A CAMAC-CONTROLLED CALIBRATION SYSTEM FOR
NUCLEAR REACTOR INSTRUMENTS

William P. McDowell and Ronald J. Cornella

Prepared for
IEEE Nuclear Science Symposium
San Francisco, CA
October 19-21, 1977

NOTICE
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS
operated under contract W-31-109-Eng-38 for the
U. S. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION
The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) between the U. S. Energy Research and Development Administration, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in accordance with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

<table>
<thead>
<tr>
<th>University of Arizona</th>
<th>Kansas State University</th>
<th>The Ohio State University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carnegie-Mellon University</td>
<td>The University of Kansas</td>
<td>Ohio University</td>
</tr>
<tr>
<td>Case Western Reserve University</td>
<td>Loyola University</td>
<td>The Pennsylvania State University</td>
</tr>
<tr>
<td>The University of Chicago</td>
<td>Marquette University</td>
<td>Purdue University</td>
</tr>
<tr>
<td>University of Cincinnati</td>
<td>Michigan State University</td>
<td>Saint Louis University</td>
</tr>
<tr>
<td>Illinois Institute of Technology</td>
<td>The University of Michigan</td>
<td>Southern Illinois University</td>
</tr>
<tr>
<td>University of Illinois</td>
<td>University of Minnesota</td>
<td>The University of Texas at Austin</td>
</tr>
<tr>
<td>Indiana University</td>
<td>University of Missouri</td>
<td>Washington University</td>
</tr>
<tr>
<td>Iowa State University</td>
<td>Northwestern University</td>
<td>Wayne State University</td>
</tr>
<tr>
<td>The University of Iowa</td>
<td>University of Notre Dame</td>
<td>The University of Wisconsin</td>
</tr>
</tbody>
</table>

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights. Mention of commercial products, their manufacturers, or their suppliers in this publication does not imply or connote approval or disapproval of the product by Argonne National Laboratory or the U. S. Energy Research and Development Administration.
A CAMAC-CONTROLLED CALIBRATION SYSTEM FOR
NUCLEAR REACTOR INSTRUMENTS

William P. McDowell* and Ronald J. Cornella**
*Electronics Division
**Applied Physics Division
Argonne National Laboratory
Argonne, Illinois 60439

Summary

This paper describes both the hardware and the software which have been developed to implement a nuclear instrument calibration system for the Argonne National Laboratory ZPR-VI and ZPR-DX reactor complex.

The system is implemented using an SEL-840 computer with its associated CAMAC crates and a hardware interface to generate input parameters and measure the required outputs on the instrument under test. Both linear and logarithmic instruments can be calibrated by the system and output parameters can be measured at various automatically selected values of ac line voltage.

A complete report on each instrument is printed as a result of the calibration and out-of-tolerance readings are flagged. Operator interface is provided by a CAMAC-controlled Hazeltine terminal. The terminal display leads the operator through the complete calibration procedure.

This computer-controlled system is a significant improvement over previously used methods of calibrating nuclear instruments since it reduces reactor downtime and allows rapid detection of long-term changes in instrument calibration.

Introduction

To comply with operating regulations imposed by the Nuclear Regulatory Commission and an Internal Reactor Safety Review Committee, the nuclear instruments used for reactor operation and control at the Argonne National Laboratory Zero Power Reactor complex (ZPR-VI and ZPR-DX) are required to have all of their basic operating characteristics measured, compared to specified tolerance values, and recorded. These basic operating characteristics include dc output voltages, RMS noise levels, risetime, trip time and bucking current characteristics. On logarithmic-response instruments the volts-per-decade constant, logarithmic accuracy, and period output are also measured. All of the above parameters are measured over an input current span of 10^-11 to 10^-4 amperes for a number of specified ac line voltages.

Manual calibration and record keeping has typically required between three and four hours per instrument, resulting in long reactor downtimes and interference with the experimental program. In addition, the records generated by this method do not lend themselves to rapid intercomparisons.

