 
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of scales is that the value of the fast phase itself is irrelevant and only its slow 

derivatives contribute to the average dynamics in the eikoDal limit. It is for this 

reason that mechanics may be formulated in terms of symplectic manifolds instead 

of contact manifolds. 

In this case, the function H{x, p) whose zero set gives our P.D.E. may be called 

the Hamiltonian. Since H -Q includes the entirety of the u fibers, and the contact 

form 6 is invariant under translation in the u direction, we may forget about the 

u direction completely in our theory. What is left is the cotangent bundle T'M 

with its canonical one-form and corresponding symplectic form. The characteristic 

directions project to a line field on the set H = 0 in T'M (since both H and 6 were 

symmetric -Jong u, BO were the characteristic directions). The Hamiltoniar. vector 

field determined from H and the symplectic structure in the usual way is along 

this direction. Under this projection, Legendre subrr?^.ifolds transverse to the u 

fibers project down to Lagrangian submanifolds. As we have seen in section 7,1.4, 

this is the condition in T'M that an n-dimensional submanifold be the graph of 

the differential of a function. The Cauchy problem now becomes like Hamiltonian 

mechanics. Given an (n — 1 )-dimensional intitial surface in M with the intial data 

of u's v^iue on it, we get au (n - l)-dimenflional initial surface in T'M as the 

only submanifold in H = 0 consistent with the differential of the intial data. The 

solution surface is then made up of the integral c u r i a of H's Hamiltonian vect«_< 

field tba; pass through the initial manifold. 

We saw in section 8.2 that the Hamilton-Jacobi equation for eikonal solutions 
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of ihc Klein-Gordon equation is defined by the function 

H = -k* + kl + kl + k* + \ (7.53) 

on (x,y,z,t,kx,kv,kx,kt) space. The characteristics are the orbits of the Hamilto-

nian vector field defined by H. This vector field is given by 

dB 
• B B L 

dk, ~ ** 
V=dkv=k> 

dB , . dB 
er.=k- t = w,=-kt 

-£- SB „ 
k. = -—=0 

dy 
a H „ i d H

 n -a7 = ° at 
We only use these curves in the surface H = 0. 

The physical P.D.E.'s we are often interested in considering (such as the Klein-

Gordon example) have a distinguished time direction. The phase space discussed 

above is really an "extended" phase space in that it includes the time direction. If 

the Hamiltonian (and so the original P.D.E.) is time independent, we may apply 

reduction along the time direction to get a symplectic manifold of dimension 2n - 2. 

Now our intial wave is given over the entire base manifold. This is the picture we 

have been using in the earlier sections of this chapter. The time evolution of the 

Lagrangian manifold is given by letting it flow along the Hamiltonian trajectories 

of the reduced Hamiltonian. As in ordinary mechanics, these trajectories are now 

important on the whole phase space, not just on a subset like H = 0. As we have 

discussed earlier, the Hamiltonian dynamics can bend the Lagrangian submanifold 

over and make its projection singular. 
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\ •: th? Klein-Gordon example, -we eliminate I and sot the generator of (-

translation: fct. to a constant n.'. The characteristics are now defined on the full 

(x,y.z.kx,kv,k,) space and are the orbits of the Hamiltonian vector field -f 

u> = Jl+ k\ + k* + k\. (7.55) 

7.2.3. Cotangent Bundles, Con tac t Spaces, and Je t Spaces 

Contact spaces are associated with odd dimensions and symplectic spaces with 

even dimensions. We have seen that the symplectic cotangent space has a natural 

generalization to the first jet space, and that the canonical one-form generalizes 

to the contact form. We may also obtain a contact space of one dimension lower 

than the cotangent bundle by forgetting about tbe magnitude of a covector. A 

covector without its length is given by saying only which vectors it annihilates (and 

not what it does to other vectors). This is a hyperplane called a contact element 

in each tangent space of our original manifold (see [Arnold, 1978] p. 354). Tbe 

E-nace of tangent hyperplanes of a manifold, is itself a contact manifold. The name 

"contact" makes the most sense here, since these planes represent elements of first 

order contact with surfaces in the manifold. Thp contact structure on this space is 

given quite analogously to the definition of the canonical one-form. The (2n - 1)-

dimensional space of contact elements naturally projects to the base manifold by 

sending a contact element to the point it is based at. A tangent vector to tbf space 

of contact elements is in the contact plane at mat point if its projection lies in the 

contact element it is based at. We will use this in our study of thermodynamics in 

chapter 16. 
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7.2.4. The Con tac t Bundle and the Conorma] Bundle 

AL important class of Lagrangian and Legendre submanifolds arises from sub-

manifolds X of the base manifold M. The contact bundle of N is just the set of all 

contact elements which are tangent to X. This is clearly a Legendre submanifold 

since any vector tangent to it projects to a vector tangent to N and so is in the 

contact plane at that point. The conormal bundle of X is the set of all covectors 

that annihilate the tangent space of X. This is a Lagr&ngian submanifold of the 

cotangent bundle T* M since a vector tangent to it must project to a vector tangent 

to A' which is annihilated by the form it was based at and so by the canonical one 

form. Thus we see that the zero section of a cotangent bundle is Lagrangian in one 

limit (-V equals M) and the fibers of the cotangent bundle are as well, in the other 

1imjt (.V equals a point). If ./V is a source of light, then the conormal bundle gives 

the rays that are emanating from X. Thus a point source radiates in all directions 

while a plane radiates only normal to itself. The Huygens construction gives wave-

fronts as the envelope of the manifold formed by projecting those points that are a 

given distance along the rays. 
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7 .3 . Limita t ions of W K B Theory 

It is well known that ordinary WKB theory breaks down when diffraction oc

curs (i.e. where the medium scale length is as small as the wavelength) and near 

turning points (where the wavelength goes to zero). Keller has developed a beautiful 

theory of geometric diffraction theory which uses geometric optics (i.e. WKB) away 

from the bad regions in the medium and glues in the extra rays due to diffraction 

emanating from these regions using matched asymptotics. The gr* at simplification 

is that as the wavelength becomes smaller, any "edge" (or any other type uf bad 

region) affects a ray over a smaller and smaller portion of it. Asymptotically, the 

effect of a discontinuity is identical to one of only a few "canonical problems" (eg. 

the edge of an infinite half plane, the tip of a cone, etc.). Tl are solved once 

and for all and it is their solution that is glued into the problem. Turning point 

problems were dealt with classically ir. a similar way itj one dimension. Near the 

turning point the potential asymptotically becomes more and more like a linear 

potential as far as the asymptotic wave can tell. The exact solution for a linear 

pt -.ential (i.e. an Airy function) is glued in using matched asymptotics again. As 

we discussed in section 7.1.4, Maslov generalized WKB theory to situations with 

caustics in higher dimensions. Associated with each of the elementary catastrophes 

of Thorn (which classify the generic caustics) is a special function which is a higher 

dimensional analog of the Airy function. The wave field around a caustic may be 

obtained by glueing in these special functions at the caustics of the WKB solution. 

One important phenomenon that has not to my knowledge received a geometric 

treatment is tunneling. This is the propagation of real waves into regions that the 
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WKB rays cannot get to. Thr problem is that eikonal waves decay exponentially 

in classically forbidden regions (i.e. regions without rays) as the eikonal parameter 

vanishes. Straight WKB cannot detect this, but by asymptotically matching solu

tions on opposite sides of the barrier, one can estimate the transmission coefficient. 

As in the case of perturbation theory for mechanical systems, there has been 

little discussion of the time of validity of the WKB asymptotic expansion (i.e. the 

time-scale on which it is uniform). We saw in the mechanical case that using special 

techniques such as Kruskal's method could give us expansions uniform over time 

1/t but that getting longer times was problematic. Based on the picture of WKB as 

reduction by an approximate symmetry in wave space, we expect exactly the same 

phenomena for waves. Long times have become important in recent years as much 

study has been devoted to quantum chaos (i.e. the behavior of eikonal waves when 

the corresponding raye are chaotic). Chaos is an infinite time concept. 

In fact it is easy to construct examples where all the requirements of WKB are 

satisfied everywhere and for all time and yet the WKB solution becomes invalid on 

times of order 1/e. Jeff Lerner has suggested to me the example of a translation 

invariant dispersive wave equation with initial condition A(ex)e* x where fc does not 

depend on i and A{x) is a single hump. Because fc is constant, all rays are parallel 

and WKB predicts no spreading of the wave packet with time. However, we might 

have alternatively represented our wave packet in terms of its Fourier transform. 

Because A. varies, the Fourier spectrum will be a smooth hump containing a band of 

wavevectors centered at fc. This shows that the dispersive character of the equation 

will indeed be noticed by the packet which then in fact will spread with time. Let 
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us estimate how long it takes for the packet to spread to twice its width. Because 

Fourier transforms live oa the dual space, the peak in n.-space hi^ width of order 

(. The greatest difference in group \ ocity at different point- of the wave packet 

can then be at most of order c Thus our packet takes time l/« to s p ^ i d 1 unit in 

x-space. But the packet has width 1/e. To spread to twice its width, we must let 

the packet evolve for time 1/e2. Given a real wave, there is always ambiguity in the 

choice of splitting into amplitude and wa"e-vector parts The differences between 

theje alternative scalings lead to a significant difference in the corresponding WKB 

predictions on time scales of order 1/f2- Thu. may be seen by an argument exz/;tly 

analogous to the one used in this example. 
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Chapter8: 
A Hamiltonian 
Approach to Wave 
Modulation 

"ID mechanics the setting is the theory of slow modulations for vibrating sys

tems... The classical theory is usually develooed by Hamiltonian methods, which 

are not directly applicable to waves, but we may instead derive the simplest of the 

classical results by the methods developed here."— [Whitham, 1974] p. 506. 

8.1. In t roduc t ion 

If we are given a wave system with a Hamiltonian structure, we would like to 

find a Hdjniltonian structure for the evolution of slow modulations of the amplitude 

and wave numher. We want an algorit. ic procedure completely independent 

of any previous knowledge or special features of the system (for example, noth

ing should depend on linearity}. We work out the case of the linear Klein-Gordon 

equation with this constraint in mind The Bame procedure should vork for any sys

tem: nonlinear, multi-field, integral equations, etc. We wish to extend the beautiful 

work of Whitham and later Lighthil! which is based on Lagrangian averaging (see 
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the discussion and references in the excellent text |Whitham, 1S74J) to Hamiltonian 

systems, which we have seen are more general. [Dubrovin and Novikov. i983] give? 

a Hamiltonian treatment for a special class of systems (though their perspective is 

quite different from ours) and may be of interest to readers as well. 

Here we will work v.-ith tJe one-dimensional Klein-Gordon equation: 

Pu - V>.: + <P = 0- (8.1) 

To represent this as a Hamiltonian system we introduce the conjugate field II with 

the equations of motion: 
v, =n 

This is Hamiltooian wi+h the Poisson bracket 

(8.2) 

**} = / ( tie m snstp) 

and the Hamihooian 

H = Jh<k, (8.4) 

where h is the Haxniltonian density 

fc=i(n2 + pl + P

J ) . (8.5) 
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8.2. Per iodic Solutions 

There is a three dimensional submanifold of periodic solutions in this ^,11 

space. We may label points in this submanifold by the three coordinates (A,k,9) 

PA.k,e{x) = Asva[kx + 6) 

n A | f c | f l ( i ) = \fk2 + MCOB(*£ + 9). 

For convenience we define 

(8.6) 

u = s/k* + 1. (8.7) 

The dynamics restricted to this manifold ia given by 

t VAkeW \ = f UACOB(A:I + (P) \ 

ln«.(i)i \-<jJxsia(iti + e)/ 
= / « i [ i t o m ( * i + «)l \ 

U ^ M c o a ( i i + « ) ] / 

Thus the dynamics on A,k,6 space is 

(!H) (8.9) 

8.2.1. The Hnmiltonlan Restricted to Periodic Solutions 

Now restrict the Haniiltonian to the submanifold and integrate over a large 

volume V: 

flv[™,:i«) ~ i ^ J V ( t 2 + l\ + i A 2 V t 2 + \A*V = \A*J*V. (8.10) 

Notice that this is asymptotically true as V —• oo and neglects an order 1 contri

bution at the ends. If w« were only interested in the periodic case it would perhaps 
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be more elegant to introduce the average here and Dot to introdurr thr V ai all 

In fact, we are studying the periodic case only as a model for the eikonal c.isc. We 

•want to think of tbe eikv nal waves as limning on the submanilold of exactly periodic 

•waves as the eikonal pa*ameter vanishes. It is for this reason that we do not take 

the mean over the whole line and are therefore Pt-'ck with the inelegant V s . 

8.2.2. The Symplectlc Structure Restricted to Periodic Solutions 

Poisscn brackets can be pushed fonvard along projections but cannot in general 

be pulled back along injections like we have here. We therefore work with the 

symplectic structure, which can be pulled back: 

n(P<Pi,«i,],\6<p7,6n2\) H fdx (stp1{x)6n2(x) ~ sn^x)*^))- (8.11) 

This two-form is the differential of a one-form a, which is easier to work with: 

n = ~da, (8.12) 

a(|6y?,MI]) = fjl[z)8v[x) dx. v 8 .n ) 

To pull this back to (A,k,B) space, we pt'sh forward \ vector ^A,ik.ii$) to 

{fip,6U). We only need the t^> component: 

6*Ake(T) --= bA sinffei + B) + 6k A x cos(kx + 6) -J- SB A cos{kx + 6). (8.14) 

Thus 

a{\6A,bk,68}) = a(6&Al..t>nAke) (8.15) 
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= / A *.' cas(kx + $)l6Anm(ki: -r €)+ 

* i 6k A confer + 0) + 60 A cos(fcr + *)]dx (8.16) 

- X-A2 j 66. 

So the two-form u oo A,k,9 space is 

D = -dO = -V AwiAhib- ^ A s ~£ditA<ffl. (8.17) 

n is closed but degenerate (as it must be in three dimensions), and it annihilates 

the \ector 

8.2.2.1. A Degenerate PoUson Structure on the Periodic Solutions 

If we ch joee a function whose level sets are transversal to this vector field, we 

may make this function a Caaimir for a Poisson structure agreeing with w on the 

level sets. If, furthermore, the function is a constant of the motion, then E restricted 

to the level sets must give the correct dynamics. Here we take this function to be 

k, which we now hold constant. Then on A,8 space, 

ft = V AudBAdA (8-19) 

Bv = J*2"2- ^-20) 

dB = A V u>3 dA, (8-21) 

file:///ector


8.2.3 The Action of Periodir Orb'ts 

ae 
which is the correct dynamics. 

8.2.3. The Action or Periodic OrbitB 

We would like to work in canonical coordinates. From the expression for P, we 

see that 6 is conjugate to 

J = l-V A1 w. (8.23) 

In terms of Jt 6 the structure is quite nice: 

17 = d8 A dj 

This gives the dynamics 

(8.24) 
H = Ju. 

XH=JWB (8.25) 

or equivaltntly 

j = 0 9 = u. (8.26) 
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8-3. Modula t ions 

Modulations essentially "gauge" this theory. We introduce the space of pairs 

of functions: (A{x), 6{x)}. For each value of * we map this into (<p, II) space via 

Vi.Alz)M*){x) = A(o:)siii{-fl(er)) 
! (8-27) 

n«,Ali) ,S|«)(l)sw(«) A ( « ) COft-6(£l)), 

where we have denned for convenience 

fc(x) == e'(x) w{x) = </k*[x) + l. (8.28) 

This time the dynamics leaves the submanifold invariant only asymptotically as 

c — 0 (but does so to all orders).We would like to consider this asymptotic dynamics 

on [A}6) space, which represents the modulations! equations, as a Hamiltonian 

system. We do this by pulling back the Hamiltonian and the symplectic structure 

for each e and then do asymptotics in € -» 0. 

8.3.1. Stationary Phase Integrals 

The method of stationary phase tells us that, as long as 9' doesn't vanish, 

integrals of the form 

f / ( « ) C O S ( ^ ( M ) ) di ~ 0 (8.29) 

vanish to all orders in e as c —* 0. This easily implies that 

/ / ( « ) cos(-tf(ex)) B U ( - 0 ( M ) ) dx — G (8.30) 

and 

f / ( « ) C06»(ie(ei)) dx ~ i J /(ex) dx (8.31) 
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to all orders in ( provided / is smooth and dies rapidly at inhnity. 

8.3.2. The Modula t iona l Po'iBSon Brackets 

The modulational i^oisson brackets are obtained as before by coiwerting [A.9) 

perturbations to (^,11) perturbations. If we call the map from (A, 9) to (^,11), t ( , 

then 

_ (6A(ex) sin(±tf(cx)) + 60(x) \A{tx) cos{\6{tx))\ X ' ' 

\ not needed / 

All sin's and cos's have the argument: (8{cz)ft). We will leave this argument out 

of our expressions for clarity. So 

i't<i([6A,6e]) = tx[itm[6A,60\) = f{u A COB)(M sin + 60-A coa)dx. (8.33) 

By stationary phase, assuming dB ^ 0 anywhere, we have that to all orders in e: 

i'M[6A,69]) = - f^u A2 66 dz. (8.34) 

Motivated by the periodic case, we introduce 

J{x) = ^u{x)A(x)\ (8.35) 

This is the wave action density. Thjs the one form is (l/t2)j J 66 dx (the ( is 

squared since J and 60 are evaluated at (x) and the corresponding Poissoo bracKet 

is canonical: 

fr^\ a f (6F6G 6F6G^ a „, 
i F ' G H J "{-sea-JOe)- ( 8 3 6 ) 
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8.3.S. T b ? Modula t ions ] Hamil tonian 

The modulation*] Kamiltonian is sitnilarly obtained by pulling back H: 

i'H - J dx(-^A2mo2 + ' / t V c o s 2 + 2(.4M'cossin + e2A'2sin2 + ^A2sm2). 

(8.37) 

To al] orders in e, this b 

= | d x { \ ^ A 2 + \A2k2 + i<M'2 - jA2) = Jdz{^2A2 + ic^ ' 1 ) . (8.38) 

Or in terms of J: 

^ / d i ( , / u + ^ y ) . (8.39) 
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8.4. Global S y m m e t r y Implies Local ConBcrvation Law 

Lei us now show that the presence of a global symmetry implies the existence 

of a local conservation law. Given a pair of canonically conjugate fields (J(x),6{x)}, 

<r.c}- / ( ' 60 6J 63 60 J v 

and a Hamiltonian H{Jt8) that is invariant underagiobaj change of 6 by a constant 

80 everywhere: 

i.e. H{J,e±60) = H(J,e), (8.41) 

we may apply a generalization of Noetber's theorem ki>own as reduction. This 

entails rewriting everything in terms of 

k{x)~Ve(x). (8.42) 

which contains all information in 9 except for a constant 6 0 . We see 

/ ^ f l - l i ^ S I M + J V / l (8.43) 

' /£-"—/(!•£)'<*>*• 

d_ « ? 

(8.44) 

(8.45) 

for G's independent of 60. Thus the reduced Poisson biacket is 
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The evolution of J ia thus 

**> = W*J = - £ • ( £ ) • <*•«> 

This U the desired conservation equation for J , with the flux of J given by 6H/6k. 

Similarly 

*(*) = {*,*} = - ! ( £ ) =-£,(.,. MS) 
In our case, to first order in e we have 

H= f hdx />(*) = J (x) u ( i ) , (8.49) 

which is independent of the value of 9 (it depends only on the gradient). We may 

thus apply the previous theorem to obtain 

•*<*) = «*> = - 1 ( '£) = -£»"> ( 8 W ) 

where we have introduced the group velocity: 

Thus the wave action J is conserved and the flux is UJ. 

We have therefore successufully obtained the correct moJulational equations 

using a purely Hamiltonian framework. Traditionally, obtaining modulational equa

tions is a very complex task fraught with traps for the unwary. Whitham and 

Lighthill brought order to this task during the 1960's using Lagrangian methods. 

A fine account of this work occupies most of the second half of Whitham's book 

on waves: [Whitham, 1974]. The quote at the beginning of this chapter indicates 
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that Whitham did not think that this c-uld be accomplished within a Hamilto-

nian framework. W» see that it can indeed. This is of both the-"-etical interest 

(particularly because of the explicit connection with tbe process of reduction) and 

practical interest. As we discussed in chapter 2. many of the recent systems wbirh 

have received a HamiHonian formulation have done s*> only in the context of Pois-

son manifolds and therefore have no Lagrangiao. analog. Our theory should be 

applicable to waves in these systems as well. 



8.5. The .Vonhnear KJeis-Gordon Equation 350 

6.5. The Nonlinear KHin-Gordon Equat ion 

This section describes work done in collaboration with Richard Montgomery. 

Recently, Richard Montgomery has proven that the method described in previous 

sections of this chapter for the iinear Klein-Gordon equation really is quite general 

and applies to arbitrary syBtems (preprint, March 1985). Let us here sketch the 

extension to the nonlinear Klein-Gordon equation: 

*« = # . . - V ' ( * ) . (8.52) 

The arguments are almost identical to the linear case. We first introduce a momen

tum II conjugate to 4>-
<h = n 

(B.5« 
n, = *„ - v » . 

This syetem is Hamiltonian with the canonical bracket given in section 8.1 and 

Hamiltonian 

tf = | ( i n ' + i # + V ( # ) ) d x . (8.54) 

We search for periodic functions of the form 

4>[x,t) = F[kx-V u>t) (8.55) 

where F is a function of one variable. Let us denote kx + ut by 8. We want F to 

be 27r-periodic: 

F{6 + 2*)=F[9). (8.56) 

The corresponding momentum will have the form 

h(xtt) = uF'(9) (8.57) 
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l»ht-rr v.r UM- ^ pruiii' lo deuote the 0 derivative), Substituting thL1- ansatz into the 

rijua'Linns oi motion gives us a simple O.D.E. for F 

( ^ - t 2 ) ^ ( « ) + V'(F(e)) = 0. (8.58) 

Anytime one searches for travelling wave solutions (or similarity solutions) out 

obtains a simple O.D.E. even when the original system is a complex nonlinear 

P.D.E.. In thb case the resulting O.D.E. is the equation of motion foi a "particle" 

of "mass" (u;2 - It2) moving in a potential well defined by V if we treat 8 as "time". 

The corresponding "energy" of this particle is 

^ k»(^y +V(F) = A (8.59) 

which we set to the constant value A (because it varies with wave araplitude). 

It is interesting to note that the actual energy of the wave is 

which is the integral over x of the "particle" energy. (Thui is connected with the 

use of the Klein-Gordon equation in particle physics). 

The energy equation gives 

(8.60) 

m 
which may be integrated to give the solution 

**=YW ( 8. 6 1 ) 
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The constant of integration is the initial phase of the wave. When V is a simple 

harmonic oscillator, corresponding to the linear system, this gives sin's and cos's 

as solutions. When V is a pendulum potential (as in the sine-Gordon equation) 

this is an elliptic integral and when V is quartic we get the solution to the Duffing 

oscillator. For the linear case we see that the constant A is half the amplitude 

squared (we continue to use A to facilitate the comparison with Whitham). 

The nonlinear dispersion relation is obtained by requiring that F be 2TT periodic 

in 6: 

2TT= f dd 
Jo 

-L d& 
—dF (8.63) 

period d t 

dF ••{yfittj^ 2 / P „iod y/A~V(F) 

This gives one relation among A, k, and u>. This is analogous to the fact that we 

could write u as a function of Jk in the linear case. Here, though, w depends on 

A as well, which leads to characteristically nonlinear effects (just as in a nonlinear 

oscillator where the frequency depends on the amplitude). The subtnanifold of 

periodic solutions is thus three-dimensional again and we may coordinatize it by A, 

k md 6 as in section 8.2. 

As in the linear case, we find the action for a periodic solution by integrating 

the canonical one-form 

/ n(x)64(z)dx (8.64) 

around a periodic orbit. 6<P{x) acting on a unit tangent vector to the orbit will give 

^ ( l ' " = i ? ( t I + u " ( 8 6 5 ) 
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since c moves around its orbit in time 1/-.'. The total action is therefore 

jJ-L[kl,,^)?L{k2 + ^)dx. (8.66) 

As in the linear case, we must really integrate only over a volume V, divide by V, 

and let I ' — oo, leaving us with a well defined action density. Since the integrand 

is periodic in i , we need only integrate ovir one period. The action density J{ ) is 

then 
1 f2*/k OF V 

2r ]„ \ 39 «:«y («)} •»• 

Let us denote the average over a period of 8 by /). 

(.) = J - / * dO. (8.68) 

The action density may then be written 

J ( x ) = u , ( F ' J ) . (8.69) 

We may use the equation satisfied by F to write this as 

j ( l ) = H f aJLiF 

•/2(X=T(f)) 

^ = = = / y/i[A - V{F))dF. 
'U2 ~ K1 J period 

. J ^jrHdF <«,„, 
^ x .'period V w 3 - IJ 

When wc look at the special case where V[F) = - cosF . this agrees with the 

expression given in [Forest 3_r«u McLaughlin. 1982]. 
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Let us now jump right into the modulations! equations. Wc _=un consider the 

space of functions {A[x),6(x)\ and for each t, map this into (<p,II) space ' ia 

1

 x (8.71) 

where F* is the periodic F with constant set to A and w is the known function of 

k = $x and /t. We use FA to denote the 8 derivative of FA and dF*fdA the A 

derivative. Exactly as in section 8.3.2, the canonical one-form a is pulled back to 

[A, 9) space by 

t;a([6A,£0])=a(t<.[4A»«0|) 
f , dFA 1 (8-72) 

= j uF'A{6A-j+ + 66-F'A)dx. 

Now we use stationary phase tr replace Uuc&.*Ia over periodic quantities like F and 

its derivatives by integrals over the corresponding quantities averaged over |0,2ir]. 

We change to the slow scale X = ex: 

i;a(\6A,i9\) = i f utX)(F$)(XmX)dX + \ J^(X)(~^F'AHX)vA(X)dX 

= i / J{X)6e{X)dX+ i Jt*>{X}(~£±FA}{X)&A{X)dX. 
(8.73) 

Similarly, we see that the Hamiltonian is 

(8.74) 

Now wc use stationary phase again and change to X ~ (X to see that to leading 
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order 

H - \ j ( \ { ^ + k')F'^(X) + V(FA{X)))dX 

'J. "-" (8.75) 
= 1J{k'F'i + A)dX 

~\f{k-'(F,i){X) + A(X))dX 

= U{Sr)J{x)+A{x))dx-
Again we see that H is asymptotically independent of 9. Since J generates 9 to 

leading order (as may be seen by looking at the asymptotic expression for the 

canonical one-form a ) , J{X) ia asymptotically a locally conserved quantity as for 

the linear system. 
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Chapter9: 
A Lie Poisson Bracket 
for Wave Action 
Density 

9.1. Explicit Calculation of the H e Polaaon Bracket 

This section represents joint work of Allan Kaufman, Steve McDonald, and 

myself. J and ip are real valued functions of x G X 3 . We consider the canonical 

Poisson bracket on functionals of J and V>: 

{ A W « , BV,*)} = / [ £ ( * " ) £ f ( x " ) - %V) « § « ) ] * * . (9.1) 

We shift attention to functicals of the distribution I on (x, k) space. We obtain 

the Poisson bracket of such functionals Ti and T2 by requiring that it reduce to 

the above canonical bracket on distributions of the form 

7(x,k) = J (x)f i 3 (k - V^(x)) . (9.2) 

This can really only give the value of the wave Poisson bracket evaluated at distri

butions of this form. We may implicitly assume linearity in / , however, (and the 
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Lie Poisson bracket is Unear) and thereby extend the definition to multiple cikonal 

waves and then by continuity to all waves. Calling (x,k) = y and (x',k') = y', the 

chain rule gives 

JT.t/KTyi)} = fSyfy1 6-J±(y) ^<» ' ) j/(»),.%')} 

= /AA'«'^W^(!/) (9-3) 

We calculate the seeded functional derivatives: 
/ (») | J + t / | - / ( y ) | J l 

J'e-jrix'"> '<x"> **• H-
= f[x)63(k-VMx)). 

(9.4) 

So 

^ ( x " ) = *{x - x")«(k - V*(x)) . (9.5) 

Similarly, 

= U m i j ( x ) ( o 3 ( k - VV(x) - «V*(x)) - « 3 ( k - V*(x))) (9.6) 

= - J { x ) V * ( x ) . ^ « 3 ( k - V V . ( x ) ) . 

