PERFORMANCE TESTS OF SNAP 10A THERMOELECTRIC ELEMENTS

PDF Version Also Available for Download.

Description

Apparatus for the performanee testing of SNAP 10A thermoelectric elements was designed, constructed, and is now in operation. Elements may be tested for any desired length of tfme up to 1400 deg F and in a vacuum of 1 x 10/ sup -5/ of Hg. The equipment used for these tcsts may also be utilized for measuring Seebeck coefficient and resistance as a function of temperature. Element performance is derived from the data on voltages and temperatures. The performance variables which are reported in graphic form are as follows: loaded output voltage at any desired DELTA T; open circuit output … continued below

Creation Information

Bergdorf, C.G. August 30, 1961.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 19 times. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Apparatus for the performanee testing of SNAP 10A thermoelectric elements was designed, constructed, and is now in operation. Elements may be tested for any desired length of tfme up to 1400 deg F and in a vacuum of 1 x 10/ sup -5/ of Hg. The equipment used for these tcsts may also be utilized for measuring Seebeck coefficient and resistance as a function of temperature. Element performance is derived from the data on voltages and temperatures. The performance variables which are reported in graphic form are as follows: loaded output voltage at any desired DELTA T; open circuit output voltage at any desired DELTA T; power output under optimum load conditions; current produced under matched load conditions; and internal resistance of the element. (auth)

Source

  • Other Information: Orig. Receipt Date: 31-DEC-62

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 30, 1961

Added to The UNT Digital Library

  • Jan. 22, 2018, 7:23 a.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 19

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Bergdorf, C.G. PERFORMANCE TESTS OF SNAP 10A THERMOELECTRIC ELEMENTS, report, August 30, 1961; United States. (https://digital.library.unt.edu/ark:/67531/metadc1060042/: accessed March 26, 2023), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen