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THE MODERATION OF NEUTRONS IN
NON-MULTIPLYING INFINITE HOMOGENEOUS MEDIA

by

Kwang~-Shik Min

CHAPTER I
THE NATURE OF THE PROBLEM

I-1. Introduction

The interaction of neutrons with a moderating medium is of great
interest, not only for its practical importance as the underlying mecha-
nism inthe operation of nuclear reactors, but also as a purely scientific
question concerning the dynamics of interacting systems of atomic and
nuclear particles. The nature of the problem has been clarified greatly by
the work of many authors during the last two decades, but its complexity
is such that it can be studied only through the consideration of simplified
models. Such models are necessarily much simplified in detail, and are
apt to be misleading in important respects. For this reason, many points
in the theory still await complete clarification.

Most of the early studies of neutron moderation dealt with the ap-
proximation known as slowing down theory. In this approach the nuclei of
the moderator are considered to be free particles which are at rest before
collision with the neutrons. Fermi and his co].latborators,l Wick,2
Pla.czek,3 Marshak,4 and many other authors have contributed to the devel-
opment of the theory. The moderation of neutron energy over the higher
part of the energy range is explained effectively by this model. However,
in the range below a few electron volts it fails, since here the nuclei of the
moderator no longer can be treated as being initially at rest. In the late
1940's, the theory underwent further refinement, stimulated by the addi-
tional experimental data of Sturm,5 Zinn,6 and others, in the low-energy
region.

lE, Fermi, Ricerca Scientifica VII-2, 13 (1936); English Translation:
U.S. AEC Report NP-2385 (1951)‘,

E. Amaldi, O, D'Agostino, E. Fermi et al., Proc. Roy. Soc. (London)
Al149, 522 (1935).
2G. C. Wick, Phys. Rev. 75, 738 (1949).
3G. Placzek, Phys. Rev. 69, 423 (1946).
4R. E. Marshak, Revs. Mod. Phys., 19, 3, 185 (1947),
5W. H. Sturm, Phys. Rev., 71, 757 (1947).
éW. J. Zinn, Phys. Rev., 71, 752 (1947).




The following phenomena lead to complications in the scattering
process in the low-energy region:

(a) thermal motions of the moderator atoms;

(b) the binding of the moderator atoms in the lattice, with the ap-
g P
pearance of quantized vibrational and rotational states; and

(c) interference effects arising from the wave nature of the neu-
tron and of the moderator atoms.

When the neutron energy is large, these phenomena are not impor-
tant in determining the interaction between the neutrons and the moderator,
In this case the general result is a steady loss of energy by the neutrons.
In the region of low energy, however, when the neutrons and the moderator
come into equilibrium with each other, a neutron may gain (up-scattering)
as well as lose (down-scattering) energy in collisions with the moderator
atoms, so that the whole scattering process becomes much more
complicated. -

A somewhat different approach was introduced in 1944 by Wigner
and Wilkins.’ They treated the moderator nuclei as a monatomic Max-
wellian gas, and ignored chemical binding and crystalline effects. With
this model, in which neutrons and nuclei were considered as hard spheres,
these authors were able to construct an integral equation valid over the
whole range of neutron energies. The further study of this model, and of
its relation to the slowing-down theory, is the major aim of the present
study. A part of our analysis will be aimed also at prospective work on
the inclusion of chemical binding effects in the theory.

I-2. Statement of the Problem

In a non-multiplying medium, neutrons are subject to the following
general processes:

(a) scattering by atoms of the moderator;

(b) capture by atoms of the moderator; and

(c) leakage from the boundary surface of the moderator.
In a scattering process, a neutron may suffer no change in energy, or gain
or lose energy. In any event, it is still available for further interaction

with the moderator. In processes (b) and (c), on the other hand, the neutron
is lost from the system.

E. P, Wigner and J. E. Wilkins, Jr., AECD-2275 (1944).
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Q The Boltzmann transport equa-
tion is usually adopted as the basis of
I the treatment of the development of
the neutron distribution function in
a0 time. Letn(r, v, {, t) dr dv dQ be the
number of neutrons, at time t, per
unit volume at the space point speci-
fied by the vector T, with speeds in
the range from v to v + dv, and with
directions of motion lying in the ele-
Fig. I-1. Geometrical Configura- mentary cone d {} about the unit vec-
tion of the Phase Space tor §, These geometrical conditions
are shown in Fig. I.1. The Boltzmann
equation then has the following form:

Ry

On(?9 Vy ?\Es t)

= = -vQ-gradn(r, v, &, ) - [vZs(T, v) + vZa (T, V)] o(T, v, T t)

+ [f] dv' dQ' v Z(_r., v - v n(?, v',—Q.', t) + SG, v, o, t)
(1-2-1)

Here 2 ( , v) and ua(r , v) are the macroscoplc scatterlng and absorption
cross sections, respectively, and Z.;(I' ; Q' — VQ) is the differential _Scat-
tering cross section by which a neutron is scattered from velocity v' T in-
to the velocity range dv d {3 about v§. All of these cross sections will
depend on the space coordinates in an inhomogeneous medium.

The first member on the right-hand side of Eq._-(I—Z—l) represents
the rate of loss of neutrons from the volume element dr dv d{} by virtue of
their motion. The second member accounts for the rate of loss of neutrons
by scattering and by absorption. The third member represents the rate at
which neutrons are brought into the glven volume element through scat-
tering processes. The last member S(r s Vs Q t) represents the rate of
introduction of neutrons into dr dv d{)from an external source. Finally
the left-hand side represents the rate of neutron increase in dr dv 4.

The Boltzmann Eq. (I-2-1) is too complex to solve in general, and
it becomes necessary to reduce it to a simpler form by various means.
One natural simplification is to consider first the case of a distribution
which is independent of the spatial coordinates. This enables one to con-
centrate on the study of the velocity distribution of the neutrons. Our work
will be confined to this case.

For this purpose we assume that the moderator is homogeneous
and of infinite extent, and that the neutrons are introduced in a uniform
manner throughout the whole assembly. It will be assumed further that
the moderator is composed of a single nuclear species.




Inthis idealized situation, the transport Eq. (I-2-1) is simplified to
the form

E’n(at t) + V[Z ) + 2 ( Jn f dv! v'Z (vt =» v) n(v', t) + S{v, t) R
(1-2-2)

where
S(vt=—ev) = [[4Q Z(v@&' - v?i) (1-2-3)

is the scattering cross section integrated over all directions of scattering.

Also, we set
S(v, t) = [[das(v, &, t) . (1-2-4)

If we integrate both sides of Eq. (I-2-2) with respect to v, we have

[oo]

gag A n(v, t) dv = f S(v, t) dv - ‘/0‘ VZa(V) n(v, t) dv .(I-2-5)

0

I3
-

Here we have defined
(0]
Zglv') =f Z(v'—==v) dv , (I-2-6)
0

and so we obtain the formula

f VZS(V) n(v, t) dv = f vdv n(v, t) f (v = v') dv!
0 0 0

By an interchange of the symbols v and v' in the last integral,

f VZS(V) n{v, t) dv = f dv f dv' v' Z({v'—=v) n(v',t) . (I-2-7)
0 0 0

The two scattering terms cancel each other when the integration with respect
to v is performed in Eq. (I-2-2). This leads to Eq. (I-2-5).

Equation (I-2-5) shows that the distribution can be independent of
time if, and only if,

f S{v) dv = f vZa(v) n(v) dv . (1-2-8)

This equation states, in physical terms, that if the distribution is independ-
ent of time, the rate of absorption of neutrons per unit volume must be just
equal to the total rate at which neutrons are introduced into the system per
unit of volume by the external source,




We are led by these simplifying considerations to examine the
special case of the steady-state velocity* distribution of neutrons in an
infinite, homogeneous, non-multiplying moderator, for which the Boltzmann
transport equation takes the following form:

V[ZS(V) + Za(v)] n(v) =f dv' v! Z(v' == v) n(v') + S(v) . (1-2-9)

Although this model clearly is a very specialized one, it is not
trivial, since it still requires the determination of the velocity distribution
of the neutrons under the influence of scattering collisions and absorption
processes with the moderator atoms. This is the problem formulated
originally by Wigner and Wilkins. It will be seen in the sequel that its
analysis involves a number of somewhat subtle points.

In order to make the model correspond to practical neutron sources,
we shall suppose that the neutrons are introduced at a very high energy by
the external source. The neutron energies are then distributed over a wide
range by collision processes, the distribution being modified at the same
time by the absorption of neutrons.

I-3. Outline of the Analysis

Chapter II is devoted to a discussion of the theory of scattering
cross sections for neutrons., The analysis is more detailed than would be
strictly necessary for the consideration of the Wigner-Wilkins gas model,
but the results are of interest for considerations on the effects of chemical
binding and coherence effects at low neutron energies.

In Chapter III, the Wigner-Wilkins model is considered for moderator
atoms of the same mass as the neutron. Although this corresponds to the
idealized case of atomic hydrogen as a moderator, the discussion is par-
ticularly helpful in bringing out the nature of the moderation process.

Chapter IV extends the analysis to the case of a geseous moderator
with atoms of general mass.

*In this study we shall follow the current practice of referring to the
velocity distribution, although we have in mind only the magnitude
of the velocity. Speed distribution might be better.




CHAPTER I
THE EVALUATION OF SCATTERING CROSS SECTIONS

II-1. Introduction

As a first step we shall review in Sections II-2 and II-3 the quantum
mechanical theory of scattering cross sections in the Born approximation.
The discussion in these sections is restricted to the case of two-body
interactions, for the sake of simplicity, that is, we suppose that a neutron
will interact with only one nucleus of the moderator at a time.

In Section I1-4, this theorvy is applied to the evaluation of the cross
sections which are needed in the monatomic gas model. In Section II-5,
we shall examine the relationship between these results and those which
are employed in the slowing-down theory. Our aim will be to examine
the manner in which the cross sections used in the latter theory can be
interpreted as limiting cases of those for the gas model.

II-2. Scattering Theory in the Born Approximation. The Two-body Fermi
Pseudopotential

Let m and M be the masses of the neutron and the moderator nu-
cleus, respectively. It will be supposed that the moderator nucleus is
subject to a binding potential energy viE ) which holds it in the lattice or

B .
molecule, while there is a potential energy U( Ir—rnl) representing the
interaction between the neutron and the nucleus. The Schrodinger equation
for the system of two particles is

2m -

Ez 2 ;,72 2 —tip — B e
- —V —m-v +V(r)+U(ll’n—r|) Y(rn: I‘)

o S —_ )

= (Ep+ W) ¥(rp, 1) , (11-2-1)

where E, is the kinetic energy of the incident neutron and W, is the energy
of the nucleus in its initial state.

We seek a solution of this equation of the form

z rn ) gi(r) (11-2-2)

where the index j represents the various vibrational states of the bound
nucleus in the moderator; the index value j = 0 represents the initial state,
for convenience. We expect, further, that as Irnlu—*’»oo the functions FJ(rn)
will have the asymptotic forms




ikorp

> ikyz e
Fo(ry) ~e "™ + =——£4(64,¢n) (11-2-3")
n
and
. eikjl‘n
Fi(ry) ~ - £(6n.fn)  (170) . (11-2-3")

The symbol F, thus represents the incident neutron wave together
with the scattered neutron wave for which the nucleus is left in its initial
state (elastic scattering of the neutron). Similarly, Fj (j#0) represents
the scattered neutron wave when the nucleus is left in an excited state
(inelastic scattering of the neutron). Correspondingly, ¢y(r) is the initial
state wave function of the nucleus, with energy W,, and q’)j(r) is its wave
function in the final state, with energy Wj.

The wave function of the initial state of the nucleus satisfies the
equation

—y oD

[ﬁzzv] ) =W 11-2-4
_-ZMV+ ()| dolr) = Woolr) ; (I1-2-4)

and the wave functions of the excited states satisfy the equations

=

[— ﬁ' VA o+ V(?;:] ch (—I‘:>) = W@(r)
M ] 3%
G=1,2,..... ) . (II-2-5)

The wave number vectors for the neutrons, corresponding to inci-
dent states of kinetic energy E, and final states of energies E; + W, - W;, are

k% = 2mE,/ K% ka = 2m(E, + W, - Wj)/ﬁz , (11-2-6)

It will be assumed that the wave functions of the nucleus form a
complete orthonormal set of functions for those final states which result
from scattering processes. In particular, we will not consider inelastic
processes in which the nucleus is knocked completely away from its
original position in the lattice.