So 

^ ( X " ' = ^ • < ( x - x " ) J ( x " ) | ; « ( k - V0(x")) . (9.7) 

Fiist substitute in | ^ and do the x" integral: 

{ T , . T 2 } = | d 3 x d 3 k d 3 x ' r f 3 k ' r f 3 x " ^ i ( x , k ) ^ ( x ' , k ' ) 

< 3 ( x - x " ) « 3 ( k - V * ( x ) ) ^ ^ ! ) ( x " ) (9.8) 

- «(x' - x")«(k' - V ^ x ' D - ' - ^ f x " ) ] 
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{ T , , T 2 } = | r f 3 xrf 3 kdVd 3 k ' « I> ( x . k )^ (x ' , k ' ) 

^{k-V^x))6J^l{x) (9.9) 

- f » ( k ' - V V ( x ' ) ) ^ ( x ) . 

Now substitute in j ~ : 

= / ( ^ x r f H ; d V r f V ^ ( x 1 k ) ^ ( x \ k ' ) 

[*3(k - W W ) I ; • « V - x)J(x)£;* 3 (k ' - ViKx)) 

-< 3 (k ' - VV-(x'))| . ^ ( x - x ' J J f x ' S ^ J k - W ( x ' ) ) ] . 
(9.10) 

Now integrate by parts with respect to k' in the first term and k in the second: 

«3(k - V«(x)) • | j « 3 ( x ' - x)J(x)«3(k' - V«(x)) 
/ d tTi, . , \ « T 3 . , , , , 

+ ( s k « - ( x - k ) ) i r ( x - k ) 

« 3 (k ' - V<(,(x')) • £ ; « 3 ( x - x ' ) J (x ' )« 3 (k - VV(x ' ) ) ] . 

(9.11) 

Now change the variables of integration: exchange k aad k' in the Brat term and x 

and V in the second: 

6 3(k'-V*(x))| ;6 3(x'-x)J(x) 

l 5 k 7 r ( x ' k ) J 7 r ( x ' k ) 

«3(k' - W(x)) • J ^ V - x)J(x)«3(k - V*(x))l 

6 3(k' - V*(x)) • ^ - t V -x)J(x)6 3 (k - VV>(x)) 
/ fl *T \ «T ( 9 1 2 ) 
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Collect terms: 

(913) 

= /*x*k^k'[-£,x.k')(££<x'.k, 

-6 3 (k ' - V,f>(x)) j ^ 3 ( x ' - x )J (x)« 3 (k - V(i(x | | . 

Now recall J (x )* 3 (k - Vtt(x)) = 7(x,k) and integrate by parts in x: 

= / A A W * { [ ( s i T ^ » ) ( s ^ H -

*3(k' - V^(x))i3(x - x')/(x,k)+ (9-14) 

x VV« • J ^ 3 ( k ' - J ^ ( x ) ) * V - x)/(x,k)|. 

In th..- first term, the 6 3 (k - V^(x)) in / (x ,k) lets us replace 6 3(k' - ViC(x)) by 

63[W - k). In the second term we integrate by parts in k' and then do the same 

replacement. 

- ( ^ ^ " • ' • k 0 ( ^ ^ ( x ' k , ) ) ] 4 3 ( k ' - k ) 4 3 ( x - x ' ) / ( x ' k ) 

(9.15) 

We do the x* and k' integrals using the delta functions. The second term vanishes 
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and the first becomes the Lif-Pois'iuii bracket; 
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9.2. T h e Geometrical P ic tu re 

Alan Weinstein has given the following geometric interpretation of this result 

On the one hand, as in section 2.7.10 we may consider the group of syinplerto-

morphisms of a symplectic manifold M. An infinitesimal symplectnmorp'iism is 

represented by a Harailtonian vector field (at least locally). We may think of the 

Lie algebra of the group of symplectomorphisms as being all Hamiltonian vector 

fields on M with the Lie bracket of vet tor fields being the Lie algebra bracket (per

haps with a minus sign, depending on cou-'T.Uons) Tt-'.ivalently (up to a constant), 

we may view it as the space of functions (T?anJ,lt'H.;<irs) on M with the Lie algebra 

bracket being the Poisson bracket of two functions (defined using M's symplectic 

structure). The coadjoint action of a sympiectomorphism on such a function is 

simply given by pullback. The dual of the Lie algebra is then the space of distri

butions on M. We therefore have the natural Lie-Po;ason bracket (given above) on 

fusctionals of such distributions. 

The coadjoint action of a sympiectomorphism on a distribution is given by 

pushing the distribution forward along the sympiectomorphism. The coadjoint or

bits, whid. have a natural KKS symplectic structure, consist of all distributions 

obtainable from a given one by canonical transformations In particular, the orbit 

of ;; (5-functioc looks just like M and has the same symplectic structure (points 

of M correspond to the i-function at that point). Lagrangian submanifolds (i *• 

half-dimensional submanifolds on which the symplectic form vanishes) of M are 

taken to other Lagrangian submanifolds under canonical transform at iou^ (since the 

symplectic form is preserved) Locally, any small enough piece of a Laprangian sub-
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manifold ran he taken to a corresponding piece of any other Lagrangian submanifo'.J 

b> a canonical transformation. So up to global issues, the space of measured La-

grangian subnianifold:- on M is itself a symplectir manifold (see section 2 7.10 for 

more deiaiLs). 

Above, we saw ihat the phase function which determines the manifold and 

the amplitude which determines the distribution on that manifold, may be treated 

as canonic ally conjugate variables in a way that is consistent with the Lie-Poisson 

structure on all distributions. We would like to understand this fact geometrically. 

We wil] show that the cotangent bundle of the space of Lagrangian aubmanifolds 

of M may be naturally identified with the space of distributions with Lagrangian 

support. The cotangent space at 3 given Lagrangian submanifoid is identifiable with 

the the space of distributions defined on that Lagrangian submanifoid. This is then 

identifiable with the corresponding space of i-like distributions or M supported on 

that manifold (see section 2.7.10). Thus the canonical conjugacy of the distribution 

and the manifold arises in a natural way. 

What is the tangent space to a Lagvangian submanifoid of M in the apace 

of Lagrangian submanifolds? A tangent vector will be a small deformation of the 

manifold which is itself Lagrangian. All such deformations come from Hamiltonian 

vector fields. The tangent apace may thus be identified with the space of Hamil-

tonian vector fields on M modulo those which leave the Lagrangian aubmanifold 

invariant. A Hamiltonian vector field leaves a Lagrangian manifold invariant if and 

only if it is constant on it. 

We sfe thl*- as follows. If a Hamiltonian vector field Xn is tangent to our 
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Lagrangian manifold, then dH = U(A'H, - ) must annihilate all tangrnt vrrtor* to 

the manifold, since it is Lagrangian and so its tangent spaces are symplectically 

orthogonal to themselves. This says that / / is constant on it (if it is connected). 

If H is constant on the Lagrangian submanifold, then it annihilates all tangent 

vectors. Thus XH is 3ymplectically orthogonal to the whole tangent space. But on 

a Lagrangian submanifold, the only such vectors are themselves tangent to it. Thus 

XH preserves the Lagrangian manifold. 

We may therefore identify the tangent space to the space of LagTangian sub-

manifolds at a given such manifold with the space of functions on M modulo those 

functions which vanish on the manifold (again ignoring constants). But this is ex

actly the space of functions on the Lagrangian submanifold. Taking the dual we 

see that the cotangent space to the space of Lagrangian submanifolds at a given 

Lagrangian manifold is indeed isomrrnhic to the space of distributions on that 

manifold. 

This space of distributions is identifiable with the delta-like distributions on M 

supported on the manifold. The cotangent bundle of the space of Lagrangian sub-

manifolds obtainable by deforming a given one is thus isomorphic to the coadjoint 

orbit of the symplectomorphism group which contains any delta-like distribution 

supported by the given Lagrangian Bubmanifold. The KKS coadjoint orbit sym-

plectic structure is exactly the canonical structure obtained from looking at the 

orbit as J cotangent bundle. 
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PART III: 
DISSIPATION 

and 
STATISTICS 

"These two branches, mechanics and thermodynamics, can be joined only from 

a higher standpoint, that of the statistical mechanics of molecular systems."— 

[Klein, 1928] p. 203 
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Chapter 10: 
Imbedding and 
Projection Theorems 

In this chapter we will demonstrate a number of relations between dissipative 

and non-dissipattve systems. We will show, in particular, that any system can be 

embedded in a HamiltoTUan system of twice the dimension and in a Poisson system 

of only one dimension more. These constructions are of interest because they help to 

delineate what operations lead one to artificial structures. Since they can arise from 

any system, the Hamiltonian structures of this section cannot be expected to give 

any new insights into the original system. They may be useful in understanding how 

dissipative dynamics may arise from an underlying Hamiltonian system, however, 

since this always involves some kind of projection. We will also give examples of 

some seemingly harmless "dangerous operations" which can completely destroy the 

physical content of a model. 

10.1 . Imbedd ing in a Hami l ton ian Sys tem 

Consider an arbitrary dynamical system given by a vector Seld A" on a manifold 

Q. We will construct a. Hamiltonian system of twice the dimension which has an 

invariant submanifold diffeomorphic to Q and on w'mch the restricted dynamics 
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ta exactly that given by A". The manifold will be the cotangent bundle of Q, i.e. 

T'Q. The dynamics will be the cotangent lift of X to T'Q. This is defined as 

follow? thr flow of X is a one parameter family of diffeomorphisms of Q to itself. 

A one-form may be pushed forward along a diffeomorphism (just pull it back along 

the inve-M: of the diffeomorphism). Thus at every moment of time each point in 

T ' Q is mapped to another such point. Taking these together gives us a natural 

one-parameter family of diffeomorphisms from T'Q to itself which covers the flow 

of A' (this is a point transformation). This family is actually the flow of a vector 

field on T'Q which is Hamiltonian with respect to the natural symptecitc structure 

on T'Q. The Hamiltonian is the function on T'Q given by 

ff(,,PS = <p,x(5}). (io.i) 

Notice that H is linear on each fiber of T'Q and that the zero section is in the 

zero set of H. It is easy to check that this gives the correct dynamics. With the 

aymplectic structure 

uj = dqAdp, (10.2) 

the dynamics is 

,ax>M < 1 0 - 3 > 

The zero section is indeed invariant (sine" if p starts out zero, it remains so) and 

the dynamics restricted to it is the original dynamics. Thus by restricting the class 

of initial conditions, we may have dynamics inside a Hamiltonian system looking 

like a dbsipativr system of any type. 
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Notice further that under the natural projection 

K.TQ^Q by [q.p)-q, (10.4) 

the Hamiltonian dynamics projects down to the given dynamica. Thus if wc observe 

only certain variables in a Hamiltonian system, it may look just like a dissipative 

system of any type. 

Linear Hamiltonian vector fields must have their eigenvalues ditributed in the 

complex plane so as to be symmetric under reflection about both the real and 

imaginary axes. Thus if we start with a linear attracting fixed point, like 

X ' ( 9 ) = - g ,

l (10.5) 

which has all of its eigenvalues in the left half-plane, we must double the dimension 

to imbed it in a Hamiltonian system. Thus the above construction is the smallest 

Hamiltonian space we might construct in general. 
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10.2. Projectlon from a Hamil tonian System 

This argument for a lower bound on dimension does not apply to the case of 

projection, however. A fixed point of projected dynamics need not be a fixed point 

of the unprotected dynamics, so the eigenvalue argument doesn't hold. In fact, we 

may construct a Hamiltonian system that projects to our system by adding only a 

single dimension if the original space is odd dimensional, or two more dimensions if 

it is even dimensional. The construction sheds light on a dangerous operation one 

sometimes sees being performed in the physics literature. If one has unbounded 

motion, one may smoothly untwist the orbits and hide any features of the dynamics 

that one desires. 

Let us extend our given space Q by a single dimension to get ( J x S . Let us 

denote the time ( flow of the given dynamics X on Q by Jt. It is quite natural to 

consider the extra dimension in Q x 9} as time and to consider the original dynamics 

on Q augmented by a time which flows uniformly: 

* ( , , * ) = ( * { , ) , 1). (10.6) 

Because this has no fixed points and no recurrent orbits, we may now perform the 

following seemingly harmless operation. We define a diffeomorphigm from Q x S to 

itself by 

( « . 0 - ( 7 - i ( ? ) . « ) . ( 1 0 - 7 ) 

By the definition of flow, 

! * ( ? ) = *(») , (10-8) 
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so the image of our dynamical vector field X under this diffeomorphtsm is simply: 

(0,1). (109) 

Thus we have completely trivialized the dynamics by a coordmate change that 

unraveled the original orbits. In particular all dynamics can be made to look the 

same on extended state spaces. For GUT Hamiltonian construction, we may choose 

a symplectic structure and Hamiltonian that give the trivial dynamics of (10.9) 

and pull them back to the original extended state space by our diffeomorphism. 

There they give the extended dynamics as a Hamiltonian system and so project 

onto the original dynamics. The upshot is that one must beware of time-dependent 

coordinate changes because they can easily dc many non-physical things, such as 

making any system look Hamiltonian. 
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10.3 . P a n g s roug Opera t ions wi th Unbounded Variables 

This same construction is sometimes used in disguise to show that all dynam-

icaJ systems (or any particular system an author is interested in) are btegrable. 

Through » series of suitably complex coordinate changes, the author succeeds in 

adding an extra variable with unbounded dynamics (the next two sections present 

explicit examples). This is then used as above to trivialize the system, where 

constants of the motion arc pi. niifiil. The constants are palled back and appear 

magically to have simplified the original system. 

Other dangerous things one can do are to make attractive systems look repul

sive (as in figure (10.1)} and in fact get Liapunov exponents to be anything one 

wishes. (Oseledec's theorem shows that they are well defined for bounded systems, 

in the sense that all smooth metrics give them the same values as discussed on p. 

284 of [Guckenheimer and Holmes, 1983], but they have no intrinsic meaning {or 

unbounded systems). 

10.3.1. Eg.; Surreptitiously Changing Damping to Driving 

Let us convert a damped harmonic oscillator to one with negative friction. We 

start with the system 
i =v 

(10.10) 
i) = — x — kv. 

We make the change of coordinates 

x =eux 
(10.11) 

v = e " v + kektx. 
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We see that the new coordinates satisfy the equations 

~x =kcklx + e

ktx dt 

=kektx + cktv 

(10-12) 
^-v =hektv + ektv + j feVz + kekti 
dt 

=kektv-ektx-kektv 

= -x + kv 

as desired. 

In perturbation theory, if one makes time dependent coordinate changes, one 

must make certain that they remain close to the identity for large times (for example 

by requiring that they be periodic or quasiperiudic in time) or else one may sweep 

any undesirable dynamics under the rug. 

10.3.2. Eg.: Pltfalla in the U K of Lie Transforms 

Lft us illustrate some of these dangers with a simple example using the method 

of Lie transforms. It is becoming fashionable to use Lie transforms in very complex 

situations, where it is hard to keep one's physical intuition about the problem (eg. in 

systems with many-particle dynamics or even infinite-dimensional wave systems). 

It is therefore worthwhile to point out some pitfalls for the unwary in a simple 

example. Such examples will hopefully help us to avoid misapplying Lie transforms 

in more complex circumstances. 
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Figure 10.1: Attraction changed to repulsion by a time dependent change of 

coordinates. 

In this method we assume given a Hamiltonian as an asymptotic series in ( 

whose zero order term has been brought to action-angle form and depends only on 

the actions. Let us examine the example: 

ff = Bo + e#i = u>! Jt + u7J2 + ecos(0! - 62), (10.13) 

on the phase space 6l,Ji,02,J2 with the canonical bracket: [,]. The method of Lie 

transforms seeks to find an f-dependent canonical transformation which becomes 

the identity as e —* 0 and which converts IT to a new Hamiltonian Kt which depends 

only on the actions. We represent the canonica' transformation as the time-one flow 

generated by the c-dependent Hamiltonian: 

-W = cWl+t2W2 + .... 110.14) 
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—(V's Bami!Ionian vector field, viewed as a differential operator on functions on 

phase space, is denoted by 

L = \W,-\. (10.15) 

The action of the flow on functions is then the operator: 

cL. (10.16) 

The transformed Hamiltonian is then given by 

K = t u • H = H 0 + <([Wi, ffo] + Hi) + - - - - (10.17) 

We want to choose W order by order to eliminate the B dependence in if. At first 

order we would like to so>ve for Wi: 

pV l t Ho]= - H i . (10.18) 

This just sr.ys that the derivative of W\ along the unperturbed dynamics (generated 

by Ho) should be equal to - B\. One sometimes sees the solutions written formally: 

Wi=-[ Hi. (10.19) 
^unperturbed orbiti 

This leads one to think that the transformation is always possible and that the 

qualitative behavior of K(Jf, Ja)'s dynamics, which has all orbits periodic or quasi-

periodic, is representative of the behavior of ff's. In the example w*1 are considering, 

this is indeed true if UJJ and u2 are irrationally related. In this case, the Lie trans

form remains close to the identity for all time (and gets closer as t — 0} and so the 

change of variables doesn't do much damage. 
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Consider the case ui = u/2> however. For this system 

6l=wl =62, (10.20) 

and so 0! - $2 is constant in time. This means that 

J i =csin(*i -B2) (10.21) 

is constant as well, and so J\ ,TTOWS steadily in time. This is in great variance with 

the prediction of K which saya that J% remains constant in time. How is it that 

by a change of variables we converted a syatem with monotonically changing action 

to one with constant action? The seemingly harmless integral over unperturbed 

orbits created a canonical transformation which was unbounded in time. As we 

have discussed, such transformations allow one to convert any system to any other, 

regardless of the actual physics involved. As this example demonstrates, one must 

be especially careful when dealing with systems that have resonances {different 

unperturbed degrees of freedom with the same frequency or -with rationally related 

frequencies). Notice that in this example, the error over bounded time is only of 

size c and so we have done as well as naive perturbation theory. The whole poini 

of Lie transforms, though, is to get behavior on a time-scale of order 1/t. On this 

scale the method has failed in the example above. 
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10.4. Imbedd ing in Poisson SvBtems 

Because Hamiltouian dynamics on Poisson manifolds is more genera] than on 

symplectic manifolds, we may imbed arbitrary dynamics into Poisson dynamics 

of only one dimension higher. As above, assume given an arbitrary manifold Q 

and dynamical vector field X. We construct the manifoL; 91 x Q (this is really 

( T ' S x <?)/* aa discussed in section 1.5, question 66). Let H be a function on SR 

defined by 

h{x) = x. (10.22) 

Define the vertical vector field Y on S x Q to be 

Y = w <10'23) 

We will use h pulled up to 9£ x Q. We may define a Poisson bracket on S x Q as 

follows (this Poisson structure may be viewed as the bivector X A V): 

{!,g) = {Xl){Yg)-{,Xg)[Y!Y (10.24) 
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This .satisfies ihr1 Jarobi identity, as may be routinely checked: 

( M s . M H {g.V'.t) + <M/.s>}} = 

Xf V(A"s Yh - Xh Yy) - X[Xg Yh - Xh Yg)Yf 

+ Xg Y(Xh Yf - Xf Yh) - X(Xh Yf - Xf Yh)Yg 

+ Xh Y{XJ Yg-XgYf)- X(Xf Yg - Xg Yf)Yh 

= Xf YXg Yh + Xf Xg YYh - Xf YXh Yg - Xf Xh YYg 

- XXg YhYf-Xg XYhYf^r XXh YgYf + Xh XYg Yf (10.25) 

+ Xg YXh Yf + Xg Xh YYf - Xg YXf Yh - Xg Xf YYh 

- XXh YfYg-Xh XYf Yg + XXf Yh Yg + Xf XYh Yg 

+ Xh YXf Yg + Xh Xf YYg - Xh YXg Yf - Xh Xg YYf 

- XXf YgYh-Xf XYgYh + XXg YfYh + Xg XY f Yh 

= 0 

since the Lie bracket of X and Y: 

\X, Y) = XY - YX = 0, (10.26) 

since Y is constant. Because 

Y • h = i U = 1, (10.27) 
ah 

we see that for any / 

{f,h)=X-f. (10-28) 

Thus with this Poisson bracket and h as Hamiltonian we obtain the original dynam

ics given by X. Here, each of thr level sets of h has the original dynamics and so 
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both each injected level set and the projection along 5R give the original A" dynamics 

on Q. The symplectic leaves are the products of 9E and the non-fbrfi-point orbits of 

X. Each fixed point of X yields an interval of poiut symplectic bones along S. We 

have shown that by adding one extra dynamical variable, we can make any system 

into a Hamiltonian system on a Poisson manifold. 

Let us give an explicit example. The simplest disstpative dynamical system is 

given by 

i = - x , (10.29) 

where x is a point on the real line. This type of system is used as a model for linear 

relaxation in non-equilibrium thermodynamics, where x = 0 is :t's equilibrium value. 

If we introduce another variable y, then the (x, y) plane is a Poisson manifold with 

a Poiason bracket given by 

/,s = ^^—— - — — 
\dy dx dx dy 

If we consider the Hamiltonian 
H = y, (10.31) 

then the Hamiltonian dynamics is 

f = f,H = -xd/-, (10.32} 
ox 

This gives the dynamical equations 

±--x y = 0. (10.33) 

The original dissipative system: i - - 1 , is both imbedded as the dynamics on 

any of the submanifolds; y —constant, and the result of piojecting along y (i.e. 

forgetting the value of y). 

(10.30) 
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Chapterll: 
Projected Area and 
Canonical 
Transformations 

Tourist: Can you give me the directions to Omaha? 

Farmer, scratching his head: You can't get there from here.—Anon. 

Much of this thesis has been about simplifying the description of physical sys

tems by projecting their dynamics down to various subspaces. A classical theorem 

of Licuville states that the dynamics of a Hamiltonian system preserves a certain 

canonical volume element in phase space. In modern parlance this theorem is very 

easy to prove. The Hamiltonian flow preserves a symplectic structure w on phase 

space (i.e. it is equal to its pullback along tLo flow for any time). Since the op

eration of pullback of differential forms commutes with the operation of wedging 

them together, the Hamiltonian flow also preserves w A w, w A w A w, . . . , and finally 

in N dimensions: u/". It is easy to see that this last is a volume element, and in 

fact is the gencrablation to manifolds of the one du ribed by Liouville. This vol

ume preservation property of Hamiltonian flows has many significant consequences 

for physical systems. It is the key ingredient for the Poincare recurrence theo-
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rem [Arnold, I978]and is responsible for the absence of attractors in Hamiltouian 

systems. It is also the basis for much of statistical mechanics. 

11.1. Application to Par t ic le Accelerators 

When .we project our dynamics to a smaller space, the volume preservation is 

ir r "''jeral lost, but some remnant remains to impose constraints on the projected 

dynamics. There are many physical situations where tbese constraints lead to very 

interesting consequences. Andy Sessler has described to me the relevance to the 

design of free-electron lasers of any theorems constraining the ability of a Hamilto

nian system to change the volume of projection of a region. The time evolution of 

the particles moving through an FEL is often described by linearizing about some 

known orbit, leading to a time dependent linear canonical transformation on single 

particle phase space. If the particles in the beam are sufficiently noninteracting, the 

device applies this Hamiltonian transformation to all particles simultaneously. The 

phase space for a particle is a product of a 2-dimensional longitudinal phase space 

and a 2 or 4 dimensional transverse phase space. The source of the beam going into 

the FEL typically produces a particle distribution with longitudinal and transverse 

distributions uncoupled, and a uniform spread over some range of momenta an J 

some range of positions. Thus we can think of the incoming beam as a uniformly 

filled in parallelepiped lined up along the transverse and longitudinal phase spaces. 

We send these particles through the FEL and get a distorted and bent over paral

lelepiped in phase space out from the other end. Quite often we are more interested 

in 3ome of the phase space coordinates than the other ones. For instance, we may 
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want a beim with very small transverse spread in space and momentum, while not 

caring about the longitudinal spatial spread, to get a well defined beam axis. (Or 

sometimes the other way around if we want well defined buckets to increase the 

efficiency of energy transfer betweeo a wave and the beam). While we know that 

the total volume in the parallelepiped must remain constant, we are interested in 

the possibility of trading some transverse phase space volume for longitudinal phase 

space volume. 

11.1.1. Couran t ' s Theorem 

[Courant, 1966] has looked at this question and arrived at the following theo

rem: "An ellipsoid in phase Bpace whose principal axes are the canonical coordinate 

and momentum axes can be transformed by a linear canonical transformation into 

another such normally oriented ellipsoid only if the areas of the projections of the 

Srst ellipsoid on each of the (<fr,Pt) planes are separately equal, one by one, to the 

corresponding projections of the second ellipsoid. The transformation is then the 

direct sum of JV separate area-preserving, two-dimensional transformations." This 

statement of hts theorem assumes that all the projected areas are different. When 

two are the same, the symplectic transformation may couple them. It is alio im

portant to note that the "corresponding" projections that have the same area need 

not be along the same sets of axes. In particular, we may exchange two sets of axes. 

This i\iay be all that is needed for certain circumstances in the accelerator setting. 

If the phase space is (gj, p\, q2. P2). then the Hamiltonian 

ff = 9ip2 - q i P i i ( U 1 ) 
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ha.* a How which just rotates the (r/[ .</,;) and {/)] .;<_>} plane.- (this is the anpuhir m<>-

mentum for a point particle in the plane and we know its action is jn-t rutai:«»n) 

Thus after an appropriate amount of time we will have exchanged r/] with q^ and ]>i 

with p j . Courant then states that the same throrem is true for the rectangular pa. 

allelepipeds tangent to and surrounding the ellipsoids Unfortunately. this theorem 

is restricted to the case wu«re the final set is lined up the same way as the initial 

set is, which is likely to be a rather rare occurence. We would like tn generalize it 

to the projections under arbitrary transformations. 

(Note added in proof: In a very recent preprint, M. (Jmmov has shown that the 

unit ball in D?2A cannot be mapped into a cylinder over a disc in {x.px) space with 

radius less than one by any canonical transformation. This landmark work resolves 

many unsolved classical problems in symplectic geometry using very sophisticated 

arguments combining minimal surface theory from Riemannian geometry, elliptic 

P.D.E. theory, complex analysis in many variables, and the Atiyah-Singer index 

theorem. It is available as a preprint dated January 1985: "Pseudo-holomorphic 

Curves in Symplectic Manifolds" from Institut des Hautes Etude* Scientific/ue>. 35. 

route de Chartres. 91440-Pures-sur-Yvette. France.) 
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11.2. Relation to t he Uncertainty Principle 

Semi-dasMcal mechanics allows us to construct certain asymptotic relations 

between cikonal waves, say evolving under the Schrodinger equation, and Hamilto-

tiian dynamic-- un a rorresponding cl;issical phase space. Every wave function has a 

corresponding Wigner distribution on the classical phase space. We may use this to 

a.* mpto'icaHy assign to wave functions, those regions in phase space which contain 

most of the density of their Wigner function. It is a folk theorem in physics that 

in -V dimensional systems, these regions are of volume hN (where h is Plank's con

stant) A classical theorem of Weyl shows that as the energy E approaches infinity, 

the number of cigenstates of a Hamihonian corresponding to a bounded classical 

system, with energy less than E, asymptotically approaches the volume of the re

gion in classical phase space with energy less than E, measured in units of h^. The 

exact relation between the classical regions and the quantum iates is being clarified 

vith the techniques of micro-local analysis [Fefferman, 1983]. Even though the vol

ume of a wave-packet is always the same in phase space, we are usually interested 

in its extent in position space or in its Fourier transform's extent in momentum 

space. As the wave packet evolves, it typically stretches out in a "diagonal" direc

tion in phase space, making both of these projections grow. This is the well known 

quantum spreading of wave packets (or any other waves with dispersion). There 

is a rigorous lower bound on how tightly we can compact a wave packet in both a 

spatial direction and the corresponding momentum direction, given by the uncer

tainty principle. This says that the product of the q dispersion and the p dispersion 

rnuM be greater than h for each coordinate. In particular, we may not arbitrarily 
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give up phase volume in one set of coordinates at the belirst of another set Tim-

to the extent that the semicla-ssical connection is valid, we would expert there to 

be limitations on shrinking projected volumes under Hamiltoman Hows, If we could 

find such a shrinking flow, we could apply the corresponding quantum Hainiltonian 

to a wave packet and make measurements that give moie information than allowed 

by the uncertainty principle about position and momentum at an earlier time. 
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JLVi.3. Weinatcin^ Approach 

The lia>ic idea of U'einstcin's approach [unpublished; is to reduce the ques

tion of reducing projected area to a known theorem about Lagrangian tori. He 

finds a Lagrangian torus in the region of interest which projects to a circle. If the 

are.* enclosed by this circle shrinks under a canonical transformation, w may cause 

the image of the circle to be disjoint from the circle itself. This implies that the 

Lagrangian torus is also disjoint from its image. This is disallowed by a kuown the

orem for sufficiently small canonical transformations. Therefore the projected area 

cannot shrink for small enough canonical transformations. Let us now go through 

this argument more precisely. 

