ANNUAL REPORT
RECEIVED BY DTIE JAN 21, 1969

THERMODYNAMIC STUDIES ON HEAVY ELEMENTS AND STUDIES IN NUCLEAR CHEMISTRY

for the period
February 1968 to January 1969

A.E.C. Contract AT (11-1)-1716

Department of Chemistry
Purdue University
Lafayette, Indiana

January 1969
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Thermodynamic Studies on Heavy Elements and
Studies in Nuclear Chemistry

Annual Report
COO-1716-6
AEC Contract AT(ll-l)-1716
January 1, 1969

Edited by
J. W. Cobble

for the
U. S. Atomic Energy Commission

Department of Chemistry
Purdue University
Lafayette, Indiana

LEGAL NOTICE

This report was prepared as an account of Government-sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor, is the agent that such employee or contractor of the Commission, or employee of such contractor, is acting, or providing access to, any information included in his employment or contract with the Commission, or his employment with such contractor.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. Research Activities</td>
<td>2</td>
</tr>
<tr>
<td>A. Nuclear Chemistry Research</td>
<td>2</td>
</tr>
<tr>
<td>1. Ternary Fission of 238U Induced by He$^+$ Ions</td>
<td>2</td>
</tr>
<tr>
<td>2. Ternary Fission of 238U Induced by He3 Ions</td>
<td>2</td>
</tr>
<tr>
<td>3. Angular Distribution of Mg24 from the Ternary Fission of 238U with He$^+$ Ions</td>
<td>3</td>
</tr>
<tr>
<td>4. The Ternary Fission of Th232 with 40 MeV He$^+$ Ions</td>
<td>3</td>
</tr>
<tr>
<td>5. Ternary Fission in Au197 and Bi209</td>
<td>7</td>
</tr>
<tr>
<td>6. Search for Ternary Fission Products in the Spontaneous Fission of Cf252</td>
<td>8</td>
</tr>
<tr>
<td>7. The Fission of Iridium at Intermediate Excitation Energies</td>
<td>9</td>
</tr>
<tr>
<td>8. A Comparison of Reactions Induced by Medium-Energy He3 and He$^+$ Ions in Heavy Target Nuclei</td>
<td>9</td>
</tr>
<tr>
<td>B. Chemical Thermodynamics</td>
<td>10</td>
</tr>
<tr>
<td>1. Thermochemical Studies on Heavy Element and Rare Earth Chlorides</td>
<td>10</td>
</tr>
<tr>
<td>III. Personnel</td>
<td>12</td>
</tr>
<tr>
<td>IV. Publications and Talks</td>
<td>13</td>
</tr>
</tbody>
</table>
I. Introduction

This report contains summaries and information on the research activities carried out under contract AT(ll-1)-1716 from January 1, 1968 to December 31, 1968. During this period two Ph.D. theses were completed. Some of the work reported is of a preliminary nature and should not be referred to without permission of the Project Director.
II. Research Activities

A. Nuclear Chemistry Research

1. **Ternary Fission of U238 Induced by He6 Ions (Iyer).**

 This research has been completed and published in Phys. Rev., 172, 1186 (1968).

2. **Ternary Fission of U238 Induced by He3 Ions (MacMurdo).**

 This research has been completed and submitted for publication in the Physical Review. The abstract of the paper is as follows:

 Cross section data for 33 nuclides have been obtained radiochemically and used to construct a mass-yield curve for the fission of U238 induced by 31 MeV He3 ions. The mass range studied was $24 \leq A \leq 212$ and the yields varied over seven orders of magnitude. The data for Na23, Mg28, Si31, S38, Ca47, Au199, Pb209 and Pb212 confirm the existence of ternary fission in compound nuclear processes at intermediate energies as previously reported from these laboratories. These data also establish the transition region between ternary and highly asymmetric binary processes at A_{crit}. Recoil range data indicate some small but significant differences between He3 and He6 induced ternary fission. With the assumption that there is a peak in the ternary mass-yield curve at $A_{\text{peak}} = 24$, the total ternary fission cross section for 31 MeV He3 ions on U238 is $\sim 3.3 \times 10^{-10}$ cm2 and the $\sigma_{\text{ternary}}/\sigma_{\text{binary}}$ is $\sim 4.4 \times 10^{-6}$.
3. **Angular Distribution of Mg28 from the Ternary Fission of U238 with He$^+$ Ions (Iyer).**

Some preliminary studies have been carried out to obtain information on the angular distribution of a ternary fission product, Mg28, from U238 irradiated with He$^+$ ions. Because of the very low cross section for the production of Mg28, a stacked foil arrangement was used where the plane of the foils could be adjusted to any angle between 0°-90° with respect to the He$^+$ beam. This procedure had been used previously by Sugarman's group to study the anisotropy of binary fission fragments with respect to beam angle. A summary of some of the data taken at two angles, 16° and 90° with thin (0.25) uranium foils (~12 mg/cm2) is given in Table 1. Up and Dw (down) refers to the Mg28 activity in arbitrary units observed in the forward and backing catcher foils, respectively. The average range in the 16° experiments is less than in the 90° experiments, suggesting strong correlation with the forward-backward direction of the cyclotron beam. However, these preliminary data need rechecking and under conditions of better angular resolution.