We next substitute Eq. (II-2-2) into (II-2-1), multiply both sides
by qjj*(r), and integrate over the coordinates of the nucleus. If the assumed
property of orthonormality of the nuclear wave functions is used, the fol-
lowing system of equations results:

g 2 g —r e w g
(V3 + k) Fy(ry) :—E- [dr Ur-rp) ¥(rp,x) ¢ 5%()
(]

G=0,1,2,....) . (11-2-7)
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Since the unknown functions Fj appear implicitly under the integral sign
on the right-hand side of Eq. (II-2-6), we have, in reality, a system of
integral equations for these f\i_r&ctlons However, in the first Born ap-
proximation the function ‘i’( ,r) is replaced by the approximate form

— — ik st

Y(r o) — e 0 go(r) (11-2-8)
representing the incident (undistorted) neutron wave, the nucleus being in
its initial state. In this approximation, Egs. (II-2-6) are to be used for
the actual evalua_.l:’ion of the corresponding approximate expressions for
the functions Fj(rn), representing the scattered neutron waves.

When the right-hand side of Eq. (II-2-6) is regarded as a known
function of the neutron coordinates, as it is in the Born approximation,
Eq. (II-2-6) can be solved directly by making use of the known Green's
function (source solution)

oik|T T ;
By (-2-8')

of the Helmholtz equation
(VP+ R F=0 . (I11-2-8")

The result is the formula

1k lr -r'[

M.*:a e n

dr'

Fjﬁ'an) =

u(fr - ) ¥R e
277’ lrn’rr'nl

(11-2-9)

On making the substitution (II-2-7), appropriate to the Born ap-
proximation, Eq. (II-2-9) assumes the form

- ik [rn - rn! .
F.(rp) m fd?‘h dr S—— tkoZ
. 2mh° Irn - rhl
P N e *-3»
U(r - rpl) go(r)ey(r) . (I1-2-10)
_b_errmi(l) has argued that in this problem the interaction potential
U(|r - r,|), which is called the Fermi pseudopotential, between the neutron
and the nucleus, can be taken to be
— 27}'7’2 > s
U(|r-ryl) = (1+pu)a' - s(r-rn) (I1-2-11)

m




where
(1 + ,U) al = ab H e = m/M s (11'2'12)

and ap is the Fermi scattering length for scattering of neutrons from the
bound nucleus, when the latter is left in its ground state after the scatter-
ing process is completed. Breit8 has given a further discussion of the
Fermi pseudopotential and of the applicability of this modification of the
Born approximation method.

If we insert Eq. (II-2-11) into (II-2-10), we obtain the formula

ik Ir r[ .
— - e JITH ik,Z — g~
Fj(rn) = —abfdr —————— e T n ¢ (r) mj(r) } (I1-2-13)

The asymptotic form of this expression, at large distances from
the scattering nucleus, is readily evaluated. On comparison with expres-
sions (II-2-3), it is found that

D 20 R D

fy=ap [‘Mr) Giko-ky) Tk T (I1-2-14)

where _1:0 and k; are the (momentum) wave number vectors of the incident
and scattered neutron waves, respectively. This formula holds also for
the elastic scattering amplitude if we set j = 0; in this case f, = aj,, which
follows directly from the definition of the Fermi scattering length ay,.

Since the scattering cross section is defined by the ratio of the
scattered (ouigoing) to the incident (incoming) current, it is given by the
expression

5 ez
I ok {fj{ . (I1-2-15)

On making use of the expression (II-2-14), we have

~ ik - r
I(Q = i_k_J_ fq*o 0 ) Nj( )dr z . (I1-2-16)
If this is expressed in Dirac's notation, it becomes

E — B -—D! A '
k- . /
a o K ik - k) \ (k ko) T X
L(g,¥) = af T, \ v 0l¢ J BPANGY
’ (

11-2-17)

I

Here & is the angle of scattering of the neutron, that is, the angle between
ithe wave number vectors kg and kj’

8G. Breit, Phys. Rev., 71, 215 (1947).

11
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I[I-3. An Operator Formalism

It has been assumed up to this point that the moderator nucleus is
in a specified initial state before its interaction with the neutron. In fact,

however, not all of the nuclei will be initially in the same state; for example,

they may have a distribution of energies appropriate to some given moder-
ator temperature. It will be convenient, therefore, to specify the type of
scattering process suffered by the neutron, and to recognize that this par-
ticular process may arise from transitions of the moderator nuclei from

a variety of initial states to corresponding final states. The major cri-
terion which must be satisfied by all possible combinations of initial and
final states is that of conservation of energy.

Consider a process in which a neutron is scattered from a state of
initial energy and momentum (direction of motion) (Eg, i) into a state
(E,Q). We introduce the notation

T =K -T%, (I1-3-1)
e=E -E,=:1%(k*-k3)/2m . (I1-3-2)

Since the final kinetic energy of the neutron cannot be negative, we must
impose the restriction

i,
€>€ = ~Ep = - 5—kj . (11-3-3)

If this scattering process of the neutron is associated with a jump
of the atom from a state of energy W; to a state of energy Wy, then we
must have

c=E-E;=W; - Wg . (II-3-4)
The differential scattering cross section can be written in the
form
i > k ’ ,—a‘—a -—f: oq-s \
G(Eg(y~EQ) = af — = Z W“<r;'/« el T ¢>< e Tl g
040 ) b, 7 ENA £ f i/
c6(e - Wi+ Wy) o, (1I-3-5)

where w; is the (normalized) statistical weight of the initial state of the
nucleus. The introduction of the delta function takes account formally of
the energy conservation law of Eq. (II-3-4), and so allows us to extend
the sums over the nuclear states to all combinations of initial and final
states which are compatible with energy conservation.
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Our next step is to replace the delta function by the (improper)
integral function

& (x) = - et g (I1-3-6)

=00

On inserting this expression into Eq. (II-3-5), we have the formula

- = ap x [TF ctr o< - (Wi - Wet/ I
(Eoflo—=EQ) = 3— = dt e-tct/t 3 pwie
0
- 00

[y

[ 2
2l 1

[

T swi\> g (11-3-7)
/

ol

|
A - r
1

I,
el

-irc -

We note the following identities:

e1Wit/n q’: _ e—1Ht//i (jso{
(I1-3-8)

—1W£t,f 7 ox Bt/ %

f=¢€ w f

Since the Hamiltonian operator is Hermitian, by definition, the
operators exp (t iHt//i) are unitary, while exp(iHt/ 77) and exp (-iHt/7)
are adjoint to each other. In the Dirac notation for matrix elements,
which is equivalent to that for inner products involving operators, one

has
. 1
<e'1Ht/7Z ¢y ¥ >:<‘?i @ff>
o R (11-3-9)
iHt/ it ) ) o-iHt/m ik er
e &g i /= DLele e

=D

a e ° >
1Ht//z ie, -1
e e

[
i, - T

e

o
=lK - T & >
2
1

e
On making use of our assumption of completeness of the set of
nuclear states, we see that, by the rules of matrix multiplication,

(- wee/n < D
PN
b= c—;

SiHLE S
e 1 t/z . T
SiHt/ -

e e

| i i
16 - T -1 - T
e e

i
- e

f
= 1<l
:<(r:i e

D el

iHt /7 RURF:

®i>
f. i> (I1-3-10)

D
. . T

iHt/ ir
[S]
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This last expression is the expectation value of the indicated operator, and
it will be convenient to indicate it by a special notation:

G;(#,t) =<®1 e ¢i> : (I1-3-11)

The average value of this quantity over the distribution of initial states of
the nucleus will be written as

- —a

3 o = . '.0
1Ht/iZ i o r —1Ht/ﬁ -ig -1
e e e

—n

glic, t) = Z wiGy (k.t) . (I1-3-12)
i
This reduction allows us to write Eq. (II-3-7) in the form

2
— — a + s e
(BT —ED) = 27:2“ .liio oiet/m g(k,t) dat . (II-3-13)

= 00

In the usual notation this differential cross section would be
written as

dzg
dfide ’

(11-3-14)

which shows explicitly that it is the differential scattering cross section
per unit solid angle per unit energy range. The differential scattering
cross section per unit solid angle, dG/dQ, is readily calculable by inte-
gration of (II-3-13) over all possible energy changes of the neutron:

O
o _ d?o
dQ_/; 22 ac . (11-3-15)
0

[o N}

The total scattering cross section is evaluated by a further integration of
(II-3-15) over all scattering angles

(a5 .. L (I1-3-16)
Otot‘fdQ an -fdQ fe de <=2
0

This work indicates that in the first Born approximation the evalua-
tion of the scattering cross section is reducible to the evaluation of the
expectation values Gji(«,t), and, finally, of the statistical average over all
initial states, g(%,t). In carrying out these calculations the following formal
relations are useful.

Making use of the fact that the solution of the Heisenberg equation
of motion

il = [r(t), H] (I1-3-17)




is

— iHE 7 -iEt/T
e Ir e

r(t) =

we can write

. LT - o o
elHt/i‘z’ Jer iHt/ji _ K r(t) , (11-3-18)
This result allows us to write
G;(%.t) =<¢i Lot -k x(0) 'z>i> o (I1-3-19)

Another convenient formalism is the following. Since

=f(p - k) . (I1-3-20)

where f is a general algebraic function of its argument. This leads to the
formula
N o e
ik -r -iHt/id -iK -r
e e e =

-3 ! 3
e i t/% 9 (11-3-21)

where H' denotes the Hamiltonian operator in which the momentum opera-

tor of the nl&ﬁg’leus,?, has been replaced by? -nE. Thus, if H = H(p,r).
then H' = H(p - ik, ¥). We have, finally, from Eq. (1I-3-19),

- : v
Gi(k,t) :<<Di elHt/ﬁ e v/ ¢i> . (11-3-22)

Expressions (II-3-19) and (II-3-22) are both useful in applications,
and either can be used where it gives the simpler formulation.

_. The function g(«,t) is to be evaluated after the expectation values
Gi( t,t) have been found, by averaging over the assumed distribution of
initial states of the nucleus.

This formalism will be applied in the next section to the simple
case of a monatomic gas model, with omission of chemical biding effects,
in which the initial distribution of nuclear states is supposed to be Max-
wellian at the temperature of the moderator.

15
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11-4. The Monatomic Gas Model

In the case of the monatomic gas model, Eq. (II-3-21) provides the
most convenient form from which to evaluate the functions G;. The
Hamiltonian operator has the simple form

H=9?2M |, (I1-4-1)
where Ebis the momentum operator of the nucleus. It follows that

B :711_\.4_ (b - Fir) = 2’11\‘4' (p? - 27ip- £ + %K% . (11-4-2)

Since the energy operators appearing in Eq. (II-3-21) are expressed
directly in terms of the momentum operator of the nucleus, it will be most
convenient to express the nuclear wave functions in momentum form.
Equation (II-3-21) requires that we evaluate the expectation value of the
operator

(itp?/2M7 e-it(g-ii;)z’/ZMii

If we take the initial atomic state as one in which the nucleus has momen-
tum _1:3?, the result is

- s r-az ) -m-a
Gi(fc,t) - e it(ie® - 2« pl)/ZM g (11-4-3)

In averaging over the momentum states of the nucleus, we must
take account of the fact that they have a continuous distribution, so that
expression (II-3-13) is to be interpreted as the integral

g(it) = [1(p) Gi(,t) dp (11-4-4)

—y
where the function f(p) expresses the statistical distribution of initial nu-
clear states.

If the moderator is assumed to be at a definite temperature T(°K),
and that the nuclei of the moderator have a distribution of energies obeying
the Maxwell-Boltzmann law, we have

£(p) = (27Mw) "% 2 exp (-p%/2Mw) , (I1-4-5)
where we use the temporary notation

w = kT , (I1-4-6)

with k here as Boltzmann's constant,




We substitute Eq. (II-4-3) into Eq. (II-4-4) and {find the following
evaluation:

gle,t) = (2rMw) ™3 2 | qu; exp(-—EZ/ZMW)exp[—it(/’-zzzz-é—E-_5)/321\/1]

2 5D,
exp [—(it + Eﬁt— EKZ/ZM:I (I1-4-7)

The differential scattering cross section can now be evaluated by
substitution of Eq. (II-4-7) into Eq. (II-3-13). The results is

2 N -+ ©o e
e — a‘b l\ i _t }‘Z,&_}Z i \'Vtz
0 (Eofly—=EQ) = Sk, exp| - —— Jexp | - S |it+ = Jidt

[e#}

a'!z) k M 12 M - I i 2
ik Ko <2‘TTW> €exp —K’.(ﬂ +2_I\Z> . (11-4-8)

We express the wave numbers of the incident and scattered neutron

o

1

states in terms of energies, make the replacement w = kT from Eq. (II-4-6),

and eliminate the Fermi scattering length in terms of the scattering cross
section. This gives the formula

- (14-/1)2( M )12<E)12 1 M [ ﬁ"f)z
- —e T { = ¢ _ - k< -
H(Eolt™EN) = 0 = 5757 B,/ - O | T \rn T Im

(11-4-9)

It is to be remembered that in this formula k is Boltzmann's constant,
M= m/M = 1/A, and oy is the scattering cross section of the free nucleus
per unit energy range per steradian.