Consider the symplectic manifold 5 , formed as the product of two symplectic 

manifolds S\.-+>i and S2,W2- Take S\ to be two-dimensiona! and 52 to be arbitrary. 

For the product symplectic structure we use u = u,*i + W2 (here we are identifying 

;*•! and ^2 with their pullbacks along the natural projections). Consider connected, 

simply-connected regions R} C S\ and R2 C 52- Their product 

R~Rxx R2, (112) 

will he our initial region. Its projection down to S\ has area equal to the area of 

Ri Weinsteiti has shown that under arbitrary (i.e. nonlinear) canonical transfor

mations, that are sufficiently close to the identity, the projection of the transformed 

R to Si has an area that is greater than or equal to the initial area. Furthermore, 

there appears to be a "rigidity" theorem which says that if the area is the same, 

then, in fact, our transformation is a product of a symplectic transformation on S\ 
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and on'- on Sj. Any coupling between thr two sets of degree- of freedom must cause 

the projected area to incre.ne. This is reminiscent of the increase of coarse-grained 

or projected entropy in statistical mechanics. 

The proof of the first part rests on some Lagrangian intersection theory. Let 

us sketch the basic idea here. The boundary of R\ is topologically a circle. Since 

Si is 2 dimensional, we may apply a canonical transformation that takes any such 

region to any other one with the same area as was shown in [Banyaga. 1977]. The 

circle is a Lagrangian submanifold of 5j (i.e. u.'i vanishes on it) as are all 1 dimen

sional submanifolds. Choose a Lagrangian torus in Ri (say by taking a product of 

sufficiently small circles in each of the canonical planes formed by a canonical basis 

in some little region). The product of these two tori will be a Lagrangian torus in 

R with respect to a.-. This torus projects down to the circular boundary of R\ in S\. 

Assume we could apply a near ide.-tity canonical transformation to R such that its 

projection to Si had a smaller area tha- fi,. By a canonical transformation of S] 

we can force this image to be strictly inside the boundary of R\ (say by making it 

look like a smaller circle concentric to the boundary of R} in some coordinates). But 

this nr-ans we have a near-ideniity canonical distortion of a Lagran^ian torus whose 

projection doesn't intersect the initial torus. If the projections don't intersect, then 

neither do the tori. But this is known to be impossible. 

In fact, recent technical advances have shown that even C° small canonical de

formations of Lagrangian fori must intersect the initial torus [Conley and Zehnder. 

1983 and [Chaperon. 19831. This result is one of a number of related results about 

the existence of periodic orbits (and fixed points and intersection point') an-niK 
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from a combination of topological and symplrrtir properties. These idea-1- had their 

beginning in Poincaro'r: conjecture that an area preserving map of an annulu;- to 

itself that twisted the bounding circles in opposite directions must have at least two 

fixed puim-i .Point are. 1912'. Point are used his theorem to show the existence of 

infinitely many periodic orbits in the neighborhood of an elliptic periodic orbit in 

celestial mechanics. Poincare's theorem was proved in [Birkhoff, 1913] and partially 

generalized to certain compact symplectic manifolds in [Arnold, 1965]. Since then 

many fascinating developments have occurred as surveyed in [Weinstein. 1984a]. 

Let us sketch the proof for C 1 small deformations (as in [Arnold, l9"'8] p.420). 

A small neighborhood of any Lagrangian submanifold is symplectomorphic to a 

neighborhood of the cotangent bundle of that Lagrangian submanifold with the 

canonical cotangent symplectic structure [Weinstein. 1971]. In this representation, 

the initial Lagrangian torus is the zero section. A sufficiently close Lagrangian torus 

will project diffeomorphically onto this under the canonical cotangent projection. 

In fact it is actually the graph of the differential of a smooth function on the initial 

torus. Because it is Lagrangian it must be the graph of a closed form. (It is easy to 

check that the pullback of the canonical one-form on a cotangent bundle from the 

graph of a one-form a back to the zero section is exactly that one-form a. Being 

Lagrangian means that the differential of the canonical one-form vanishes on the 

manifold, and so its pullback's differential must also vanish, which just says that a 

is doM*d.) Because the canonical transformation extends to an open ball containing 

the torus, this form must actually be exact. 

Poincare's lemma tells us that locally every closed one-form is the differential 
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of a function. The only problem might be that when wr go around the fundamental 

uncontractable loops of the torus, the function might not return to the initial \aluc 

If wr think of the initial torus and its deformation in the original pha.se ".pare, the 

canonical transformation is defined over a topological hall containing them We 

may thus find 2-dimensional discs whose boundaries are the fundamental loop:- on 

the torus. The integral of the symplectic form over the initial disc is therefore equal 

to its integral over the deformed disc, if we make a closed cylinder (no boundary) 

from the two discs and the sheet swept out by a loop under the deformation, Stoker' 

theorem says that the integral of a.1 over the cylinder is zero. Since the two disr 

contributions cancel, the integral of u over the cylinder swept out by the loop is itself 

zero. Stokes' theorem then tells us that the integral of a one form whose differential 

is win the region i he sheets sweep out, must have the same integral over the loop and 

its deformation. In general, canonical deformations with this property are known 

as exact deformations. The canonical one-form in our cotangent representation has 

u.' as its differential in this region. But since the intial torus is the zero section, 

the integral of p dq around any loop must be zero. We may then conclude that 

its integral around any loop of the deformed torus is also zero. There is therefore 

no obstruction to finding a function on the deformed torus whose differential is the 

canonical one-form. 

The points of intersection of the deformed torus with the initial torus are 

exactly the places where this differential vanishes (and so its graph hits the zero 

section). But these are the critical points of the function on the torus. But being 

compact, the torus force, any function to have a maximum and a niimimum (and 

file:///aluc
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at If AM uno possibly Ufjj.oncr.no saddle by LiiMerink Slinin Iman category theory! 

which fun o> interior t ion, Chaperon give-*, tlio criterion thai any exact deformation 

of tin- torn-, on which the ttf • pf all remain positivr (and so there is some loop that 

i-rft [lulled through zero) niu^i i anse the image to intersect t*" initial torus. 
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11.4. Theorem for Li near Canonical Transformations 

We would like to generalize this r"snh from near-identity transformations to 

arbitrary transformation:.. Unfortunately, it cannot be true in general as the follow

ing example shows. Let us consider Ot2 x S* and take our region to be a large area 

in Si times a small area in S2. There is a canonical transformation which exchanges 

Si and 52 and so makes the projection onto Si smaller. This exchange is a "large 

transformation'" and by the above, the projection must first increase and then de

crease. We can get around this example in a number of ways. We may consider 

regions whose projected areas are the same or v may study the sum of the areas 

or the minimal area under the different projections. Below we prove a theorem for 

arbitrary linear transformations on the increase of the sum of the projected areas. 

This generalizes Courant's theorem to arbitrary linear canonical transformations 

(but so far only in 5ft4) and is not restricted to be near-identity. One would like to 

extend it to higher dimensions, non-parallelepiped initial conditions, and nonlinear 

transformations. We develop the theory of projected parallelepipeds for arbitrary 

dimensions. The nonlinear situations are locally linear and we may chop our region 

into parallelepipeds to which the theorem applies. Unfortunately, the little paral

lelepipeds obscure one another under projection and this must be understood for a 

nonlinear theory. 

Another tack to take is to not look at the projected area, but rt'.her the pro

jected measure (i.e. we want the volume in the region that sit? over each little area 

in the two-dimensional space). Physically, it is often important to know not just 

that nome particle's slate projects to a given region, but also how many particles. 



11.4. Thcarrm for Linear Canonical Transformations 390 

Perhaps the entropy (i.e. integral of ( -p log p) over the projected region) of this-

distribution function musi increase. In this situation as well the geometry of par

allelepiped-* appear? relevant. One plare to see tht possible connection is through 

the central limit theorem. If we project a cube to a real line parallel to its longest 

diagonal, then the projected measure along the line is the multiple convolution of 

a rectangular pulse, with one pulse for each dimension of the cube. In the limit of 

large dimension, this approaches a Gaussian. The measure of lines on which the 

projection is close to a Gaussian asymptotes to one as the dimension grows. Futher-

more. the entropy of a Gaussian is a maximum for all distributions with the same 

dispersion. A cube projected to its diagonal is in some sense maximally sensing each 

of the degrees of freedom {perturbing a point along any of the orthogonal axes of the 

cube is reflected by a perturbation in the image of the projection; if the projection 

isn't diagonal, then some axes are short-changed because their projections are lesr 

important than others). Any rotation which lines the projection up more along an 

edge will decrease the entropy of the projected measure. 

If such a theorem guaranteeing the increase of entropy under coupling is true 

in infinite dimensions, then it might shed light on the increase of entropy under 

the evolution of Boltzmann's equation. Bogoliubov derived Boltzmann's equation 

as the first order term in an asymptotic expansion of the BBGKY hierarchy. The 

essential part of the argument obtains the evolution of the two particle distribution 

function as the Liouville equation fo; two interacting particles (the contribution JI 

the three-particle and higher distributions is higher order in the ordering scheme). 

The evolution of the two particle distribution function is then Hamiltonian and 
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linear (albeit infinite dimensional). In Bogolmbuvs argument, we arc given a spa

tially uniform oiie-partule distribution whose evolution we wish to find (its evolu

tion equation depends on the two particle distribution). We take the two particle 

distribution which is simply an uncorrected product of this one-particle one with 

itself as initial conditions for the 2-particle Liouville equation. Under evolution the 

two particles will collide creating a correlation and the infinite time asymptotics of 

this (i.e. when the two particles become widely separated) is used as the 2-particle 

driving term in the 1-particle "volution, which becomes the Boltzm?an collision 

term. Boltzmann shows that under this evolution, the entropy of the one-particle 

distribution must increase. 

11.4.1. The Geometry of Projected Parallelepipeds 

When we project a parallelepiped down to a lower dimensional space, the result 

is no longer a parallelepiped as in figure (11.1). We show here, though, that it may

be decomposed into parallelepipeds in a uniform way, allowing us to get a formula for 

the volume of the projection. We demonstrate this decomposition using induction 

and a couple of simple initial lemmas. Let us be given n vectors V,. 1 < i < n in 

the fc-dimensional linear space ?R*. We are interested in the region R consisting of 

points of the form 

5^a.V, for 0 < a, < 1. (11.3) 

Let u: call this region the [0, ll span of the V,'s. 

Lemma 11.2. For any n and k. R is convex. 
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Figure 11.1: A three-dimensional parallelepiped projects to a hexagon in two 

dimensions. 

Proof- Consider any two points £ " = 1 a,V, and £ " = 1 fc.V, in the region R. The 

line between them consists of all points of the form 

X>,v,+(('x>,v,-5>.v,) 
•=• V i = i ; • = ' ' ( i i . 4 ) 

= £ | ( 1 - ! )<• .+ '&.]»'. 
» = ] 

where 0 < t < 1. But since ( and 1 - t are non-negative and a, and fc, are less than 

one, we see that 

(1 -t)at + tbt < (1 - 0 - 1 + ' • ! - 1- I 1 1 - 5 ) 

But th^ shows that all poiuts on the line between the two given points satisfy the 

defining criterion for R and therefore belong to R. Hence R is convex. Q.E.D. 
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Definition 11.1. Let us define a vertex of a subset of 5?* to be any point of the 

set such that there does not exbt any open interval of a straight line in 3Jfc which 

contains the point and lies completely in the set. 

Lemma 11.3. All vertices of the set R have a unique representation as a sum 

£ " _ , fliK and all of the a, 's are either J or 0. 

Proof. Assume we can represent a vertex as 5Z1 = 1 a.%V% where some a, is not 1 or 

0. There is then an open interval around Gj which is contained in [0,1], and therefore 

the correspouding vectors form an interval of a straight line lying in ft, violating our 

assumption of verticity. Now assume that there are two representations: X]"_j a>^» 

a n < ^ 5Z?=i »̂̂ /'» f ° r * n r vertex, where all the a,'s and fc,'s are neccessarily 0 or 1. The 

point may then also be represented as 

(1 -t)J2atV, + f^b,V',, (11.6) 
1 = 1 i = i 

where 0 < r < 1 or equivalently as 

£ | ( 1 - t)at + tbt\Vt. (11.7) 
i=\ 

But unless all the b, are equal to the corresponding a,, we can thereby get a coeffi

cient which is not \ or 0, violating the above. Thus vertices have unique represen

tations. Q.E.D. 

Lemma 11.4. aj Let us assume tha> the number of vectors n is greater than 

or equal to the dimension k of the ambient space. The region J? may the_'i be 

decomposed as a union of parallelepipeds formed by rigid translations of the JO. 1 

spans of k-element subsets of the set of n vectors, such that they intersect only in 
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f t - I) and lower dimensional sets (which &re of Lesbegm measure zero}. There arc 

n!/Ar!fr< - k\l such parallelepipeds. 

b) Let u* assume that R is k-dimensional. The boundary of R may then be 

decomposed as a union of parallelepipeds formed by rigid irax. latioas of the (0, l\ 

spans of [k ~ l)-eiemenf subsets of the set of « vectors, where each such span is 

included twice and the intersections of the translates are of dimension k ~ 2 and 

lower. 

Proof. We prove these two parts together using a double induction "m k and n. The 

essence of the proof is shown in figure (11,2). We have shown the effect of adding an 

extra vector to the projection of a 3-dimensionaI parallelepiped's projection onto 2-

dimensions (to give the projection of a hyper-cube). It adds an extra parallelogram 

to half of the boundary edges formed from the extra vector and 1 each of the original 

3 vectors. We may generalize this same construction to arbitrary dimensions as 

follows. 

Both a) and b) have assumptions that prevent n from being less than k. To 

start the induction, assume n *s fr, where k is arbitrary, a) is now trivial since there 

are exactly k vectors and R is indeed equal to their |0, lj span. In case b), R is 

actually a parallelepiped and its faces are obtained by taking the [0, i) span of each 

set of k - 1 vectors and basing it at zero and at the end of the remaining vector, 

which agrees with the statement in the lemma- We also need the case k = 1 for 

arbitrary n (see Bgure f 11.3)). This case is also easy, since we may just line up the 

n vectors starting at zero, each representing its own [0,1) span and the boaadary 

is just two endpoints which we may take as the union of the ends of the vectors. 
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Figure 11.2: The essence of the lemma- Adding a fourth vector adds three paral

lelograms foimed from that vector and each of the original three vectors. 

Let us now assume the theorem true for all n's when k is less than h0 and 

for n's less than or equal to n 0 when k equals fco and prove it for k0, n0 -r 1. By 

induction this will prove the lemma, as stated for ;U1 allowed k*§ and n's. 

Let us begin with part a). We may assume that n 0 - 1 i? strictly greater 

than k (since we already did the equal case). Thus R is the '0, 1] span of n 0 — 1 

vectors. Consider the [0,1] span of the first n of these and call it 5 . i? is obtained 

from 5 by adding |0,1] multiples of the (n 0 + l)st vector to each point in S, In 

fact, we get all the extra points in R that aren't in 5 by adding such multiples to 

only boundary points of S (since to get a new point the vei tor must intersect the 

boundary and we can get the same point by adding a smaller multiple to that point 
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F igure 11-3: The n, k plane.Tbe circles are the base induction cases. The open 

triangle is an example case. The closed triangles are the cases we must use in its 

proof by induction in addition to the circles. 

of intersection). By induction, S decomposes into translates of the [0,1] spans of 

the fr-element subsets of the first no vectors. We need only show that the region 

in R : ->t contained is S is the union of translates of [0. Ij spans of the (no + l)st 

vector with all k - 1 element subsets of the first n 0 vectors (up to sets of smaller 

dimension) to prove part a). But we may now apply part b) to S by the inductive 

hypothesis. Consider each set of k - 1 vectors from the first no in turn. By part 

b) the boundary of S has two regions that are translates of their span, which are 

parallel (since they are rigid translates of each other). By the convexity of S (from 

the lemma above), 5 lies entirely in and on one side of the byperplane in 3r* which 
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contains such a piece of the boundary- If the two regions are distinct. S mu>t 1H* 

on opposite sides of their repective hyperplanes. The \sctor V n < J + l either lie? in 

such a hyperplane or points to one side of it when its basepoint is contained in it. 

If it lies in the fayperplane or if the k - 1 vectors span a space of lowei than k - 1 

dimensions, then the parallelepiped it forms with the k—l vectors is degenerate and 

so of lower dimension than k ajid irrelevant for our union. Otherwise, *ake the piece 

of S's boundary such that S is on the opposite side of the hyperplane as the vector. 

This parallelepiped and the vector [0,1J span a ^-parallelepiped which is in R but 

whose intersection with S is of lower dimension (since they can only intersect in the 

hyperplane because they are on opposite sides of it). Because S's boundary is filled 

out by such k - l-paraJMepipeds, and R k obtained by adding [0,1] multiples of 

the (no -+• l)st vector to the boundary, & is the union of these k-parallelepipeds as 

desired. It remains only to show that they intersect each other In. sets of dimension 

lower than k. Since these parallelepipeds are obtained by sweeping the (k ~ I)-

parallelepipeds in half the boundary of S along the last vector, if two of them 

intersect in a region of dimension k, the corresponding (k - l)-paralte!epipeds must 

intersect in a region of dimension A: - 1, but this LS not allowed by the statement of 

b). 

Let us now prove b) under the same inductive assumption as above and using 

the result of a) (this is ok since the proof of a) only used b) on lower inductive 

cases). Since we have added A> parallelepipeds to S to get R, half of the original 

k -• I parallelepipeds in S's boundary have remained and the other half have just 

been rigidly translated by the last vector. Thus we have two parallel copies of each 

file:///sctor
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of thf [k - i}-paralle!epipids generated by the first n 0 vectors, in the boundary of 

R a* desired. Extra boundary sufaces arose when we translated one parallelepiped 

by the last vector but not its neighbor. Consider the projection from S f c to 9Jfc~' 

along the last vector. Both 5 and R have the same image and the extra part of R's 

boundary is exactly formed by translating by the last vector that part of S which 

projects to the boundary of the image. We may apply part b) to the projection of 

5 to see that this boundary may be decomposed into pairs of translates of all [0, lj 

spans of the projection of k — 2 vectors (since the induction hypothesis applies to 

this lower dimensional space). The subset of S that projects onto this boundary is 

then decomposed into unions of [0,1] spans of k - 2 vectors up to things which point 

along the last vector and are therefore degenerate with it. So indeed the extra part 

of the boundary of ii! is decomposable into translates of parallelepipeds formed from 

the last vector and all k - 2 element sets of vectors from the first no- Together with 

the original decomposition of S's boundary these give us the desired decomposition 

of part b). Q.E.D. 

11,4.2, T h e Case of Linear Canonical Transformations 

The way we wish to use this lemma h as follows. We get subsets that are [0,1] 

spans of vectors as the projected image of a parallelepiped in a lower dimensional 

space. The volume of this projection is the sum of the volumes of all parallelepipeds 

formabk by these vectors* by the lemma. For 2JV~dimensional symplectic vector 

spacer-. the volume of a 2Af-dimensional parallelepiped is given by ioseriing the 

generating vectors into the A'tb wedge product of the symplectic form with itself. 
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giving a natural volume element. Lei us now use this to prove the theorem of 

interest 

Lei 5] ^ $t* have the coordinates (yi.pi) and thr symplectic form: -'i -

dq A dp. Let S2--'n D f" defined similarly. Consider the symplectic manifold 

5 = Si x S 2 (U.8) 

with the symplectic structure 

u; = u;, +u/ 2 . (U.9) 

Here the u>, are thought of as pulled back to S. We are interested in how the area 

of the projection of a set down to Si changes under canonical transformations. We 

may prove the following theorem for product parallelepipeds under linear symplectic 

transformations. This is a physically relevant setting for many physical situations 

and is the local picture for the general case. 

Theorem 11.5. Let us be given two vectors ui and vj in Sj whose [0,1] span is a 

parai/eiogram of ass* Aj and similarly for u 2 and v2 in S2 with area A2. Consider 

the parallelepiped .; in S which is the product of these two parallelograms. Under 

an arbitrary linear cancnica/ transformation L of S, the sum of the projected areas 

of L • P in Si and S2 is always greater than or equaJ to A] — A?. Furthermore 

equality only holds if a certain restrictive condition listed below holds. 

Proof. We have seen above that the projer'ed area of L • P in S] is equal to the 

sum of the areas of the parallelograms spanned by the projections of (L -iij.L -uj). 

( I - u i . I - v , ) . (L - t i , ,L - i ' a ) , { I -us . / , -« ! ) , [L-u2.L-v2). and [L • v^.L • v2). The 

area is just the absolute value of the result of inserting the projected vectors into 
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«.-]. But this is the same a? inserting the vector:- into the pullbark of **! along the 

projection, which WP are denoting again by ^ v Thus the sum of the projected area.--

in 5j and S 2 it given by 

U l ( Z . • U; I ' U 2 ) , - i - ' i (L • I I | . £ • I'])! * | - - i (L • U , , L • U 2)i + 

K,(£. • u2, L - r , ) | + |--,(L • « 2 , Z, - v2)j + juML • t-, ,1 • f 2 ) |+ 
(J 1.10) 

U' 2(L - u i . L - u 2 ) ! + t ^ 2 ( L - u i . I - i ' i ) | + | u 2 ( L - t * i . i - v 2 ) ! + 

[~-2(Z - u 2 , L -r,)i + \*i2{L-V2,L-v2)\ + k ' 2 (L-u , ,L-y 2 ) | . 

Applying this formula in the original situation, where L is the identity, and using 

the fact that W] annihilates u 2 and t>2, we see that 

A,+A2 = | W l ( u i , i-i)| 4- M t i 2 , u 2 ) | . (11.11) 

Because L is symplectic on S, w is preserved by it. This means that for any two 

vectors u'j and u?2 in S, we have 

w(L • u'i,L • u/j) = u;(u/i,u>2) 

= UJJ(L • ui t ,L • w2) + w 2(L • W\,L • u>2) (11.12) 

= uii (lyj, 102) + w2 (u)], u>2). 

Let's assume that ut,t>i and u 2,t> 2 are in the right order so that wj and u/2 give 

positive answers when acting on them. Then we see that 

A\ -r A2 = W i ( u i , U i ) + U? 2 (ui, Vl) + ^ l ( " 2 , V2) + U> 2(u 2,t>2) 

= ^ , ( L • tij, L • t'i) + w 2(L • ui ,L • Ui) + wi(Z, • u 2 , L • r 2 ) + u,'2(L • u 2 ,L -1'2) 

<U'i(L u\,L • v\)\ + j-j 2(L -u , ,L - t'i)| + ^ ( . L - u 2 , I • u 2 ) | + |u; 2 (L'U 2 ,L • v2)\. 

(11.13) 

But in the expression above for the new sum of projected areas, this last expression 

appear;- with some positive or zero terms added to it. Thus the sum of the new 
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area.-- is greater than or pquai to the original sum. We can get a »wt\v»iry rondiiimi 

for the sum to he equal, since all the extra terms iv absolute valuv must separately 

vanish. So - • ] ( ! • t*i.I - ua). - ' i ( i > U|.£ • t'2). -^i(£ * u 3 .L • thi)- - ' l t i- - i"i»i • '2)-

W2(X ' t i i , X . - t i 2 ) , - ^ { l ' U\,L - t ' 2} , ~2t-£ « 2 . ^ • *•'&)•> ^ d J 2 t L • i- | . £, - r 2 ) must all 

vanish. Q.E.D. 

Courant's paper contains an apparent counterexample to this kind of theorem 

fox nonlinear dynamics. A technique used in certain accelerators is to insert a knife-

edged septum into a recirculating beam to strip off a thin outer band and cause 

the inner region to continue to recirculate, Iu this way one can make the spatial 

width of the beam smaller, without increasing its momentum spread. The knife 

edge is really a very steep potential. Even though the number of particles that 

hit it is small, they are given a very large momentum kick (this sounds like some 

of the classical arguments for the uncertainty principle). Thus the actual region 

in phase space is probably very spread out. The physically important quantity in 

this example, however, is the particle distribution function. If designed properly, 

one could presumabiy make the measure of the wild particles small. This kind of 

example indicates that one must be very careful in any distribution function version 

of these theorems. 

Another construction that such a theorem will have 10 beat is as follows It is 

well known that there exists a canonical transformation that moves .iny X distinct 

points of phase space to any other A' distinct points. If we force most of the 

measure to be near these points, then we can line them «p to project to any kind of 

distribution we desire. How do we get the measure to be near points in a product 
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distributim)"* Consider the phaw spare to be 5?6. All canonical transformation 

will takf place on only the S 4 formed by the first 4 coordinates. The last two 

coordinates are needed only to make the measure larg<* near the specified points in 

the first four dimensions. We choose points in the first and second $t2 so that the 

points in the product 9i4 don't all lie over a single point in the first 9t2 (for example 

we can choose 9 points arranged is three rows of three). We choose a volume in 

3?6 which is very- extended in the last two dimensions near these points. This may 

be constructed as a product of a region is the first 2 dimensions times a region 

in the last 4. We now use a canonical transformation hi the first 4 coordinates 

which makes the points line up along a single fiber of the projection to the first 

two coordinates, letting the last two dimensions just go along for the ride. The 

projected distribution can then be made to vary ID any way we wish. 

An even simpler example can be constructed in !R4 which we assume to be 

coord ina ted by {z,pXly,pv). Let our initial set be the unit ball in S 4 . We chop 

the ball mto 3 pieces: the part S i with - 1 < x < -f, the part B2 with - e < 

x < t and the part f? 3 with « < x < 1. By making t small enough, we can 

make the measure of B2 arbitrarily small. By a simple canonical translation and 

rotation defined on a region including B? but in the tempkroe&i of B j , we can 

make B3 "sit above" Bi so that they project to the same region in the (r ,»i) plane. 

This if easily extended to a canonical transformation on all of W which leaves B\ 

fixed (say by extending the tk;ie dependent Hamiltosian sector field defining tb/ 

traasformation using a partition of unity). By Gromov's theorem, we know that 

Bj must be stretched in some wild way so that its projected area is large (or at 
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least i ts image- ^urrcnmds a large area) But v.,- have cons t ruc ted B: so that itr-

m e a s u r r in !ff'1 n- small By repea t ing this cons t ruc t ion , wr can m a k e an arbi t rar i ly 

large- pe rcen tage of the tnea.-ure of the ball projeci to arbi t rar i ly small regions by a 

canonica l t r ans fo rma t ion . 
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Chapterl2: 
Reversibility vs. 
Irreversibility 

The seeming paradox of reversible underlying dynamics leading to irreversible 

macroscopic behavior has been wrestled with since 'he time of Boltzmann. For 

the case of gas dynamics, Boltzmann derived his famous equation on the basis of 

the questionable statistical assumption of "Stosstahlansatz". From the Boltzmann 

equation one may derive the "H theorem7" which says that the time derivative of 

the entropy is greater than or equal to zero. The "Stosszahlansatz" or "molecular 

chaos assumption" says that the probability distributions for colliding molecules 

should be uncorrelated. As has been pointed out many times (see for example: pp. 

46-88 of [Chapman and Cowling, 1958] and pp. 28-32 of the Statisticai Physics 

volume in [Landau and Lifshitz, I960-1981]), because the underlying dynamics is 

reversible, for every state wit'a its entropy increasing, there is a corresponding state 

with its entropy decreasing. In fact, one may show from this argument that the 

stosszahlansatz can hold only when the time derivative of entropy is zero. There 

is no intrinsically special direction in time: If one starts with a random state with 

low entropy, the 'atropy increases if one follows the evolution ol the state either 

backward-- or forwards in time. There are many more states with high entropy than 
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low. and so a system is likely to be in a high entropy state regardless of the time. 

There is a simple dynamical system which exhibits some of the seemingK para

doxical features of these complex statistical systems. Consider the differential equa

tions 
x = - zy 

(12-1) 
2 2 

A sketch of the dynamics in the x-y plane is shown in figure {12-1). 

Figure 12.1: The phase portrait of the equations in the i~y plane. The origin ac lb 

like an attractor both forward and backward in time. 
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Consider the evolution of the radius: \fx2 -f y2. For every point (x,y) where the 

radium is getting smaller, there is a corresponding point (x,-y) where it is getting 

larger. That is, if you look on a circle of radius r, the length of arc where the 

vectorfield points outward is the same as where it points inward- Nonetheless almost 

every initial condition (excluding the y axis, which you have zero probability of 

hitting) leads to the eventual decrease of the radius asymptotically to zero. Notice 

that this decrease takes place not only forward in time but backwards. The origm 

is almost an attractor for both the true and the time-reversed dynamics. 