To eliminate the shortcomings of the manual methods of instrument calibration, a computer-controlled, semi-automatic calibration system has been developed. This system is interfaced to its control computer by a CAMAC system and provides for operator interaction through the use of a CAMAC-interfaced CRT terminal operating in a form-fill (foreground-background) mode. The use of this mode of operation leads the operator through the complete calibration, which thus allows its operation by personnel unfamiliar with the electronic circuitry of the instrument under test.

A block diagram of the system is given in Fig. 1. The system has been implemented as a CAMAC peripheral on an SEL-840 computer. It consists of CAMAC parallel I/O ports, a hardware controller which generates the required instrument input signals and in conjunction with a digital voltmeter (DVM) measures the instrument's output response, a line voltage controller, and a Hazeltine CRT terminal which provides the operator interface.

The software package for the system consists of an assembly-language handler for the hardware interface and a set of Fortran application subroutines for system control.

The assembly-language handler provides the Fortran programmer with total control of the hardware interface via a single Call statement. The use of the handler requires no knowledge of the bit structure of either the command or read I/O words; and, furthermore, the CAMAC operations are completely transparent to the Fortran programmer.

To operate the system, the operator need simply provide input to the CRT terminal; i.e., name, date, model number, etc. The system will then provide a self calibration of the hardware interface and directions appropriate for calibrating the type of instrument under test.

This paper will discuss the design details of the hardware controller including its self-calibrating features. It will also discuss the software design, including the assembly language drivers, the Fortran subroutines, the CAMAC interfaces, and the overall system operation.

At the present time, the system is used to calibrate picoameters and high-voltage power supplies. It has successfully generated the exponential currents required to calibrate Log-N period meters, but the necessary modifications to the system hardware to automatically switch between two output signals (Log-N and Period) have not been implemented.

Hardware Controller

Figure 2 is a block diagram of the hardware controller. This device generates the required input signals for the instrument being calibrated as directed by the system software via the CAMAC output register. It also interfaces the measurement data to the computer for report generation.

The controller is comprised of five basic sections: the input line receiver and data latches, the analog signal generator, the command decoder and drivers, the

† Work performed under the auspices of the U. S. Energy Research and Development Administration.
The controller operates as follows:

1) A command consisting of 24 bits of data accompanied by a strobe pulse is received from the computer.

2) Upon receipt of the strobe pulse the data is decoded and appropriate signals generated to the instrument under test and the measurement system.

3) Output data is made available to the computer via a CAMAC input port and a LAM signal is generated.

4) The controller then awaits the next command.

Input Section

The input section consists of a set of line receivers designed to accept the outputs of a CAMAC output register. The output of these line receivers is connected to a set of data latches which are strobed on the trailing edge of the command strobe pulse. Upon receipt of the strobe pulse, the command is executed. The command word table contains the data format used in the system. The first 12 bits (0-11) in the command word specify the input voltage level used for the test. These bits are directly connected to a 12-bit digital-to-analog converter. The output of the converter is a unipolar current proportional to the value of the binary input. This can be expressed as follows:

\[I_0 = \frac{N}{4095} \]

where \(N \) is the decimal equivalent of the 12-bit field.

This unipolar current is delivered to the summing junction of an operational amplifier where it is converted to a voltage for use throughout the system.

Bits 12, 13, and 14 are decoded by a three-line to eight-line converter and are used to select an output current-determining resistor. If all three bits are zero, no resistor is selected.

Bits 15 and 16 select the line voltage to be used to power the instrument under test.

Bit 17 and 18 are used to switch a set of calibrated resistors into the system to allow the internal current-determining resistors to be checked.

Bits 19, 20 and 21 control the input multiplexer for the DVM, the risetime mode and the readout of the trip-time timer.

Analog Signal Generator

The analog signal consists of the digital-to-analog converter and its associated amplifiers, the current-determining resistors, and the associated relays and solid-state switches. For the purposes of testing reactor instruments in which the input connects directly to the summing junction of an operational amplifier, an adequate current source consists of a voltage supply and series resistor. Therefore, in this controller the voltage source is the D-A converter and the proper resistance value is selected by the control word. A range of currents from \(10^{-11} \)A to \(10^{-4} \)A can be generated by suitable selection of voltage and resistance. To help insure accurate current generation into the summing junction of the instrument under test, the operator is prompted to zero the instrument. The amplifier output is tested by the system and the calibration will not proceed until a proper zero has been achieved.