Up to this point, we have been concerned primarily with the evalua-
tion of the microscopic scattering cross section. For our applications we
need the macroscopic cross sections, which are, by definition,

;..:f = N(jf s
(ESly—E) = No (EoSlp—ED) (11-4-10)

where N is the number of nuclei per unit volume in the moderator.

Our primary application requires the evaluation of the scattering
cross section per unit energy range, that is, the differential cross section
integrated over all angles of scattering of the neutron. This is defined by
the expression

AE,~E) =, (E (i, ,—EQ) aa% . (11-4-11)

17
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This also is known in the literature as the energy transfer cross section. .
To evaluate this integral we have the expressions

. (1+u)2( M )1/2(E)1’2 1 M (e m)‘z
HEo—E) = 25 = \ 537 , = P |- \FE Yo | 4
s (1+M)2( 1 )1/2 (_E_:)l/z
£774 LKT E,
+1 E-F 2
1 0
exp{— [ + p'\/E+E0-ZPa\/EEo:| }
kT | JEYE,-2P~EE, ar
J JE+E,-2PVEE,
-1 (I1-4-12)
where
Y = cos (k, ko) . (I1-4-13)
It will be convenient to introduce a condensed notation as follows:
e:1+;,f;:A+1 ; o oL -p _A-1 . 2 L
G 2WE > G 2vA ¢ 2kT
(I1-4-14)
and
e = mp2? = mv¥/2kT = E/kT
. (I1-4-15)
€0 = mE2 = mvi/2kT = Eo/kT

With this notation, the final evaluation of the energy transfer cross sec-
tion is given by the following formula:

- - e { ofovEr - twE)es (o s B )} + olonEcnr)
-5 (e£+§@) €o £

4 ,
o-(€ - ) {@(ev/;-;'- cﬁ%@(@«@%@} oo Ve - t/e)
; to(ovet Ly ) soc . (11-4-16)
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Here

2 (Y
B(y) = ﬁf e du ) (I1-4-17)
i 9

The total scattering cross section is evaluated by integration over
the final energy of the neutron. The calculation yields the result

[£e)
f Zley—e¢) de
8]

. 1 ' 2 -Ac
S TAC, [(ZAeo + 1) 8(\/Acy) +\7: JAc, e 0:!

™

Zs(€ o)

il

(I1-4-18)

Another quantity of interest is the mean energy change of the neu-
tron, per collision, for a given incident neutron energy E,. This is found
to be

:kT[ 54 ,.2A 2 e{vAco) ]

(A+1) (A+1) (A+1)®2 — (a+1)? 6(«/@)(2Ac0+1)+i- ACOG-ACO
T

(II-4-19)

The dependence of this quantity on the incident neutron energy provides
useful information on the moderation process.

For the purposes of practical calculation, it is convenient to ex-
press these formulas in terms of 2 new notation, with the variables

Je = ~E/RT
“/gc:: Eo/k'f

In this notation we have the formulas, corresponding to Egs.. (II-4-16) and
(11-4-18),

"
1

(I1-4-20)

g

Sxg—ex) = Zf 62 (x/x3)

[ e

e~ (x? - x§) {@(Gxo- Ex)+ @(9x0+€;x)} + @(ex - Ix) - 6(ox+ £x)

Mol K
< 2 2
e'(X - %o) {@(exo— £x) - 0(axy+ f;x)}+ 8(ox - £xp) + 8(6x+ £x,)

Xoo% (11-4-21)




20

Zlso) = B = [(XO + ZT;Z) (JA—X") v

Xo

2
e'AXOJ . (11-4-22)
“JATT

The following quantities are sometimes useful in the consideration
of the scattering of a neutron of given initial energy:

o]
Faalxo) = f S(xo—ex) dx (I11-4-23)
Xgto
Xg -0
Zalxo) =f Z(xp—x) dx . (I1-4-24)
0

Here Z,, measures the portion of scattering processes in which the neu-
tron gains energy (up-scattering), and Zj similarly measures the scattering
processes in which the neutron gives up energy (down-scattering) to the
nuclei of the moderator. The quantities can be evaluated from our formulas,
with the results

- B ] AR ot B} s

N

e I

If one wishes to express his results in terms of the neutron density,
rather than the neutron flux, it is convenient to make use of quantities ex-
pressing the scattering rate per neutron, rather than the cross section.
The following expressions for the scattering rates, in unit of Zf, are con-
venient for our purposes:

-1
Zalxo) = 273 {0
0

P(xo—x) = xo Z(xg—=x)/ Z¢ (11-4-27)
V(xo) = %o Zg(x0)/ Z¢ (11-4-28)
Vylxo) = x0 Zulxo)/ % (11-4-29)
Valxe) = xo Zalxe)/ Z¢ . (11-4-30)

The quantity P(x,—=x) is often referred to as Wigner-Wilkins kernel.(7)

For the sake of future reference, we observe that the Wigner-
Wilkins kernel satisfies the principle of detailed balancing for a Max-
wellian distribution M(x) = const. x?e-%2; that is,

Pxg—=x) M(xq) = P(x—x,) M(x) . (I1-4-31)

This can be verified readily by direct calculation using Eq. (II-4-27).




21

Graphs showing the behavior of these quantities are given in
Figs. II-1 through II-4 for comparison with the conventional slowing-

down theory.

II-5. The Relationship between Cross Sections in the Monatomic Gas Model
and the Slowing-down Theory

We investigate in this section the manner in which the cross sections
appropriate to the conventional slowing-down theory are interpreted as
limits of those for the monatomic gas model. In the following formulas the
superscript SD will be used for all quantities appropriate to the slowing-
down theory.

In a straightforward way we can show that the scattering cross sec-
tion 5D (E,—~E) in the slowing-down model is obtained as a limit of the
monatomic gas model by requiring all moderator nuclei to be initially at
rest, or, which is equivalent, by requiring the temperature in the moder-
ator Maxwellian distribution to be zero. With the moderator nuclei initially
at rest, the distribution function in Eq. (II-4-5) becomes

s o ames

i(p) = 5(p) . (11-5-1)

Equation (II-4-4) then takes the form

2

g(:,t) :f c-:lﬁp 6(‘3 e_(it/2M> (i? - 2p ) = exp (—i Z[I{\/I t> (11-5-2)

Substitution of Eq. (II-5-2) into Eq. (II-3-13) yields the result

2
iz — a + oo . s r 2 2 t
GSD (EOQO""bE ) = —Zﬂbh‘ % e—l €t/7f e 1(ZK: / M) dt
- OO0
2 e 2
a E-E 7i(k - k)
_Zb ko o, 0 : (I1-5-3)
7 kg I 2M

Multiply both sides of this expression by N, the number density of
moderator nuclei, and integrate over all scattering angles. This yields
the macroscopic cross section for energy transfer:

1 i [A-IAA+1)FE E<E,
62 (I1-5-4)

0 otherwise,
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with

A 1 A-1

+ 1
= : o = . (11-5—5)
Zﬁ NPT A+l

g =

It will be convenient for purposes of comparison to express
energies in units of kT, as we have done in the monatomic gas theory,
although in the slowing-down theory this unit is purely formal. With
€ = E/kT, we have, from Eq. (II-5-4),

1 if aleycece,
592
55D (gy—¢) = Ly

(I1-5-6)
€o

0 otherwise

Furthermore,
250 () = f°° 55D(cy—=e) de = Z; . (I11-5-7)
0

When expressed in terms of the variable x = £ = E/kT, the
scattering rates, corresponding to Egs. (II-4-27) and (II-4-28), are

-
2 if o xgd xIxg

2
PSD(XO-"’-’X) = QX—% < (I1-5-8)
0

0 otherwise

oy

VSD(XO) = Xq . (II-5-9)

The main physical differences between the two models are easily
expressed. In the slowing-down model, the moderator nuclei are assumed
to be initially all at rest. Consequently, the incident neutrons can only lose
energy to the nuclei (down-scattering), and there is a lower limit to the
possible energy loss, which is fixed by the mass ratio A = M/m In the
gas model, both up- and down-scattering processes are possible, and all
energy exchanges are allowed.

The gas model thus degenerates into the slowing-down model in the
limit T==0. Furthermore, in the region of high neutron energies, in which
the neutron energy greatly exceeds the mean kinetic energy of the nuclei
at the given moderator temperature, the two models give quite similar re-
sults, which can be examined in greater detail from our formulas of
Section II-4 for the gas model by considering the asymptotic behavior for
e>>1.
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Figure II-1 illustrates the degeneration of the gas model into the
slowing-down model for two different high incident neutron energies in
moderators of masses 1 and 12.
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Fig. II-1. High-velocity Incident Neutron Scattering Rate P(xj—ex)
—————— Slowing-~down Model ———— Gas Model

Figure II-2 illustrates the two models for the same two moderator masses,
but for two different low incident neutron energies, where low and high
incident energies are referred to the peak of the moderator distribution
taken as x = 1. This figure shows the marked difference between the

two models, which lies in the fact that the gas model includes the up-
scattering of low-energy neutrons whereas the slowing-down model 1gnores

it.

Figure II-3 is a plot of the scattering rate V versus neutron speed
for three moderator masses, together with the up-scattering rate V, and
the down-scattering rate V4 at each speed, that shows that, as the moder-
ator mass increases, the scattering rate approaches the straight line of
the slowing-down model at lower and lower energy. Figure II-4 is a replot
of Figure II-3 that shows the down scattering rate as a fraction of the total
scattering for several moderator masses. From this figure one can deter-
mine, for different moderator masses, the energies above which the slowing-

down model may be used.
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CHAPTER III

MODERATION OF NEUTRONS IN MODERATORS OF
UNIT ATOMIC MASS

III- 1. Introduction

In the slowing~down model, with the moderator at rest, an exact
analytical solution can be found for nuclei of unit atomic mass. This case
is usually called the monatomic hydrogen gas moderator, even though
hydrogen gas is actually diatomic. In the present treatment, with the mod-
erator in motion, no exact solution is known, even for the case of moderator
nuclei of unit mass, much less for the case of a general mass. It is neces-
sary, therefore, to develop approximation procedures for testing the
formulas of the theory.

It will be convenient for practical reasons, and also for gaining a
better insight into the nature of the results, to treat the case of moderator
atoms of unit mass in this chapter, reserving the case of general mass for
the following chapter. The qualitative nature of the solution is discussed
in Section III-2. The slowing-down theory for this case is found as an
asymptotic form of our solution in Section III-3. Section III-4 will treat the
direct numerical solution of our integral equation. An alternative method
which is available for this special case is discussed in Section III-5, in
conjunction with a discussion of the work of Wigner and Wilkins. Finally,
Section III-6 will be devoted to a comparison of some of the existing work
and miscellaneous considerations.

IIT-2. Qualitative Considerations on the Solution

It was shown in Chapter I that the condition that the total rate of
absorption of neutrons is just equal to the rate at which neutrons are
introduced into the system provides a relation governing the stationary
distribution. This equation is the following:

[VZS(V) + vZa(v)]in(v) = /:o dv'v' Z(v' = v)nlv') + S(v) . (111-2-1)

When the scattering and absorption cross sections are known, this is an
integral equation for the neutron density function n(v).

The most reasonable interpretation to be made is that the neutrons
are introduced into the system at a relatively high energy, of the order of
I Mev. We will be interested in the velocity distribution of the neutrons
over the whole velocity range below this value. For the sake of simplicity,
the initial neutron source is supposed to be monoenergetic.
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. Immediately after their introduction, neutrons with high initial
* energy will undergo scattering, with large energy losses, with the modera-
tor atoms. Since we impose an absorption law varying as l/v, the absorp-
tion rate will be small for the high-energy neutrons. The mean energy
loss per collision will be large in this region, and most of the neutrons
which survive the very small probability of capture will pass through this
stage quickly. This will be referred to as region 1.

As the neutrons descend the energy scale, the energy loss per col-
lision will decrease and the rate at which slowing-down occurs will diminish.
At the same time, the possibility of capture will increase, and absorption
becomes appreciable. This will be referred to as region 2.

Neutrons which come down the energy scale to a point at which their
kinetic energies are of the order of the kinetic energy of the moderator
atoms will exchange only a small amount of energy per collision, and may
even gain energy from the moderator atoms (up-scattering). The mean
energy loss per collision of the neutrons will be very small in this case,
whereas absorption will play a more significant role. This will be referred
to as region 3.

Neutrons which have passed through period 3 will tend to gain energy
on scattering, whereas absorption will be very strong. This will be referred
to as region 4.

If there were no capture of neutrons, and we introduced a burst of
high-energy neutrons at a particular instant and then isolated the system,
the neutrons would be degraded in energy by collisions and would ultimately
come into equilibrium with the moderator atoms at the stated temperature
of the moderator. When capture (absorption) processes are present, and
neutrons are introduced continually to produce a stationary distribution of
neutrons, the neutron energy spectrum will be appreciably hardened over
the first case. This follows from the simple fact that neutrons are intro-
duced at high energies, whereas absorption is most effective in removing
neutrons of low energy.

In the monatomic gas model of the moderator which we are using,
the distribution of energies of the moderator atoms should be of Maxwellian
form at the temperature of the moderator. The argument just given shows
that the stationary neutron energy distribution will contain a higher propor-
tion of high-energy neutrons than the Maxwell law, i.e., the neutron energy
spectrum will be harder than the Maxwellian distribution at the given
temperature.

’ . The direct analytical solution of Eq. (III-2-1) is not known. In our
study, we make use of numerical calculation methods, with the aim in mind
of extending them later to moderator atoms of arbitrary mass. Further
considerations of an analytical nature will be given in Section III-5.
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The first difficulty which we encounter in the numerical work is the
fact that the upper limit of the integral in the left hand side of Eq. (1II-2-1)
is infinite. We avoid this by the following considerations.

It has been shown in Chapter II that, in the high-energy region, the
cross sections which we shall use reduce to those employed in the conven-
tional slowing-down theory. If we assume at first that all of the neutrons
are in the regions of higher energy (regions 1 and 2), with energies well
above the energies of the moderator atoms, we can determine a type of
distribution. The thermal motions of the moderator atoms and the up-
scattering of low-energy neutrons will not affect this distribution very
much. We can therefore determine the solution in the high-energy region
as a type of asymptotic solution of Eq. (III-2-1). This asymptotic solution
will be determined in the next section, and when found it will be used as a
kind of normalization condition in the numerical work extending into the
low-energy region.

III-3. The Asymptotic Solution for Large Neutron Energies

We use the symbol T for the temperature of the moderator, as in
Chapter II, and use the variable x = (E/kT)l/Z, where k is Boltzmann's
constant. In terms of this independent variable, Eq. (III-2-1) becomes

[x3g(x) + xZ,(x)]n(x) = fom dxoxeZ(xg = x) n(x) + S(x) . (III-3-1)

On dividing both sides by the scattering cross section of the free atom, 2y,
which will be assumed to be constant (i.e., independent of neutron energy),
we have the equation

[V(x) + I']n(x) = [)00 dxoP(xg == x) nlxg) + X(x) , (111-3-2)

with the notation

r = xZa(x)/Zf ; (111-3-3)
P(xo=x) = (1/29) x0Z(x=x) (111-3-4)
Vi(x) = xz,s(x)/zf : (111-3-5)

and X(x) = S(x)/Z ¢- It is to be noticed that, with the l/v law of absorption,
the quantity I' is independent of neutron energy.




Using the results of Chapter II for moderator nuclei of unit mass,
we have

O(xg) exp (x§ - x*) , xpx
Plxy = x) = =X (111-3-6)
X0
0(x) ) Xg . X
V(x) = (x +-L) o(x) + ! exp (-x?) (I111-3-7)
2% ‘\777
with
2 -yt
= = 1I1-3-
6(x) s e dy (I111-3-8)

It will be well at this point to introduce a discussion of the nature of
the source function to be used. In the physical problem, neutrons are intro-
duced into the system by the fission process, most of the neutrons having
kinetic energies of the order of 1 to 2 Mev. Every practical source yields
neutrons of energy well above thermal. The part of the neutron energy spec-
trum which is of major concern is that in the low=-energy range, say of the
order of 1 ev. It is evident that the actual initial energies of the neutrons
cannot have a determinative influence on the low-energy spectrum when a
stationary distribution is being considered. It will, therefore, be a consid-
erable mathematical simplification for us to assume that the neutrons are
introduced at an indefinitely high energy. This idealization of the source as
being at infinite energy will not prevent our normalization of the neutron
density function through the requirement that the total rate of absorption of
neutrons per cm? per sec is just equal to the rate of introduction of neutrons.
Since our solution will be found to yield a finite total number of neutrons per
c1n3, this criterion makes physical as well as mathematical sense.

With this interpretation to be assigned to the neutron source, we can
formally drop the second member on the right-hand side of Eq. (I111-3-2) and
write the integral equation in the form

[V(x) + TIN(x) = j:o dxo P(xg == x) N(xq) - (111-3-9)

Here we have introduced the new notation

x (111-3-10)

A

N(x) = n(x) 0

for the neutron density function, to emphasize the fact that N(x) represents
the density function for those neutrons which have suffered one or more col-
lisions, and so does not include the initial virgin neutrons which have not yet
suffered a collision.

29




30

This equation can be written in a somewhat simplified form for
large values of x by substitution of the asymptotic expressions

0 if Xo . X

P(xq = x) =i—§ 1 if xg > x (111-3-11)
Vix) = x . (I11-3-12)
Thereby we obtain the integral equation of N_4(x) as
w
(x+ )N 4(x) = 2x deo . (111-3-13)

X
e 0

Although Eq. (III-3-13) has been found as the asymptotic form of
Eq. (III-3-9), it has a wider significance. It was shown in Chapter II that
the asymptotic forms of the cross sections used in the gas model are
equivalent to those employed in the slowing-down theory. It is to be ex-
pected, therefore, that the asymptotic form of the neutron distribution
function of the gas model should be the exact solution for the slowing-down
model, and hence Eq. (III-3-13) should be the exact integral equation for the
latter model. This is, in fact, the case, as is shown by the fact that the
solution of Eq. (III-3-13) given below was found by Placzek3 from the slowing-
down theory by a different process, whereas Wigner and Wilkins ¢ showed that
their series solution takes this same form approximately in the asymptotic
energy range. We can therefore consider Eq. (III-3-13) to apply to the
slowing~-down model. for all values of x. This remark will be of use to us
in the next section.

In order to solve Eq. (I1I-3-13) we make the substitution

x+ T

X

Pas(x) = N, =) . (I11-3-14)

Differentiation of both sides of Eq. (III-3-13) with respect to x yields the
following first-order differential equation:

d@as >
= - I17-3-15
dx x + T CD&S ’ ( )

which has the solution
® (x) = C/(x+T)¥ (I11-3-16)

as




where C is a constant of integration which will be determined shortly. On

using Eq. (III-3-14), we find at once the following solution of Eq. (III-3-13):

Nog(x) = Cx/(x+T) . (I11-3-17)

Formula (III-3-17) shows that N, 4(x) has a maximum at x = I' /2.
Consideration of the motions of the moderator atoms indicates that in the
gas model this maximum should come at a somewhat higher value of x.
The low value predicted by the slowing-down theory comes about by the
fact that it ignores the rapid decrease in the differential scattering cross
section for low energies, and the existence of up-scattering which is par-
ticularly significant in the low-energy region.

The determination of the integration constant C in Eq. (III-3-17)
can be made by equating the rate of absorption of neutrons to the rate of
injection by the source. This will be done in a particular way for the pur-
poses of numerical integration in the next section.

III-4. Numerical Integration for N(x)

In order to carry out the numerical integration of Eq. (111-3-9)
for N(x) we introduce a certain energy value, x., chosen sufficiently large
that for x > x. we can require N(x) = Nas(x), where the latter quantity is
given by Eq. (III-3-17). It will be necessary also to neglect the up-
scattering from the energy range x < Xc into the range x > xc. This
approximation is not so serious for the case of moderator atoms of unit
mass as it is for heavier moderators.

In the energy range x.. X, the second member of the right-hand
side of Eq. (I1II-3-9) will be small, according to the discussion of the last
section, and will be neglected. With these reductions, Eq. (III—3—9) takes
the form

(V6 + TINGD = (74 [7) axoPleo =0 Nixo

X

o0
+ f dxoP(xg =»x) Nyg(xe) - (111-4-1)
X

The functional forms of the quantities V(x) and P(xg -»x) as found
in the last section are

Vix) = (X *EIZ) 6(x) +%$_2“.?;)_ (ITT-4-2)
Tr
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and

@(xo) exp (xé - XZ) if xXg < X
P(xg=vx) = — (111-4-3)
8 (x) if Xp > X

The functional form of P(xg—sx) allows us to evaluate the third

member on the right-hand side of Eq. (III-4-1) explicitly. On substitution
of Eq. (III-3-17) for Ng(x), we find that

(ve] [s.0]
dxoP(xq == x) Nas(XO) = 2x O(x) —Cxo v d%o
x X@(Xo + . )
0 Xc

x 8(x) (;c—f—T)Z = RxO(x) , (IlI-4-4)

i

with R = C/(xc + I')%. The explicit integrability of this expression is
characteristic of the case of moderator atoms of unit mass. For the case
of moderator atoms of general mass, to be treated in the next chapter, a
much rougher approximation will have to suffice at this point.

We divide the finite interval (0, xc) into M subintervals, the lengths
of which are not necessarily equal. Employing the simplest trapezoidal
rule, Eq. (III-4-1) is replaced by the approximate expression

Z Plaj == x;) N(sgj) Hy + [Py~ x5) Hy - V() - T Nixj)
j=1
M
+ Z P(xj“—ﬁw‘xi) HJN(XJ) = -2 x,0 (Xi)R (i=1,2,...., M)
j=it+1

(111-4-5)

where Hj denotes the size of the j-th mesh and includes the fractions in the
trapezoidal rule. Since N(0) = 0, the number of equations in the sys-
tem (I1I-4-5) is just M.

A straightforward solution of this set of simultaneous linear equa-
tions was first tried for M = 100, employing the subroutine for matrix
inversion for the IBM 704 computer at the Argonne National Ladaorator;u9

9Argonne National Laboratory, AMD Subroutine AN F403.
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The result was quite satisfactory with this program, but had the disadvan-
tage that a relatively long machine time of about 11 or 12 min was required
for the inversion of the 100 x 100 matrix. Furthermore, the accuracy of

the calculation could not be controlled. Since the machine time required for
matrix inversion is proportional to the cube of M, an increase in the number
of mesh points quickly raises the required machine time.

These considerations led to a revised program based on an iteration
process instead of matrix inversion. Taking into account the capacity of
IBM 704, which has a total memory space of 32,000, a maximum number of
mesh points M = 150 was possible for this process. Various degrees of
accuracy can be achieved by adjustment of the convergence criteria. The
computer requires the rather long time of 1.5 to 2 min for the evaluation of
the cross sections. By fixing the choice of mesh sizes and points, these
cross sections could be used repeatedly for different values of the absorp-
tion parameter I'. The machine time required for the iteration process,
using M = 100, with the increment on successive iterations less than 1074,
was less than 2 min.

For the iteration process Eq. (III-4-5) was rewritten in the form
?"M -
! Z P( x —_x )H N(x ) + 2Rx; O (x;) . (111-4-6)

= |

s

Nbx) = m

The asymptotic solution Nas(x) from Eq. (111-3-18) was used as the initial
trial function to start the process.

The normalization procedure requires some consideration. For
this purpose we first set

el

N, (x)dx =1 (111-4-7)
[}

from which we find, using Eq. (I11-3-18), that
C = 2T . (III-4-8)

At this point we have taken advantage of the fact that Nyg(x) is the correct
neutron distribution function for the slowing-down model for all values of

the neutron energy. This normalization condition fixes the strength of the
external source of neutrons to be Q = I'.
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Suppose that the total source strength of the neutron source is given. .
Then, regardless of the nature of the model used, or of any other conditions, )
the existence of a stationary state implies that the total rate of absorption of
neutrons must just equal the rate of input. If this condition is expressed in
terms of the density functions on the neutron velocity scale, as was done in
Eq. (I-2-8), we have the following conditions:

fmvza(v)N(v) dv = fow vZ, (V)N (V) av = f°° S(v) dv. (I111-4-9)

0 0

However, since we assume throughout this thesis the usual " l/v law"
of absorption, Za(v) o l/v, so that vZa(v) is independent of neutron velocity;
i.e., the probability of absorption of a neutron per unit time is independent
of its velocity or energy. In this case, Eq. (III-4-9) takes the simpler form

N(v)dv=f N, (v) dv = — f Sv)dv ,  (IlI-4-10)
/(: o a VZa(vs o

from which it follows that
[+e]
f [N(v) - Nyg(v)] dv = 0 . (111-4-11)
0

From this point on it will be convenient to express our density
functions on the scale of neutron energy, rather than velocity, that is, we
use the variable x instead of v. In these terms Eq. (II1I-4-11) will be

foc [N(x) - N (x)] dx = 0 . (I11-4-12)
0

This relation shows that the function
g(x) = N(x) - Nyglx) (111-4-13)

must not be one-signed over the whole energy range. The argument given
at the end of Section III-3 shows that g(x) is positive for large energies, and
negative for low energies, for the case of a moderator with atoms of unit
mass.

Since we have required that N(x) = Nas(x) when x > x., Eq. (111-4-12)
requires that

e N(x) dx :fc N, (x) dx = (X—XC——> (IT1-4-14) _
[ 0 c o .




when we make use of Eq. (III-3-17) for the evaluation of the second integral.

In a similar way, the strength of the external neutron source can be evalu-
ated from formula (III-4-10). Since this evaluation 1s of no further interest
to us, we do not write it out explicitly.

The graphs given in Figs. III-1 through III-4 show clearly the
point mentioned in Section III-4 concerning the low value of energy at which
the maximum of the distribution function Nas(x) is reached. The maximum
in N(x) moves to higher energies with increase of the absorption constant.

o
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x =JE/KT

Fig. III-1. Neutron Density in Moderator of Unit Atomac
Mass for I' = 0.226.
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Fig. IlI-2. Neutron Density in Moderator of Unit Atomic
Mass for [' = 0.451.
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In the low-energy region, in which the neutrons have about the same mean
kinetic energies as the gas atoms, the distribution resembles the Maxwel-
lian 1n form, but in the high-energy region, well above the value

kT(x >>1) 1t takes on the form of Nyg(x).

.
Maxwellian g e et e ete]
g \Y_m e
] f/i :
/ S

10!

NEUTRON DENSITY

x = E/KT

Fig. III-3. Neutron Density in Moderator of Unit Atomic
Mass for I' = 2 257

NEUTRON DENSITY

x = B/kT

Fig. III-4 Neutron Density in Moderator of Unit Atomic
Mass for i = 5.0




III-5. Reduction to the Wigner- Wilkins Differential Equation

It was shown by Wigner and Wilkins 7 that for moderator nuclei of
unit mass it is possible to replace the integral equation of the gas model
by a second-order differential equation. This results from the factoriza-
tion of the kernel P(x,—=x) into a product of two functions, each depending
on only one of the variables, as is shown explicitly in Eq. (III-3-6). This
factorization does not hold for moderator nuclei of other masses.

Wigner and Wilkins make the reduction of their differential equation
after symmetrizing the kernel by use of the condition of detailed balancing
(cf. Section II-4):

P(xg—x) M(xy) = Plx—exg) M(x) , (111-5-1)

where M(x) is the Maxwellian distribution function. This condition holds
for our density function N{(x) if no absorption occurs and no external source
is present, in which case N(x) takes the Maxwellian form.

It is of some importance to observe that so far as reduction of the
integral equation to a differential equation is concerned, the Wigner-Wilkins
symmetrization procedure is unnecessary. For this purpose, we first
rewrite Eq. (I1I-3-9) in the form

X
- x2 N
[V(x) + T] N(x) = 2xe x* e ° &(xo) (o) dxtg
0
[=¢]
+ 2% 6(x) M dxe - (I11-5-2)
Xo

X

Next, we introduce the definition

Px) = Vix) +T N(x) . (111-5-3)

X

This transformation brings Eq. (III-5-2) to the form

X

2 2 D
eX Q\(X) = 2 eXQ @(Xo) V—'(X(()—;(z)‘—f dXQ
0
(e 4]
2 6]
+ 2e ©(x) Do) dxg - (I11-5-4)

Vixg) + T
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The differential equation satisfied by ©(x) which we are seeking can
be found by differentiation of Eq. (III-5-4) twice with respect to x, and
reduction of the resulting formulas. We introduce the abbreviation

P(x) = x0(x) +~7—7?;—exp (-x%) ; (111-5-5)

and the differential equation is found to be

d’ ¢ [Zx @(X)}d®+[(z/ﬁ)e_xz+ 4P (x) }cp 0 (11-5-6)

o T 5F T B(w) J ax P(x) V(x) + T

This equation is equivalent to that found by Wigner and Wilkins. Once the
solution of this equation is known, the neutron density function N(x) can be
calculated from Eq. (III-5-3).

Unfortunately, no analytical solution is known for Eq. (III-5-6), or
for the equivalent equation given by Wigner and Wilkins, and so one is forced
to make use of numerical integration, just as was the case for original
integral equation.

In order to make a comparison with our numerical results for the
integral equation, a numerical solution of Eq. (III-5-6) was made on the
IBM 650 computer at the Argonne National Laboratory. The results of
higher quality could have been made by use of the IBM 704, but the extra
effort did not seem to be justified by the nature of the problem.

III-6. Concluding Comments

In summary, it was found that the numerical solutions of the integral
and differential equations for the gas model, with moderator atoms of unit
mass, agreed well among themselves and also with the numerical work
published by Wigner and Wilkins. This in itself is not surprising, since the
reduction from the integral to the differential equation in this particular case
is exact. It is, in fact, more a check on the reasonable compatibility of the
various approximations used by the different authors. It may be remarked
that Coveyou, Bate, and Osbornl® have carried out a Monte Carlo calcula-
tion with results comparable with those of Wigner and Wilkins.

The favorable character of the results for the particular case of
moderator atoms of unit mass cannot be expected to hold for atoms of
higher mass, as will be seen in the next chapter. In this case there is no
known exact reduction of the integral equation to a differential equation, and
the various approximation methods become less accurate.

10
R. R. Coveyou, R. R. Bate, and R. K. Osborn, J. Nuclear Energy, 2,

153 (1956).
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CHAPTER IV
THE GAS MODEL FOR MODERATOR ATOMS OF GENERAL MASS

IV-1l. Introduction

We saw in Chapter III that for moderator nuclei of unit mass
(atomic hydrogen as a moderator), the Wigner~Wilkins integral equation
of the gas model can be reduced to a differential equation of the second
order. For moderators with masses greater than unity, this reduction is
not possible, except as an approximation, and one is obliged to depend
upon numerical calculations entirely for the study of the integral equation.
The difficulties of the problem in this case are quite severe. The correc-
tions to the differential cross sections due to the thermal motions of the
moderator atoms are more complex than for unit mass, and are strongly
mass dependent. The larger the mass of the moderator nuclei, the more
difficult it is to obtain a numerical solution of the integral equation for a
given accuracy.

In Section IV-2 we shall consider some qualitative features of the
solution. Section IV-3 is devoted to the asymptotic solution (slowing-down
theory) and the approximations involved in it. In Section IV-4 we describe
a direct numerical solution of the integral equation. Section IV-5 will be
devoted to a discussion of some of the approximate solutions which have
appeared in the literature. Section IV-6 contains a comparison of all re-
sults, and Section IV-7 summarizes the results of this study.

IV~2. Some Qualitative Considerations

The general features of the moderation of high-energy neutrons
are similar to those described in Chapter III for moderation by nuclei of
unit mass. However, as the moderator mass increases, the energy dis-
tribution of the moderator nuclei changes over the entire energy range
affecting both scattering and absorption of neutrons. The scattering is
affected because, as the moderator mass is increased, more momenium
is available at every energy for scattering neutrons. This can be seen
from the expression for the moderator Maxwellian distribution in momen-
tum: 422 ;:392 exp(- 2 Z/M), where p = Mv. As M 1is increased,
the peak and the entire distribution is shifted to higher values of p. Thus
the effect of moderator motion is felt at higher energies for greater mod-
erator masses, and the energy range over which the numerical integration
must be performed is extended (cf. figures in Chapter II).

The absorption is affected because, as the moderator mass is
increased, the energy lost per collision is decreased, thereby requiring a
greater number of neutron collisions for a given reduction in neutron
energy. By requiring more collisions for a given energy reduction, the
probability of absorption 1s increased, and so the effect of absorption
extends higher in energy with increased moderator mass.
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IV-3. The Asymptotic Solution (Slowing-down Model).

Our aim is again to use the neutron distribution of the slowing-down
model as the asymptotic form of the solution for the gas model at high
energy. As was indicated in Chapter II, this connection is based on the fact
that the cross sections for the gas model degenerate into those for the
slowing-down model at high energy for arbitrary moderator mass.

However, for a general mass the determination of a suitable ana-
lytic approximation for the distribution function of the slowing-down model
is difficult, and the approximation procedure used in Chapter III is no
longer adequate. The form of the integral equation for the slowing-down
model with the external source placed at infinite energy was discussed in
Section III-3, and is

X/ N, ¢ (x0)
(x +T)Nyg(x) = 28% f —— dx, , (Iv-3-1)

X
< 0

with o= (A-1)/(A+1), A =1/ = M/m, 8% = 1/(1 - a?).

If we set A = 1, for which @ = 0, and 6 = 1, Eq. (IV-3-1) reverts
to the form (III-3-13), with the known solution ([II-3-17) for the case of
hydrogen as a moderator. When A > 1, the exact solution of the integral
Eq. (IV-3-1) is not known in closed form. For this reason it is not profit-
able to attempt to determine Nag(x) from Eq. (IV-3-1). Instead, we start
from a different argument, given by Weinberg and Wigner,!1l which gives
an approximate evaluation of Nag(x) which is adequate for our purposes.

According to these authors, if we use the neutron energy E as the
independent variable, the slowing-down density in the slowing-down model
should be expressible (approximately) in the form

a(E) = Z(E) E€ AE) , (IV-3-2)

where gq(E) is the number of neutrons crossing energy E per second per
unit volume toward lower energies; Z(E) is the total (scattering plus ab-
sorption) cross section; ®(E) is the neutron flux; and

E=1+ (‘2:)2 1n<2;i> (IV-3-3)

is the average logarithmic energy loss in the slowing-down theory.

If the distribution is stationary, as we are supposing it to be, the
number of neutrons absorbed per unit volume per second below the energy
E must be just equal to the slowing-down density q(E). This equality

l11A. M. Weinbergand E. P. Wigner, The Physical Theory of Reactors,
The University of Chicago Press (1958), p. 316.

v
\
I
. 1
i

%




provides the following equation for the neutron flux H(E):

(Eo) dEo . (IV-3-4)
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If the absorption follows the 1/\' law, as we assume, Eq. (IV-3-4) reduces
to the following simpler forms:

. x
—x(x + ") Ngg(x) =T / N g(xg) dxg . (IV-3-5)
= 0

On differentiation of both sides of Eq. (IV-3-5) with respect to x,
we find the following differential equation:

142 1 oE
dNaS(X} + 3 + é; N (S{) = 0 (IV—3—6)
dx x + I as\ ’

which has the solution
C « (Z./if’ ) + 1
Ngg(x) —“;é' <x " 11> ) (IV-3-7)

where C is a normalization constant.

We observe, as a check, that if we set A = 1 (£ = 1), Eq. (IV-3-7)
reduces to Eq. (III-3-17) of Chapter III, which we found by a different argu-
ment for the case of moderator nuclei of unit mass. Also in Chapter III
we found the maximum of the asymptotic neutron distribution to be located
at x = F/Z, and Eqg. (IV-3-7) gives a maximum at x = AF/&, using
£ T 2/(A %) for large A.

As a further check on the validity of Eq. (IV-3-7), we shall consider
the exact integral Eq. (IV-3-1) satisfied by Nyg(x), taking the ratio of the
two terms:

2 9% X’/Q' 1
\I}(X) = X )f Nas(Xo) ;;)" dXo -1 . (IV—3—8)
¢ 0

Substitution of Eq. (IV-3-7) into Eq. (IV-3-8) yields, upon integration,

wiwy - 229%) 1 sm+Tf{x4T (2/2) -1
¥(x) = x 2 - 1! -
r 1 X x + a7

1

[<X+PI>Z/§ ] 1} (1v-3-9)

tofusse
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We now expand the exponential terms in the binomial expansion and retain
2 only the first two terms, since x is large and o nearly unity:

2 1

1 +a 1+@£‘_
=

1

7 (x) (Iv-3-10)

For A larger than 9 and F/x much less than unity, @ is close to unity,
and ¥(x) = 1.

