GEODESIC PATHS ON SURFACES OF REVOLUTION: A COMPUTER-AIDED FILAMENT-WINDING DESIGN PROGRAM
(Prepared for Candia Corporation under Purchase Order ASB-92-1849)
T. W. Bookhart
A. H. Fowler

UNION CARBIDE CORPORATION

NUCLEAR DIVISION OAK RIDGE Y-12 PLANT
operated for the ATOMIC ENERGY COMMISSION under U. S. GOVERNMENT Contract W-7405 eng 26

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Printed in the United States of America. Available from Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards,
U.S. Department of Commerce, Springfield, Virginia 22151

Price: Printed Copy $\$ 3.00$; Microfiche $\$ 0.65$

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.
As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such cantractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

UNION CARBIDE CORPORATION

Nuclear Division
Y-12 PLANT
Contract W-7405-eng-26
With the US Atomic Energy Commission

GEODESIC PATHS ON SURFACES OF REVOLUTION: A COMPUTERAIDED FILAMENT-WINDING DESIGN PROGRAM

(Prepared for Candia Corporation under Purchase Order ASB-92-1849)
T. W. Bookhart
A. H. Fowler

Distribution:

In addition, this report is distributed in accordance with the category Mathematics and Computers, as given in the "USAEC Standard Distribution Lists for Unclassified Scientific and Technical Reports'"; TID-4500.

ABSTRACT

Fortran computer programs have been written that will determine the geodesic paths on an arbitrary surface of revolution. The programs can also determine the number of circuits of the geodesics necessary to produce a wrap of a specified thickness. This thickness can be for one geodesic or be the cumulative buildup of many geodesics. Once the geodesic paths are determined, thickness profile and helix angle plots are produced. In addition, routines are available for plotting the geodesic paths on the developed surface giving a two -dimensional picture of the paths on the surface.

LEGAL NOTICE

This report was prepared as an account of Governinent sponsored work. Nether the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Make any warranty or roprecectation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the B. Assumes any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract disseminates, or provides access to, any information pursuant
with the Commission, or his employment with such contractor.

CONTENTS

. SUMMARY 6
INTRODUCTION 8
DISCUSSION OF THE STUDY 9
Filament Path on a Surface of Revolution 9
Geodesic on a Cone 9
Section-Crossing Criteria 11
Determining a Circuit of the Geodesic 14
Geodesic on a Developed Surface 16
Geodesic Characteristics 17
Computer Programs 24
Fortran Program 24
APT Program 24
Comparison of a True Geodesic with a Geodesic Computed by the Approximation Technique 24
Definition of Terms 25
APPENDIX A 27
Developed Surface 27
Developing a Surface 27
Transformation of a Point on Surface (z, θ) to a Point on the Developed Surface (x, y) 27
Drawing a Geodesic on a Developed Surface 29
APPENDIX B 33
Additional Geodesic Derivations 33
Evaluation of the Constants of Integration 33
Helix Angle at a Parallel 36
Determining an Initial Helix Angle to Produce a Geodesic with the Desired Number of Revolutions Per Circuit 37
APPENDIX C 39
Derivation of Equations for Thickness of Wrap 39
Computing the Coverage 39
APPENDIX D 45
Computer Programs 45
Fortran Program 45
Input Format for the Main Program DESIGN 52
Input Format for the Main Program DEVPLT 52
Output of the Main Program DESIGN 52
Output of the Main Program DEVPLT 54
APT Program 54
Program Listing 56
REFERENCES 90

SUMMARY

Computer routines have been developed for computing a geodesic path on an albitracy surface of revolution. This computation is accomplished by approximating the surface with a series of conical and cylindrical sections (approximating the contour of the surface by straight-line segments) and determining the geodesic path on each section. It was shown by S. P. Gold .(1) that the geodesic on the approximated surface converges to the geodesic on the actual surface as the surface approximation converges.

In cylindrical coordinates, $r=k z+b$ on each of the sections, and a geodesic path can be written in terms of θ as a function of z. If the contour of the surface is approximate by straight lines joining the points ($r_{n^{\prime}} z_{n}$) and the initial conditions of the geodesic are that it pass through the point (r_{0}, z_{0}, θ_{0}) at the helix angle $\alpha 0$, the theta (mandrel) rotation $\left(R_{c}\right)$ for one circuit is found to be:

$$
R_{c}=2 \sum_{n=j}^{L} \Delta \theta_{n},
$$

where J and L are the sections in which the geodesic turns around and:

$$
\Delta \theta_{n}=\left\{\begin{array}{c}
\Delta \theta_{n}=\theta\left(z_{n}+1\right)-\theta\left(z_{n}\right) \\
\left(\sqrt{1+k_{n}^{2}} / k_{n}\right)\left[\sec ^{-1}\left(r_{n}+1 / c\right)-\sec ^{-1}\left(r_{n} / c\right)\right] \text { on conical sections } \\
\left(z_{n}+k_{n} \neq 0\right), n \neq J, L, \\
\left(\sqrt{1+k_{n}^{2}} / k_{n}\right)\left[\sec ^{-1}\left(r_{n}+1 / c\right)\right] \text { on section } J, \\
\left(\sqrt{1+k_{n}^{2}} / k_{n}\right)\left[0-\sec _{n}^{-1}\left(r_{n} / c\right)\right] \text { on section } L,
\end{array}\right.
$$

where:

$$
\begin{aligned}
k_{n} & =\left(r_{n+1}-r_{n}\right) /\left(z_{n+1}-z_{n}\right) \text { section slope, and } \\
c & =r_{0} \sin \alpha_{0} .
\end{aligned}
$$

The geodesic turns around at the points where the surface radius equals c; that is,

$$
\begin{aligned}
r_{\text {min }} & =c \\
& =r_{0} \sin \alpha_{0}
\end{aligned}
$$

The value R_{C} (in radians) when divided by 2π is the number of revolutions per circuit for the specified geodesic. If R_{c} is written as a fraction, A / B, where A and B have no common factors, then A is the number of revolutions per pattern and B the number of circuits per pattern. A routine is included to find, if desired, a new value of α_{0} which will produce a geodesic with a specified number of revolutions per circuit.

Computer routines have also been written to compute and plot two factors used in the stress analysis of filament-wound structures, helix angle, and thickness of wrap. In addition, the routines will determine the number of circuits necessary to produce a specified thickness at a point. This specified thickness can either be from one geodesic or be the cumulative buildup of many geodesics.

One of the useful by-products of approximating a surface by a series of conical and cylindrical sections is that cones and cylinders are developable; that is, if sliced, they can be laid out flat in a plane (see Appendix A). Geodesics on a cone or cylinder become straight lines on the developed surface. Routines, both Fortran and APT, have been written to draw the developed surface and to plot geodesic paths on this developed surface. This developed surface plot has been useful in determining certain characteristics such as thickness of wrap and number and location of crossovers. The developed surface plot can also be used to set up a winding machine by cutting out the plot and pasting it on the mandrel to be wrapped.

These routines are useful to engineers in designing wrap patterns for filament-wound structures. They are also the basis for routines used in locating the path of a filament feed eye of a numerically controlled filament-winding machine. (2)

INTRODUCTION

Combining high-strength filaments with resins in a composite structure has led to structural elements and parts which have exceedingly high strength-to-weight ratios. New materials, which lend themselves to filament windings, are being rapidly developed and new applications of composite structures are appearing. Products currently made by filament-winding techniques range from light-weight fishing rods to large railway tank cars.

