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A COMPUTATIONAL METHOD OF THERMOVISCOELASTICITY WITH
APPLICATIONS TO ROCK MECHANICS

by

Seong Chul Lee, Ph.D.
The Ohio State University, 1983

The effects of temperature on a viscoelastic medium are important in
considering the long-term design of a structure. Large-scalé numerical
computations associated with rock mechanics problems have reqﬁired effi-
cient and economical models for pfedicting temperature,.stress,.failure,
and deformed structural configuration under various loading conditions.
To meet this requirement, the complex dependencé of the properties of
geological materials on the time énd temperature is modified to yield a
reduced time scale as a function of time and temperature under the ther-
worhevlogically simple material (TSM) postulate. The thermorheological-
ly linear concept is adopted in the finite element formulation by uncou-

pling thermal and mechanical responses.

The thermal responses, based on transient heat cdnduction or convec-—
tive-diffusion, are formulated by using the two-point recurrence scheme
and the upwinding scheme, .respectively. An incremental solution proce-
dure with the implicit time stepping scheme is proposed for the solution
of the thermoviscoelastic response. The proposed thermoviscoelastic so-
lution algorithm is based on the uniaxial creep experimental data and
the cofresponding temperature shift functions, and is intended to minim—

ize computational efforts by allowing the large time step size with sta-



ble solutions. A thermoelastic fracture formulation is also presented by
introducing the degenerate quadratic 1isoparametric singular element for
the thermally-induced line crack problems. The stress intensity factors

are computed by use of the displacement method.

Efficiency of the presented formulation and solution algorithm is in-
itially demonstrated by comparison. with other available solutions for a
varietonq problems.  Subsequent field applications are made to simulate
the post-burn and post-repose phases of an underground coal conversion
BRIV | ¢ o . . s - .

(UdC) experiment and .an in-situ puclear waste disposal-management prob-
lems. Time- and space-dependept temperature boundary conditions are used
to simulate thé chamber and ra&ioactive heat source temperatures. The
UéC chamber configuratioﬂ is prediéted by use of two-dimensional failure
criteria using temperature-dependent mechanical properties of coél and
overburden. A UcCC fracthe model is also evaluated by considering a
thermoeiastic elliptic'cavity model with a linking channel demonstrating
a possible channel closure in the active-burh stage. The presented‘FEM
model simulations illustrate the feasibility of the developed formula-
tions aﬁd numerical investigations in predicting the post-burn/post-re-
pose temperature, displacement an& stress responses. Recommendations

for additional work on thermo-mechanical response formulation and asso-

ciated computational technique are provided.

xvii



Chaptér I
INTRODUCTION

Thermomechanics is concerned in general with the interrelations bet-
ween the forces acting on a continuum and'the resulting time and temper-
ature dependent kinematical deformat;one. For thermoelastic materials,
the deformation response 1s fully recoverable on release. of for;es an&
temperatures. In the deformation of ideally viscous and plastic materi-
als, the release of the forces is not accompanied by the recovery of the
expended energy, and the strain caused by the forces is nonrecoverable.
The behavior of real materials is composed of the above deformational
responses in varying proportion, depending on the ﬁature of the material

and conditions under which the forces are applied.

"There are many reasons why'the influence of temperature on the me-
chanical response of a viscoelastic material is of great interest. As a
purely practical nature, many engineering materials such as polymers,
compositeé, and geological materials, etc are subjected to a wide range
of environmental and loading conditions, and a complete specificétion of
the mechanical properties of these materials can not be restricted to
room temperature nor a narrow range of temperatures. Another important
reason is that by Qse of the temperature dependence in the viscoelastic
'response, a more comprehensive analysis can be conducted by extending
vexperimental results to define the response of the material at variable
temperatures as well as extending the test results to portions of the

physical time scale normally inaccessible by conventional methods.

oy



The 'thermally—seﬂsitive viscoelastic behavior is described by two
classes of ﬁaterials, namely, "thermorhzologically eiﬁple materials
(TSM)" and '"thermorheologically complex materials (TCM)". .The thermo-
rheologically simple material exhibits a thermal trend‘similat to the
" one with time, while the thermorheologically complex material reveals an
‘independent thermal trend. These material classifications are mainly
based on the experimental data, namely, the creep or relaxation tests pc
elevated temperatures. In particular, three characteristic regions of
viscoelastic behaviof for thermally-sensitive materials are‘obsetved. At
reference temperature, a glassy region is observed in which the magni-
tude of the creep modulus, E.(t), defined as the constant stress divided
by the time dependent strain, is quite high and the loading time effects
are not pronounced. A transition region for viscoelastic response in
which thg monlug varies rapidly with time and témperature is obrerved
at more elevated temperatures. At still higher temperatures, the res-
ponse of the material is in the flow region and the modulus changes very
rapidly with timg from a small fiuice value to a value which approaches
zeto. In studying the responses of thermoviscoelastic materials, the

factors of time and temperature must therefore be taken into account.

l.1 -NUMERICAL MODELING

' The purpose of "modeling" material ana structural responses is to es-
- tablish "a hypothetical'or stylized representation” of a certain proto-
type: Many different types of modeling activities may be categorized as
“conceptual, physical, analytical, and numerical. Conceptual, analytical,

and numerical modeling activities rely on the selection of an adequate



model gf gthproptotype. Indeed, a major objective of such activities
may be~§mprovement of the conceptual model which provides a frameyork of
investigation. For large-scale modeling studies, qualitétive physical
models are ma;nly restricted by the size effect and the complex'ponli-
near behavior of the;prototype whilé closed-form solutions of analytical
models are often impossible to derive. These restrictions, coupled with
the high cost and inflexibilities associated with experimental testing,
_have'led to an increasing emphasis on numerical models. The typical num-
.ericé} modeling activities include 1) selection of a conceptual model,
11) developmgnt.of an appropriate numerical procedure or computer code,
111) construction of numerical model, iv) verification of cases againsg
known solptiops, and iv) their subsequent applications to the so}ution

of the problenm.

Long~term analysis of large-scale problems require efficient and eco-
‘nomical numerical modeling céupled with necessary modifications for the
field process mechanisms and the host environment. In addition, probleﬁs
of scaling laboratory-test results to actual problems must be investi-
gated by using comprehensive computer models. For these applications,
finite element computer models are often developed due to their varsa-
tilicy ahd commensurate growth in computational technology. A typical
FEM modeling sequence proceeds in the following manner;

a) Problem definition: Problem type, model size, selection of proper

conceptual model, and estimate of required capacity of comﬁuter
~ resource.

b) Model data preparation: Model geometry, material dqta, constraint

conditions, and initial conditions.



c¢) Computational procedure: Application of appropriate solution al-

gorithms and presentation of solutions.

In the above modeling sequence, model validation and rgfinemgnt are
prerequisites to achieving meaningful results for the simulation of

large-scale field problems.

1.2 LITERATURE REVIEW

The importance, in thermal stress problems, of responses which stem
from the temperature effects of the viscoelastic propertiés was first
emphasized by Freudenthal [37]) and-Hilton [53] in the ‘early: 1950's.
Christensen and Naghdi [22], Schapery [95], and Biot [16] developed the
constitutive relations for 1linear thermoviscoelasticity. based on the
thermodynamical postulates. The uniqueness of the solution in the isoth=
ermal linear theory of viscoelasticity for the_thermorheologically sim-
ple ablating solids was estahlished by Sternberg and Curtin [105] based
on Volterra's uniqueness thenrem. Iinder the acoumptions of infinitesiuwal
deformation and positive-definite and continuous relaxatioé/créép“func-
tions, Lubliner and Sackman [78] generalized the uniqueness tﬁeofy for
anisotropic, non-homogeneous and time-variabie viscoelastic ~n;e;ii_um by

use of the Laplace transformation and asymtotic methods.

Morland and Lee [84] introduced linear thermoviscoelastic analysis
with'temperature-depéndent characteristics on the basis of the time and
temperature correspondence hypothesis originally proposed by:Léaderman
[72] and Ferry [33]. 1In this hypothesis, the relaxation moduli and

creep compliances are affected by a constant temperature ”changé only



e

with;n a corresponding uniform shift of the logarithmic -time scale. A ‘
material exihibiting such behavior was termed a »"thermorheologically
.pimple material (TSM)" by Schawarzl and Staverman [96]. A few analytical
solutions have been obtained fo; simple boundary-value problems and have
been ﬁa;ﬁly approached by using thé 1ntégra1‘ transform techniques (cf.
"refs [23,24,84,85)). These analytichl solutions have been faced witﬁ
complexibilities ;n the evaluation of integro-differential equations and
“;nfiéxibilities in the boundary conditions. This has motivated the de-
‘velopment of .numerical approaches including the finite difference and
finite element methods. In this chapter, only the finite element ap-
proaches are reviewed with emphasis on the thermorheological FEM models
* and the FEM solution procedures. The FEM férmulations of the transient
‘heat .conduction and convective-diffusion equations are also briefly re-

viewed.

" 1,2,1  THERMORHEOLOGICAL MODELS

.An incremeﬂtal FEM approach to linear viscoelastic ahalysiS'was iﬁ—
troduced by King [64]. The creep phenomenon was viewed as a sequence of
stress relaxation at a constant'displacemen; over a short time interval
_ followed by sudden release of constraints to satisfy the overall equili-
brium. The stress change in any time interval was expressed in terms of
the stress changes in the previous time interval repiacing integrals by
» vtéctangular sums. This appro#ch was further extended to two- and three-
'~.',d;mensional stress states by Sandhu, Wilson, and Raphael [94] with the

. pniaxial creep compliance represented by exponential functions. Based on

the above incremental concept, the rheological behaviors of viscoelastic
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media have been represented by several forms of viscoelastic comstitu-
tive laws classified as differential, integral, and empirical (cf. ref.

[45,90,130,132]).

Zienkiewicz Watson and Kiﬁg [136] adopted a differeﬁtial operator
for a series of Kelvin models and proposed the use of temperature-depen-
dent elastic and viscous components and thermal strains due to the ther-
mal expansion. This model requires charactetrizations of each rheologi-
cal component as a function of the temperature, and poses difficulties

in obtaining such information from experimental data.

Taylor and Chang [110] initiated the hereditary integral approach
with the TSM postulate. The temperature effect was incorporated in the
integral equations by replacing the physical time by the reduced time
determined from the temperature shift function. This was further ex-
tended to the problem of the vati#ble temperature state by Taylor, Pis-
ter, and Goudrea; [111]. The heat conduction equation was assumed to be
unaffected by the deforﬁation and‘was solved separately, but simultane-
ously, with the mechanical responses. They used an explicit exponential
expression for the relaxation moduli associated with the generalized
Maxwell model, and the reduced time expressed in the form of integral of
the temperature shift function for‘the non-isothermal application. A si-
milar approach, with an alternative form of equilibrium equations, can
‘also be found in Srinatha and Lewis [104]. The temperature responses for
the coupled system with an internal dissipation function was studiéd by

Cost [27] with emphasis on the influence of thermorheological simple ma-

terial behavior on the heat generation phéndmenon. Batra et al [14] and



A}

Batra [15]sadopted the TSM postulate for the semi-coupled system where
the coupling effect is considered only in the energy equation. Based on
the integral constitutive law. the thermorheological behavior is assumed
to be characterized by a single relaxation time so that only the relaxa-
tion time ié replaced Sy the reduced time'computed from thehtemperature
shift function expressed in the férm of the WLF equation (cf. ref.
(34,98]). The WLF equation, named after William, Landel and Ferry,
represents a logarithmic shift of relaxation/creep-functions in terms of
the universal gas constant and thertemperature increment referenced to

the glassy transition temperature.

The most popular representation of the rheological behavior has beeﬁ
an empirical creep expression, since it simplifies thé numerical model-
ing procedure  and can be easily obtained from the experimental data.
Gregnbaum and Rubinstein [41] proposed aﬁ empirical creep function com-
posed §f effective stress, strain, temperature, and time. This was later
adopted in the f;nite element code developed by Sutherland [108] with
the general functional fprm of the creep sirain rate dependent on
stress, strain, temperature, and time. Cyr and Teter [29] and Zudans et
al [137] used the steady creep flow law of Soderberg (Norton's law) for
the elastic-plastic—~éreep analysis with temperature—~dependent material
properties. Similar creep laws have beeﬁ adopted by Anderson [8], An-
derson and Bridwell [7]), and Liu and Hsu [76] with applications to a
apherical cavity, layered geological structures, and a frozen foundation
in cold region engineering, respectively. The above creep laws are often
caiied “power creep laws'", and the thermal behavior is expressed by an

exponetial function associated with the universal gas constant, activa-
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tion:energy, and temperature. Although tﬁese expressions are compact and
convenient for computer implementation, they are based on the crude ap-
proximation of the thermal behavior compared to the one based on the TSM
postulate. Recently, Morjaria and Mukherjee [83] have adopted Hart's
model with a rate formulation. This model combines plastic and creep
strains into a single non-elastic strain where the thermorheological be-
havior is represented by a simple power expression similar to Norton's
law. A similar constitutive model, a combination of Hooke-Kelvin-Bing-
ham-Newton models, can be found in Duddeck and Nipp [32] adopting temp-
erature—-dependent elastic moduli, transient and stationary cteép with
the analogy of von Mises yield criteria while the temperature dependence

of rheological components is represented by a simple power expression.

In summary, most of the rigorous thermorheological models hayé been
presented in the form of hereditary integrals under the time and temper;
ature correspondence concept (TSM postulate), while empirical creep laws
(power creep laws) have been adopted mainly in the phenomenological ap-
proaches., In addition, the uniaxial creep data has been extended to the
multi-axial case under the assumption of volumetric behavior being elas-
tic, which enables one to keep the Poisson's ratio constant;‘ 1t 1is also
found that the bulk relaxation modulus remains constant while oﬁly the
shear relaxation modulus represents the time-temperature effect for most

thermorheologically simple materials (cf. ref. [14,15,77,104,111]).

1



1,2.2  ¥EM SOLUTION ALGORITHMS

J“The'geherai FEﬁ solution algorithms for nonlinear problems have been
'basé&.dﬁ the incremental formulation of the governing eﬁuations; Early
: s&iﬁfio;'algbrithhs fo; the viscoelastic problems used a simple step-
forward procedure requiring a small time step size to obtain stable so-

“lutions (éf. ref. [41,64,96,108,136]). This forward time step procedure

""" has been further modified to include an iterative process in each incre-

jdént'bj‘Dohg; Pister, and Dunham [30], Nayak and Zienkiewicz [87), and

: TSZuﬁQﬁsTet'al'[l37]. Since thé incremental iterative solution procedure

"réﬁuiéeé’ considerable computational effort and compléx formulations,
Mfiiéhﬁlebic; and Cormeau [133] and Cormeau.[26]‘hsed a simple incremental
“’ﬁrééé&h&é; the "initial strain method", for viscoplastic problems with
.:iepghaq}sﬂon the practical implementation of the program and proposed an
... empirical rule.for the selection of the time step size. ' This rule lim-
- its the maximum increment of the viscoplastic strain to a certain frac-
tion of the total accumulated strain to control the sol&tion stability
. .To enhance the stability and accuracy of solution, Cyr and Teter [29]
,_nquq an equilibrium correction in a simple step-forward p;opgdure.. The
qpbalanceg force, the "pseudo incremental fo;ce", . is treated as the
?ﬂiévipg force" contributing the load terms on the right hand side of
tpgAequil}btium equation. In this manner, the unbalanced forces in the
p;evious'gtep are corrected during the next increment. Hughes and Tay-
lor [55] proposed an implicit time stepping scheme to overcome the sta-
bility restriction on the size of the time step. For the appropriate va-
lues of the scheme parameter, the method has. appeared to be

unconditionally stable under the incremental iterative procedure. This



1mb11cit time‘stepping scheme along with the equilibrium cortrection have
been adopted in various inelastic problems and relevant references can
be found in Owen and Hinton [90] and Zienkiewicz [130]. Reviews of the
nonlinear FEM solution algorithms associated with the 1inelastic rate

processes are also found in Willam [125] and Argyris et al [3J].

The fore-mentionéd literature for the FEM solution algofithms for
.nonlineaf éroblems has been focussed on viscoelasticity and viscoplas-
”ticity.with the empirical constitutive laws. In the hereditary integral
method for solving uncoupied thermoviscoelastic problems, a time step-
'forwara ptocedufe has beeﬁ adopted with the 1n£egrals expressed as rec-
-tangulaf summafions (cf. ref. [110,111]). Unlike the conventional
procedure with'empirical creep laws, the solution procedure for the in-
Ategral apbroééh is rather unique since a set of the Volterraltype integ-
fal equations 1is explicitly evaluated in terms of summations of finite
series. .Batra et al [14] and Batra [15] adopted the above approximation
scheme for the mechanical response, while the finite difference method -
has been used for the semi-coupled energy equation. = Recently, Srinatha
and Lewis [104] presented an ‘alternative set of equilibrium equations
based on the above approximation. The equilibrium equations, expressed

in a recurrence form, are solved by using an iterative technique.

In summary, the conventional FEM solutions for nonlinear problems
‘have been obtained by the incremental iterative procedure with empirical
constitutive laws. As a practical implementation of the program, the in-
,cremeﬁtal proce&ure with the implicit time stepping scheme appears to be

. the most efficient algorithm. Fbr thermoviscoelastic problems, the con-
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ventional incremental solutions have been used Qn}y for the phenomenolo-
gical formulation. (empirical .creep law) In the case of the integral
formulation using the TSM postulate, a set of the Volterra typg'integtal
equations obtained from the series approximation. has been solvedhiq the

—

context of finite element theory.

