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A COMPUTATIONAL METHOD OF THERMOVISCOELASTICITY WITH 
APPLICATIONS TO ROCK MECHANICS 

by 

Seong Chul Lee, Ph.D. 
The Ohio State University, 1983 

The effects of temperature on a viscoelastic medium are important in 

considering the long-term design of a structure. Large-Rcale numerical 

computations associated with rock mechanics problems have required effi-

cient and economical models for predicting temperature, stress, failure, 

and deformed structural configuration under various loading conditions. 

To meet.this requirement, the.complex dependence of the properti~$ of 

geological materials on the time and temperature is modified to yield a 

reduced time scale as a function of time and temperature under the ther-

wodu:!Ulugically simple material (T~'M) postulate. the thermorheological-

ly linear concept is adopted in the finite element formulation by uncou-

pling thermal and mechanical responses. 

The thermal responses, based on transient heat conduction or convec-

tive-diffusion; are formulated by using th~ two-voiut rw~urrence scheme 

and the upwinding scheme, respectively. An incremental solution proce-

dure with the implicit time stepping scheme is proposed for the solution 

of the thermoviscoelastic response. The proposed thermoviscoelastic so-

lution algorithm is based on the uniaxial creep experimental data and 

the corresponding temperature shift functions, and is intended to minim-

ize computational effort.s by allowing the large time step size with sta-

xvi 



ble solutions. A thermoelastic fracture formut"ation is also presented by 

introducing the degenerate quadratic isoparametric singular element for 

the thermally-induced line crack problems. The stress intensity factors 

are computed by use of the displacement method. 

Efficiency of the presented formulation and solution algorithm is in-

itially demonstrated by comparison.with other available solutions for a 

variety of problems •. Subsequent field applications are made to simulate 
' 

the post-burn .and post-repose phases of an underground coal conversion 

(UCC) experiment and an in-situ nuclear waste disposal.management prob-

!ems. Time- and space-dependent temperature boundary conditions are used 

to simulate the chamber and radioactive heat source temperatures. The 

UCC chamber configuration is predicted by use of two-dimensional failure 

criteria using temperature-dependent mechanical properties of coal and 

overburden. A UCC fracture model is also evaluated by considering a 

thermoelastic elliptic cavity model with a linking channel demonstrating 

a possible channel closure in the active-burn stage. The presented FEM 

model simulations illustrate the feasibility of the developed formula-

tiona and numerical investigations in predicting the post-burn/post-re-

pose temperature, displacement and stress responses. Recommendations 

for additional work on thermo-mechanical response formulation and asso-

ciated computational technique are provided. 

xvii 



Chapter I 

IHTIODUCTION 

Tbermomechanics is concerned in general with the interrelations bet

ween the forces acting on a continuum and the resulting time and t~mper-

ature dependent kinematical deformations. For thermoelastic materials, 

the deformation response is fully recoverable on release of forces and 

temperatures. In the deformation of ideally viscous and plastic materi

als, the release of the forces is not accompanied by the recovery of the 

expended energy, and the strain caused by the forces is nonrecoverable. 

The behavior of real materials is composed of the above deformational 

responses in varying proportion, depending on the nature of the material 

and conditions under which the forces are applied. 

·There are many reasons why the influence of temperature on the me

chanical response of a viscoelastic material is of great interest. As a 

purely practical nature~ many engineering materials such as polymers, 

composites, and geological materials, etc are subjected to a wide range 

of environmental and loading conditions, and a complete specification of 

the mechanical properties of these materials can not be restricted to 

room temperature nor a narrow range of temperatures. Another important 

reason is that by use of the temperature dependence in the viscoelastic 

response, a more comprehensive analysis can be conducted by extending 

experimental results to define the response of the material at variable 

temperatures as well as extending the test results to porrions of the 

physical time scale normally inaccessible by conventional methods. 
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The thermally-sensitive viscoelastic behavior is described by two 

classe~ of materials, namely, "thermorh•!ologically simple materials 

(TSM)" and "thermorheologically complex materials (TCM)". The thermo

rheologically simple material exhibits a thermal trend similar to the 

one with time, while the thermorheologically complex materialreveals an 

independent thermal trend. These material classifications are. mainly 

based on the experimental data, namely, the creep or relaxation tests at 

elevated temperatures. In particular, three characteristic regions of 

viscoelastic behavior for thermally-sensitive materials are observed. At 

reference temperature, a glassy region is observed in which the magni

tude of the creep modulus, Ec(t), defined as the constant stress divided 

by the time dependent strain. is ·quite high and the loading time effects 

are not pronounced. A transition region for viscoelastic response in 

which the modulus varies rapidly with ti~e and temperature is observP.rl 

at more elevated temperatures. At still higher temperatures, the res

ponse of the material is in the flow region and the modulus changes very 

rapidly with time from a small fiuit~ valu~ to a value which approaches 

zero. ln .studying the resp_onses of thermoviscoelastic materials, the 

factors of time and temperature must therefore be taken into account. 

1.1 NUMERICAL MODELING 

The purpose of "modeling" material and structural responses is to es

tablish _"a hypothetical or stylized representation" of a certain proto

type. Many different types of modeling activities may be categorized as 

conceptual, phys'ical, analytical, and numerical. Conceptual, analytical, 

and numerical modeling activities rely on the selection of an adequate 
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model of t,be proptotype. Indeed, a major objective of such ·activities 

may be improvement of the conceptual model which provides a framework of . . 

investigation~. For large-scale modeling studies, qualit.ative physical 

models are mainly restricted by the size effect and the complex nonli-

near behavior of the prototype while closed-form solutions of analytical 

models are often impossible to derive. These restrictions, coupled with 

the high cost and inflexibilities associated with experimental testing, 

have led to an increasing emphasis on numerical models. The typical num-

erical modeling activities include i) 
. . : ;' : 

selection of a conceptual model, 

ii) development of an appropriate numerical procedure or computer code, 

iii) construction of numerical model, iv) verification of cases against 

known solutions, and iv) their subsequent applications to the solution 

of the problem. 

Long-term analysis of large-scale problems require efficient and eco-

nomical numerical modeling coupled with necessary modifications for the 

field process mechanisms and the host environment. In addition, problems 

of scaling laboratory-test results to actual problems must be invest!-

gated by using comprehensive computer models. For these applications, 

finite element computer· models are often developed due to their. varsa-

tility and commensurate growth in computational technology. A typical 

FEM modeling sequence proceeds in the following manner; 

a) Problem definition: Problem type, model size, selection of proper 

conceptual model, and estimate of required capacity of computer 

resource. 

b) Model data preparation: Model geometry, material data, constra-int 

conditions. and initial conditions. 

-·3·· 



c) Computational procedure: Application of appropriate solution al-

gorithms and presentation of solutions. , .~ '' . 

In the above modeling sequence, model validation and refinem.ent are 
; ._ 

prerequisites to achievin$ meaningful results for the simulation 
• • ~·, .. ', d I 

large-scale field problems. 

1.2 LITERATUR! l!VIEW 

The importance, in thermal stress problems, of responses ~hich· stem 

from the temperature effects of the viscoelastic properties was first 

emphasized by Freudenthal [37] and-Hilton [53] in the ·early· l9.50's. 

Christensen and Naghdi [22], Schapery [95], and Biot [16)'developed the 

constitutive relations for linear thermoviscoelasticitt based ort the 

thermodynamical postulates. The uniqueness of the solutioQ in the both-

ermal linear theory of viScoelasticity for the thermorheologically sim-

ple ablating solids was est11hli.'Jhed by Sternberg and .Curtin [105] based 

on Volterr~'t uniquenesA thP.nrPm. Under the aooumptioGB of infinit~&iwal 

deformation and positive-definite and continuous relaxation/creep func-

tions, Lubliner and Sackman [78] generalized the uniqueness theory for 

anisotropic, non-homogeneous and time-variable viscoelastic medium by 

use of the Laplace transformation and asymtotic methods. 

Morland and Lee [84] introduced linear thermoviscoelasdc analysis 

with -temperature-dependent characteristics on the basis of the time and 

temperature corraapondence hypothesis orig11uilly proposec1 .by: Lead~rman 

[72] and Ferry [33]. In this hypothesis, the relaxation moduli and 

creep compliances are affected by a constant temperature 'change only 
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within a corresponding uniform shift ,of _the logarithmic time scale. A 

material exihibiting such behavior was termed a "thermorheologically 

simple material (TSM)" by Schawarzl and Staverman [96]. A few analytical 

solutions have been obtained for simple boundary-value problems and have 

been mainly approached by using the integral· transform techniques (cf. 

· ref• [23,24,84,85] ). These analytical solutions have been faced with 

complexibilities in the evaluation of integro-differential equations and 

inflexibilities in the boundary conditions. This has motivated the de-

·velopment of .numerical approaches including the finite difference and 

finite element methods. In this chapter, only the finite element ap

proaches are reviewed with emphasis on the thermorheological FEM models 

and the FEM solution procedures. The FEM formulations of the transient 

heat .conduction and convective-diffusion equations are also briefly re~ 

viewed. 

i.2.1 TH!RMORHEOLOGICAL MODELS 

An incremental FEM approach to linear viscoelastic analysis·was in

troduced by King (64). The creep phenomenon was viewed as a sequence of 

stress relaxation at a constant displacement over a short time interval 

followed by sudden release of constraints to satisfy the overall equili

brium. The stress change in any time interval was expressed in terms of 

the stress changes in the previous time interval replacing integrals by 

rectangular sums. This approach was further extended to two- and three

_dimensional stress states by Sandhu, Wilson, and Raphael [94] with the 

uniaxial creep compliance represented by exponential functions. Based on 

the above incre~ental concept, the rheological behaviors of viscoelastic 
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media have been represented by several forms of viscoelastic constitu

tive laws classified as differential, integral, and empirical (cf. ~ef. 

[45,90,130,132)). 

Zienkiewicz Watson and King [136) adopted a differential operator 

for a series of Kelvin models ~nd proposed the use of temperature-depen

dent elastic and viscous components and thermal strains due to the ther

mal expansion. TI1i~ model requires charaeterizations of each rheologi

cal component as a function of the temperature, and poses difficultie$ 

in obtaining such information from experimental data. 

Taylor and Chang [110) initiated the hereditary integral approach 

with the TSM postulate. The temperature effect was incorporated in the 

integral equations by replacing the physical time by the reduced time' 

determined. froUl the temperature shift function. This was further ex

tended to the problem of the variable temperature state by Taylor, Pis

ter, and Goudreau [111) •. The heat conduction equation was assumed to be 

unaffected by the deformation and was solved separately, but simultane

ously, with the mechanical responses. They used an explicit exponential 

expression for the relaxation moduli associated with the generalized 

Maxwell model, and the reduced time expressed in the form of integral of 

the temperature shift function for.the non-isothermal application. A si

milar approach, with an alternative form of equllibr1um equations, can 

also be found in Srinatha and Lewis [104]. The temperature responses for 

the coupled system with an internal dissipation function was studied by 

Cost [27] with emphasis on the influence of thermorheological simple ma

terial behavior on the heat generation phenomenon. Batra et al [14) and 
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Batra [15] adopted the TSM postulate for the semi-coupled system where 

the coupling effect is considered only in the energy equation. Based on 

the integral constitutive law, the thermorheological behavior is assumed 

to be characterized by a single relaxation time so that only the relaxa-

tion time is replaced by the reduced time computed from the temperature 

shift function expressed in the form of t~e WLF equation (cf. ref. 

[34,98]). The WLF equation, named after William, Landel and Ferry, 

represents a logarithmic shift of relaxation/creep functions in terms of 

the universal gas constant and the temperature increment referenced to 

the glassy transition temperature. 

The most popular representation of the rheological behavior has been 

an empirical creep expression, since it simplifies the numerical model-

ing procedure . and can be easily obtained from the experimental data. 

Greenbaum and Rubinstein [41] proposed an empirical creep function com-

posed of effective stress, strain, temperature, and time. This was later 

adopted in the finite element code developed by Sutherland [108] with 

the general functional form of the creep strain rate dependent on 

stress, strain, temperature, and time. Cyr and Teter [29] and Zudans et 

al [137] used the steady creep flow law of Soderberg (Norton's law) for 

the elastic-plastic-creep analysis with temperature-dependent material 

properties. Similar creep laws have been adopted by Anderson [8], An-

derson and Bridwell [7], and Liu and Hsu [76] with applications to a 

spherical cavity, layered geological structures, and a frozen foundation 

in cold region engineering, respectively. The above creep laws are often 

called "power creep laws", and the thermal behavior is expressed by an 

exponetial function associated with the universal gas constant, activa-
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tion energy, and temperature. Although these expressions are compact and 

convenient for computer implementation, they are based on the crude ap

proximation of the thermal behavior compared to the one based on the TSM 

postulate. Recently, Morjaria and Mukherjee [83] have adopted Hart's 

model with a rate formulation. This model combines plastic and creep 

strains into a single non-elastic strain where the thermorheological be

havior is represented by a simple power expression similar· to Norton's 

law. A similar constitutive model, a combination of Hooke-Kelvin-Bing

ham-Newton models, can be found in Duddeck and Nipp [32] adopting· temp

erature-dependent elastic moduli, transient and stationary creep with 

the analogy of .von Mises yield criteria while the temperature".dependence 

of rheological components is represented by a simple power expression. 

In summary, most of the rigorous thermorheological models have been 

presented in the form of hereditary integrals under the time and temper

ature correspondence concept (TSM postulate), while empirical creep laws 

{power creep laws) have been adopted mainly in the phenomenological ap~ 

preaches. In addition, the uniaxial creep data has been extended to the 

multi-axial case under the assumption of volumetric behavior being elas

tic, which enables one to keep· the Poisson's ratio constant~ It is also 

found that the bulk relaxation modulus remains constant while only the 

shear relaxation modulus represents the time-temperature effect for most 

thermorheologically simple materials (cf. ref. [14.15.77,104,111]). 
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1 .• 2.2 . .._J'E_M =_S.O=L=U=Tl=O~N ALGOB.ITHMS 

·' The general FEM solution algorithms for nonlinear problems have been 

based on the incremental formulation of the' governing equations. Early 
·, .... 