As the applications of filament winding increase, so does the need for abetter understanding and definition of wrapping patterns. One large class of filament-winding applications involvesshapes which are surfaces of revolution. Since a geodesic path on any surface is a stable path, geodesics are often chosen as the desired filament paths. Therefore, this investigation was made by $Y-12$ Plant personnel to determine geodesic paths on an arbitrary surface of revolution and to compute fiberhelix angle and thickness buildup which would result from wrapping these patterns. The project was sponsored by Sandia Livermore and carried out under Purchase Order ASB 92-1849.

DISCUSSION OF THE STUDY

FILAMENT PATH ON A SURFACE OF REVOLUTION

Since a geodesic on a surface is a stable path,(3) a filament laid along a geodesic will have no tendency to side slip. For this reason, geodesics are often chosen for the desired filament paths. However, the equations for geodesics on surfaces other than simple surfaces such as spheres, cones, and cylinders are not easily determined. Therefore, a method of approximating a geodesic on an arbitrary surface of revolution is undertaken.

To determine a geodesic on an arbitrary surface of revolution, first approximate the contour of the surface by a series of short, straight-line segments. When rotated about the axis of revolution, these line segments generate a series of conical and cylindrical sections that approximate the surface of revolution. Then, by using the equations for a geodesic on cones and cylinders and by determining the criteria for crossing from one section to another, a geodesic can be computed for the arbitrary surface of revolution.

GEODESIC ON A CONE

The problem associated with surfaces of revolution can be simplified by using cylindrical coordinates (r, z, θ). On a surface of revolution, r is a function of z and a point or curve on the surface can be defined in terms of two variables, z and θ.

To determine a geodesic on a cone, the property of the geodesic that is utilized is that between any two points on a surface, the path of minimum arc length is a geodesic. Therefore, to determine a geodesic between two points (Figure 1), it is necessary to find the curve which minimizes the following integral (arc length):

$$
\begin{equation*}
\int_{z_{0}}^{z} \sqrt{1+(d r / d z)^{2}+r^{2}(d \theta / d z)^{2}} d z \tag{1}
\end{equation*}
$$

A necessary condition $(4,5)$ for the integral to be a minimum is:

$$
\begin{equation*}
\frac{d}{d z} \frac{r^{2}(d \theta / d z)}{\sqrt{1+(d r / d z)^{2}+r^{2}(d \theta / d z)^{2}}}=0, \text { or: } \tag{2}
\end{equation*}
$$

Figure 1. GEODESIC PATH ON A CONE.

$$
\frac{r^{2}(d \theta / d z)}{\sqrt{1+(d r / d z)^{2}+r^{2}(d \theta / d z)^{2}}}=c=\text { constant of integration. }
$$

Since the surface of revolution here is a cone, then:

$$
\begin{equation*}
r(z)=k z+b \tag{4}
\end{equation*}
$$

Equation 3 reduces to:

$$
\begin{equation*}
\frac{r^{2}(d \theta / d z)}{\sqrt{1+k^{2}+r^{2}(d \theta / d z)^{2}}}=c \tag{5}
\end{equation*}
$$

By squaring both sides and collecting terms, Equation 5 reduces to:

$$
\begin{equation*}
d \theta / d z=c \sqrt{1+k^{2}} /\left(r \sqrt{2-c^{2}}\right) \tag{6}
\end{equation*}
$$

Solving Equation 6 results in:

$$
\begin{equation*}
\theta(z)=\left(\sqrt{1+k^{2}} / k\right) \sec ^{-1}[r(z) / c]+d . \tag{7}
\end{equation*}
$$

If the geodesic passes through the point $\left(r_{0}, z_{0}, \theta_{0}\right)$ at helix angle α_{0} (a common way of specifying the initial conditions for a geodesic), the constants c and dare found (Appendix B) to be:

$$
\begin{gather*}
c=r_{0} \sin \alpha_{0} \text {, and } \tag{8}\\
d=\left(\sqrt{1+k^{2}} / k\right)\left[0-\sec ^{-1}\left(r_{0} / c\right)\right]+\theta_{0}
\end{gather*}
$$

Thus, the equation for a geodesic on a cone is:

$$
\begin{equation*}
\theta(z)=\left(\sqrt{1+k^{2}} / k\right)\left\{\sec ^{-1}\left[r(z) / r_{0} \sin \alpha_{0}\right]-\left(\pi / 2-\alpha_{0}\right)\right\}+\theta_{0} . \tag{9}
\end{equation*}
$$

In the special case of a cylinder, where $r \equiv r_{0}$, the differential equation is:

$$
\begin{aligned}
& r_{0}^{2}(d \theta / d z) / \sqrt{1+r_{0}^{2}(d \theta / d z)^{2}}=c, \text { or: } \\
& d \theta / d z=c /\left(r_{0} \sqrt{r_{0}^{2}-c^{2}}\right)
\end{aligned}
$$

The equation for the geodesic on a cylinder becomes:

$$
\begin{align*}
\theta(z) & =c\left(z-z_{0}\right) /\left(r_{0} \sqrt{r_{0}^{2}-c^{2}}\right)+\theta_{0} \\
& =\left(z-z_{0}\right)\left(1 / r_{0}\right) \tan \alpha_{0}+\theta_{0} \tag{10}
\end{align*}
$$

where, again:

$$
c=r_{0} \sin \alpha_{0}
$$

SECTION-CROSSING CRITERIA

A surfuce composed of two cones is shown in Figure 2.
The equation for the surface is:

$$
r(z)=k_{1}\left(z-z_{1}\right)+r_{1} \text { for } z_{0} \leq z \leq z_{1} \text {, and }
$$

Figure 2. GEODESIC ON A SURFACE COMPOSED OF TWO CONES.

$$
r(z)=k_{2}\left(z-\bar{z}_{1}\right)+r_{1} \text { for } z_{1} \leq z \leq z_{2} .
$$

From Equation 3 it is seen that the geodesic between $\left(r_{0}, z_{0}, \theta_{0}\right)$ and $\left(r_{1}, z_{1}, \theta_{1}\right)$ satisfies:

$$
\frac{r^{2}(d \theta / d z)}{\sqrt{1+r^{2}(d \theta / d z)^{2}+(d r / d z)^{2}}}=c_{1}
$$

and satisfies:

$$
\frac{r^{2}(d \theta / d z)}{\sqrt{1+r^{2}(d \theta / d z)^{2}+(d r / d z)^{2}}}=c_{2}
$$

between $\left(r_{1}, z_{1}, \theta_{1}\right)$ and $\left(r_{2}, z_{2} \theta_{2}\right)$.
The Weierstrass-Erdmann Corner Condition ${ }^{(4,5)}$ is used to determine the necessary crossing condition for maintaining a geodesic on the composite surface; that is:

$$
\lim _{z \rightarrow z^{-}} \frac{r^{2}(d \theta / d z)}{\sqrt{1+r^{2}(d \theta / d z)^{2}+(d r / d z)^{2}}}=\lim _{z \rightarrow z^{2}}+\frac{r^{2}(d \theta / d z)}{\sqrt{1+r^{2}(d \theta / d z)^{2}+(d r / d z)^{2}}} .
$$

Thus,

$$
\begin{align*}
c_{2} & =c_{1}=c \tag{11}\\
& =r_{0} \sin \alpha_{0} .
\end{align*}
$$

(It is shown in Appendix B that the condition $c_{2}=c_{1}$ implies that the helix angle is continuous at $z=z_{j}$.)