1.2.3 THERMAL RESPONSE

The thermal response is based on the transient heat conduction and
convective-diffusion energy equations. The transient heat conduction
equation has been well discussed and establishedlin the fini;gAglement
context.by several authors (cf. ref. [13,97,130;132])._,.?9r discretiza-
tion in the time domain, a variational functional has peep adoptedAPy
Wilson and Nickell [126], Fried [38), and Argyris and Scharpf Ilo]-ASUSh
variational principles have been known to be equivalent to the weak for-
mulation using the Calerkin procedure and Ayield no new alternative num-
erical schemes. Zienkiewicz and Parkesh [135] introduced wighted rgsidu—
"al forms in time, which have 1led to the analogy with the fin%ge
difference formulae such as forward, mid, and_backvard difference equa-
tions depending on the scheme parameter associated with weight func-
‘tions. A stability criterion for the two-point recurrence scheme based
on the eigenvalue problem has been reported by Iroms [59]. It shows
that the highest system eigenvalue must aiways be less than the highest
eigénvalues of the individual elements. 'Mulfipoint recurrence schemes
lare due to Lees [74) and Bonacina et al [19] for the threé?point scheme,
" and Zienkiewicz [131] for the 'fout‘point scheme. ~Thesé multipoint re- A

currence schemes have been adoptéd in various field pr&%leﬁé' such as
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phase change, ground seepage, and welding ‘applicgtigns (cf. ref.
[25,36,52]).
For the convective-diffusion eqﬁétion, the'finite'eiement discretiza-
tion with the Galerkin method has encountered serious difficulties in
‘situations where the convective térms'(first derivative terms) are sig-
" nificant. The numerical oscillations occuring in non—self;édjoiﬁt opera-
tors have only been removed by severe mesh refinements, which undérmine
the practical utility of the Calerkin method (cf. vef., [24,134]). The
weighted residual formulation for one-dimensional pf&Blems ﬁas been pro-
posed by Christie et al [24] adopting the duﬁwinding.schehe":' Heinrich
et al [46], Heiqrich and Zienkiewicz [47], and Barrett and Demunshi [11]
have proposed various weight functions for two-dimensional problems. The
above upwinding schemes have been competitive wi;h the finite difference
methods in regards to stability, and indeed the solution accuracy has
been impraved by varying the necessary upwinding from element to ele-
ment. Hughes [57] has proposed numerical quadrature techniques with the
Galerkin method to avoid complicated weight functions and their expen-
sive evaluations with higher-order quadrature rules. The one-point qua-
draturg rule on the convective term has appeared to reduce numerical os-
cillations although excessive "cross-wind diffusion" has been noticed
for certain cases. Brooks and Hughes [20] and Hughes and Braoks [56]
have recently proposed the streamline upwinding scheme along with the
quadratiure technigue to overcome the cross-wind diffusion. The stream-
liAe upwinding scheme, employing an artificial diffusivity acting only
in the dirgction of the flow and associated weigh; functions, has pro-
vided less cross-wind diffusion than the case of the simple quadrature

technique.
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1.3 RESEARCH OBJECTIVES

The overall objective of this research is to establish a comprehen-
sive FEM model focussing on the simulation of the thermal and mechanical
responses associated with the large-s;gle continuum mechanics problems
with applications to rock mechanics. The schematic representatﬁon of
the coupled system and assoclated engineering fields are illustrated in
Figure 1. Specific rock mechanics'areas such as underground coal combus-
tion (UCC) and in-situ waste disposal are considered here with emphasis

on innovative thermorheological model formulations.

The FEM formulations for the thermoviscoelastic responses can be di-
vided into two main categories; namely, the treatment of the thermorheo-
logical properties and the FEM solution algorithms. The thermorheologi-
cal properties incorporated in the FEM formulations ﬂave been
represented by either temperature-dependent rheological components or
modified time scales adopting the time and temperature correspondence
concept. The presenﬁed approach 1s focussed on the use of the time and
temperature correspondence concept with the creep compliances, since
geological materials appear to be thermorheologically simple materials
and their-rheolbgical properties are currently available only from the
creep tests at elevated temperatures. An appropriate FEM solution algor-
ithm using the implicit time stepping scheme 18 proposed by wusing the
strain rate expression; The governing field equations include {) the
:rénsient heat conduction equation, 1i) the convection-diffusion equa-
tion, 1ii) the elastic and viscoelastic constitutive equations, a1d iv)

the equilibrium equations. Specific objectives of the research include:
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a) Formulation of the uncoupled thermoviscoelastic boundary-value
problems by use of the time and tempgrature correspondence con-
cept.

b) Selection of appropriate FEM gsolution schemes for the transient
heat conduction and conQec;ivg-diffuaion equatinns.

c) Development of an initial ;ttain type incremental solution algor-
ithm using the strain rate expression with the uniaxial creep com-
pliance for the four parameter fluid model.

d) Incorporation of failure criteria and crack tip singular eleieat
along with the computation of the stress 1nténsity factors for the
thermoelastic line crack~problems.

e) Model validation and comparisons with currently available analyti-
cal and numerical solutions.

f) Thermoviscoelastic FEM model simulation of 1large scale rock me-
chanics field problems (UCC post-burn, elliptic cavity with a

linking channel, and salt-dome waste disposal).

The developed crack tié singularity element:-and the computation of
the thermally-induced stress intensity factors are presented in Appendix
A and B, respectively. A finite element computer code TMFC is developed
by the author and is used to solve all the models in this study. The
structure and capabilities of the deyeloped computer code are bfiefly

summarized in Appundlx D.
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Chapter II

GOVERNING BQUATIONS AND FORMULATIONS

In this chapter,‘ the thermodynamical theory of thermoviscoelasticity
is presented, The mechanical responses of materials are considered in
terms of temperature dependent thermal and mechanical properties repre-
senting the material nonlinearity. The transient heat conduction and
convective~diffusion responses are formulated separately in the uncou-
pled thermoviscpe}astig‘theo:y.lConsiderations for the analysis of ther-
moelastic liﬁe ﬁrqck groplems are reported in Appendix A. The equations
aqdﬁformu;ationn'éf‘ubqupdéry-value problems presented here are used in

- the finite element formulations. developed in Chapter III.

2.1 THERMODYNAMICAL BACKGROUND OF THERMOVISCOBLASTICITY

The linear theory of thermoviscoelasticity is based upon t&o funda-
mental postulates, the balance of energy and the entropy production ine-
quality. Christen#en and Naghdi [22], .Schapery [95] and Biot [16] have
developed governing equations 1ncorpor§ting conqtitufive assumpti;ns for
the irrevérsible thérmodynamicai conditions. 'The isothermal theory has
been further extended to special types of non-isothermal cases by use of
the thermorheologically simple mate?ial(TSM) postulate presented by
Leaderman [72] and Ferry [34]. The uncoupled theory, n;glectiné the cou-
Pled terms in the heat conduction equation, enables one to separate the
stress field from the temperature field. Here, derivations of the cou-

.pled first order theory associated with the TSM postulaﬁe are presented.
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2.1.1 CONSTITUTIVE EQUATIONS OF COUPLED THEORY

The local energy balance equetion using infinitesimal theory 1is

(2.1)

PY - p(A + TS + TS) + %j ti.j "Qi,iié 0

where p 18 the mass density, = Y . is the heat supply function per
unit mass, A 1is the Helemholtz free energy per unit mass, T.1is the
absolute temperature, S 18 the entropy, per .unit naes,.‘»o{»~are the
Cartesian components of the heat flux vector measured -per: "unit area,

and a superimposed dot designates a time derivative...:.

The relatenAlocaI entropy‘production inequalitf isuéi;en byv”

PTS = PY + Qi - Qi(T5/T) >0 . (2.2)

and 18 often referred to as the Clausius-Duhem inequality.

!

Under the basic constitutive assumptions that the free energy func-
tional is a linear functional and the real continuous functional of his-
tory~dependent strain and temperature may be approximated by a polynomi-
al with the Stieltjes integral, xﬁ.ithe” free energy functional is
represented by the following polynomial expression with the leading er—
ror term of order 3 [23], AR |
) _ t S )

PA = ﬂAo + [° Dij (t-‘)-%;;l. dt - jt B(t 1) a¢ gt
+ 1 It t G.. T aC" o
t J” Gjjk1 (t-7, t-n) T —Eklan dtdn .. -
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- Jt jt ¥ (t-1, tn)—:u == dtdn

-7 jt m (t-7, t-n) & aq’dtdn+0( 3)

e> s> ot (2.3)
where . Ao is the mean free energy, ¢ 1s the infinitesimal tempera-
ture deviation from the base temperature To » and the mechanical proper-
ties_are‘assumed to be continuous for % > 0 .and are assumed to vanish

identical for % ¢ 0 ; i.e., .

B(Tl) é 0! Dij(Tl) = 0, Giij(Tl’Tz)‘; 0,

%071, =0, ml7),1,) = OAfor_Tl <0, 7, <0 (2.4)

The heat supply function Y 'is eliminated between eqns.(2.1) and

(2.2) to yield

- PSe - PA + 05365 - Qi(%,i/Tp) >0 (2.5)

Substitution of eqn.(2.3) into eqn.(2.5) and diffetentiatiodﬁwith re-
spect to t, u;ing Leibnitz's rule, leads us to a new 1nequaiity which
nmust hold for all arbitrary value of ;ij and ;Kt) . By danipulating
the terms associated with ;ij and ;(t) with the symmetry of
Gijk1(71,72) and m(T1,%2) and letting them vanish the following fela-

. tions are obtained;
s o= D (0 t ... Ay BEKT - ot w ga Cad
%j = Dijj(0) +oj Gijk3 (t-t,O)-g;kl dt -oj. Yij(o,t-T).%; dt
(2.6)

= B(O) + t W--(t-r,oi.gfii dt + t (t-1,0 :29
OI ij 27 of m(t-7,0) 2 2.7)
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‘_In eqns.(2.6)- and- (2.7), {1t is clear that DiJ(°) i8 the iqitial
stress aﬁd B(o) 1is the initial entroby, PSo - It 1a:also noted that
1f‘.Gika ' ;s congsidered as a surface in ( T, N ) space; then the re-
laxation‘functions involved in eqﬁs.(2.6) and (2.7) :are curves on this
surface~f23];~ 1f 'igj iﬁ eqn.(i.3)nis symmetric with respect to T,

and T, , then the corresponding generating functions in eqns.(2.6) and

(2.7) are identical representing a symmetric¢ coupling.

The first two terms in eqn.(Z 8) are of the first order, vhergge'che
last two terma are of_the second order, assuming Qg is of the first
order. Hence, to satisfy the Clausius—=Duhem inequality for all process-

es, it 18 necessary that

Dii=o, 2t . - (2.9)
as wéll as

A - 0{(¢,1/T°) >0
(2.10)

By pssumihg a particular process such that 4¢,; = 0 (1.e., ~a uniform

temperature field), we come up with the dissipation 1qequb1i;y

A>»0 | - ‘ B ' o . (2.11).
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where A is the rate of energy dissipation. By using eqn.(2.11), it

is sufficient that eqn.(2.10) be satisfied by requiring

Qi(4,i/T,) <0 (2.12)

The constitutive relation for the heat flux vector Qj 1is as-

sumed in the form

Qi = - [ kijle-m) Bt o
T (2.13)
Combination of eqns.(2.12) and (2.13) gives
| t,. ¢, |
i [T kijlt-1) 220 a1 50 |
BREREALE R T (2.14)

Further, for a fixed time and with the tensor kij being positive defi-
fite and comstant with respect to time, the temperature gradient ¢,;
and the integral in eqn.(2.14) have the same sign. Therefore, eqn.(2.13)

reduces to

Q.' = . k..(b’.
1 197 (2.15)
For the development of the first order theory the energy aqn.(2.1)

is rewritten using eqns.(2.3), (2.7), and (2.15) by neglecting the sec- -

ond order term A ‘ '; i.e.

Cov i B (tw. e o i g1 av Ly '
oo S Tlem0) S0 gr e ffaiee,0) 2 aT 4 (kijeg),g = 0

(2.16)
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The integral involving strain history in eqn.(2.16) gives rise to a cou-
pling between thermal and mechanical effects. Withéut this tern,

eqn.(2.16) is the uncoupled equation governing heat conduction.

The above completes the developﬁeht of the coupled 1linear theory of
thermoviscoelasticity according to Christensen [23], and these relations
are adopted in Section 2.1.3 in regard to the uncoupled formulation of

the boundary-value problems.

2.1.2 THERMORHEOLOGICALLY SIMPLE MATERIAL(TSM) POSTULATE

There is a special tyée'of tﬁérmorheologicél proﬁerty which 1s ap-
plied to a wide variety of materials by use of a certain analytical de-
scription. This property exihibits a variation of relaxation/creep
functions with temperature similar to tﬁe varia;ion of the same function
with time. Thus, it is found more convenient to study the effects bet-
ween the behavior with time and temperatufe simultaneouély by'use of re-

duced variablés [23,34,98].

The method of reduced variablé provides a simple phenomenological
function by reducing two main variables of time and temperature to a new
reduced variable. The application of this method requires the trans-
formation of a.function G(1nt,T) depending upon .the ;ime and temperature
-into a function G(x) where x = lnt+f(T) and £f(T) is a function of temp-
erature alone. A material whose viscoelastic behavior with both time and
temperature lends itself to the above reduction scheme is called a ther-

[y

morheologically simple material(TSM).
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To this end, we designate the relaxation functions at the base temp-

erature T, for the constant temperature state by

6(t,Tg) =L0In t)

(2.17)
The TSM postulate then takes the form
G(t,T) =L {In ‘t + f(T)) ,
(2.18)
where the shift function f(T) obeys
f(To) =0, |
° a1 >0 (2.19)

Eqn.(2.18) states that the change in temperature cause the relaxation
function to be shifted to the right or left when plotted against Int, as

the abscissa. Introducing a change of variable by setting

f(T) = 1n x(T)

(2.20)
eqn.(2.19) now implies that
x(T dX
“O).slo fa'ir)o

(2.21)

and is thus a positive monotone-increasing function of T throughout the

range of eqn.(2.20). Also, eqn.(2.17), by virtue of éqn.(2.20),_yie1ds
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G(t,T) = G(E) . : . (2.22)

provided that the reduced time ¢ 1s defined by

&= tx(T) , | (2.23)

Thus, the relaxation function G(t,T) at any temperature can directly be
obtained from the relaxation function G(t) at the base temperature by
replacing t with & from eqn.(2.23). Similar derivations can be'formu-

lated for creep functions.

For a continuum under the influence of a variable témperature field
or non-constant temperature state, the constitutive equations require a
médification such that the reduced time must be generalized consistenf
with the postulated temperature-time equivalence for non-isothermal con-
ditions. Under the assﬁqptioh that the non-isothermal stress constitu-
tive relation is' determined by the corresponding . isothermal functional
and with the modified time scale to account for the history of tempera-
ture, the isothermal functional expressing the non-isothermal functiongl
is written as

Z(t) =T [E(t-gs) - alt-gg)), E(t) - a(t)]

s=0 (2.24)

. @

_ where X(t). T and E(t) denote the appropriate definition of stress,
s=0

a linear functional operator, and strains. The modified time scale,

&s » Which depends upon the history of temperature is defined by

gS =T [T(t')\)ssl

A=0
(2.25)
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with the property

£ ) ok |

s , ss0 -0 & >0 (2.26)
and

| T=T, = S ' . (2 27)

Here, ¢(t) = E(t) £=0 represents the volume change due to the tempera-

ture change under the stress free condition.

For the infinitesimal theory, eqn.(2.24) can be written as

%j(t) = Gijk1 (0) [er(t) - aq(t)]

t ) i i a6 3 '
+°I [egy(t-Eg) - ay(t-Eg)) Egllkl ds (2.28)

Eqn.(2.28) 1is the desired comnstitutive relation for infinitesimal defi-
nition with the general nonlineat temperature dependence. Integrating
eqn.(2.28) by parts and using the change of variable t- & = 4

gives

. = (Y g
oja(t) -£ Gij] (s) th [‘k](") - ak](i')] av ﬁ

where

S = jas AT(t-2)] da |
o (2.30) .

with %(T) being the shift function such that
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- ;
UTo) = 1, %1"4—) > 0 (2.31)

Using the change of variable & = t-1t , eqn.(2.30) yields

S = [C LT(Mdn - [T AT(M] dn
0 . | (2.32)

Eqn.(2.29) can be rewritten with the use of eqn.(2.32) in the form

“i5t) = 1% Bigkr (5-8') L Ce(a) = oy ()] g5
- | . | - (2.33)

where.