solution algorithms for the viscoelastic problems used a simple step-
;:,.,-· 

·forward' procedure requiring a small time step size to obtain stable so-
~~~ 

"luti:·ons (cf. ref. [41,64,94,108,136]). This forward time step procedure 

· has been further modified to include an iterative process in each incre

ment by .Dong; Pister, and Dunham [ 30], Nayak ·and Zienkiewicz [ 87], _and 

· :·. ·.:· ~zuiia~·s' et' al [ 137]. Since the incremental iterative solution procedure 
·> •. -l 

requires conSiderable computational effort and complex formulations, 

... z'ienk'iewlc~ and' Cormeau [ 133] and Cormeau [26] used a simple incremental 

proc.edu~e ,· the "initial strain method", for viscoplastic problems with 

·' eiJlphasis on the practical implementation of the program and proposed an 
.·: .•· ..... .._ 

... , ... ~IBpir~_cal rule for tpe selection of the time st~p size. This rule lim-

.... ·. tts the maximl,llll increment of the viscoplastic strain to a certain frac-

• ".I 

··' 

ti.on of the total accumulated strain to cont.rol the solution stability 

T~ enhance. the stability and accuracy of solution, Cyr and. Teter [2~] 

,used an ~quilibriwn correction in a simple s~ep-forward proc_edure •. The 
. ·r.. 

unbalance.d force, the "pseudo incremental force" 
. ' is treated as the 

lldriving force" contributing the load terms on the right hand side of 
~ -·~ ·.~ •• .! 

th.:! equ_Uibrium equation. In this manner, the unbalanced forces in the 

previous step are corrected during the next increment. Hughes and Tay-

lor [55] proposed an implicit time stepping scheme to overcome the sta-

bility restriction on the size of the time step. For the appropriate va-

lues of the scheme parameter, the method has appeared to be 

unconditionally stable under the incremental iterative procedure. This 
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implicit time stepping scheme along with the equilibrium correction have 

been adopted in various inelastic problems and relevant references can 

be ·found in Owen and Hinton [90) and Zienkiewicz [130). Reviews of the 

nonlinear FEM solution algorithms associated with the inelastic rate 

processes are also found in Willam [125) and Argyria et al [J). 

The fore-mentioned literature for the FEM solution algorithms for 

nonlinear problems has been focussed on viscoelasticity and viscoplas

ticity with the empirical constitutive laws. In the hereditary integral 

method for solving uncoupled thermoviscoelastic problems, a time step-

forward procedure has been adopted with the integrals expressed as rec

tangular summations (cf. ref. [110,111)). Unlike the conventional 

procedure with empirical creep laws, the solution procedure for the in

tegral approach is rather unique since a set of the Volterra type integ

ral equations is explicitly evaluated in terms of summations of finite 

series. Batra et al [14) and Batra [15) adopted the above approximation 

scheme for the mechanical response, while the finite difference method 

has been used for the semi-coupled energy equation •. Recently, Srinatha 

and Lewis [104] presented an alternative set of equilibrium equations 

based on the above approximation. The equilibrium equations, expressed 

in a recurrence form, are solved by using an iterative technique. 

In summary. the conventional FEM solutions for nonlinear problems 

have been obtained by the incremental iterative procedure with empirical 

constitutive laws. As a practical implementation of the program, the in

_eremental procedure with the impli~it time stepping scheme appears to be 

the most efficient algorithm. For thermoviscoelastic problems, the eon-
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ventional.incremental solutions have been used only for the phenomenolo-

gical fc,rmulation. (empirical creep law) In the case of the integral 

formula~ion using the TSM postulate, a set of the Volterra type integral 

equations obtained from the series approximation. has been solved.in the 

context of finite element theory. 

1.2.3 TBIIMAL IKSPONSE 

The thermal response is base~ on the transient heat conduction and 

convective-diffusion energy equations. The transient beat conduction 

equation has been well discussed and established in the finite element 

context.by .several authors (cf. ref. [13,97,130,132]) •.. For discretiza-
·, . 

tion in the time domain, a variational functional has been adopted by . . . . ....... 

Wilson and Nickell [126], Fried [38], and Argyria and Scharpf .[.10]. Su.ch 
,\ 

variational principles have _been known to be equivalent to the weak for-

mulation using the Galerkin procedure and y.ield no ,new alternative nwn-
. • '1 

erical schemes. Zienkiewicz and Parkesh [135] int;roduced wighted resi~u-

al forms in time, which have led to the anal9gy with the finite 

difference formulae such as forward, mid, and. backward difference equa-

tiona depending on the scheme parameter associated with weight func

tions. A stability criterion for. the two-point recurrence ~cheme based 

on the eigenvalue problem has been reported by Irons [59]. It shows 

that the highest system eigenvalue must always be less than the highest 

eigenvalues of the individual elements. Multipoint recurrence schemes 
. . . 

are due to Lees [74] and Bonacina et ai [19) for the three-point scheme, 

and Zienkiewicz (131] for the four-point scheme. 'The~e multipoint re

currence schemes have been adopted in various field problems such as 
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phase change, ground seepage, and welding applicati~ns (cf. ref. 

[25,36,52]). 

For the convective-diffusion equation, the.finite.element discretiza-

tion with the Galerkin method has encountered serious difficulties in 

situations where the convective terms (first derivative terms) are sig-

nificant. The numerical oscillations occuring in non-self-adjoint opera-

tors have only been removed by severe mesh refinements,· which undermine 

the practical utility of the Galerkin ~ethod (cf; ref. [24,134]). The 

weighted residual formulation for one-dimensional problems has been pro

posed by Christie et al [ 24) adopting the "upwincU.ng scheme"~-· Heinrich 

et al [46], Heinrich and Zienkie_wicz [47], an~ .. Barrett and Demunshi [11] 

have proposed various weight functions for two-dimensional problems. The 

above upwinding schemes have been comp.etitive with the finite diff~ttmce 

methods in regards to stability, and indeed the solution accuracy has 

been improved by varying the necessary upvinding from element ~o ele-

ment. Hughes [57] has proposed numerical quadrature ~echniques with the 

Gal~rkln method to avoid complicated weight functions and their expen-.. 

sive evaluations with higher-order quadrature rules. The one-point qua

drature rule on the convective term has appeared to reduce numerical os

cillations although excessive "cross-wind diffusion" has been noticed 

for certain cases. Brooks and Hugnee [Z01 and Hughes and BrnnkR [~6] 

have recently proposed the streamline upwinding scheme along.with the 

quadrature techniqu~ tu overcome the erosa-wind diffusion. The stream-

line upwinding scheme, employing an artificial diffusivity .acting only 

in the direction of the flow and associated weight functions, has pro-

vided less cross-wind diffusion than the.case of tile simple quadrature 

technique. 
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1.3 IESEARCH OBJECTIVES 

The overall objective of this research is to establish a comprehen

sive FEM model focussing on the simulation of the thermal and mechanical 

responses associated with the large-scale continuum mechanics problems 

with applications to rock mechanics. The schematic representation of 

the coupled system and associated engineering fields are illustrated in 

Figure 1. Specific rock mechanics areas such as underground coal combus

tion (UCC) and in-situ waste disposal are considered here with emphasis 

on innovative thermorheological model formulations. 

The FEM formulations for the thermoviscoelastic responses can be di

vided into two main categories; namely, the treatment of the thermorheo

logical properties and the FEM solution algorithms. The thermorheologi

cal properties incorporated in the FEM formulations have been 

represented by 

modified time 

either temperature-dependent 

scales adopting the time and 

rheological components or 

temperature correspondence 

concept. The presented approach is focussed on the use of the time and 

temperature correspondence concept with the creep compliances, since 

geological materials appear to be thermorheologically simple materials 

and their· rheological properties are currently available only from the 

creep tests at elevated temperatures. An appropriate FEM solution algor

ithm using the implicit time stepping scheme is proposed by using the 

strain rate expression. The governing field equations include i) the 

transient heat conduction equation, ii) the convection-diffusion equa

.tion, iii) ·the elastic and viscoelastic constitutive equations, a·1d iv) 

the equilibrium equations. Specific objectives of th~ research include: 
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a) Formulation of the uncoupled thermoviscoelastic boundary-value 

problems by use of the time and temperature correspondence con

cept. 

b) Selection of appropriate FEM solution schemes for the transient 

hea~ CQtlclYction and convective-diffusion eqnAt~nnR. 

c) Development of an initial strain type incremental solution algor

ithm using the strain rate expression with the uniaxial creep com

pliance for the four parameter fluid model. 

d) Incorporation of failure criteria and crack tip sia&ular elewe11t 

along with the computation of the stress intensity factors for the 

thermoelastic line crack problems. 

e) Model validation and comparisons with currently available analyti

cal and numerical solutions. 

f) Thermoviscoelastic FEM model simulation of large scale rock me

chanics field problems (UCC post-burn. elliptic cavity with a 

linking channel, and salt-dome waste disposal). 

The developed crack tip singularity e~ement,and the computation of 

the thermally-induced stress intensity factors are presented in Appendix 

A and B, respectively. A finite element computer code TMFC is.developed 

by the author and is used to solve all the models in this s.tudy. The 

structure and capabilities of the developed computer code are briefly 

~tummarized in A.pp$ndh. D. 
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Chapter II 

GOVERNING EQUATIONS AND FORMULATIONS 

In this chapter, the thermodynamical theory of thermoviscoelasticity 

is presented. The mechanical responses of materials are considered in 

terms of temperature dependent thermal and·mechanical properties repre-

senting the material nonlinearity. The transient' heat conduction and 

convective-diffusi~n re$pOn$~S are formulated separately in the uncou-

pled thermoviscoelastic theory. Considerations for the analysis of ther-
- ' . ' .. . ... 

moelastic li~e crack problems are reported in Appendix A. The equations 
• q ':' • • 

and .formulation& .of .. boundary-value problems presented here are used in 

the finite element.~ormulations developed in Chapter III. 

2.1 THIIHODYHAKICAL BACKGROUND OF TH!IMOVISCOBLASTICITY 

The linear theory of thermoviscoelasticity is based upon two funda-

mental postulates, the balance of energy and the entropy production ine-

quality. Christensen and Naghdi [22], Schapery [95] and Biot [16] have 

developed governing equations incorporating constitutive assumptions for 
' ~ . . 

the irreversible thermodynamical conditions. The isothermal theory has 

been further extended to special types of non-isothermal cases by use of 

the thermorheologically simple material(TSM) postu~ate presented by 

Leaderman [72] and Ferry [34]. The uncoupled theory, neglecting the cou-

pled terms in the heat conduction equation, enables one to separate the 

stress field from the temperature field. Here, derivations of the cou-

.pled first order theory associated with the TSM postulate are presented. 
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2.1.1 CONSTITUTIVI EQUATIONS 0~ COUPLED ~ORY 

The local energy balance equation using infinitesimal theory is 

. . . 
py- P(A + TS + TS) + afj 'tij- Qi,i :-0 r 1 •• 

{2.1) 

wher-e p is the mass density, . y . is t_l)e heat_ supply function per 

unit mass, A is the- Helemholtz free energy :per. ~it mass, T. is the 

absolute temperature, S is the entrop~ per ~nit ~at;s , ... Q; · -are the 

Cartesian components -of the ·heat flux :Yec_tor -m:easured ... per:. '\.lQit area, 

and a superimposed dot designates a time der.iv-atiye •.. 

; . ' • ', : • I : ~ . :. 

The related local entropy production inequality is given by 
. : :.'~ 

PTS - PY + Q;, i - Q; (T,; !T> ~ 0 · .... 
I ~-. • . - ..... 

and is often referred to as the Clausius-:Duhem inequ_ali_ty. 

•' \ .. 
Under the basic constitutive assumptions that the free energy func

tional is a linear functional and the real continuous functional 'of his-
: ... : ·, .. .. 

tory-dependent strain and temperature may be approximated by a polynomi-
. ' . . . . . •. . ··, ·. 

al vith the Stieltjes integral, the free energy functional is 

represented by the following polynomial 

ror term of order 3 [23], · 
.. 

0·. (t-'t) ~ d't- ft. 
lJ ~i .•. 

+ 1 It It G;jkl ( t- 't, t-Tl)~ !· 
-CD -CD ~t 

-17-

.... ··: 
,;. ". 

expression vith the leading er-· 
.'. :. . .. :· . 

.. ·.' .· ·: . 
~(t-'t) ~q, d't 

. . '. . - . b't: . 

....... . .. 

~ d .. 'td11 ·': b11 



ft ft 'f;j ( t- 't, t- T)) .£.:ti ~q, d 'tdTl 
~'t ~, 

-CD -CD 

1 ft ft m (t-'t, t-Tl) ~q, ~q, d 'tdTJ + 0( £ 3) - ~ ~'t ~, (2.3) -... ~ ... 

where Ao. .is the mean free energy, 41 is- the infinitesimal tempera-

ture.deviation ~rom.the ~ase temperat~re To, and the mechanical proper-

ties are .assumed to be continuous for. 'ti > 0 ·and are assumed to vanish 

identical for 't; < 0 ; i.e., 

(2.4) 

The heat supply function Y ·is eliminated between eqns. ( 2. 1) and 

(2.2) to yield 

pSq, - PA + 0·. £·. lJ lJ 

Substitution of eqn.(2.3) into eqn.(2.5) 

(2.5) 

and differentiation·· with re-

spect to t, using Leibnitz's rule, leads us to a new inequality which 

taust hold for.all arbitrary value of E;j and q,(t) • By manipulating 

the terms associated with Eij and ~t) with the symmetry of 

Gijkl(~l,~2) and m( 'tl,'t2) and letting them vanish the following rela-

tions are obtained; 

PS = ~(0) + ft 
0 
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and 

.in eqna.(2.6) and. (2.7), it is clear that DtjCO) is the initial 

stress and ~Co) ·is the initial entropy, PSo • It ia· also noted that 

is consi~ered as a surface in ( 'f , 1'l ) apace~ then the re-

laxation functions involved in eqna.(2.6) and (2.7) ·are curves on this 

surface. [ 23]. · If 'f .. 
lJ in eqn.(2.3) is a~etric with respect to 'f 1 

and 'f 2 , then the corresponding generating functions: in eqna.(2.6) and 

(2. 7) are· ·identical representing a symmetric coupling. 

The first two terms in eqn.(2.8) are of the first order, whereas the 

last two ,'terms are . o·f. the second order, assuming Ot .is of the first 

order~ Hence, to satisfy the Clausius-Duhem inequalit_y for all process-

es, it is necessary that 

~; j = o, . ~rc t) = o (2.9) 

as well as 

A - Q; ( ~.; /T 
0

) > 0 . 
(2.10) 

By assuming a· particular· process such that ~.; = 0 (i.e., a uniform 

temperature field), we come up with the dissipation inequality 

(2.11) 
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where A is the rate of energy dissipation. By using eqn.(2.11), it 

is sufficient that eqn.(2.10) be satisfied by requiring 

Q; ( <P,;/T 
0

) < 0 
(2.12) 

The constitutive relation for the heat fluX vector Q; is as

sumed in the form 

(2.13) 

Combination of eqns.(2.12) and (2.13) gives 

Jt k• ·(t-'t) ~<P.j ~'t ) 0 
lJ a't 

-ao (2.14) 

~urther, for a fixed time and with the tensor kij being positive defi

nite and constant with respect to time, the temperature gradient ~.; 

and the integral in eqn.(2.14) have the same sign. Therefore, eqn.(2.13) 

reduces to 

(2.15) 

FQr the development of the firot order theory th~ en~~~Y ~qn.(2.1) 

is rewritten using eqns.(2.3), (2.7), and (2.15) by neglecting the sec-

ond order term 

py;. ~ 
~t 

A , i.e. 

(2.16) 

-20-



The integral lnvolving strai'n history in ·eqn.(2.16) gives rise to a cou-

pling between thermal and mechanical effects. Without this term, 

eqn.(2.16) is the uncoupled equation governing heat conduction. 

The above completes the development of the coupled linear theory of 

thermoviscoelasticity according to Christensen [23], a~d these relations 

are adopted in Section 2.1.3 in regard to the uncoupled formulation of 

the boundary-value problems. 

2.1.2 THEIMOlB!OLOGICALLY SIMPLE MATElliAL(TSM) POSTULATE 

There is a ~pecial type of thermorheological property which is ap-

plied to a wide variety of materials by use of a certain analytical de-

scription. This property exihibits a variation of relaxation/creep 
I 

functions with temperature similar to the variation of the same function 

with time·. . Thus' it ·is found more con~enient to study the effects bet-

ween the behavior with time and temperature simultaneously by use of re-

duced variables [23,34,98]. 

The method of reduced variable provides a simple phenomenological 

function by reducing two main variables of time and temperature to a new 

reduced variable. The application of this method requires the trans-

formation of a.function G(lnt,T) depending upon .th~ time and temperature 

. into a function G(x) where x • lnt+f(T) and f(T) is a function of temp-

erature alone. A material whose viscoelastic behavior with both time and 

temperature lends itself to the above reduction scheme is called a ther-

morheologically simple material(TSM). 
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To this end, we designate the relaxation functions at the base temp-

erature To for the constant temperature state by 

G C t • T 0 ) : LCl n t) 
(2.17) 

The TSM postulate then takes the form 

G ( t, T) : L {1 n t + ·t( T ) } 
(2.18) 

where the shift function f(T) obeys 

f(T0 ) = 0, 
(2.19) 

Eqn.(2.18) states that the change in temperature cause the relaxation 

function to be shifted to the right or left when plotted against lnt, as 

the abscissa. Introducing a change of variable by setting 

f ( T ) -= 1 n X( T) 
(2.20) 

eqn.(2.19) now implie& that 

(2.21) 

and is thus a positive monotone-increasing function ~f T ~hroughout the 

range of eqn.{2.20). Also, eqn.{2.17), by virtue of eqn.{2.20), yields 
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G(t,T)=G(t) (2.22) 

provided that the reduced time t is defined by 

E; = t X( T) ( 2. 2 3) 

Thus, the relaxation function G(t,T) at any temperature can directly be 

obtained from the relaxation function G(t) at the base temperature by 

replacing t with t from eqn.(2.23). Similar derivations can be formu-

lated for creep functions. 