Then the equation for the geodesic is:

$$
\begin{array}{r}
\theta(z)=\left(\sqrt{1+k_{1}^{2}} / k_{1}\right)\left\{\sec ^{-1}[r(z) / c]-\left(\pi / 2 \quad \alpha_{0}\right)\right\}+\theta_{0} \\
\text { for } z_{0} \leq z \leq z_{1}, \text { and } \\
\theta(z)=\left(\sqrt{1+k_{2}^{2}} / k_{2}\right)\left\{\sec ^{-1}[r(z) / c]-\sec ^{-1}\left(r_{1} / c\right)\right\}+\theta_{1} \\
\text { for } z_{1} \leq z \leq z_{2} \tag{12}
\end{array}
$$

where:

$$
\theta_{1}=\theta\left(z_{1}\right)=\left(\sqrt{1+k_{1}^{2}} / k_{1}\right)\left[\sec ^{-1}\left(r_{1} / c\right)-\left(\pi / 2-\alpha_{0}\right)\right]+\theta_{0^{\prime}}
$$

and:

$$
c=r_{0} \sin \alpha_{0}
$$

It was shown (Equation 6) that a geodesic on any cone, $r(z)=k_{n} z+b_{n}$,
satisfies the differential equation:

$$
d \theta / d z=c_{n} \sqrt{1+k_{n}^{2}} /\left(r \sqrt{r-c_{n}^{2}}\right)
$$

If the geodesic is a continuation of a geodesic which passed through the point (r_{0}, $z_{0^{\prime}} \theta_{0}$) at helix angle $\alpha_{0^{\prime}}$ the constant of integration, $c_{n^{\prime}}$ is (see Equation 11):

$$
\begin{aligned}
c_{n} & =c \\
& =r_{0} \sin \alpha_{0} .
\end{aligned}
$$

By rewriting the differential equation as:

$$
d z / d \theta=r \sqrt{r^{2}-c^{2}} /\left(c \sqrt{1+k_{n}^{2}}\right)
$$

It is immediately seen that:

$$
\mathrm{dz} /\left.\mathrm{d} \theta\right|_{\mathrm{r}=\mathrm{c}}=0
$$

Thus, the turnaround point of the geodesic is that location where the radius of the surface equals c (ie, equals $\mathrm{r}_{0} \sin \alpha_{0}$); that is, the radius at the turnaround is determined by r_{0} and α_{0} (radius and helix angle at the initial point) and is independent of the shape of the surface.

DETERMINING A CIRCUIT OF THE GEODESIC

Let the contour of the surface be defined by a series of straight-line segments joining the points $\left(r_{n^{\prime}} z_{n}\right), n=1, \ldots, M$ (Figure 3). For each segment, define the parameter k_{n}, as follows:

$$
k_{n}=\left(r_{n+1}-r_{n}\right) /\left(z_{n+1}-z_{n}\right) \text { for } n=1,2, \ldots M-1
$$

Figure 3. CONTOUR OF A SURFACE OF REVOLUTION.

If the initial conditions for specifying the geodesic are that the geodesic must pass through a point P_{0}, whose radius is r_{0} at helix angle α_{0}, then the constant of integration, c , is:

$$
c=r_{0} \sin \alpha_{0}
$$

Note here that c must be such that:

$$
c \geq\{\max r, r m\} ;
$$

otherwise, the geodesic would continue beyond the defined portion of the surface. Now, to determine the sections in which turnaround occurs, it is necessary to find J and L such that:

$$
\begin{aligned}
& r_{J} \leq c<r_{J+1}, k_{J}>0, \quad \text { and } \\
& r_{L}>c \geq r_{L+1}, k_{L}<0 .
\end{aligned}
$$

Section J will be called the lower turnaround section and L the upper turnaround section. When $n \neq \mathrm{J}, \mathrm{L}$:

$$
\begin{gather*}
\Delta \theta_{n}=\theta\left(z_{n+1}\right)-\theta\left(z_{n}\right) \\
\left(\sqrt{1+k_{n}^{2}} / k_{n}\right)\left[\sec ^{-1}\left(r_{n+1} / c\right)-\sec ^{-1}\left(r_{n} / c\right)\right] i f k_{n} \neq 0 \\
\text { (conical section) } \\
\left(z_{n+1}-z_{n}\right) c /\left(r_{n} \sqrt{r_{n}^{2}-c^{2}}\right) \quad \text { if } k_{n}=0 . \tag{13}
\end{gather*}
$$

When $n=J, L$,

$$
\begin{align*}
& \Delta \theta_{J}=\left(\sqrt{1+k_{J}^{2}} / k_{J}\right)\left[\sec ^{-1}\left(r_{J+1} / c\right)-0\right], \text { and } \tag{14}\\
& \Delta \theta_{L}=\left(\sqrt{1+k_{L}^{2}} / k_{L}\right)\left[0-\sec ^{-1}\left(r_{L} / c\right)\right] . \tag{15}
\end{align*}
$$

The rotation during one circuit, R_{c}, becomes:

$$
R_{c}=2\left[\begin{array}{cc}
\sum_{n=J}^{L} & \Delta \theta_{n} \tag{16}
\end{array}\right]
$$

In order for the geodesic to return to its starting point (ie, complete one pattern), R_{c} (in revolutions) must be a rational number, say $R_{c}=A / B$. (In practice, R_{c} will always be rational since it is a computed value.) Then, after B circuits, the mandrel will have completed A revolutions and the geodesic will have returned to its starting point. If A and B have common factors, the geodesic will return to its starting point after fewer circuits. Thus, to determine when the path starts repeating, it is necessary to reduce A / B to a fraction which has no common factors. Once this is done, A becomes the number of revolutions per pattern and B the number of circuits per pattern.

Often the initial helix angle, α_{0}, is only an estimate of the desired helix angle at P_{0}. It may be more desirable to have a helix angle approximately equal α_{0} at P_{0}, but which will produce a wrap having a predetermined number of circuits per pattern. This is the case when complete coverage is desired at a given parallel or where a certain thickness is wanted at a parallel. In Appendix B, an iterative scheme for choosing a new value for α_{0} is derived to achieve the number of circuits per pattern.

GEODESIC ON A DEVELOPED SURFACE

One of the useful by-products of approximating a surface of revolution by a series of conical and cylindrical sections is that cones and cylinders are developable. That is, if sliced, they can be laid out flat in a plane. To further simplify matters, geodesics on a cone or cylinder become straight lines on the developed surface. Thus, a two-dimensional picture of a geodesic on the surface can be drawn.

Drawing a geodesic on a developed surface has been helpful in determining certain characteristics of a geodesic such as the thickness of the wrap and the number and location of the crossovers. The developed surface plot could also be used in setting up a winding machine by cutting out the plot and pasting it on the mandrel to be wrapped.

Computer routines have been written to compute a geodesic on a surface for given initial conditions, to develop the surface, and to plot the geodesic on the developed surface. As an example of this plot, geodesics were computed for the surface shown in Figure 4. The initial helix angles were adjusted (by the scheme discussed in Appendix B) so that the geodesic had llcircuits per pattern (thus returning to its starting point after 11 circuits). Figure 5 shows a single geodesic on the surface, Figure 6 is the two-dimensional picture of the geodesic on the developed surface, and Figures 7 and 8 show the combined pattern of four geodesics on the surface.

Figure 4. CONTOUR OF A SURFACE COMPOSED OF TWO CONICAL SECTIONS AND A CYLINDRICAL SECTION.