4. **The Ternary Fission of Th232 with 40 MeV He$^+$ Ions. (Roginski)**

Following the discovery of ternary fission of U238 by intermediate energy helium ions, a study of the effect of varying the fissionability (Z^2/A) was undertaken. A few preliminary experiments using U235 and Th232 with He$^+$ and He$^+$ showed that small changes of the binary fissionability parameter do not greatly affect ternary fission cross sections.
<table>
<thead>
<tr>
<th>θ</th>
<th>Yields</th>
<th>W (mg/cm²)</th>
<th>Up/Dw</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>16°</td>
<td>107</td>
<td>51</td>
<td>341</td>
<td>22.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14 ± 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Low Counting Rate</td>
</tr>
<tr>
<td>16°</td>
<td>315</td>
<td>347</td>
<td>1350</td>
<td>12.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.8 ± 0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Satisfactory</td>
</tr>
<tr>
<td>16°</td>
<td>81.5</td>
<td>75.0</td>
<td>396</td>
<td>13.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.4 ± 0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Better</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>θ</th>
<th>B</th>
<th>F</th>
<th>U</th>
<th>W</th>
<th>F/B</th>
<th>2W(F+B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90°</td>
<td>22.3</td>
<td>1.22</td>
<td>12.0 ± 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90°</td>
<td>185</td>
<td>238</td>
<td>664</td>
<td>13.2</td>
<td>1.29</td>
<td>10.3 ± 1</td>
</tr>
</tbody>
</table>

\[
2P^* = \frac{Up + Dw}{Up + Dw + U}
\]
A complete study of the mass yield curve in the ternary region of Th232 with He6 was then made. The ternary fission products separated were Na24, Mg28, Si31, P32, P33, S38, K42, K53, and Ca67. Cross sections range from almost 0.2 microbarns (200 nanobarns) in the case of Na24 down to an upper limit of about 10-3 microbarns (1 nanobarn) for Ca67. The light binary fission products Mn57 and Ni66 were also studied and both have cross sections in the microbarn range. An upper limit of about 1 nanobarn for the production of Au198 was determined. This isotope is important as it would be produced as a heavy component if a highly asymmetric binary fission had produced the isotopes attributed to ternary fission. Such a low limit of binary fission components indicates that the light isotopes listed above were not formed in any highly asymmetric binary fission. The amount of each isotope formed from impurities in the thorium was proven to be low in most cases. The data are summarized in Figure 1.

Phosphorus and potassium impurities prevent the determination of P32, P33, K42, and K53 using He6 on Th232 because of the (α,2pxn) reactions. Since P32 and K42 are important independent isotopes, a study of the partial mass yield curve of Th232 with protons has been started in order to reduce purity problems. These independent yield isotopes are of considerable importance in determining a possible mechanism for ternary fission.

The total binary fission cross section of Th232 is approximately 1 barn and the isotopes studied range in cross sections from 2×10^{-7} barns.
Figure 1

Mass-Yield Curve for the Fission of Th232 with 40 MeV He4 Ions.
to 10^{-9} barns. There is, therefore, a considerable problem of separating a massive amount of interfering binary fission products from the low yield ternary products. Procedures for separating these isotopes have been developed. These isotopes were then studied using low level counters (approx. 0.3 cpm background) followed by graphic and computer resolution of decay curves.

5. **Ternary Fission in Au197 and Bi209 (Uhl)**

In an attempt to advance present knowledge concerning ternary fission, plans have been made to compare Mg28 cross sections for as wide a range of nuclear mass and charge as is possible. Initially it will be assumed that the total ternary cross section for each nucleus can be approximated by the yields of Mg28. Alpha particles which correspond to 32.5 MeV excitation for each compound nucleus are being used. Gold and plutonium will constitute the total spread of mass and charge and bismuth will compliment the work already performed on uranium and thorium.

The bismuth work performed to date has confirmed the existence of ternary fission at 32.5 MeV. Cross sections have been obtained for Sr89 and Ni66 to compare with known binary fission data. Upper limits have been set on Ca47 and B38 by computer analyzed decay curves. Unfortunately to date, the data obtained on Mg28 has not been very reproducible and further experiments must yet be performed. A crude excitation function for Mg28 is being carried out at these low energies to further prove Mg28 is truly from ternary fission and not due to spallation reactions with target impurities.
Because of the large spallation impurity correction in gold and also the extremely low ternary cross section expected, excitation functions have been obtained for gold at three different energies between 24 and 40 MeV. These data were then compared to the known $^{27}\text{Al}(\alpha,3p)^{28}\text{Mg}$ and $^{28}\text{Mg}(\alpha,2p)^{28}\text{Mg}$ excitation functions to see if the ^{28}Mg obtained was bona fide ternary fission. The data found thus far has been inconclusive and it appears that the excitation function will have to be conducted at higher energies (i.e. 50 to 80 MeV).