407 

Chapter 13: 
Hamiltonian 
Dissipation in Infinite 
Dimensions 

"We now have an example of a so-called irreversible thermodynamic process, 

such as does not occur in mechanics: in all natural processes the entropy in

creases. . . . Irreversible processes can in no way be simulated by purely mechanical 

processes."— [Klein, 1928] p.203. 

la this section we will examine some interesting facets of the dynamics of 

infinite dimensional Hamiltonian systems. One of the key simplifying aspects of 

dissipative dynamics is the presence of attractors whose behavior dominates the 

time asymptotics of all nearby initial conditions. In unite dimensions. Liouville's 

theorem regarding the volume preservation of Hamiltonian dynamics leads to the 

Poincare reccurence theorem. This says that under the time-one map of a bounded 

Hamiltonian system every neighborhood of every initial condition has points that 

return to that neighborhood and furthermore almost every point comes back in

finitely often arbitrarily close to its starting point. The proof rests on the pigeon 

hole principle which says that with .V pigeon holes and ,V J- 1 pigeons, there must 
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be at least one pigeon hole with more than one pigeon. In a finite volume region. 

there î  only room enough for a finite number of images of a non-zero volume region 

under a volume preserving {napping. Eventually two images must intersect and by 

mapping the intersection region back to the starting region, we find points that 

recur. This precludes the presence of attractors in finite dimensional Hamiltonian 

systems (no small region can be special since almost all points go bade to where 

they came from). We will see that infinite dimensional Hamiltonian systems can 

have attractors of a certain kind. 

t 3 . 1 . Po'mcare Recurrence a n d Atfanatgtors 

The fact of recurrence is behind Zc.*melo's objection to Boltzmamfs H theo

rem proving the increase of entropy for the Boltzmann equation. The fact of the 

matter is that the recurence time is quite long. For merely 10 harmonic oscilla

tors with frequencies about 1 cycle per second and irrationally related, the room 

in the corresponding It: torus is so vast that the typical time to return to within 

one percent of their initial conditions is 10 2 D seconds which is longer than the age 

of the universe. Boltzmann's retort to Zermelo was purportedly: "Yau should live 

so long", [Kac, 1959jp. 62 (in response to Loschmidt who objected ta getting an 

irreversible equatior from reversible underlying dynamics he replied: "Go ahead, 

reverse them!"). These long times also indicate that true ergodicity is not respon

sible for the experimental validity of statistical mechanics (if we consider a state of 

a cubit meter of air to be tlie number of molecules in each cubic millimeter and if 
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the dynamics is ergodic, the gas visits every state only once in about lO 1 0 0 times 

the age of the universe). 

13.1.1. T h e Lack of Recur rence in Infinite Dimensions 

Reccurrence is a characteristically finite dimensional pneaootnenoa. As the 

dimension gets higher the recurrence time-scale grows exponentially. If we are in

terested in finite (but perhaps long) times, it is often physically valid to introduce 

asymptotics even if it leads to infinite dimrasional models. Sometimes the analysis 

of infinite dimensional systems is easier because the structure "at infinity" orga

nizes the dynamics. The wave equation is easier to deal with than the underlying 

molecular dynamics. When we make such models we must be careful not to be

lieve them when they depend crucially on asymptotic aspects beyond the value of 

the limiting parameter at which the modelled system really is. (For an analysis of 

some very interesting phenomena that occur near molecular wavelengths in a sys

tem asymptotically approximated by the wave equation, see [Maslov, 1976/ p, 58). 

The time to recur grows with the dimension and infinite dimensional systems need 

Got recur. There is no general Lio*iville theorem in infinite dimensions and orbits 

need not recur (they can "head off to infinity" along higher and higher dimensions 

still staying close to the origin). While we have argued that when the system is in 

too high a dimension tbe model becomes tmphysic&l, the behavior on the way there 

".-ill reflect the real behavior and properties of the infinite dimensional system may 

be properties of the real system for long times. 
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13*2*-Asymptotic, a n d JUapu&ov Stabil i ty 

For finite dimensional dynamical systems there are two standard notions of sta

bility of an invariant subset. The weaker of the two is Lmpunov stability which says 

that given any neighborhood of the set we can find a (possibly) smaller neighbor

hood all of whose points have future time orbits lying inside the given neighborhood. 

This says that if we perturb a point slightly from our set, it hangs around forever. 

An example is the equilibrium of a simple harmonic oscillator. The stronger notion 

is that of asymptotic stability. This says that there is some neighborhood V of our 

set whose forward time images all lie in V and such that each orbit asymptotes into 

our set. Asymptotically stable sets are called atferaclors and the points which limit 

on them form the basin of attraction. If an attracting set is a fractal (with respect 

to your favorite definition of dimension), then it is a strange attractor, 

13.2.1. AlmoBt A t t r a c t o r s 

Recent work of Grebogi, Ott and Yorke has shown that strange attractors can 

exist without chaotic dynamics [Grebogi, Ott, and Yorke, 1984]. For this they 

needed a definition of attractor which we shall also use. We call a set an "almost 

attractor" if for small enough neighborhoods, almost every point eventually asymp

tote- to our set. We have seen in the example of a vector field on the plane along 

dipole Seld linos that it is possible for a point to be an almost attractor both for

ward and backward in time- By Poincare reccurresce, this is not possible for finite 

dimensional HamUtosiaa systems. 
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13.3. Reversible Attractors a/id Infinite Dimenaionai HamiltonianB 

Infinite dimensional Hamiltonian systems, on the other hand, ran have almost 

attractors and if the system is time reversible (as most physical systems arc) then 

it is of the time reversible type. This type of structure is responsible for most of I lie 

dissipative models in physics that I know of. The resolution of Loschmidt's paradox 

here lies in the fact that the infinite dimensional model is valid only asymptotically 

and becomes a bad representative of the underlying finite dimensional system after a 

long but fin:«e time. Until that time it represents the system well and its dissipation 

represents real tendencies of the underlying system (when they ultimately break 

down due to recurrence, we call it a fluctuation). 

13.3.1. Reversible Almost Attractor in the Wave Equation 

A simple example to think about merely consists of the wave equation on a 

one-dimensional string. It is well known that this system is Hamiltonian. Let us 

define the state space of the system, to be those displacement and velocity fields 

which die off exponentially at infinity. This class is preserved by the time evolution 

for finite time (which just translates a wave). Let us assume we are more interested 

in what the wave is doing under our noses near the origin than what it is doing far 

away. We will thus put a norm on our space which says that the size of a wave is 

the integral of the sum of the absolute values of the displacement and velocity fields 

over the line weighted by a Gaussian centered at the origin: 

l\I(T)\ + \v{x)])e-''dI. (13.1) / 
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Since the dynamic*; is jrst translation, eventually every wave in our class gets 

"pushed into the wings" far enough so that its norm decays niunotonically to zero. 

Note that this happer - both forward and backward in time. Thus the quiescent 

string is a reversible almost attractor for this system. In higher dimensions, com

pactly supported waves decay even in the uniform norm (i.e. the size of a function 

is the maximum of its absolute value over all space). 

This example has many of the characteristics of the dipole vector field in an 

infinite dimensional Hamiltonian context. While everything eventually comes into 

the origin, for any given time there are always states which haven't come close yet. 

13.3.2. The Liouville Equation and Koopmanism 

A natural situation in which this sort of system arises occurs when we consider 

the Liouville equation of a dynamical system, which is known to be Hamiltonian (al

beit with respect to a Lie Poisson bracket). This looks at the evolution on the space 

of probability distributions on a manifold given by pushing a distribution forward 

along a measure preserving map. Koopman suggested studying dynamical proper

ties of the underlying system by the spectral properties of the Liouville operator(see 

[Cornfeld. Fomin, and Sinai. 1982] p. 323). John Cary and John David Crawford 

have looked at the Liouville evolution of probability distributions on Arnold's cat 

map. What one finds is that the flap's effect on distributions is merely to shift 

Fourier components along hyperbolas in Fourier space except for the zero wavevec-

tor component which is invariant. If the original distribution is smooth, then its 

Fourier series dies off cxponcutially. If we put a norm on the distributions which 
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weighs the low Fourier components more heavily (say our data is run through a 

low pass filter, i.e. we perform some kind of averaging or binning), then as our 

distribution's spectrum goes trotting off to infinity, its norm goes to zero leaving 

only the constant part and we again have a reversible attractor up to a constant. 

They show that this leads to the exponential decay of the autocorrelation of smooth 

functions. 

13.3.3. Landau Damping 

Similar phenomena are responsible for Landau damping (which damps both 

forward and backward in time) of waves in plasmas. We start with a distribution 

of particles (as in figure (13.1)) in the bottom half of the "eye" of the pendulum 

dynamical vector field (as in starting with particles in a strip in velocities slower 

than the wave, and evenly spread out in phase relative to the wave). As time goes 

on the dynamics inside the eye is like a shearing harmonic oscillator, which soon 

smears the inital distribution uniformly through the eye. The effect of this is that 

the average energy of the particles has gone up (and so the energy of the wave must 

go down causing damping). This same shearing will occur backwards in time. 

13.3.4. The Boltzmann Equation and the B B G K Y Hierarchy 

The same kind of phase mixing is responsible for the dissipative aspects of 

the Boltzmann equation as derived from the Hamiltouian and reversible BBGKY 

hierarchy (see volume 10, Physical Kinetics of [Landau and Lifshitz, 1960- 1981]). 

We rewrite the Liouviile equation for the distribution function of all the particles 
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Figure 13.1: The evolution of the distribution function near the wave velocity. 

as a hierarchy of equations for 1-particle, 2-particle, ... etc. distribution functions. 

If we truncate at any stage, we obtain the Liouville equation on the phase space of 

that many particles. The contribution of the higher order correlations phase mixes 

away as above leaving only the Boltzmann collision term to first order. 

13.3.5. Dissipation from Resonance 

The same scenerio applies to the random phase approximation for interacting 

waves. The essential idea here may be seen by considering resonances One of the 

most interesting examples is the simple resonantly driven harmonU oscillator. The 

solution to this problem is given in most elementary mechanics texts but I have 

never seen any discussion of its rather paradoxical properties. Let us consider a 
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particle in one-dimension moving in a unit-frequency harmonic oscillator potential 

which r? driven sinusoidally at the same frequency: 

i = -i-cost. (13.2) 

For this kind of linear differential equation with an in homogeneous term, the usual 

method of solution is to find a particular solution to the inhomogeneous problem 

and then to add to this an arbitrary solution of the homogeneous one. In this case 

this procedure leads to the general solution: 

x(t) = A sint + B cost + -t sin(. 

This solution is reaily quite remarkable. Regardless of the initial conditions (which 

are specified by A and B), the t sinf term eventually dominates and the amplitude 

of oscUlati-jns glows indefinitely with time. But the equation is invariant under 

t —f —t\ This means that the same behavior occurs as ' approaches -oc . 

It is interesting to try to visualize the orbits in the three dimensional (r. v.i) 

space. On the one hand we know that each orbit winds to larger and larger 2 and 

v values as ( goes toward both positive and negative infinity. This means that an 

individual orbit winds on what looks like a one-sheeted hyperboloid of revolution 

along centered on the t axis (or a cone if ever both the position and velocity vanish 

on its trajectory). On the other hand, the entire system is invariant under the 

translation t —• t + 2T . TO get some feel for the way this orbits can fit together in 

this way, consider all orbits that intersect the I axis. These form an invariant 2-

dimensiona] submanifold '-Inch includes the ( axis. Imagine taking the f,r plane and 

twisting it about the t axis so that it makes one twist every 27r in t. The dynamics 
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on the unwound plane is made of parallel straight lines that intersect the ( axis at 

some angle They leave the ( axis linearly for both positive and negative time and 

yet the whole field is translation invariant in time. When we wind this plane up. 

the orbits lie on cones. Th" other orbits do a similar thin" on hyperboloids. 

Let us think of the harmonic oscillator as being a piece of a larger system and 

the driving as arising from the rest of the system. Time asymptotically the oscillator 

only sucks energy from the rest of the system and this is tiue both forward and 

backward in time. Let us calculate the time variation of the average energy in the 

oscillator for long times: 

E = -x2 + - i 2 

2 2 

= - ( -s int + -t cost 4- A cost - B cost) 2 (13.3) 
2 V 2 2 
+ -(A sin( + B cost + -t sinf)2-

For times large compared to A and B (we can make this comparison because we 

have made everything dimensionless), only terms with an unadorned t in them are 

important: 
E = ~{t2cos2t + ( 2sin 2() 

fa ( 1 3 ' 4 > 
= ¥' 

Thus the oscillator energy grows without bound as ( goes to either positive or 

negative infinity. 

In real closed Hamiltonian systems, the energy that the oscillator is sucki:•& 

out of the rest of the system will eventually cause the damping to change. In 

nonlinear systems the frequency of driving will '•»? pushed away from resonance. In 

linear systems the amplitude of driving will go down until eventually the oscillator 
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drive> 'he rest of the system leading to oscillation on long time scales The slowly 

changing amplitude of driving can also be viewed as having energy in frequencies 

slightly away from resonance. As long as we are in a situation where the effect of 

the oscillator on the rest of the system is small, however, the solution? will be close 

to the resonant one. In such cases we get time-reversible dissipative behavior fur 

long times. 

This is exactly the sense in which non-equilibrium thermodynamics is dissipa

tive- If we are far from equilibrium then there are many more ways to be perturbed 

closer to equilibrium than away from it. Statistically the motion appears to go in 

one direction (eg. entropy increases). The same increase occurs backward in time, 

however, since the same statistics applies, If we are in a state with low entropy, 

then it is most likely that a few moments ago we had higher entropy and that a few 

moments hence we will also have higher entropy. As we get closer to equilibrium, 

the imbalance in the number of perturbations toward and away from it dtrnmshes. 

Exactly at the highest entropy state the only way you can go b down. In equilib

rium the dissipative properties dissappear and instead we have fluctuations. Since 

exactly the same mechanisms cause dissipation far from equilibrium and fluctua

tions in equilibrium, the corresponding rates are related. This is the content of the 

fluctuation-dissipation theorem. (As an example, a Brownian particle satisfying the 

Langevin equation: 

Ml = -uv{t)+SF(i) (13.5) 

m a heat baih at temperature T which causes the particle's motion to be damped 

at rate u and driven with random force F[t), the fluctuation-dissipation theorem 
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says that 
M / • * 

»*yf dt{6F(Q)6F[t)). (13.6) 

) 
The mechanism of time-reversible dissipation due to resonance underlies many 

important physical processes. In many of these situations, the driver changes fre

quency so as to slowly pass through resonance. An example might be an eikonal 

light wave passing through a medium whose electrons axe bound like harmonic os

cillators. The light wave loses energy to the resonantly excited oscillators {note that 

here it might be that the wave is of constant frequency but the oscillator frequency 

changes slowly as we progress through the medium; the physics of this situation 

is identical). For frequencies of driving which are not exactly resonant, the oscil

lator begins by removing energy, but eventually gives it back (on a time scale of 

the reciprocal of the frequency deviation from resonance) leading to an oscillatory 

overall behavior which does not change the average energy of the driver. If we 

watch the system for time T, then all frequencies within order 1/T of the resonant 

frequency will behave as if they are resonant. As we slow the frequency variation of 

our eikonal wave asymptotically and watch the effect for longer time we have two 

effects: I) we are in resonance for a longer time causing a larger dissipation and 2) 

since we are watching longer, less of the nearby frequencies contribute any dissipa

tion- As time goes to infinity there is net dissipation which arises from arbitrarily 

small neighborhoods of the resonant frequency. 

Let us see this explicitly in an example. We consider the driven oscillator: 

x = -x+ F[d)cos(u{(t)t), (13.7) 
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where we assume that the resonance occur;- at / - I) (and nowhere el^e) 

~-{0) - 1 (13.8) 

and that we pass through resonance with non-zero speed: 

^ 1 = u />0 . (13.9) 

Let us denote i by v. We wish to solve this asymptotically as < — 0. We begin (as in 

the methods discussed in chapter 3) by going to a "rotating'" system of coordinates 

in phase space: 

X = i cosf - v sint V = v cos/ + i sinf. (13.10) 

The dynamics of these coordinates is 

X = x cost - x sint - v sin* - v cost 

= -F cos(^(,0inf (13.11) 

= ^ ( s i n ( ( ( J + l ) 0 + f i i n ( ( - . . - l ) 0 ) 

and 
V = v cosf - v sinf -j- i smt -t- r cosf 

= F cos(^() cos( (13.12) 

= ^ ( c o s ( ( ^ + l ) 0 + cos((- , - - l )0) . 

Wt may integrate these equations using the method of stationary phase, which was 

discussed in section 7.1.3. Introducing the rescaled time ~ z d and using stationary 

phase, we see that to leading order the change in A* in passing through the resonance 
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•VY = < • ' - / - r H I - ' •• 1)0 + *M{- - \)l))dl 
J -T/i l 

rT" -F 
-C+ - — s i n ( P - 1 ) 0 * 

J-TI. ' 
- r + / -—sinU-'cl'jdl 

J-T/t l 

Similarly, 

6 "7 — J_T

sm^7]dT 

C - - c ^ f°° sm(Jj)dr (13.13) 

- C - - - — 3 / exp( )<fr 

. 1F[0) r , V r 2 

- C - - - ^ - 0 ; exp(—^—)*-

( 2 

= C - F(0). , 

*Y=c*+FM)i6i- (13.14) 

Thus asymptotically there is a net dissipation which grows as the reciprocal of the 

square root of the eikonal parameter. Notice that for any real system the initial 

conditions will determine whether the oscillator takes or gives up energy for a time 

independent of e. The asymptotics we have introduced always beats this time for 

some value of <. Thus the asymptotic system can have dissipation without constraint 

on the initial conditions whereas any real system may not have this behavior. I think 

this- is a good example for seeing why an asymptotic approximation to a system (say 

Boltzinann's equation) may have properties like irreversibility and lack of reccurence 
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whi<"h are not possessed by any real system. These are new asymptotic concept;-

which validly apply to the system whenever the asymptotirs is valid 

13.3.6. Resonant Coupling of Eikonal Waves 

For this kind of experiment vc must really use eikonal driving since we are 

interested in the response as we turn on the oscillations. Traditionally in plasma 

physics one uses a linear analysis in a uniform system and so finds the normal modes 

for the evolution operator. These will be unphysical infinite plane waves and lead 

to subtleties like a singular spectrum (as in van Kampen modes) which obscures 

the physics of the analysis. It is interesting to rethink these analyses in terms of 

eikonal waves. For example, the response function of a harmonic oscillator at its 

natural frequency is infinite. If we excite it with a slowly varying frequency, we may 

use stationary phase to study the passage through resonance and we see that there 

is no infinity. Only in the asymptotic limit does the response lead to a pole on the 

natural frequency. In traditional analyses of the three wave interaction (which arises 

by retaining third order terms in the nonlinear coupling of waves) one studies the 

response of an infinite plane wave to the presence of two other infinite plane waves. 

In reality, given two eikonal waves in three dimensions, the resonance condition can 

only be satisfied on a 2-dimensionaJ spatial surface which moves through space. The 

generated wave will include these geometrical aspects. 
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13-4. T h e Str ing wi th a Spring 

Let us now give an interesting example which shows how the effect of an infinite 

dimensional system on a finite dimensional piece May sometimes be modeled by 

dissipation. The idea is that, asymptotically in time, the infinite number of modes 

will only suck energy out of the system, leading to the appearance of dissipation. 

The simple system we have in mind is a half infinite string whose end is attached 

to a mass on a spring (or any other shaking system). If we consider only string 

displacements which are damped at infinity, then asymptotically the string behaves 

as if it were quiescent (any energy going away from the end doesn't affect us, and 

all the energy going toward it reflects and is eventually leaving it). 

Let the string's displacement w and its velocity v be functions of the position i 

along the string. Let the tension in the string be T (i.e. the force along the string) 

and the mass density be p. The transverse force that the string applies at its end is 

given by the transverse component of the tension, and for small displacements this 

is just the tension times the slope: 

T%. (13.15) 
o r 

The wave equation arises from Newton's equation for a little piece of string, 

where the transverse force is the difference of the force due to the string on the 

left a*id t K string on the right. Asymptotically this is proportional to the second 

derivative of the displacement, leading to the usual wave equation: 

p SI 2 di2 v 
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This is known to be Hamihonian. The solution* awaj from the end ATV sum* of a 

function translating rigidly to the left and to the right with vckmn 

r = . / - . 113.17) 
V f 

For a quiescent string, if we shake the end according to 

u-(0,0 =y[t), (13-18) 

then we get only a wave travelling away and the string displacement for all time is 

w(l,!) = S l ( I - x / 0 - (».19) 

What then is the force the string applies to our shaking apparatus? From the 

above it is 
Tir\ = T rs ' ' ' - I / c ' i"" = --*<'>• < 1 3 2°) 

or \ x = Q dx c 

If the shaker was a harmonic oscillator 

my = -fcy, (13.21) 

then we could forget about the string if we changed the equation to 

my = -ky- cpy. (13.22) 

This is just a damped oscillator. Thus an infinite dimensional piece of J. Hamil-

tonian system is replaced by an effective dissipation in the evolution of a finite di

mensional piece. Notirv that the exact form of the system to which the string is 

couphd is completely irrelevant. It is this fact which makes such replacement phys

ically relevant (if it behaved dissipatively only in extremely special circumstance:-

we would have no reason to think of it as a replaceable piece during simplificat ion). 
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Chapterl4: 
Reinsertion in 
Area-Preserving 
Horseshoes 

"It is said that Newton communicated to Leibniz an anagram somewhat like 

this: aaaaabbbeeeeii, etc. Leibniz naturally understood nothing at all of this; but we 

who have the key know that this anagram meant, translated into modern language: 

1 know how to integrate ail differential equations; and this suggests to us that either 

Newton was very lucky or else he held a peculiar illusion." —Poincare (1908) [Hirsch, 

1984! 

Over the last ten years, the idea of intrinsic stochasticity in the determinis

tic dynamics of low dimensional dynamical systems has joined the mainstream of 

physical thought. Every month physics journals carry many reports of chaos (as 

the phenomenon has come to be known) in new physical situations. Applications 

to plasma physics are given in [Smith and Kaufman, 1975], [Smith and Kaufman, 

19781. and [Kaufman, 1979]. The chaos has always been there, but until recently 

the mathematical tools for noticing it were not well known in the physics commu

nity. Every example of chaos that I know of has within it a construction dubbed 
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by Smafe the horseshoe m ibniatc. 196" . The esstntiai phenomena may be >ern in 

a taffy puller (and indeed Otto Rossler designed his attractor based on it) Tin-

key feature of a taffy puller is its continual stretching of the taffy. To keep it in 

a finite volume, the taffy must also be bent over. These two features lead to dy

namics where the taffy is thoroughly mixed together. (This may be seen somewhat 

grotesquely by considering the fate of a fly which lands on the sweet .melling taffy. 

In on the order of ten cycles, there will be a piece of the fly in each piece of the 

taffy.) 

14.1 . T h e 2x mod I M a p 

The basic mathematical model of this stretching aud mixing is the map from 

the circle to itself given by 

* ~ 2 z mod 1. (14-1) 

This dynamics has periodic orbits of every period, dense orbits, and orbits which 

hop from the interval: |0,1/2] to the interval: (1/2, Ij according to any desired 

(possibly random) sequence of X's and /2's (p. 106 of JCornfeld. Fomin, and Sinai. 

1982]). This is easy to see by the method of symbolic dynamics. Call the left 

interval 0 and the right one 1. The interval in which a point lies is given by the 

first digit in the binary expansion of the nam* er corresponding to that point. Since 

2x mod 1 just shifts the binary point and lops off the integer part, we see that the 

sequence of hops is given by the sequence of digits in the binary expansion, but this 

is arbitrary. This map cannot appear in i-e«5 dynamics since it is 2 to 1 (but variants 
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o£ it appear in projected dynamics all the time, for example, Lorenz's equation? as 

in ;G'jckenheimer and Holmes, [98Sj p. 276). 
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14.2. _ T h e B aker 's Transformation 

The trouble, of course, is that we are continually losing information about 

our intitial condition, so knowing where we are isn't enough to tell u* where we 

came from. We can remedy this by adding another variable which keeps track of 

the lost information. The symbolic dynamics model is the space of doubly infinite 

sequences of l's and O's with the map being a shift. This clearly has the same 

stochastic properties, but is invertible. A dynamical realization may be found in 

the so called baker's transformation, named because of the similarity of the map to 

the experiences a baker puts dough through {particularly filo dough). The baker 

first rolls the dough out so that it is thinner and longer, h* then cuts the elongated 

dough into two pieces, places one atop the other and repeats the process. The 

corresponding map is from the unit square to itself: 

1 <—<2x mod 1 

y - I if 0 < i < - ( I 4 . 2 ) 

— if 2 < * < 1 . 

If we take y's binary expansion backward and adjoin it to j ' s binary expansion, 

then this map is exactly the shift on the doubly infinite sequence of the combiner 

digits ( [Cornfeld, Fomin, and Sinai. 1982] p. 9). Unfortunately, this still cannot 

appear as a return map because it is not continuous (due to the baker's knife). 
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14.3. The Horseshoe 

If instead of pushing the two pieces of dough all the way together, we leave 

a gap. then we may imbed this in a smooth map which has all the interesting 

stochastic properties ( Xiuckcnheimtr and Holmes, 1983] p. 230). The horseshoe 

is such a map as shown in figure (14.1). Because of the gap (which under the map 

gets sent to a skinnier gap. etc.) the invariant set associated with the symbol shift 

is a Can" or set. 

Figure 14.1: Smale's horseshoe map. 

That such a map might appear in any natural systems is at first perhaps 

urprisiug. but in fact it is quite common as we now show. Consider a dynamical 

ystem whose state space is three dimensional (for example, the three dimensional 
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energy surface of a two degree of freedom Harniltonian system). Hr may study 

the neighborhood of a periodic orbit by means of the two dimensional return map 

induced by the dynamics on a two dimensional surface transverse to the orbit. The 

orbit is a fixed point of the map and we consider the case where it? linearization is 

hyperbolic with one eigenvalue inside the unit circle of the complex plane, and one 

outside. The stable manifold theorem states that there exists a smoothly imbedded 

two dimensional manifold in our state space consisting of all points which asymptote 

to our orbit as time goes to positive infinity. It must approach the orbit tangent to 

the linear attracting direction and the orbit. The corresponding unstable manifold 

theorem says a similar thing about the points that asymptote to our orbit under the 

time reversed dynamics. We will now see that the Poincare return map must contain 

a horseshoe if the stable and unstable manifolds intersect transversally. The first 

image of a point of intersection must also asymptote to the orbit both forward and 

backward in time, implying that th* stable and unstable manifolds must intersect 

again, as in figure (14.2) (repeating this argument shows that they must intersect 

an infinite number of times). As in the figure, if we choose an appropriate rectangle, 

some iterate of it gives us a horseshoe imbedded in our dynamics. 
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imt9* of homoolimc pt 
hyperbolic fixed point 

homoclwic 
point 

F igu re 14.2: A transversal intersection of the stable and unstable manifolds im

plies the presence of a horseshoe for some iterate of the map. 

14.4. Example of Horseshoes in Gyromot ion 

Let us give a plasma example which has horseshoes in the dynamics. Consider 

the two-dimensional i , y motion of a charged particle in a linear magnetic field 

Bx • ay. (14.3) 

near the region where it vanishes. Define the vector potential by taking Av = 0, so 

that 

leading us to take 

B , = ^ _ ^ £ = - ^ £ = t t J , (14.4) 
ax dy ay 

f 14.o) 
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As usual, let us set t ~ TTI - r - \. The Hamiltoiii 

1 a -, ., 

and since it is j-translation symmetric. px is const; ved. The equations of motion 

(14.7) 

(14.8) 

(14.9) 
ox 

and 

Vy = - ~ = -(vI + -.y2)"y (14-10) 
dy 2 

dH & ) 
-wr"' r 2 y 

dH 
y'wr Pv 

dH 
P' = ~ ^ 

Let us denote p / s constant value by 

(14.11) 

We know that by reducing by the x translation symmetry we may get equations 

involving only y. The y evolution is given by 

y = P B = -°vly - y "/''• (14-12) 

This is Duffing's equation, which has been well-studied. It represents the 

Hamilton!an dynamics of a particle moving in a potential given by 

v'(y) = 5 p V + ^ V - l'"-i3) 

Let us assume that a is positive If 

P a , ^ i ~ ~ y ' ( 1 4 1 4 ) 
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is positive then this potential ha> a single minimum. If p^ is negative, thcu the 

potential well has- two minima as shown in figure (14.3a). The pha.se portrait for 

this fiL-c i.- slmwii in figure (14.3b). Far from the origin, all orbits are periodic and 

encircle the origin. As we move in, we see that there are two stable elliptic fixed 

points and an unstable hyperbolic fixed point. The hyperb^Mc fixed point has two 

homoditiit separat rices which arc susceptible to horseshoes under periodic driving. 