Figure 5. SURFACE WITH A SINGLE GEODESIC.

GEODESIC CHARACTERISTICS

Two parameters used in the stress analysis of afilament-wound structure are the helix angle and thickness of the wrap at various parallels. The helix angle can be determined directly from the relationships (Appendix B):

$$
\begin{align*}
\tan \alpha & =\left(c / \sqrt{r^{2}-c^{2}}\right) ; \text { that is, } \\
\alpha & =\tan ^{-1}\left(c / \sqrt{r^{2}-c^{2}}\right), \tag{17}
\end{align*}
$$

where:

$$
c=r_{0} \sin \alpha_{0}
$$

In determining the thickness of wrap at a given parallel, it is assumed that the center of the band follows the geodesic path. The approach used is to determine, at the desired parallel, the percentage of the circumference covered by a circuit of the geodesic. If the circuits are uniformly spaced around the part, then the computed percentage of coverage can be used to determine the average thickness at that parallel; that is:

Figure 6. DEVELOPED SURFACE WITH A SINGLE GEODESIC.

Average Thickness at a Parallel

$$
\begin{equation*}
=\text { (coverage/circuit)(number of circuits)(band thickness). } \tag{18}
\end{equation*}
$$

For the derivation of the equations for coverage at a parallel, see Appendix C. It should be noted here that the value computed for thickness is actually the amount of glass at the parallel. It does not take into account the matrix material present or the thickness resulting from voids and bridging of the fibers. Therefore, this figure should be modified by some factor determined by the percent glass of the wrap.

Figure 7. SURFACE WITH FOUR GEODESICS.

Figure 8. DEVELOPED SURFACE WITH FOUR GEODESICS.

For a given geodesic, Equation 18 can be used to determine the number of circuits necessary to build up a desired thickness at a parallel:

Number of Circuits $=\frac{\text { (desired thickness at the parallel) }}{(\text { coverage } / \text { circuit at parallel)(band thickness) }}$.
However, knowing the number of circuits to be wrapped does not fully describe the wrap pattern. It may be desirable to have these circuits uniformly spaced around the part. This possibility brings up an interesting question: Of how many patterns and circuits per pattern should the wrap consist? In trying to answer this question, two approaches are taken. They appear as options in the computer program (subroutine NOCIRC, described in Appendix D).

Option 1 - When the surface to be wrapped is primarily a cylinder, it may be desirable to have the circuits spaced around the part so that after one pattern, the cylindrical portion is completely covered. Here, the number of circuits per pattern is chosen to give complete coverage at a parallel with no overlapping of fibers going in the same direction. The number of patterns necessary to build up the desired thickness is then determined.

Option 2 - When wrapping a general surface of revolution, complete coverage at one parallel would produce overlapping fibers or less than complete coverage at all other parallels. Therefore, it is felt that the idea of complete coverage at a parallel has less meaning here. Also, in wrapping a general shape, it may be desirable to apply many different geodesics, building up a thin layer with each to achieve an overall wrap of a given thickness. The different geodesics could be chosen to produce this wrap. Thus, with this option, the number of circuits per pattern is chosen to equal the total number of circuits to be wrapped for the geodesic. Hence, after one pattern, the desired thickness for that geodesic is obtained.

To achieve a desired thickness at a parallel, the number of circuits per pattern, and number of patterns are determined by use of one of the two options. The desired thickness could be for this particular geodesic or the cumulative thickness of this and all prior geodesics. If it is the cumulative thickness that is wanted, then the thicknesses resulting from the previous geodesics are computed and subtracted from the thickness specified. This value is then used in determining the desired number of circuits. However, the number of circuits per pattern of the geodesic determined by the specified initial conditions will not, in general, be the same as those needed to give this wrap. Hence, it may be necessary to find a geodesic which differs slightly from the initially specified one, but which has the needed number of circuits per pattern.

The procedure for finding the new path is as follows: If A / B is the computed revolutions per circuit of the specified geodesic and $N B$ the desired circuits per pattern, an integer NA is found so that $N A / N B$ is as close as possible to A / B.

If NA and NB have common factors, NA and/or NB are altered so that there are no common factors. Then NA becomes the number of revolutions per pattern and NB the circuits per pattern. A new geodesic having NA/NB revolutions per circuit can then be found (by the scheme described in Appendix B) or the rotation of the computed geodesic can be distorted to achieve the desired revolutions per circuit.

Computer routines have been written for plotting these geodesic characteristics (helix angle and thickness). For plotting purposes, distance along the contour of the surface, S, was chosen as the reference (see Figure 4). For consistency and ease in plotting, all of the quantities are normalized before plotting.

Plots were made for the surface and geodesics shown in Figure 7. Values were computed for a 0.6 -inch-wide band, 0.01 inch in thickness. The first plot, Figure 9, relates R and Z to the reference S; Figure 10 is a plot of the helix angles for the four geodesics. Figure 11 is the thickness plot for one geodesic (the geodesic shown in Figure 5), Figure 12 shows the thickness resulting from the four geodesics, and Figure 13 is a scale drawing of the contour after the wrap.

Figure 9. PLOT RELATINGR ANDZ (NORMALIZED) TO REFERENEES.

Figure 10. HELIX ANGLE PLOT FOR THE GEODESICS SHOWN IN FIGURE 7.

Figure 11. THICKNESS PLOT FOR THE GEODESIC SHOWN IN. FIGURE 5.

Figure 12. THICKNESS PLOT FOR THE GEODESICS SHOWN IN FIGURE 7.

FINAL CONTOUR
Z BCALE $=0.5000 \quad$ R SCALE $=0.5000$

Figure 13. SCALED PLOT FOR THE GEODESICS SHOWN IN FIGURE 7.

COMPUTER PRO GRAMS

The programs for computing a geodesic and plotting its characteristics are written in Fortran II. There are, in addition, four APT macros available for computing a geodesic and plotting it on the developed surface.

Fortran Program

The Fortran program consists of two main programs and 17 subroutines. In addition, the plotting routines utilize several subroutines for the Gerber Scientific Plotter. (6) With slight modification, the Gerber subroutines could be used with other plotting machines.

The geodesic subroutines are called by one of the main programs. Main program DESIGN is utilized when computing and plotting geodesic characteristics; main program DEVPLT is used for plotting geodesics on a developed surface. Flow sheets of the main program and deck arrangements for the two operations are shown in Appendix D. Also given in Appendix D are input details and a listing of the computer program.

APT Program

The APT program represents the initial efforts on this project. Due to the limited amount of storage available in APT, this approach was abandoned and the Fortran program undertaken. Therefore, the APT program, consisting of four macros, is limited to computing a geodesic and plotting it on the developed surface. These macros are briefly described in Appendix D.

COMPARISON OF A TRUE GEODESIC WITH A GEODESIC COMPUTED BY THE APPROXIMATION TECHNIQUE

The technique described in this report is the computation of a geodesic for a surface which is, in effect, an approximation of some other surface. A logical question to be raised is just how good does this computed path conform to a geodesic on the original surface? S.P. Gold proves that the path on the approximated surface converges to the geodesic on the true surface as the surface approximation converges. (1)

As an example of how well the approximation technique works, geodesics on a sphere were compared to those computed by the approximation technique. A filament will be on the mandrel surface even if a coarse approximation is used in calculating its path. For a given point (r, z, θ) on the filament path, there will be, for a given z, no error in r (since the point lies on the mandrel surface) between the
filament path and the true geodesic (great circle). The deviation, if any, will be in the rotation, θ. Therefore, in comparing the computed path with the great circle, the rotation for a great circle (360°) is compared with the rotation as computed.