Command Decoders

The command decoders for the current-forming resistor selection, the instrument-under-test line voltage selection, and the self-calibration selection are N line to M line converters (3 to 8 or 2 to 4). The input word is directly executed upon receipt of the strobe pulse.

If a risetime measurement is selected, however, the strobe pulse causes the following sequence:

1) The input voltage to the current-forming network is removed and a three-second delay implemented to allow the instrument under test to stabilize.

2) The voltage is reapplied to the current-determining resistor.

3) A scaler is started when the output voltage reaches 1.0 volts and stopped when the output voltage reaches 9.0, corresponding to a 10-90% risetime measurement.

4) The trip timer is started at the 1.0 volt level and turned off when the output relay drops out.

5) After a 10-second delay to allow sufficient time for the test the scalar output is placed in the output bus by the output multiplexer and read by the computer.

6) If a trip-time readout were desired at this time, the software would deliver a trip-time command to place the output of the trip-time scaler onto the output bus.

The test command causes the input to the risetime comparators to be connected to the output of the D-A converter and the output from the comparators to be connected to the output bus. The software then checks the comparators for operation at 1.0V and 9.0V.

Parameter Measurement System

The parameter measurement system consists of the digital voltmeter, the risetime comparators, timers, the trip-time timer, and the RMS to DC converter.

The output from the instrument under test is connected to the following points in the controller:

1) The DVM input selection switch

2) The RMS to DC converter

3) The risetime comparators

As the test of a particular range on the instrument under test progresses, the digital voltmeter input is switched to the desired signal source.

A separate pair of wires is run from a spare set of contacts on a trip relay to the trip-time control.

The test of a particular range of a picoammeter would proceed as follows:

1) An ac line voltage of 95 volts is selected.
2) Various values of input current are generated, and the output voltage and the RMS noise voltage are recorded for each value.

3) A risetime measurement is performed.

4) The above steps are repeated for 117 Vac and 135 Vac.

5) The above sequence is repeated for the next range to be tested.

In implementing this system, we have elected to use an external DVM to measure the required parameters because of the ease of providing NBS traceability for such a DVM. The other parameters in the system that must be calibrated are the oscillator for the risetime timer and the current-determining resistors.

The internal oscillator's calibration is checked with a traceable counter timer. The current-forming resistors can be measured without removing them from the chassis by means of a connector arrangement.

Output Multiplexers and Line Drivers

The digital output of the DVM is converted to a binary value and latched in a tri-state buffer. The outputs of the risetime and trip-time scalers are also tri-state devices and are connected to a common output bus along with the DVM buffer outputs. Normally the DVM latches are enabled and the DVM data is delivered to the computer when a conversion-finished signal is generated.

When either the risetime or trip-time mode is selected, the appropriate output is enabled and the remaining two outputs are in the high-impedance mode. Line drivers interface the system with the CAMAC input register located 200 feet from the test instrument.

System Software

As previously mentioned, the software package for the system consists of a set of Fortran application subroutines which interface to the hardware controller via the CAMAC crate by means of an assembly language handler.

The assembly language handler allows the Fortran programmer to use all the features of the instrument checkout system. The programmer need only provide the call statement: CALL INSTTF (VOLT, IRANGE, LINE, ICALR, IDVM, IVMO, IER). VOLT determines the output and voltage of the D-A converter, IRANGE selects the current-determining resistor, LINE selects the ac line voltage applied to the instrument under test, ICALR selects the internal calibration system and IDVM selects the DVM mode. The arguments thus are used to form the output command word. Subroutine INSTTF provides the full capabilities of the instrument checkout system together with all required CAMAC operations and range checking of INSTTF arguments. The allowable argument ranges are:

\[
\begin{align*}
VOLT & \in [0, 10.0] \\
IRANGE & \in \{0, 4, 5, 6, 7, 8, 9, 10\} \\
LINE & \in \{0, 1, 2, 3\} \\
ICALR & \in \{0, 1, 2, 3\} \\
IDVM & \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}
\end{align*}
\]

The arguments IVMO and IER are returned by the subroutine such that:

\[
\begin{align*}
IVMO & \in \{0, 2, 4, 6, 8\} \\
IERS & \in \{0, 1\}
\end{align*}
\]

The above sequence is repeated for the next range to be tested.