For a continuum under the influence of a variable temperature field 

or non-constant temperature state, the constitutive equations require a 

modification such that the reduced time must be generalized consistent 

with the postulated temperature-time equivalence for non-isothermal con-

ditions. Under the assumptio.n that the non-isothermal stress constitu-

tive relation 1s· determined by the corresponding .. isothermal functional 

and with the modified time scale to account for the history of tempera-

ture, the isothermal functional expressing the non-isothermal functional 

is written as 

.. 
}:C t) = T [ {E ( t- ts) - a( t- ts) } , 

s=O 

.. 
E ( t) - a( t)] 

(2.24) 

where }:Ct), T and E(t) denote the appropriate definition of stress, 
s=O 

a linear functional operator, and strains. The modified time scale, 

ts , which depends upon the history of temperature is defined by 

ts = T [T C t- x) , s J 
x=O 
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with the property 

ts I s=o = 0, ~ .., 0 (2.26) 

and 

ts I T=To = S (2 27) 

Here, a(t) = E(t)l represents the volume chan&e due to the tempP.ra-r=O 
ture change under the stress free condition. 

For the infinitesimal theory, eqn.(2.24) can be written as 

(2.28) 

Eqn.(2.28) is the desired constitutive relation for infinitesimal defi-

uillon with the general nonlinear temperature dependence. 

eqn.(2.28) by parts and using the ~h.$Qge of variable 

gives 

where 

s-= Jts x[T(t-x)) dx 
0 

with X(T) being the shift function such that 
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~- t, ::: 't 

(2.29) 

(2.30) . 



X( T ) 1 e xCT ) > 0 o a ' eT 

Using the change of variable ts a t- 'f , eqn. (2. 30) yields 

s =It x[T(T't)]dT't- J'f x[T(T't)] dT't 
0 0 

Eqn.(2.29) can be rewritten with the use of eqn.(2.32) in the form 

where. 

t' = J'f X [T(T't)] d'll 
0 

(2.31) 

(2.32) 

(2. 33) 

(2.34) 

Here, .. we. can identify the shift function·in eqn~(2.34) with. that in 

eqn.(2.23) for a constant temperature state. In fact, eqn.(2.34) reduces 

to eqn.(2.23) under a constant temperature state. Since the reduced 

time is computed explicitly from the given temperature at the corres-

ponding physical time, the notations of the relevant quantities are 

maintained in the present· text·. The· reduced variable scheme for creep 

compliance function is illustrated in Figure 2 and the corresponding 

shift function is shown in Figure 3. 
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2.1.3 ' POiMuLATION ·or iOU!lDARY VALUE PIOBLBMS 

The relevant linear eq~ations which govern the coupled thermoviscoe-
••••• •• ••• '· \.r ·'. ., '}.'' ••• 

lasticity theory are rev~ewe4. ~e .equation$ of quasi-static equilibri-
~: .. , . . •, : .. '· ; . ~ ; : . ·,·. ~ ,; .. · . ' 

um~ the strain displacement relations and the stress strain relations 
' . ': ~ ~ 't .. • . • . • ' 

are 
• !.: 

(2.35) 

(2.36) 
.... 

, C1·. 
lJ 

(2.37) 

The heat transfer equation is given by 

Fur the uncoupled linear theory of an isotropic viscoelastic medium, 

eqns.·(2.·37) and (2.38)' can' be further simplified in the form 

· S i j ;; · It G { ( ~-- f ) ~' e • ·. d 't' ; 
n ~~ lJ 

. . . . .:~ ·, '· . . :; . . 

. ~·. ~~ =, 
0
ft G 2C E;-.E;') ~~ [ Etck: -3aoeJ d~ 

(2.39) 

and .,· 

(2.40) 
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where Sij and eij are deviator.ic stresses and strains; G 1 ·and 

G 2 are shear and bulk relaxation · .modu:u,. and .kij • · p · • c· and 

Q are'beat conductivity, mass density.· .heat.·capacity and luaped heat 

supply''function; respectively. The i~firiite.dmal .temperature ~· · is re-

placed by the absolute temperature T.since.the, temperature response is 

separately obtained in the present linear uncoupled. formulation. The 

pseudo-t~perature, 8 , is defined by 

e = 1 IT a(T I ) dT I 

ao T0 (2.41) 

and the mechanical response is posed separately. after obtaining the 

temperature distribution from eqn.(2 40). Analog~us considerations ap-

ply to the generalization of the cree~ law un4er non-isothermal condi-

tions, which assumes the form of. 

t I a S·. e·. = I Jl(~-~ > d't lJ 3't 1 J 
0 

ex~c It J (C-z:l·) 1'1 
Ukk d 't + 3aoe 2 3't 

(2.42) 

where J 1 and J 2 are the shear and COtllpressive creep .compliances. 

In the absence of thermo-mechanical coupling effects~ the governing 

thermal system is separated from the mechanical system as described 

above. The general heat transfer equation ·may include the convective 

heat transfer term for the heat suppl)' f1,1nction a·s .well as the conduc-

tion term under the interaction between· the .. fluid and· solid· phase, which 

are represented by two h~at balance equations.[ 101; 113] •. . . . . . 

-29-



solid: 

(2.43) 

fluid: 

(2.44) 

where hT 1s the heat transfer coefficient and Vi is the fluid vel

~~iLy, and subscripts s and f denote the solid and fluid phases, respec-

tively. Under the assumption that the solid and fluid phases are at the 

temperature, the above equations reduce to 

(2.45) 

An equation of this type is known as a convective-diffusion equation in 

heat transfer. In fl.uid mechanics, the normalized form of eqn.(2.45) 

represents the advection-diffusion equation for the viscous boundary 

layer problems where the coefficient related to the first derivative 

term forms the Peclet number and the fluid velocity. The quasi-static 

version of eqn.(2.45) is also applied to the 'thermodynamic line drive 

model with the moving coordinate system [67,75]. 

The initial conditions are taken as 

Udt) • aijCt) • 0 

· T ( t) • To at t • 0 (2.46) 
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For t > o , the boundary conditions are 

a;jnj = T; ( x;, t) on ra 

U; = U (x;,t) on ru 

T =T (x;,t) on rT 
(2.47) 

and 

(2.48) 

where rT is the part of boundary on which the temperature is pre

scribed and rh is the complimentary part of the boundary over which 

the heat flux ·is prescribed. The above boundary conditions are illus

trated in Figure 4. 
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Chapter III 

FIIITE ILBKENT DISCI!TIZATION AND SOLUTION KBTRODOLOGY 

The fundamental concept of finite element methods is that any contin

uum variables, such as temperature, pressure, or displacements, can be 

approximated by a discrete model composed of a set of piecewise continu-

ous fu~ctions defined over a·finite number of subdomains. The general 

theoretical.basis of FEM discretization includes the variational ap

proach and the weighted residual procedure such as Galerkin method or 

the least square approach. The basic mathematical details and computer 

implementations can be found in many references [13,90,97,130,132]. 

The objective of this chapter is to discuss and present the finite 

element formulations pertaining to the solution of thermoviscoelastic 

boundary-value problems; namely, effects of heat transfer, two-dimen

sional elasticity, approximation of the integral creep constitutive law 

and the incremental solution procedure. The isoparametric singular ele

ment with the displacement method for computing stress intensity factors 

are also studied for the thermally-induced line crack problems in Appen

dix B. 
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3.1 IND.GY EQUATIONS 

Finite element formulations for two special· cases of energy equa-

tions, namely, the convective-diffusion equation and the transient. heat 

conduction equation, are con~idered here. 

Finite element solutions of the quasi-static convective-diffusion 

equation have encountered serious difficulties in situ~tions wherP. the 

convective/first derivative terms are significant. These difficulties 

stem from a combination of the essentially elliptic and parabolic nature 

of two terms and manifest themselves in an oscillatory nature of the so-

lution. Whenever the mesh size exceeds a certain critical value, and 

with large convection coefficients, acceptable solutions can only be ob-

tained by an excessive reduction in the element size and the use of an 

equivalent 'Upwind Difference' scheme [134]. These upwintl1.ng schemes 

for one- and two-dimensional cases have been studied by several authors 

(cf. ref. (24,47,48,56,57)). 

The quasi-static version of eqn.(2.45) is written as 

where vi denotes the lumped convection coefficient. The weighted resi-

dual formulation of eqn.(3.1) with the weight function is ex-

pressed as 

(3'2) 
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Using Green's theorem, eqn.(3.2) can be rewritten in the form 

(3.3) 

Inserting T= N;T; into eqn.(3.3) with suitable weighting func~ 

tions Wk(X,y) p~oduces the classical system of discretized equation 

HT=F (3.4) 

where some values of the· unknown vector T are specified on boundar-

ies and, 

with 

f; • 0 

f; = J W; kkl T, 1 n k dr 
r 

(3.5) 

for Dirichlet conditions 

for Neuman condition~ 

In the conventional Galerkin formulations, we take W; • N; • Clearly 

other sele~Llua of wel&htin& functiono ean be mndo. 

The one-dimensional problem· with the basis functions shown in Figure 

5 is first considered with the weighting function 

( 3.6) 
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where 

F(x) •lx(x-L)/L 2 

Ni • 1. - x/L 

Ni+l • X/L 

sgn a • sgn vi 
(3.7) 

and L is the element length. Heinrich et al [46,47] have indicated that 

this scheme is unconditionally stable for a - 1 (full upwinding) and 

effectively eliminates the oscillation caused by high convection coeffi-

. cients. 

For two-dimensional isoparametric bilinear elements·, the weighting 

functions can be analogously constructed in terms of products of one-di

mensional functions similar to the formation of Lagrangian shape func

tions [39,46]. By defining 

ll ( t) c: (1 t)/2 

L2( t) • (1 + t)/2 

f( t) B -3 (1 - t) (1 + t)/4 (3.8) 

where t is the tranaformed coordinate. Th~ "eighting fulleHons for 

the four-noded isoparametric elements are. 

WI(E,Tl) • [L~(t) + ii1 F(t)) [Ll(fl) + i 1 F(fl)] 

Wz(t,Tl) • [L2(t) - a1 F(t)] [LJ(Tl) + j
2 

F(Tl)] 

WJ(t,TI) • [L2Ct) .. Ci2 F(t)] [L2('1) .. i 2 F('tl)] 

W4(t,T1) • [LJ(t) +Ci2 F(t)J [L2Cflr-i1 F('\)] 
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and Figure 6 illustrates variations of the above weigting fuctions. For 

quadratic elements, similar weight functions can be obtained from refer-

ences [39,47,48]. 

The standard finite element discretization of the transient heat con-

duction equation has been well established (cf. ref. [54, 97,128,130]). 

The finite element discretization of eqn.(2.45), neglecting variables 

related to the fluid phase, can be expressed as a sum of element quanti-

ties as 

where N denotes the number of element, and the capacity matrix Ce , 

the conduction matrix Ke 
and the force term 

e F due to the heat 

source/sink term H(~,t) are defined by 

(3.11) 

(3.12) 

Fe= J ( H !_,t) N; d~ 
~ (3.13) 

Considering a typical time element of length for the transient 

term, the two points recurrence formula widely adopted in the transient 

formulation yields the following general expression. 
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( C/ At + Ke) Tn+l + [K(l-e) - C/ At] T n + F = 0 (3.14) 

where 

llnd 0 is thl! ac.hewe cuuL1:ul parameter with 

The above two-point recurrence scheme is accompanied by a restriction 

which requires the time step size within a certain magnitude. Here, the 

time step size. is selected by the following rule Qf thumb 

(3.15) 

where h is the shortest element length. The above rule, stemmed from the 

eigenvalue problem for one-dimensional case, is adopted for two-dimen-

sional cas~ by choosing the minimum time step size. 

The heat capacity matrix· C is often diagonalizP.d by adding the 

coefficient of each low and placing ·the sum on diagonal. Although this 

lumped heat capacity matrix requires less number of numerical opera-

tions, it results in a loss of.accuracy in solutions when compared to 

the case of distributed heat capacity matrix [126]. Here, the computa-

tions are carried out with the distributed matrix, and detailed proce-

dures of the time discretization and the characteriati~a of the scheme 

for different e can be found from a text book such as [130]. 
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3. 2 'l'BIIMOBLASTIC FORMULATION 

For an isotropic, homogeneous elastic medium under a uniform tempera-

ture change ~T , the stress-strain relationship is given by 

CJ.tj s: ). . 'tck 6;j + 2G &tj - P 6;j ~T 

where 

). = Ev/(1 + v) (1 - 2v} 

G = E/2 (1 + v) 

P = E aj ( 1 - 2 v) 

(3.16) 

in which E is the elastic modulus, v is Poisson~ s ratio, and a is 

the coefficient of thermal expansion. The constitutive law can be ex-

pressed in the matrix ·form as 

a = De & -. Co) (3.17) 

wh'ere De is the matrix of elastic constants and c0 is .the initial" 

strain. Here~ the thermoelastic formulation is briefly summarized and 

further details can be found from a etandard text such aR [97,130] and 

Appendix C. 

The formulation entails the selection of a kinematically admissible 

displacement field and subsequent minimization of the potential energy 

to obtain the nodal values of the displacement A [en, 130.132]. The total 

potential energy of the elastic system can be separated into two compo

nents; a component resulting from the strain energy in the body and a 

component related to the potential energy of the external loads. 
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N 
"' = I C Ae - we ) 

e=l 
(3.18) 

is the strain energy, we is the work done by the exter-

nal loads, N is the number of element and the superscript e designates 

the element base. The strain energy for an element of volume V is given 

by 

1 
c '2" & o - tr o > d" 

(3.19) 

where £ ~nil 0 are column v~~tors for the strain~ and stres;e; ancl 

tr are the thermal strains treated as the initial strains. The gen-

eralized Hooke's. law, strain-displacement relationship, and displacement 

components in terms of nodal values, are expressed by 

(3. 20) 

t= 8 u 
(3.21) 

U • N U 
(3.22) 

The work done by the external loads can be separated into three distinct 

parts; 

1. Work done by concentrated forces. 

( 3. 23) 

2. Work done by the body forces. 
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I~ ~ ' 

we • J UT NT b d ~ 
b ~ 

3. Work done by the distributed loads on the surface. 

Minimizatiqn of the potential yields 

N 
2 [ f aT D Bd oe U 

e=l ~ -
- f aT D t T dr;i! 
~ . 

or simply 

KU= F 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

where the term associated with the initial strain is incorporated in the 

right hand side as an equivalent body force. 
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3.3 THBIMOVISCOBLASTICITY THEOlY FOIMULATION 

Since the ealier finite element application to the creep problems in-
.. 

itiated by King [64] 1 many papers and reports on viscoelastic models and 

solution algorithms have been published. as reviewed in Section 1.2. For 

thermal creep problema, the common representation of the creep behavior 

is the empirical creep law under a constant temperature state as pro-

posed in Greenbaum and Rubinstein [41] and Sutherland [108]. This ap-

proach with modifications in the solution algorithm is still adopted in 

current applications [7,76]. Meanwhile, Taylor and Chang [110] initiated 

a more rigorous approach by using the integral creep law under the 

isothermal condition with the TSM postulate. This approach has been 

further extended under the nonisothermal condition by Taylor et al 

[111]. Cost [27] and Batra et al [14]. These FEM formulations require 

the solution of the set of VolL~rr& type integral equations and rathP.r 

unique solution procedure compared to the conventional structural formu-

lation. 

The present finite element approach is focussed on the adaptability 

of th~ Standard lin~Ki Viscoelastic formulatiOD to the th~rmoviscoelas-

tic problems by using the strain rate expressions. The FEM formulation 

includes the numerical approximation of the integral creep constitutive 

la.w w1.th variable temper~ture fields and the incremental .solution proce-

dure. In addition, the mechanical model approach with the TSH postulate 

is adopted. This allows the incorporation of both time and ·temperature 

dependent viscoelasticity. 
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3.3.1 MODELING OF CRIBP BEHAVIOR 

It is known that the material constants or parameters pertinent to 

the model can be assesed more directly by a creep test rather than a re-

laxation test. In general, various creep models differ significantly in 

their mathematical form and physical basis; some are purely phenomenolo

gical approaches [8,76,108,129,133] while others are based on the vis-

coelastic and hereditary integral methods [27,110,111]. Here, the con

ventional model adopted is essentially the generalized Voigt type 

(Figure 7). Extensive references for modeling creep behavior are provid

ed in reviews by Haisler and Sanders [45], Zienkiewicz [130] and Owen 

and Hinton [90] •. 

. The most widely use"d means of describing creep behavior in the finite 

element formulation is the strain rate expression 

t =f(o,y,t) 
c 

with the total strain given by 

t = te + tc + tr 

(3.28) 

(3.29) 

. where the subscript e, c and T denote the elastic, creep and thermal 

terms. The common expression for eqn.(3.28) for the isothermal case 

_takes the form of the differential operator [133] or empirical functions 

such as Norton's law [91,108]. For the non-isothermal case with the TSM 

postulate, the integral constitutive creep law is used to include the 

variable temperature history. 
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·The general multi-axial relationship with creep compliances are ex-

pressed by eqn.(2.42). However, in most polymeric and porous materials, 

it has been known from experimental evidence that Poisson's ratio for 

creep strains remains constant approximately at the same value associat-

ed with elastic deformation [6]. This enables the uniaxial creep data 

to be applied to the multi-axial stress-strain relationships under the 

following conditions [41,108,132,136); 

1. The volume of the body is assumed to remain constant during creep 

deformations. 

2. A superiwposell hydrostat1~ AtatP. ot etreu should not give rise to 

any change in the creep rate. 

· 3. Fo.r an isotropic medium, the principal directions . of strain and 

stress tensors should coincide during the time interval. 

Therefore, the stress-strain law for the viscoelastic creep can be writ-

ten in the form of standard elastic equations replacing the elastic com-

pliance 1/E by the integral operators defined by replaced by 

- t 
c D ~ "J (t .. 't) ·~'t CS't 

(3. 30) 

where '! is a creep function for a constant uniaxial unit·stress and 

the mediwu 1~ aHsumed to be undisturbed prior to t • 0. In gener@t~ the 

&train ia written a& 

(3.31) 
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where De is ~he elasticity matrix and a- 1 has the same form as an 
0 