Geodesics were computed for six approximations of the sphere. These approximations ranged from 18 conical sections (19 equally spaced points on the sphere) to an approximation involving 720 sections. Geodesics with helix angles (at the equator of the sphere) of 10 to 85 degrees were determined. The results are summarizedin Table 1. It can be seen from this table that the approximation technique determines a path which closely follows the true geodesic on a sphere. The finer the approximation of that portion of the sphere on which the geodesic travels, the smaller the deviation between the great circle and the computed path.

Table 1
COMPARISON OF THE ROTATION OF A TRUE GEODESIC ON A SPHERE WITH GEODESICS ON VARIOUS APPROXIMATIONS OF THE SPHERE

Helix Angle (degrees)	Number of Conical Sections Approximating a Sphere	Number of Sections Traversed by the Geodesic	Rotation for Circuit (degrees)	Deviation per Circuit (degrees)	Percent Deviation
40	18	10	366.653	+6. 653	1.85
65	36	10	366.433	+6. 433	1.79
80	90	10	366.342	+6.342	1.76
85	180	10	366.331	+6.331	1.76
40	36	20	362.244	+2.244	0.622
70	90	20	362.196	+2.196	0.612
80	180	20	362.184	+2.184	0.607
85	360	20	362.185	+2.185	0.607
50	90	40	360.773	+0.773	0.215
70	180	40	360.765	+0.765	0.212
80	360	40	360.764	+0.764	0.212
85	720	40	360.770	+0.770	0.214
10	180	80	360.269	+0.269	0.075
70	360	80	360.267	+0.267	0.074
80	720	80	360.268	+0.268	0.074
10	180	160	360.071	+0.071	0.020
50	360	160	360.094	+0 094	0.026
70	720	160	360.093	+0.093	0.026

DEFINITION OF TERMS

Geodesics - A path is called a geodesic on a surface if at each point of the path, the principal normal coincides with the normal to the surface (The shortest of all paths joining two points on a surface is an are of a geodesic.) (3)

Meridian - Any plane which passes through the axis of revolution intersects a surface of a revolution along a pair of curves. The curves are called meridians.

Helix Angle - If P is a point of a geodesic on a surface of revolution, then the angle between the geodesic and the meridian at point P is the helix angle at P.

Parallel - Every plane perpendicular to the axis of revolution intersects a surface of revolution along a circle, which is called a parallel.

Circuit - The path traced from a starting point at a particular parallel on a surface until the path crosses the same parallel going in the same direction is one circuit.

0
Pattern - The number of circuits the path traces on a surface in returning to its original starting point is a pattern.

APPENDIX A

DEVELOPED SURFACE

Developing a Surface

Let the contour of a surface be defined as a series of straight-line segments joining the points $\left(r_{n}, z_{n}\right), n=1, M$. Define the following section parameters:

$$
\begin{aligned}
& k_{n}=\left(r_{n+1}-r_{n}\right) /\left(z_{n+1}-z_{n}\right) \\
& f_{n}=\sqrt{1+k_{n}^{2}} \\
& x_{1}=0 \\
& x_{n+1}=x_{n}+\left(z_{n+1}-z_{n}\right) f_{n} \quad n=1,2, \ldots, M-1 \\
& \varphi_{n}=\left|k_{n} / f_{n}\right| 2 \pi \\
& n=1,2, \ldots, M-1 \\
& n=1,2, \ldots, M-1 \\
& n=1,2, \ldots, M-1 \\
& R 1_{n}=\left|f_{n} / k_{n}\right| r \quad r=\left\{\begin{array}{l}
r_{n} \text { if } k_{n}>0 \\
r_{n+1} \text { if } k_{n}<0
\end{array} \quad n=1,2, \ldots, M-1\right. \\
& R 2_{n}=\left|f_{n} / k_{n}\right| r \quad r=\left\{\begin{array}{l}
r_{n+1} \text { if } k_{n}>0 \\
r_{n} \text { if } k_{n}<0
\end{array} \quad n=1,2, \ldots, M-1\right. \\
& x c_{n}=\left\{\begin{array}{ll}
x_{n}-R 1_{n} & \text { if } k_{n}>0 \\
x_{n}+R 2_{n} & \text { if } k_{n}<0
\end{array} \quad n=1,2, \ldots, M-1\right.
\end{aligned}
$$

Utilizing these parameters, the surface can be developed. Figure A-1 is an example of a surface which has been developed.

Tranformation of a Point on Surface (z, θ) to a Point on the Developed Surface (x, y)

1. Find n such that:

Figure A-1. A DEVELOPED SURFACE COMPOSED OF TWO CONICAL SECTIONS AND A CYLINDRICAL SECTION.

$$
z_{n} \leq z \leq z_{n}+1
$$

2. If $k_{n}=0$ (cylindrical section), then:

$$
\begin{gather*}
x=x_{n}+\left(z-z_{n}\right) \text {, and } \tag{19}\\
y=r_{n} \theta . \tag{20}
\end{gather*}
$$

3. If $k_{n} \neq 0$ (conical section), then:

$$
\begin{aligned}
& x=\left\{\begin{array}{l}
x c_{n}+\left(f_{n} / k_{n}\right) r \cos \left[\left(k_{n} / f_{n}\right) \theta\right] \text { if } k_{n}>0 \\
x c_{n}-\left|f_{n} / k_{n}\right| r \cos \left[\left(k_{n} / f_{n}\right) \theta\right] \text { if } k_{n}<0,
\end{array}\right. \\
& y=\left|f_{n} / k_{n}\right| r \sin \left(\left|k_{n} / f_{n}\right| \theta\right) .
\end{aligned}
$$

These equations reduce to:

$$
\begin{align*}
& x=x_{n}-\left(f_{n} / k_{n}\right)\left\{r_{n}-\left[r_{n}+k_{n}\left(z-z_{n}\right)\right] \cos \left[\left(k_{n} / f_{n}\right) \theta\right]\right\}, \tag{21}\\
& y=\left(f_{n} / k_{n}\right)\left[r_{n}+k_{n}\left(z-z_{n}\right)\right] \sin \left[\left(k_{n} / f_{n}\right) \theta\right] . \tag{22}
\end{align*}
$$

Drawing a Geodesic on a Developed Surface

Drawing a geodesic on a conical section ($k_{n}>0$) will be discussed. Since the other cases ($k_{n} \leq 0$) are similar, they will not be presented. Let the geodesic enter section n at ($r, z, 9$) either initially or by transition from another section. Define:

$$
\begin{aligned}
& \beta_{0}=\left(k_{n} / f_{n}\right) \theta, \\
& \rho_{1}= \begin{cases} & \Delta \beta=\left(k_{n} / f_{n}\right) \Delta \theta_{n}, \\
R 2_{n} & \text { if previous section was section } n+1 \\
\rho_{n} & \text { if previous section was section } n-1\end{cases} \\
& \rho_{2}= \begin{cases}R 1_{n} & \text { if } \rho_{1}=R 2_{n} . \\
R 2_{n} & \text { if } \rho_{1}=R 1_{n} .\end{cases}
\end{aligned}
$$

