Skull melting of synthetic minerals

PDF Version Also Available for Download.

Description

Direct high-frequency induction melting of dielectric materials in a water-cooled cage has been developed in the LASL synthetic minerals program. Molten material is contained in a skull, i.e., sintered shell, of its own composition so the traditional problems associated with refractory melt contamination are essentially eliminated. Preliminary analyses of power input, cage design, and coil geometry are discussed. Initial experimental results on the preparation of polycrystalline ingots, single crystals, and glasses are presented along with possible applications of this technique.

Physical Description

Pages: 24

Creation Information

Scott, S.D.; Hull, D.E. & Herrick, C.C. December 1, 1977.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Direct high-frequency induction melting of dielectric materials in a water-cooled cage has been developed in the LASL synthetic minerals program. Molten material is contained in a skull, i.e., sintered shell, of its own composition so the traditional problems associated with refractory melt contamination are essentially eliminated. Preliminary analyses of power input, cage design, and coil geometry are discussed. Initial experimental results on the preparation of polycrystalline ingots, single crystals, and glasses are presented along with possible applications of this technique.

Physical Description

Pages: 24

Notes

Dep. NTIS, PC A02/MF A01.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LA-7080-MS
  • Grant Number: W-7405-ENG-36
  • DOI: 10.2172/5201257 | External Link
  • Office of Scientific & Technical Information Report Number: 5201257
  • Archival Resource Key: ark:/67531/metadc1061426

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 1, 1977

Added to The UNT Digital Library

  • Jan. 22, 2018, 7:23 a.m.

Description Last Updated

  • Feb. 2, 2018, 2:43 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Scott, S.D.; Hull, D.E. & Herrick, C.C. Skull melting of synthetic minerals, report, December 1, 1977; New Mexico. (digital.library.unt.edu/ark:/67531/metadc1061426/: accessed April 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.