Formula (IV-3-7) is also in reasonable agreement with one derived
by Corngoldl2 by a different method. Corngold gives the asymptotic ex-
pansion for large x:

Nag(x) = %[1 -—%— (1 + i)i’* - --] , (IV-3-11)

whereas from Eq. (IV-3-7) we find the expansion

N C A ( 5 )1 , (IV-3-12)
Nas<x)~;§[l-—z l+_3—j-ix+—-_]

where A = 2ZAI'. The argeement between these two expressions is quite
satisfactory for present purposes, and gives further confidence in the use
of the closed form (IV-3-7) as the appropriate asymptotic density function
at large energies for the gas model.

IV-4. Numerical Solution of the Integral Equation

The integral equation for a moderator of mass greater than unity
is of the same form as Eq. (III-3-9) of Chapter III:
oG
[(V(x) + T IN(x) =f dxq x¢ P(xq — x) N(xq) , (IV-4-1)
0

where now we must use the expressions for V(x) and P(xq — x) derived in
Chapter Il for a moderator mass greater than unity, namely:

V(x) = <x + —1—) 8 («/X.x) + \/&r o-Ax? (IV-4-2)

2Ax
2 2 (TN -4 2
< e T ¥ {u{cixg - Cx) o+ Blwgg Zx)}*a (-x - oxg) - 2{6x + “xg)afxy x (I\" 4-3 )
Pixg = x} 2z
*a 2 2
o T E {51(:3}10 - “x) - Blusg v ”’\}} +ogltx - Exg) + 8(8x + Lxgd if xg  x (IV—4_3”)

12N. Corngold, Ann. Phys., 6, 368 (1959).
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and
I'=xZ,(x)/Z¢ . (IV-4-4)

The numerical solution of Eq. (IV-4-1) will be undertaken by the
same general procedures as were used in Section III-4. The first point is
that above a sufficiently high value, x., we assume that N(x) = Nyg(x),
where the latter function is given in Eq. (IV-3-7). Unfortunately, the
choice of a suitable numerical value for x. gives some trouble for large
moderator masses, since it must be chosen as high as is reasonable, still
being compatible with a suitable choice of range over which the numerical
work must be extended.

We replace Eq. (IV-4-1) by the equation

(V(x) + T')N(x) = f dxo P(xg == x) N(xg) +f ¢ dxg P(xo == x) N(xq)

[we]
+f dxg P(xg — x) Nas(xo) , (1IV-4-5)
X

where

@/&) +1
N, (%) =—§?<X f_ r) : (TV-4-6)

For general moderator mass, the last integral of (IV-4-5) is not
immediately calculable, and must be treated by approximation methods.
We assume that x. has been chosen so large that in this integral we can
replace the function P(xy —ex) by its asymptotic form

3 X J2 if axg <. x < %
— ~ o -4-7
Plxo %) 0 x5 10 otherwise (v )

Xc X/:L Cx (2‘/&)“2
(V(x) + T)N(x) = fo dxg P39 — x) N(xo) + 2 QZX[{C (x4 1)(2/E) +1

if x > ax, (IV-4-8)

(V(x) +I') N(x)

x
c
f dxo P(xg — x) Nixg) if x « wuxg . (1v-4-9)
0
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The analysis will be developed along the lines of that of Section III-4.
Equations (IV-4-8) and (IV-4-9) are written in approximate form by means of
the trapezoidal rule for integrals:

M
N(xi) = -\-/;(TI)-:F Zl P(xj - xi)N(xj) Hj + 26%x; £(x;) )
: (IV-4-10)
where Hj is ths_ mesh size of the j-th interval and
0 , if x; < OX¢
£(x;) -J (IV-4-11)

fxl/(x
dxg ;i x> oaxg
& (x0+1“)(2/§'3)+1

The total number of mesh points is M. The mesh sizes Hj need not be

the same over the whole range of the independent variable. The principal
difference from Eq. (III-4-6) of Section III-4 is in that equation R is a con-
stant, whereas in Eq. (IV-4-10) we have a function f(x) which vanishes

over a certain portion of the energy range.

Equation (IV-4-10) was solved by a successive iteration method,
using the asymptotic solution (IV-4-6) as the first trial function.

The normalization requirement was determined in the same way
as in Section III-4, that is, we require the condition

j; ) N, 4 (x) dx :j;‘ " N(x) dx = (chiw?)z/g , (IV-4-12)

which reduces to Eq. (III-4-10) of Section III-4 upon setting £ = 1.

It is necessary to take the value of x. larger than for the calculation
in Chapter III, and the value chosen must increase monotonically with the
moderator mass if one is to retain a certain accuracy in the solution.

This procedure is limited by the memory capacity of the computing machine.

The numerical evaluation of Eq. (IV-4-10) was carried out on the
IBM 704 computor at the Argonne National Laboratory. With 150 mesh
points, each iteration process required about 10 sec. The number of
iterations required to achieve a given degree of convergence increases
with the moderator mass. Renormalization of the neutron density is carried
out after each iteration to prevent accumulation of errors.

.
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Examples of numerical solutions for various values of the mod-
erator mass and the absorption coefficient are shown in Figs. IV-1
through IV-8 (see pp. 53,54) along with solutions we computed from the
Wilkins and Corngold expressions given in the following section. In
addition, we have reproduced graphs of the Monte Carlo solution of
Coveyou, Bate and Osborn.!0 The deviations from the Maxwellian dis-
tribution are of the same character as those found for hydrogen moderator
(unit mass) shown in Figs. III-1 through III-4. The major point which
shows up is that since neutron absorption becomes more effective as the
moderator mass is increased, the peak of the distribution curve shifts to
higher energies with an increase of both moderator mass and absorption
coefficient.

IV-5. The Heavy Moderator Approximation

Wilkins13 gave a reduction of the Wigner- Wilkins integral equation
for a moderator gas of mass much greater than unity. The major analytical
difficulty one encounters stems from the fact that for a general moderator
mass the kernel of the integral equation is not separable.

The procedure used by Wilkins was to expand the integral in a
power series in the inverse mass ratio . He proposed a formal theory
of summabilityl4 for the expansion as a justification for its use. In fact,
by retaining only terms of the first order in 4, he was able to replace the
integral equation by a second-order differential equation, which is usually
known as the Wilkins equation. This process can be extended formally.
By retaining only powers of u of successive degrees, one can replace the
resulting integral equation by ordinary differential equations of successively
increasing degrees.

Hurwitz, Nelkin, and Habetlerld used a somewhat different approach
by expanding the Wigner-Wilkins integral in terms of the energy transfer
moments of the differential scattering cross section. However, they also
used an expansion in powers of (i, so that the ambiguity in the neglect of
terms of higher order in this parameter remains as it does in Wilkins'
formulation.

In order to discuss this work, we consider first Wilkins' method.
When attention is restricted to the region of lower energy, below the
energy at which neutrons are introduced into the system, the Wigner-
Wilkins integral equation has the form

137, E. Wilkins, Jr., CP-2481 (1944).
147 &, Wilkins, Jr., Annals of Mathematics, 49, 189 (1948).

151—1, Hurwitz, M. S. Nelkin, and G. J. Habetler, Nuclear Science
and Engineering, 1, 280 (1956).
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[ve]
(V(x) + T)N(x) = f P(xy — x) N(xq) dxq . (IV-5-1)
0
The function P(x, — x) satisfies the principle of detailed balancing in the
form (cf. Section II-4)
M(x) P(xg = x) = M(x) P(x = %) (Iv-5-2)

2
where M(x) = x*e~X" is the Maxwellian distribution function. We define
a new function, v(x), by the formula

N(x) = /' M(x) v(x) = xe'xz/?‘ vix) (Iv-5-3)
which yields from (IV-5-1), on use of (IV-5-3),
(V(x) + Dvlx) = f S(x, xg; 1) v(xo) dxg , (Iv-5-4)
0

where the kernel of this integral equation is the symmetrized function

S(x, xo; u) = 6%

l/Z(XZ - X(Z)) _p
e [8(Bx - £x¢) + B(0x + Cxq)]
+ e'l/Z(Xz B X‘Z’)[@(exo - Cx) - 0(6x¢+ Ix)] if x < x4
) (IV-5-5")

/2l = %0 g5 pe) - e(ox + Exo)]

+ e—1/2(x7‘ - x§) [0(6xg - Ex) + ©(Bxy + Ex)]if x > %,
(IV-5-5")

Wilkins argued from his theory of summability that the right-hand
side of (IV-5-4) can be expanded in the following series form:

f S(x, xp; ) wlsed dxy = xv(x) +%[(4x - x4 v'x) Fxvi{x)] + Lf,; [(x5 - 63 + 3x)v(x) + 6(1 - =% v' (%) (IV—5-6)
0

+2(3x - 2% (x) £ 2vMx) +x U (x)] + 0(p?)

"




"

It may be noted that, in this expansion, the condition \/A x > > 2 1is not
actually needed, contrary to a statement given in Ref. 10,

Using this expansion in Eq. (IV-5-4), we have the following relation:

(Vix) + T)v(x) = xv(x) +_!%'“. [(4x - x®) v(x) + V' (x) +x v"(x)] + O(( 5’)5 73
IV-5-

which is equivalent to the relation

(V(x) + T)N(x) = xN(x) +2 [(& + 45) N +(2x% - 1) N' +xN"] + 0(?)

2
(IV-5-8)
In the energy region x >> 2 \/?i .
- 2 -
Vi{x) ®x ot + 0(e-Axf) . (Iv-5-9)

If we keep only the first two members on the right-hand side of
Eq. (IV-5-9) and drop all members of the form 0(u?%) in Eq. (IV-5-8), we
obtain the following differential equation:

*N" + (2x* - I)N'+(4x -A)N =0 (IV-5-10)
where
A= 2AT o (IV"S"I]-)

Wilkins has obtained a solution of Eq. (IV-5-10) in the form of a series.
The results predicted from this solution are of reasonable physical
character, the distribution function being Maxwellian for lower energies
and behaving like l/E at higher energies.

On the other hand. the nature of the approximation procedure used
by Wilkins is unusual, and at first seems to be quite unclear on mathematical
grounds. As has been indicated, the formal solution of Eq. (IV-5-4) by ex-
pans:ion of the right-hand side in powers of [, with omission of successively
higher powers of (i, leads to the consideration of a sequence of differential
equations of increasing orders. Although no general theory is known to the
author, the approximation of functions by solutions of differential equations
of increasing orders would seem to be closely related to the Weierstrass
theorem concerning the approximation of continuous functions by polynomai-
als. In the present case the differential equations involved are so com-
plicated that the convergence of the process could be tested only by
extensive numerical calculations, which would not have been justified in
this work. In the last analysis, the fact that the distribution function has
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a quite simple form may be a strong contributing factor in the convergence
of the various methods of approximation.

A comparison of the results obtained by numerical evaluation of the
Wigner-Wilkins integral equation with similar calculations made for the
Wilkins differential Eq. (IV-5-10) will be given in Section IV-6. It need
only be said here that the agreement is so good that it increases confidence
that the convergence of the approximation procedure is actually quite good
in this problem, even though we have no detailed proof of this fact.

It is of interest to compare Wilkins' reduction of the Wigner-Wilkins
integral equation with that developed by Hurwitz, Nelkin and Habetler.l5
Let ¢(€) be the neutron flux per unit energy range, with 2_(¢) and Za(e)
the macroscopic scattering and absorption cross sections, respectively.

The neutron energy will be measured in the reduced units € = E/kT. In
these variables the Wigner-Wilkins integral Eq. (IV-5-1) takes the form

[e0}

[Zg(e) + 25(e)] ¢(e) = f Zsleg = €)d(eg) dey . (IV-5-12)
0
The total and differential scattering cross sections, Zg(€) and

Z(eg—m=e), are given by Eqgs. (I1I-4-18) and (II-4-16), respectively, of
Chapter II. They are related by the formula

(2]
2g(€) :f Z(e = g4) d€g . (IV-5-13)
0
The absorption cross section will be assumed to be proportional to
1//€, as is done throughout this work.
We will set
P(e) = M(€)gle) = ee"gle) (IV-5-14)

so that the deviation of the function g(€) from the constant value unity
measures the deviation of the distribution from the Maxwellian form M(€).