Case A-1 - $B_{0}+\Delta B<\varphi_{n^{\prime}}$ when ($n \neq J$) (Figure $A-2$) - The geodesic is the line segment between (x_{e}, y_{e}) and ($x_{d^{\prime}} y_{d}$), where:

$$
\begin{aligned}
& x_{e}=x c_{n}+\rho_{1} \cos \beta_{0} \\
& y_{e}=\rho_{1} \sin \beta_{0}, \\
& x_{d}=x c_{n}+\rho_{2} \cos \left(\beta_{0}+\Delta \beta\right), \\
& y_{d}=\rho_{2} \sin \left(\beta_{0}+\Delta \beta\right)
\end{aligned}
$$

Figure A-2. GEODESIC ENTERING AND LEAVING A.
CONICAL SECTION. (Line on the Developed Surface)
Case $A-2-B_{0}+\Delta B>\varphi_{n}$, when $(n \neq J)$ (Figure $\left.A-3\right)$ - In this case, the geodesic is represented as two line segments, from (x_{e}, y_{e}) to $\left(x_{1}, y_{1}\right)$ and from (x_{2}, y_{2}) to $\left(x_{d}^{\prime}, y_{d}^{\prime}\right)$, as shown in Figure A-3. With respect to a local originat $\left(x c_{n}, 0\right)$, the line through $\left(x_{e}, y_{e}\right)$ has the equation:

$$
y-y_{e}=\left(y_{d}-y_{e}\right)\left(x-x_{e}\right) /\left(x_{d}-x_{e}\right)
$$

Figure A- 3. GEODESIC ON TWO LINE SEGMENTS ONADEVELOPED CONICAL SECTION.
and the line defining the end of the developed surface satisfies equation:

$$
y \cos \varphi_{n}=x \sin \varphi_{n},
$$

where:

$$
\begin{aligned}
& x_{e}=\rho_{1} \cos \beta_{0^{\prime}} \\
& y_{e}=\rho_{1} \sin \beta_{0} \\
& x_{d}=\rho_{2} \cos \left(\beta_{0}+\Delta B\right), \\
& y_{d}=\rho_{2} \sin \left(\beta_{0}+\Delta \beta\right) .
\end{aligned}
$$

Solving for the intersection of the two lines determines the point $\left(x_{1}, y_{1}\right)$. Then $\left(x_{2}, y_{2}\right)$ is found by:

$$
\begin{gathered}
x_{2}=x_{1}^{2}+y_{1}^{2} \\
y_{2}=0
\end{gathered}
$$

The end point of the line segment is:

$$
\begin{aligned}
& x_{d}^{\prime}=\rho_{2} \cos B, \\
& y_{d}^{\prime}=o_{2} \sin B,
\end{aligned}
$$

where:

$$
\beta=\beta_{0}+\Delta \beta-\varphi_{\mathrm{n}} .
$$

Translating the points by $\times c_{n}$ locates the geodesic on the developed surface.

Case A-3-B0+2AB$\leq \varphi_{n^{\prime}}$ when ($n=J$) (Figure A-4) - The geodesic on Section J (turnaround section) is again a line segment between the points (x_{e}, y_{e}) and (x_{d}, y_{d}), as presented in Figure A-4, where:

Figure A-4. GEODESIC ON A TURNAROUND SECTION OF A DEVELOPED SURFACE.

$$
\begin{gathered}
x_{e}=x c_{n}+\rho_{1} \cos \beta_{0} \\
y_{e}=\rho_{1} \sin \beta_{0} \\
x_{d}=x c_{n}+\rho_{1} \cos \left(\beta_{0}+2 \Delta \beta\right), \\
y_{d}=\rho_{1} \sin \left(\beta_{0}+2 \Delta \beta\right)
\end{gathered}
$$

The case, $\beta_{0}+2 \Delta \beta>\varphi_{n^{\prime}}$ is similar to Case $A-2$ and can be determined in a similar fashion.

APPENDIX B

ADDITIONAL GEODESIC DERIVATIONS

Evaluation of the Constants of Integration

Let the initial conditions for specifying a geodesic be that the geodesic passes through point $\left(r_{0}, z_{0}, \theta_{0}\right)$ at helix angle α_{0}. To determine the constant of integration (c in Equation 3 of the text), two cases will be examined.

Case B-1 - Initial Point Lies in a Cylindrical Section - It was shown in Appendix A that in transforming a surface point on a cylinder (r, z, θ) to a point on the developed surface (x, y), the relationship is:

$$
x=z+h \text {, where } h \text { is a constant, and }
$$

$$
y=r \theta
$$

Then:

$$
\begin{aligned}
d y / d x & =(d y / d \theta) /(d x / d \theta), \\
& =r(d \theta / d z), \text { or } \\
d \theta / d z & =(1 / r)(d y / d x)
\end{aligned}
$$

But,

$$
\begin{gathered}
d y / d x=\tan \alpha_{0} \text {, and } \\
d \theta / d z=(1 / r) \tan \alpha_{0}, \text { as shown in Figure } B-1 .
\end{gathered}
$$

The equation developed for the geodesic on the cylinder was determined to be:

$$
r^{2}(d \theta / d z) / \sqrt{1+r^{2}(d \theta / d z)^{2}}=c
$$

Therefore,

Figure B-1. DEVELOPED CYLINDRICAL SECTION.

$$
\begin{gathered}
c=r^{2}\left(\tan \alpha_{0} / r\right) / \sqrt{1+r^{2}\left(\tan ^{2} \alpha_{0} / r^{2}\right)} \text {, and } \\
c=r \sin \alpha_{0} .
\end{gathered}
$$

Since the initial point lies on the cylinder,

$$
\begin{gathered}
r \equiv r_{0}, \text { and } \\
c=r_{0} \sin \alpha_{0} .
\end{gathered}
$$

Case B-2 - Initial Point in a Conical Section - As was true for the cylindrical case, the results of Appendix A (developing the surface) will be utilized here. The following relations are derived from Equation 21 and 22 of Appendix A:

$$
\begin{align*}
& d y / d x=\frac{\left[r_{n}+k_{n}\left(z-z_{n}\right)\right] \cos \left(k_{n} \theta / f_{n}\right)+(d z / d \theta) f_{n} \sin \left(k_{n} \theta / f_{n}\right)}{-\left[r_{n}+k_{n}\left(z-z_{n}\right)\right] \sin \left(k_{n} \theta / f_{n}\right)+(d z / d \theta) f_{n} \cos \left(k_{n} \theta / f_{n}\right)} ; \tag{23}\\
& d \theta / d z=\left[\frac{f_{n}}{r_{n}+k_{n}\left(z-z_{n}\right)}\right] \frac{(d y / d x) \cos \left(k_{n} \theta / f_{n}\right)-\sin \left(k_{n} \theta / f_{n}\right)}{\cos \left(k_{n} \theta / f_{n}\right)+(d y / d x) \sin \left(k_{n} \theta / f_{n}\right)} . \tag{24}
\end{align*}
$$

By examining the initial conditons for $\theta_{0}=0$ (no generality lost here since a substitution $\theta=\theta-\theta_{0}$ would result in the same geodesic shifted by θ_{0}), the initial point would appear as shown in Figure B-2. Again,

Figure B-2. DEVELOPED CONICAL SECTION.

$$
\begin{gathered}
d y / d x=\tan \alpha_{0} \text {, and } \\
d \theta / d z \left\lvert\,=\begin{array}{c}
f_{n} \tan \alpha_{0} /\left[r_{n}+k_{n}\left(z_{0}-z_{n}\right)\right], \\
\left(r_{0}, z_{0}, 0\right)
\end{array}\right. \\
=f_{n} \tan \alpha_{0} / r_{0} .
\end{gathered}
$$