Muga at Florida State University using solid-state detectors and a ^{252}Cf source has reported observing ternary fission products with a ratio of total ternary cross section to total binary greater than 2.2×10^{-6}. It was thought desirable to compare this instrumental method with radiochemical detection techniques. The irradiation was performed by Dr. Grant Raisbeck at Princeton University using a californium source of approximately 10^8 fissions per minute.

A thin mylar film was placed between the source and two one mil silver foils of 99.999% purity. The blank was used to correct for catcher impurities produced by the californium neutron flux. Both foils were irradiated on the ^{251}Cf source for 106 hours. They were then dissolved with proper carriers and magnesium and strontium were extracted. The ^{89}Sr was used as a monitor for binary fission. Both products were obtained in high chemical yield from both foils, and were mounted and counted in low level background counters. The amount of ^{89}Sr activity in the blank
was negligible. The blank Mg28 sample was found to contain more activity than the catcher foil but neither decayed with the proper half-life and the activity was attributed to extraneous impurities.

Using the activity of Sr89 from the catcher foil and the fission yield of mass 89 as 3.2×10^{-1} percent, the total number of binary fissions was obtained. The maximum amount of Mg28 possible was assumed to be twice the background of the detectors. The cross section for Mg28 to the total binary cross section was found to be $\leq 5.6 \times 10^{-7}$.

Assuming the Mg28 represents only 10% of the total ternary cross section, then σ_T/σ_3 is $\leq 5.6 \times 10^{-6}$.

While this value is not in conflict with Muga's results, it, in fact, does not result in any additional positive evidence for the tri-partition of the Cf252 nucleus. It is possible, of course, to set lower limits than these if a stronger Cf252 source becomes available.

7. **The Fission of Iridium at Intermediate Excitation Energies (Brodzinski)**

This research has been completed and published in Phys. Rev., 172, 119b (1968).

8. **A Comparison of Reactions Induced by Medium-Energy He3 and He4 Ions in Heavy Target Nuclei (Scott and Daly).**

This research has been completed and published in Nucl. Phys., A119, 131 (1968).
B. Chemical Thermodynamics

1. Thermochemical Studies on Heavy Element and Rare Earth Chlorides (Hinchey).

Further measurements of solubility, heats of solution and heat capacity have been made which permit calculation of the partial molal ionic entropies of Ce$^{3+}$, Pr$^{3+}$, Eu$^{3+}$, Yb$^{3+}$, and Lu$^{3+}$.

It has been shown previously in these laboratories that the ratio of the lattice entropy of hydrated rare earth chlorides to the heat capacity at 298°K is constant with a deviation of only about 1% throughout the series of rare earth salts of the type MCl$_3$·nH$_2$O. (The lattice entropy is the net entropy obtained by subtracting the electronic entropy contribution from the observed crystal entropy at 298°K).

It seemed reasonable to expect that the same ratio between lattice entropy and heat capacity would be found for the isostructural actinide salt PuCl$_3$·6H$_2$O, and hence that a measurement of the heat capacity of this salt at 298°K would afford a reliable entropy value for the salt at the same temperature. To this end a very small, thermistor monitored, heat capacity calorimeter was constructed from brass and adapted to substitute for the microcalorimeter vessel in its submarine. For reasonably accurate measurements an estimated 15-20 gms of PuCl$_3$·6H$_2$O was required. A solution of the salt was prepared by dissolving approximately 10 grams of the metal in 3N hydrochloric acid. Following a procedure used before in these laboratories for the preparation of milligram quantities of the same salt, the solution was evaporated under a reducing atmosphere of hydrogen. This preparation, however, was altogether unsuccessful.
owing, probably, to the relatively long period of time required to evaporate the solution. During the long evaporation extensive radiolysis of the solution resulted in extensive oxidation of the plutonium.
III. Personnel

Dr. James W. Cobble, Project Director
Dr. Richard Hagenauer, Research Assistant
Dr. Richard Hinchey, Research Assistant
Dr. Harihara Iyer, Research Assistant (Resigned 7-31-68)
Edward Schmidlin, Electronics Engineer*

Graduate Research Assistants **
R. L. Brodzinski (Resigned 12-20-67)
T. J. Grant
K. W. MacMurdo (Resigned 10-10-68)
T. C. Roginski
D. L. Uhl

Bert Long, Technician*
Mrs. Dorothy Pershing, Secretary*

*Part-time
**Half-time or greater
IV. Publications and Talks

Publications

Talks by the Staff