£ =°!‘ AT(M] dn, E' = [Ty [T()] dn
.. 0

(2.34)

Here,  we. can identify the shift function in eqn.(2.34) with that in
eqn.(2.23) for a constant temperature state. In fact, eqn.(2.34) reduces
to eqn.(2.23) under a constant temperature state. Since the reduced
time 1s computed explicitly from the given temperature at the corres-
ponding physical time, the notations of tﬁe relevant quahtities are
maintained in the present text. The - reduced variable scheme for creep
compliance function is illustrated in Figure 2 and the corresponding

shift function is shown in Figure 3.
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2,1.3° PFORMULATION OF BOUNDARY VALUE PROBLEMS

The relevant linear equations which govern the coupled thermoviscoe-
lgsticity'thgory are reviewved. The equations of quasi-static equilibri-
um, the strain displacement relations. and the stress strain relations

are

aij.j + fi =z 0

(2.35)
T |
3=z Wiy )
(2.36)
o5 = [* Gijin(E-8') 2K gr .t w (er') 3¢ gn
o . ot 0 J ot
ot (2.37)
The heat transfer equation is given by
(k..q,’.), d t v, f :
ijhili = 3 I m(E-g') &2 dT+3t— oj ¥ (t:-t:)_il.lgT dt )

For the uncoupled linear theory of an isotropic viscoelastic medium,

eqns.(2.37) and (2.38) can beé further simplified in the form

S'IJ = I Gj (g"g )_E'IJ dat :
%k =, G (E-E ) - .
K = f 2 [ckk -3256] d* (2.39)
and
(kijT,j)05 = pc'_g%a; 5 S (2.40)
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where Sij and eij are deviatoric sttessgs §nd étrains;i ‘Gq "and
62 are shear and bulk relaxation Kmo&uli;- an&>.kij jﬂ p-» ¢ and
O are heat conductivity, mass dénsit’y‘,"" .heat.-capac'i-ty“and lumped heat
| supply “function, respectively. The infinitesimal temperature ¢ " 18 re-
placed by the absolute temperatﬁre T.Q1nce:thé~ temiperature response is
separately obtained in the present linear uncouplgd. formulation. - Thg

pseudo-temperature, § , is defined by

o= [T or) gt

T, | o (2.4D)
and the mechanical response is posed separately after obtaining the
temperature distribution from eqn.(2 40). - Analogous. considerations ap-
~ ply to the generalizétion of the creep law under non-isothermal condi-
tions, which assumes the form of .

e-ij= Itdl(g-g.)%‘s'lj dc
0 .

- J (C-t) &L o
%k = J , ) ~ %k dt + 3ag
(2.42)

where Jl and J2 are the shear and compressive creep compliances.

In the absence of thermo-mechanical éoupiihg effecfs; the governing
thermal system is separated from the'ﬁecﬁaﬁiéal syéteﬁ as described
above. The general heat transfer eduafionfmay inélude” tﬂe convective
heat transfer term for the heat supply fpnégion as well as the conduc-
tion term under the interaction between-the_fluid and’splid'phaae, which

_are represented by two heat balance gqﬂationp,tl0151i3l,.-'.-
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solid:

(kij Tgoj)si + b7 (T§ - fg)
' (2.43)

fluid:

P¢ Cf-%%f

- Ps Ce (Vi T 4) + by (Tg - T¢) ‘

' (2.44)
where hy Is the heat traansfer coefficient and V; {s the fluid vel-
oclly, and subsétripts s and f denote the solid and fluid phases, respec-—
tively. Under the assumption that the solid and fluid phases are at the

temperature, the above equations reduce to
O (ks T 5) s ‘
(Ps Cs + Pr CF) 55 = (kij Toj)si = Pg Cg Vj AT»i (2.45)

An equation of this tyée is known as a convective-diffusion equation in
heat trausfer., In fluid mechanics, thé normalized form of eqn.(2.45)
represeﬁts the advection-diffusi;n equétion for the viscous boundary
layer problems where the coefficient rel#téd to the first derivative
term forms the Peclet number ;nd the fluid velocity. The quasi-static

version of eqn.(2.45) 1is also applied to the thermodynamic line drive

model with the moving coordinate system [67,75].

The initial conditions are taken as

Ui(t) = o45(t) =0 .
T(t) = T, at t =0 - (2.46)
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For ¢t » 0 , the boundary conditions are

%jinj = Ti (xi,t) on r4

Ui = U (xi,t) on 1y

T =7 (xj,t) on Iy

. and

kij Toing =-x  on 1,

(2.47)

(2.48)

where T. is the part of boundary on which the temperature 1is pre-

T

- scribed and T, 1s the complimentary part of the boundary over which

the heat flux "is prescribed. The above boundary conditions are illus-

trated in Figure 4.
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Figure 4: Boundary Conditions and a Domain of Interest
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Chapter III
FINITE BLEMENT DISCRETIZATION AND SOLUTION METHODOLOGY

The fundamental concept of finite element methods is that any éontin—
uum variables, such as temperature, pressure, or‘displacements, can be
approximated.by a discrete model composéd of a set of piecewise continu-
ous functions defined over a finite number of subdomains. The general
theofeticalubasis of FEM discretizatiop includéé the variational ap-
proach and Athe weighted residu&l procedure éuch_as Galerkin method or
the least square approach. The basic mathematical details‘and computer

implémentations can be found in many references [13,90,97,130,132}.

The objective of this chapter is to discuss and present the finite
element formulations pertaining to the solution of thermoviscoelastic
boundary-value problems; namely, effects of heat transfer, two-dimen-
sional elasticity, approximation of the integral creep constitutive law
and the 1ncpemental qqlutiqn procedure. The isoparametric singular ele- .
ment with thévdisplacement method for computing stress intensity factors
are also studied for the thermally-induced ling crack problems in Appen-

dix B.
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3.1 ENBRGY EQUATIONS

t

Finite element formulations for two special cases of energy equa-
tions;inamely, the convective-diffusion equation and the tranéient heat

'ébnduétidnvequation, are considered here.

Finite element solutions of the quasi-static convective-diffusion

equatién have encountered serious difficulties in situations where the
convective/first derivgtive terms are significant. These difficulties
stem from a combination of the essentially elliptic and parabolic nature
of two.terms and manifest themselves in an oscillatory nature of the so-
lution. Whenever the mesh size exceeds a certain critical value, and
with large convection coefficients, acceptable solutions can anly be ob-
tained by an excessive reduction in the element size and the use of an
equivalent 'Upwind Difference' scheme [134]. These upwinding schemes
for one- and two~-dimensional cases have been studied by several authors

(cf. ref. [24,47,48,56,57]).

The quasi-static version of eqn.(2.45) is written as

(kij T.5).3 + VT, = 0 | (3:”

where 'vi denotes the lumped convection coefficient. The weighted resi-
dual formulation of eqn.(3.1) with the weight function Wi is ex-

pressed as

J Wx (ki ¥7,5),4 + V5 T,5) do=0
Q (3°2)
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Using Green's theorem, eqn.(3.2) can be rewritten in the form

é(uk,i) kis T.5 do - | W V5 T, do= {Hk kij 'l’,j n{ dr (3.3)
Q

Inserfiﬁg T= NiT; into eqn.(3.3) with suitable weighting func-

tions Wx(x,y) produces the classical system of discretized equation

HT=F (3.4)

where some values of the unknown vector T are specified on boundar-

ies and,

Mij = [ (Wio) ket Ny 5 do - [ Wy Wy Nio (3.5
‘1.) {2 irk) kel N1,j ? {21 k Nj.kao (3.5)

with

f; =0 : for Dirichlet conditions

fi = [ Wi ki T,yngdr for Neuman conditions
r

In the conventional Galerkin formulations, we take W = Nj - Clgarly

other selectlun of welghting functions ean be mada.
The one—dimensional problem with the basis functions shown in Figure

5 1s first considered with the weighting function

Wi = Nj ¢ aF(x) (3.6)



where
F(x) = 3x(x-L)/L?
Ny =1-x/L
Ni+y = X/L

$9h a = sgn V; (3.7)

and L 18 the element length., Heinrich et al [46,47]>have {ndicated that
this scheme 1s unconditionally stable for & = 1 (full upwinding) and
effectively eliminates the oscillation caused by high convection coeffi-

. cients.

For two-dimensional 1isoparametric bilinear elements, the weighting
functions can be analogously constructed in terms of products of one-di-
mensional functions similar to the formation of Lagrangian shape func-

tions [39,46]. By defining

L8 = (1 - 82
L2(8) = (1 + €)/2
F(E) = -3 (1 -‘C) (1 + %)/4 (3.8)

where § 18 the transformed coordinate. The veighting‘funcﬁions for

the four-noded isoparametric elements are

W08, = [Ly(g) + 3, FIE)D [Ly(m) + B, F(m))
W2(E,m) = [La(g) - 3 FE)] [Ly(n) + B, F(M)]

M3(E,m = [La(g) - @y F(E)] [La(n) - B, F(N))

Wa(E,m = [Ly(g) + T, FIE] [Lp(m) - B, F(m)] S ¢ X )
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and Figure 6 illustrates variations of the above weigting fuctions. For
quadratic elements, similar weight functions can be obtained from refer-

ences [39,47,48].

The standard finite element discretization of the transient heat con-

duction equation has been well established (cf. ref. [54, 97,128,130]).
The finite element discretization of eqn.(2.45), neglecting variables
related to the fluid phase, can be expressed as a sum of element quanti-

ties as

)) (l:e'l"+Ke'r+l=fe ) =0

e=1 (3.10)

where N denotes the number of element, and the capacity matrix Ce s
. e e
the conduction matrix K and the force term F~ due to the heat

source/sink term H(x,t) are defined by

(-]
€% | N, RN, def
e ¢ F

(3.11)
e .
K = .. .
.Le"a’i kij Ng.i def (3.12)
F = [ H(
éﬁ b N o (3.13)
Considering a typical time element of length at for the transient

term, the two points recurrence formula widely adopted in the transient

formulation yields the following general expression.

-37-



(C/at + K8) Tns1 + [K(1-8) - ©/at) Tp+ F=0 (3.14)
where
F= Fne16+ Fpll-e)

and 0 4is the schewe cuulrvl paramerer with 0covcl

The above two-point recurrence scheme is accompanied by a restriction
which requires the time step size within a certain magnitude. Here, the

time step size 18 selected by the following rule of thumb

A o 1 € 2
t<zg (b (3.15)
where h is the shortest element length. The above rule, stemmed from the

eigenvalue problem for one-dimensional case, is adopted for two-dimen-

sional case by choosing the minimum time step size.

The heat capacity matrixs € 1is often diagonalized by adding the
coefficient of each low and placing the sum on diagonal. Although this
lumped heaf capacity matrix requires less number of numerical opera-
tions, it réSults in a loss of‘accuracy in solutions when compared to
the case of distributed heat capacity matrix [126]. Here, the computa-
tions are carried out with the distributed matrix, and QeCailed proce-
dures of the time discretization and the characteristice of the scheme

for different 0 can be found from a text book such.aa [130].
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Figure 5: Shape and Weight Functions for One-Dimensional Convection
Problem
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Figure 6: Weight Functions for Two-Dimensional Convection Problem
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3.2 THERMOELASTIC FORMULATION

For an isotropic, homogeneous elastic medium under & uniform tempera-

ture change Af » the stress-strain relationship is given by

= A PR - |
%j = M &k 45+ 26 1y B & o1 (3.16)
where

A= EV/(1 + V) (1 -2v)

G = E/2(1 + v)

B=Ea/(]l - 2v)

in which E is the elastic modulus, v s Poisson's ratio, and a is

the coefficient of thermal expansion. The constitutive law can be ex-

pressed in the matrix form as
0= De( £~ &) (3.17)

where De 1s the matrix of elastic constants and g, 1is the initial-

0

strain. Here, the thermoelastic formulaticon 18 briefly summarized and .
further details can be found from a standard text such as [97,130] and

Appendix C,

The formulation entails the selection of a kinematically admissible
displacement field and subsequent minimizgtion of the potential energy
to obtain the nodal values of the displacements [97,130,132]. The total
potential energy of the elastic system can be separated into two compo-
nents; a component resulting from the strain energy in the body and a

component related to the potential energy of the external loads.
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N : ‘
= 7 (A® - we) : . . (3.18)
e=] ‘
where A® is the strain energy, Weé 1is the work done by the exter-
nal loads, N 4s the number of element and the superscripﬁ e designates

the element base. The strain energy for an element of volume V is given

by

o3 : (3.19)

where £ and a are column vectors for the strains and stresses and
(7 are the thermal strains treated as the initial strains. The gen-
eralized Hooke's. law, strain-displacement relationship, and displacement

components in terms of nodal values, are expressed by

O = i’e ( €- €7)

(3.20)

€= BU
(3.21)

U= NU
(3.22)

The work done by the external loads can be separated into three distinct
parts;

l. Work done by concentrated forces.

e e uT B ' (3.23)

2. Work done by the body forces.
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we = UTNT b dee
5" L

(3.24)
3. Work done by the distributed loads on the surface.
ugsjuT N Bdr | |
T (3.25)
Minimization of the potential yields
N
] [/ 8 DBdcPU - | BT DeTdef
el ¢f - F
- [NT bde® - [ NT Pdr- Pl =0
ek r (3.26)
]
or simply
Ku- F (3.27)

where the term associated with the initial strain is incorporated in the

right hand side as an equivalent body force.
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3.3  THERMOVISCOELASTICITY THEORY FORMULATION

Since the ealier finite element application to the creep problems in-
itiated by King [64]), many papers and reports on viscoelastic models anq
solution algorithms have been published, as reviewed in Section 1.2. For
thermal creep problems, the common representation ofvthe creep behavior
is tﬁe empirical creep law under a constant temperature state as pro-
posed in Greenbaum and Rubingtein [41] aml Sutherland [108). This ap-
proach w;;ﬁ modifications in the solution algorithm is still adopted in
current applications‘[7.76]. Meanwhile, Taylor and Chang [110] initiated
a more rigorous approach by using the integral creep law under the
isothermal condition with the TSM postulate. This apprbach has been
further extended under the nonisothermal conditiqn by Taylor et al
[111], Cost [27] and Batra et al [14]. These FEM formulationp require
the solution of the set of VoliLerra type integral equations and rather
unique solution procedure compared to the conventional structural formu-

lacion.

The present finite element approach 18 focussed on the adaptability
of the standard llnear viscoelastic formulation to the thermoviscoelas-
tic problems by using the strain rate expressions. The FEM formulation
includes the numerical approximation of the integral creep constitutive
law with variable temperature fields and the incremental solution proce-
" dure. In addition, the mechanical model approach with the TSM pdstulate

is adopted. This allows the incorporation of both time and temperature

dependent viscoelasticity.
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3.3.1 MODELING OF CREEP BEHAVIOR

Itvis known that the matgrial constants or parameters pertinent to
thg modeél can be assesed more directly by a creep test rather thaﬁ a re-
laxation test. In general, various creep models differ significantly in
their mathematical form and physical basis; some are purely phenomenolo-
gicalAapproaches [8,76,108,129,133] while others are based on the vis-
coelastic and hereditary integral methods [27,110,111]. Here, the con-
ventional model adopted 1is eséentially the generalized Voigt type
(Figure 7). Extensive references for modeling creep behavior are provid-
ed in reviews by Héisler and Sanders [45], Zienkiewicz [130] and Owen

and Hinton [90]..

-The most widely used means of describing creep behavior in the finite

"element formulation 1s the strain rate expression

e =fl(o,T,t)
¢ (3.28)

with the total strain given by

€ = Cet+t £+ €7

(3.29)
~where the subscript e, c and T denote the elastic, creep and thermal
terms. The common expression for eqn.(3.28) for the isothermal case
takes the fbrm of the differential operator [133] or empirical functions
such as Norton's law [91,108]. For the non-isothermal case with the TSM
postulate, the integral constitutive creep law is qsed to include the

variable temperature history.
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'The general multi-axial reia;ionship with creep compliances are ex-
préssed by eqn.(2.42). However,ziﬁ most polymeric and porous materials,
it has been known from experimental evidence that Poisson's ratio for
creep strains remains constant approximately at the same value associat-
ed with elastic deformation [6]. This enables the uniaxial creep data
to be applied to the multi-axial stress-strain relationehips under the
following conditions [41,108,132,136];

1. The volume of the boay is assumed to remain constant during creep
d.eforbmations.

2. A superimposed hydrostatie state of stress should not give rise to
any change in the creep rate,

"3. For an isotropic medium, the principal directions  of strain and

stress tensors should coincide during the time interval.
Therefore, the stress-strain law for thé viscoelastic creep can be writ-
ten in the form of standard elaétic equations replacing the elastic com-

.pliance 1/E by the integral operators defined by replaced by

_ t
Ceof T(t-n1)L ¢gx
) 3t (3.30)

where J 1s a creep function for a constant uniaxial unit stress and
the mediun ls assumed to bé undisturbed prior to t = O, In general, the

strain {0 written as

€ = D;’a= cDlo
o (3.31)
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where De is the elasticity matrix and D;l has the same form as an

elasticity matrix with the constant Poisson's ratio as defined in Appen-

dix C. Now, the strains are expressed as

t
€ 'D;lf J(t-?)g—gdt

° (3.32)

where D;l incorporates the incompressible effect ( v = 1/2) {n which
no viscoelastic creep develops due to the hydrostatic stress but a large
-amount of creep occurs due to the deviatoric stress components
[41,132,136]. Here, the four parameter fluid model (Burger's model),
which fits the experimental creep curves relatively well foé the geolo-
gical matérials [iS], is #dopted (cf. Figure 7). Since coai and rock
masslare found to be thermorheologically simple materials [99,40], they
are assumed to adopt typical TSM behaviors 'so that the above assumptions
can be applied to the présent FEM model simulations. The creep compli-
ance for the four parameter fluid model with the reduced time 1s ex-

pressed by

' F .1 .1
J (8) = LN +.f° + £ [1 - EXP(-E/MN)]

(3.33)
with
g= ¥ (T(x.M] an
A= m/E) - o (3.34)
and T, , | Ec and E} are material cbnstants as shown in Figure 7.