The geodesic on the conical section satisfies (see Equation 5):

$$
c=r^{2}(d \theta / d z) / \sqrt{1+k_{n}^{2}+r^{2}(d \theta / d z)^{2}}
$$

The constant, evaluated at $\left(r_{0}, z_{0}, 0\right)$, becomes:

$$
\begin{gathered}
c=r_{0}^{2}\left(f_{n} \tan \alpha_{0} / r_{0}\right) / \sqrt{1+k_{n}^{2}+r_{0}^{2}\left(f_{n} \tan \alpha_{0} / r_{0}\right)^{2}} ; \\
c=r_{0} \sin \alpha_{0} .
\end{gathered}
$$

The constant d is found to be:

$$
\theta\left(z_{0}\right)=\theta_{0}=\left(\sqrt{1+k^{2}} / k\right) \sec ^{-1}\left(r_{0} / c\right)+d, \text { or }
$$

$$
d=\theta_{0}-\left(\sqrt{1+k^{2}} / k\right) \sec ^{-1}\left(r_{0} / c\right)
$$

Helix Angle at a Parallel

To determine the helix angle at a given parallel, the developed surface will again be utilized. By examining the geodesic at $\theta=0$ (again no generality is lost), it is seen that:

$$
d y /\left.d x\right|_{\theta=0}=\tan \alpha
$$

For a conical section (see Equations 6 and 23),

$$
\begin{aligned}
d y /\left.d x\right|_{\theta=0} & =\left[r_{n}+k_{n}\left(z-z_{n}\right)\right] /\left[f_{n}(d z / d \theta)\right] \\
& =\left(r / f_{n}\right) d \theta / d z, \\
& =\left(r / f_{n}\right)\left(c f_{n} / r \sqrt{r^{2}-c^{2}}\right) \\
& =c / \sqrt{r^{2}-c^{2}}
\end{aligned}
$$

Thus,

$$
\left.\begin{array}{rl}
\tan \alpha & =c / \sqrt{r^{2}-c^{2}}, \text { or } \\
\alpha & =\tan ^{-1}\left(c / \sqrt{r} 2-c^{2}\right. \tag{26}
\end{array}\right) .
$$

Using a similar argument, the same result can be derived for a cylindrical section.

Equation 25 can be rewritten as:

$$
\sin \alpha=c / r \text {, or }
$$

$$
\begin{equation*}
r \sin \alpha=c \tag{27}
\end{equation*}
$$

Equation 27 is the same relationship given by Clairauts' Theorem ${ }^{(3)}$ for a geodesic on a surface of revolution.

Since r is a continuous function and the constant c has the same value on each section, Equation 27 implies that the helix angle, α, is continuous at the point of transition from one section to another.

Determining an Initial Helix Angle to Produce a Geodesic with the Desired Number of Revolutions per Circuit

Previously, an equation for determining the rotation for a circuit of the geodesic, R_{c}, was derived. This was given by Equation 16 which is repeated below:

$$
R_{c}=2\left[\begin{array}{cc}
L^{L} & \\
\sum & \Delta \theta_{n} \\
n=J &
\end{array}\right]
$$

where:

$$
\begin{aligned}
\Delta \theta_{J} & =\left(f_{J} / k_{J}\right)\left[\sec ^{-1}\left(r_{J+1} / c\right)\right], \\
\Delta \theta_{L} & =\left(f_{L} / k_{L}\right)\left[-\sec ^{-1}\left(r_{L} / c\right)\right], \\
\Delta \theta_{n} & =\left\{\begin{array}{l}
\left(f_{n} / k_{n}\right)\left[\sec ^{-1}\left(r_{n+1} / c\right)-\sec ^{-1}\left(r_{n} / c\right)\right] \text { If } k_{n} \neq 0 \\
\left(z_{n}+1-z_{n}\right) c /\left(r_{n} \sqrt{r_{n}^{2}-c^{2}}\right) \quad \text { if } k_{n}=0
\end{array}\right. \\
c & =r_{0} \sin \alpha_{0} .
\end{aligned}
$$

If the desired rotation per circuit is \bar{R}_{C} (to give complete coverage or a desired thickness, etc), define:

$$
\Delta R_{c}=\bar{R}_{c}-R_{c}
$$

An approximation of an initial helix angle, $\bar{\alpha}_{0}$, which will produce a geodesic having the desired rotation per circuit is found by:

$$
\begin{gathered}
\Delta R_{c} / \Delta \alpha_{0} \approx d R_{c} / d \alpha_{0} \\
\Delta \alpha_{0} \approx \Delta R_{c} /\left(d R_{c} / d \alpha_{0}\right) \\
\bar{\alpha}=\alpha_{0}+\Delta \alpha_{0}
\end{gathered}
$$

Now,

$$
\begin{aligned}
& d R_{c} / d \alpha_{0}=d\left\{2\left[\begin{array}{ll}
\sum_{n=J}^{L} & \Delta \theta_{n}
\end{array}\right]\right\} / d \alpha_{0} \\
&=2 \sum_{n}^{L} J \\
& {\left[d \Delta \theta_{n} / d \alpha_{0}\right] . }
\end{aligned}
$$

The derivatives are found to be:

$$
\begin{gathered}
d \Delta \theta_{J} / d \alpha_{0}=-\left(f_{J} / k_{J}\right) r_{0} \cos \alpha_{0} / \sqrt{r_{J}^{2}+1-c^{2}} \\
d \Delta \theta_{L} / d \alpha_{0}=\left(f_{L} / k_{L}\right) r_{0} \cos \alpha_{0} / \sqrt{r_{L}^{2}-c^{2}}, \\
d \Delta \theta_{n} / d \alpha_{0}=\left\{\begin{array}{l}
\left(f_{n} r_{0} \cos \alpha_{0} / k_{n}\right)\left[-1 /{\sqrt{r_{n}+1}}^{2}+c^{2}\right. \\
r_{0} \cos \alpha_{0}\left[r_{n}\left(z_{n+1}^{2}-z_{n}\right) /\left(r_{n}^{2}-c^{2}\right) \text { if } k_{n} \neq 0\right.
\end{array}\right] \text { if } k_{n}=0
\end{gathered}
$$

APPENDIX C

DERIVATIO N OF EQUATIONS FOR-THE THICKNESS OF WRAP

Computing the Coverage

As stated previously, the approach used in determining the thickness of wrap at a parallel is to find the fraction of the circumference which is covered by one circuit of the geodesic. In computing this coverage, it is assumed that the center of the band lies along the geodesic. The developed surface is utilized in each of the four cases considered below.

Case C-1 - Parallel in a Cylindrical Section - Each circuit of a geodesic will cross the parallel in a cylindrical section twice as shown in Figure C-1. The fraction of the circumference covered by each circuit is:

$$
\begin{aligned}
\text { COVERAGE/CIRCUIT } & =2(w / \cos \alpha) / 2 \pi r \\
& =w / \pi r \cos \alpha,
\end{aligned}
$$

where:
w represents the band width,
r the radius of cylindrical section, and
α the helix angle.

FIgure C-1. DEVELOPED CYLINDER.