(IDVM=0.2, 4, 6, 8 \rightarrow IERS=1 \times 10^4\text{ (VOLTAGE)}

(IDVM=3.5 \rightarrow IERS=1 \times 10^4\text{ MILLI-SECONDS})

IVMO=IERS:

\[
\begin{align*}
IVMO=0: & \text{ NO COMP. TRIP} \\
IVMO=2: & 10\% \\
IVMO=3: & 50\%
\end{align*}
\]

IDOVM=IERS:

\[
\begin{align*}
IDOVM=0: & \text{ INSTTF arguments within acceptable range} \\
IDOVM=1: & \text{ INSTTF arguments not within acceptable range}
\end{align*}
\]

The calibration system is located in the reactor control panel to allow convenient use. When a calibration is desired, the current input and the ac line cord are removed from the instrument under test and attached to the appropriate outputs on the hardware controller. A cable is then attached between the instrument and the controller to allow the output response to be measured. The checkout begins by requiring operator input, such as date, name of operator, model number, serial number, date of last calibration, and ZPR facility number. System checks are provided to assure all of these entries are appropriate, and, if so, based on these entries the system then leads the operator through a checkout appropriate for the particular instrument under test. If required, the checkout will begin with an automatic calibration of the system's internal range resistors and comparator trip levels. The system then proceeds to generate appropriate picoammeter input signals for measuring amplifier output voltage, RMS noise level, risetime, trip time and bucking-current characteristics over an input current range from \(10^{-11}\) to \(10^6\) amperes for a variety of instrument ac line voltages. The operator needs simply to enter meter readings, reset the trip circuit and change range switch settings under prompting by the CRT. The system provides ongoing measurement results, via the CRT, where any parameters not within acceptable tolerances are flagged. When an out-of-tolerance value is detected, the operator has the option to continue the calibration, to restart the calibration or to terminate the calibration and enter a maintenance routine. The maintenance routine is provided to allow the operator to make any given measurement for diagnostic purposes.

After the measurements are made, the system then enters a print cycle whereupon an appropriately formatted report is printed on the system line printer (see appendix). This report includes all operator input parameters as well as the flagging and delineation of all parameters which are outside of specified tolerances. Due to its completeness, the report is appropriate for interrogation by technical as well as auditing personnel.

+ To be used in period generator code.
Conclusion

This computer-controlled calibration system has resulted in a significant savings in the time required to calibrate instruments. By providing printed records with any out-of-range values flagged, the system has improved the task of maintaining long-term instrument calibration logs. Future development of the system will include calibrating pulse mode instruments and recording the system data on magnetic tape to provide a rapid means of observing long-term parameter drift.

Command Word Table

<table>
<thead>
<tr>
<th>Bit</th>
<th>Command Word</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3</td>
<td>D/A Command</td>
<td>Voltage Select</td>
</tr>
<tr>
<td>4</td>
<td>Range Resistor</td>
<td>000-NOP, 001-10^4, 010-10^5, 011-10^6, 100-10^7, 101-10^8, 110-10^9, 111-10^10</td>
</tr>
<tr>
<td>5</td>
<td>Line Voltage</td>
<td>00 115, 01 95, 10-NOP</td>
</tr>
<tr>
<td>6</td>
<td>Self-Calibrate</td>
<td>00 Normal, 01 Reserved, 10-10^3, 11-10^7</td>
</tr>
<tr>
<td>7</td>
<td>DVM & Risetime</td>
<td>001 CAL-R, 010 IUT, 100 NOP, 101 RMS, 110 TRIP TIME</td>
</tr>
<tr>
<td>8</td>
<td>Reserved for Period Meter Tests</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Calibration Voltmeter</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. System Block Diagram