elasticity matrix with the·constant Poisson's ratio as defined in Appen-

dix c. Now, the strains are expressed as 

t 
t • D- 1 J J C t - -r) ~o d 't 

0 0 ~'t (3.32) 

where a- 1 incorporates the incompressible effect ( y .. 1/2) in which 
0 

no viscoelastic c·reep develops due to the hydrostatic stress but a large 

amount of creep occurs due to the deviatoric stress components 

[41,132,136]. Here, the four parameter fluid model (Burger's model), 

which fits the experimental creep curves relatively well for the geolo-

gical materials [75], is adopted (cf. Figure 7). Since coal and rock 

mass ·are found to be thermorheologicall:y simple materials [ 99, 40], they 

are assumed to adopt typical TSM behaviors ·so that the above assumptions 
. 

can be ~pplied to the pres.ent FEM model simulations. The creep compli-

ance for the four parameter fluid model with the reduced time is ex-

pressed by 

J (t) = ~ + f
0 

+ ft [1 - EXP(-t/A)] 

with 

t • Jt x[T(a,.'l)) d'l 
0 

~ = 'l1/E1 

(3.33) 

(3.34) 

and 'b Eo and E1 are material constants as shown in Figure 7. 

The temperature shift function · X(T) takes the form 
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X(T) • i EXP (bT + CT 2) 
(3. 35) 

where a, ~and care constants. In the present study. the constants of 

eqn.(3.33) are lUmped so that the expression of the creep compliance is 

further simplified by 

J'( t) = "i + 1)!; + c EXP (a!;) 
(3. 36) 

where a, D, c and ~ are lumped constants. Discussions· of the. creep 

curves for the geological materials are presented in r.hapter V. 
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3.3.2 NUMERICAL APPROXIMATION OF CREEP STRAIN lATE 

The constitutive creep law is usually of a form wherein the rate of 

creep strain is defined as a certain function of stresses and strains. 

In the incremental solution procedure, the state of stresses at ea~h 

time step is updated by the incremental components which represent the 

time and temperature effects at each particular time. These incremental 

components are obtained by solving the incremental e.quilibriurn equations 

with th~ ~pdated creep strain rAtP Rnrl rhRngP.~ in thermal loads. 

For the incremental creep strain, eqn.(3.32) is rewritten in terms of 

the reduced variables 

(3.37) 

Hnd the the creep strain r~te with respect to t with the application 

of the Leibnitz rule is expressed by 

(3. 38) 

Evaluating eqn.(3. 38) in the fom of sulilmati-ons hy ,_u:~ing the increnent 

computed in the previous time interval, the approximated form of the 

creep strain rate is written as 

£ c , n+ 1 • D- 1 I ]._ J"( t - t • ) 
• n+l I 

o k=l at . t • 
t'• (3.39) 

The reduced time is evaluated by the summation 
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(3.40) 

where 

(3.41) 

. 
and & c,n+l is the creep strain rate at tn+l and btk is the incre-

ment of the reduced ~ime in the time interval This notation 

will also be applied to the strain and the stress increment.in the pre-

~ent formulation. 

In this study~ the kernel function J( t - t') is assumed to be expo-

nenti~l functions ~s in eqn.(3.36) so·. that the 

t = · tn · and t' = · ·~ can take the .form 

~-~Ht- t') .=·a+ b EXP[c(~- '· )] 
~t '"K 

evaluated at 

(3.42)· 

where a, b and c are material constants associated with paraneters of 

the mechanical model, and · t, and ~ are the reduced times at tn 

re~pectively. In this manner, eqn.(3.39) can be evaluated ex-

plicitly according to the expression 

• n+l 
& c,n+l • D- 1 {b EXP(ctn+1> I EXP(-c'it) bOk-1 + 10n+1l 

0 ·. . . k=l .. (3.43) 

and eqn.(3.43) is further simplified by the following recurrence rela

tionship 
• 
& c , ~+ 1 • & c , n 

+ ICJn 

EXP(cbt,) + D- 1 
0 

(1 - EXP ( c bt,)) } (3.44) 
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This approach appears to be new and essentially allows us to employ 

the traditional incremental solution technique without any iteration, in 

which the time step coincides with the increment, which will be be rlis-

cussed further in detail in the sequel. 

3. 3. 3 STRAIN AND STRESS INCREMENT 

URine the strain rate as expressed by eqn.(3.44). the creep strain 

increment is defined by using an implicit time steppinz scheme i.e • 

• 
b&c,n = bt, [(1- 9) & c,n + 9 & c,n+1l 

(3.45) 

where 0 c; e < 1 • The forward Euler, Crank-Nicholson, and fully impli-

cit type of scheme can be obtained by setting e-o.l/2~ andl, re-

spectively. 

Substitution of eqn.(3.44) intn (1.&5) yield~ the follo~ing explicit 

form of Ll~ creep strain 1fitt~ment · 
• 

b tc,n • bt, [(1 - e + e EXP(cbf'.y,)) & c,n + 8 bOn 

+ 9 D- 1 1 OnCl- EXP(cbt,))] 
0 

where 

& • e Ca + b) a- 1 · 
0 

(3 •. 46) 

(3.47) 

The stress increments, in terms of the elastic portion of strain incre-

ment, are expressed by 
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{3.48) 

and the. total strain increments can be. written in terms of the nodal 

displacement increments 

{3.49) 

Substituting for btc,n from eqn.{3.46), eqn.{3.48) then becomes 

60 n = D n+ 1 ( 8 6 Un - Q) n) 

where 

Wn = btT,n + 6~ [(1- e + e EXP(cll~)) c c,nJ 

+ bt,e a[1- EXP(cM· ))D- 1 o. 
""Tl o n 

In eqn.(3.50), 

D n+ 1 = <De 1 + 96t, C a + b) D 0 
1}- 1 

IL ls uuled that the material propertiy matrix 

within an increment but requires inversion if 

(3.50) 

{3.51) 

6 remains constant 

e # 0 • The selection 

of the paraweler e is discussed in section 3.3.5 along with the se-

lection of the time step size. Another important aspect of eqn.(3.SO) is 

that the primary dependent variable associated with the current incre-

ment ( bUn ) is clearly distinguished from the ones computed at the 

last increment. This fact together with the constant material property 

matrix within an increment naturally lead us to employ the incremental 

solution technique without any iteration. 
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3.3.4 INCREMENTAL SOLUTION ALGORITHM 

The discrete equilibrium equations at any time t • tn+l 

written as 

J aT On+l do= Fn+l 
Q 

can be 

(3. 52) 

where F n+l is the vector of equivalent nodal loads due to applied 

surface traction and gravitational force. The incremental form of 

eqn.(3.52) is given by 

where 

in which and ~Fb 
n 

(3.53) 

(3. 54) 

represent the loads due to the increment of 

applied load and gravitational force during the time interval ~tn 

-These load increments are caused by the discrete load increment p anrl 

the mass density P(T) under t.he temperature change at each time step. 

They are expressed by 

~FT ·-= J NT p dr 
n r 

and 

(3.55) 
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AFb • JNT (bn+l- bn) do 
n o 

where 

Upon substitution of eqn.(3.'50) into eqn.(3.53) 1 we obtain 

K n+l AUn • ARn 

where 

K n+l = J aT D n+lBdo 
0 

,(3.56) 

(3.57) 

(3.56) 

(3. 59) 

. ( 3. 60) 

The nodal displacements and stresses at the current increment can he 

found from. as usual. 

Un+l 11 Un + AUn 
(3.61) 

(3.62) 

where the incremental stress is computed according to eqn~(3.50). 
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The above algorithm-becomes identical to the initial strain method 

[27,130,133] if 

with the updated 

8 • 0 • Here, by using an implicit. scheme ( 8 " 0 ) 

D n+l matrix at each time step, the above algorithm 

is intended to allow a relatively large time step size within reasonable 

solution accuracy without requiring excessive computational efforts. 

3.3.5 SELECTION OF TIME STEP SIZE 

Hughes [54] ~as shown that the time integration scheme represented by 

eqn.(3.45) is unconditionally stable when. e ~ o.s for nonlinear heat 

conduction problems. However, this does not guarantee sufficient accura-

cy of the solution at any stage an·d in practice a limit of the time step 

size is placed to achieve a reasonable solution. For 8 < 0 . 5 , the 

integration process is only conditionally stable and At should be 

less 'than some critical value. The case 8 • 0 represents the forward 

Euler scheme and suffers from a numerical instability unless At · is 

small enough. Depending on the problem characteriotico, when the tran-

sient state is of interest for the short time interval, the forward 

scheme is often efficient since it requires easy computer·implementa--

tion. Further studies and comparisons of several other algorithms can 

be found in references [9,68,125]. 

A simple and efficient rule for choosing appropriate time step can be 

found in Zienkiewicz and Cormeau [133]. In the variable time stepping 

scheme, the magnitude of the time step is controlled by a factor · 1 

which limits the effective creep strain increment as a fraction of the 

total effective strain, i.e., 

-56-



(3.63) 

~ 

where t n . and t c.n are the total effective strain and the effec-

,tive creep strain rate respectively, and lltn is chosen by 

(3.64) 

The effective strain and strain rate are computed on element basis along 

with the temperature shift function at the centroid of each element. 

The minimum value .of time step size compute~ for each element is select

ed for the next time step size and the change in the time step length 

. between any two intervals is limited according to the empirical rule of 

thumb 

'.·. 

(3. 65) 

The . range of the fact9r 't is empirically selected to . be 

• 01 ( 't ( .1 for the forward scheme ( e- 0 ) and up to 10 for the im-

plicit scheme ( e- 1 ) although the accuracy subsequently deteriorates 

as 't incr4!ases. 

3.3.6 COMPUTATIONAL PROCEDURE 

The main step in the sol~tion process is summarized here. The solu-

tion to the problem be$ins with the entire transient temperature distri-

bu~ion solved separately and the known initial conditions at t • 0, 

which repersents the instantaneous responses o.btaine.d by using elastic 
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constants. At this stage To, Uo • Fo, to, Oo are known 

and tc.n - o. The solution sequence adopted is as follows:. 

(a) At t - tn • the quantities .dTn • Un • On, tn, tc.n 

and Fn are known for an equilibrium state. The followi~g quan-

~!ties are then assembled: Dn, . Kn, At., .ARn • 

(b) We . now compute the displacement increment according to 

eqn.(3.58) and the stress increment from eqn.(l.SO) · and update 

the total displacements and stres~es from eqns.(3.61) and 

(3.62). 

(c) The time step increment Atn+l is selected by eqn.(3.64) and 

checked against eqn.(3.65) with a specified T When the time 

increment for the stress field does not match with the one for the 

temperature field solved, the linear interpolation of the tempera

ture is carried out. 

(d) The reduced time and the ereep strain rate are calculated by 

eqns.{3.40) and {3.44) and the load increment AR n+l for the 

next time interval Atntl is formed according to ~qn. (3. ~0). 

The solution sequence (a)-{d) is repeated until the· prescribed time 

is reached. The algorithm adopted above is general enough to .include 

plastic. strains .and. large deformations if iteratiollo are allowed within 

an increment •. The flow chart. of the above solution procedure is ·shown in 

figure 8. 
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solve· for the entire thermal J : 

responses:_eqn.(3.14) 

initialization! n•O .dLn,T . time ·increment .f . 
obtafn the·isntantaneous 

the thermal resp 

elastic responses at t • 0 .d~.M . time increment f . 
I the mechanical r 

.select At.ntM·: eqns.(3.64) and (3.65) 

trio1.M. tn,M + At,;,M 

retrieve the temperature 
aolution at t • tn.T 

check interpolate temperature 
? no solution at t • tn,M 

tn,M ,• tn,T 

yes 

update the creep strain rate: eqn.(3.44) 

-form Dn•1. 
. eqn.(3.51) . 

form A Rn . eqn.(3.60) . 
I 

solve for _AUn . eqn.(3.58) . 
compute A on : eqn.(3.50) 

update Un.1 and 0 n+1:eqns.(3.61) and (3.62) 

I 
n=n•1 ., 

tn•1 < tfinal yes 

.-L.. no 
~top -

Figure 8: Flow Chart of Incremental Solution Procedure for 
Thermoviscoelastic Problem 
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Chapter IV 

·: .: 
.. COMPUTATIONAL BXPER.IMENTS 

• • !·. 

Prior to use of the developed code tMFC for field applications, code 

·validation and model calibrations are essential requirements. In this 
.'•, 

chapter, FEM formulations associated with the uncoupled thermoviscoelas-

tic analysis presented in Chapter III are validated. Since the thermal 
' ... ' 

responses, separated from the ~echanical reaponses, are affected by 

characteristics of the problem i.e., convective-diffusion, line crack 

etc, the temperature responses are independently obtained by using FEM 

and can then be used for the corresponding thermoelastic or thermovis-

coelastic responses. Test numerical. models include 1) a thermoviscoels-

. tic model~ ii) -~ convective-diffusion model, Hi) a transient heat con-

duction model, ancl iv) .a thermoelRRt'l~ line crack model. The effects of 

time step and scheme, cont~ol parameters in the implicit incremental 

procedure are demonstrated for the thermoviscoelastie model. Compari-

&ons wtth nvR~l ... ble &Aalytlaul.and num~r1~al 1~6u1Ca are also presented. . ' ,· ..... ,. . 

All eAlculations in this .. study are carried out on Amdahl 470/VS using 

the implicit double precision. 
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4.1 THBIMOVISCOBLASTIC RESPONSES 

In this section, the therinoviscoelastic formulation presented in Sec-

tion 3.3 is validated. The effects of time step size and the implicit 

scheme control parameters are examined by comparing FEM solutions with 

tl~ finite difference solutions obtained by Lockett and Morland [77]. 

The FEM results include the cases of the mechanical and'thermal loads. 
;,· 

The results from the presented FEM formulations are also compared with 

the ones given by Taylor et al [111] and analytical solutions obtained 

by Muki and Sternberg [85]. 

4.1. 1 TH!IMORHEOLOGICAL PROPERTIES 

The thermorheologically simple material characteristics of Polyme-

thylmethacrylate are considered for the presented model. These proper-

ties·have .been adopted in several numerical models by Muki and Sternberg 

.. [85], Lockett and Morland [77) and Taylor et al [111]. For the tempera

turP T.anaa from 80°C Lu 110n(; 'with the base temperature T
0 

• 80°C, the 

normalized TSM properties are as follows (cf. ref. [77,111]). 

1. The temperature shift function is expressed by 

x(T) = 3.98xl0 3 EXP[-6.127(1-T) (1.333 + T +· 1.095T2)] 
( 4. 1) 

where 

T • (T - T0 )/30. 
(4.2) 
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The strong dependence on temperature of ;he shift fuction is shown 

in Figure 9.a. 

2. The relaxation moduli are 

G1 = 0.75xl0 7 + 8.297xl0 9 EXP(-~) 
G2 = 2.5xl01J 

(dyne/cm2 ) 
" · .. 

and the equivalent creep compliance is approximated by 

J(~) = (3G2 + Gl)/(9G!G2) = (1 + G!/3G2)/3GJ 
= 4.444458xlo- 8 - 4.44xl0- 8 EXP(-9.036xlO-~t) 

( 4. 3) 

(4.4) 

Figure 9.b illustrates the ·creep compliance with respect to the re-

duced time. 

3. Instant$neous elastic 'constants are obtained by setting ~ Q 0 in 

eqn.(4.3), i.e. 

(dyne/cm2) ( 4. 5) 

and the temperature solutions are separately provided by a given 

functional form 

TC~,t) = (1 - ~) [1 - EXP(-2£)) . 
(4.6) 
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where 

r = (r- routerl/(router - r;nnerl 

(4.7) 

in which r and t are non-dimensionalized radial distance and time, 

•0 is the relaxation time at the base temperature T0 • The ax-

!symmetric FEM model and the specified. transient temperature pro-

files are shown in Figure 10. It is noted that the temperature 

reaches the quasi~steady-state at about t = 1.5 while the inside 

boundary temperature is dependent on time. 
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a) Temperature shift function 
logx<T~>~---------------------------------, 

~ 

b) Creep compliance 
logcJil:=_·>~------------::::=-----, 

3 

2 

1 

0 
-ID 1 2 

Figure 9: Temperature Shift Function and Creep Compliance for 
Thermoviscoelastic Test Model 
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Figure 10: Axisymmetric FEH Hodel and Temperature Profiles for 
Thermoviscoelastic Test Problem 
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·4. 1. 2 . TBEIMOVISCOELASTIC ·i!SPONSES WITH INT!IUW.. PUSSUU 

Elastic .solutions are obtained by applying a constan~ pressure on the 

inner boundary with instantaneous elastic constan~s. The uniform elas-

tic solutions adopted.from Lockett and Morland [77] are 

0 rr = - 0.278, 0 ee = 1.39 
' 1 ·' 

0 zz = 0.695, 0rz = 0. 0 
(4.8) 

The F£M hoop streHS results, excluding the thermal expan~luu term 

· ( Clr(T)· ... 0 in eqn.(2.41)),· are compared with the finite difference so-

lutions. Several cases with different time step sizes and the implicit 

scheme control parameters are examined to investigate their effect on 

'the solution. 

For the forward scheme ( 9 • 0), the FEM results for the hoop 

stresses are presented in Flgure 11 and are compared with the finite 

difference solutions. In the forward scheme, the time step size is kept 

small enough to avoid unstable solutions. the hoop stressea tor both FEM 

and the finite difference solutions compare well except in the region 

nP~~ the inside boundary after t ~ 0.7. A similar discrepancy was noted 

in the solution with thermal expansion effects by TaylOr et al [111]. 

The results from the presented formulation, ineludin; the thermal expan-

sion effects, are presented in Section 4.1.3. The appropriate time step 

and scheme control parameters are selected on the basis of preliminary 

parameter sensitivity studies. Here the reaults from the implicit 

schemes are compared with the one from the forward .Jcheme. As shown in 
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Table 1, the ~ase. e- 0.5 and T.• 0.1 yields the best r~sults. How-

ever, as time increases, the case e- 0.5 suffers from the numerical 

oscillations and subsequent degraded accuracy. Figure 12 illustrates the 

oscillations occuring :at F • 0.05 when T increases up to 0.5. It 

shows that the solution is oscillatory but stable and converges to the 

expected solution for the case T • 0.1. On the other hand, the fully 

~mplicit scheme shows no oscillations and requires less computational 

~ime as the time step size increases. In addition, the solution accuracy 

does not deteriorate as quickly as the case e- 0.5 does. 

As .time. increases with T • 0.1, compatible results are obtained for 

both the e .. 0.5 and 1. 0 cases {F-igure 13). As shown in Figure 12 and 

13, the mater~al near the inner surface of the tube. is weakened by the 

increase in temperature i~ that region. This. re.sul ts in a lower stress 

being induced in the inner region.and a higher stress in the outer re

gion. At subsequent times, the inner region with approximately uniform 

stress expands out toward the outer region. 
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Figure 11: Hoop Stresses with Internal Pressure for Thermoviscoelastic 
Test Model 
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0 • 0.5 0 • 1.0 

I 

case OSC/stability error CPU OSC/stability error CPU 
(%) (sec) (%) (sec) 