In fact, using the method of Melmkov, Holmes and Marsde.it have shows that the 

driven Duffing equation has transversal homoclinic points and therefore horseshoes 

( [Guckeuheirner and Holmes, 1983] p. 184). If we force our particle in this magnetic 

field with a low amplitude wave in the y direction, it too will have horseshoes. 

What do the orbits look like? For the unforced system, the particle can move 

in a straight line along the x axis with any velocity, as in figure (14.3c). Since the 

Duffing oscillator is bounded in y, every orbit has a maximal excursion in y, where 

y = 0. Let us then study the orbits with initial condition 

y = y0 $ = 0 (14.15) 

for various values of p% and any x. When p° is positive, the y motion is represented 

by a Duffing oscillator with a single minimum in its potential. The x velocity 

i = V° + \r (14-16) 

never goes negative and so the particle moves inexorably in the positive x direction 

as in figure (14.3d). When p° = 0. i vanishes at y = 0, but is positive elsewhere. 

This lead* to particle motion which crosses the field reversal perpendicularly as in 

figure (14.3e). As p° becomes negative, the orbits actually meve in the negative x 

http://pha.se
http://Marsde.it
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direct ion whu never 

\y,< )j~~p} (H.17) 

as in figure (H.3f)- The Duffing equation now has two minima but wo arc in the 

oscillatory region that tf&circles them. As p® gets more negative,, the loopj< overlap 

one another as m figure (14.3g and h) until successive loops actually coincide to 

give a ''figure eight" orbit as shown in figure (14.3i). As p® gets still more negative, 

the net motion is in the negative x direction, while still in the positive direction at 

the tops and the bottoms of the loops. The particle path is made of alternating 

curliques about the field reversal line as shown in figure (14.3} and k). When 

jV0, (14.18) 

we are on % separatrtx of the Duffing equation and the particle makes but a single 

bop, asyniptoting to y = 0 both forward and backward in time as shown in figure 

(14.31). There is another orbit corresponding to the other separatrix which has y 

negative as in figure (14.3m). For 

p°,<-\yl. (14-19) 

we are inside the separatrix and the particle executes ordinary gyration as in tig-ire 

(I4.3n). When 

•we are at a >tah!e fixed point of the Duffing equation, i - 0, and particle motion 

has stopped. For p" more negative, the particle gyrates in the region y > ,t/o 
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Under oscillatory perturbation, there are orbits near the scparatrix that g" 

around one and then the other separatrix according to any (possibly random) se

quence of 0\ and l's. The resulting particle orbit has corresponding upward and 

do\ nward curliques, as shown in figure (14.3p). 

Figure 14.3: The Duffing potential, phase portrait, corresponding particle orbits, 

and a chaotic orbit. 
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14,5. Area Preserving Horeeslioes and Reinsertion 

The issue that we would tike to address here concerns the structure of the 

stable and unstable manifolds in the area preberving (as arising from a Hamilton*!an 

system) as opposed to the dissipative caae. As we extend the stable and unstable 

manifolds in the dissipative case, we obtain the intricate pattern shown in figure 

(14,4). We will nee that the area preserving case must be more complicated. 

Figure l-i.4; The structure of the at? Me and unstable manifolds in the dissipative 

case. 

If we try this same construction in the area preserving case (figure (14.5)), 

we run into problems. As in that figure, the region A bounded by the stable and 

unstable manifolds is taken to the region Af of the same area. This is t?.ben to 

A" and so on. In real systems, this structure is often bounded between two curves 
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Figure 14.5: The seemingly paradoxical tongues which must intersect. 

corresponding to Kolmogorov-Arnold-Moser tori { [Abraham and Marsden, 1978] 

p. 582) and so is constrained to a finite area. But because the tounges all have 

the same area and there are an infinite number of them, they must intersect one 

another (and in fact an infinite number of them must intersect). Because the whoJe 

picture is taken to itself under the map, each tongue must intersect an infinite 

number of others, including both an infinite number of images and preimages (if 

tongue T intersects M* • T, then it must intersect A/"' • T as well as one can see by 

applying M~* to both sets). Upon first examining the figure it is a mystery how 

tht-se tongues can possibly intersect. Neither the stable or ihc unstable manifolds 

ran cross themselves (since they are iajectively immersed copies of the real line). 

One therefore concludes that if tongue As is going to intersect A. it cannot come 
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in through the top segment of A (which is a piece of the unstable manifold) but 

must come in through the botLom (which is a piece of the stable manifold and so 

is allowed to intersect the top of A ,%"s tongue). The question is: how does AmS 

get down to the bottom border of A? The unstable manifold makes essentially a 

complete loop (it includes the origin as it leaves vertically, and it limits on the origin 

on the right), leaving no room for A A ' to sneak through. We quickly conic to the 

conclusion that if AN is going to get inside A, then one of the lower tongues BM 

must as well and AN gets in via BM. 

Figure 14.6: The Re-insertion of tongues forced by area preservation. 

This implies the much more complex structure shown in figure (14.6) than 1 

have seen described in the literature. The number of tongues between a tongue 
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and ill? first lower tongue to insert into it is an invariant of the map. Furthermore 

as we constrain the area within which this structure lies, relative to the area of 

a tongue, the point at which reinsertion must take place gets nearer and nearer 

(since a tongue must intersect more of its colleagues), until no structure is possible 

when the area of a tongue is larger than the total allotted area. Thus we see that 

Hamiltoniao systems are forced to have a very intricate tongue structure. Recent 

work of [Holmes and Whitley, 1984] has studied the change in bifurcation sequences 

in "shoemaking" in going from the dissipative to the non-dissipative case. They find 

a continuum of different bifurcation sequences. It would be interesting to see how 

the intersection structure of the horseshoe tongues evolves in this sequence. 
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Chapterl5: 
Renormalization 
Group 

Recently a number of previously intractable problems in several verv different 

areas of physics have been successfully tackled using renarnialization group tech

niques. Running through these treatments is a beautiful set of ideas which are fairly 

easy to underst&nd, even though the actual calculations can become quite complex. 

The goal of this section is to present the essential concept in simple physical sit

uations, where it is easy to see what is going on. Wc sketch the physical idea of 

renormalization in the original context of the statistical mechanics of spin lattices 

and then use it to prove the central limit theorem. 

15.1. Scaling and Universality 

It is a quite common physical occurrence that certain forms appear over and 

over in many different contexts. In statistical physics we see the Gaussian distri

bution e _ I and the Bollzmau distribution e~ / , f c ' appearing again and again. In 

electromagnetism we have the monopole and dipole potential functions, for exam

ple. In radiation theory there are the plane wave, dipole radiation, and ihc Airy 
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fiiiirlion near cau^tio In quantum mechanics we continually see the free parti

cle, the harmonic oscillator, and the rigid rotator. In dynamics there exist certain 

canonical forms for change (eg. the Hopf bifurcation, the saddle-node bifurcation. 

period-doubling cascades, and the breakdown of KAM ton) winch appear in many 

context;-

In many cases the effect of a physical system on the rest of the world is only 

felt on a large scale in space-time which averages over the detailed structure. It is a 

common tool in physics to study a particular instance of a system by thinking of it 

as a member of a family of related systems. Sometimes by looking at the family, as 

opposed to the individual, we see new regularities. This is the basis for perturbation 

theory which studies the case of interest by finding an easily soluble case nearby 

and studying how the differences change the behavior. 

Often, one may formalize these heuristic notions by introducing a "space", 

which is often infinite dimensional, whose points represent physical systems. For 

the statistical systems, we "step back" from the system (i.e. look at it from a 

greater distance), and treat all behavior as if it were occuring on a smaller scale. 

For example, we might consider photographs of the ocean's surface taken at different 

heights. The rescaling is called renorrna/izad'oa. In the situations of interest, the 

renormalized system is again a member of our space, but corresponds to different 

values of th parameters. The ocean with a tid?.! wave may, from a distance, behave 

just like a ripple in the tide pools on the shore. The ripple may need to be in water 

with a different surface tension or viscosity, however. (Such ideas are actually used 

for special effects in movies. Since one usually has control of the scale of space and 



15.1. Scaling and Universality 441 

time but not of viscosity, the small-scale waves in ocean scones and the small-scale 

eddies in explosions often do not look right.) Tne renormalization map that rescales 

a system sometimes has a fixed point whose properties can he used to study nearby 

systems. For example, as we get further and further from the surface of the ocean, 

it looks calmer and calmer. 

We shall not discuss the examples of renormalization in dynamical systems here. 

They work in much the same way, but the renormalization usually corresponds to 

looking at the system through a finer and finer microscope. For example, if we 

zoom in on a hyperbolic fixed point of a vector field, the flow becomes more and 

more like its linearization about the fixed point. A linear system is taken to itself 

under rescaling and so is a fixed point of the renormalization map. 
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15.2. Magnet ic Spin Latt ices 

As an example, let us look at the Ising spin model for which Kadanoff intro

duced many of these scaling ideas (see, for example, the review article (Wilson and 

Kogut. 1974] and the references given there). We imagine an infinite checkerboard 

with a spin at the center of each square which may have a magnetic moment point

ing either up or down. We imagine that nearby squares feel each other's magnetic 

fields and that it is energetically favorable for them to have their spins pointing in 

the same direction. 

The whole system is in contact with a heat bath with temperature T. This 

tends to cause the spins to jostle between up and down. The higher the temperature, 

the more violent the jostling. The spin-spin interaction tends to prohibit the relative 

jostling of neighbors. If the temperature is very high, then the average kinetic energy 

of the degrees of freedom of the heat bath will be much greater than the alignment 

potential energy of a spin due to its interaction with its neighbors. In this case the 

spins will wiggle between up and down relatively independently of the state of their 

neighbors. 

If the temperature is very low, then the average thermal energy will be much 

less than the interaction potential energy an i the spins will only rarely be able to 

overcome it and flip relative to their neighbors. 

When T = co the interaction is completely negligible and thesta*Uticsof a spin 

are independent of its neigbors. The probabilities for up and down are the same 

and there is no correlation between the probability distributions ' x different spins. 

When T = 0 the thermal energy is completely negligible compare-1 to the interaction 
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potential energy. The spins all point in the same direction, i-ay up. The prohabilin 

distribution For an individual spin has spin up with probability one and down with 

probability zero Again the distributions for the individual .spins are unrorrrlated 

Even if a spin happened to be pointing down (an infinitely improbable event), the 

probability distributions for the other spins would remain unchanged. 

Now we know the statistics of the spins in two states: T = 0 and T = ex. What 

do states near these two look like? If we are at a high but finite temperature, then 

spins are still kicked between up to down, the probability of each being \. Now, 

however, the statistics of one spin depend slightly on the state of its neighbors. 

There is some tendency for neighboring spins to flip together and one will see little 

patches of spins pointing the same direction. If we know a spin is up, then its nearest 

neighbors are slightly more likely to point up than down. Next nearest neighbors 

are affected even less, and one can show that the correlation decays exponentially 

as we move away from the upward pointing spin- The patches of coherent spins are 

finite in extent and get smaller as the temperature gets higher. 

When the temperature is low but not zero, spins are still much more likely 

to point up than down. Now, however, if a spin is flipped to down this slightly 

affects the neighboring spins. Nearest neighbors have a slightly higher probability 

for flipping than usual. Again the effect dies off exponentially. The state looks like 

a sea of upward pointing spins with little islands of spins which point down. As th' 

temperature is decreased, the islands get smaller. 

We now introduce the idea of renon;ialization. If nur eyes are blurry, when 

we step away from the infinite chec"- aboard we will only notice the average spin 
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over a region. If we arc near T = x. then as we step back, neighboring spins 

become a. single spin to us and we are ever more unable to resolve the last vt-stiges 

of correlation among neighbors. The further we go the more the system's statistics 

look like those of T — cc. We may codify this idea, by introducing a (typically 

infinite dimensional) space whose points represent the statistical state of our spins 

(i.e. the space of probability distributions on the space of spins). The operation 

of "stepping back" or rescaling takes one distribution and gives us another one. 

We may therefore think of this as a mapping on this big space and we denote it 

by R which stands for "renormalization group operator". The infinite temperature 

state (i.e. the probability distribution is just an uncorrected product of half up 

and half down distributions for each spin) is a fixed point of this mapping. We 

have just indicated that all nearby states get even closerto this fixed point under 

the renormalization map, and so it is a stable fixed point. 

Similarly, the state representing zero temperature (again an uncorrected prod

uct of distributions for each spin, each of which is probability one for being up 

(actually the real one is a sum of two uncorrelated states on all spins; one for up 

and one for down}) is a fixed point. If we are near zero, then as we step back, the 

'"cloud" of spins that an errant spin takes with it on the rare occasion of a flip gets 

smaller and smaller until in the limit there is no such cloud. So zero temperature 

is also a stable fixed point. 

There is clearly a path from zero to infinite temperature labeled by the temper

ature itself. At some point on this path we must leave zero's basin of attraction and 

enter infinity's (it is not hard to show that there are . T stable fixed points). 
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We expect there to be a codimension-one surface that forms the boundary bet wren 

the^e two basins. There is and it is the stable manifold of a third fixed point with a 

1-dimensi. .1 unstable direction. While the correlation length of neighboring ppin* 

was zero for the other two fixed points, it is infinite for this one (it must be eilher 

zero or infinity, since these are the only two numbers that are equal to themselves 

when multiplied by a rescaling factor). The corresponding temperature is called the 

critical temperature and the point on a path where it intersects the separatrix is 

called a critical point- Because there are fluctuations on all scales there, it is often 

associated with such phenomena as critical opalescence (where a normally clear sub

stance becomes milky white due to fluctuations which can scatter all wavelengths 

of light). If we consider the place at which our path pierces this codimension 1 

stable manifold under applications of R, we see that the path asymptotes to the 

1-dimensional unstable manifold (see figure (15.1))- Thus this represents a universal 

path from zero to infinite temperature, and the way it crosses the separatrix will 

represent that of any path seen from far enough away. In particular, the unstable 

eigenvalue will tell how fast things scale as we cross the critical surface and may be 

used to calculate the universal critical exponents corresponding to this fixed point. 
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Figure 15.1: The space of spin probability distributions with two stable fixed 

points corresponding to zero and infinite temperature and a co-dimension one un

stable fixed point corresponding to the critical point. 

15.3. The Central Limit Theorem 

One very old example of universality is the prevalence of Gaussian probability 

distributions in the statistical description of physical phenomena. The mathemati

cal theorem descrying the approach of the distribution of a sum of random variables 

to Gaussianity is the central limit theorem. Khinchin based his development of sta

tistical mechanics on this theorem ( (Khinchin, 1949)). It is of interest to look at 

this theorem from a rcnormalization group perspective. 

A typical physical example, like Browniau motion, involves some distribution 

of random forces on a small time scale whose average effect on a long time scale 
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is of interest (see. for example. 'Wax. 1954'). One ma\ consider the problem to 

be that of finding ?hc force distribution a> a function of IMIIC scale starting with 

the given one on the smallest scale and hopefully asyriiptcting to a universal one 

on long time stales. In our renormalization group approach we define a mapping 

R from the space of distributions D to itself, which integrates out the next smaller 

time scale and renonnalizes the variables so as to return the problem to one of the 

original form. We will show how a simple version of the central limit theorem fits 

into this context. 

D will be the space of distributions p{x) which are normalized: 

j°°p(x)ix=l, (15.1) 

have zero mean: 

J x p[x)dx = 0 , (15.2) 

and a constant norjzero finite dispersion: 

r x'p(x) dx = a2. (15.3) 
J - O C 

The distribution of T — rj -t-x2 where i i and i 2 are individually and independently 

described by p is. the convolution 

p ( 1 1 ( i ) = l " p{z-y)p{y)dy. (15.4) 

since x = (x - y) + (y) for -oo < y < oc describes all ways <'. decomposing i into 

a sum. It's easy to see that the dispersion squared of p ' 1 ' is twice that of p. Thus 

° 2 = \ r i2/,">u) di=r "̂'"(̂ î  2dx. 
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To keep the normalization and the disprrsrui constant we define the rennnnalization 

operator a--

Rp(r) = ^2j M2 i - 9) p{y) dy. (15.6) 

We would like to study R by looking for fixed points and studying their stability. 

By two changes of coordinates on D we will actually turn R into a linear operator. 

We first label a distribution bv its Fourier transform: 

y-oc 

1 = / - . - * • 

p(k) = J_ n""p[x)dx. (15-7) 

The moment conditions on p turn into 

p(0) = 1 JrP(O) = 0 ^ jp(O) = -o\ (15.8) 

We see that p has a quadratic maximum of value 1 at k ~ 0. Because convo

lution turns into multiplication under Fourier transform, in these coordinates the 

renormalization operator R becomes 

B /K*)=( j8 (^=) ) (15-9) 

It is already easy to see why Gaussians will arise. Squaring emphasizes large values 

compared to small ones After repeated squaring, only the quadratic maximum of 

p will play any role and so p(fc)'s behavior will be the same as that of 1 - ^k2. But 

A' — oo, 1 T ( ^ ) ] " - ^ • '-» 
This is very similar to the case of period doubling in one dimensional maps where 

the Feigeuliaum sraling is determined by the quadratic maximum. 
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To make It linear we now choose as our coordinates 

-,(*) = logWO) (15.1!) 

sarnies the conditions 

7(0) = 0 , ^ ( 0 ) = 0, g ( 0 ) = - t f 2 (15.12) 

and ft takes the form 

Rl{k) = 2i(^~) {15.13} 

which is indeed linear. The "eigenfunctions* of rescaling are powers of h and so we 

expand i{fe) is. a Taylor series; 

<y{k) = -~~k2 + 0 3 * 3 + a 4 * 4 + . . . (15.14) 

i? takes ( a 3 , a 4 , . . . ) into (a 3 / \Z2,a 4 />/2 , . . . ) . Thus (a 3 = 0 ,a 4 = 0 . . . ) is the 

unique attracting fixed point. This fixed point io the other coordinates is 

p'{k)=i:z4il, (15.15) 

and p'{x) = ~p^e~&. 

Thus every distribution asymptotically approaches a Gaussian with the same dis

persion under this mapping. 
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15.4. A Poor M a n ' s Feigenbaum N u m b e r 

One of the great discovrries of the last decade was the universality L ' certain 

aspect? of period-doubling cascades. Many physical systems undergo a series of bi

furcations or sudden changes in their behavicr with the increase of some parameter. 

Typical parameters, like the Reynold's number, represent the strength of driving 

or energy input to the system. An example to think about is the behavior of the 

stream of water from a faucet as the water pressure is increased. Initially the flow 

is steady but at some point oscillations set in and eventually the stream dynamics 

becomes chaotic. Another example is a Bag waving in the wind. As the wind gets 

stronger, the flag begins fluttering and then waving chaotically. A last example is 

river meanders. A high viscosity river (made of honey, say) goes straight down a 

hill. As the viscosity is lowered, the river's path meanders frcm side to side. As 

discovered by unfortunate farmers who built their farms on the rich soil between 

meanders of rivers, the meanders slowly move downstream. The state of a mean

dering river is therefore periodic in time (at any paint on the hill th*: rive, position 

moves periodically from side to side). I don't know if any further bifurcations have 

been observed in this example. 

For small enough values of the parameter, each of these systems is in a stable 

equilibrium state with no time variation. As the parameter increases, a Hopf bifur

cation occurs at a particular value ^ d the system undergoes oscillations described 

by a stable limit cycle. As the parameter is further increased in many systems, 

the period of the oscillation doubles at some point. On every other cycle, the sys

tem doesn't quite come back to the starting point causing the period to be twice 
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what u w s originally It is interesting thai many sysieni- i«mifni<' to h;m* these 

pcriod«dmibling bifurcations a> the parameter mi rc.iso- This- phenomenon i- railed 

a period-doubling ca.-cad'r. Successive doublings occur for closer and closer parame-

ter values. There is- a special parameter value. called the critka-1 value, at which an 

infinite number of doublings have occured and beyond which the dynamics is very 

complicated and often chaotic. Feigenbaum discovered thai the period doubling 

parameter values approach this limiting point geometrically, and that the raio of 

approach is a universal number, called Feigenbaunt's number: 4.669... 

[Crawford and Omehundro, t0a4] gives a geomefnc picture of period-doubling 

in the state space of the system and discusses the phenomenon of knotted period-

doubled orbits. Here we would like to sketch Feigenbaum's ^normalization argu

ment (for more information, see [Guckenheimer and Holmes, 1983J. p, 346 and the 

references given there). Feigeabaum obtained bis number to high accuracy using a 

Cray supercomputer. We will show how to obtain it to within 25 percent on the 

back of an envelope. 

Period-doubling is usually studied by looking at the Pomcare res urn map for 

a periodic orbit. This is the mapping obtained by considering the effect of the 

dynamics on points near the periodic orbit that lie on a codimension-one sheet 

which cuts the orbit transversa]]}-. Each point on the sheet flows along until it hits 

the sheet again. We wish to study the mapping of the sheet to itself that this defines. 

A periodic orbit with a period near that of the one under study is represented by a 

h>.ed point of the maoping- Orbits of higher period are tixed points of ?-.>me iterate 

of the mapping. Period doubling occurs when an eigenvalue of the linearization 
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of the mapping at a stable fixed point goe*. through -1. Thi*' has the effect of 

making ihi- fixed point mutable and creating a periodic orbit of period-two nearby. 

All uf i he interesting behavior occurs along the ejgendifection of the eigenvalue 

whici goes through -1 . It is for this reason that period-doubling of systems with 

many-dimensional state spaces may be effectively studied by considering only one-

dimensional maps. 

The key features of the period doubling cascade arise in any one-dimensional 

map with a quadratic maximum. We may consider 

Mx) = l~vz2 (15.16) 

on the interval i £ [ -1 , l]- As fi varies, the width of the hump changes and period-

doubling ensues. Let us use the term hump map to denote even maps of the interval 

(0,1] to itself, which have a single quadratic maximum at x - 0 with value 1. 

The rerjormalization picture of period-doubling is based on the observation that 

for any hump map / , its first iterate / o / again looks like a hump map when we 

consider only a smaller range of x's and invert and magnify the value. Furthermore, 

when / is undergoing the nth stage of period-doubling, / o / is undergoing only the 

n - 1st stage. We are therefore motivated to introduce a renormalization operator 

R on the apace of hump maps that takes a map to a rescafed first iterate; 

r | / ] (x) s * / ( / { - ) ) . (15.17) 

a 

The reseating parameter » is chosen so that given a hump map, T produces another 

one- Since /{OJ = 1. we see that f(f(Q)) = / { I} . For this to be one, we must define 

°=m ( 1 5 1 8 ) 
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Since pmod-doubling requires only one eigenvalue to be pushed through -1 . the set 

of hump maps undergoing any order of period doubling is codimension-one (i.e. one 

dimension less than the full space of hump maps). We noted that the renormal-

ization operator T takes the sheet of order n period doubling to the sheet of order 

n — l.T has a fixed point / " in the space of maps. Since the renormalization halves 

the period of periodic orbits, a fixed point either has no periodic orbits or orbits of 

every power of two period. It turns out that /* has these periodic orbits and is at 

the accumulation point for period-doubling (where it has just doubled an infinite 

number of times). /* has a I-dimensional unstable manifold and a codimension-

1 stable manifold. All maps that approach / under repeated application of the 

renormalization operator must also have just period-doubled an infinite number of 

times. Thus / " s stable manifold is the codimension-one sheet of maps at criti-

cality. T~l takes sheets of period-doubling to sheets of higher and higher order 

period-doubling, which must eventually limit on /" ' s stable manifold. The rate at 

which the approach to this manifold occurs is given by the unstable eigenvalue of 

the linearization of T at /*, which is therefore Feigenbaum's number. 

To actually calculate this number, one may employ various numerical trick.-

which amount to projecting the entire bump space onto some finite dimensional 

approximating space and carrying out the analysis there. We may actually carry this 

out by hand for an extremely crude one-dimensional approximation. We consider 

the family 

/„(*) - 1 - fix2 (15.19} 

for different values of y as the approximating one-dimensional space. We project 
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arbitrary hump maps to this spare by truncating their Taylor series about 0 at the 

quadratic U rm. The action of the projected T on this space is then 

r | / J ( i ) = Q / „ ( / „ ( ^ ) ) 

= a ( l - , < ( l - e ( - ) 2 ) 2 ) 
°x-2 xt (1520) 

=a- a/i + 2c . | i 2 - j - Q/x3 — 

= ( a_a u ) + ? £ 2 _ ^ . 
Q Q J 

To get this to have 1 as the constant term we must choose the renormalization 

factor as above: 
- _L_ - -* 

Q " 7 ( i ) " ^ : T ' 

U ing this and truncating away the cubic terms gives 

r[ /„](*) = 1 + 2 ^ ( 1 - ^ . 

Our space can be coordinatized by fj and T then has the form 

T W = ( p - l ) V = - V + V - (15.21) 

The fixed point is labelled by fi° which satisfies 

3T0i*) = , i * = 2 ( i , 3 - V 2 - I 1 5 - 2 2 ) 

We find the solution to the resulting quadratic equation to be: 

. l + v T T 2 1 + ,/3 (15.23) 
2 2 

The eigenvalue is then obtained by taking the derivative of T at this fixed point: 

d r | = (6^ 2 - 4/01,,. = 4 + v/3 - 5.7. (15.24) * l „ 
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Thi- i-u'l too had considering the rrudiiy of the approximation Wo amid have 

kept quart K or higher term> lu eventually gtu an> dr.-ircd accurac> I unfortmiaieU 

thr^r require finding root> of quartir and higher order polynomial?-, winch ;*• hard 

without a conputcr). 
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Chapter 16: 
Symplectic 
Thermodynamics from 
Maximum Entropy 

"The formulation is mathematically equivalent to the more w?ual foundations. 

There arc, therefore, no fundamentally new results. However, there is a pleasure in 

recognizing old things from a new point of view. Also, there are problems for which 

the new point of view offers a distinct advantage."— R. P. Feynman introducing 

path integrals in [Feyoman, 1948], 

We have seen that the underlying geometry of classical mechanics is symplectic 

geometry and that many physically important structures result from this. We Lave 

also seen that these geometric structures arise in a natural way as the mathematics 

of the asymptotic limit of an underlying wave theory. When one looks at classi

cal thermodynamics, one sees many tantalizing indications of symplectic geometry. 

The Legendre transform r'ays an essential role, thermodynaniically conjugate vari

ables remind us of canonically conjugate variables, differential one-forms and their 

integrals around luop.-- (suggesting important two-forms) abound in the theory of 

Canint cy< les, etc Thermodynamics also arises as the mathematical structure of 



16.1. Previous Approaches tc Geometric Thermodynamic* 457 

the asymptotic limit of an underlying statistical mechanical theory. We will show 

that indeed the structure of thermodynamics is intimately bsscd on s\mplcctic 

geometry and that this structure arises naturally from the undeilyirig statistical 

mechanics in a way that is suprisingly analogous to th" wave case. Let us begin by 

describing some earlier inquiries into the geometry of thermodynamics and possible 

relations with wave asymptotic;,. 

16.1. Previous Approaches to Geometric Thermodynamics 

In his book [Tisza, 1966] of collected oapers, Tisza describes his lifelong attempt 

to develop a unified theory of thermodynamics. His sixth paper on p. 235 in this 

volume is entitled: "The Geometrical Interpretation of the Formalism of MTE" 

(Macroscopic Thermodynamics of Equilibrium). In this chapter he points out that 

there is no natural metric on thermodynamic state space but that there is a natural 

volume element. He claims that there is more structure than just a volume and so 

introduces an affine structure and attempts to find symmetry groups of the theory. 

He claims to be unable to find out anything about the group he linds Ho gives the 

affine geometric interpretation of Legendre transforms due to Pluecker. in terms of 

representing a curve in the plane by either its points or by the tangent liues to it 

(i.e. its image in the the dual projective space as we have discussed). He finally 

attempts to relate a so called "stiffness moduli" to the curvature, but makes the 

comment that curvature in a theory with no underlying metric is puzzling (there is 

curvature in affine geometry, however). 
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[Gilmore. 1981; p. 229 attempts to introduce a metric structure into thermody

namic? using the Hessian of a certain generating function as the metric. He makes 

some interesting connections, but the fundamental basis of his metric appears ob

scure to me. He ends with a section on page 247 entitled: "Additional Questions". 