Fig. 2. Hardware Controller
APPENDIX

DATE 10/3/77
FROM MITCHELL LADENSKI
TO 2PR INSTRUMENT CHECKOUT LOG

SUBJECT CALIBRATION OF INSTRUMENT CHECKOUT SYSTEM

OPERATOR INPUT PARAMETERS

STANDARDIZED CALIBRATION RESISTOR VALUES:

- $1 \times 10^3 = 1000$
- $1 \times 10^7 = 10000000$

LINE VOLTAGES:
- 115 VAC = 115.00
- 135 VAC = 135.00
- 95 VAC = 95.00

VOLTMEETER CALIBRATION DATE: 7/17/77
ELECTRONICS CALIBRATION DATE: 7/17/76 *** NOT WITHIN CS4 TIME STANDARDS ***

RESULTS OF RANGE RESISTOR CALIBRATION

- $1 \times 10^4 = 10000$
- $1 \times 10^5 = 100000$
- $1 \times 10^6 = 1000000$
- $1 \times 10^7 = 10000000$
- $1 \times 10^8 = 100000000$
- $1 \times 10^9 = 1000000000$

RESULTS OF COMPARATOR CALIBRATION

- 10% TRIP LEVEL = .960
- 90% TRIP LEVEL = 8.902

DATE 10/3/77
FROM MITCHELL LADENSKI
TO 2PR INSTRUMENT CHECKOUT LOG

SUBJECT CALIBRATION OF LINEAR INSTRUMENT

MODEL NUMBER CD271-24
ANL NUMBER 12465
DRAWING NUMBER AO069-0259-DG-00
REACTOR FACILITY 2PR-9
CHANNEL NUMBER 5

LINE VOLTAGE = 95.00

<table>
<thead>
<tr>
<th>RANGE</th>
<th>CURRENT (AMPS)</th>
<th>METER READING</th>
<th>AMPLIFIER OUTPUT (VOLTS)</th>
<th>NOISE (MV)</th>
<th>RISETIME (MS)</th>
<th>TRIP TEST (MS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2E0</td>
<td>.00</td>
<td>.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1E-4</td>
<td>.97E-04</td>
<td>.96</td>
<td>-9.95</td>
<td><100.</td>
<td>14.6</td>
<td><1.00.</td>
</tr>
<tr>
<td>1E-5</td>
<td>.97E-05</td>
<td>.98</td>
<td>-9.71</td>
<td><100.</td>
<td>13.8</td>
<td><10.00.</td>
</tr>
<tr>
<td>1E-6</td>
<td>.97E-06</td>
<td>.96</td>
<td>-9.49</td>
<td><100.</td>
<td>10.0</td>
<td><100.00.</td>
</tr>
<tr>
<td>1E-7</td>
<td>.97E-07</td>
<td>.94</td>
<td>-9.34</td>
<td><100.</td>
<td>8.4</td>
<td><100.00.</td>
</tr>
<tr>
<td>1E-8</td>
<td>.97E-08</td>
<td>.93</td>
<td>-9.25</td>
<td><200.</td>
<td>9.5</td>
<td><100.00.</td>
</tr>
<tr>
<td>1E-9</td>
<td>.97E-09</td>
<td>.95</td>
<td>-9.04</td>
<td><200.</td>
<td>26.4</td>
<td><100.00.</td>
</tr>
<tr>
<td>1E-10</td>
<td>.97E-10</td>
<td>.98</td>
<td>-9.86</td>
<td><400.</td>
<td>75.9</td>
<td><100.00.</td>
</tr>
</tbody>
</table>