T • .1 no OSC .34 1~.67 no OSC 1. 5 16.91 
stable t•1.J5 55 cy. stable t•l. 34 47 cy. 

T • .S osc JR. 18.42 no OSC 8.8 9.02 
stAble t•l.4 58 cy. stable t•l.38 22 cy. 

T • 1. osc 60. 10.26 no OSC 14.1 8.69 
stable t•1.42 48 cy. stable t•1.17 21 cy. 

• Error vas computed vith respect to the solution of the forward sche11e (9 • 0) 

Table I 

· Effects of Time Step Size and Implicit Solution Scheme 
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Figure 12: Oscillatory Results with 8• 0.5, 
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Figure 13: Hoop Stresses at t • 4.07 for Thermoviscoelastic 
Test Model with Internal Pressure 

-71...,. 



4.1.3 TBEIKOVISCOELASTIC RESPONSES WITH THERMAL EXPANSION 

Based on the previous numerical experiments for the time step and 

scheme control parameters, the presented FEM solutions. for e - 1.0 and 

0. 5 with T • 0.1 are compared with the finite difference and FEM so-

lutions obtained by Lockett and Morland [77] and Taylor et al [111], re-

spectively •. The coefficient of thermal expansion is assumed to be inde-

pendent of temperature and the normalized hoop stresses are: [85,77] 

a= 2.666xlo-5 

(4.9} 

Figure 14 illustrates the effects of high temperature softening of the 

1nner tube regioo so that a greater load is transferred to the outer re-

gion. Across this region, the stress varies from a tensile value at the 

outer region to a significant compressive stress at the inner region. 

It is again nottced that the presented FEM and the finite difference so-

lutions do not agree at the inner boundary region at t • 0.32 and 1.26. 

However, the solutiQQ~ obtained by Taylor· et al and the prP.~ent.ed FF.M 

fnrmnl at1.,!HJ show a good agreement at t • l.l6. The finite difference 

solutions in the inner region is apparently in error as reported in Tay-

lor et al [111]. 

It can also be noted that the finite difference solutions were ob-

tained by using 40 spatial points and 100 time points While Taylor's FEM 

solutions used 12 elements and 40 time cycles. In the FEM formulations 
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presented here~ cOmpatible solutions are obtained by ~sing 12 elements 

and 27 time cycles, which illustrates a superior time discretization. In ... ~ :· . 

particular, the presented. variable time interval scheme requires proper 

aelec~ion of the initial time step size, which must be_ chosen carefully 

.. according _to t~e tempera_ture solution and its effect on the temperature 

.shift function by avoiding a abrupt change in the computed reduced time. . . . 

For.the presented test problem, the time step size increases with time 

and temperature, and its maximum value reaches 0.141 approximately 70 

times the initial time step size (0.002) at the final time step. This 

corresponds to a normalized temperature of about 0.874 and a reduced 

time increment of about 360 times the real time increment. It is also 

recommended to keep a constant time step size during the early several 

steps to obtain stable and accurate solutions. 

~ ... •. . 

. ''· • 'I' . ~ 
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Figure 14: Hoop Stresses for Thermoviscoelastic Test Model with 
Thermal.Expansion ( 1•1.0. T• 0.1) 
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4.1.4 TBBIKOVISCOBLASTIC IISPONSES OP A SLAB PRDBLIM 

The presented FEM formulation is applied to evaluate the thermovis

coelastic responses of a slab. This probl~ has been solved analytically 

by Multi and Sternberg [85]. A slab of infinite extent with finite 

thickness 2a is bounded by planes z .. :t.a under the. influence of a tran-

sient temperature field (Figure 15). The slab dis.placements are governed 

by 

(4.10) 

and the stress field is given by 

(4.11) 

The following hypothetical functions for the temperature field and 

ther.:uodu::uluglcal properti~s using ~ Maxwell fluid model are assumed: 

a) Temperature solution: 

T(z,t) • 1.5 · z. t 
(~C) (4. 12) 
' 1 . 

b) Temperature shift function: 

X(T) = 1. + 20.0 T 

(4.13) 

-75-
. ' 



c) Relaxation moduli: 

G1 = 7. 5757xlo4 EXP(- ~I 0 .44) 

G2 • Sx105 

(dyne/cm2) 

with the equivalent creep compliance approximated by 

J( ~) = (1 + G113Gz)I3G1 

- 4.622xln-6 + 1.0x105 

d) Instantaneous elastic constants: 

vo = (3Gz - 2Gi)/(6G2 + 2G1) I ~=o = o.427R 

Eo= (9G!G2)/(3G2 + Gl)'~=O = 2.1634xln5 

(cm2/dyne) 

(dyne/cm2) 

and the coefficient of thermal expansion is 

a = RxlO-s 

(4.14) 

(4.15) 

( 4 •. 16) 

(4.17) 

The analytical solution is expressed by the following form ( cf. 

ref.[85]): 

"xx • -a E 
1 - II. 

r-:xrr- /l ~ ,.,. J [ \;xrc- /lt-rJ g:, d c 
0 

(4.18) 
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where 
1 + II 

3 ('1- ll ) 

and 'T0 denotes the initial relaxation time at T • T0 • 

Substitution of the above assumed data {4.12- 4.17) 

yields the explicit form of 

a = - 45.37 Z EXP( - 1.R9( t + 15. Z t 2)) 
XX 

t l EXP (1. R9 ( t' + 15. Z t 2)) dt' 
0 

into eqn.{·+.18) 

{ 4. 19) 

The integral of eqn.{4.19) is numerically evaluated by the Romberg's ex-

trapolation method and a small amount of numerical error may be intro-

duced in computing analytical values-

Since the temperature function is selected to be symmetric with re-

spect to the z axis, only half of the slab thickness is modeled by using 

16 plane strain finite elements having 34 nodal points as shown in Fig-

ure 15. Comparisons between the non-dimensionalized axial stress from 

the presented FEM formulation and analytical solutions for different el-

lapsed times are shown in Figure 16. The FEM results wllh 8 ;oo 1. 0 and 

'T a 0.1 show good agreement with the analytical results, and the maxi-

mum error { 4. 5%) occurs near the free surface at t =: 0. 17 5, where the 

maximum compressive stresses are obtained. With increasing time, stress 

relaxation becomes evident and a uniform low stress value is obtained. 

Figure 17 shows the stresses at z/a • 0.0125, near the middle plane, and 

the maximum error {4.3%) is noted at the maximum stress when t = 1.0. 
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It is also noteworthy that the stresses in the higher temperature region 

(linearly increasing toward the free surface) relax faster than in the 

low temperature region (near the middle plane). 

The FEM solutions up to t - 2.0 require a solution time of 7.4 sec

onds and the time increment ranges the initial increment 0.01 to 0.215 

with increasing time. 
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Figure 15: Plane Strain PEM Model and Prescribed Temperature 
Solutions for A Slab Problem 
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4.2 TBBIMAL IBSPONSES 

· In the absence of the thermo-mechanical coupling effects, the thermal 

responses are separated from the mechanical responses. Here, FEM models 

for the convective-diffusion equation and the·transient heat conduction 

equation are demonstrated. Tbe uPwinding scheme presented in Section 3.1 

is compared with other numerical· schemes for the convective-diffusion 

model• Results from the twu-point recurrence scheme f~r the transient 

heat conduction equation is compared with analytical solutions. 

4.2.1 CONVECTIVE-DIFFUSION MODEL 

To assess the effectiveness of the upwinding scheme described in Sec-

tion 2.2, a series of numerical results obtained by Hughes and Brooks 

[56,57] are compared. In each scheme, the finite element descretization 

procedure is identical except for the treatmP.nts of the convective 

terms. The convective-diffusion equation in consideration is represent-

ed by 

v2r- lxl0
6 

(cosYT x + sin>'T· ) = 0 . I aY 
(4.20) 

where )' is the flow direction measured in the counter-clockwise di-

rection. The boundary conditions and FEM model are shown in Figure 18. 

Numerical comparisons are made between the following solutions; i) 

tha atandard Galerkin method (G), ii) the quadrature upwind scheme (QU), 

iii) tbe streamline upwind (SU1,SU2), iv) the upwind scheme proposed by 

Heinrich (HU) and v) the exact solution (E). Details of the quadrature 
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and streamline upwinding schemes are found in Hughes et al [20,56,57]. 

Denoting each solution by its abbreviatio~, the different convective 

skews are shown in Figure 19. It is evident that the solutions G and SU1 

suffer from the most serious ·oscillations while the solution QU experi

ences significant cross-wind diffusion thereby degrading the solution 

accuracy. It is also evident that the above schemes suffer more oscil-

lations and cross-wind diffusion in.x or y dominant convection.than the 

case of equally distributed convection ( Y • 45°). Meanwhile, the solu~ 

tions SU2 and HU possess the same amount of cross-wind diffusion. Howev

er, SU2 tends to show slight oscillations in the vicinity of the region 

subjected to the steep variation of temperature. For the HU scheme, the 

results are far better than others in that au·maintains the most consis

tent accuracy for the. different · convection angles. The pertubation of 

upwind parameters, "t and 1'1 in· HU; does not significantly affect 

the solutions although the full upwinding scheme has a tendency to cause 

more cross-wind diffusion than the half upwinding procedure. 

It is recommended that the upwind scheme proposed by Heinrich et al 

[47,48] (HU) be ·used when a significant amount of convection must be 

considered in the energy equation, which arises from the flow of hot 

fluid through a channel. Modeling of moving boundary (with a constant 

velocity) would be another important case in which the convection term 

must be considered [21]. 
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4.2.2 TRANSIENT BEAT CONDUCTION MODEL 

The infinitely long circular cylinder subjected to prescribed temper-

ature boundary conditions is considered. The two-point recurrence scheme 

with the implicit algorithm, described in Chapter III, is emvluyell. The 

presented FEM solutions are compared with the analytical series solu-

tiona [21]. 

FEM models are shown in F~~ure 20 wherein the boundary temperature is 

suddenly raised from zero to ·a ~onstant temperature ~~ 1.0 8nrl is 

thereafter maintained. The FEM model·is generated under the planar and 

the axisymmetric cases so that the solutions are checked in both cases. 

A quarter of the circular domain is used by applying the zero tempera-

ture gradient conditions on the symmetric boundaries for the planar 

case. The material constants are normalized to yield 

( 4 •. 21) 

The constant time step size 0.0025 according,to eqn.(3.15) is used for 

both e ~ 0.5 and t.o. Figure 21 shows a &ood agreemeqt between the 

FEM and analytical solutions. It is observed tl~t th~ time step size se-

lected from eqn.(3il5) yields otable and accurate reaulte ao that the 

temperature dependent properties can be favorably incorporated. 
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.Figure 20: FEM Models for Transient Heat Conduction Test Problem 
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4.3 THBIMOBLASTIC PIACTURE l!SPONSES 

Solutions associated with the FEM models for the thermoelastic line 

crack problems described in Appendix A are demonstrated. ',lbe steady-

state temperature, displacement and stress fields in a homogeneous, iso- · 

tropic, elastic m~dium with a line crack are. obtained. The temperature 

distribution in the body, with the quasi-static uncoupled thermoelastic 

_assumption; is determined independently. The selected material proper-

ties of r9c.k :for the fracture analysis are assumed to be independent of 

temperature and_ are listed in Table 2. The FEM results are compared with 

the analytical so.lutions [73 ,123,127] i.n terms of the stress intensity 
' .·, . . 

factors for mode l-and mode II cases. The stress intensity factors ob-

tained by two- and three-point Gaussian quadrature rule are also com-

pared. 

-----------------------~~-----~-----------------------~---· 
Properties Symbol · Unit . ,;. 

-----~~------~--------------------------------------------
Thermal Conductivity k W/m °C 2.244 
Co~ff. of Linear . Io6i °C. ·Thermal Expansion 

... 

' (!r. 2.5 
Elastic Modulus E. lO~MPa 1.378 
Poisson's Ratio , 0.12 

-----~------~---~------------------------------------------
Table 2 

Material Properties for Thermoelastic Line Crack 
Test Model 
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.. 4. 3.1 MODI I CASE 

The prescribed constant temperature on the upper and the lower crack 

surface are assumed to be T0 and zero at infinity i.e. 

T(x,y) = T0 for y = 0. lx I < a 

for y = 0, lx I > a 

TC X .y) = 0 at infinity (4.22) 

The FEM model is shown in Figure 22 by taking a quarter of the entire 

domain due to the symmetry. The chosen domain size U 20 times Lhe 

crack length. The degenerate singular elements are used around the 

crack tip and the eight-noded isoparametric elements are employed for 

the rest of the domain.· The normalized temperature and the maximum prin-

r.ipal stress distributions are shown in Figure 23.a and 23.b, respec-

tively. The stress intensity factor KI is non~dimensionalized to yield 

R"1 = KJ/(aGT0 In a) 

(4•23) 

and t 1 obtained by the two-point (2x2) and three""'point (3x3) quadrature 

rule are 1.2987 and 1.3067, respectively and are within 2.5% error when 

compared to the analytical value of 1.273 (cf. eqn.(A.9)). It is ob-

served that effects of the number of integration· points on the singular 

elements are insignificant for both temperature and stress fields alt-

hough the 1{1 value obtained from the two~point rule is el"i.ghtly more 

accurate than the one ·f.rom three-point rule. 
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4.3.2 MODE II CASE 

A line crack of length 2a is situated in an infinite plane subjected 

to ~ constant ~emperature gradient at the surface of the crack. The 

boundary conditions at y • 0 are 

. ~T - c -- f I I - constant or x < a 
fU 

T( x,y) = 0 for I xI > a 

. T( x ,y) = 0 at infinity (4.24) 

'The domain sfie of FEM model is approximately 15 times the crack length 

as shown in Figure 24. The non-dimensionalized·stress intensity factor 

K11 is expressed by 

(4.25) 

FEM results of the stress intensity factor ~1are 0.643 for the two-

point rult:! and' O.bb9 for the three-point rule while the analytical value 

is 0.636 (cf. eqn.(A.lO)). It is again noted that the singular ef-

fects near the crack tip is slightly better represented by the two-point 

rule for both temperature a~d stress fields. Since the thermal and me-

chanical responses are symmetric with respect to x·and. y axes, the nor-

malized temperature and-stress distributions for a quadrant are shown·in 

Figure 25.a.and 25.b, respectively. 
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Chapter V 

FIELD APPLICATIONS 

In the formulation of design criteria for rock mechanics problems, 

the effects of time and temperature can be of considerable concern. In 

particular, problems involving elevated temperature such as underground 
' 

coal conversion (UCC) process and nuclear waste disposal, the strong 

time and temperature dependence of geological materials may po~e a po-

tential hazard to process mechanisms and the host environment. In this 

chapter, the UCC post-burn response is simulated by using the preceding 

thermoviscoelastic and thermoelastic FEM model formulations with empha-

sis on the key variables involving temperature, stress, failure zo~es, 

and surface subsidence. A similar approach is also applied to possible 

nuclear waste disposal model in a low permeability salt medium. 

5.1 UCC POST-BURN MODEL 

Undergrl)uod coal convClardon rut$ gained attention as a vital ·source of 

alternate energy in the U.S.A. since the early 70's energy crisis. As 

an ~.nnovative and efficient extraction technique, in-situ gasification 

of coal reserves has appeared to be a viable avenue for retrieving·com-

bustible gases from the carbon content of burning coal. The development 

of undergronnd coal easification (UCG) and basic principles are reviewed 

by Gregg and Olness· [42] and Skafa [102]. Descriptions of various ap-

proaches and their mathematical modeling, laboratory and field results 
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have been presented mainly at the Annual Symposia on Underground Coal 

Conversion [117,118,119,120,121,122]. 

The typical UCC process is characterized in three main stages; name

ly, pre-burn, active-burn, and post-burn stages. The pre-burn stage in

cludes drilling, fracturing and linking processes to enhance the perme

ability between wells. When the required permeability is established, 

gasification of coal is conducted by supplying gaseous oxidizing agents 

to the prepared coal seam. During the active-burn stage, the gasifica

tion chamber is expanded through the coal seam while the combustible 

gases are retrieved at the surface. In the post-burn stage, the supply 

of the oxidizing agents is stopped and the hot cavity gradually cools 

with time and has a potential for subsequent roof collapse and subsi

dence. For the sustained reliability of the UCC process, major struc

tural concerns are placed on the control of in-situ gasification process 

mainly in the aspect of fracture mechanics . heat transfer and thermo-me

chanical responses. In addition, the ground movement, especially the 

surface subsidence and the growth of gasification chamber in active and 

post-burn stages are the major problem areas associated with UCC (Figur~ 

26). Structural finite element model investigations of various UCC cavi

ty configurations have been conducted by Advani et al [1] and Thompson 

et al [112]. Closed form solutions for thermally stressed ellipsoidal 

cavities have been obtained by Advani et al (2]. Jegbefume and Thompson 

[62] have conducted a study on roof collapse and subsidence treating 

only the overburden rock as a linear viscoelastic material. Advani et al 

[3] have recently introduced FEM models which can be directly applicable 

to UCC field aimmulations for active and post-burn stages. This includes 
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the moving boundary problem for the active-burn stage and the thermovis-

coelastic modeling for the post-burn stage to predict the surface subsi-

dence and the gasification chamber configuration. Other relevant re-

search includes studies by Langland and Trent [71], Sutherland et al 

[107] and Turner et al [116]. 

In this section, the post-burn stage of Hoe Creek II site is simul;:~t-

ed by yse of thP thermoviscoclastic FEM model presented in this stnrty 

wlLh temperature-dependent material properties. Thermorheological re-

pr~s~uLations ot coal and rock and detailed modeling procedures are pre-

sented in the appropriate sections. 

IKIOf CDIJ.M>If ,..., l!lle CDII'GI'A'nl:lllll c
... C1a.tl" CIIC*~ a~ P&T4 

Figure 26: Typical UCC Site and Potential Environmental Impacts 
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5.1.1 TBBIMO-MICIIANICAL AND IBIOLOGICAL BBIIAVIOI. OF COAL 

Major laboratory tests for eastern bituminous coal at elevated temp-

eratures have been conducted by Singer and Tye [101] and Shoemaker [99] •. 

Based on· the above references, Min [81] has presented a general thermal 

property trend for coal. This provides a basis for possible parametric 

studies and modifications of UCC models. Here, similar trends of the 

thermal and mechanical properties are adopted and associated nominal va-

lues are selected depending on a specific UCC site. Figure 27 illus-

trates normalized thermal trends for thermal conductivity, heat capac!-

ty, mass density, linear coefficient of thermal expansion, tensile 

strength, and compressive strength. 

For the viscoelastic properties of coal, Fitzgerald [35] and Waters 

[124] have examined coals at the stage of carbonization and thermal sof-

tening. Compressive creep tests in 
0 

the temperature range between 200 C 

and 370°C have been conducted by Sanada and Honda [93] revealing that 

creep of cual can be repr.P.Rente4 by a simple rheological model. Shoe-

maker [99] has presented directional viscoelastic properties of the 

Pittsburgh coal at elevated temperatures ranging from 24°C to 343°C. It 

is reported that the Pittsburgh coal can be treated as a thermorheologi-

cally simple mater.ia 1 [ 99]. Lin [75) has adopted Shoemaker's data for 

the Pittsburgh coal and presented analytical creep functions using a 

four parameter fluid model(Burger's model). Due to insufficient creep 

data at elevated temperatures for field experimetal sites, the creep 

data for the four parameter fluid model of the Pittsburgh coal is adopt-

ed in. the present UCC simulation. The selected trends of the uniaxial 
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creep compliance and the temperature shift function are shown in Figure 

28. The creep compliance of Pittsburgh coal is calibrated according to 

available experimental data for Hoe creek II site [62,80] and .the same 
. 

temperature shift functiQn iR •1ved. The appropriate numerical., expres-

aions are 

'J( f;) = 1.1727xl0-6 + 7 .1699x10- ~ ( 

- 1.1621x1o-6 EXP(-2.x1o- 19f;) U/Pa) 

and 

X(T) = 1/ar = {180.6 EXP(-2.2089- 1.24xi0- 1T- 1.9661xl0-5t2)}-l 
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5.1. 2 THERMo-MECHANICAL AND llBEOLOGICAL BlllAVIOI. OF I.OCK 

Extensive references on thermal and mechanical properties ~f diffe-

rent rock types can be found in Lama and Vutukuri [69]. The thermal 

trends for moot of rock mP-tP.~1AlR are known to be similar (81). Here, 

based on the laboratory tests for oil shale [31], sandstone and lime-

stone [17], and granite rocks [50], the selected general trends for 

thermal and mechanical properties are presented in Figure 29. The nor-

malized thermal trends of rock materials are again calibrated by choos-

ing proper nominal values for a specific UCC experimental oita. 

For the thermorheological properties of rock, Misra and Murrel [82] 

has conducted creep tests for a number of different rocks(dolomite, 

sandstone, marble) up to 750°C under the uniaxial loading. It is report 

ed. that the creep strain h proro't'ti.nnal to the logarithm of the time, 

stress and temperature at the low temperature range but increases expo-

nentially as temperature increases. The aoKlytical model for the rheo-

logical behavior of the dark gray shale associated with the UCC process 

has been proposed by Lin [75] using the creep data conducted by Gmeindl 

[40]. Figure 30 shows the creep. compliance of the four parameter flui.d 

~odel and t~~ tP.mpP.rature shift function for the dark gray shale. These 

thermorheological properties are again adopted and scaled for the asso

ciated rock.materials{siltsLuues} f~r the Hoe Creek II sit&. The selP.r.t-

ed thermorheological properties are 

J( f;) · = 5. 6394xio- 8 + 3. 2603xlo- 21 c: 
- 4.6042xl0- 8 EXP(-lxl0- 9 f;) 
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and 

X(T) = 1/ar = {4.795 EXP(-2.297 + 0.118T- 5.919xlo-~ 2 )}- 1 
(5.4) 
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.5. 1. 3 POST-BUIR MODELING PIOCBDUIE 

Two issues are of primary concern in the simulation of the UCC post

burn process; namely the heating and cooling of the gasification cham

ber and the structural response of the chamber configuration. To simu

late the heating and cooling effects, a time-dependent temperature 

condition on the chamber boundary is used for the thermal responses. 

Since the thermally-active zone is reported to be confined in the vicin

ity. of the chamber boundary and it is preceded by failures during the 

active-burn stage [81], the thermal responses in the po·st-burn process 

ar~· independently simulated. The assumed' time-dependent chamber temera

ture is as follows; 

a) The chamber temperature increases linearly from the ambient temp

erature(200C) to the combustion temperature(600°C) within a short 

time ~nterval at the early stage. 

b) The chamber temperature remains constant at the combustion temper

ature for a certain time interval and starts to decrease slowly 

toward the ambient temperature. This simulates the natural cooling 

effect on the gasification chamber due to heat loss and water in

fiux. 

The choice of the temperature boundary condition is based on observa

tions of the UCC experimental results. It also avoids numerical oscilla

tions caused by abrupt changes in the boundary temperature at the begin

ning stage. 

For the chamber configuration shown in Figure·31, the two-dimensional 

failure theories presented in Appendix A are incorporated in the model 
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to define the failed zones. Although the transient chamber configura~ 

tions fall in the category of moving boundary value problems. a crude. 

yet economical. finite element model can be obtained by assuming that 

the failed elements are still attatched to the adjacent elements but do 

not show any structural strength. This assumption allows us to use the 

same mesh configuration ~uring the entire solution procedure and simply 

discard the load increment for the failed elements at each solution 

step. During the entire simulation. the temperature-dependent thermal 

and mechanical properti~$ are alAn fn~orporated. 

5.1.4 FIM MODEL AND JlES UL TS FOR HOE CJlEEK II SITE 

The selected plane strain FEM model for the Hoe Creek II site is si-

mulated for 10 years post-burn. The prescribed chamber temperature and 

boundary conditions along with the idealized stratigraphy are shown in 

Figure l1. TI1e seleeted chamber configuration is based on the field P.x-

periment conducted by LLNL [4). Due to the symmetry of the initial 

chamber shape and the geological structure. the FEM model dimensions are 

selected to be 60m horizontal by 70m vertical. The 4-node quadr!~ateral 

isoparametric element is used throughout. The mesh discretization shown 

in Figure 31 hae 26 7 element& and 309 nodal points. The geological ma-

terials at Hoe Creek II site have been reported to be very weak and the 

nominal values for thermal and mechanical properties listed in T~ble 3 

are selected from sample data [80]. The rock materials at the top and 

bottom( seam 1, 6) are treated as elastic materials while Felix 1 and 

2(seam 3.5) and siltstones(ae~ 2.4) are represented by the thermorheo-

logical model for coal and rock respectively as described in Section 

5.1.2 and 5.1.3. 
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~ 
0 
00 
I 

-------------------------------------------------------------------------------------------Seam Mo. 
Properties Symbol Unit 

l 2* 3* 4* S* 6 

~-----------------·----------------------------------------------------------------·- ---
Maes Density f) kg(m3 2374.0 2259.0 1300.'D 2259.0 1300.0 2323.0 
Themal Conduc tlvtty k W/m•c 2.D 2.0 .27 2.0 .27 2.0 
Heat Capacity c J/kg•c 900.0 90(). 0 800.'!) 900.0 800.0 600.0 
Coeff. of Linea-e 

1 o6t•c 'nler'llal Expansion 0: 10.0 lO.O s.o 10.0 s.o lO.O 
Tensile Strength St KPa 13.0 90.0 200.0 90.0 200.0 6000.0 
CO.preesive Strength Sr MPa -7.3 -6.5 -1o.o -6.5 -1o.o -30.0 
Elastic ,.,dulus E "1Pa 42.0 96.6* 94.* 96.6* 94.* 90.0 
Poi880n's Ratio v .38 .37* .32* .• 37* .32* .37 
Coeff·. of 

Internal Friction ~.~, 1.0 1.0 1.0 1.0 1.0 1.0 

-----------------~-----------------------------------------------------~-----------------

* desianat:ell vlscoelastic 1111terial and associated material properties 
are inetantaneous vslues. 

T:~hle 3 

Selected Nominal ValueR for Material _Properties 
:~t Hoe Creek II Site 



The computed temperature profiles at different elapsed times are pre-

sented in Figure 32. A constant time step size, 0.04 year, resulting 250 

transient steps for 10 years, is utilized with about 2 minutes 44 sec-

onds of CPU time. A larger time step size can be used to reduce the 

number of time steps and the CPU time after the initial stage. Ht>Wever, 

the same time step size is ·used for the entire duration to provide a 

complete characterization of the viscoelastic responses. Slow thermal 

propagation, limited to the vicinity of the chamber boundary, is evident 

for· the first 2 years. However, the solutions at 4.8 and 10 years show 

further temperature propagation and different characteristics in the 

thermal pattern as the chamber is cooled down to the ambient tempera-

ture •. At 10 years elapsed time, the maximum temperature found to be ap-

proximately 115°C about 7m outside of the chamber boundary and steadly 

approaches the ambient temperature. 

Figure 33 illustrates the thermo-mechanical responses characterized 

by the principal stress redistributions, uniform reference subsidence 

(S 0 ) due to the cavity, 
. -v 

maximum differential surface subsidence (Sma~ 

• S~ax - S0 ) and failed zones associated with the defined chamber con-

figuration. Comparisons of the 'progressive failure zones and· maximum 

·surface subsidence, ~~ax and ~~ax , for thermoviscoelastic and thermoe

lastic cases, respectively are also presented. For the thermoviscoelas-

tic response evaluation, the instantaneous elastic responses are ob-

tained from the gravitational loading which results in compressive 

stresses at the bottom of the base rock(seam 6). The steep.increase in 

temperature at the earlier stages results in high stresses causing rapid 

element failures around the chamber boundary. With time, these high com-
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pressive stresses are reduced for coal and siltstones while the elastic 

layer stresses(seam 1,6) are almost uniform. This behavior illustrates 

the effect of material softening due to the time-temperature dependence. 

Major shear failures occur in siltstones(seam 2,4) indicating potential 

roof collapse in the upper chamber region. The slow development of the 

failed zone between 5 and 10 years simulation time potentially indicates 

the final stablized chamber configuration. During the 10 year period, 

the computed subsidence ina.reases an additional 40%, i.e~ O.l299m, com ... 

pared to the instantaneous elastic responses of 0.0929m. The effects due 

to the gravitational loading, roof collapse and weak elastic materials 

near the surface may counteract the effect due to the thermal expansion 

which generally causes upheaval in various boundary value problems. The 

presented analysis with the implicit time stepping scheme ( e •1.) per

mits rather large time st.ep size with 65 transient steps and udlizes 

approximately 3 minutes of CPU time for the entire solution. The select

ed time control parameter is T • 0.2 and time steps vary from .1 day to 

2.3 years permitting larger steps toward the ~ater stages of solution. 

For the thermoelastic simulation, the normalized thermal trends (Fig

ures 27 and 28) based on the nominal values (Table 3) for the elastic 

coustants for coal and rock are used. At early stage, the thermoelastic 

and thermoviscoelastic cases reveal approximately similar responses for 

the surface subsidence and failed zones (Figures 33.b and 33.c). With 

ellapsed time, it becomes evident that the thermoelastic response~, in 

the absence of ti~e dependence, are mainly affected bY the thermal ex

pansion resulting in structural upheavals. It is also noted that with 

progressive cooling, the thermoelastic surface subsidence increases 
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faster than the corresponding thermoviscoelastic value. However, the 

surface subsidence obtained by thermoviscoelastic model is much larger 

than by thermoelastic model in general due to the creeping of materials. 

At a simulated time of 10 years, the computed maximum subsidence for the 

thermoelastic case is 0.0319m, i.e. approximately 25% of the thermovis

coelastic value (0.1299m). A slow chamber growth rate is noted for the 

thermoelastic case. The thermoviscoelastic case, on the other hand, 

reveals further chamber growth especially 

layers (seam 3,4). It is apparent that 

in Felix 1 and siltstone 

both time and temperature 

dependence of coal and overburden should be considered to assess the 

effect of material softening for the long term structural response 

evaluation. 
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5. 2 UCC ELLIPTIC CAVITY MODEL WITH ! LINKING CIIANHBL 

A successful UCC operation requires the coal. to have sufficient 

permeability for allowing the oxidizing gas to flow through the coal 

seam. Various permeability enhancement methods have been employed with 

varying degrees of success, namely, reverse combustion method, electro

linking, pneumatic linking, and hydrofracturing. The choice of linking 

technique is critically dependent· on the properties of the coal seam 

(cf. ref. [42,102]). A typical UCC cavity model with a linking channel 

is illustrated in Figure 34 along with potential thermo-mechanically-in-

duced cracks and water influxis into the chamber. A common structural 

problem during the gasification process has linking channel closure or 

plugging. This closure or plugging phenomenon can occur due to the 

swelling characteristics of bituminous coals and the condensation of va-

porized tars. Lee [73] and Wang [123] have analyzed the crack-closure 

response of the elastic porous-permeable media of coal under the thermo-

mechanical loading conditions. 

placement and stress fields, 

The analytical expressions of the dis

obtained from the complex variable ap-

proach, are expressed in terms of the thermo-mechanical loading changes 

and .stress intensity factors. It is shown that the fracture permeabili

ty is greatly influenced by factors such as thermal and/or pressure· 

crack propagation and closure/plugging of cracks. 
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Here, a preliminary FEM simulation of an elliptic cavity model with a 

horizontal linking channel is presented. Since the softened inelastic 

combustion front is known·to be narrow and subjected to the immediate. 

failure (cf. ·ref. [81,75]), a thermoelastic ~odel with coal and sand-

stone layers is selected. Materials are assumed' to be isotropic and 

homogeneous, and constant and temperature-dependent mechanical proper-

ties are Used for sandstone and coal,. respectively (Table 4). The 

steady-state thermal response is obtained with the prescribed tempera

ture conditions for the cavity and.linking channel. The plane strain FEM 

model shown in Figure 35 includes the overburden pressure, cavity pres-

sure, and linking channel treated as a .line crack. Quadratic quadlila-

teral isoparametric elements are used resulting 196 elements and 651 no-

dal points for the mesh, and at the end of the channel crack tip 

singular elements are included (cf. Figure 35). 

Figure 36 shows the steady-state temperature contours with a pre

scribed temperature of 540°C for the cavity and channel and 7°C for the 

external boundary (i.e. ambient temperature). Based on the computed 

temperature profile, two c·ases of mechanical loading conditions are con

sidered, i.e. i) overburden pressure of 3.45 MPa and ii) overburden 

pressure 3.45 MPa with an internal pressure 2.75 MPa on the cavity and 

linking channel. Figure 37 illustrates the deformed mesh for each case 

with a potential partial closure of the channel unless suffiicient 

internal pressure is applied. The maximum principal stresses along 

the minor and major axes are shown in Figure 38. It is noted that the 

material layering condition contributes significantly to the stress dis

tribution along the vertical axis and the application of the internal 
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pressure of 2.75 MPa seems to relieve high stresses along the horizontal 

axis. Failure is observed at the two ends of the channel. The normalized 

stress intensity factors ·fi,II • KI,II ~~~ near the end of the 

linking channel are found to ~I a -2.017, iii • -0.109 for the case 

with only overburden pressure, and KJ a -O.i76, Kyy • 0.011 for the 

case with both overburden and internal pressure. The computed stress in

tensity factors show that crack closing mode is dominant and the appli-

cation of internal pressure will induce lower values of stress intensity 

factors. 
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COAL 

-------------------------------------------------------------------------------------------
E(HPa) , 5c (MPa) St (HPa) 

--------------------------------------------------------------------------------------------
20 

170 
260 
282 

.208 
.2•)8 
.208 
.2•)8 

1240.5 
1240.:5 
592.7 

75.8 

.44 

.44 

.44 

.44 

2.6 
2.1; 
2.6 
2.6 

-16.72 
-ms.sJ 
-ro.86 
-4.35 

1. 7J 
2.07 
1.12 

• 4S. 

1.() 
1.0 
1.0 
1.0 

-------------------------------------------------------------------------------------------

SANDSTONE 

-------------------------------------------------------------------------------------------
.117 13784.0 .12 2.5 -103.4 10.-68 1.0 

-------------------------------------------------------------------------------------------

Table 4 

, Selected Material Properties for Elliptic Cavity Hodel 
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5.3 IN-SITU WAST! DISPOSAL MODEL 

Although the developed FEM models have.been primarily condu~ted for 

UCC field simulations, a possible application to the salt-dome mining 

problem can be considered in regard to in-situ nuclear was~_e_ mana&ement. 

Various options for radioactive waste disposal including extrate~restri-

al disposal, seabed disposal, ice-pack disposal, deep melt disp<;>s~l,, and 

others have been proposed. At present, deep, salt-dome dispo~al appears 

t() be one of the mnAt rPl hbllil techniques dnac the ro.ek salt formatluu 
' ' . . 

io stable and free of dh1wlut.ion tor hUi\dredA nf mtl.l.ion~t of yeat:s- The 

saltbed is fairly easy to mine and has very low permeability and water 

content. Although this behavior may be desirable in most instances, the 

long-term design criteria often require accurate prediction of the time 

dependent deformations under various combinations of stress and tempera-

ture. 