By means of the principle of detailed balancing,
Z(eqg =) Mleq) = Z(e = o) M(¢) )
and the relation (IV-5-14), we get

Z(eg = e)d(eg) = Z(e— gy)glee) M(€) . (IV-5-15)




Substitution of this into Eq. (IV-5-12), gives, after a little
manipulation,

— dg S S d’g
+-5- Ae
de de

|
+ e

dfg

det

(e8]

..*._l'_ Agn 4 o v e
11.

(IV-5-16)

The Ac™'s are the energy change moments of the differential
scattering cross section, defined by the formula

Zs(€)f degleg - g)n I = ey) (n=1,2,3,--+)
0

(IV-5-17)
Straightforward evaluations of these quantities can be made to give full
expressions without use of the formalism of Hurwitz et al.l5

The first few of these quantities are as follows

4 2A 5 2
A = - T — + R A»-
© A+l (A+1)2t’ (A+1)2  (A+1)? ”( b)
A€2 _ _l_é AZ g2+ 4 A ) 32A n 112 A . 6
3 (A+1)2 (A+1)2  (A+1)2 3 (A+1)
( g0 124 1 )
A+1)? (A+1) 3 (A+1)*
22 R (‘v’ > —-—;R <‘\/A€>
( 3(A +1)? A+1) (A+1 ) 1\vAe ‘% (A+1)
5 _ 164 3_[ 324 1924 zu;AZ]ez
“ (A+1)6 © (A+1)* (A+1)5 (A+1)®
[ 704A 1344A]_
+ - + €
A+1)? (A+1)* (A+1)®
732 32, 1448 1488 ]
(A+1)° A+1) (A+1)* (A+1)°
08 888 522
[ =96 ;T 6:|R1<«/A€>
A+1)? (A+1) (A+1) (A+1)
(200 16 . 96 . 174 6>R (JE>- 6R3<«/A_€>
(A+1)® (A+1)* (A+1)Y (A+1) (A+1)

(1v-5-18)
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The three functions appearing in the above expressions have the definitions ‘

R, (m) _ @(«/K-;)Z
o(/Ac)(2ae +1) t T JAe e-AE

JAe e-Ac
JAe)(2Ae + 1) +f-;r2-‘ JAe e-A€

R, (+/Ag) = «/% :
C

R;( ~/Ac) = Ae R, (JAe) . (IV-5-19)

These functions are all bounded, varying from 0 to 0.5. In the evaluation
of the higher moments, we need functions of the form of (A 6)/C R, (4A ¢
(¢ = 2,3 ---), but each of these is also bounded.

Though in Hurwitz' formalism the condition ;,LT/E < 1 was necessary
to guarantee the convergence of the expression, we do not require any con-
dition in this straightforward evaluation.

Upon looking at expression (IV-5-18), we realize the situation is
similar to that we have faced in (IV-5-6), i.e., we have to be careful
in the treatment of higher order in 1/A = (. The first term in Ae? varies
as (€/A)% and the first and the second terms in A€® vary as (e¢/A)? and
(e/A)Z, respectively. As in Eq. (IV-5-6), the simple assumption of _
1/A < <1 1is not enough to justify one omission of these terms in Ae?;
rather, we require (€/A)<< 1 in addition to i = l/A << 1.

With the condition that (E/A) <1, the Ael's are approximated
by retaining only first-order terms in u:

Ae > 2u(2-€)

Aet = 4pe
Aem = 0[u?, (ue)? n=3 . (1V-5-20)

Here l/(A+l) is treated as 1/(A+ 1) = 1/A = g by virtue of the condition
po< <L

By substituting these approximate expressions into Eq. (IV-5-16)
and assuming that the role of the derivatives of higher order are insignificant
if their coefficients are small, we get the following approximate second-
order differential equation:

d%g dg A Zale)
= t2-elge=3

[-5-2
1= (IV-5-21)




. We remind ourselves that this equation may be valid in the energy
range 0= € . < A provided l/A < 1.

This equation is sometimes referred to as the Hurwitz equation,
and has been the point of departure for numerous studies 16 of the space-
or time-dependent thermalization problem.

Hurwitz et al., remarked further that, if one approximates
zs(€) by Z¢, Eq. (IV-5-21) reduces to the Wilkins Eq. (IV-5-10) on
changing the independent variable from € to x and transforming to neu-
tron density. It appears, therefore, that apart from minor differences,
the reduction procedures followed by Wilkins and by Hurwitz et al., for
the Wigner-Wilkins integral equation are effectively equivalent. Both in-
volve the following assumptions:

(1) The moderator nuclei are very massive;

(2) The total scattering cross section is approximated by
free nuclear scattering cross section; and

(3) The contributions of the higher-order derivative terms in
the expansions are small.
As concerns item (2), we note more specifically that Wilkins used

1
the approximation Zg(x)= IZf (1 +m), whereas Hurwitz et al., used

Es(x) ~ Z;. Clearly, there is an insignificant difference between them for
large values of J/Ax.

Corngoldl?‘ has used another formalism employing an extensive
expansion of the scattering cross sections. After expanding N(x) in
powers of U, i.e.,

NG = » NBLE (IV-5-22)

he has shown that the Wilkins Eq. (IV-5-10) is deducible from his formal-
ism as a first approximation. He also gives the next-order approximation,
which comes directly from Eq. (IV-5-6) by retaining second-order terms

in .
Wilkins' equation,
xNy + (2x% - I)N} + (4% - A)Np = 0
. 160, v, Kazanovskii, A. V. Stepanov, and F. L. Shapiro, Proceedings of

the International Conference on Peaceful Uses of Atomic Energy,
Geneva, 1958, United Nations, 16, p. 279.
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and the second-order equation proposed by Corngold as the next order
of approximation,

1 [ 1 2 2A 1 i
xN; + sz—l—'K<;+—é— ;)]Nl

i 1 (4 20 A2 1 4A
+ i4x - A+K<F+;—+§'—4>§—T:|Nl =0 , (Iv-5-23)

were solved numerically by emploving the IBM 704 at the Argonne National
ILaboratory. In both equations, the normalization condition

f No(x) dx :f N;(x)dx :[ N(x) dx = 1 (IV-5-24)
0 o 0

was imposed for easy comparison with our solution N(x) of the integral
equation. These solutions are compared in the next section.

IV-6. Comparison of Results

The solutions of the integral equation for different moderator
masses and absorptions computed from Eq. (IV-4-10) are shown in Figs.
IV-1 through IV-8, and are denoted by N(x). For reference we have
plotted a neutron Maxwellian distribution at the moderator temperature
on all graphs. In addition, on each graph we have plotted the asymptotic
solution N,g(x) for the moderator at rest but with absorption present. In
each case, N(x) approaches Nas(x) at higher energies, as it should, since
at higher neutron energies, the influence of moderator motion becomes
negligible. At lower neutron energies, all graphs show the effect of mod-
erator motion on the neutron distribution, namely, the up-scattering of
neutrons by the moderator.

There are two other effects to be observed in the graphs. One is
the influence of the mass of the moderator, which shifts the peak of the
neutron distribution to higher energies as the moderator mass increases.
This arises from the up-scattering caused by a heavier moderator mass,
which has more momentum to impart to a neutron upon collision. The
second effect is the influence of absorption, which also shifts the peak of
the neutron distribution to higher energies as the absorption increases.
Throughout our calculations we have assumed l/v absorption, which
means a constant absorption rate for neutrons of all energies; fewer
neutrons are left at the lower energies. Thus, the neutron distribution is
hardened by absorption and also by a heavier moderator.
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In six of the graphs we have reproduced the Monte Carlo results
of Coveyou, Bate, and Osborn.10 The Monte Carlo curves appear lower
than ours because of a different choice of normalization by these authors,
and with renormalization, their curves are coincident with ours. We have
converted their absorption and abscissa units into ours for these plots.
Thus our solution N(x) is in excellent agreement with this Monte Carlo
calculation, which is a totally different way of calculating the neutron
distribution. Ordinates for the Monte Carlo curves are given on the
right-hand side of the figures.

On each of the graphs we have shown as a dotted curve our solu-
tion of Wilkins' equation. We have chosen the normalization of our N(x)
and Wilkins' solution so that the area under each curve is unity. We ob-
serve that there is a consistent slight difference between the solution to
Wilkins' equation and our N(x), and the surprising thing is that this dif-
ference is approximately the same regardless of the moderator mass or
absorption. However, in the region of greatest interest, from the peak of
the neutron distribution to the asymptotic range, our solution is a slightly
harder neutron distribution than that of Wilkins'.

Corngold's solution, although not shown in our graphs, lies
between Wilkins' solution and our N(x) from the peak to the asymptotic
region, but at very low energies drops markedly below N(x).

To bring out the difference between solutions of the Wigner-Wilkins
integral equation and the heavy moderator approximations, namely. Wilkins’
equation and Corngold's equations, we computed the activation of 20 Ybie8,
This isotope has a resonance absorption peak at 0.597 ev, which is approxi-
mately in the energy region where these solutions show marked differences
Furthermore, the differences are magnified by coveringof Yb witha 0.0l -1n.-
thick layer of cadmium to eliminate the contribution of the thermal portion
of the spectra. Numerical estimates of foil activations were made for mod-
erators of masses 2, 9, and 12, and flux depressions caused by the presence
of the indicator were ignored. We have also estimated the response of other
detectors, such as of Lu176, U%% and Pu239, for the same moderator masses
and tabulated the results in Table IV-1 along with ones for Yb'%®, Activation
or fission is given in unit of N (number of atoms) x 10724,

We observe that the Yb!%® response and the PU.Z“?’Q/U235 fission ratio
are sensitive indicators. The former shows more than 10% difference, and
this is even further magnified by using a cadmium layer. On the other
hand, the responses of Lu'™ and U?% are insensitive.

It is noticeable that the lightest moderator (mass 2) shows the great-
est difference, although the order of the magnitude is about the same for all
three of them. The Corngold solution gives a correction to the Wilkins
solution in the direction of the solution of the Wigner- Wilkins integral equa-
tion, but it is still closer to the Wilkins solution rather than to the Wigner-
Wilkins solution.
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Table T¥-1

¥b168 Activation (Unit N x 10-24) Pu239 and U235 Fission
Lul78 Activation Ratio Un"N_ZS_
Bare  0.01" Cd-Shielded (CdRatiorl Bare (Unit Nx 10724 U235 (Unit Nos x 10-28)  Pu239 (Unit Nog x 1024 Nog
Mass 2, I'0,15310
Wigner-Wilkins 10971 5071 0.4622 &8 8249 16021 0.5149
Wilkins 9431 3957 0.4195 4441 8348 15343 05441
Raﬁo(w'v‘O"\;vW) 0.1404 0.219 0.0924 0.0213 )0.0120 0.0423 (-10.0567
Mass 9, T 0.03829
Wigner-Wilkins 11389 5319 0.4670 %93 8273 16376 0.5052
Wilkins 10142 43 0.4369 4556 8399 16054 0.5194
Ratio(ww'\;,w') 0.10% 0,1667 0.0644 0.0292 -10.0078 £.0197 10,0281
Mass 12, I"0.03829
Wigner-Wilkins 13508 6868 0.5084 12 3057 17508 0.4602
Wilkins 11922 5746 0.4820 4748 8108 16629 0.4876
Corngold 12242 5981 0.4885 4751 8082 1673 0.4829
Ratio (‘-’ivl\f-’wﬂ) 0.1174 0.1633 £.0519 0.0334 10,0063 0.0502 {-16.0556
Ratio (WW W C') 0.0937 0.1291 0.0391 0,0328 -10.0031 0.0440 10,0493

IV-7 Summary and Concluding Remarks

It has been the purpose of this thesis to examine the gas model of
neutron thermalization for a general moderator mass. To do this, we have -
formulated the thermalization process as an integral equation. This integral
equation, with a nonseparable kernel, cannot be solved in closed form, nor
can its asymptotic solution, the slowing-down model solution, be given in
closed form, except for unit moderator mass. Wigner and Wilkins have
solved the integral equation for unit moderator mass, the one case for which
the kernel is separable, by converting to a differential equation and then
solving the differential equation numerically.

For moderators of general mass, however, the integral equation
cannot be converted into a differential equation because of the nonsepara-
bility of the kernel. As a result, different authors have expanded the
kernel or replaced the integral by a power series in the inverse mass
ratio, and finally solved these abbreviated forms numerically. The math-
ematical and physical implications of these procedures are not entirely
clear.

Because numerical solutions had to be resorted to in all cases
anyway, even for the simplest, unit-mass moderator, we have undertaken
a numerical solution of the original integral equation. This procedure
has the drawback that for even the slightest change in one parameter the
entire numerical solution must be repeated. However, we are able to
give a solution for any desired set of parameters without first altering
the integral equation before applying numerical methods.
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It is interesting to note that the solutions to some of the approxi-
mations made by other authors are surprisingly close to our numerical
solutions. This closeness suggests that the integral equation has some
character of stability of its solution that merits further investigation.