The temperature shift function ° X(T) takes the form
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XT) = FEXP (BT + TT2) (3.35)

where a, b and ¢ are constants. In the present study, the constants of
eqn.(3.33) are lumped so that the expression of the creep compliance is

further simplified by

J(E) = 2 + BE + T EXP(TE)
- - (3.36)

vhere a, b, ¢ .and d are lumped constants. Discussions of the creep

curves for the geological materials are presented in Chapter V.
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._i}_{ FAA—o Four parameter fluid model (Burger’s model)

Figure 7: Typical Generalized Voigt Model and Four Parameter Fluid
Model
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3.3.2 - NUMERICAL APPROXIMATION OF CREEP STRAIN RATE

The constitutive creep law 1is usually of a form wherein the rate of
creep strain is defined as & certain function of stresses and strains.
In the incremental solution procedure, the state of stresses Jat each
time step 1; updated by the incremental components which represent the
timé and temperature effects at each particular tipe. These incremental
;ompoﬁents are obtained by solving the incremental Equiliﬁriﬁm équations

with the updated creep strain rate and rchanges in thermal loade.

For the incremental creep strain, eqn.(3.32) is rewritten in terms of

the reduced variables

t
Ec = D'olf J(E - ) 204,
0 o1 (3.37)

~uud the the creep strain rate with respect to g with the application

of the Leibnitz rule is expressed by

. -t
=p:ly & . ¢) o
Scx D [ R UE- 8 B2 e
‘ (3.38)

Evaluating eqn.(3.38) in the form of summations hy using the increment
computed in the previous time interval, the approximated torm of the

creep strain rate is written as

. ln+1 »
€c,n4l ' D; 2 b—&;(i - &)

£ En Aok-l
e g (3.39)

The reduced time is evaluated by the summation
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Ene1 = 7 a%

") | | | ! | (3.40)
where -
8%, = AT(t, )]t (3.41)

and € c,n+l is the creep strain rate at ;n+1 and AEk‘ 1§ the incre-

ment of the reduced time in the time interval At This notation

k L]
will also be applied to the strain and the stress increment .in the pre-

sent formulation. )

In this study, the kernel function J(E - &') is assumed to be expo-
.nential functions &s in eqn.(3.36) so-. that the .g% evaluated. at

gE= &, -and E' = g can take the form

'22‘3(5 - E')=a+bEXPlclE - &))
‘ A (3.42)

where é, b and c are material constants associated with parameters of
the mechanical model, and gn"and g, are the reduced times at tp
and tk reépéctively. In this manner, eqn.(3.39) can be evaluated ex-

plicitiy according to the expression

- ' n+l
€cone1 = D' (b EXP(cEne) T EXP(-c%) 80y} + a0Op4p)
-k SR (3.43)

and eQn.(3;43) is further simplified by the following recurrence rela-
tionship
. e c.nel " cc n t:’“’(¢‘”5n) + D'l {(a +b) Aon

+aop (1 - EXP(c8%y))) (3.44)
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This approach appears to be new and essentially allows "us to enploy
the traditional incremental solution technique without any iteration, in
vhich the time step coincides with the increment, which will be be dis-

cussed further in detail in the sequel.

3.3.3 STRAIN AND STRESS INCREMENT

Using the strain rate as exprcssed by eqn.(3.44), the creep strain

increment is defined by using an implicit time stepping scheme i.e.

P

BE. o= 8L [(1-0) €.+ 0F ] '
c,n & c,n c,n+l (3.45)

where 0 ¢ 8 <1 . The forward Euler, Crank-Nicholson, and fully impli-
cit type of scheme can be obtained by setting Olé 0, 1/2, and 1, re-

spectively.

Substitution of eqn.(3.44) intn (3.45) yields the following cxplicit
form vf the creep strain increment -

Acc,n" 8%, [(1 - © + © EXP(cAE,)) i:c'n +8 80,

+ 0 p-!aopll - EXP(cBE))] | (3.46)
; | | .

vhere

§=6(a+b) D-! |
-0 (3.47)

The stress increments, in terms of the elastic portion of strain incre-

ment, are expressed by
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80n = De 8Ee,n = Pe (8€p - 8Ec,n - 887 ,p) (3.48)

and the  total strain increments can be.written 1in terms of the nodal

displacement increments

ae, =BA
n Un (3.49)

Substituting for Acc.n from eqn.(3.46), eqn.(3.48) then becomes

80n = Dy (BOU, - @)

(3.50)
where
Wn = BEL |+ 85 [(1- 840 EXP (cAEy)) € c.n)
+ 85,0 all1- EXP(ctfy)ID-! O,
In eqn.(3.50),
Dl = (pél + 8AL, (a + b) 951)-1 ‘ . S (3.51)

It Is notLed thét ‘the material p‘to@pertiy matrix i-j remains cc,ms;ant
within an increment but requires inversion 1if 6¢#0 . The seiection
of the paraumeler 0 1is discussed in section 3.3.5 along with the se-
lection of the time step size. Another important aspect of eqn.(3.50) is
that the primary dependent variable associated with the current incre-
ment ( AU, ) is clearly distinguished from the ones computed at the
last increment. This fact together with the constant'ﬁaterial property
matrix within an increment naturally lead us to employ the incremental

solution technique without any iﬁeration.
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3.3.4  INCREMENTAL SOLUTION ALGORITHM

" The discrete equilibrium equations at any time ¢ = thel can be

written as

I BT Op+) do = Fpsl h .
L o o (3.52)
where Fp+] is the vector of equivalent nodal loads due to applied

surface traction and gravitational force. The incremental form of

eqn.(3:52) 41a given by

[8' 80, do = 8Fj o
o A : (3.53)

where

Fn= 8F, + LFp (3.54)

4in which AFI and AF% repres;nt the loads due to the increment of
applied load and gravitational force during the time interval Atn .
These load increments are caused by the discrete load increment i and
the mass density P (T) under the temperature change at each time step.
They are expressed by

= T o
AFT= | NP dr

r (3.55)

and
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BFD = [NT (bp+1 - bp) do
Q
where

b, = 90(Ty):
Upon substitution of eqn.(3.50) into eqn.(3.53), we obtain
vAR n;l 8Un ‘-ARn
where
i'(n+1A=QI B' Dna1Bdo
AR, = é BT‘bnth,,dQ *.AIF;‘

The nodal displacements and stresses at the current increment

found from, as usual,
Un+1 = Up + 28U,
Onpn+] = Op + 80,

where the incremental stress is computed according to eqn.(3.50).

(3.56)

(3.57)

(3.58)

(3.60)

can he

(3.61)

(3.62)



The above -algorithm- becomes identical to the initial strain ﬁethod
[27,130,133] if @ =0 . Here, by using an implicit scheme ( 6 = 0 )
with the updated ierJ matrix at each time step, the above algorithm
is intended to allow a relatively large time step size within reasonable

solution accuracy without requiring excessive computational efforts.

. 3.3.5 SELECTION OF TIME STEP SIZE

Hughes [54] has shown that the time integration scheme represented by
eqn.(3;45) is unconditionally stable whén' 6 >0.5 for nonlinear heat
conddction probleﬁs. ﬁowever, this does noﬁ.gUarantee sufficient accura-
cy of the solution at any stage and in practice a limit of the time step
size 1is placed to achieve a reasonable solution. For 6 < 0.5 ,  the
integration process 1is only conditionally stable and At ghould be
less than some critical value. The éasé =0 represeﬁts the forward
Euler scheme and suffers from a numerical instability wunless At is
small enough. Depending on the probiem characteristice, when the tran-
sient state 18 of interest for the short time interval, the forward
scheme 1s often efficient since it requires easy comﬁuter'implementa--
tion. Further studies and comparisons of several other algorithms can

be found in references [9,68,125].

A simple and efficient rule for choosing appropriate time step can be
found in Zienkiewicz and Cormeau [133]. 'In the variable time stepping
scheme, the magnitudc of the time step 1is contfélled by a factor T
which limits tﬁe effective creep strain increment as a fracfion.of thé

total effectivevstrain, i.e.,
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8Ec, = 2 €en) /288« €., 8 ¢ € (3.63)
, 3 €con Ec,n) /7 c,n ¢ Bt ,
- -~ , :
where €, -and €., are the total effective strain and the effec-
s tive creep strain rate respectively, and Atn is chosen by
tn < min. (1 En/ :;. "]/" |
. c,nl/x(Tp)) (3.64)

The effective strain and strain rate are computed on element basis along
) with the temperature ahift function at the centroid of each element.
The minimum value of time step size computed for each element is select-
ed for the next time step size and the change in the time step length
. between any two intervals is limited according to the empirical rule of
'.thumb “
Stn < 1.5 atn.y

A T (3.65)
The . range of the factor 1 is empirically selected to  be
0l ¢ t¢.1 for the forward scheme ( §= 0 ) and up to 10 for the im-
plicit.acmeme (6=1) although the accuracy subsequently deteriorates

as T Iincreases.

3.3.6 COHPﬁTATIONAL PROCEDURE

The main step in the solution process {is summarized here. The solu-
tion to the problem begina with the entire transient temperature distri-
_ bution solved separately and the known initial conditions at t = O,

which repersents the instantaneous responses obtained by using elastic
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constants. At this stage To ’ uo ’ Fo s €o>» Oo are known

and cc.n = 0, The solution sequence adqpted is as follows:.

(a) At t = t,, the quantities AT,, U, On>» € Ec.n

(b)

(c)

(d)

and  F, are known for an equilibrium state. The following quan-~
tities are then assembled: - D , - '-(ri , A%, ARn.,

We  now compute the displacement increment acéotding to
eqn.(3.58) and the stress increment from eqn.(3.50)" and update
the tota; displacements and stresses from eqns.(3.6l1) and

(3.62).

‘The time step increment Atp,; 1is selected by eqn.(3.64) and

checked against eqn.(3.65) with a specified T . When the time
increment for the stress field does not match with the one for the
temperature field solved, the iinéaf inférpolatibn of the tempera-

ture is carried out.

The reduced time and the creep strain r_até' are calculated by

eqns.(3.40) and (3.44) and the load increment ARgj4] for the

next time interval Atpes] 1s formed according to gqn.(3.§0).

The solution sequence (a)-(d) 1is repeated until the prescribed time

1s reached. The algorithm adopted above 1s general enough to include

plastic strains and large deformations if iterationo are allowed within

an increment. The flow chart of the above solution procedure is shown in

figure 8.
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solve for the entire thermal
responses: eqn.(3.14)

initialfzation: n=0 AtTuT : time ‘increment for
the thermal responses
obtain the isntantaneous
elastic responses at t = 0 Ath”‘ : time increment for

' ' the mechanical responses

|.select Atn*4= eqns.(3.64) and (3.65)

t

VAL VIR S L RV

retrieve the temperature
solution at t = t, v

check interpolate temperature
? no solution at t = tp 1y

thom = Ent

" yes .

update the creep strain rate: eqn.(3.44)

forﬁ- Esn;1':’egn.(3.51)

form 'A Rn ¢ eqn.(3.60)
]

solve for AUp : eqn.(3.58)

compute Aop ¢ €an.(3.50)

update Up,q and dn,1:eqns}(3.6l) and (3.62)

n=Ne1

<
LR tyina yes

Figure 8: Flow Chart of Incremental Solution Procedure for
Thermoviscoelastic Problem
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Chapter IV
.. COMPUTATIONAL EXPERIMENTS

“PriOr to use of the devélopedAcode fﬁFbeor field applications, code
'validafion ané m6dé1 éaiibrations are essential réquirémehts. In this
éhaptéf, fEM”formula;ions'asébéiated with thezuncoupled thefmoviscoélas-
tic gdéliéis ﬁfeseﬁtedAih.éhApier ITI are validated. Sincec the thétmal
’réspbd§e§,~ sébaraied“frdmAthe'éechanical résponaeé. ‘are affected by
charéétefistiés éfyﬁhé p£6biem 1.;., conéeétive-diffusion. line crack
etc, the temperature responses are independéntly obtaineé by using FEM
and can then be used for the corresponding thermoelastic‘or thermovis-
coelastic responses. Test numerical models 1ﬁclude 15 a thermoviscéels—
‘tic model, 11)-.a convective-diffusion model, 1i1) a transient heat con;
. duction model, and iv) a thermoelastic line crack model. The effects of
time step and scheme, control parameters in the fmplicit incremental
. procedure are demonstrated for the thermoviscoelastic model. - Compari-
sons with availeble snalytlcul.and numerical iesulls are'also presented.
All caléulations in'thisustudy are carried out on Amdahl 470/V8 using

the {mplicit double precision.

-60-



4.1 THERMOVISCOELASTIC RESPONSES

In this section, the thermoviscoelastic formulation presented in Sec-
tion 3.3 is validated. The effects of'time‘step size and the implicit
lscheme control parameters are enamined by comparing FEM solutions with
the finite diffetence solutions obtained by Lockett and Morland [77].
fhe FEM>resu1ts include the cases of the mechanical and thermal loads.
rThe results from ,the presented FEM formulatione are also compated with
the ones given by Taylor et al [111] and analytical solutions obtained

by Muki and Sternberg [85].

4,1,1 THERMORHEOLOGICAL PROPERTIES

The thermorheologically simple material characteristics of Polyme-
" thylmethacrylate are considered for the presented model. These proper-
ties ‘have been adopted in several numerical models by Muki and Sternberg
.[85], Lockett and Morland [77] and Taylor et al [ll11]). For the tempera-
ture range from 80°C Lu liO"C with the base temnerature T, = 80°C, the

normalized TSM properties are as follows (cf. ref. [77,111]).

l. The temperature shift function 18 expressed by

X(T) = 3.98x10% EXP[-6.127(1-T) (1.333 + T +.1.095T2)] (6. 1)

where

Ts= (T - To)/30. (°C) (4.2)
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The strong dependence on temperature of the shift fuction is shown
in Figure 9.a.

2. The relaxation moduli are

G] = 0.75x107 + 8.297x10% EXP(-¢)
Gp = 2.5x10%
: (dyne[cg?) , (4.3)

and the equivalent creep compliance is approximated by

J(E) = (36 + 61)/(961Gp) = (1 + G1/362)/36;

4.444458x10-% - 4.44x10-% EXP(-9.036x10-"E)

n

(cm?/dyne) (4.4)

Figure 9.b 1llustrates the creep compliance with respect to the re-
duced time. .

3. Instantaneous elastic constants are obtained by setting £ = 0 in
eqn.(4.3), i.e.

<
n

o = (362 - 261)/(667 + 261) |4 = 0.3508
Eo = (96162)/(3G2 + Gl),£=0 = 2.243x10%
(dyne/cm?) (4.5)
and the

temperature solutions are separately provided by a given
functional form

T(r, ) = (1 -7) [1 - EXP(-20)] . (°C) (4.6)
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where

il
|

= (r - router)/(router - Tinner)

|
]

t/
° (4.7)

in which ¥ and t are non-dimensionalized radial distance and time,
To 1s the relaxation time at the base temperature T, . The ax-
isymmetric FEM model and the specified tramsient temperature pro-—
files are shown in Figure 10. It 1is noted that the temperature

reaches the quasi-steady-state at about t=1.5 whileA the inside

boundary temperature is dependent on time.
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log X(T) a) Temperature shift function

4

b) Creep campliance
log (J/J.) ) canp
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C)¢{:::. 2 - 1 4 log ¢
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Figure 9: Temperature Shift Function and Creep Compliance for
Thermoviscoelastic Test Model
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Figure 10: Axisymmetric FEM Model and Temperature Profiles for
Thermoviscoelastic Test Problem
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4,1,2 THERMOVISCOELASTIC RESPONSES WITH INTERNAL PRESSURE

Elastic solutions are obtained by applying a constant pressure on the
inner boundary with instantaneous elastic constants. The uniform elas-

_ tic solutions adopted from Lockett and Morland‘[77] are .

T’rr s - 0.278, —oee = 1.39 ) i . %

v—oZZ‘= 0'6959 T’rz = 0.0 4 8)

The FEM hoop stress results, excluding the thermal expanslon term
‘( a(T) = 0 in eqn.(2.41)), are compared with the finite difference so-
"lutions. Several Casgs with different time step sizes and the implicit

scheme control parameters are examined to investigate their effect on

“the solution.

: For the fﬁrward scheme ( 6= 0), the FEM results for the‘ ho&p
stresses afe presénted in Figure 11 and are compared with the finite
difference solutions. In the foréard scheme, the time step size is kept
small enough to avoid unst#ble solutions. The hoop stressées for both FEM
and the finite difference solutions compare well except in the region
near the inside boundary after t =~ 0.7. A similar discrepancy was noted
in the s8solution with thermal expansion effects by_Tayxor et al [111].
The results from the presented formulation, including the chérmal expan-
sion effects, are presented in Section 4.1.3. The appropriate time step
and scheme control parameters are selected on the ba#is of preliminary
parameter sensitivity studies. Here the results from the implicit

schemes are compared with the one from the forward scheme. As shown in
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Table 1, the case . 0 = 0.5 and 7T =.0.1 yields the best results. How-
ever, as time increases, the case 6 =0.5 sﬁffets ft#h the numerical
oscillations and subsequent degraded accuracy. Figure 12 illustrates the
oscillations occuring at T = 0.05 when T 1increases up to 0.5. It
shows that the solution‘is oscillatory but stable and converges to the
expected solution for the case T = 0.1. On the other hand, the fully
implicit scheme shows no oscillations and requires less computational
time as the time step size increases. In addition, the soluﬁion accdracy

does not deteriorate as quickly as the case 0= 0.5 does.