There he mentions the classical limit of quantum mechanics and the reconstruction 

of quantum mechanics in terms of path integrals. He asks if there is a similar way to 

reconstruct statistical mechanics from thermodynamics. He then gives Hamilton's 

equations of motion, writes some thermodynamic equations with a similar form 

and asks: "Is there an intrinsic geometric structure in S n x 58" associated with this 

variational formulation of thermodynamics? Is this geometry associated with the 

s}7iplectic or orthogonal group Sp{2n) or SO(2n) or some related real form?" but 

does cot go any further in their elucidation. 

In [Poston and Stewart, 1978] p. 237 they discuss thermodynamics and phase 

transitions in terms of catastrophe theory (apparently with the consultation of 

Gilmore, as indicated in the preface). They do not discuss the underlying geometry 

of thermod; namics. but noting the similarity of their analysis of certain phase 

transitions to caustics in asymptotic optics, comment: "It is interesting to speculate 

on the possibility of a unified asymptotic analysis, treating phase transitions as 

caustics in the 'matter wave' everything is made of." 

In a series of papers beginning with [Sourhu, 1970b], Souriau has addressed 

certain aspects of statistical mechanics and thermodynamics from a geometric point 

of view. He focusses on relativistic and cosmological issues and does not appear to 

consider the questions addressed here. 
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Quantum ;>tatistual im-chamr- ofnn leadr- in -imilanli'.'- lu'tut'iu t-^-t-muillv 

wave idea.- and essentia!!) Matistii-.il idea.-. One introduce-- a duisily matrix ,• (the 

VVigner function is the corresponding probability distribution on pha-' -pace and so 

was introduced with statistic-- in mind') 1 he time evu'ution of the density matrix 

is given by 

p = i\p,H\. (i6.1) 

where H is the Hamiltouian operator jFeynman. 1972\ The canonical density 

matrix at given temperature T — k/3 is 

p ( 3 ) = e - - , H / T r ( e - J H ) . (16.2) 

If we introduce an ur.oormalized p. then it satisfies the equation 

£ = • * * ! • (1-3) 

This looks like the evolution equation where i times the inverse temperature 3 

plays the role of the time. This formal *"• .ilarity is behind all the uses that I have 

seen of path integrals in statistical mechanics as in f'eynman and Hibbs. 1965 . 

20 [Feynman. 1972], and 0 JSchulman. 1981]. This is great for calculating partition 

functions, but it is hard to see any deep physical signiiicar.ee for their relation 

We will present an alternative approach based on ihe maximum entropy formalism 

where it is very easy to see the physical significance. 

The last connection between waves and statistics dial I have seen mentioned 

by other authors is that the eikona! first amplitude transport equation; may be 

written in a form that looks like the mnss and momentum density fluid transport 

http://Matistii-.il
http://signiiicar.ee
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<*quauoii> of Eulcr (winch arise from moments of the statistical BDCiKY hierarchy). 

One might argue thai cikon.il waves represent photon gases for which a fluid theory 

is appropriate 

The book' [Kijowski and Tulczyjew. 1979J describes a symplectic structure 

*• = rfV Adp-r dT AdS (16.4) 

on the the four-dimensional state space of thermodynamics, where (V.p.T.S) are 

volume, pressure, temperature, and entropy. The authors show ihat in the case of 

. n ideal gas. the equations of state, 

pV = RT, 
(16.5) 

pV"1 = kes'ev, 

define a Lagrangian subinanifold with respect to this symplectic structure. If we 

view this symplcctic manifold as a cotangent bundle with base coordinatized by 

(V, S) or (V, T) or (p, T) or (S,p), this Lagrangian submanifold is the graph of the 

differential of the internal energy, the Helmholtz free energy, the Gibb= free energy, 

and the enthalpy, respectively. Unfortunately, the authors do not give any reason 

for this structure. 

We will show here that the principle of maximum entropy as applied to statis

tical mech?jiics leads naturally to this symplcctic structure. We can see quite easily 

why the equation of state manifold should be Lagrang ;an. If we describe a loop 

ol states on this manifold (i.e. a Garnet cycle), then the integral over the surface 

bounded by this loop of d\' A dp gives the work done and the integral of dT A dS 

gives the heat gained. The first law of thermodynamics (energy conservation) says 

that these must be equal and opposite, so the symplectic structure which is their 
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sum must vanish on our manifold, uhirh ii- thu:- Lagrangian It î  inirnMing lliat 

each term in the symplcrtic structure ha.̂  its own physical intvrprelation 
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18.2. Seven Approaches t o the M a x i m u m Entropy Formalism 

The maximum cm ropy formalism is a very powerful statistical tool, introduced 

in the papers reprinted in |Jayncs, 1983], which gives a prescription for finding the 

"least biased" probability distribution consistent with any known data. If we have 

a discrete number of possibilities and no data to distinguish them, then symmetry 

forces us to choose the distribution which makes them equiprobable. If we have 

some information about the distribution, say its mean value, then we would like a 

prescription to choose among all possible distributions with that mean value. 

Assuming there is such a prescription that always gives the same answer in 

the same situation and is uniform across number of possibilities, it has been shown 

to be unique (p. 16 of [Jaynes, 1983]). In fact one must choose that distribution 

consistent with any known data which maximizes the entropy defined as the sum 

over states of 

- p l o g p , (16.6) 

where p is the probability of a state. It is easy to see that if nothing is known, 

this gives the equipr&bable distribution. The basic requirement in the general case 

is that if we partition the elementary events into subsets and rail membership 

in these subsets 'he elementary events of a new distribution, then applying one's 

prescription should give the same distribution in each situation. This is in some 

respects a renormalization group idea. 
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16.2.1. Axiomatic Subjective Approach 

The work which introduced information theory ^Shannon. 19-18 . Rive- an 

axiomatic characterization of the information entropy which appiie:- equally well In 

the ca-e at hand. Given k possible outcomes of an experiment. with the prohatnlitie-

pi pk- one would like a measure of the uncertainty m the value measured m 

each trial. Shannon requires of such a measure H{p\. • • .pk}- that it satisfy three 

axioms. 1) H should be continuous as a function of '.he p.'s. 2)lf all the p,'s are 

equal, then H should be a monotone increasing function of k (more equally likely 

outcomes means more uncertainty). 3) If a choice is broken into two choices, then 

H should be a weighted sum of the individual choices. Shannon gives the example 

H ( i . ! , ! ) = H ( ! . i ) + i * < ? . - ) . ,,6.7) 
T 3 6 1 l 2 2 ' 2 3 3 ' x ' 

Here we have three possible outcomes, say A, B, and C. with probabilities oi 1/2. 

1/3, and 1/6 respectively. We may alternatively view this as two events: A and D. 

with probabilities 1/2 and 1/2. D represents the occurance of either B or C. The 

total uncertainty is the uncertainty in the A vs. D choice, plus the uncertainty in 

choosing B vs. C weighted by a factor of 1/2 (since this choice only arises half the 

time). 

By approximating the probabilities by rational numbers and breaking the ele

mentary events up into a number (the least common multiple of the denominators) 

of equally likely events, we may reduce the problem to equiprobable distributions 

But for them the third property forces H to be a logarithmic function of the num

ber. For arbitrary distributions, we find that - p log p for some multiple of it) 
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!•- the unique H sati-ifyiiiR the requirements. To be unbiased, we should choose 

ili;u dMribmion which has the least information about our experiment that is still 

consistent with the km wn data. Wr should therefore choose that consistent dis-

tribution that maximizr - this entropy. This approach chooses the distribution on 

the basi1- of not assuming iufonnation that we do not have and may therefore be 

considered "subjective". This allows it to be applied in many circumstances where 

the "objective" view of probability as frequency in large number of trials doesn't 

have any meaning. For example, we may ask for the best prediction of something 

on the basis of one observation. 

16.2.2. Counting Sequences of Trials 

To see another place wheie the formula for the entropy comes from, we consider 

as elementary events, sequences of A* trials of the basic experiment and let N go to 

infinity. The law of large numbers says that it is extremely likely for the number 

of trials with a given value in a sequence divided by N to be the probabilty of 

that value. Let us therefore consider all sequences with nx = px • N entries with 

the first value, n 2 = P2 • A' entries with the the second value, and so on up to the 

number of possible measured values k. The least biased choice ofp i ,p 2 i pjt, is 

that which is consistent with the known data and which maximizes the number of 

allowed measurement sequences. How many such sequences are there for given p, s? 

He may lay oui required measurements down in A'! ways, but permutations of the 

n, with the same value don't change the measurement sequence. Thus the number 
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of sequence? is 

.V! 
(1G.8) 

Maximizing this is equivalent to maximizing its logarithm. Because the p , s are 

fixed as .V gets large, all the n,'s get large as well (if they are not ?.ero). We may 

therefore asymptotically use the crudest Stirling approximation: 

log n! -~ n log n - n, (16.9) 

for A' and each of the n. "s as N goes to infinity. We thus want to maximize 

(IV log AT-A") - ( n i l o g n s - r i | ) {nk log nk ~ nk) = 

= (m + •• • + "fc) log N -ni log " i "fc log «* (16.10) 

= -"]log(-^~) n * l o g ( y ) , 

since 

m + ••• + rtj[ = A". (16.11) 

Equivalently we want to maximize 

k 

H - P . log P.- U6.12) 

which is the maximum entropy prescription. 
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16-2.3. Via Steepest Descents in Two Ways 

The e*ual proof of Stirling's formula used above, uses steepe&t descents on the 

integral formula for the gamma function. 

Because it is perhaps the simplest example of a combinatorial quantity giving 

rise to nice analytical asymptotics, it is worth examining the classical application 

of steepest descents to the integral formulation of the gamma function to obtain 

Stirling's expression for i ! as x gets large. It h interesting that the form of the 

integral is quite similar to those appearing in statistical mechanics. 

The gamma function of x + 1 is the Laplace transform with respect to £ of tx 

evaluated at 1 (and so the x-ft.ld convolution of the Laplace transform of t). For 

large x, the expression 
x! = r ( i + 1) 

= I" t'e-df 
: log I - , d £ 

is of a form ripe for Laplace's method. The exponent is 

(16.13) 

-i: 

i log t - (, (16.14) 

with derivative with respect to t given by 

- - 1, (16.15) 

and so has its maximum at 

(16.16) 
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We expand to second order about this maximum and extend the intcpr.ii ion to 

infinity to pet 

r - £ ' * - " - > "6.171 

This- yields .nc Stirling approximation 

J ! - \ ^ I V J . (16.18) 

We v ill show here two ways in which to view maximum entropy as coming from 

a steepest descents argument directly. These will allow us to make connections with 

eikonal wave theory and path integrals which use stationary phase. 

In the first picture, we realize thai our system is coupled to the rest of the 

world. The probability distribution of our system is determined by the siate of the 

resi of the world and all possible such states must be considered in our choice of 

probability distrJ utio •. Thus we think of our desired probability distribution as 

being an "integral** over AII possible distributions consistent with the known dat;\. 

The distributions mur* be weighted by the number of external conditions that can 

produce t'lem. Th ., is the number of ways of rearranging states and is given by the 

integral over all states of the weight 

e x p ^ - p l o g p ) . (16.19) 

For the sysf.ns we arr- interested in, the thermodynamic limit makes the exponent 

grow asymptotically (since changing the scale from x to X = <i makes di = -td.\; 

equivalents, th? number of states grows exponentially with the number of particles) 

and so "steepest descents" tells us that only the maximum entropy distribution con-

— / 

http://intcpr.ii
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tribute? (The integral over all distributions must of course be interpreted asymp-

<niicall> in term;- of approximating sum>. tiuiugh Simon. 1979", discusses ngorous 

application of steepest descents on inhnito-dimensional spaces). 

This is in the spirit of Ciibbsian ensembles, but applied to the distributions 

themselves (i.e. an ensemble of probability distributions). One might imagine 

many copies of our system and each one has its phase space populated with a 

swarm of particles whose density is governed by some distribution. How many 

particle swarms correspond to a given distribution? We get multiple systems by 

exchanging particles but must divide by the number of exchinges between particles 

of the same probability. Think of chopping phase space into bins. Each probability 

distribution places a certain number of particles in each bin. The number of distinct 

ways of obtaining a given distribution is obtained by counting all permutations of 

the particles and dividing by the numbei of exchanges which leave the same particles 

in the bins {and so don't count as a distinct way of obtaining a distribution). Again 

the exponential of the entropy gives the number of possibilities in the limit as the 

number of particles becomes infinite and the binning becomes infinitesimal. 

The second approach is an empirical one. We say that probability distributions 

are experimentally determined by measurement sequences and if we know only 

the distribution, its multiplicity should be the number of distinct measurement 

sequences that give ri<u to it. We may make the connection with path integrals 

in the following way. Consider the space of our observables M crossed with an 

interval in tft. We can ibink of parametrized families of measurements as being 

paths in this space. With appropriate binning (as discussed in the introduction). 
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each path determines a probability distribution by integrating along the interval-

Some paths are consistent with the known data, and we must consider them equally 

likely, others are not and they have zero probability. The expected distribution is 

then an integral over those distributions corresponding to the possible path? We 

may convert this to an integral over possible distribution*, if we include a weighting 

factor equal to the "measure" of paths corresponding to each distribution. Bui we 

have seen above that thus is just e x p ( £ - P log p). Again we use "steepest descents" 

to conclude that the maximum entropy distribution is most likely. 

It is perhaps artificial to think of measui emerits as parameterized by a real 

parameter (though time might serve this role). We might just as well consider se

quences of measurements which asymptotkally determine distributions. It is really 

the distributions that play the role of paths in Feynman's theory in any case In 

fact, when one does quantum field theory via path integrals, the integral is over 

fields and so is quite similar to our integral over distributions. 

Let us explicitly write down the formula for the "average" distribution which 

is analogous to the Feynman path integral. We want to sum over all allowed p{Z)'* 

weighted by the factor 

t ' - - S f i " ) / ' (16.201 

{the t arises from the scaling discussed earlier in this section}. We want to nor

malize the resulting distribution as well. If we let D{p) represent the "measure"' on 

distribution space, and let C be the subset of distributions obeying an> imposed 
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constraints, then 

Integrating over Z. wo see that this expression is correctly normalized (since each 

p in C is). Applying steepest descents as t — 0, we pull out hte p with the 

maximum entropy from the integral in the numerator and the remaining integrals 

cancel leaving 

Psvera,g S (£) — pmax entropy(^)- (16.22) 

We can get the expected value of any functional of p by inserting it in place of p 

in the integrand of the numerator. In each case we may use steepest descents to 

pull it out of the integrand by evaluating it on the maximum entropy distribution. 

For example, by integrating over the constant energy' surfaces each distribution p 

or phase space determines a distribution of energies (Le. the density of states). By 

this argument. the average distribution over energies is exactly the one determined 

by the maximim entropy phase space distribution. 

18.2.4. Via Probabi l i ty in Three Ways 

In the very interesting reference: [Tikochinsky, Tishoy, and Levine, 1984], the 

authors provide three "objective" justifications for the maximum entropy proce

dure to complement Jaynes 1 more "subjectiv ' philosophy. Their first technique 

is to consider the known data to be a sequence of experimental samples and from 

consistency conditions and the reproducibility of the experiment, they deduce the 

maximum entropy criterion. This argument is very much like the sequence space 
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one «<• gave above, except that there i«. no need for hirij; -(•qucrue- in f h<-r- author* 

H-orfe. 

Their second approach (oiucrns the notion of ino^l liable inference The idr;« i-

that since the data inferred from real sample.- i.- likely to be slightly off. one -honld 

choose that consistent distribution that is least sensitive to errors in the data. Thi-

too leads to the maximum entropy distribution. Intuitively, this distribution ;.- the 

most spread out that ii can be. consist" at with the data, and so changes the least 

as the data varies. 

Their last approach uses the notion of sufficie. statistics. In later sections we 

shall need to use Bayes" theorem, which allows one to calculate the probability dis

tribution of a parameter that parameterizes a family of distribution functions, given 

the actual distribution. A sufficient • tatistic is a function of some number of sample 

pjints which contains all the information that the samples do as far as determining 

the value of the parameter. If the sample averages of the observed paramer ers serve 

as sufficient statistics for the mean value of those parameters, then the probability 

distribution of those parameters must io fact be the maximum entropy one. Thus 

if the sample average is all that can usefully be used in determining expectation 

values, we must have the maximum entropy distribution. 
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16.3. The Thermodynamic Limit 

Our asyinpi'uic- will consist of taking the thermodynamic limit. We wan! thr 

observable- to he certain mechanical quantities, like the volume V. thr- total energy 

/". the numbers of various particles .V,. the magnetic moment /J. etc. These will 

all be taken at constant A', the total number of particles, because this will plav 

the role of an asymptotic parameter. If we have n particle species only n - 1 of 

the quantities .V, arc really independent variables on our space (so pick the first 

n - 1 say). We will thus assume that A' is precisely known when applying maximum 

entropy. Let us symbolize the rest of the observables by the variable i . which is a 

vector in the observable vector space 0. We will assume that experimentally only 

the mean values of the i after many measurement trials are known. We introduce 

the asymptotic parameter e and let the total particle number scale as: N — \(t. 

As A: gets large, the boundary effects shrink and so the x really become extensive. 

and so proportional to A'. We therefore introduce the "slow" rescaled (intensive) 

quantities: y = tx. The behavior of the system expressed in terms of y as c — 0 

will give us the thermodynamic limit. 

In our discussions we will often want to distinguish the mechanical variables 

y and their thermodynamii.ally conjugate variables. Since the mechanical variables 

are additive when we couple systems, we will sometimes refer to them as "the exten

sive variables'' (even though they are intensive with respect u the sc iling of t) and 

their thermodynamic conjugates (like temperature and pressure) as ''the intensive 

variables" since these equalize in coupled sytems. This nomenclature is introduced 

mereh to keep from repeating the awkward phrase "and their thermodynamic ally 
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conjugate variables" 

16.3.1. The Density of S ta tes 

The density of states available to the system with given J-'S will be denoted 

by ft(r). So Q{r)dx is a density on O whose integral over a region represents the 

number of microstates represented by that region. If the I ' S are large, the:, the 

number of states of a system is equal to the product of the number of states in each 

of two subsystems iDto which it decomposes (since interaction becomes irrelevant 

asymptotically). Thus 

n(y) = n(y-on(0, (16.23) 

as c —+ 0. We may find the asymptotic dependence of Q on ( by taking the logarithm: 

logfl(y) = logfi(y - 0 + logntfl. (16.24) 

and taking £ — y/2 to get 

logn(y) = 21o gn(y/2), (16.25) 

and by extending this to first binary fractions1. 

lo gn(!/) = 2"bg!)(2-" ! l ) j [10'Jlil 

and then b\ continuity, to all realt: 

iogn(»)= 'iogn(.y)). Co:?) 

( 

and we obtain finally 
H(y) ^ e""* 1"'! ' / ' . (16 281 
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This shows that a.* i — 0, the density of state*, sralrs as an exponential with a l/< 

in the exponent. 

16.3.2. T h e Par t i t ion Function 

The partition function Z(X) corresponding to the density of states Ii(x), where 

-V f O* is ~m the dual space (i.e. the space of linear functions^ to i e O, is given 

by the multiple Laplace transform: 

Z(X) = f°° • f°° e-{l-X)Q{x)<rx 
TV V (16.29) 

= - / • • • / e < I °8 ( >(y)-<v,X))/« d n l ,_ 
< i o -*o 

Let us now use steepest descents to get the < — 0 asymptotic behavior. The 

exponent is a maximum at that value of y where 

x = aios n( y ) 
By 

U ; us call this point yo(X). Then asymptotically we have 

(16.30) 

Z{X) = 1 ^ , | i . . a i . « i l - l » W . f l » . ( 1 6 . 3 1 ) 

So w« see that the partition function, like the density of states, also scales as an 

exponential with a 1/f in the pxponent a&ympt otic ally. Notice that yo[X) defines a 

Legendre transformation from y space to X space generated by the function logft(y) 

and that the exponents of U and Z are the Legendre transforms of each other. 
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1 6 . 4 . M a x i m u m E n t r o p y A p p l i e d t o S t a t i s t i c a l M e c h a n i c ? 

Le: u^ mm a p p h t l ir m a x i m u m rr,trop> fnrmali-ni 'ii t in- irann'v.nrk Li*i 'i-

deuo te the unde r ly ing ->hasc space of our system by I" ft hi1- will IK- of th«- order of 

1 0 2 3 d imens iona l ) . Wo have the space P of probabi l i ty distribution'- on f and a 

m a p o : T — 0 which represents t h e value of the observable:- of interest in a given 

microscopic s t a t e (O is a linear space of observables disru.sspd above) We may 

in t eg ra t e the 0 valued function o wi th respect t o each probabi l i ty di>tr ibut ion to 

get a m a p 

mP - 0 . (16.32) 

giving the m e a n values of the observables for each probabi l i ty d i s t r ibu t ion We also 

have t h e in format ion entropy 

S : / > - « , (16.33) 

which is a pos i t ive real valued funct ion on P ob t a ined by in tegra t ing - p log p over 

T for each m e a s u r e p € P. Our goal is to define a m a p 

E.O - P. (16 34) 

represent ing t h e mus t likely d i s t r i bu t i on with the given mean valuer of n Tlie image 

of y € 0 lies in " j " ' { y j C P. We define it tu be t h e max imum of 5 res t r ic ted to 

th i s set . We m a y t h e n pull back S a long E to get t h e entropy a.1- a men t ion on 0. 

T h e c o n s t r a i n e d ex t remiza t ion required is most easilv carried out ising La

g range mul t ip l ie rs A' which lie in t h e dual space O" 5 i« a m a x i m u m <M, K> ' ( ; ;] 

at p e_ P if a n d only if there exis ts a Lagrange mul t ip l ier A" C 0* <ur)\ t ha t 

S - Xom (16.35) 
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]- a iL.tMimim on / ' a t ;i We may work on tin ' linear -pare of iiniiormali/.ed 

ui- ir i lHi, i i in- if we i m r o d i n c a Lagrange mul t ip l ier A to ensure t h e m a x i m u m i^ 

nor tiali7eri T h u s we ob ta in i h e requirement 

^ ( - / . P ( ; ) 1<>K r(--)<'= - ( .Y.m(p)) - \ f p(:)d:\ ^ a. (16.36) 

Inser t ing t h e definition of m a n d carrying out t h e functional der ivat ive gives 

= / - ( - j Pi--) l o s P(=)rf- - < A ' / . "(=)p(=)rf*> - A / P(=W'-) 

- f ( - / P(s ) log p(*)<fc - / p(2)( .V.o( = ) ) d j - A / p ( z ) , / ^ 
*P V h h h I (16.37) 

= - l o g p ( i ) - ( . Y . o ( j ) ) r f S - 1 - A . 

Let us. call 

e - 1 _ A = | (16.38) 

We must choose A(X) a n d therefore Z ( X ) to ensu re t h a t p Is a p roper ly normalized 

probabi l i ty d i s t r ibu t ion . Solving for p[z), we find 

T h e normali7,?.tion condi t ion shows u s t h a t 

Z(X) = f c-iX-°l'»dz (16.40) 

is t h e p a r t i t i o n function. 

Given y C O, we solve for A" £ O ' by requi r ing tha t ihe cor responding distr i

but ion give 'j a.- its mean value of o. Looking at the expression for Z. we see t h a t 

th i - i- equivalent to requi r ing t h a t 

j = - r f ( l o g Z ) | . v . (10.41) 
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Here we are identifying O a 0**. This map L : O — O' is the Legendre transform 

generated by log Z. We may pull bark the entropy on P by E to give a function 

on O. We see that this is 

S o E(y) = log(Z o L(y)) + {.Y. y). (16.42) 

And so the surface 

X(y) = L(y) = dS(y) (16.43) 

is a Lagrangian submanifold in O x O*. 

Jaynes has given a nice demonstration of the second law of thermodynamics 

using maximum entropy [Jaynes, 1983]. We need only assume that the measured en

tropy for a given set of thermodynamic parameters is the entropy of the maximum 

entropy distribution with mean values given by the measurements (we have just 

seen that this is equivalent to the Gibbs distribution giving the correct value—the 

basic assumption in traditional statistical mechanics). We will show that if we start 

with a canonical distribution corresponding to one set of thermodynamic parame

ters and push it forward by any canonical transformation of the underlying phase 

space, then the values of the thermodynamic parameters obtained from the pushed 

forward distribution correspond to an entropy which is larger than that of the first 

set. We first recall that the information entropy of the pushed forward distribution 

is the same as the entropy corresponding to the initial parameters. This \.\ because 

the integral J —p logp doesn't change under volume preserving diffeomorphism-

and canonical transformations preserve volume. Next, the entropy corresponding 

to the new parameters is the information entropy of the maximal entropy distri

bution with them as mean values (i.e. {he Gibh* canonical distribution). Since 
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this entropy is maximal and the pushed forward distribution is another distribution 

with the new parameters as mean values, the new er.tropy is greater than or equal 

to the inforr ;ation entropy of the pushed forward distribution. But this shows that 

the new entropy is greater than or equal to the old entropy. Since information 

entropy measures out ignorance^ this interpretation of the second law simply says 

that if we begin with a known (canonical) distribution, follow it i s detail under a 

canonical transformation, and then forget everything but the mean values of some 

thermodynamic parameters, we are bound to lose information (or at least not gain 
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16.5_._ S o m e S y _ n i p W t ie _and_ C o n t a c t G e o m e t r y 

"".A- eat h skylark nnisr display ir> comb, so every hra/jcii of r iMthematic- niu^f 

finally di>play s i r u p / c r n - a t i r / i . " p "4 of Arnold. !984 

In th i s .section we will collect together sonic of t h e definition:- and result:- of 

symplec t ie a n d con tac t geonietry a n d give some mot iva t ion for their use in the 

con tex t s we have in mind . We have seen tha t in wave theory we get asympto t ic 

in tera ls over 

F'^V- (1G.44) 

where 5 is the ac t ion and t h a t in s ta t is t ical mechanics wc get a sympto t i c integrals 

over 

e s / ' (16.45) 

where S is t h e en t ropy . By using s t a t iona ry phase oi s t eepes t descen ts , we asymp

tot ical ly reduce these expressions t o ones involving only regions with specified dif

ferential dS. W h e n we are Ftudying families of values paramete r ized by y (eg. the 

point in space we a re observing our wave or the t h e r m o d y n a m i c observable.--), we 

often ob ta in 5 as a function of y a n d are interested in po in ts whore dS has a value 

equal to a L a g r a n g e mult ipl ier in t h e dual space of y. T h e level sets of S also often 

have physical in teres t (eg. the wavefront or the isenlropic s ta tes ) T h u - wc arc 

m o t i v a t e d to s t udy t h e geometr ic s t ruc tures associa ted with the differentials and 

level se ts of func t ions . 
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Figure 16.1: Spaces associated with a function on a manifold. 

16.5.1. HypersurFaces Determined by a Function 

Every function 5 on a manifold M of dimension m, determines two natural 

kinds of hvpersur/ace (a hypersurface is a codimension-1 submanifold (i.e. of one 

dimension less than the ambient soace it lit= in)). For example, consider the function 

S(j .y) = i l *f y 2 defined on tiie 2-dimensional plane coordinated by x and y. Its 

level sets form a family of hypersurfaces of M parametrized by 5 (with occasional 

non-submanifolds that are of measure zero generically, by Sard's theorem). For 

S = x2 -r- y 2 . the level set? are the circles x1 + y 2 ^constant. On the other hand. 

$'f graj>h >> a hypersurfare in M X ». For i = x 2 + y 2 , the graph is a paraboloid 

of revolution in {j, y. 5) space. The differentia/ dS of 5 is a one-form on M (which 
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-eometrically represent thr gradient of 5). For S ~ j - + y~. we M-O that dS -

2x di •+• 2y dy. This gives the first order behavior of S near each point of A/. The 

first order behavior of a hypersurface at a point in a manifold is represented by a 

hyperplane in the tangent space of the manifold at that point {i.e. a codimension 

ooe subspace of the tangent space)- We may thus form the set of all hyperplanes in 

TM that are tangent to level sets of S and the set of all hyperplanes in T(M x 9?) 

that are tangent to the graph of 5 . The tangent hyperplanes to the level sets are 

exactlv those vectors which dS annihilates. Thus this set of hyperplanes contains 

all tfae information that dS does except its length. For S = x2 + y2, the vectors 

which are scalar multiples of 

y ~ ~ i ^ (16.46) 

dx dy 

are annihilated by dS. At each poipt, this vector spans the tangent space to S's 

level set. The tangent hyperplanes to the graph of 5 give all the information of 

dS, but in addition, the place they are based at tejjs sis the value of 5 (which isn't 

known from just dS). The tangent hyperplane to the graph of S = i 7 -r y 2 at the 

point (x,y.S) , assumed to be away from i = 0. y = 0. is spanned by the vector*. 