llnd~rground nuclear wnotc creates two types of dlljlurbanc:es . to the 

rock maAR: i) the dhturbanao rcoultiag from the c.roe:at!ul'l u£ Lh~ em-

placement hole and ii) the disturbance resulting from the effects of 

temperature produced by the radioactive waste. The far-field effects of 

temperature include the upward motion of the overburden due to, the ther-

mal ~xpansion of the rock mass. In particular, the large scale.rock 

moveiJlento and the.it" effect uu Llu~ uverall. integrity of· the geologic con-

tain_ment for the post -repose phase -is o.f interest. Here, the FEM model-

ing for the post-repose phase is presented by using the preceding ther-

moviscoelastic formulation. 
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s. 3.1 TBBIMo-MECHANICAL AND I.BEOLOGICAL BEHAVIOR OF I.OCK SALT 

The thermal properties adopted here are based on the data used by 

Duddeck and Nipp [32]. Normalized thermal trends for the thermal conduc-

tivity, the heat capacity, and the coefficient of thermal expansion are 

shown in Figure 39-.a. It is worth noting that the thermal trend associ

ated with the coefficient of thermal expansion for rock salt is diffe-

rent from most of other rock materials as it remains almost constant for 

elevated temperatures. This may produce higher thermal expansion in 

rock salt when compared to other rock materials as temperature increas-

es. 

Creep data on rock salt associated with nuclear waste management 

problems has been recently presented by Langer et al [70], Nipp [88] and 

Pfeifle and Senseny [92]. A typical deformation-versus-time curve for 

rock salt s presented in Figure 39.b. The rate of deformation at ealier 

stages is high, but it decreases monotonically(transient creep) while 

the deformation continues at a constant rate(stationary creep). At ele-

vated temeratures, the rate of deformation is further accelerated as 

temperature increases. The creep compliance test data shown in Figure 40 

is fitted by a four parameter fluid model by applying the TSM postulate 

described in Chapter II. Coefficients of the creep compliance and the 

temperature shift function are obtained from a best-fit analytical curve 

for th~ experimentally available limited temperature range. The select-

ed thermorheological properties are 

J(~) = 0.1775xlo- 2 + 0.18xlo- 7 ~ 
- 0.1436x1Q- 2 EXP ( -0. 558xlO- 2 ~) (1/MPa) 

(5.5) 
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and 

X(T) = 1/ar = EXP(53.58 - 0.252T + 0.24lxl0-3r 2) 

(5.6) 

Figure 41 illustrates the temeperature shift fuction of rock salt for 

the temperature range 285°K to 375°K. 

-128-



I 
1-' 
N 
\0 
I 

1.5 

10 

.5 

0 

il) 'h1lla1 p1operties 

--k 
---- PC REF.32 
-·- Cl 

---- __ ....-.·--==-----........ -~----
---~ 

T(K) 
500 

b) Creep curves 

~.rc---------------------------------e-, 20 

15 

10 

5 

0 
0 

% t 
Mr-~~~---+--~--~ 

IS 

., 
5 

1-
0 

0 50 1110 t50 200 l50h 

REF. 32 

---- 3331< 

295~ 

1 2 3 4 
In t 

5 6h 

Figure 39: Nonn<tlized Thenn<tl Trends <Jnd Creep 'Rehavtor of Rock S<tlt (rPf. 32) 



7 

6 

5 -~ -experimental 
~. 

'b 
-----analytical 

-)( -
I 

, 
f-' 
w 
0 
I 

~-------------------Ina~------------~~~~ 
1 Ina, 

fs t/Ciy 

2 4 6 lnCt/Oy) 

Figure 40: Creep Complhnce of Rock Salt under TSH Postulate 



.. 
In 
0 

-lno.r 
-1 --- X(T) 

~ -2 

-3 

-4 

~ , , , 

, , 

I 
I 

I 
I , 

60 

' ' , '50 
' I. , , ' 

I 
I 

40 
' I 

I , 
I , 

I 30 I 
I 
I 
I 
I 
I 
I 20 

4000 

Figure 41: Temperature Shift Fuction of Rock Salt 

-131-



5.3.2 FBM MODEL AND IISULTS POR SALT-DOME MINING SITE 

The presented axisymmetric FEM model parameters .and the geological 

structure are selected from the study conducted by Nipp [88]. FEM model 

and boundary conditions shown in Figure 42 with 182 elements and 210 no

dal points are used by adopting quadrilateral isoparametric element. 

Although an explicit expression of the heat source/sink function can be 

treated in the presented formulation; a simple time-dependent tempera

ture is prescribed over the heat source due to the lack Q{ prope~ repre

sentation of this term. The initial temperature varies linearly from 

285~ at the surface to 315°K at the base (simulating the gP.nth9rmal 

gradient of 0.035 °K/m). The selected nominal ·values for different rock 

materials are listed in Tahle 5 and only the properties of rock salt are 

assumed to be temperature-dependent. Temperature profiles up to 260 

years simulation ti~e are Ahown in Figure 43 and the constant time step 

size, 4 years, is used with 38 seconds solution CPU time. It is shown 

that the maximum temperature 445°K is reached 54 yeatH later and further 

propagation of the thermal froul continues while the temperature of the 

heat source slowly decreases. The results also indicate relatively nar

row thermally-active zones around the heat source an.d slow thermal pro

pagation during the entire simulation. 
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I ...... 
w 
~ 
I 

Seam No. 
PropHttes Symbol Unit 

l 2 3* 4 

---------------------------------------------------~---------------------------

Thermal Conductivity k W/m°K 1. 6 1.5 6.06 1.6 
Mass Density and He~t 

Capacity PC MJ/m3•K 2.13 1.5 21.8 l.52 
Coeff. of Linear 

io5rK Thermal Expansion a 9.0 7.5 3.9 8.0 
102MPa Elastic Modul\.19 E 2.5 5.0 146.00* 50.0 

Poisson's Ratio Jl 0.3 0.3 0.25* 0.3 

* designates v1scoelastic material and associated material properties 
are instantaneous values. 

Table 5 

Se lee ted INoWil na l Values. for Material Properties 
in Salt-Dome Wa~te Oispc•sal Mode.I 
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Based upon the above temperature solutions, viscoelastic responses 

are obtained by adopting the thermorheological properties described in 

Section 5.3.1 for rock salt and constant elastic properties for the oth

er layers. The hydrostatic stresses varying along the distance from the 

surface are assumed to represent instantaneous elastic stresses and si-

mulate the gravitational loading with pg • 0.024 MN/m selected from 

Nipp [88]. Figure 44 illustr·ates the deformed mesh configurations at 

each of the selected transient steps. It reveals that the maximum 

upheaval is 0.992m (above the heat source) and deceases to 0.305m at the 

surface after 58.3 years of simulation time. This illustrates large de

formations due to the thermorheological behavior of rock salt and the 

thermal expansion in the active thermal zone. The' elast:l~ m~terial ncar 

the surface experiences less deformations. As the steady-state thermal 

trends at the lower temperature level are established, the deformation 

magnitudes are reduced leading to a stable structural configuration. 

Figure 45 shows typic~Al stre~Js redistributions along the maj()T axes at 

11.52, 58.3, 80.44 and 260 years elapsed time. Stress relaxtion with a 

relatively low stress build-up at earlier stages is noticed while a typ

i~~l transition frow high compressive streases to low stresses is appa

rent in .the region subjected to steep temperature variations. As the 

temperature front propagates (80.44 and 260 years), the stresses in the 

heat source region ar~ Tela~•~ and the high atreoo zone expands toward 

the outer region. The entire solution with 38 transient steps utilizes 1 

minute 20 seconds solution CPU time and the maximum stress build-up 

reaches a value 5.7% higher than the instantaneous stress level. It is 

observed that the presented rheological •odel for rock salt does not 
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produce a significant _stress build-up while the effects of thermal ex

pansion mainly account for the structural upheaval. 
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Chapter VI 

CONCLUSIONS AND IECOMKINDATIONS 

Finite element formulations and associated solution algorithm for 

continua thermoviscoelastic response evaluation have been developed in 

this dissertation. Formulations are based on one way coupled theory in 

which the effects on the stress field is considered but not vice versa. 

The time and temperature corresponden~e concept is utilized along with 

the thermorheologically simple material (TSM) assumption. Although.~he 

presented applications are focussed on rock mechanics problems, various 

other applications such as thermal stress analyses in structural mechan

ics can be made. 

Two types of energy equations, the transient heat conduction and con

vective-diffusion equations, are analyzed for the thermal response det

ermination. The transient heat conduction equation is formulated by us

ing the weighted residual approach with the two-point recurrence scheme 

in time. Linear time-dependent boundary temperature conditions are used 

for field applications. This condition simulates physical boundary 

temperature variations, and also minimizes numerical oscillations sub

jected to abrupt changes in the boundary temperature at the onset of the 

solution. Temperature-dependent thermal properties are incorporated in 

the transient analysis to account for the temperature-dependent material 

nonlinearity. This formulation provid~s a versatile application from the 

viewpoint that the temperature can be replaced by a relevant variable 
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such as pressure or moisture function or a combined temperature-moisture 
'· 

shift function can be utilized. 

The upwinding scheme is used for the FEM formulation of the convec-

tive-diffusion equation. The temperature solutions from several upwind

ing schemes and conventional Galerkin formulation are compared with the · 

exact solution for the quasi-static convection-dominant diffusion equa-

tion. Each upwinding scheme depends on the choice of weight function& 

and quadrature techniques. The wP.i.ght function& proposed by Heinrich 

(HU) yields the best result while the other techniqne8, streamline up-

wind (SUl,SU2), quadrature upwind (QU), and Galerkin formulation (G), 

suffer from the cross-wind diffusion and numerical oscillations in vary-

ing degrees for several cases of different flow directions. The pertuba-

tion of the upwinding parameters in HU, half and full upwindings, shows 

insignificant effects on the solution accuracy. This transport equation 

has various applications in areas such as flow through porous-permeable 

media (advective-diffusion equation), thermodynamic line drive models, 

and viscous boundary layer problems depending on the coefficients asso-

ciated with the convective/advective terms. 

BaHed on the determined temperature responses, the time and tempera-

ture correspondence concept (TSM postulate) is adopted for the thermo-

viscoelastic responses. The uniaxial creep compliance w~th the ~educed 

time scale and the temperature shift function represents the thermorheo-

logical behavior of viscoelastic. media along with the temperature histo-

ry. It is assumed that a large amount of creep occurs due to the devia-

toric stress while the volumetric behavior is elastic. This assumption 
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permits the use of a constant Poisson's ratio for creep strains and pro-

vides an easy access to currently available creep data at elevated temp-

eratures. The four parameter .fluid model (Burger's model) is selected 

and the creep compliance is expressed as a function of the reduced time. 

The creep strain rate expression is obtained by approximating the integ-

ral expression in summations and the recurrence relationship for the 

creep strain rate is expressed in terms of the creep strain rate at the 

previous time step. Use of the implicit time stepping scheme in the 

creep strain increment leads to a new matrix for the ~aterial constants 

composed of instantaneous elastic constants, reduced time increment, 

scheme control parameter, and rheological model constants·. This matrix, 

incorporated in the incremental expression of equilibrium equations, is 

evaluated at each time step unless the scheme control parameter is se-

lected to be zero. In order to reduce computing time, a variable time 

interval scheme is presented with the time step size selected by limit-

ing the effective creep strain increment as a fraction of the total ef-

fective strain. TWo cases representing a thermoviscoelastic ·thin-walled 

tube, with internal pressure or temperature effects, and a slab of infi-

nite extent are studied in detail to validate the formulation and to 

assess the effectiveness of the proposed solution algorithm. The re-

sults obtained by the presented FEM formulation are compared with other 

available numerical and analytical results. The presented FEM results 

compare well in each case and show better time discretization requiring 
. ,., . 

27 time cycles compared to 100 and 40 time cycles for the finite differ-

ence method [77] and Taylor's FEM formulation [111], respectively. Com-
. 

parisons with the analytical solution for a slab p;oblem show maximum 
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error of 4.5% based on the hypothetical temperature and thermorheologi

cal functions. 

The thermally-induced line crack problems are formulated by introduc

ing a degenerate quadratic isoparametric element (cf. Appendix B). The 

element shape functions incorporating the quarter point mid-Side nodes 

are further modified to maintain the correct strain singularity. The 

modified shape functions vary quadratically in both ~ and '1 direc-

tiona even for pertubation of the mid-aide nodeR Acro~s the the col

lapsed node.. The expression for the stress intenfil!ty factor is obtained 

by equating the coefficient of the r·112 term in the analytical and numer-

icsl expressions of displacements near the crack tip. This expression 

is generalized for mode I and II pla-ne strain or stress problems. Mode 

I and II cases for the thermoelastic line crack problems are examined 

~nd the results for the FEM formulation otrcsa intensity factors show 

less than 3% error for both cases when compared with the analytical va

lues. It is also noted that the singular effects near the crack tip are 

slightly better represented for the two-point (2x2) Gaussian integration 

rule than the three-point (3x3) rule. · 

Two field problems associated with the underground eoal eonversion 

(UCC) process have been illustrated by using the presented thermoviscoe

lastic and thermoelastic fracture formulations. The physical and mechan

ical properties of geological materials show large quantitative varia

tions with temperature. It is almost impossible to have a comprehensive 

set of material data required for a detailed UCC simulation. A set of 

normalized thermal trends for coal and rock mass have been qualitatively 
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estimated so that one set of nominal values can be chosen for a specific 

UCC site. The experimental data for the thermorheological properties of 

geological materi~l.s appear to be limited and are only available in 

. .. terms of the creep compliance. for the eastern bituminous coal and shale. 

These mater~als are found to approximate the thermorheologically simple 

material behavior. The rheological behavior of coal and rock are assumed 

to have the same thermal trends for bituminous coal and overburden shale 

and are calibrated .. for a specific UCC site based on the available exper

imental data. 

A UCC post-burn simulation for Hoe Creek II site has been presented 

with emphasis on the gasification chamber configuration and surface sub

sidence. Two-dimensional failure criteria described in Appendix A are 

incorporated to define the failed zones. The time-depe_ndent boundary 

temperature condition simulates the heating and cooling effects on the 

gasification chamber boundary. During 10 years simulation time, major 

shear failures occur in the upper chamber region indicating potential 

·roof collapse, and stress relaxations are also noticed in the viscoelas

tic layers as the thermal front propagates. A modest increase in the 

surface subsidence is obtained .for the Hoe Creek experiment with gravi

tational loading, roof collapse, and weak elastic materials at the sur-

face. The thermoelastic simulation with temperature dependent elastic 

constaQts reveals less surface subsidence and slow chamber growth rate 

than the thermoviscoelastic case. It is clearly noted that the time de

pendence of coal and overburden must be included to assess the effect of 

material softening for the long term simulation of UCC experiment. 
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To demonstrate a UCC fracture model simulation, an elliptic cavity 

model with a horizontal linking channel is selected. Temperature-depen

dent elastic material constants are used on the basis of the computed 

steady-state temperature solution. The prescribed overburden pressure is 

applied on the top surface to simulate the gravitational effect. The 

linking channel treated as a line crack is incorporated with degenerate 

quadratic singular elements at the end of the linking channel. Compari-

sons between two cases, i.e. with and without the internal pressure on 

the cavity and link channel, indicates that an optimum internal pressure 

ahould be provided to have a stable burn front co~figuratlon controlling 

the.roof collapse and the closure of.the linking channel. 

As a secondary application of the presented thermoviscoelastic FEM 

formulation, the post-repose phase of the nuclear waste management in a 

salt-dome mining site is selected. The .therwal trends for the physled 

and mechanical properties for rock salt appear to be different' from the 

ones selected for the UCC simulation models. In particular, the coeffi-

cient of thermal expansion remains almost constant for the temperature 

0 0 
range 280 K to 500 K. The 

creep data is represented 

thermorheological behavior based on uniaxial 

by a four parameter fluid ~odel wtth the TSM 

pos~ula~e. The temperature of the heat source (treated as boundary temp

erature) is prescribed as a function of time and space. The transient 

temperature solutions reveals relatively narrow thermally-active zones 

around the heat source and slow thermal propagation during 260 years of 

simulation. The thermally-active zone around the heat source experiences 

large deformations as the temperature increases. The computed stress 

results show a low stress build-up at ealier stages and a typical stress 
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relaxation in the region subjected to steep temperature variations. It 

is clearly noted that the presented thermorheological model for rock 

salt produces insignificant stress redistributions while the effect of 

the thermal expansion contributes significantly to the structural 

upheaval. 

Cqnsidering the effectiveness of the presented thermoviscoelastic FEM 

solution algorithm, the variable time interval scheme can allow a fairly 

large time step size with stable solutions requiring a reasonable amount 