As time increases with 7T = 0.1, compatible results are obtained for
_both the @ = 0.5 and 1.0 cases (Figure 13). As shown in Figure 12 and ,
A13, the material near the inner surface of the tube is weakened by the
increase in temperature in that reéion. This results in a lowef stress
‘being induced in the inner region and a highef stress 1in the outer re-
gion."At subsequént timés, the inner region with approximately uniform

stress expands out toward the outer region.

-67~



Q!
L J

FEM
3I' e .329
A .489
B8 .749 (time)
®1.227
. = REF. 77

Figure 1]1: Hoop Stresses with Internal Pressure for Thermoviscoelastic
Test Model
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—60=

0 = 0.5 0 = 1.0
case 0SC/stability]| error CPU 0SC/stability error crPyU

1 () ~(sec) (%) (sec)

T=.l no 0SC 34 18.67 no 0SC 1.5 16.91
stable t=1.35 | 55 cy. stable t=1.34 47 cy.

T=.,5 0SC 38, 18.42 no 0SC 8.8 9.02
stable t=1.4 58 cy. stable t=1.38 22 cy.

T=1, 0sC 60. 10,26 no 0SC 14,1 8.69
stable t=1.42 | 48 cy. stable t=1,.17 21 cy.

* Error was computed with

- Fffects of Time

respect to the splution of the forward scheme (O = 0)

Table 1

Step Size and Implicit Solution Scheme




N q

FEM (8=5)
Fs o—e T=.1
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Figure 12: Oscillatory Results with 6= 0.5,

=70~

T= 0.5at ¥ = 0.05
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Figure 13: Hoop Stresses at t = 4.07 for Thermoviscoelastic
Test Model with Internal Pressure
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4.1.3 THERMOVISCOELASTIC RESPONSES WITH THERMAL EXPANSION

Based on the previous numerical experiments for the time step and
scheme control parameters, the presented FEM solut19ns for 6= 1.0 and
0.5 with T = 0.1 are compared with the finite difference and FEM so-
lutions obtained by Lockett and Morland [77] and Taylor et al [111], re-
spectively. The coefficient of thermal expansion is aésumed to be inde-

pendent of temperature and the normalized hoop stresses are: [85,77]

= 2.666x10->

f
]

al
]

= 369/‘33 Go) 4 (4.9)

Figure 14 illustrates the effects of high temperature softening of the
laner tube region so that a greater load is transferred to the outer re-
glon. Across this region, the stress varies from a tensile value at the
outer region to a significant compressive stress at the inner region.
It'is again noticed that the presented FEM and the finite difference so-
lutions do not agree at the inner boundary region at t = 0.32 and 1.26.
However, the solutions obtained by Taylor et al and the presented FEM
farmnlatione show a good agreement at € = 1.26. Thc finite difference
solutions in the inner region is apparently in error as reported in Tay-

lor et al [111].

It can also be noted that the finite difference solutions were ob-
tained by using 40 spatial points and 100 time points while Taylor's FEM

solutions used 12 elements and 40 time cycies. In the FEM formulations
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presented hgte;- cémﬁatible solutions are obtained by ﬁsing 12 elements
) ‘and 27 F{Qé cycles,»which illustrates a guperiot time disctetiza;ion. In
x;pariiéﬁiar,“ thg'presented,vatiablg time interval scheme requires proper
"“sg}ecgion of thg'ipitial‘time step size, which must be chosen carefully
_uéccér41ng to ;ﬁe temperature solution and its effect on the temperature
:qgift_fppction by avoiding a abrupt change %n thg computed reduced time.
Fo?dghg presented test.problem,- the time step size increases with time
andeempérature, and its maximum value reaches O0.141 approximately 70
times the initial time step size (0.002) at the final tfme step. This
corresponds to a norﬁalized temperature of about 0.874 and a reduced
time increment of about 360 times the real time increment. It is also
" recommended fo keep a constant time step size during the early several

steps to obtain stable and accurate solutions.
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Figure 14: Hdop Stresses fdr Thermoviscoelastic Test Model with
Thermal Expansion ( 6=1.0, T= 0.1)
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4.1.4 THERMOVISCOELASTIC RESPONSES OF A SLAB PROBLEM

The presented FEM formulation is applied to evaluate the thermovis-
4 coelastic responses of a slab. This problém.ﬁas been solved analytically
by Muki and Sternberg [85]. A slab of infinite extent with finite
thicknes§ 2a 1is bounded by planes z=ta under the influence of a tran-
sient temperature field (Figure 15). The slab,dispiacements are governed

by

‘st Uy= 0, Uze Uz(z’t)

(4.10)
and the stress field 1s given by
o = = :
" Fyy oéz(zft) =0 ' (4.11)

The following hypothetical functions for the temperature field and

thermoihevluglcal propertiés using a Maxwell fluid model are assumed:

a) Temperature solution:

T(z,t) = 1.5 -z -t i
(7¢) (4.12)

b) Temperature shift function:

X(T) =1, + 200 T
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c) Relaxation moduli:

G, = 7.5757x10%

- 5
G2 5x10

IXP(- £/ 0.44)

(dyne/cmZ) (4.14)

with the equivalent creep compliance approximated by

JCE) = (1 + 6,/36,)/36,
= 4.622x10°% + 1.0x10°

(cm?/dyne) (4.15)
d) Instantaneous elﬁstic constants:

Eo = (96162)/(362 + 61) [y = 2.1634x10°

(dyne/cmz (4.16)

and the coefficient of thermal expansion is

a - RxlO'5
(1/°c) (4.17)

The analytical solution is expressed by the following form ( cf.

ref.[85]):

o, = —LE . mr-BE/T) [tEXP(-ﬂ/T)-Q-ldt“
1=y A ot (4.18)
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where
f= 1tV
3(1-v)
and T, denotes the initial relaxation time at T = T, .

Substitution of the above assumed data (4.12 - 4.17) into eqn.(%.18)

"yields the explicit form of

O = - 45.37 ZIXP( - 1.89( t + 15, 2 t9)) -

t
fxzxp(mg( '+ 15. 2 £2)) dt’
o (4.19)
The integral of eqn.(4.19) is numerically evaluated by the Romberg's ex-
trapolation method and a small amount of numerical error may be intro-

duced in computing analytical values-

Since the temperature function is selected to be symmetric with re-
spect to the z axis, only half of the slab thickness is modeled by using
16 plane strain finite elements having 34 nodal points as shown in Fig-
ure 15, Compariséns between the non-dimensionalized axial stress from
the presented FEM formulation and analytical solutions for different el-
lapsed times are shown in Figure 16. The FEM results with 6 = 1.0 and
T = 0.1 show good agreement with'the analytical results, and the maxi-
mum error (4.5i)' occurs neér the free surface at t = 9.175, where the
maximum éompressive stresses are obtained. With increasing time, stress
relaxation becomes evident and a uniform low stress value is obtained.
Figure 17 ghows the stresses at z/a = 0.0125, near the middle plane, and

the maximum error (4.3%) 1s noted at the maximum stress when t = 1.0.
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It is also noteworthy that the stresses in the higher temperature region
(linearly increasing toward the free surface) relax faster than in the

low temperature region (near the middle plane).

The FEM solutions up tot = 2,0 require a solution time of 7.4 sec—

onds and the time increment ranges the initial increment 0.0l to U.215

with increasing time.
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Figure 15: Plane Strain FEM Model and Prescribed Temperature
Solutions for A Slab Problem
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Figure 16: Axial Stress Compariec;ns using FEM and Analytical
Solutions ’
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Figure 17: (_Zomparisons of Axial S_tress a)t:“z/a = ‘O:OAIZS
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4,2 THERMAL RESPONSES

In the absence of the thermo—mechanical coupling effects, the thermal
responses are separated from the mechanical regsponses., Here, FEM models
for the convective-diffusion equation and the transient heat conduction
equation are demonstrated. The upwinding scheme presented in Section 3.1
18 compared with other numerical schemes for the convective-diffusion
model. Results from the twu-point recurrence scheme for the transient

heat conduction equation is compared with analytical solutionms.

4.2,1 CONVECTIVE-DIFFUSION MODEL

To assess the effectiveness oflthe upwinding scheme described in Sec-
tion 2.2, a series of numerical results obtgined by Huéhes and Brooks
[56,57] are compared. 1In each_scheme, the finite element descretization
procedure 1s identical except for the treatments of the convective
terms. The convective-diffusion equation in éonaideration is represent-

ed by

v - 1x10° (cos¥T , + sin¥T.y) = 0
(4.20)

where Y 18 the flow direction measured in the counter-clockwise di-

rection. The boundary conditions and FEM model are shown in Figure 18.

Numerical comparisons aré made between the following solutions; 1)
the standard Galerkin method (G), i1i) the quadrature upwind scheme (QU),
111) the streamline upwind (SU1,SU2), iv) the upwind scheme proposed by

Heinrich (HU) and v) the exact solution (E). Details of the quadrature
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and st:eaﬁline upwindiqg .schemes'are found in Hughés et al [20.56,57].
Denoting each sqlution by its abbreviatiop; the differént convective
skews are shown in ?igure 19, Itvis evident that ihelsolutiona G and SUI
suffer from the most serious'oscillation; wvhile the solution QU experi-
ences significant cross-wind diffusion thereby degrading the solution
accuracy. It is also evid;nt that the above schemes suffer more oscil-
lations and cross-wind diffusion in x or y dominant convection than the
case of equally distributed convection ( ¥ = 45°). Meanwhile, the solu-
tions SU2 and HU possess the same amount of cross-wind diffusion. Howev-
er, SU2 tends to show slight oscillations in the.vicinity of the region
subjected to the steep variatiqn of temperature. For the HU scheme, the
fesul;s are far better th;n others 1n‘that HU'mainta;ns'tﬂe moét consis-
tent accuracy for the'different ' convection angles. The perfﬁbation of
upwind parameters, 7§ and Tﬁ in " HU, does not éignificantly affect
the solutions although the full upwinding scheme has a tendency to cause

more cross-wind diffusion than the half upwinding procedure.

It is recommended that the upwind scheme p;oposed by Heinrich et al
[47,48] (HU) be ‘used when a significant amount of éonvection must be
considered in the energy equation, which arises from the flow of hot
fluid through -a channel. Modeling of moving boundary (with a constant
velocity) would be another important case 1n‘which the convection term

must be considered [21].
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Figure 18: Boundary Conditions and FEM Hodel for Convective-
Diffusion Test Problem -
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Figure 19: Temperature Profiles along S axis for Convective-
Diffusion Test Model
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4,2,2 TRANSIENT HEAT CONDUCTION MODEL

The infinitely long circular cylinder subjected to prescribed temper-
ature boundary conditions is considered. The two—point recurrence scheme
with the implicit algorithm, described in Ch#pter I1I, is empluyed. The
presented FEM solutions are cbmpéféd with the analytical series solu-

tions [21].

FEM models are shown in Figure 20 wherein the boundary temperature is
suddenly raised from zero go:n"cbndtaht teﬁperatuta ﬁ,! 1.0 and 1s
thereafter maintaine@. The“FQMImodél-iq generated under the planar and
the axisymmetric cases so that the solutions are checked in both cases.
A quarter of the circular domain 1s used by applying the zero tempera-
ture gradient conditions on the symmetric boundaries for the planar

case. The material constants are normalized to yleld

o
'E -
at . : (4.21)

The constant time‘step size 0.0025 according to eqn.(3.15) 1is used for
both 8= 0,5 and 1.0. Fignfe él shows a good agreement between the
FEM and analytical soluctions. It is bbserved Ehac the time step sizé se-
lected from eqn.(3:.15) yields otable and accurate results ¢so that the

temperature dependent properties can be favorably incorporated.
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b) Axisymmetric model
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Figure 20: FEM Models for Transient Heat Conduction Test Problem
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Figure 21: Transient Temperature Profiles of FEM and Analytical
Solutions .
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4.3 THERMOELASTIC FIACTUﬁE RESPONSES

Solutions associated with the FEM models for the thermoelastic line
crack problems described in Appendix A are demonstrated. The steady-
state temperature, displacement and stress fields in a homogeneous, iso-"
tropie, - ei#qtic medium with a line crack are obtained. The temperature
disttibutibﬁ,in thg bo&y\ ﬁitﬁ‘the quasi-static uncoupled thermoelastic
'assumptigh; 18 determined independently. The sélected material proper-
ties of rock jor the‘ftactdre gnalysis §¥é assdmed to be ;ndependent of
tempetafufe and.are ligged in fable 2. Thé fﬁM results afe gompared with
the analytical'sq19t10n8> [73,123,127] in terms of the stress intensity
factors‘for moék'l-and mode II cases. The stress intensity factors ob-
tained by two- and three-point:Gaussian quadrature rule are also com-

pared.i

Properties. . Symbol ° Unit

Thermal Conductivity k

Coeff. of Linear . . = . NP
‘Thermal Expansion .~ @.  100/°C 2.5
Elastic Modulus E 10 MPa 1.3
Poisson’s Ratio: v 0.1

W/m°C T 2.244

Table 2

Material Properties for Thermoelastic Line Crack
- Test Model
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.4.3.1 MODE I CASE

The prescribed constant tempéfature on'the ﬁppef and the ibwer gréck

surface are assumed to be T, and zero at 1hf1nity 1.e.

Ti(x,y) = Ty for y=0, Ix| <a
—gyI=0 fo‘r:' ;);-.-O.lxl>a
Ti{x.y) =0 at infinity - : : (4.22)

The FEM.model is shown in Figute 22 by taking-a quarter .of the entire
domain due to‘the symmeé;y. The chosen doﬁain size 18 20 times Lhe
crack length. The degenerate singular elements are used around the
'craék tip and the eight-noded isoparametric elements are employed for
the rest of the domain. The normalized temperature and the maximum prin-
cipal-stress distributions are shown in Figure 23.a and 23.5, respec-

tively. The stress intensity faétor KI is non-dimensionalized to yield

K1 = K1/( Ty /7 @)

(4423)
and KI obtained by the twu-point (2x2) and fhreeep;int (3x3) qﬁadtature
rule are 1.2987 ahd 1.3667, resﬁecgively aﬁd are within 2.5 error when

‘ compared to the analytical value of 1.273 (cf. qu.(A.9))‘ -It is ob-
served that effects of the number of integration points on the singular
elements are 1nsignif1can£ for both temperature and stress fields alt-
hough the Kl value obtained from the two-point rule ie slightly more

accurate than the one from three-point rule.
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a) Temperature distribution
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Figure 23: Temperature and Maximum Principal Stress Contours for
Mode 1 Case
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4,3,2 MODE II CASE

A line crack of length 2a is situated in an infinite plane subjected
to a constaﬂt temperature gradient at the surface of the crack. The

boundary conditions at y = 0 are

- C = constant for Ix] < a

QY

T(x,y) =0 for Ix| > a
Tix,y) = 0 at infinity | | (4. 24)

:The‘dOmain sizé of FEM model is approximately 15 times the crack length
as shown in Figure 24, The non-dimensionalized stress intensity factor

K&Iis expressed by

K11 = K11/{o6C /x a¥/?)

. : (4.25)
FEM results of the stress intensity factor Kﬁtare 0.643 for the two-
éoint rule,anGIU.b69 for'the three-point rule while‘the analytical value
is 0.636 (cf. eqn.(A.10)). It is again noged that the singular ef-
fects near the crack tip is slightly better represented by»the two-point
fule for both temperatﬁre and stress fields. Sihce the thermal and me-
chanical responses are symmetric with respect to x‘ind;y axes, the nor-
malized teﬁperature and-séress disértbutions for.a quadr#nt are shown in

Figure 25.a and 25.b, respectively.
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a) Temperature distribution
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b) Maximum principal stresses
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Figure 25: Temperature and Maximum Principal Stress Contours for
Mode 1I Case
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Chapter V

FIELD APPLICATIONS

In the formulation of design criteria for rock mechanics probleﬁs,
the effects of time and temperature can be of considerable concern. In
particular, problems involving elevated temperature such as undefground
coal conversion (UCC) process and nuclear waste disposal, vthe strong
time and temperature dgpendence of geological materials may pose a po-
tential hazard to process mechanisms and the host environment. In this
chapter, the UCC post-Burn fesp§nse is éimulated by using the preceding
thermoviscoelastic and thermoelastic fEM model formulations with empha-—
sis on the key variables involving temperature, stress, failure zones,
and surface subsidence. -A similar approach is also applied to possible

nuclear waste disposal model in a low permeability daltvmedium.

5.1 UCC POST-BURN MODEL

Underground coal conversion has gained attention as a vital 'source of
alternate energy in the U.S.A. since the early 70's energy crisis. As
an fnnovative and efficient extraction technique, in-situ gasification
of coal reserves has appeared to be a viable avenue for retrieving com-
bustible gases from the carbon content of burning coal. The development
of underground coal gasifiéation (UCG) and basic principles are reviewed
by Gregg and Olness [42] and Skafa [102]. Descriptions of various ap-

proaches and their mathematical modeling, laboratory and field results
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have been presented mainly at the Annual Symposia on Underground Coal

Conversion [117,118,119,120,121,122].

The typical UCC process is characterized in three main stages; name-
ly, pre~burn, active-burn, and post-burn stages. The pre-burn stage in-
cludes drilling, fracturing and linking prodesaes to enhance the perme-
ability between wells. When the required permeability is established,
gasification of coal is conducted by supplying gaseous oxidizing agents
to the prepared coal seam. During the active-burn stage, the gasifica-
tion chamber 18 expanded through the coal seam while the combustible
gases are retrieved at the surface. In the post-burn stage, the supply
of the oxidizing agents is stopped and the hot cavity gradually cools
with time and has a potential for subsequent roof collapse and subsi-
dence. For the sustained reliability of the UCC process, major struc-
tural concerns are placed on the control of in-situ gasification process
mainly in the aspect of fracture mechanics, heat transfer and thermo-me-
chanical responses. In addition, the ground movement, especially the
surface subsidence and the growth of gasification chamber in active and
post-burn stages are the major problem areas associated with UCC (Figure
26). Structural finite element model investigations of various UCC cavi-
ty configurations have been conducted by Advani et al [1] and Thompson
et al [112]. Closed form solutions for thermally stressed ellipsoidal
cavities have been obtained by Advani et al [2]. Jegbefume and Thompson
[62] have conducted a study on roof collapse and subsidence treating
only the overburden rock as a linear viscoelastic material. Advani et al
[3] have recently introduced FEM models which can be directly applicable

to UCC field simmulations for active and post-burn stages. This includes
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the moving boundary problem for the active-burn stage and the thermovis-
coelastic modeling for the post-burn stage to predict the surface subsi-
dence and the gasification chamber configuration. Other relevant re-
search includes studies by Langland and Trent [71], Sutherland et al

[107]) and Turner et al [116].

In this section, the post-burn stage of Hoe Creek II site is simulat-
ed by use of the thermoviscoelastic FEM mudel presented in this study
with Lemperature-dependent material properties. Thermorheological re-
presentations ot coal and rock and detailed modeling procedures are pre-

sented in the appropriate sections.
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Figure 26: Typical UCC Site and Potential Environmental Impacts

=98=



5.1.1 THERMO-MECHANICAL AND RHEOLOGICAL BEHAVIOR OF COAL

Major laboratory tests for eastern bituminous coal at elevated temp-
eratures have been conducted by Singer and Tye [101] and Shoemaker [99].
Based on the above references, Min [81] has presented a general thermal
property trend for coal. This provides a basis for possible parémetric
studies and modifications of UCC models. Here, similar trends of the
thermal and mechanical properties are adopted and aasociated nominal va-
lues are selected depending on a specific UCC site. Figure 27 1illus-
trate§ normalized thermal trends for thermal conductivit&, heat capaci-
ty, mass aensity, linear coefficient of thermal expansion, tensile

stréngth, and compressive strength.

For the viscoelastic properties of coal, Fitzgerald t35] and Waters
[i24] have examined coéls at the stage of carbonization and thermal sof-
tening. Compreséive creep tésts in the temperature fange between 200°C
and 370°C have been conducted by Sanada and Honda [93] revealing that
creep 61 cdal-can be represented by a simple rﬁeological model; Shoe-
maker [99] has presented directional viécoelastic properties of the
Pittsbﬁrgh coal at elevated temperatures ranging from 24°C to 343°C. It
is repofged.thﬁt the Pittéburgh coal can be £reatéd as a th;tmorheologi-
cally simple material [99]. Lin [75] has adopted Shoemakér's data for
the Pittsburgh coal and presented analytical creep functions uéing a
fouf parametef fluid model(Burger's model). Due to inéufficient creep
data at elevated temperatures for field experimetal sites, the creep
aata for thé four parameter fluid model of the Pittsburgh coal-is adopt-

ed in the present UCC simulation. The selected trends of the uniaxial
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creep compliance and the tempefature shift function are shown in Figure
28. The creep compliance of Pittsburgh coal is calibrated according to
available experimental data for Hoe creek II site [62,80] and the same

temperature shift function 18 ueed. The appropriate numericaf,expres-

eions are )
J(E) = 1.1727x10-% + 7.1699x10-® £ ,
- 1.1621x10-® EXP(-2.x10-1%E) (1/Pa) T Ga
and | l
X(T) = 1/ay = (180.6 EXP(-2.2089 - 1.24x10-'T - 1.9661x10-572))-
_ (5.2)
p:
#
-
£
=
I
] "
8 3

Figure 27: Normalized Thermal Trends for Cbgl Properties
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5.1.2 THERMO-MECHANICAL AND RHEOLOGICAL BEHAVIOR OF ROCK

Extensive references on thermal and mechanical properties of diffe-
rent rock types can be found in Lama and Vutukuri [69]. The thermal
trends for most of rock materfals are known to be similar [B1]. Here,
based on the laboratory tests for oil shale [31], sandstone and lime-
stone [17], and granite rocks [50], the selected general trends for
thermal and mechanical properties are presented in Figure 29. The nor-
malized thefmal trends of rock materials are again calibrated by choos-

ing proper nominal Values for a speclflc UCC experimental oite.

For the’thermorheological properties of rock, Misra and Murrel [82]
has conducted creep tests for a number of diffe;ent rocks(dolomite,
sandstone, marble) up to 750 °C under the uniaxial loading. It is report
ed that thc creep strain is proportional to thé logarithm of the.time,
stress and temperature at the low temperature range but increases expo-
nentially as temperature increases. The analytical model for ;he rheo-~
logical behavior of the dark gray shale associated with the UCC process
has been proposed by Lin [75] using the creep data conducted by Gmeindl
[40]. Figure 30 shows ;he creep. éompliance of the four parameter fluid
model and the temperature shift function for the dark gray shale. These
thermorheological properties are.again adopted and scaled for the asso-
clated rock marerials(siltstones) for the Hoe Crcek II site. The select-

ed thermorheological properties are

J(E) = 5.6394x10-8 + 3.2603x10-2!¢
- 4.6042x10-8 EXP(-1x10-%%) (1/Pa)

(5.3)
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and

X(T) = 1/ay = {4.795 EXP(-2.297 + 0.118T - 5.919x10-"“72)}-! (5.4)

- Normallzed Thermal Trends

Figure 29: Normalized Thermal Trends for Rock Properties
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3.1.3 POST-BURN MODELING PROCEDURE

TQo i;éues are of ptimary concern in the simulation of thé UCC post-
burn process; namely the heatin; and cooling of the gasification cham-
ber and the structural response of the chamber configuration. To simu-
late thé heating and coolihg effects;‘ a time-dependent temperature
coﬁaition on the chamber bﬁundary is uséd for thé thermal responses.
Since the thermally-active zone is reported to be confined in the vicin-
ifiiof tﬁe  chamber boundary and it is preceded by failures during the
active-burn stage [81], the thermal responses in the‘pést-burn process
arejindependently simulated. The assumed time-dependent chamber temera-
ture is as féilowé; A], | |

:a) The chamber temperature increases linearly from the ambient temp-

erature(20°C) to the combustion temperature(600°C) within a short
time interval at the early stage.

_ b) The cgamber temperature remains constant at the combustion temper-
ature for a certain time interval and starts to decrease slowly
toward the ambient temperature. This simulates the natural cooling
effect on the gasification chamber due to heat loss and water in-
flux.

The choice of the temperature bounda?y condition is based on observa-
tions of the UCC experimental results. It aléo avoids numerical o;cilla-
tioﬁs caused by abruﬁt changes in the boundary temperature at the begin-

ning stage.

For the chamber configuration shown in Figure 31, the two-dimensional

failure theories presented 1in Appendii A are 1ncofporated in the model
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. to define the failed zones. Although the transient chamber configura-
tiéns fall in the category of moving boundary valﬁe problems, a crude,
yet economical, finite element model can be obtained by assuming that
the failed elements are still attatched to the adjacent elements but do
not show any strﬁctural strength. This assumption allows us to use the
éame meah configuration during the entire solution procedure and simply
discard the 1load increment for the failed elements at each solution
step. buting the entire simulation, thé temperature-dependent thernmal

and mechanical properties are alan incorporated.

S5.1.4 FEM MODEL AND RESULTS FOR HOE CREEK II SITE

The selected plane strain FEM model for the Hoe Creek II site s si=
mulated for 10 years post-burn. The prescribed chamber temperaturé and
.boundary conditions along with the idealized stratigraphy are shown in
Figure 31. The selected chamber configuration is based on the field ex-
periment conducted by LINL [4]. Due to the symmetry of the 1ﬁ1t1a1
chamber ;hape and the geological structure, the FEM model dimensiops are
selected to be 60m horizontal by 70m vertical. The 4-node quadrilateral
isoparametric element is used throughout. The mesh discretization shown
in Figure 31 has 267 elements and 309 nodal pulnts. The geologlcal ma-
terials at Hoe Creek II site have been teported to be very weak and the
nominal values for thermal ana mechanical properties listed 1in Table 3
are aeleéted from sample data [80]). The rock materials at the top and
bottom(seam 1,6) are treated as elastic materials while Felix l‘an§
2(seam 3,5) and éiltstones(eeaﬁ 2,4) are represented by the thermorheo-
logical model for coal and rock ?especti?ely as described 1in Séct;on

5.1.2 and 5.1.3.
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Seam No.

Properties Symbol Unit
| 2+ 3e 4% 5¢# 6
Mass Density e kg/m3 2374.0 2259.0 1300.D0 2259.0 1300.0 2323.0
'Dlerl'lal co"ﬂuctw‘.t’ k V/m'C 2.0 2-0 «27 2.0 «27 200
Heat Capacity c J/xg*C 900.0 900.0 800.0 900.0 800.0 600.0
Coeff. of Linear B
Thermal Expansion a 107/°C 10.0 1.0 5.0 10.0 5.0 10.0
Tensile Strength Sy KPa 73.0 90.0 200.9 90.0 200.0 6000.0
mﬂesstve Strength Sc MPa ~-7.3 6.5 ~10.90 6.5 -10.0 =30.0
Elastic Modulus E MPa 42.0 96.6% 94.%* 96.6% 94.% 90.0
Poisson’s Ratio v .38 37 °32% Le37% °32% 37
Coeff. of :
Internal Friction u, 1.0 1.0 1.0 1.0 1.0 1.0

A designates viscoelastic material and associated material properties
are instantameous values.

Seiected Mominal Values for Material ,Pror;erties
at Hoe Creek II Site

Table 3



The computed temperature profiles at different elapsed times are pre-
sented in Figure 32. A constant time step size, 0.04 year, resulting 250
transient steps for 10 years, 1s utilized with about 2 minutes 44 sec-
onds of CPU time. A larger time step size can be used to reduce the
number of time steps and the CPU time after the initial stage. However,
the same time step size 1is used for the entire duration to provide a
complete characterization of the viscoelastic responses. Slow thermal
propagation, limited to the vicinity of the chamber boundary, is evident
for the first 2 years. However, the solutions at 4.8 and 10 years show
further temperature propagation and different charactgristics in the
therﬁal pattern as the chamber 18 cooled down to the: ambient tempera-
ture. At 10 years elapsed time, the maiimum temperature found to be ap-
proximately 115°C about 7m outside of the chamber boundary and steadly

approaches the ambient temperature.

Figure 33 illﬁstrates the t£ermo-mechanica1 responses characterized
by the principal stress redistributions, uniform reference subsidence
(S, ) due to the cavity, maximum differential surface subsidence (Smas:
= Sx“”( - S, ) énd failed zones associated with the defined chamber con-
figuration. Comparisons of the progressive failure zones and maximum

and 3E for thermoviscoelastic and thermoe-

. \"
surface subsidence, 5 .. max

lastic cases, respectively are also presented. ‘For the thermoviscoelas-
tic response evaluation, the instantaneoué elastic responses are ob-
tained ftom the gravitational 1loading which results 4in compressive
stresses at the bottom of the base rock(seam 6). The steep.increase in
temperature at the earlier stages results in high stresses causing rapid

element failures around the chamber boundary. With time, these high com-
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pressive stresses are reduced for coal and siltstones while the elaécic
layer stresses(éeam 1,6) are almost uniform. This behavior illustrates
‘the effect of material softening due to the time-temperature dependence.
Ma jor shear failures occur in siltstones(seam 2,4) 1indicating potential
roof‘collapse in the upper chamber region. The slow development of the
failed zone between 5 and 10 years simulation time potentially indicates
the final stablized chamber configuration. During the 10 year period,
thé computed subsidence increases an additional 40, i.e. 0.1299m, com=
péred to the instantaneous elastic responses of 0.0929m. Tﬁe effects due
to the gravitational loading, roof collapse and weak elastic matérials
near the surface may counteract the effect due to the thermal expansion
which generally causes uphe;val in various boundary value problems. The
presented analysis with the implicit time stepping scheme ( 6 =1,) per-
mits rather large time step size with 65 transient steps and utilizes
approximately 3 minutes of CPU time for the entire solution. The select-
ed time control parameter 1is 7= 0.2 and time étéps vary from 1 day to

2.3 years permitting larger steps toward the -later stages of solution.

For the thermoelastic simulation, the normalized thermal trends (Fig-
ures 27 and 28) based on the nominal values (Table 3) for the elastic
constants for coal and rock are usad. At early stage, the thermoelastic
and thermoviscoelastic cases reveal approximately similar responses for
the surface subsidence and failed zones (Figures 33.b .and 33.c). With
ellapsed time, it becomes evident that the thermoelastic responses, in
the absence of time dependence, are mainly affected by the thermal ex-
pgnsion resul;ing in structural upheavals. It is also noted that with

progressive cooling, the thermoelastic surface subsidence increéSes
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faster than the corresponding thermoviscoelastic value. However, the
surface subsidence obtained by thermoviscoelastic model is much larger
than by thermoelastic model in general due to the creeping of materials.
At a simulated time of 10 years, the computed maximum subsidence for the
thermoelastic case is 0.0319m, i.e. approximately 25% of the thermovis-
coelastic value (0.1299m). A slow chamber growth rate is noted for the
thermoelastic case. The thermoviscoelastic case, on the other hand,
reveals further chamber growth especially in Felix 1 and siltstone
layers (seam 3,4). It is apparent that both time and temperature
dependence of coal and overburden should be considered to assess the
effect of material softening for the long term structural response

evaluation.
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5,2 UCC ELLIPTIC CAVITY MODEL WITH A LINKING CHANNEL

A successful UCC ~operation requires the coal to have sufficient -
permeability for allowing the oxidizing gas to ‘flow throﬁgh the coal
seam. Various permeability enhancement methods have been employed with
varying degrees of success, namely, reverse combustion method, electro-
linking, pneumatic linking, and hydrofractur;ng. The choice of linking
technique is critically dependent: on the properties of the coal seam
(cf. ref. [42,102]). A typical UCC‘cavity model with a linking channel
is 1llustrated in Figure 34 along with potential thermo-mechanically-in-
duced cracks and water influxis into the chamber. A common structural
problem during the gasification process has linking channel closure or
pPlugging. This closure of plugging phenomenon can occur due to the
swelling characteristics of bituminous coals and the condensation of va-
porized tars. Lee [73] and Wang [123] have analyzed the crack-closure
response of the elastic porous-perpeable media of coal under the thermo-
mechanical loadihg conditions. The analytical expressions of the dis-
placement and stress fields, obtained from the complex variable ap;
proach, are expressed in.terms of the thermo-mechanical loading changes
- and stress intensity factors. It is shown that the fracture permeabfili-
ty 1§ greatly influenced by factors sucﬁ as thermal and/or pféssure'

crack propagation and closure/plugging of cracks.
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Here, a preliminary FEM simulation of an elliptic cavity model with a
horizontal iinking channel 1is presented. Since the softened inelastic
combustion front 1s known to be narrow and subjected to the immediate
fatlure (cf. ref. [81,75]), ‘a thermoelastic model with coal and sand-
stone layers is selected.‘ Materials are assumed to be isotroéic and
homogeneous, and constant>andi temperature—~déependent mechanical proper-
ties are used for sandstone and'coal,- respecﬁively (Table 4); The
steady-state thermal response 18 obtained witﬁ the prescribed tempera-
ture conditions for the cavity andﬁlinking channel. The plane strain FEM
model shown in Figute.35 includés the OVe;burdeﬂ pressure, cavity pres-
sure, and linking channei.treated as a line crack. Quadratic quadlila-
teral isoparametric elements ﬁre used resulting 196 elements and 651 no-
dal points for the mesh, and at the end of tﬁe’ channel crack tip

singular elements are included (cf. Figure 35).