V^T-*^ 06.47 
ox dy 

kk+kli+*Ts-
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16.5.1.1. The Underlying Manifold M 

Wr thus get several natural additional spaces of interest when we begin to 

consider functions on a manifold. Let the coordinates q represent points in M, The 

space of ail o's is M and is of dimension m. 

18.5.1.2. T h e Graph of a Function 

The space whose points give both q and the value of a function S at q is M x $ . 

This is {m + l)-dimensional and is where the graph of 5 lives. 

16.5.1.3. T h e Cotangent Bund le 

The space whose points represent q and the differential p — dS of a function at 

q, is the cotangent bundJe T'M. This is 2m dimensional and as we have seen earlier 

has the canonical one-form p dq and a natural symplectk structure dq A dp defined 

on it. We defined an m dimensional sabmanifold of T'M to be X-agrangian if the 

symplectk form vanishes on it. We have seen in section 7.1.4 that the graph of dS 

is a Lagrangian submanifold. For waves this represents the local wavevector as a 

function of position in an eikonal wave (in spacetime the manifold represents the 

solution to the intial value problem). It is important to represent thb in the space 

of both y's and &'s, because even though this surface is smooth, its projection may 

not be, and our wave can develop multiple branches and caustics. For thermody

namics it gives the intensive variables as a function of the extensive ones (recall the 

nomenclature convention from 16.3.1). We may think of it as the equation of state. 
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It is important to think of this a.- a surface in the higher dnueti-ioiirtl -pat e. hec .HIM' 

its projection onto the intensive variables heroine:- singular at plia>f transitiun-

16.5.1.4. The First Jet Bundle 

The space whose points represent q, the differential p - dS of functions, and 

the value S of functions, is the first jet bundle JlM. This is {2m -r 1 )-dimensional 

and we saw earlier that this has a natural contact structure on it. defined as the 

set of tangent hyperplanes annihilated by the one-form; dS - p dq. Any function 5 

defines an m dimensional submanifold of J1 M by q >—• (q,dS,S). An m dimensional 

submanifold of a contact manifold is called a Legendrc submanifold if it is tangent 

to the contact planes at each point. The submanifold of J 'A/ determined by a 

function S is Legcndre. For waves this means including the value of the phase 

with the position and wavevector- When we forget about it (by reduction), we get 

the Lagrangian submanifold above. For thermodynamics, this gives the relation 

between the entropy and the intensive and extensive mechanical variblcs. 

16.5.1.5. The Space of Contact Elements 

The set of hyperplanes. in a linear space of dimension m forms a smooth man

ifold of dimension m - 1 (eg. the set of lines through t'.ie origin i/i a plane may be 

thought of as a circle). A hyperplane of the tangent space of a manifold at some 

point is called a contact eicment at that point. The set of all contact elements of M 

forms a manifold of dimension 2m - I whose points represent a point q of M and 

a tangent hyperplane there. We have seen that this manifold of contact element- is 
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n-rlf a cuiitJiM manifold A tangent vet tor l<> l he- -.pai e i>f rontac! element;., which 

\vc may think of ,i> representing an infinitesimal motion of the contact element it is 

liax (1 iii. i.- m the roiitai i structure if the velocity of the basepoint of the contact 

element lies in ihe contact elen ent. The set of contact elements which are tangent 

tn a level set of 5 forms a submanifold of the space of contact elements of A/ that 

is of dimension m t\nd is in fact a Legendre submanifold. We may think of this as 

parameterizing the wavefronts, including the direction. When a wavefront begins 

to cross itself (as at a caustic), it is important to keep the direction of the wavefront 

as well as the position. Thi Legendre submanifold is always smooth, even though 

the wavefront may develop cusps and self intersections. 

Similarly, the set of contact elements of M x % is a contact manifold of di-

• 'ension 2m + 1. The set of contact elements that are tangent to the graph of S 

forms an m dimensional Legendre submanifold. Thi? set will be important to our 

understanding of the Legendre transform. 

16.5.2. The Conormal Bundle 

If we are given a codiinension n submanifold X of M (that is thus of dime ..-ion 

m - n). we may think of it as the simultaneous level set of n linearly independent 

functions (lorally) This motivates us to consider the set of all covectors :n T*\f 

based on X, which annihilate the tangent space to X. This is called the concrmaJ 

bundle of .V in M. (If M had a metric, then this would be all vectors that are 

perpendicular to .V) This is a Lagrangian submanifold of T'M. In the limiting 

case where .'N is a point of M. the conormal bundle is just the set of covectors based 
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at that point If A" ii the whole of M. thru it i-- the zem section of T' M If .\/ were 

Riemannian, thi'n there is a natural projection of the (co)uormal bundle of .V into 

M given by seeding (q.p) in the normal bundle to the point a distant e JJ along the 

geodesic in M starting at q in the direction p. This gives, the set of rays in M that 

are traversed by light emitted by A', where the metric represents the (anisotropic) 

index of refraction. The singularities of the projection from the normal bundle to 

M represent the caustics. They are the points which lie at the center of curvature 

of some direction on the surface ( [Arnold, 1983] p. 83). 

16.5.3. The Wavefront Set 

This map is also related to the wave front set of a distribution d on M in

troduced by Hormander ( [Hormander, 1983] p 252). We associate with d a 

Lagrangian submanifold of T"M by saying that a covector p is in d's wavefront set 

if the pushforward of d to 5c1 along any smooth function whose differential is p is 

still singular {i.e. there exists a smooth function on DJ1 whose integral with respect 

to the pushferward of d doesn't approach zero as the region of integration vanishes). 

Thus a point ^-function at q on A/ has a wavefront set that includes all covet tors 

at q while a ^-function supported on a submamfold .V has a wavefront set that in

cludes only the conormal bundle of A' This is of interest because the singularities 

of the solution of a hyperbolic P.D.E. with singular intial conditions must lie mi 

the projection to M given above of the .vavefrjnt set. Thus for the wave equation 

on a Riemmanian manifold, a ^-function intial condition will lead to singularities 

on a growing sphere (with respect to the metric) which we recongi/e as slices of 
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the light rone. A singular hypcrsurface moves like a wavefront and propagates only 

in the direruon of the rays We can understand thb close relation between high 

frequency a*yinptotics and the evolution of singular distributions by recognizing 

that the singular aspects are due to the infinitely high frequencies, and a singular 

distribution can be represented as an integral over the asymptotic parameter of a 

faintly of eikonal waves. This can be related to Huygens principle. The fact that 

singularities move on rays is behind a beautiful discussion on p. xl of [Guillemin 

and Sternberg, 1977; explaining why the frequency of a bowed violin is the same 

as that of a strummed one (a priori, the frequencies of driven oscillations should 

have nothing to do with free oscillations). The explanation is that when the string 

snaps away from the bow, a singular kink is generated which goes down the string 

and back to kick tue string off the bow again, generating a frequency equal to that 

of the normal mode corresponding to that periodic ray. The reference gives figures 

showing the string motion. 

16.5.4. T h e Space of Tangent Contact Elements 

We may also consider the set of all contact elements of M which are tangent to 

,V (i.e. which contain A"s tangent space). This set is a Legendre submamfold of the 

space of contact elements of M. This represents the local pices of the wavefront 

that will be emitted from A'. Even if N is lower dimensional, like a point, the 

emitted wavefroat will be n dimensional (like a sphere about the point). 
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16.5.5. Legendre Transforms and Linear State Spares 

A* we have dis<u>-ed in section 7 11 . the scaling we perforin to flu our -is> uip-

totics stretches the underlying manifold M in both the wave case {where we went to 

a slow space) and in the statistical mechanical case (where we went to rescaled me

chanical variables). Asymptotically, any non-trivial manifold structure disappears 

and we are left with 3t m . In this case the cotangent bundle becomes 9t m x 'J?171*. 

When the base space is linear, there are more geometrical operations which we inav 

perform. The new freedom is to project not only "vertically" to 9 i m . but also "hor

izontally" to S m * . Essentially we have decided how to identify all the co'.angent 

spaces at different points of M. We mtv do this by choosing coordinates on M. 

which gives such an identification but defends on coordinate choice. As ( — 0. 

however, all smooth coordinate system 6 lead to the same asymptotic identification. 

This asymptotic identification of cotangent spaces is non-uniform iu q, but all our 

operations, like local Fourier transform, always include a window which scales so as 

to eliminate the non-uniform parts. 

16.5.5.1. The Legendre Map 

Given any function $ on 3cm , its differential takes its values in 3Jm*. Thus dS 

is a map from 9?*™ to its dual space, which we may call the Legendre map. In the 

case of waves, this maps y space into k space. For thermodynamics, it takes a set of 

extensive variables into their tbermodynamically conjugate intensive variables We 

have seen that these are the stationary points for the Fourier and Laplace transforms 

respectively 
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16.5.5.2. The Legendre Transfoim 

When S i- -tnctly cuiivcx [its Hê -Han (M-cond derivative matrix] is positive 

(tt'taiitc) then thk- map is one to one. If S is bounded below by sorw- quadratic 

Form. the:1 it is a ditfeomorphism. In this raso it makes sense to ask for the function 

T(p) on !Km" whose corresponding Legendre map is the inverse of the one generated 

by S(q). One see', that in this case: 

r (p ) = (P.9(P»-S(</(p». C6-49) 

where q{p) is the inverse of the first Legendre map, generates the inverse. 

Let us show this explicitly in the coordinates i?' where 1 < i < A". Let us use 

Ls to denote the Legendre map Ls(q) = dS{q) = p defined by 5. In coordinates 

this reads 

P, =tf-s(f l ) ) .= | ^ - (16.50) 

dq' 

By the condition imposed on S, this map is invertible. We denote the inverse by 

L^ and the function T we defined is then given by 

T(p) = (Z.; , (p))>, - S ( £ j ' ( p ) ) . (16.51) 

We want to show that the Legendre map Lj defined by the function T is actually 

the inverse of Ls. This Legendre map is expressed in coordinates as 

ST 
( i r ( p ) ) 1 ., dp, 

(16.52) 



16.5.5.3. The Lcgendrc Transform and a Function'* Graph 4S9 

We have used the Leibniz rule to do the derivative of the first te.ni iu T and the 

chain rule to do the second term. Now recognize that 

| | ( i . ; ' W ) = P J (16.53) 

to see thai the last two terms can .el. We are finally left with 

L T = l~s

l (16-54) 

as desired. 

In general we may define: 

T(p) = S u p q U p , 9 > - S ( , . ) ) (16.55) 

to be the Legeudre transform of S ( [Aroold, 1983] p 19). The previous definition 

agrees with this one in the situations to which it applies. If 5 is (strictly} ronwx 

then so is T. We shall see that this is important for thermodynamics, «ince -S 

must be a convex function of the extensive variables. 

16.5.5.3. The Legendre Transform and a Function's Graph 

If we are given a number T and a vector p € 9?m*. then the equation. 

T - (p,q) - S (16.56) 

defines a hyperplane in {<j.S} space (i.e. !Rm x 3?). I h e equation above say* that 

the graph of S in 'S"1 x 5R hits this hyperplane at the point where it ha.- the slope 

p The value of T is minus the S interrept of this byperplane (i.e. ihe point where 

http://te.ni
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it hits the axis q - 0} a.s is shown in figure (16.2a). We parameterize the space of 

m>n-ver" al (i.e. they don't contain lines parallel to the q = 0 axis) hyperplanes 

if (q.S) space by (p.T) as above. These are called PI.' ker coordinates (see for 

example p. 88 of j.fenner, 1963]}. The map that sends points of the graph of S in 

(q. S) spare to the hyperplane tangent to the graph there, goes to p = dS/dq which 

is image of q under the Legendre map and T which is the value of the Legendre 

transform of S at p. 

16.5.5.4. Legendre Transforms and Projective Duality 

The map which sends points of a hypersurface to the hyperplane tangent to 

the surface there has been the object of mathematical study for a long time. It is 

behind the notion of projective duality v/here, for example, all theorems of geometry 

in the (projective) plane may have the worda •'point" and "line" exchanged (eg. two 

points determine a line, two lines determine a point). To make this work out, one 

must tack on '"directions at infinity" to Rm so that parallel lines really intersex* 

at infinity. This leads to projective geometry, where the m dimensional piojective 

spare RPm is defined as the space of lines through the origin of $ m + 1 . A line 

through the origin o{^m + l' defines a linear form on s g m + 1 up to magnitude, whicL 

may be identified with thr hyperplane through the origin of ^ * 7 , + ! on which it 

vanishes. This in turn is made up of lines through the origin, and may be thought 

of a.-, an arbitrary hyperplane in P m . Therelore we call the space of hyperplanes in 

P m it- projective^ ma! spare P m " . 
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oclafwdron <Jodfc*hfdron 

Figure 16.2: Various aspects of Lcgcndrc transforms and projective duality 

planations are given in the text. 
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I n rii ' 1! h> persurfa/ c in / ' " ' . we may a.ssnriatt> the projective!}' dual hyporsur-

fatc ri / " " ' defined as all hyperplanes tliat arc tangent to the first hypersurface. 

The original hypersurface is (he envelope of the pl*ncs defined by its dual (e.g.. the 

tangent lines to a curve as shown in figure (16.2b) themselves form a curve in the 

sp.urc of lim*s). This relationship is involulive in the sense that the dual of the dual 

brings you back to the original. The graph of the Legendre transform of a function 

is the dual of the graph of the function in this sense (p. 20 of [Arnold. 1983J). 

F'a< places in the surface, where it includes straight line segments and so there 

is an interval of different points with thr same slope, correspond to corners in 

the dual surface, which has an interval of different slopes at the same point. For 

example, in figure (16.2c) the graph of 5 is made of 3 straight segments joined at 

two corners. The graph of T, its Legendre transform, is made of 2 straight segments 

(corresponding to the corners in the graph of S) and 3 corners {corresponding to 

the segments of S). The entire graph of S for q < \ has slope 0 and S intercept 

-1 and therefore corresponds to the single point p = 0 and T = 1. As we follow 

S's graph around the corner at q = 1,5 = —1, the slope goes from 0 to 1 and the 

intercept from -1 to -2. This single point therefore corresponds to the whole line 

segment over 0 < p < I in the graph of T. The line segment corresponding to 

1 £ <i i 2 in S's graph again has a single slope and intercept and corresponds to 

the point p = 1,T = 2. The corner at q = 2, S ~ 0 gives rise to the line segment 

over 1 < p < 2. Finally the entire line over 2 < q corresponds to the single point 

p ~ 2.T ~ 4. This entire analysis may be applied in reverse to go from T(p) to S(q) 

showing that Legendre transforms are involutive. For example, the line segment in 
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T"'s graph over 1 < p < 2 has slope 2 and intercept 0 and so corre: ponds to the 

single point q = 2, 5 = 0 in the graph of S. This is important in thermodynamics 

where flat places in the graph of the entropy as a function of the extensive variables 

correspond to phase transitions. 

Double tangents (i.e. when a hyperplane is tangent at two points of the surface) 

correspond to points of self intersection of the dual surface (an example is shown in 

figure (16.2d)). In thermodynamics, we take the convex hull of the region below the 

graph of entropy, and so places with double tangents get turned into flat regions as 

shown in figure (l6.2e). The dual surface replaces the intersection of two surfaces 

by their coming together at a corner and stopping. 

Surfaces defined by algebraic equations have duals defined by algebraic equa

tions. In the 2-dimensional plane, a curve with an inflection point (i.e. flat to 

the second order) has as its dual a cusp (whose edges are tangent to the second 

order) as suown in figure (16.2f). A conic section in the plane gets taken to a conic 

section. As shown in figure (16.2g), ellipses go to hyperbolas and parabolas go to 

parabolas. The duals of polybedra in 3 dimensions have vertices corresponding to 

the original faces and faces corresponding to the original vertices (eg. a cube and 

an octahedron, an icosahedron - nd a dodecahedron, and a tetrahedron and itself 

are dual as shown in figure (16.2h)). The graphs of qaja and pb/b are dual when 

l /a + 1/ft = I and so thry are Legendre transforms of each other. A norm f[q) on a 

linear space may be defined by the unit sphere it defines. There is a natural norm 

on the dual spp.ee given by g{p) = max; ( l )<] |(n, J:);. Its unit sphere is the dual of 

the original one (this exemplifies the relationship between hypersufaces defined by 

http://spp.ee
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level sets and by graphs of functions). 

16.5.5.5. Legeodre Transforms and Uncertainty Relations 

Since q and p are dual variables, acting on one by an invertible linear transfor

mation A is equivalent to acting on the other by the inverse A~l of that transfor

mation. This means that the Legendre transform of a function S{A • q) is equal to 

T ( / i _ 1 p) if T[p) is the Legendre transform of S[q). This is the asymptoMc formu

lation of uncertainty principles for the Fourier and Laplace transforms. If S(q) is a 

quadratic form, then its Legendre transform is also a quadratic form. In fact these 

are the unique functions for which the value of the Legendre transform is equal to 

that of the function at the corresponding point. The widths of the forms {and so the 

volume of the unit spheres they define) are inverses of each other. Since the expo

nential of a quadratic form is a Gaussian, this says that in thermodynamics, when 

the probability distribution of an extensive variable is Gaussian (as is commonly 

the case in fluctuation theory), then the asymptotic distribution over the conjugate 

intensive variable is also Gaussian with the inverse dispersion. The more precisely 

you know the temperature, the less precisely you know the energy and vice versa. 
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16.5.5.6. Legenrire Transforms and Jets of Funcv *n-

Lei u-~ give a final picture of a Legendrc transformation (p 366 of Arnold. 

1978 | Let us call a map from one contact manifold to another of the same dimen

sion that takes cotr.act planee to contact planes, a contact transformation. U we 

consider the first jet space of At. then the map 

U . p , S ) ~ ( p ^ . < P - « > - S ) (16-57) 

is a contact transformation which takes the graph of dS and 5 into the graph of its 

Legendre transform. 
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18.8. The Origin of the LaRrangian Submanifblds in Physics 

In tln^ M"( tion « T will statp the theorem from symplertic geometry which may 

hr vicwt'd a- being responsible for the Lagrangian ssibmamfolds in both wave theory 

and thrrrniHtynamirs In both these casr« we have reduced the quantities of interest 

to integrals of asymptotic exponentials over large spaces which we then reduce to 

a variational principle for the exponent by stationary phase or steepest descents. 

In the wave case, we obtain the wave at a given point as an integral over all paths 

of an exponential with the action 5 of a path in the exponent (seeSO [Schulman. 

1981-), leading to the principle of least actk i (or actually stationary action). lo the 

statistical case we obtain the probability of a given set of measurable quantities as an 

integral over all distributions of an exponential with the entropy S of a distribution 

in the exponent, leading to the principle of most entropy (maximum entropy). 

16.6.1. Cons t ra ined Integrat ion and Extremization 

In both cases we have an integral over some space, typically defined by some 

constraints (the end of the path is at the observation point, or the distributions 

have given mean values for the quantities of interest). If we project this space to a 

smaller one, we may first integrate over the fibers of the projection, and then over 

the smaller space. This leads to a variational principle where we first extremize S 

over the fibers, giving a function S on the smaller space whose extrema represent 

the contributions we arc interested in. 

We discuss the physical examples in the next few sections. To see what is going 

mi geometrically, consider the projection from $f to 9? taking (x,y) *— Jr. If we want 
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ihe extremal value of 

S(i.y) = 1 5 + ( J - l ) 2 + ( y ~ 2 ) 2 . (16.58) 

we may first extremize S{i,y) at each x, holding x 6xed and letting y vary. The 

stationary points under this constrained variation satisfy 

| - . 9 ( I , y ) = 0 - 2 ( y - 2 ) - (1659) 
dy 

The surface y = 2 is made up of the constrained critical points. 5 restricted to this 

surface is 

S e ( i ) = 1 5 + { x - l } 2 . {16.60} 

which we may think of as living on the projerted space. We now extremize over J 

yielding 

^-Se(x) = 0 = 2 ( i - 1). (16.61) 
dx 

Thus xc = 1 ant the critical value of S .s Sc(\) = 15. 

16.6.2. PathB Const ra ined on Surfaces 

For example as in figure (16.3). we may fir^t sum over path)* which go through 

given points on the surfaces: Pj , . .. P, in space before reaching the point of ol>-

servatioth We extremize over paths subject to these constraints and so obtain the 

action as a function on 

Pi x • x P,. (16.62) 
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Wr may now find thr critical points on this space to find the actual paths taken. 

This finite dimensional integral and variational principle make good mathemat-

iral sense. We actually define the "integral over all paths" in terms of finer and 

finer approximations by such piecewise paths as the asymptotic parameter vanishes. 

Physically, the rays don't mean anything on a scale smaller than a wavelength, and 

as wr do our scaling, the pieces of path we sum over should get smaller and smaller 

while including more and more wavelengths. 

As we let the number of constraint surfaces on which we specify the point of 

intersection with a path increase to infinity, we more and more precisely constrain 

the ray. One can imagine this limiting to the case where giving a point in the surface 

product space uniquely specifies a path. This is the sense in which the path spate 

can be thought of as an infinite product of interposed surfaces (that foliate space). 

16.6.3 The Wavevector as a Kind of Force 

We see in this example that the true paths wiii be those which come into and 

leave a surface with the same slope, hinting that the dual space of a • srface is 

important. For an extremal ray, when we perturb the point on the surface, the 

change of S on the incoming part exactly cancels the change of S on the outgoing 

part to first order. Thus the derivative of the action of apart of the ray with respect 

to changes in its tndpolnt acts as a kind of "force". For a valid ray the uforces" 

on the inconi^ig ray and outgoing ray must balance. We will see the analogy with 

thermodynamic forces momentarily. 
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F i g u r e 1 6 . 3 : Some p a t h s t h a t go t h r o u g h a given point on the surface P. 

16.6.4. Distributions Constrained on Subsystems 

In the statistical case, we may imagine different pieces of our thermodynamic 

system to be forced to have given values for their extensive quantities. For example 

as in figure (16.4), we might have a box with a movable partition which allows 

the transfer of volume between its two halves and is thermally conducting and so 

also allows the transfer of energy. We may first do our integral over distributions 

with a given energy and volume in the left portion. We maximize the entropy 

subject to this constraint and so obtain an entropy on th*1 finite dimensional space 

of values of the left side's energy and volumr. We extremize this entropy on a finite 

dimensional space to find the actual equilibrium values of the constrained quantities. 
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This- finite dimonsiorai integral and variational principle makes good mathematiral 

snise. Wo actual.!, define the "integral over ali distributions" in terms of finer and 

finer partitions of our system &*• 'he asymptotic parameter vanishes. Physically, 

the distributions- don't mean anything for too few particles, and so as we do our 

wealing the distributions we sum over should be constrained to give definite values 

to smaller and smaller parts of the system while including more and more degrees 

of freedom. This kind of averaging was discussed in the introdtsctioa. 

As we let the regions of phase space over which the probability distribution 

averages are specified become smaller and smaller, we more and more precisely 

constrain a distribution- One can imagine this limiting to the case where giving a 

point in the region average product space uniquely specifies a probability distribu

tion. This is the sense in which the space of distributions can be thought of as an 

infinite product of spaces of averages at points of phase space. 

16.6.5. Thermodynamic Forces 

We see io this example that the true energy and volume of the left system will 

be those such that the variation of the left portion's entropy is equal and opposite 

to the variation of the right portion's entropy to first order, biatisg that the dual 

space of the constrained ubservables is ir.fportaat. The derivative of the entropy of 

the left LJf with respect to the constraint acts like a "force" and the left and right 

force* must be balanced in equilibrium. 
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for the two systems 

Figure 16.4: A distribution is constrained to give the left region a definte energy 

and volume. 

16.6.6. Lagrange Multipliers and Legendre Maps 

This same idea is captured in the notion of Lagrange multiplier, which acts 

like a system with given "force" instead of given value fcr any constrained quantity. 

To maximize a function over a space with an imposed constraint, we may instead 

maximize over a new system on the whole space with an additional linear piece 

with given ^orce" that allows us to * postiori make the critical point satisfy the 

constraint. 

For example, if we want to maximize 

S(i.y) = 2 - T 2 - V (16.C3) 

with the constrain, that y = 1. we might consider the nmstraiiied variational prob-

file:///laph
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Irm of maximizing 

Sr(x) = 2 - r 2 - 1 = 1 - r2 {16.64) 

over t' constraint surface. Thu yields r — 0 and S ~ \. Alternatively, we may 

maximize 

SL(z,y) = 2 - x 2 - y2 - a(» - 1) (16.65) 

over all 2 and y yielding z = 0 and y = ™a/2. The proper force o to push 

the maximum to y — 1 is <a = —2. This again yields x = 0 and S =s 1. The 

reason for doing this is that it is often easier to do the unconstrained variations 

(even with the free parameter a) than to impose the constraint explicitly. We 

have seen that the relation between the states and the conjugate forces is just the 

Legeodre map generated by S. There is a corresponding function on the dual 

variables which is the Legendre transform of 5. If we think back to our asymptotic 

integrals, imposing as given dSjdy in the wave case makes the integral into a 

Fourier transform with specified wavevector. In the statistical case we get a Laplace 

transform with specified intensive variables. 

16.6.6-1. Constant Force Asymptotic Systems 

These systems with given "forces" may often be thought of as asymptotic limits 

of real systems. Thus for example, a very extended weak spring acts like a constant 

force (a very strong inextended spring acts like a constant position (wall)), a large 

system in thermal equilibrium acts like a heat bath with constant temperature and 

infiniti- beat capacity, (a small system acts like a thermal insulator, it has zero heat 

capacity and anything coupled to it has almost constant energy), a large battery 
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16.6.7. Lagrangian Submanifolds and Constrained Extremization 

Lei u* uow give a theorem of -ymplectic geometry thai deM ribe>- (hi;- kir"] 

of situation geometrically This is given in Wemstem. 1077 on page 25 and m 

•Guillemin and Sternberg. 1977 on page 1-59- Above ue have seen that we often 

want to project a space onto a smaller one while considering the critical point1- of 

a function 5. The following theorem (16.7) tell* u< that if we have a piojection of 

SI onto .V. ther those points in T" S which pullbark to points of the graph of dS 

in T'M actually fo rm a Lagrangian submamfold of T".V These points sit over the 

critical points of 5 restricted to each fiber of the project' >i (i.e. inverse image of a 

point in .V). 

16.6.7.1, Parametrizing Lagrangian Submanifolds 

This theorem is particularly interesting when there is more than one critical 

point of S on the fiber over 1 £ ,V. This means thai the corresponding Lagrangian 

submanifold in 7"A has more than one S* jet sitting over x. Thus we may oblam 

"folded" over Lagrangian submanifolds from perfectly nice ones (i.e. the graph 

of dS 111 T'M). Weinstein show*, that thi** may alway> bo done locally and give* 

conditions for the global version. This is the key to Maslnv's approach to wave 
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asymptotic- In doing an eikunal Mudy of a linear wave equation, we may represent 

.i w.ue A.- a -o-crtllfd oM-illatory integral. 

i , ( j i ) - J A{y.t*yBlv-nt/'dii (16.66) 

If we view our equation as defined on (y.o) space by ignoring a, solution? on the 

[y. <t) «pare project to solutions on y space (by linearity). We have just seen that 

even when the Lagrangian submanifold in the (otangent bundle of y space become*-

folded over and the asympiotic becomes invalid (i.e. nonuniform at the fold). 

there if a nice wave on (y.a) space that projects to it. We may do our asymptotics 

there and project the answer via stationary phase to see that even the folded over 

Lagrangian submanifold is a representative of the wave. 

16.6.7.2. Theorem on Pushing Forward LagrangJan Submanifolds 

Let us gv. >• the statement of the theorem from jGuillemin and Sternberg. 1977';-. 

Theorem 16.6. Let f : M — N be a smooth map with df of constant rank and 

hi A he a Lagrangian suhmanifold of T*M. If A intersects dJ*T'S transversally. 

then dft,\ i>- a Lagrangian submanifoid ufT'IS'. 
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16.6.7.3. Applicat ion of t he Theorem to Waves 

This restricts to the case above when A is the graph of the tiinrtum S In the 

case of waves, we take M to be the space of Ml paths, S to be the 3-dimensional 

space in whirh we observe our waves, the projection to be that which sends a path 

to its endpoint. and the action S of a path to be the function to extrcmize. The 

the theorem says that the differentials of the actions of those paths with extremal 

action for each endpoint form a Lagrangian submanifold in the cotangent space of 

obervatioD space N. The fibers of the cotangent bundle are the derivative of action 

with respect to the observation point and represent the wavevectors at a given point. 