The work developed here is by no means a complete study of
neutron moderation. But it is hoped that the means we have provided for
obtaining specific numerical solutions, together with the comparison to
other works, will be of help in the construction of a really satisfactory
theory of thermalization.
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APPENDIX

IBM 704 PROGRAM FOR SOLUTION OF WIGNER-WILKINS INTEGRAL
EQUATION FOR MODERATOR OF GENERAL MASS

Equation (IV-4-5) on page 43 is solved by successive iteration
method by putting in the asymptotic solution (IV-4-6) on the same page
as the first trial function.

After reducing to the form (IV-4-10) on page 44, a simple change
of independent variable gives the explicit expression for the second member
inside of the bracket:

B(x;) = 26%x;f(x;)
0 if x . oxg
Sx [Z(Xi)R - Z(Xl)P + Q} if x.0x
1 R P g ’
* where
S = ZQZP/I" = constant
P =2/
R = P-1
Y = Xe (xc +T)
Z(x;) = x;/(x; +al)
and
Q = (YP/P) (YR/R) = constant
By setting RM(x;) = V(xj) +T7 . Eq. (IV-4-10) on page 44 is written as

N(x,) z P(xexj) Hj Nixj) + B (x;) ) (A-1)

- RM(xl

where (M + 1) is the total number of mesh points under consideration
[N(0) = 0].

The set of equations (A-1)istobe solved by successive iteration
process.
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The normalization is taken such that

Xc e x Z/Ei
f N(x) dx =/ Nas(x) dx =<;{—§—1-_,-> (A-2)
0 0 ¢

is to be satisfied, as was mentioned in the text [Section IV-4, Eq. (IV-4-12)].

As was also mentioned in the text, the program was written in such
a manner that the computer did not need to repeat the evaluation of the
quantities P(xg—>x) and V(x) so long as the moderator mass and arrangement
of mesh points were kept fixed.

The program was written to make use of a maximum of 150 mesh
divisions. For a given arrangement of mesh points, the energy scale was
divided into three regions: (0, M1), (M1, M2), (M2, M). It was convenient
to have ax fall on one of the mesh points in the region M2 by proper
choice of x..

The program could be written to operate in different ways by the
use of sense switches. 1t could furnish evaluations of the scattering rates
(both differential and total) if desired. It was possible also to write out
values of ABCR(I) = |[D(®) (1) - D®-1) (1| or of

pln)(y) - pln-1)(1
plr -1y

ABCR(D) =

after any number of iterations. Sense switch 1 provided a write out of the
neutron density after any desired iteration and stops the progress.

The output data were the values of x, with the values of the asymp-
totic solution and of the neutron density at each such point.

The input data were read in with two cards. The first provided the
mesh arrangements and the moderator mass. The second care provided
the absorption constant, convergence criterion, and the index K which gave
the order to the machine as to whether it should read in new first input
data and start the problem with new moderator and mesh point arrange-
ments, or to carry another iteration process but for a new value of the
absorption coefficient (K > 10 leads back to command 1).

A block diagram of the program is shown below and a write-up of
the program is attached.




BLOCK DIAGRAM (1F THE PROGRAM
e

| 1 | READ IN: MOD. MASS & MESH POINTS ARR'G'NT

{
DETERMINATION OF MESH POINTS & MESH SIZES
EVALUATION OF NECESSARY CONSTANTS
I
EVALUATION OF SCATTERING RATES
(DIFFERENTIAL AND TOTAL)

$.5.4
WRITE OUT
555
WEIGHT DIFFERENTIAL SCATTERING RATE BY
MESH S1ZES
ALY = PULIH, 5
I ¥
4l | READ IN: ABSORPTION CONST. CONV. CRITERION
AND INDEX K
T
EVALUATE:
RMUx) = Vixp) + T
Bx;)

ASY, SOL. AS(x;)
NORMALIZATION STANDARD SAR
I

PUT IN: INITIAL TRIAL FUNCTION
Dixp) = AS (x)

L&

[T65 | REGISTER: NUMBER OF ITERATION, NITR [
f

| [ TDth = (ZTALIDU) + BOYRMLL I
5.5.3

t [ . NORMALIZATION |

ID(-DII 1
ABCRII) = I————’] ;

J D} I 1 ABCR(D = | TD(-D(1] ’
I 1

§ [ D) = TO() |

5.5.2

WRITE OUT:
NITR, ABCR(D)

5.5.1 H—J

i | CHECK OF CONVERGENCE ]
S— PASS] [FAIL

[ WRITE OUT:

NEUTRON DENSITY
ASYMPTOTIC SOLUTION

K<10

sz[

61




62

50

55

60
65

66
67

70
71

72

73

88

Ty
99

Q={YeaP)/P-{Y=eR} /R
S=THETAS=2.02p/GAMMA
DOS0I=M2: M
Z=X{IV/{X{1Y4+ALPHA=GAMMA)
BiI)=X{1)=#S={{l=2R)/R-[Z%=P})/P+Q}
GC=P2GAMMA

T=P+1.0

DO551=1,M
U=sX{I1i1/7{X{1)+CAMMA)
AS{I)=Ga{{U=eT)/{X{1)222}}
SAR=Y=wapP

DO6CI=1,M

DITI=ASI1]

NITR=NITR+1}

DO6TI=1,m

TD{1¥=RB1{1}

DO&EI=T M
TO{13=TDLIV+AL{1l,J3D{J}
TOLIi=TD{I}/RP{]I}
IF{SENSE SWITCH 3) Tu,70
AR=TD({ 1isH]

DO7T1I=2,M11
AR=AR+TD{I1=H1
AR=AR+TD{MTIaHM]
DO72I=M12,M21
AR=AR+TDII)=H2
AR=AR+TD(M2) #HM2
DOT3I=M22,M3
AR=AR+TD{I)=H3
AR=AR+TD{M}=HM
RNLC=SAR/AR

DpBRI=1,M
TD{13}=T0{1)=RNC

ABCR{I}=ABSF{TD{I}-DI(I)}

G070 75

DO9?I=1,M
ABCR{I)=ABSFU(TDIII-DIIN)/DH{I))




31

32

33

35

36

37

38

40

i

h2
45

DO31I=2,M

Ji=1-1

DO31d=1,J1
AlLd)={THETASeX{II/X{I) )= (EXPF{X{J)=s2-X{1}%e2)
Xe{ERRORFITHETX{JI-ZETAX{I) ) +ERRORFITHETX{J)+ZETAX{I}I ]
X+ERRORFI{THETX{I}-ZETAX{J})I=FERRORFITHETX{I)+ZETAX{J}))
IF{SENSESWITCHL)I32, 35
WRITEQUTPUTTAPEZ2,B00
WRITEQUTPUTTAPEZ2,B10,AMASS

DD33I=1,M

WRITEOQUTPUTTAPEZ,820,X1 1}
WRITECUTPUTTAPE2,830
WRITECUTPUTTAPEZ +BU0{Je XTI eAlIJ)ed=1,M)
WRITEQUTPUTTAPEZ,850

WRITEDUTPUTTAPE2,860
WRITEQUTPUTTAPEZ,8L0{I+X{1)sVII)eI=71,sM)
IF{SENSESWITCHS) 1,35

HMI={HI1+H2}/2.0

HM2={H2+H31/2.0

HM=HK3/2.0

DOBOI=1,M

DO36J=1.¥11

AllsJi=A{1,J)2H]

D037J=M12,M21

A{1.d)=A11.J)2H2

DO3BY=M22, M3

AllsJi=A{1,J)#H3

A{IsM1)=A(I,¥]1)=HMI

A{I M2)=A{1,M2)aHVM2

A{IosMI=A{l,M)aHNM

READISO,NsKsCRTM,GAMMA

NITR={

Dou2i=1,M

RM{TI=V(1)+GAMMA

DOuSI=1,M21

B{i11=0.0

Y=XC/{XC+GAMMA)




64

NEUTRON THERMALIZATION {[ITERATIONY 6-14
DIBENSIONFP{ IS0} o X{ 150}, THETX{1S0),ZETAX{ 1503, 4501501,
XD(i50}, TD{ IS0 ABCRIIS50), A1 150,150} RM{150),B(1503,V(150}
1 READIGO M1 ,M2,MeH1,H2, AMASS
AMS=SQRTF{AMASS)
ALPHA=(AMASS—=1.0}/{AMASS+1.0}
THETA={AMASS+1.01/({2.0=AMS})
LETA={ AMASS-1.0)/1{2.0=2AMS)
THETAS=THETA=THETA
GSI=1.04{{{AMASS~1.01222)/{AMASS=2.0) 1=LOGF{ALPHA)
P=2,0/6S51
R=pP=-1,0
Mil=M1-1
Mi2=Mi+1
M21=M2-1
M22=M2+¢1
M3=M=-1
DOSI=1.M
5 FPL{II=FLOATFI{1}
DO10I=1.M1
10 XUIi=FP{I}aHl
DOISI=NM12,M2
15 X{Ii=X{MI}+(FP{I1}-FPIMI))=eH2
KC=X{M23) 7ALPHA
H3={XC-X{M2} )7/ (FPI{MI-FP{M2})
D020I=M22.M
20 X{IV=X{M2)4+({FP(I1)-FPI{M2}}=H3
DO251=1,M
THETX{I}=THETA«X{1}
ZETAX{II=2ETA=X{1)
25 viI)={X{13+1.0/12.02AMASS=X{I1}) }=ERRORFIAMS=X{1)]
X4{0.56418958/AMSI2EXPF(-AMASS=X(1)i=a2)
DO3pi=1:M
DO30J=1,M
30 A{IJi={THETAS=X{1}/X{J))={EXPFI{X{J)2=2-X{1)ee2])
Xe {ERRORFITHETX(JI-ZETAXI{ I} )—ERRORFITHETX{JI+ZETAX(I) )}
X+ERRORE{THETX{I)—ZETAX{J} ) +ERRORF{THETX{I}+ZETAX{J} )]




73
76

77
78
9

80
85

DOTEI=1,M

D{II=TD(I)

IF{SENSESWITCHZ2ITT7,. 78
WRITEQUTPUTTAPE2 ;300 NsMI M2 My HIsH2,AMASS;GAMMAZXC , CRTHM
WRITEGUTPUTTAPEZ2,400,NITR
WRITECUTPUTTAPE2,500+ (1, ABCRITI};I=1,M)
IF{SENSESWITCHIIB5,79

D0BOI=1,¥

IF(CRTE-ABCRII1165,80,.80

CONTINUE

WRITECUTPUTTAPEZ,200
HRITEQUTPUTTAPEZ s 300Ny M1 M2y MeHT s H2  AMASS;GAMMAXC,LRTH
WRITEQUTPUTTAPEZ2,400,NITR

WRITEQUTPUTTAPEZ2,600
HRITEQUTPUTTAPEZ s 700 {1 X{I1,AS{13,D{13,1I=1,M)}
IFIK=-T0141,141

100 FORMAT{3I3,1P3E12.4)

150 FORMATI(2I3,1P2E12.4}

200 FORMAT{3SHINEUTRON THERMALIZATION (ITERATION})

300 FORMAT{S5H N = 13,8H M1 = 13,8H M2 = 13,7TH M = I3,8H HY =
XPE11.4,8H H2 = E11.4,8H MASS = EV11.4/9H GAMMA = E11.4,8H XC
XKETlok, 10H CRTM = El11.4}

500 FORMAT(22H NO. OF ITERATION = 14)

500 FORMAT(6{I&6,1PETTI.U))

600 FORMAT({16H NEUTRON DENSITY/93H I X AS5Y. SCL.
X DENSITY 1 X ASY. SOL. DENSITY)

700 FORMAT(2(I9, IPET12.4,2E13.4))

800 FORMATI(25HIENERGY CHANGE PROBABLITY)

810 FORMATI{22H MODERATOR MASS = 1PEI2.4)

820 FORMAT{IHHIINCIDENT X = TPE11.4}

B30 FORMAT{93H J X{J) PROB. J X{Jd
XPROB. J Xt3) PROB. )

Bu0 FORMATI(3(I6,1PEI2.4,E13.4))

850 FORMAT{34HITOTAL ENERGY TRANSFER PROBABILITY)

860 FORMAT(92H 1 X{13 VIT) i X1}

Vi1 i X{1} viil)

ENDI{Os 1,040, 1)

65

1


http://1PE12.il