Figure 36 shows the steady-state temperature contours with a pre-
scribed temperatufe of 540°C for the cavity and channel and 7°C for the
external boundary (i.e. ambient temperature). Based on the computed
temperature profile, two cases of mechanical loading conditions are con-
sldered, 1i.e. 1) overburden pressure of 3.45 MPa and ii) overburden
pressure 3.45 MPa with an 1nterﬁa1 pressure 2.75 MPa on the cavify and
linking channel. Figure 37 illustrates the deformed mesh for each case
with a potential partial closure of the channel wunless suffiicient
internal pressure 1s applied. The maximum principal stresses along
the minor and major axes are shown in Figure 38. It 418 noted that the
material layering condition contributes significangly to the stress dis-

tribution along the vertical axis and the application of the internal
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pressure of 2.75 MPa geems to relieve high stresses along the horizontal
axis. Failure is observed at the two ends of the channel. The normalized
stress intensit& factors -ii,ll = K1 11 /EgOplc near the end of the
linking channel are found to ﬁi = =2,017, E&I = -0,109 for the case
with only overburden pressure, and KJ = -0.176, K1 = 0.011 for the
case with both overburden and internal pressure. The computed stress in-
tensity factor; show that crack clésing mode 1s dominant and the appli-
cation of internal ppesbure will induce lower valﬁes of stress intensity

factors.
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COAL

Temperature(®C) k(W/m°C)  E(MPa) v ax10%°) s (MPa) Sy (MPa) u,
20 0208 126005 041‘ 206 : -16.72 1073 1.0
170 «298 1240.5 44 2.6 -15.53 2.07 1.0
260 «298 592.7 44 2.6 -10.86 1.12 1.0
282 0208 7508 -66 206 -[.035 065‘ . loo
SANDSTONE
. 187 ~13784.9 212 2.5 -103.4 10.63 1.0
Table 4

. Selected Material Propertlies for Elliptic Cavity Model
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5.3 IN-SITU WASTE DISPOSAL MODEL

Although the devglopgd FEM models have been primarily conducted for
ucc f;eid simulations, a possible application to the salt-dome mining
problem can be considered in regard to in-situ nuclear waste management.
Various options for radioactive waste disposal including extraterrestri-
al disposa;, seabed disposal, ice-pack disposal, deep melt disposal, and
others have beeﬁ proposed. At present, deep, salt-dome dispoqgl appears
to be one of the moat relfahlae techniques since the roek salt formatiuvn
1o stable and free of dissvlution for hundreda of millions of years. The
saltbed i1s fairly easy to mine and has very.low permeability and water
content. Although this behavior may be desirable in most instances, the
long-term design criteria often require accurate prediction of the time
dependent deformations under various combinations of stress'andktempera-

ture.

Underground nuclear wastc creates two types vf dlsturbances. to the
rock mass: 1) the dieturbance rooulting from the creativa of Lhe em=
placement hole and 1i) the disturbance resulting from the effects of
tgmperature produced by the radidactive waste. The far-field effects of
tgmperature 1nclpde the upward mo£ion of the overburden due to the ther-
mal gxpgnsiog of the rock mass. In particular, 'the large scgle,tock
movements and their effect va the uverall Integrity of the geologic con~
tainment for the post-repose phase 1is of interest. Here, the FEM model-
ing for the post-repose phase is presented by using the preceding ther-

moviscoelastic formulation.
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5.3.1 EEBRHO-HECHANICAL AND RHEOLOGICAL BEHAVIOR OF ROCK SALT

The thermal properties adopted here are based on the data used by
Duddeck and Nipp [32]. Normalized thermal trends for the thermal conduc-
tivity, the heat capacity, and the coefficient of thermal expansfon are
shown in Figure 39.a. It is worth noting that the thermal trend associ-
ated with the coefficient of thermal expansion for rock salt is diffe-
rent from most of other rock materials as it remains almost constant for
elevated temperatures. This maf produce higher thermal expansion in
rock salt when comparéd to other rock materials as temperature increas-

es.

Creep data on rock salt associated with ’nuclear waste management
problems has been recently presented by Langer et a; {70], Nipp [88] aqd
Pfeifle and Senseny [92]. A typical deformation-versus-time curvejfot
rock salt s presented in Figure 39.b. The rate of deformation at ealier -
stages 1s high, but it decreases monotonically(transient creep) while
the deformation continues at a conétant rate(stationary creep). At ele-
vated temeratures, the rate of deformation is further accelerated as
tempetéture increases. The creep compliance test data shown in Figure 40
is fitted by a four parameter fluid model by applying the TSM postulate
described in Chapter II. Coefficients of the creep compliance and the
temperature shift function are obtained from a best-fit analytical curve
for the experimentally available limited temperature range. The seleét-
‘ed thermorheological properties are

J(E) = 0.1775x10-2 + 0.18x10-"E

- 0.1436x10-2 EXP(-0.558x10" 2E) (1/MPa) 5.5)
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and

X(T) = 1/a7 = EXP(53.58 - 0.252T + 0.241x10- 3T 2?)
(5.6)

Figure 41 illustrates the temeperature shift fuction of rock salt for

the temperature range 285°K to 375°K.
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5.3.2 FEM MODEL AND RESULTS FOR SALT-DOME MINING SITE

The presented axisymmetric FEM model parameters and the geological
structure are selected from the study conducted by Nipp [88]. FEM model
and boundary conditions shown in Figure 42 with 182 elements and 210 no-
dal points are used by adopting quadrilateral isoparametric element.
Although an explicit expression of the heat source/sink function can be
tréated in the presented formulation, a simple time-dependent tempera-
ture is preséribed over the heat source due to thc lack ¢[ propetr Fepre=
sentation of this term. The initial temperature varies linearly from
285°%K at the surface to 315°K at the base (simulating the genthermal
gradient of 0,035 °Kk/m). The selected nominal values for different rock
materials are listed in Tahle 5 and only the properties of rock salt are
assumed to be temperature-dependent. Temperature profiles up to 260
years simulation time are shown in Figure 43 and the constant time step
slze, 4 years, 1s used with 38 seconds solution CPU time. It is shown
that the maximum temperature 445°K 1s reached 54 years later and further
propagation of the thermal froul conrifiues while the temperature of the
heat svurce 8lowly decreases. The results also indicate relatively nar-
row thermally-active zones around the heat soﬁrce and slow thcrmal pro-

pagation during the entire simulation.
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AN A

-t s e b o 2

Seam No.

Properties Symbol Unit
1 2 kL 4

Thermal Conductivity k W/m°K 1.6 1.5 6.06 1.6
Mass Density and Heat

Capacity pC MJ/m3°K 2.13 1.5 21.8 1.52
Coeff. of Linear -

Thernal Expansion a 107/°K 9.0 7.5 3.9 8.0
Elastic Modulus E 102MPa 2.5 5.0 _146.00* 50.0
Poisson's Ratio v 0.3 0.3 0.25% 0.3

* designates viscoelastic materi{al and associated material properties
are instantaneous values.

Table S

Selected Nominal Values for Material Properties
{n Salt-Dome Waste Dispcsal Mode!
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B#sed upon the above temperafﬁre solutions, visqoelasticlgesponses
are obtained by adopting the thefmorheological properties desétibed in
Section 5.3.1 for rock salt and constant elastic properties for the oth-
er. layers. The hydrostatic stresses variing along the distance from the
surface are assumed to represent instantaneous elastic stresses and si-
mulate the gr#vitational loading with pg = 0.024 MN/m selected from
Nipp [88]. Figure 44 {llustrates the deformed mesh configurations at
each of the selected transient steps. It reveals that the wmaximum
upheaval is 0.992m (above the heat source) and deceases to 0.305m at the
surface after 58.3 years of simulation time. This i{llustrates large de-~
fprma:ions due to the thermorheological behavior of rock salt and the
thermal expansion in the active thermal zone. The elaastir material ncar
the surface experiences less deformations. As the steady-state thermal
trends at the lowerltemperature level are establighed, the deformation
magnitudco are reduced leading to a stable structural configuration.
Figure 45 shows typical stress redistributions aluag the major axes at
11,52, 58.3, 80.44 and 260 years elapsed time. Siress relaxtion with a
relatively low stress build-up at earlier sgages is noticed while a typ-
ical transeition from hilgh compressive stregses to low stresses is appa-
rent in the region subjected to steep temperature variations. As the
temperature front propagates (80.@4 and 260 years), the stresses in the
heat source region are relaxed and the high streos 2zone expands toward
the outer region. The entire solution with 38 transient steps utilizes 1l
minute 20 seconds solution CPU time and the maximum stress build-up
reaches a value 5.7% higher than ghe instantaneous stress level. It is

observed that the presented rheological model for rock salt does not
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produce a significant stress build-up while the effects of thermal ex-

pansion mainly account for the structural upheaval.
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Chapter VI

CONCLUSIONS AND RECOMMENDATIONS

Finite element formulations and associated solution algorithm for
continua thermoviscoelastic response evaluation have been developed in
this dissertation. Formulations are based on one way coupled theory in
which the effects on the stress field is considered but not vice versa.
The time and temperature correspondence concept is utilized along with
the thermorheologically simple material (TSM) assumption. Although .the
presented applications are focussed on rock mechanics problems, various
other applications such as thermal stress analyses in structural mechan-

ics can be made.

. Two fypes of energy equations, the transient heat conduction and con-
vective-diffusion equations, are analyzed for the thermal response detf
ermination. The transient heat conduction equation is formulated by us-
ing the weighted residual approach with the two-point recurrence scheme
'in time. Linear time-dependent bouﬂdary temperature conditions are used
for field applications. This condition simulates physical boundary
temperature variations, and also minimizes numerical oscillatioas sub-
jected to abrupi changes in the boundary temperature at the onset of the
solution. Temperature-dependent thermal properties are incorporated in
the transient analysis to account for the temperature-dependent mgterial
nonlinearity. This fofmulation provides a versatile application from the

viewpoint that the temperature can be replaced by a relevant variable
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such as pressure or moisture function or a combined temperature-moisture

+

shift function can be utilized.

The upwinding scheme 1is used for the FEM formulation of the convec-
tive-diffusion equation. The temperature solutions from several upwind-
ing schemes and conventional Galerkin formulation are comparéd with the
exact solution for the quasi-static convection-dominant diffusion equa-
tion. Each upwinding scheme depends on the choice of weight functions
and quadrature techniques. The weight functions proposed by Heinrich
(HU) yields the best result while the other techniques, streamline up-
wind (SU1,SU02), quadfatute upwind (QU), and Galerkin formulation (G),
suffer from the cross-wind diffusion and numerical oscillations in vary-
ing degrees for several cases of different flow directions. The pertuba-
| tion of the upwinding parameters in HU, half and full upwindings, shows
ingignificant effects on the solution accuracy. This transport equation
has various applications in areas such as flow through porous—-permeable
media (advective-diffusion equation), thermodynamic 1line drive models,
and viscous boundary layer problems depending on the coefficients asso-

clated with the convective/advective terms.

Based on the detérﬁined temperatu?e responses, the time and tempera-
ture correspondence concept (TSM postulaté) 1? adopted for the thermo-
viscoelastic responses. The uniaxial creep compliance with the reduced
time scale and the temperature shift function represents the thermorheo-
logical behavior of viscoelastic media along with the temperature histo-
ry. It is assumed that a large am&unt of creep occurs due to the Aevia-

toric stress while the volumetric behavior is elastic. This assumption
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permits'the use of a cohetant'Poiss;;'s fatio for creep strains and pro-
vides an easy acceés to currently available creep data at eie;ated temp-
eratures. The four parameter fluid model (Burger's model) 1s selected
and the creep compliance is expressed as a function of the reduced time.
The creep strain rate expression is obtained by approximating the integ-
ral eipression in summations and the recurrence relationship for the
creep strain rate is expressed in terms of the creeé strain rate at the
previous time step. Use of the 1implicit time stepping scheme 1in the
creep strain increment leads to a new matrix for the material constants
composed of instantaneous elastic constants, reduced time increment,
scheme control parameter, and rheological model constants. This matrix,
incorporated in the incremental expression of equilibriuﬁ equations, 1is

evaluated at each time step unless the scheme control parameter is se-
lected to be zero. In order to reduce computing time, a variable time
interval scheme is presented with the time step size selected by limit-
ing the effective creep strain increment as a fraction of the total ef-
fective strain. Two cases representing a thermoviscoelastic thin-walled
tube, with internal pressure or temperature effects, and a slab of infi-
nite extent are studied in detail to validate the formulation and to
-asséss the effeétivenees of tﬁé‘ﬁfopoaed solution algorithm., The re-
sults obtained by the presented FEM formulation are compared with other
available numerical and anaiytical results. The presented FEM results
compare well in each case and show better time discretization requiring
27 time cycles compared to 100‘a;d.40 tim; cycles for the finite differ-
ence method [77] and Taylor's FEM formulation (111], respectively. Com-—

pafisons with the analytical solution for a slab problem show maximum
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error of 4.5% based on the hypothetical temperature and thermorheologi-

cal functions.

The therma}ly-induced line crack problems are formulated by introduc-
ing a degenerate quadratic iscuparametric element (cf. Appendix B). The
element shape functions incorporating the quarter point mid-side nodes
are further modified to maintain the correct strain singularity. The
modified shape functions vary quadratically in both ¢ ana N direc-
tions even for pertubation of the mid-side nodes across the the col-
lapsed node. The expression for the stress intensity factor is obtéined

by equating the coefficient of the r’V2

term in the analytical and numer-
ical expressions of displacements near the crack tip. This expression
18 generalized for mode I and I1I plane strain or stress problems. Mode
I and II cases for the thermoelastic line crack problems are examined
and the results for the FEM formulation etress intensity factors show
less than 3% error for both cases when compared with the analytical va-
lues. It is also noted that the singular effects near the crack tip are

slightly better represented for the two-point (2x2) Gaussian integration

rule than the three-point (3x3) rule.-

Two field problems associated with the underground c¢oal conversion
(UCC) process have been illustrated by using the presented thermoviscoe-
lastic and thermoelastic fracture formulafiona. The pﬁysical and mechan-
ical properties of geological mate;ials show large quantitative varia-
tions with temperature. It is almost impossible to have a comprehensive
set of material data required fof a detailed UCC simulation. A set of

normalized thermal trends for coal and rock mass have been qualitatively
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.‘éétiﬁated“ao that one set of nomin;l vﬁlues can be chosen“for.a specific
UCC site. The experimental data for the thetmofheological proﬁerties of
geological materials appear to be limited and arg'Aodly available {in
terms of the creep compliance for the eastern bituminous coal and shale.
These materfials are found to approximate the thermorheologically simple
material behavior. The rheological beha?iot of coal and rock are assumed
to have the same thermal trends for bituminous coal and overburden shale
and are calibrated for a specific UCC site based on the available exper-

1imental dgta.

A UCC post—burn simulation for Hoe Creek II site has been presented
" with eméhasis on the gasification chamber configuration and surface sub-
sidencé. Two-dimensional failure criteria described in Aﬁpendii A are
'incbrporéted to define the failed zones. The time-dependent boun&ary
temperature condition simulates the heatiné and éool;hg effects onithe
gasifiéation chamber boundary. During 10 years simulation time, major
'.shear failures occur in the upper chamber region indicating pofential
" roof collapse, and stress relaxations are aléo noticed in tﬁe viscoelas-
tic layers as the thermal front propagates. A modest 1increase in the
surface subsidence 18 obtained for the Hoe Creek experiment with gravi-
- tational loading, roof collapse, and weak elastic materials at the sur-
face. The thermoelastic simulation with temperature dependent elastic
constants reveals less surface subsidence and slow chamber growth rate
. thqn the thermoviscoelastic case. It i8 clearly noted that the time de-
pendence of coal and overburden must be included to assess the effect of

material softening for the long term simulation of UCC experiment.
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To demonstrate a UCC fracture model simulation, an elliptic cavity
model with a horizontal linking channel is selected. Temperature-depen-
dent elastic material constants are used on the basis of the computed
steady-state temperature solution. The prescribed overburden'pressure is
applied on the top surface to simulate the gravitational effect. The
linking channel treated as a line crack is incorporated with degenerate
quadratic singular elements at the end of the linking channel. Compari-
sons between two cases, i.e. with and without the internal pressure on
the cavity and link channel, indicates that an optimum internal pressure
should be provided to have a stable burn front configuration controlling

the roof collapse and the closure of the linking channel.

As a secondary application of the éresented thermoviscoelastic FEM
formulation, the post-repose phase of the nuclear waste management in a
salt-dome mining site is selected. The .theramal t;eﬁds fur the physical
and mechanical properties for rock salt appear to be different from the
ones se1ected for the UCC simulation models. In particular, the coeffi-
cient of thermal expansion remains almost constant for the temperature
range 280°K to 500°K. The thermorheological behavior based on uniaxial
creep data is represented by a four parameter fluid model with the TSM
postulate, The temperature of the heat source (treated as boundary temp-
erature) 1is prescribed as a function of time and space, The transient
tempetatufe soiutions reveals relatively narrow thermally-active zones
around the heaf source and slow thermal propagation during 260 years of
simulation. The thermally—-active zone around the heat source experiences
large deformations as the temperature increases. The computed stress

results show a low stress build-up at ealier stages and a typical stress
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relaxation in the region subjected to steep temperature variations. It
is clearly noted that the presented thermorheological model forlrock
salt produces insignificant stress redistributions while the effect of
the thermal expansion contributes significantly té the structural

upheaval,

éqnaidering the effectiveness of the presented ﬁhermoviscoélahtic FEM
solution algorithm, the variable time interval scheme can allow a fairly
large time step size with stable solutioﬁs requiring‘a'reasonable amount
of computing time for the UCC and in-situ waste disposal model simul-
tions studied here. The presented approximation of the strain rate ex-
pression is general and c;n be used for diffeteﬁt mechanical models by
establishing recurrence relationships with appropriate creep functions.
In particular, the incremental procedure with the implicit time stepping
scheme 1is effectively adpéted for the field appications minimiiing com~

putational efforts and computing time.

In order to improve the numerical simulations for the UCC process and
in-situ nuclear wQste disposal, the following recommendations are sug-
gested for furture research:

a) Development of a thermovisco-elsto-plastic model with large defor-

mation.

b) Coupling of in-situ fluid flow and the chemical/radioactive reac-

tion kinetics for the thermally-active zone by heat source/sink
terms.