DATE 10/3/77
FROM MITCHELL LADENSKI
TO 2PR INSTRUMENT CHECKOUT LOG

SUBJECT CALIBRATION OF LINEAR INSTRUMENT

MODEL NUMBER CD271-24
ANL NUMBER 12465
DRAWING NUMBER AO069-0259-DG-00
REACTOR FACILITY 2PR-9
CHANNEL NUMBER 5

LINE VOLTAGE = 95.00

<table>
<thead>
<tr>
<th>RANGE</th>
<th>CURRENT (AMPS)</th>
<th>METER READING</th>
<th>AMPLIFIER OUTPUT (VOLTS)</th>
<th>NOISE (MV)</th>
<th>RISETIME (MS)</th>
<th>TRIP TEST (MS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2E0</td>
<td>.00</td>
<td>.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1E-4</td>
<td>.97E-04</td>
<td>.96</td>
<td>-9.95</td>
<td><100.</td>
<td>14.6</td>
<td><1.00.</td>
</tr>
<tr>
<td>1E-5</td>
<td>.97E-05</td>
<td>.98</td>
<td>-9.71</td>
<td><100.</td>
<td>13.8</td>
<td><10.00.</td>
</tr>
<tr>
<td>1E-6</td>
<td>.97E-06</td>
<td>.96</td>
<td>-9.49</td>
<td><100.</td>
<td>10.0</td>
<td><100.00.</td>
</tr>
<tr>
<td>1E-7</td>
<td>.97E-07</td>
<td>.94</td>
<td>-9.34</td>
<td><100.</td>
<td>8.4</td>
<td><100.00.</td>
</tr>
<tr>
<td>1E-8</td>
<td>.97E-08</td>
<td>.93</td>
<td>-9.25</td>
<td><200.</td>
<td>9.5</td>
<td><100.00.</td>
</tr>
<tr>
<td>1E-9</td>
<td>.97E-09</td>
<td>.95</td>
<td>-9.04</td>
<td><200.</td>
<td>26.4</td>
<td><100.00.</td>
</tr>
<tr>
<td>1E-10</td>
<td>.97E-10</td>
<td>.98</td>
<td>-9.86</td>
<td><400.</td>
<td>75.9</td>
<td><100.00.</td>
</tr>
</tbody>
</table>

Date 10/3/77
From MITCHELL LADENSKI
To 2PR INSTRUMENT CHECKOUT LOG

Subject Calibration of Linear Instrument

Model Number CD271-24
Anl Number 12465
Drawing Number AO069-0259-DG-00
Reactor Facility 2PR-9
Channel Number 5

Line Voltage = 95.00

<table>
<thead>
<tr>
<th>Range</th>
<th>Current (amps)</th>
<th>Meter Reading</th>
<th>Amplifier Output (volts)</th>
<th>Noise (MV)</th>
<th>RiseTime (MS)</th>
<th>Trip Test (MS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2E0</td>
<td>.00</td>
<td>.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1E-4</td>
<td>.97E-04</td>
<td>.96</td>
<td>-9.95</td>
<td><100.</td>
<td>14.6</td>
<td><1.00.</td>
</tr>
<tr>
<td>1E-5</td>
<td>.97E-05</td>
<td>.98</td>
<td>-9.71</td>
<td><100.</td>
<td>13.8</td>
<td><10.00.</td>
</tr>
<tr>
<td>1E-6</td>
<td>.97E-06</td>
<td>.96</td>
<td>-9.49</td>
<td><100.</td>
<td>10.0</td>
<td><100.00.</td>
</tr>
<tr>
<td>1E-7</td>
<td>.97E-07</td>
<td>.94</td>
<td>-9.34</td>
<td><100.</td>
<td>8.4</td>
<td><100.00.</td>
</tr>
<tr>
<td>1E-8</td>
<td>.97E-08</td>
<td>.93</td>
<td>-9.25</td>
<td><200.</td>
<td>9.5</td>
<td><100.00.</td>
</tr>
<tr>
<td>1E-9</td>
<td>.97E-09</td>
<td>.95</td>
<td>-9.04</td>
<td><200.</td>
<td>26.4</td>
<td><100.00.</td>
</tr>
<tr>
<td>1E-10</td>
<td>.97E-10</td>
<td>.98</td>
<td>-9.86</td>
<td><400.</td>
<td>75.9</td>
<td><100.00.</td>
</tr>
</tbody>
</table>
Calibration of Linear Instrument