This cotangent bundle is the wave phase space and the Lagrangian submanifold is 

the graph of the wavevector at each point for an eikonal wave with wave phase 5. 

18.6,7.4- Applicat ion at the Theorem to Thermo dynamics 

In the case of statistical mechanics, we take M to be the space of probability 

distributions, N to be the space of extensive observables that w<- are studying, the 

projection to be that which sends a distribution to the mean value of the observable? 

in that distribution, and the entropy 5 of a distribution to be the function to 

maximize. The theorem then says that the differentials of the entropies of Un,*e 

distributions with maximal entropy for each mean value of the -.b.^'rvables form 

a Lagrangian submanifold in the cotangenl space of the extensive variables. The 

fibers of the cotangent bundle are the derivative of enirujn with re-pert to the 

extensive variable and represent the conjugate intensive variables This cotangent 
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bundle is- the thermodynamic phase spaco and the Lagrangiau stihmanifolri j« ihe 

graph oi the equation of .state for an equUJbriunj system with entropy 5. 
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1 6 . 7 . T h e o r e m o n t h e P u a h f o r w a r d of L e g e n d r e S i ib inHni fo l f i s 

Let w- now ex tend th is theorem to Lrgetidre MiLm.uiifoIrN o f d i i l . u i man i fn l 'K 

because thi* i*. a con tex t in which we may unders t and more of tho - n u r t u r e of 

thermodvnaniM - Assuming t h e same t ransversal i ty condi t ion as in the la-t t heo rem 

(which is generically t r u e ) , we finu ' h a t for a project ion \t -• A' and a function 

S o n M. t h e po in ts in t h e first j e t b u n d l e J ' A " of .V which puil back t o poin t? in 

J l \ l in the g raph of S aud dS where the derivative of S along the fibers of the 

project ion is zero, t oge the r form a Legendre submanifold of J} A'. Let us locally use 

coord ina tes [q.a.S.p.a.) on M whe re a parameter izes t h e fibers of the project ion 

a n d q are coord ina tes on A . a and p arp the cor responding differentials, a n d S 

r ep resen t s the value of a function We assume t h a t the coord ina tes (q,S,p) agree 

wi th those of J ' A ' on t h e set of pul led back vectors . 

T h e canonical con tac t s t r u c t u r e on J ' A f is given by t h e vectors annih i la ted by 

t h e form 

dS -pdq- ada. (16.67) 

A contac t form on J ' A ' is given by 

dS - p dq. (IG.68] 

We have seen earlier t h a t t h e one- ;e ts of 5 in J ' A / form a Legendre submanifold 

wi th respect to th i s con tac t s t r u c t u r e . We are interested in its intersection wi th the 

set Q = 0 (i.e. t hose po in t s where S ' s derivative vanishes along the fibers of t h e 

pro jec t ion) . From t h e expression for t h e contact form, we *ee tha t at these poin ts 

dS -p dq vanishes on S's one-jets a d so the projected submanifold is contact on S. 

http://Pu-hfi.irv.nrd
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We ma\ w-' tin1 fhrori'm a how i.. -n tb.ii the pn>j''< Uon ha> I he ~;inic dimension 

A- .V (aii-liiin the >' dircdioi! to tmth T'St ami T'.V -ioe.-n't do anything to the 

'hmeiiMOii' 1 hu- we m.i\ ronrlude ihitt the projection i:- a Lcgendie Mibmanifold 

of ./>.Y 

16.7.1. The Contac t S t ruc tu re for Thermodynamics 

Let us apply this result to the thermodynamic situation. Here the manifold 

A' is made of the asymptotically scaled extensive thermodynamic variables we are 

considering. We have been using y for coordinates on this and they represent such 

quantities as the energy U, the volume V. the numbers of the various species of 

particles or molecules (not including the total as discussed above) A'i . . . A',, the 

magnetic moment fi, the electric dipole moment fl etc. On the first jet space J 'A r , 

the function variable is the entropy 5, and the derivative directions are coordinatized 

by the thermodynamically conjugate variables A* to the y. The conjugate variable 

to E is the inverse temperature: fi, to V is the pressure over the temperature: 

p/T, to A', is minus the i'th chemical potential over the temperature: -fi,/T. to 

the magnetic moment is minus the magnetic field strength over the temperature: 

- H/ 7\ to the electric dipole moment is minus the electric field over the temperature: 

- £ / 7 \ ere 
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16.7.1.1. The Contar' Forn> for Jets of Entropy 

The contact form is then 

dS - ~(<1L' ~pd\- - 5Z*** d'S' ~ H d S f " E d r '' (»G.691 

We have seen that ow asymptotic theory guarantee? that this form vanishes on the 

equation of state surface ;,n J 1 A* since it is a Legendre submanifold. We recognize 

this as the Erst law of thermodynamics. 

16.7.1.2. The U.VAl/T),{p/T) Symplectic Manifold 

For simplicity, from now on we shall consider only (5,(7,1", (1/7"). (p/T)) space. 

The other coordinates behave in exactly the same way if they axe desired in a theory. 

We have seen that we ma; project our contact space along the 5 direction to obtain 

the syznplectk manifold coordinated by {U, V, ( I /F) , {p/T}). The contact form 

given above goes into the canonical one form on this space (since it is constant on 

the fibers): 

t(d[f +pd\-). (16.70) 

The corresponding symplecti- structure is: 

dUAd(±)~d\-*d(£). (1671} 

By our general theory, the equation of >iale surface is a Lagrangian subnianifold 

with respect to this sympierti< structure. 
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16.7.1.3. The (S.V.p.T) Symplcctic Manifold 

We have seen earlier that a contact form gives the same contact structure when 

it is multiplied by any nowhere vanishing function. Let us use that freedom to get 

an equivalent contact form on our contact space by multiplying by —T: 

dU - T dS + p dV. (16.72) 

This too vanishes on our Legendre submanifold- Now the form is constant along the 

U direction and so we may project it to (5, V, p, — T) space, where it becomes the 

canonical one-form. The corresponding symplectic structure is exactly the one given 

by [Kijowski and Tulczyjew, 1979] that we listed in section 12.1. We may obtain 

this same symplectic structure as the canonical cotangent structure by viewing any 

of the pairs: (V, S), (V, 7"). (p.T), or (5,p) as the base and the other two variables as 

the cotangent fibers. Our Lagrangian submanifold is then represented as the graph 

of four different functions. As we have seen in great detail these are the Legendre 

transforms of one another, and are known as the internal energy, the Helmholz free 

energy, the Gibbs free energy, and the enthalpy. 

16.7.2. Legendre Transforms and Thermodynamic Potentials 

The reason for introducing these extra goiiei&nng functions for our surface 

ih that it is they that are extremized under different combinations of constraints. 

We saw that for given extensive variables the system maximizes its entropy. For 

adiabatir variation of a system, the entropy is an adiabatic constant of the motion 

(w»- haw -ecu that tins is exactly the same situation as the adiabatic invariance of 



16 72 Lrgrndrv Xr<iji-/onii> ami Thrrui-ni\ IMI;IH I\-t MI ,W- J I I 

the a l l i e n of almo-l penod i - nrl.it- and [.•*.!.- there u. \\u p- . u.l..f«T.«- ..{ re.lu. im„ 

in m^rliaiiii - v mch are t h e an^lnp of the tii run tHii.itm> - \<<K >•- w .irr <\i-1 u--nin

here and i ri* w?ve ac t ion dcriMty f«>n>erv tt u.n for uave~> T h e fart th.it en t rup \ i-

max imized when energy and volume are fixed is equivalent to the fart that e n e ^ y i-

min imized when en t ropy and volume are held fixed An analago'jf- s i tuat ion ]*• that 

t h e shapes in t h r ee d imension? whi-h minimize their >urfare area for given volume, 

a re t h e s a m . a? t hose which maximize their volume for given surface area Thii*- by 

t h e s a m e a rgumen t we used to show ent ropy was a concave function of the extensive 

var iab les , we see t h a t t h e energy is a convex function of the o the r extensive variables 

a n d t h e entropy. As an example of a Legendre t ransform in both S and V, \ .e see 

t h a t t h e Gibbs free energy (/ - TS •+• PV is minimized for given t e m p e r a t u r e and 

presL ure . 

http://nrl.it-
http://th.it
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16.8. PhaHr Transit inns and the Geometry of the Equation of State 

In i.ihh-. 1S75 . tht- dilution S[C \ ) (or eqinvalenily f-"Ul\V)> *as called 

tlie fuinl.iiiu'tital equation becuij-c it contains all the thermodynamic information 

about a substance. He was the first to recognize ( {Israel I979j p. XJI) that this 

function contains more infornialion than the usual "equation of state" which is a 

relation of the form 

f{p,\\T) -0 . (16.73) 

For example, in the case of an ideal gas one needs the relation 

p\"> = constant, (1C.74) 

in addition to the equation of state 

PV = NkT (16.75) 

to specify the behavior of the gas. 

1 will, nonetheless, call the expression of S as a function of the mechanical 

variables the equation of state, because it really describes the allowed relations 

between the intensive and extensive variables for a substance. For this example, 

the surface deacibing the possible states is a two dimensional surface in (U, V, T,p) 

space (or equivalently in (S,\'\T,p) space). The usual equation of state only says 

that t̂  is surface lies in a three dimensional one given by f = i> and requires another 

constraint to obtain complete information. 
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1 6 . 8 1 - > 'tics and Phase Transi t ions 

We have seen that in the eikona! wave situation, places where the Lagrangian 

submanifold corresponding to an eikonal wave does not project nicely onto y vpacr 

corresputui to caustic s of the wave field. These structures correspond in higher order 

derivatives vanishing at critical parameters in our stationary phase. In tlie statis

tical mechanical context, the situation is simpler because only maxima contribute 

to the state as opposed to arbitrary critical points. In Rene Thorn's catastrophe 

theory' such a condition is called the Maxwell condition. The places where the 

thermodynamic Lagrangian submanifold does not project nicely onto the intensive 

variables correspond to first order phase transitions. 

18.8.2. Convexity a n d First Order Phase Transi t ions 

For deBciteness, let u* use the extensive variables U and V to desdbe the ideas 

of this section, though any set y would do as well, [Gibbs, 1873bj considers the 

form of the entropy as a function of U and V. He showed that S is a concave 

function of these variables. This means that for any / £ [0, i j . and {t'a. Ya). {Ub, Yb) 

in the domain of interest, we have the inequality 

S((l-t)Ua + tUb,i\-t)Va + tVb)> U - t)S{Ua.Ya) - tS{Vb.Yh) (16.7G) 

If we think of the a raph of 5 as a two dimensional surface ir [V Y. 5) space, this 

just means that ibe graph of S docs not fail below a hue segment joining any two 

points on it Equivalently. the region below thb- graph l- convex (ami so one -ay-

- S is a --onvex function] 
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(iihl)'-" argument Tun> a-- follows Assume wr had a point ( r r . l ' r - S f ) on 

tin' graph of S which Ia> below a lino segment joining the two allowable states: 

[('a-^'a- £<.) and (f/fe. V'(,,S(,). As the system wants to maximize itr, entropy as much 

as possible, instead of going into a homogeneous phase with Ur. V'c, it will split into 

two phases, one of UaA'a and one with (/"(,,Vb in such a way to have the total be 

l / v . V'c. and yet get greater entropy than S e . In fact the system will try to do this 

in the way that gives the maximum total eatropy. The combination of phases with 

the highest entropy will lie on the convex hull of the region below 5 . (The convex 

hull of a region is the smallest convex region containing it. It contains at least all 

points of a!! line segments whose ends lie in the original region.} Thas the actual 

etitr*^" function will be concave. "Flat parts" of its graph (where a tangent plane 

contains more than a point) correspond to states which are linear combinations of 

the states corresponding to the extreme points which are at the boundary of the 

flat regions (and represent pure phases of the substance). 

Notica that if the graph of the entropy contains a straight line segment, then 

the corresponding derivative along that direction is constant. Thus all points in 

a flat region have the same values for the intensive variables corresponding to the 

fiat directions. If we choose an underlying smooth entropy function arbitrarily, it 

is non-generic for it to contain any straight line segments (though one would have 

to verify that this is true of entropies that arise from physically possible statistical 

mechanical situations), Tht-refore all the phase transition type behavior comes from 

taking the convex hull, and we may classify the possibilities. 

If we have only one extensive quantity, say V (as in an isothermal Van der 
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V\'aah ga>'l. then t he r e i- only one type of i - inn lu rc m i r t i i cc i w l m h .- di pn tt-il m 

figure 116 b) We <omavif\ the en', ropy h> adding *. hm M'gimnl wln< h i- tangi nt 

at t h e p u m l s where it touches, the original graph of 5 T h e endpoin t s of ihi> line 

segerm-nt correspond t o t h e liquid and ga-s phases (for ins tance) Physically we th ink 

of a p u d d l e of fluid in t h e hot torn of a volume tha t we are expanding at cons tan t 

t e m p e r a t u r e . As we increase (he volume the fluid evapora tes at constant press ur/ 

( t he vapor pressure) unt i l it is all gas T h u s , as we move along the segment from 

one t o t h e o the r , the p ropor t ion changes from all of one K, all of the o ther . T h e 

p res su re is the slope, so the whole change takes place at cons t an t pressure. 

convex cv— 
entropy 

. > V 

Figure 16.5: Isothermal entropy as a function of volume for the Van der Waal;-

gas at the gas-liquid phase transition. 

When we consider 2 extensive variables, say (' and V. we find several more 
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pn-— linliUi'^ If v,r have ihrt'c "'mumitain" peaks a.- in figure (16 6a}. then the con-

vox iiufl ii'iium" a inangular Hat r< KKHI The corners of this triangle represent 

pun- pliAM> (hkr solid, liquid, and ga>] and the interior points represent linear 

combinations of these pure states. Since there is a 2-dimensional Sat spot, there 

are two intensive variables that are constant, which are here the pressure and the 

temperature. This is then a triple point of the substanc The edges of the triangle 

hound two dimensional ruled surfaces which contain only 1-dimensional line seg

ments (since it is not generic for the original terrain to contain 'ine segments). (A 

ruled surface may be thought of as a curve in the space of lines.) These represent 

first order phase transitions between two phases as discussed above. The width of 

the lines can get shorter as we move along the surface and go to aero as the square 

root of the parameter labeling the line segments. This disappearance is called a 

critical point. The more usual picture of these phenomena is given in the intensive 

space of T and ;) as in (16.6o). We perform the Legendre transform to get to these 

variables and as we have seen, points in the graph will correspond to tangent planes 

of the original graph. If the original is convex, then so is its Legendre transform, 

but if the original has Bat spoth, then the transform can have discontinuous first 

derivatives (Le. corners). Since the first derivatives are discontinuous in this pic

ture, it is called a first order phase transition. The ruled surfaces correspond to 

edges wi'h a sharp corner, the flat triple point corresponds to three cornered edges 

coining together as in a tetrahedron vertex, and the critical point is where an edge 

smooth? out. 



W.8.3 A Generalization of Maxwell'^ EquaJ Are* Rule 

Figure 16.6: a) The entropy as a function of U and V. A flat triangle represents 

the coexistence of the three phases represented by the corners of the triangle. The 

ruled surfaces emiuating from the edges it-present phase transitions of two state*. 

The parabolic end of the ruled surface represents a critical pcmi. b) The entropy 

on T and p space giving the rnore usual picture as the [.prendre transform of a). 

16.8.3. A General izat ion of Maxwell 's E^ual Area Rule 

If we are givea a manifold M, then we h?ve "-een in st-ut- ; ' 2 1 that J1 Si, I he-

space of i-jets of functions on M, has a natural contact structure. Wo >aw in section 

2.4,5 that T'M. the cotac ' it buodle. has a natural symplertir strutture *• which 

is minus the differential of the canonical one-form $. There is a natural projection 

fieri I1 M to T'M, which sends the unt-jei of a function at J fe M to it>- differential 

there. Lrgendre submanifolds in J ' M project to Lag- ngian subjnauifohK in T* M 
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Any loop in J1 M which lirs- in a Legendre sub manifold therefore projects to a loop 

in 7 A/ with zero anion (i.c the integral of 8 around the loop vanishes). We may 

grHCrah/.r (his in 

Lemma 18.7. Any piece wise smooth loop in J1 M whose tangent vector at each 

point lies in the contact piaoe at that point projects to a loop with zero action in 

T'Xf. 

Vroof. Iu local coordinates an J ' A / , the contact planes are ^iven by the tangent 

vectors annihilated by the one-form du - p dx (A'heie x are coordinates on M, 

u is the value of the function whose jet the point in J1 M represents, and p its 

derivative). The integral of this one-form around our loop therefore vanishes (since 

the loop is tangent to the contact planes). The canonical one form on T* M pulls 

back to p di on J1 M. The integral of the canonical one-form is thus equal to the 

integral of du on each local piece. But u is a well defined function globally on the 

loop. Therefore the integral of du and therefore of 0 = pdz around the loop is zero. 

Q.E.D. 

Let us now use this lemma to generalize Max" ell's "equal area" rule for first 

order phnse transitions. Let us be given S-JHK* smooth function S of the variables 

/. which are linear coordinates on the linear state space M. This represents the 

"entropy** as a function of the extensive thermodynamic variables, but without 

regard for the thermodynamic stabi' :ty of the state it represents. We have seen that 

the entropy of the real state of the system, as a function of y will be the smallest 

concave fuurtioL Sr that is everywhere greater than or equal to 5. Equivalently, 

the graph of 5 f is the boundary of the convex hull of the region below the graph 
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. , S Consider any pieceuise smooth loop in M > !Jf. who1-*' points arc eitlwr 

in the graph of S or the graph of Sf U we arc at a pmiH (untamed m both 

graphs, then the differentials dS and dSr arr also equal. (If 'he\ weren't equal 

then their tangent byperplanes would intersect transversely there and .S'r wouldn't 

he everywhere g'eater than T equal to S.) We may therefore lift our loop to both 

J1 M and T*St by sending each point to the jet or differential of th- function whose 

graph it lies in. Now the tangent vector to the original curve at each point is also 

tangent to the graph of the function whose jet we use to lift. Thus the tangent 

vector to our curve in J}M a; each point lies in the corresponding contact plane. 

By the lemma above, the loop in T* M has zero action 

Furthermore, if Sr >s strictly greater than S, then its graph must contain a 

straight line segment {otherwise we could lower it and still keep it concavel. The 

derivative along this line segment is therefore constant. The Lagrangian submani-

fold dSc in T*M will therefore have a singular projection onto 'he thermodynami-

caJly conjugate (cotangent fiber) variables along this direction These many state? 

with the same value for the conjugate variable? represent different combinations of 

amounts of the various phases that can coexist with that value. The graph of dS is 

a Lagrangian submanifold which agrees with dSf except in this singular region If 

we describe a loop consisting of the singular line in th< graph of <f 9f fr'jrri ore md 

to the other and then back to the beginning of 'he line inside the graph of dS. we 

have just seen that the symplertic area enclosed by the loop is zero 

But this generalizes the usual Maxwell equal area rule Tins rule concerns the 

situation where we hold the temperature fixed and consider the isothermal equation 
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of >UHv n the (>-.*') plane For the Van der UaaK g,v. where 

(16.77) 

tiit'M* i>.ith«T!aal curves look like figure (16.7). Maxwell showed that the area be-

iwocii tIn- two curve:- lying above the phas-e transition line b equal to the area 

between them below it. Our construction generalize." this to arbitrary loops in the 

thermodynamic phase space, which need not be isothermal. 

Figure 16.7: The Maxwell equal area construction for the Van der Waals equation 

of state. 
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16.9. Relations Between jytnplect ic The rmodynamics and Mechanics 

It is time now to bring together the f&j-c mating structure thai wo have MTD 

arise asymptotically out of -vaves and out of statistical mechanics. \\\ have sen: 

many tantalizing clues that these theories have much in parallel and would like to 

make these structures explicit. That there should he a connection between the-.? 

theories and some of the parallels were first suggested to me by Robert Liitlejohn 

16.9.1. A) Eikonal Waves and S ta t iona ry Phase 

In wave theory we deal with waves in the cikonal limit where we study the 

properties of waves represented by nany wavelengths. We introduce asymptotic* 

which -s;retcb the scale length and work with quantities defined in terms of the 

slow space y = ( j . The method of stationary phase lets us asymptotically express 

quantities that a priori depend on the whole wave in terms of values only near a 

stationary phase poiat. 

16.9.1. B) Thermodynamic Limit a o d Steepest Descents 

In statistical mechanics we deal with statis:ics in the thermodynamic limit 

where we study the properties- of the statistics of mechanical systems represented 

by many degrees of freedom. We introduce asymptotic*- in stretch the scale of the 

extensive observable? and work wth quantities defined, m terms of the rcs<aled 

values, y = <j. The method of steepesi descents ],•*,- u>- ?.-ympiotx all\ evpri1--

quantities that depend a prion on the entire pmh.ibility ib-irifiiition. m term- of 

values only at a maximum 
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16.9.2, A) Wavee and the Feynman Path Integral 

W may view wa\r mechanics in terms of the Feynman path integral. The 

value of the nave at a /,.ven point in the observation space (typically a point in 

three space, but mon general things may orcur) is expressed a* an integral, over all 

path.*- to the point of interest, n{ the exponential ol i limes the action. The artion S 

on a given path is the integral of the Lagrangian along that path. Asymptotically, 

the exponent scales as l/e. We apply stationary phase to see that only those paths 

with extremal actions can contribute asyrn totically, 

16.9.2. B) Probability and the Maximum Entropy Formalism 

We may view statistical mechanics in terms of an integral over all observation 

path- (or oquivaicatly all veighted probability distributions). The value of the 

probability density at a given point in the observation space (sometimes the three 

dimensional spare of energy U. volume \\ and number A", but often more general) 

is expressed a? an integral (the average} of the exponential of the entropy over all 

probability distributions consistent with the observation point of interest . The 

entropj S of a given distribution is the integral of - p log p over that distribution 

Asymptotically the exponent scales as l/f. We apply steepest descents to see that 

iiiiK that ds-inhution with maximum entropy can contribute asymptotically. 
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16.9.3. A) Wave Path Integrals over a Subapnre 

Often in wave mechanic- wr don't do the entire path integral at ntue An 

example of a romnimon f>roblem is that of finding a light wave at a point m -p;i< r 

given if value on some initial surface (or volume, surface, line or point, or many of 

them may be emitting waves relevant to the region of interest; m the limit we may 

have a continuum of source types) We may do this by integrating over all path-. 

but we often like to first integrate over all paths between our point and a given 

point of the surface, and then integrate the resulting values over the surface Only 

the extremal path between the two points will contribute and we may introduce an 

action defined on the surfare. relative to the observation point, which is just the 

action of the extremal path to that point. The remaining part of the integral 'o 

obtain the desired wave value is a finite dimensional integral over the initial surface. 

16.9.3. B) Probability Distribution Averages over a Subspace 

Often in statistical mechanics we don't do the entire probability integral at 

once. An example of a common problem is that of finding the probability distri

bution on the space of two thermodynamic systems in contact with one another 

(they may exchange any or all of the extensive quantities and there may be many 

such L ->upled systems; in the limit we may have a continuum of systems). We may 

do this by integrating over all distributions consistent with the constraint, but we 

often like to first integrate over all consistent distributions on the product -pace 

for whirfi the first space's thermodynamic quautitie- have piven values aiid ttier 

integrate the resulting distributions over the-e vahi"s For eat h -et of value- on the 
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hr-t -p.if. only the maximal entropy con-ir-tmt distributions on the full spare will 

< niitribmr ,inil wr may m'rudure an entropy defined on the space of thermodynamic 

ol.-.-en^hJe- mi the first spate, relative IO the rorisrraint conditions, which is just 

the maxima! entiopy uver all consistent distributions with the given Values for the 

fir^t -part1 The remaining part of the integral is an integral over the observabk-s of 

the first system. 

16.9.4. A) Lagrange Multipliers and Canonical Conjugacy 

For the wave system we may also decide not to impose the constraint that the 

end of the integrated paths' has to end at the point we are interested in. To make the 

stationary points of this unconstrained problem obey the constraints, we introduce 

Lagrange multipliers k that are in the dual space to the relaxed constraints. In 

the wave case, this asymptotically becomes the dual space of the tangent space at 

the point of observation (i.e. the cotangent space). We say that the variables y 

and k are canonically conjugate. Instead of the exponential just being of iS/t, it 

is of i(S - {k,y))/t. Here S is a function of both the initial and final endpoint of 

the paths, and the integral is over both. We use stationary phase and force the 

result to apply to the point of interest by choosing k so that the differential of the 

exponential vanishes at the desired point. This gives: k = dS, where this 5 is a 

function only of the observation point (the initial point integral already having been 

done)- Thus we sec that k is really the wavevector and the eikonal wave is naturally 

associated with the Lagrangian submanifold defined by dS in the cotangent bundle 

of y spare 
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18-9.4. B) Lagrange Mult ipl iers and Thermodynamic Oonjugncy 

For the statistical system we may also deride not tn impose tin (imMr.imt 

that the total mean value.- of thr thermodynamic quantitie- -ire the mie- w arc 

interested in. To make the maximum entropy states t*f this uiKonM rained problem 

obey the constraint?, we introduce Lagrange multipliers A' that are in the dual 

space to the related constraint*. In the statistics case, this asymptotical!} bernnu"-

the dual space of the tangent space of the space of extensive quantities at the point 

of observation (i.e. the cotangent space) We say that the variable1- y and A' are 

tbermodynarakally conjugate Instead of the exponential just being of Sit. it is 

of (S -~ (A'.y)}. Here S is a function of both the thermodynamic quantities of t i e 

Erst system and of the total system, and the integral is over bo.h We use steepest 

descents and force the result to have the total mean values of interest by choosing .V 

so that the differential of the exponential vanishes at the desired point This give? 

A" = cfS, where this 5 is only a function of the total mean vainer (the integral 

over the values of the first system already having been door) Thus- we see that A" 

is really the set of conjugate thermodynamic variables ano the overall eqi at ion <»f 

state is naturally asociated with the Lajrangian subrr.anifold defined, by dS m the 

cotangent bundle of y space 

16.9.5. A) Fourier Transforms and Legendre Transform? 

In the wave case, the effect of utilizing the Lagrange multipliers k was to intro

duce an extra integration o«- f rlik * *. We recognize this a- the Fourier transform 

In general, a wave and its runner transform are very different and there is no way 
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to define our wave a> a function of both * and .r. We have ^en that asymptot

ic aM> *T may introduce the jural Fourier transform ss a function of fr and |f by 

mtr«du< mg ^ window function that approaches- a 6-fuuction on the slow tcale and 

approaches- a constant m the fast wavr scale We fitid that appropriately scaled 

tiaiihs-iafi- represent a.-.ymptotk slates with a dei.ntte y and a definite k. There 

L> an ab^hne uncertainty principle which prevents us from finding such states in 

J- and k An eikona! wave has a local Fourier traBsform that is supported on the 

Lagrangian sub-manifold k = dS{y). The Fourier transform of an cifcoaal wave is 

another t-ikcmal wave whose phase function is the Legendre transform of the original 

phase function. 

18.9.5. B) Laplace TVausfomia a o d Legendre Traaaforms 

In the statistics case, the effect of utilizing the Lagrange multipliers X was 

to introduce an <2Xtra integration over c<^x•v'>/,. We recognize this as the Laplace 

transform. In general, a distribution and its Laplace transform are v.-ry different and 

there i« no way to define a probability distribution on both A" ?nd y. We have seen 

that asymptotically we may introduce the local Laplace transform as a function of 

A" and y by introducing a window function that is an intermediate scale exponential-

We find that appropriately scaled Oatissiass represent asymptotic distributions with 

i definite X and a definite y. There is as absolute uncertainty principle that says 

that asymptotically the dispersion tensor in A' and the dispersion tensor in z are 

inverses- A thermodynamic equation of state has a local Laplace transform that is 

supporter) on the Lagrangian su'>manifoid A' = dS{yl. The Laplace transform of i 
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t h e r m o d y n a m i c probabili ty di"~lnlmsioii i- a n o t h e r tun whu--<- I'nirupj. f u n n u m i-

t h e L c g r n d r e tr<w?>furm of t h e original ent ropy T h e piirli 'ii n finn ti<>Ti i-. th<- Ldpl n c 

t r a n s f o r m of t h e dfriMU of - t a l c ^ und a>ympu»UcaIIv t t ie \ -trc bo th c x p u n r n m l -

nf q u a n t i t i e s over < 
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