¢) Consideration of viscoelastic crack propagation with convective
creep flow for the fracture model.

d) Effects of anisotropy/heterogenity of geological materials.
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e)

£)

g8)

Developmént éf'formqlétion for predicting hygrothermal responses,
i.e.‘,formulation'oflfhe ﬁaisture shift function by analogy of the
time and temperéture shift.

Use of the  mov1ng boundary FEM formuiation £or_ defining the pro-
gressive chamber configuration.

Establishment of site spegific' and accurate &atg for the thermo-
physical and tﬁermo-ﬁechanical properties forAin;éitu model s8imu-

lations.
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Appendix A

FAILURE CRITERIA AND THERMOELASTIC LINE CRACK PROBLEMS

Tﬁe significance of intense ana iocalized, concentration of . stress
along sharp notches was first emphasized By Inglis [58]. Further devel-
opment of fracture mechanics theory were initiated by Gfiffith and Irwin
[43,60,61] who found that the characteristics for initiation and propa-
gation of brittle craéks could be expressed as a function of the stress,
flaw size, geometry, etc. This a;so made it possible that the stress-inf
tensity factor, which represents the singularity of the stress field
near the crack tip, can provide a usefui index for investigations of thg
brittle fracture strength. Here, the failure criteria based on the prinf
cipal stresses are presented along wifh a brief review of fwo-dimension-
al thermoelastic line crack problems and stress intensity factor expres-

sions.

A1 PAILURE CRITERIA

The following two-dluensional failure theories are adopted and incor-
porated within the framework of the thermomechanical response models:
a) The compressive failure criterion, defined by McClintock and Walsh

[79], is

1+ W2+ )
2,1
[(1+ pf) /2 - uf]

Se(T) = o5 - o
(A.1)
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_Where ©,.. 1s  the major principal stress, o, 18 the minor

3
principal stress, SC(T) is the uniaxial compressive strength,
and K¢ 1s the internal friction coefficient.
B)'Folléﬁiﬁgucriffitﬁ [43) with 30, 4+ 6,>0 , tensile failure

occurs when

St(T)ccl
(A.Z)
and nﬁea;‘fdilure occurs for 301 + 0g ¢ 0 when
8 S4(T) = - (0, - 0,)2 / (6, + 0,)
' S (A.3)

vhere St(T) 1s the uniaxial tensile strength and temperature-
dependent strengtﬁ of materials can be incorporated for thermome-

chanical anélyses;

A.2 THERMOELASTIC LINE CRACK PROBLEMS

The first rational approach to 1linear elastic fracture mechan-
'icé(LEFﬁ) Qas‘ ;séabliéhed bybcfiffifh [43]-A The basic céncept is to
évaiuate the decreasé of elastic energy associated with a specified
crack length. Reasoning thnt thiﬂ amount of energy must be equal €5 the
energy required to form new crack sutfaces at the point of fracture ini-

tiation, the critical stress for the crack length 2a is given by

o = (2£Y / w) /2

o . (A.4)
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- where E'is the Young's modulus and * y 1s the specific surface energy

of'the,naterial.

Introducing a material parameter. K¢ , the fracture toughness/the

critical value of stress intensity factor,

Ke = oc(ma)l/?

(A.5)
the magnitude of thé stress field arqund thg crack tip is measured by
the stress intensity fact;rs, KI,II,IiI » When the load or crack size
is'kept below the point of unstable crack eﬁtenaion [43,65,109]. It 1is
also noted that the singular effects 'and'prediction of the stress field
around the crack tip can deviate from the response of real materials, in
that élastic deformatiops oécur right at ;he crgék tip and the ;rack tip

.stresses are finite inste#d éf infinite. HoweQer, when the plastic zone
1s small compared to the crack length and uncracked dimensions, the
stress intensity factors serve to charac;erize the crack tip stress

field.

For thefmoelastic c;ack problems, it‘is known that Qhen a temperature
field igi‘distu?bed byithe presence of cracks or fiaws, the resulting
high elevacion of tﬁermal stresses can cause crack propagation. Sih
[100] has shown fhat, for a steady-state temperature‘distribution, the
cr;ékAtip .streases are identical to those for the isothermal problems
1nvolviﬁg mechanical responses;A Lee [73] and Wang [123) have analyzed
the line and elliptic crack problems with constant temperature and he#t

flux on the crack surface, These analyses are based.upon the conformal
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mapping method combined with the complex variable technique developed by
Muskhelishvili [86] for steady-state thermoelasticity. '~ The general
procedure of the above analysis and.che results of two specific problems

are only presented here.

An infinite plate containing a single‘line crack of length 2a 18 con-
sidered a homogeneous, isotropic and elastic medium. The thermomechani-
cal properties are assumed to be independent éf temperature., With the
complex variable formulation of tompéréture fleld, the analytical solu-
tion procedurc is as fullows;: A
a) The conformal mapping technique is applied to map the line crack into

the unit circle using the mapping function

Z =Wg)=alg+ 1l/E)/2 ' (A.6)
where Z represents the real plane and 14 deaignateavthe mapped
plane.

b) The thermal dislocation term due to tﬁe slit, which permits free de-

formation under the temperature distribution, 1s expressed hy

U' e iVt e g {2H(z) dg

(A.7)

w‘ere U* and V' are the x and y components of the rélative dis-

placement respectively, @ 18 the coefficieﬁt of thermal expansion
and W(z) i3 the analytic function for the thermal dislocation.

c) The stress and displacement fields are expressed in terms of the ko-

losov functions and the thermal dislocation térms are added to the

displacement term for the isothermal case.
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d)

e)

The coefficienfs of the Kolosov functions are determined by applying
boundary conditions éu;h as a s;;esa-free' crack surface and the con-
digions Qf the single-valuednéss ;f displacenent.

The-stress field near the crack tib is evaluated in terms of the Ko-
losov functions and stress intensity factors are represented by the

real and imaginary part of the complex quantity.

‘Kl + i KII = 2 ¢ (E)/v’l E=] (A.8)

where 0“t) is the derivative of the complex Kolosov function with

respect to E .

‘The details of the above procedure can be found in Wang [123] and two

specific problems for Mode I and 11 cases are given with the boundary

conditions as shown in Figure A.l. Analytic expressions of stress inten-

sity factors under the plane strain condition are expressed as follows;

Mode I:
Klg_', (1*:) aGToal/z
(A.9)
Mode II:
Kip = /?ﬂ‘-%—f—% a¥%2ag ¢
(A.10)
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and for the plane stress condition v 1is replaced

v/ (1-v).

a) MODE 1

(

‘Y \X/ .

b) MODE II

Figure A.1l:

-

X_

-

Y

A
a

ﬁ.
-

Conditions

Thermoelastic Line Crack Problems and Boundary
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Appendix B
FORMULATION OF FRACTURE MECHANICS

It has been known that there exists a singularity in the stress field
associated with the crack tip and that the strains and stresses along
any radial line in the vicinity of crack are proportional to r~1/2 for
an isotropic medium. Thus,. the convergence of the finite element solu-~
tion is no longéf ensured in the vicinity of crack ¢tip due to this
strain singularity. For the standard constant strain element, the con-
vergence of the solution is no 1longer valid since by definition, the
strain within each element is constant and as such can not adequately
represent the true strain which approaches infinity near the tip. The
treatment of the strain sinéularity in tﬁe finite eleﬁent methéd entails
use of special elements which embed the singulariti for the crack tip
region [66,115] or wuse of thévcoﬁvehtional isoparametric element modi-

fied for the crack tip singularity [5,18,12,49].

Here, the singularity at the crack tip in a homogeneous, 1isotropic
elastic medium is 1ncorporated by suitably distorting the conventional
isoparametr;c element. The disﬁlacement method 1s presented to compute
the stress intensity factors in the LEPM problems associated with ther-

mal loads.
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AB.I ISOPARAMETRIC DEGENERATE S INGULAR ELEMENT

Hibbit [51]), Barsoum [12] and Henshell and Shaw [49] have indicated
that the standard quadratic isoparametric element can be used guccess-
fully by shifting the mid~side node to a quarter point toward the crack
tip. It has been observed that-these elements behave even better when
one side of the quadratic quadrilaterals are collapsed to form degener-—
ate friangles. However, the degenerate trianglaes often }ead to unstablé
results 1f the mid-side node across the tip is not located precisely on
a straight line, because an incorrect strain singularity is obtaine§ due
to pertubation of mid-side nodes. For this 1§vestigation, Akay [5] in-
troduced the £qllowing modification on the shape functions to preveant

the indeterminate slope situation at the collapsed corner.

A typical eight-noded isoparametric parent element is shown in Figure

B l.a for which the shape functions in curvilinear coordinates are given

by [130]:

Nj = %- (1 +g) (1 +7n) (gg+ mp - 1) for corner nodes

Ni=3(1+gD) 1+ for g = 0
N =g (112 (14 g) for 5 = 0
(B.1)
vhere
L=CH, =N
(B.2)
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A collapsed triangular element is obtained by superimposing the nodes 1,
4 and 8 of the parent square element as showﬁ in Pigure‘B;l;ba Since
the shape funqtion ~varies linearly for constant N and quadratically
in the other direction, a nonpolynomial surface with indeterminatg

slopes is formed at the collapsed node as illustrated in Figure B.l.c.

Foi”obtaining correct responses from the trianglar element, the above
shape functions are modified so that they also vary quadratically in the

4 direction. This is accomplished by modifying 'N6 to yield

* N1+ E)/2 = 2 2
Ng - Ng(1 + g)/2 = (1 -10%) (1+ ;)‘ /4 (B.3)

with N2 and N3 are subsequently modified by replacing Ng by

*. Therefore, the quadratié isoparametric quadrilateral degenerates

N6
successfully into a quadratic triangular by assigning the same coordi-
nate for the nodes-at the collapsed corner and modifying the related

mid-side node as suggested above,



Figure B.l: Quadratic Isoparametric and Degenerate Singular ‘
Element :
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B.2 COMPUTATION OF STRESS INTENSITY PACTORS

The four most éommon techniques for obtaining stress intensity factor
values are i) displcement method, i1i) stress method, iii) energy release

method, and iv) J integral method [65].

For the purpose of minimizing comﬁutational errors, the displacement

method 1s widely adopted in finite element methods. When the mid-side
nodes of the collapsed triangle are moved to the quarter point toward

the collapsed node, the variation of the displacement in the radial di-

rection 1s of the form [49]
. S y2 ., 4
U] Aj + B" r + C] r (B. )

where Aj, Bj and Ci are constants. Subsequently, the strain com-

ponents vary as

€ij = 8jj *+ bjj r-1/2

(B.5)

Since it is precisely the r}/?2 term in eqn.(B.4) which contributes to

the r-1/2 gtrain singularity in eqn.(B.5), a consistent way of obtain-
ing expressions for stress intensity factors in sufficiently small crack
tip elements 18 to equate the coefficient of tﬁe fl/z term in the ana-
lytical and numerical displacement expression near the tip. The
displcement variation along the crack surface of crack‘tip element takes

the form

U= Uy + {aUp - U3 - 3U3) (r/L)Y/2 4 qau3 + 2uy - 4Up) (r/L)
| (B.6)
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where Uj are nodal displacements on the crack surface and L 1is the
surface length of the crack element. For the crack opening mode, the
coefficient of the r%/z term in the analytical expression is given by

[114]

Bi = Kp (K" + 1)/(6 /B7)

(B.?)
where K* = (3 - v)/(1 + V) for the plane stress condition,
K* = 3 - 4v for the plane strain condition and the shear modulus G

is invariant.

Equating the coefficient in eqn.(B.6) to the corresponding value in

eqn.(B.7), the expression fdr the stress intensity factors is [4]

Ky, 11 = [26/Z/(K* + 1)1 [(4uz - Uz - 3u1)//10
' (B.8)

where U; are the nodal displacements oun the crack.éurface with normal
and horizontal displaremante designa(ed for the mnde I and mode II cas-
es, Trespuctively. The finité element formulation described in Section
3.2 18 adopted for the thermally-loaded crack problems. For problems
subjected to the surface traction or the heat flux prescribed on the
crack surface, the equivalent nodal forces for the crack tip element are
conputed from the surface integration. Table B.l lists equivalent nodal

forces for the quadratic {soparametric and crack tip singular elements.
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QUADRATIC ISOPAKAMETRIC CRACK TIP SINGULAR
ELEMENT ELEMENT

Figure B.2: Crack Tip Singular Element and Distributed load
on Crack Surface
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Equivalent Nodal Force: f?q- L(af,

+ bf, + cf3D/2

Equivalent Nodal Coefficient
Force
a b c
Quadratic isoparametric ffq 4/15 2/15 -1/15
element
£59 2/15 16/15 2/15
fgq -1/15 2/15 4/15
Crack tip singular £79 7/15 4/15 -1/15
element :
£5¢ -1/15 16/15 /15
£39 -1/15 0 1/15
Table B,.1

- Equivalent Nodal Force Combutation for Quadratic Isoparametric

and Degenearte Singular Elements



Appendix C

DETAILED EXPRESSIONS OF ELEMENT MATRICRS

The matrix and vector notations adopted 1in Chapter III are presented
here. The stress, strain, and displacement vectors for the plane stress

and stréid conditions are defined by

O = (%, %y, Tyl | ~, (C.1)
€= {Fxx; Sy 7xy}T ' L (C.2)
U= Wi, 4T (c.3)
where U{ And“ Vi denote nodal displacement in the i and y direc-

tions, respectively. For axisymmetric problenms,
o= {°zza r» %g 1rz}T ' -(C.4)

€= {2, rr. %o Yr2)! o (c.3)

Based upon the above conventional order of stress and strain vectors,
the assoclated matrices and element equations are as follows;

a) Matrix of material constant (O = De€,. €. = C D';O )
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Plane stress condition:

B | v 0
. E 1 0
De - T - V) symmetric (1-v)/2
1 1 -y 0 ]
D, - 1 0
symmetric - 2(1 + ")J v=1/2
(c.6)
Plane strain condition:
_ < : : 1 v/(1 - V) 0
- E(1 - v) ‘ 1 .0
D - T+ V) (T -2V) symmetric (1-2v)/2(1-v)
(1 + v)}(1 - V) «v (1 + V) 0
D-!. (1 + v)(1 - V) 0 _
o - symmetric 2(1 + v)_ v=1/2
(C.?)
Axisymmetric problem:
1 v/(1-v) v/(1=v) 0
E(1 - V) 1 VI(i-v) 8
e = 11 - 2v symmetric
v i o (1-2v)/2(1-v)
1 -y -v . g
-1 ' 1 -y
Do = ) 0
symmetric 2(1 + V) v=1/2

-(C.8)
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b) Thermal strains ( €7T)

c)

Plane stress condition:

€1 = afT {1, 1, 0)T

(c.9)
For plane strain condition, a 18 replaced by (1 + v) « .
Axisymmetric problen:
€r= a7 1,1, 1, )7
(C.10)
Differential operator B( €= BU)
Plane stress and strain conditions:
i,x 0 Ni, T
B- Y
’ ’ (C.11)
Axisymmetric problem:
8. 0 Ni,r Ni/r Niz| T
Ni,2 0 0 Ni,r
(C.12)

-179-



Appendix D

COMPUTER CODE TMFC

A concise description of the developed finite elepent code TMFC is
presentéd. The code 18 aimed for both research and field applications
and has“been éaiibréted agalnst various examples. Although the code TFC
is presently for two-dimensional plane and axisymmetric geometries asso-
ciated with the uncoupled thermoelastic, thermoviscoelastic, and frac-
ture analyses, it provides a basis for further possible developments so
that plasticity, large deformafion, and crack propagatisn-ﬁitk creeping

flow can be adopted in the UCC and in-situ waste disposal simulations.

Thé code TMFC consisté of three main processors; namely, pre-proces-
sor, main-processor, and post-processor. The working in-core space for
each proucessor 18 dynamically allocated and the execution of a modular-
1zed function 1is performed by macro instruction. The capabilities of

each processor are briefly summarized below.

l. Pre-processor
a) Generation of nodal pulnts, element connectivity, boundary const-
raint codes, and material numbers.

b) Graphical presentation of the generated information.

2, Main-processor

a) Thermal responses:
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1) Steady-state or transient heat conduction equation with two-
point recurrence scheme.
2) Heat source/sink term.
3) Upwinding scheme for the convective diffusion equatiog.
4) Temperature—dependent thermal coefficients.
5) Time-dependent bouﬁadry temperature condition.
6) Constant or variable reference temperature.
" b) Thermoelastic responses:
1) Temperature-dependent elastic constants.
2) Two-dimensional failure criteria.
¢) Fracture responses:
1) Crack tip singular element with quadratic isoparametric ele-
ment.
2) Computation of stress intensity factors by use of the displace-
ment method.
d) Thermoviscoelastic responses:
1). Thermorheologically simple m;terial postulate with the general-
ized creep and temperature shift functions.

2) Incremental solution algorithm with the strain rate expression.

3) Automatic time step size selection.

4) Linear interpolation of the retrieved temperature solutions at
each time step.

5) Incorporation of element failure.

3. Post-processor

a) Sorting of output data for thermal and mechanical responses.
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b) Graphical presentation of results such as temperature, displace-

" ment, stfesé, and subsidence.

In order to handle large capacity field problems, the required infor-
mation is retrieved or saved by usiﬁg external files while the in=core
épace is m;inly uéed for the computational procedure. In ad@itgon, a
long~term analysis requires a careful preparation of médei aﬂd control

parameters assoclated with computer resource capacity.
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