of computing time for the UCC and in-situ waste disposal model simul

tions studied here. The presented approximation of the strain rate ex

pression is general and can be used for different mechanical models by 

establishing.recurrence relationships with appropriate creep functions. 

In particular, the incremental procedure with the implicit time stepping 

scheme is effectively ad~pted for the field appications minimizing com

putational efforts and computing time. 

In order to improve the numerical simulations for the UCC process and 

in-situ nuclear waste disposal, the following recommendations are sug

gested for furture research: 

a) Development of a thermovisco-elsto-plastic model with large defor

mation. 

b) Coupling of in-situ fluid flow and the chemical/radioactive reac

tion kinetics for the thermally-active zone by heat source/sink 

terms. 

c) Consideration of viscoelastic crack propagation with convective 

creep flow for the fracture model. 

d) Effe~te of anisotropy/heterogenity of geological materials. 
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e) Development of.formulation for predicting hygrothermal responses, 

i.e. formulation of the mJisture shift function by analogy of the 
. . 

time' and temperature shift. 

f) Use of the moving boundary FEM formulation for defining the pro-

gressive ehamber configuration. 

g) Establishment of site specific and accurate data for the thermo-

physical and thermo-mechanical properties for .in-situ model simu-

lations. 
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Appendix A 

FAILURE C&IT!&IA AID THERMOELASTIC LINE CaACK PROBLEMS 

The significance of intense and localized concentration of stress 

along sharp notches was first emphasized by Inglis [58]. Further devel-

opment of fracture mechanics theory were initiated by Griffith and Irwin 

[43,60,61] who found that the characteristics for initiation and propa-

gation of brittle cracks could be expressed as a function of the stress, 

flaw size, geometry,,etc. This also made it possible that the stress in~ 

tensity factor, which represents the singularity of the stress field 

near the crack tip, can provide a useful index for investigations of the 

brittle fracture strength. Here, the failure criteria based on the prin-

cipal stresses are presented along with a brief review of two-dimension-

al thermoelastic line crack problems and stress intensity factor expres-

sions. 

A.l PAILUU CI.ITB&IA 

The following two-dimensional failure theories ~re adopted and incor-

porated within the framework of the thermomechanical response models: 

a) The compressive failure criterion, defined by McClintock and Walsh 

[79]. is 

(A.l) 
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whe~e ~l, ._ is . t~e m~jor principal stress, is the minor 

principal stress, Sc(T) is the uniaxial compressive strength, 

and ~ is the internal friction coefficient. 

3o1 + o3 > 0 ., tensile failure 

occurs when 

(A. 2) 

and 
... 

0 shear failure occurs for JQ1 + as ( when 
~ . . 

'·. 

8 St(T) 1: - ( 01 - ol) 2 I ( 03 + o1) 
(A. 3) 

where St(T) is the uniaxial tensile strength and temperature-

dependent strength of materials can be incorporated for thermome-

chanica! analyses. 

- . 
A.2 THERMOELASTIC LlNE CRACK PROBLEMS 

The first rational approach to linear elastic fracture mechan-

ies(LEFM) was established by Griffith [43]. The basic concept is to 
.( .... 

evaluate the decrease of elastic energy associated with a specified 

crack length. Reasoning th.tlt thh tamount of ene1"&Y mu1t b.t equal to the 

energy required to form new crack surfaces at the point of fracture ini-
.· . .. . 
tiation, the critical stress for the crack length 2a is given by 

G • (2EY I 111) 1/ 2 
c ., 

; . . . . . ·, (A.4) 
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where E'is the Young's modulus arid · y is the specific surface energy 

of the,material. 

Introducing a material parameter J the fracture toughness/the 

critical value of stress intensity factor, 

(A.S) 

the magnitude of the stress field around the crack tip is measured by 

the stress intensity factors, KJ,IJ,III , when the load or crack size 

is kept below the point of unstable crack extension [43,65,109]. It is 

also noted that the singular effects and· prediction of the stress field 

around the crack tip can deviate from the response of real materials, in 

that plastic deformations occur right at the crack tip and the crack tip 

stresses are finite instead of infinite. However, when the plastic zone 

is small compared to the crack length and uncracked dimensions, the 

stress intensity factors serve to characterize the crack tip stress 

field. 

For thermoelastic crack problems, it is known that when a temperature 

field is disturbed by the presence of cracks or flaws, the resulting 

high elevation of thermal stresses can cause crack propagation. Sih 

[100] has shown that, for a steady-state temperat~re distribution, the 

crack tip stresses are identical to those for the isothermal problems 

involving mechanical responses. Lee [73] and Wang [123] have analyzed 

the line and elliptic crack problems with constant temperature and heat 

flux on the crack surface, These analyses are based.upon the conformal 
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mapping method combined with the complex variable technique developed by 

Muskhelishvili [86] for steady-state thermoelasticity. 'lbe general 

procedure of the above analysis and the results of two specific problems 

are only presented here. 

An infinite plate containing a single line crack of length 2a is con-

sidered a homogeneous, isotropic and elastic medium. The thermomechani-

cal properties are assumed to .be independent of temperature. With the 

complex vari~l>le formul;:~ti.oo of tompcraturl!!: field, the analytical solu-

tton procedure is as follows; 

a) The conformal mapping technique is applied to map the line crack into 

the unit circle using the mapping function 

Z a W(t) = a(t + 1/t)/2 (A.6) 

where Z represents the real plane and t designates the mapped 

plane. 

b) The thermal dislocation term due to the slit, which permits free de-

formation under the temperature distribution, i$ expressed hy 

2 
U* + iY* • a ! W( z) dz 

(A.7) 

where u* and y• ate the x and y components of the relative dis-

placement respectively, a is the coefficient of thermal expansion 

and W(z) is the analytic function for the thermal dislocation. 

c) The stress and displacement fieids are expressed in terms of the Ko-

losov functions and the thermal dislocation terms are added to the 

displacement term for the isothermal case. 
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d) The coefficients of the Kolosov functions are determined by applying 

boundary conditions such as a stress-free · crack surface and the con-

ditions of the single-valuedness of displacement. 

e) The stress field near the crack tip is evaluated in terms of the Ko-

losov functions and stress intensity factors are represented ·by the 

real and imaginary part of the complex quantity. 

(A. 8) 

where ~'(t) is the derivative of the complex Kolosov function with 

respect to t 

The details of the above procedure can be found in Wang [123] and two 
·, 

specific problems for Mode I and II cases are given with the boundary 

conditions as shown in Figure A.l. Analytic expressions of stress inten-

sity factors under the plane strain condition are expressed as follows; 

Mode I; 

- { 1 + v) 1 2 K I = - In ( 1 _ v) a G T0 a I 

(A.9) 

Mode II: 

(A.lO) 
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I 

and for the plane stress condition 

v/Cl- v). 

a) MODE I 

' 

b) MOOED 

( 

f T=To 

~ 

f ~~=C - r:f?) ... 
-J X. 

~0-, 

v is replaced by 

·t=o 

t=O 

Figure A.l: Thermoelastic Line Crack Problems and Boundary 
Conditions 
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Appendix B 

FORMULATION OF FRACTURE MECHANICS 

It has been known that there exists a singularity in the stress field 

associated with the crack tip and that the strains and stresses along 

any radial line in the vicinity of crack are proportional to r- 1/ 2 for 

an isotropic medium. Thus, the convergence of the finite element solu

tion is no longer ensured in the vicinity of crack tip due to this 

strain singularity. For the standard constant·strain element, the con

vergence of the solution is no longer valid since by definition, the 

strain within each element is constant and as such can not adequately 

represent the true strain which approaches infinity near the tip. The 

treatment of the strain singularity in the finite element method entails 

use of special elements which embed the singularity for the crack tip 

region [66,115] or use of the conventional isoparametric element modi

fied for the crack tip singularity [5,18,12,49]. 

Here, the singularity at the crack tip in a homogeneous, isotropic 

elastic medium is incorporatP.d by suitably di~torting the conventional 

isoparametric element. The displacement method is presented to compute 

the stress intensity factors in the LEFM problems associated with ther

mal loads. 
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1.1 ISOPAIAMBTI.IC DIQBHBIATE SDlGULAll BLBMBNT 

Bib bit [51], Barsoum [ 12] and Henshell and Shaw [ 49] have indicated 

that the standard quadratic isoparametric element can be used success

fully by shifting the mid-aide node to a quarter point toward the crack 

tip. It has been observed that-these elements behave even better when 

one side of the quadratic quadrUaterals are collapsed to form degenu-

ate triangles. However, the deeenerate triangles often lead tn unstable 

results if the mid-side node across the tip is not located precisely on 

a straight line, because an incorrect strain singularity is obtained due 

to pertubation of mid-side nodes. For this investigation, Akay [5] in-

troduced the f~llowing modification on the shApe functions to prevent 

the indeterminate slope situation at the collapsed corner. 

A typical eight-noded isoparametric parent element is shown in Figure 

B l.a for which the shape functions in curvilinear coordinate& are given 

by [ IJO]: 

1 
Ni = ~ (1 + tal Cl + TO) (to+ 'b- 1) for corner nodes 

Ni = } Cl + t 2
> U + 'b) for t1 = 0 

Ni • } (l - Tl
2

) (l + ~) for "'1 = 0 

(B. I) 

where 

'a • t t1 J 'b ~ Tl T'lf 

(B. 2) 
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A collapsed triangular element is obtained by superimposing the nodes 1, 

4 and 8 of the parent square element as shown in Figure B~l.b• Since 

the shape function varies linearly for constant Tl and quadratically 

in the other direction, a nonpolynomial surface with. indeterminate 

slopes is formed at the collapsed node as illustrated in Figure B.l.~. 

For obtaining correct responses from the trianglar element, the above 

shape functions are modified so that they also vary quadratically in the 

~ direction. This is accomplished by modifying N6 to yield 

N'* = 6 (B.3) 

with Nz and NJ are subsequently modified by replacing 

'* N6 • Therefore, the quadratic isoparametric quadrilateral degenerates 

successfully into a quadratic triangular by assigning the same coordi-

nate for the node~at the collapsed corner and modifying the related 

mid-side node as suggested above. 
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Figure B.l: Quadratic Isoparametric and Degenerate Singular 
Element 
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B. 2 CCICPUTATION OF STUSS INTENSITY PACTOJlS 

The four most common techniques for obtaining stress intensity factor 

values are 1) displcement method, ii) stress m~athod, iii) energy release 

method, and iv) J integral method [65]. 

For the purpose of minimizing computational errors, the displacement 

method is ~idely adopted in finite element methods. When the mid-side 

nodes of the collapsed triangle are moved to the quarter point to~ard 

the collapsed node, the variation of the displacement in the radial di-

rection is of the form [49] 

U; = Ai + B; r 1/ 2 + C; r (B.4) 

where A;, B; and C; are constants. Subsequently, the strain com-

ponents vary as 

(B.S) 

Since it is precisely the r 1/ 2 term in eqn.(B.4) which contributes to 

the r- 1/ 2 strain singularity in eqn.(B.S), a consistent way of obtain-

ing expressions for stress intensity factors in sufficiently small crack 

lj 2 
tip elements is to equate the coefficient of the r term in the ana-

lytical and numerical displacement expraasion near the tip. The 

displcement variation along the erack surface of crack tip element takes 

the form 

(B.6) 
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where Ui are· nodal displacements on the crack surface and L is the 

surface length of the crack element. For the crack opening mode, the 

coefficient of the r 112 term in the analytical expression is given by 

[ 114] 

Bi -= Kz. (K* + 1)/(G ~) 
(B.7) 

where K* c (3 - v)/( 1 + v) for the f'lane stress condition, 

K* c 3 - 4 v 

is invariant. 

for the plane strain condition and the shear modulus G 

Equating the coefficient in eqn.(B.6) to the corresponding value in 

eqn.(B.7), the expression for the stress intensity factors is [4) 

(B.8) 

where U; are the nodal displacements on the crack iurface with normal 

and horizontal displA~P.ments designated tor the mn~e I and mod~ ll cas-

eo. r~spwctively. The finite eiement formulation described in Section 

3.2 is adopted for the thermally-loaded crack problems. For problems 

subjected to the surface traction or the hP.8t flux prescribed on the 

crack surface, the equivalent nodal forces for the crack tip element are 

computed from the surface integration. Table B.l lists equivalent nodal 

forces for the quadratic isoparametric and crack tip singular elements. 
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I 

CRACK TIP 

fi: DISTRIBUTED LOADS 

......... ____ ... 

QUADRATIC ISOPAitAM!TitlC 

ELEMENT 

CRACK TIP SINGULAR 

ELEMENT 

Figure B.2: Crack Tip Singular Element and Distributed load 
on Crack Surface 
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Equivalent Nodal Force: f~ L(af1 + bf2 + cf3 ~/2 

EqulY&lent llodal 
Force 

Quadratic isoparametric 
element 

'Crack tip singular 
element 

feoq , 
ff!'Q 

2 

Coefficient 

a b 

4/15 2/15 

2/'15 16/15 

-1/15 2/15 

7/15 4/15 

-1/15 16/15 

c 

-1115 

2/15 

4/15 

-1/15 

1/15 

----~-----------------------------------
-1/1.5 0 1/15 

Ta)le B.l 

· Equivalent No:fal Forc:e Computation for Quadr;~tic I.;oparametric 
and Degene;~rte Singular Elements 



Appendix C 

DITAILID BXPUSS IONS OP ELBMENT MATR.ICIS 

Tbe matrix and vector notations adopted in Chapter III are presented 

here• The stress, strain, and displacement vectors for the plane stress 

and strain conditions are defined by 

(c. 1) 

(C.2) 

(C.3) 

where U; and V; denote nodal displacement in the x and y direc-

tions, respectively. For axisymmetric problems, 

(C.4) 

(C.5) 

Based upon the above eonventlonal order of stress and $train vectors, 

the associated matrices and element equations are as follows; 

a) Matrix of material constant ( o • De t,. t c C c- 1o > c 0 
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Plane stress condition: 

E De.= .............. ....;;;_~ (1 - v) [ 

. 1 

symmetric 

\1 

1 

D_l_ [ 1 
0 

- symmetric 

-\1 

1 ~ r 
2(1 + "~ \1 = 1/2 

(C.6) 

Plane strain condition: 

[ symm~tric V/( 1 
v) 0 J 

De E(l - v) 1 . 0 
= (1 + v) (1 - 2 v) {1-2 \1) /2 ( 1- \1) 

[(I + vH I - v) .. v (1 + v) 0 

v)l 
D _l - (1 + vH 1 - v) 0 

0 - symmetric 2(1 + \1 = 1/2 

(C. 7) 

Axisymmetric problem: 

[ 
1 Y/(1-v) vf(l- v) 0 l 

De E(l - v) 1 V/(1-V) 0 
= (1 + v) (1 - 2 vJ symmetric 1 0 

(1-2")/2(1-v} 

[:ymmetric 

-v -v 0 

v) l D _l- 1 -v 0 
0 - 1 0 

2(1 + \1 = 1/2 

. (c. 8) 
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~) Thermal strains ( £1) 

Plane stress condition: 

(C.9) 

For plane strain condition, a is replaced by (1 + v) a • 

Axisymmetric problem: 

(c. 10) 

c) Differential operator 

Plane stress and strain conditions: 

r 0 Nj ,y] T 
B = l~X 

N· N;,x , ,y 
(c. 11) 

Axisymmetric problem: 

[ 0 
N;,r N;/r 

N· ] 
T 

Be 1 ,Z 

N;,z 0 0 N;,r 

(c. 12) 
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Appendix D 

COMPUTER CODE TKPC 

A concise description of the developed finite element code TMFC is 

presented. The code is aimed tor both .research and field applications 

and has been calibrated against various examples. Although the code TMFC 

is presently for .two-dimensional plane and axisymmetric geometries asso

ciated with the uncoupled thermoelastic, thermovisc~elastic, and frac

ture analyses, it provides a basis for further possible developments so 

that plasticity, large deformation, and crack propagation with creeping 

flow can be adopted in the UCC and in-situ waste disposal simulations. 

The code TMFC consists of three main processors; namely, pre-proces

sor, main-processor, and post-processor •. The working in-core space for 

each prucessor is ·dynamically allocated and the execution of a modular

ized function is performed by macro instruction. The capabilities of 

each processor are briefly summarized below. 

1. Pre-processor 

a) Generation of nodal pulnts, element connectivity, boundary const

raint codes, and material numbers. 

b) Graphical presentation of the generated information. 

2. Main-processor 

a) Thermal responses: 

-180-



1) Steady-state or transient heat conduction equation with two-

point recurrence scheme. 

2) Heat source/sink term. 

3) Upwinding scheme for the convective diffusion equation. 

4) Temperature-dependent thermal coefficients. 

5) Time-dependent bounadry temperature condition. 

6) Constant or variable reference temperature. 

· b) Thermoelastic responses: 

1) Temperature-dependent elastic constants. 

2) Two-dimensional failure criteria. 

c) Fracture responses: 

1) Crack tip singular element with quadratic isoparametric ele-

ment. 

2) Computation of stress intensity factors by use of the displace

ment method. 

d) Thermoviscoelastic responses: 

1).Thermorheologically simple material postulate with the general-

ized creep and temperature shift functions. 

2) Incremental solution algorithm with the strain rate expression. 

3) Automatic time step size selection. 

4) Linear interpolation of the retrieved temperature solutions at 

each time step. 

5) Incorporation of element failure. 

3. Post-processor 

a) Sorting of output data for thermal and mechanical responses. 
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b) Graphical presentation of.results such as temperature, displace-

ment, stress, and subsidence. 

In order to handle large capacity fi~ld problems, the required infor

mation is retrieved or saved by usin8 external Ules whi,l e the in-core 

space is mainly used for the computational procedure. In addition, a 

long-term analysis requires a careful preparation of model and control 

parameters associated With computer resource capacity. 
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