Model Number: CD271-24
ANL Number: 12465
Drawing Number: A0069-0259-DC-00
Reactor Facility: EPR-9
Channel Number: 5

Line Voltage: 115.00 V

<table>
<thead>
<tr>
<th>Input Current Range (Amps)</th>
<th>Meter Reading (Volts)</th>
<th>Amplifier Output (Volts)</th>
<th>Noise (mV)</th>
<th>Rise Time (ms)</th>
<th>Triplet Test (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZEREO</td>
<td>0.00</td>
<td>0.00</td>
<td><10.00</td>
<td><14.7</td>
<td><1.4</td>
</tr>
<tr>
<td>1E-4</td>
<td>.97E-04</td>
<td>9.60</td>
<td><10.00</td>
<td>14.7</td>
<td><1.4</td>
</tr>
<tr>
<td>1E-5</td>
<td>.97E-05</td>
<td>9.76</td>
<td><10.00</td>
<td>14.4</td>
<td><10.00</td>
</tr>
<tr>
<td>1E-6</td>
<td>.97E-06</td>
<td>9.54</td>
<td><10.00</td>
<td>9.1</td>
<td><100.00</td>
</tr>
<tr>
<td>1E-7</td>
<td>.97E-07</td>
<td>9.39</td>
<td><200.00</td>
<td>10.0</td>
<td><100.00</td>
</tr>
<tr>
<td>1E-8</td>
<td>.97E-08</td>
<td>9.30</td>
<td><300.00</td>
<td>20.0</td>
<td><200.00</td>
</tr>
<tr>
<td>1E-10</td>
<td>.97E-10</td>
<td>9.75</td>
<td><500.00</td>
<td>232.3</td>
<td><2000.00</td>
</tr>
</tbody>
</table>

Line Voltage: 135.00 V

<table>
<thead>
<tr>
<th>Input Current Range (Amps)</th>
<th>Meter Reading (Volts)</th>
<th>Amplifier Output (Volts)</th>
<th>Noise (mV)</th>
<th>Rise Time (ms)</th>
<th>Triplet Test (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZEREO</td>
<td>0.00</td>
<td>0.00</td>
<td><10.00</td>
<td><15.1</td>
<td><1.4</td>
</tr>
<tr>
<td>1E-4</td>
<td>.97E-04</td>
<td>9.63</td>
<td><10.00</td>
<td>15.1</td>
<td><1.4</td>
</tr>
<tr>
<td>1E-5</td>
<td>.97E-05</td>
<td>9.79</td>
<td><10.00</td>
<td>14.1</td>
<td><10.00</td>
</tr>
<tr>
<td>1E-6</td>
<td>.97E-06</td>
<td>9.57</td>
<td><10.00</td>
<td>9.1</td>
<td><100.00</td>
</tr>
<tr>
<td>1E-7</td>
<td>.97E-07</td>
<td>9.42</td>
<td><200.00</td>
<td>10.0</td>
<td><100.00</td>
</tr>
<tr>
<td>1E-8</td>
<td>.97E-08</td>
<td>9.32</td>
<td><300.00</td>
<td>30.0</td>
<td><200.00</td>
</tr>
<tr>
<td>1E-9</td>
<td>.97E-09</td>
<td>9.23</td>
<td><400.00</td>
<td>68.1</td>
<td><500.00</td>
</tr>
<tr>
<td>1E-10</td>
<td>.97E-10</td>
<td>9.82</td>
<td><300.00</td>
<td>280.3</td>
<td><2000.00</td>
</tr>
</tbody>
</table>

Total Number of Errors Detected in Check of Above Instrument: 2 Errors.

- **Check of 1×10^-10 Range Errors Indicates 2 Errors:**
 1. At Line Voltage of 135.00 Vac, Amplifier Input Current (9.97E-10 Amp), is not within five percent of meter reading (30.90).
 2. At Line Voltage of 135.00 Vac, Amplifier Output Voltage (-9.82 Volts), is not within five percent of meter reading (30.90).