Case C-2 - Parallel in a Conical Section, Band Crosses Parallel Twice - In a conical section, a parallel is represented as a portion of a circle on the developed surface as shown in Figure C-2. To determine the fraction covered at the parallel, a reference frame is established with the origin at the intersection of the band center line and the parallel circle (see Figure C-3). The fraction of the developed cone angle covered is then determined.
,

Figure C-2. DEVELOPED CONICAL SECTION. (Band Crossing Parallel Twice)
$(-p, 0)$

Figure C- 3. COORDINATE FRAME WITH THE ORIGINAT THE INTERSECTION OF THE BAND CENTER LINE AND PARALLEL CIRCLE.

The equations for the band and the parallel circle are:

$$
\begin{aligned}
& \text { Line } 1-(-\sin \alpha) x+(\cos \alpha) y=w / 2 \\
& \text { Line } 2-(-\sin \alpha) x+(\cos \alpha) y=-w / 2 ; \text { and } \\
& \text { Circle } 1-(x+\rho)^{2}+y^{2}=\rho^{2}
\end{aligned}
$$

Solving for the intersection of Circle 1 with Lines 1 and 2 gives:

$$
\begin{gathered}
y_{1}=(-\cos \alpha)(\rho \sin \alpha-w / 2)+\sin \alpha \sqrt{\rho^{2}-(\rho \sin \alpha-w / 2)^{2}} \\
x_{1}=(\cos \alpha / \sin \alpha) y_{1}-w / 2 \sin \alpha \\
y_{2}=(-\cos x)(\rho \sin x+w / 2)+\sin \alpha \sqrt{\rho^{2}-(\rho \sin \alpha+w / 2)^{2}} \\
x_{2}=(\cos \alpha / \sin \alpha) y_{2}+w / 2 \sin \alpha
\end{gathered}
$$

The angles covered are:

$$
\begin{aligned}
& \Delta \varphi_{1}=\tan ^{-1}\left[y_{1} /\left(\rho+x_{1}\right)\right], \text { and } \\
& \Delta \varphi_{2}=\tan ^{-1}\left[\left|y_{2}\right| /\left(\rho+x_{2}\right)\right] .
\end{aligned}
$$

Then,

$$
\begin{aligned}
\text { COVERAGE/CIRCUIT } & =2\left(\Delta \varphi_{1}+\Delta \varphi_{2}\right) / \varphi \\
& -2\left(\Delta \varphi_{1}+\Delta \varphi_{2}\right) /\left|k_{n} / f_{n}\right| 2 \pi \\
& =\left|f_{n} / k_{n}\right|\left(\Delta \varphi_{1}+\Delta \varphi_{2}\right) / \pi
\end{aligned}
$$

where:
$r=$ radius of surface at the parallel,

$$
\begin{aligned}
& \rho=\left|f_{n} / k_{n}\right| r, \\
& \varphi=\left|k_{n} / f_{n}\right| \quad(2 \pi), \text { and }
\end{aligned}
$$

$\alpha=$ helix angle at the parallel.

Case C-3 - Parallel in a Conical Section, Band Crosses the Parallel Once - For parallels near the turnaround parallel, the band will only cross the parallel one time (Line 2 of Figure C-3 does not intersect Circle 1). Figure C-4 shows this case. Again, the portion of the developed cone angle covered is computed.

Figure C-4. DEVELOPED CONICCAL SECTION. (Band Crosses the Parallel Once)

The points of intersection are :

$$
\begin{gathered}
y_{1}=(-\cos \alpha)(\rho \sin \alpha-w / 2)+\sin \alpha \sqrt{\rho^{2}-(\rho \sin \alpha-w / 2)^{2}}, \\
x_{1}=(\cos \alpha / \sin \alpha) y_{1}-w / 2 \sin \alpha, \\
y_{2}=(-\cos \alpha)(\rho \sin \alpha-w / 2)-\sin \alpha \sqrt{\rho^{2}-(\rho \sin \alpha-w / 2)^{2}}, \\
x_{2}=(\cos \alpha / \sin \alpha) y_{2}-w / 2 \sin \alpha .
\end{gathered}
$$

The angles covered are:

$$
\begin{gathered}
\Delta \varphi_{1}=\tan ^{-1}\left[y_{1} /\left(\rho+x_{1}\right)\right] \\
\Delta \varphi_{2}=\tan ^{-1}\left[\left|y_{2}\right| /\left(\rho+x_{2}\right)\right] \text { if } \rho>\left|x_{2}\right| \\
=\tan ^{-1}\left[\left|\rho+x_{2}\right| / y_{2}\right]+\pi / 2 \text { if }\left|x_{2}\right| \geq \rho
\end{gathered}
$$

Then,

$$
\begin{aligned}
\text { COVERAGE/CIRCUIT } & =\left(\Delta \varphi_{1}+\Delta \varphi_{2}\right) / \varphi, \\
& =\left(\Delta \varphi_{1}+\Delta \varphi_{2}\right) /\left|k_{n} / f_{n}\right| 2 \pi, \\
& =\left|f_{n} / k_{n}\right|\left(\Delta \varphi_{1}+\Delta \varphi_{2}\right) / 2 \pi .
\end{aligned}
$$

Case C-4 - Parallel in a Conical Section; Parallel Beyond Turnaround Parallel Since the band has a finite width, parallels beyond the turnaround parallel can be covered (turnaround parallel being that parallel where the geodesic turns around). This case is illustrated in Figure $\mathrm{C}-5$. The portion of the angle covered is again computed.

Figure C-5. PARALLEL BEYOND THE TURNAROUND PARALLEL.

Solving for the point of intersection gives:

$$
\begin{gathered}
y_{1}^{2}+\left(\rho_{T}-w / 2\right)^{2}=\rho^{2} \\
y_{1}=\sqrt{o^{2}-\left(\rho_{T}-w / 2\right)^{2}}
\end{gathered}
$$

And the angle covered is:

$$
\begin{aligned}
\Delta \varphi_{1} & =\tan ^{-1}\left[y_{1} /\left(\rho_{\mathrm{T}}-w / 2\right)\right] & & \text { if } \rho>\rho_{\mathrm{T}}-w / 2 \\
& =0 . & & \text { if } \rho \leq \rho_{\mathrm{T}}-w / 2
\end{aligned}
$$

Then,

$$
\begin{aligned}
\text { COVERAGE/CIRCUIT } & =2\left(\Delta \varphi_{1}\right) / \varphi_{1} \\
& =2\left(\Delta \varphi_{1}\right) /\left|k_{n} / f_{n}\right| 2 \pi \\
& =\left|f_{n} / k_{n}\right| \Delta \varphi_{1} / \pi
\end{aligned}
$$

APPENDIX D

COMPUTER PROGRAMS

Fortran Program

The geodesic program consists of two main programs and 17 subroutines. In addition, the plotting routines described here utilize several subroutines written for the Gerber Scientific Plotter. ${ }^{(6)}$
The subroutines are called by one of the main programs. Main program DESIGN) is utilized when computing and plotting geodesic characteristics. Main program DEVPLT is used for plotting geodesics on a developed surface. The deck arrangements for the two operations are shown in Figures $D-1$ and $D-2$. Flow sheets of these two main programs are shown in Figures $D-3$ and $D-4$. The 17 subroutines are described in the sections that follow.

Subroutine PARMET - This routine computes various parameters for the conical and cylindrical sections that make up the surface. The parameters are stored and used by other routines called.

Subroutine DEVELP - This routine plots the developed surface. Certain parameters computed in this routine are utilized by the subroutine which plots a geodesic on the developed surface.

Subroutine DELTHA - This routine determines the delta theta (mandrel rotation) in each conical and cylindrical section and the total rotation for one circuit. The length of filament laid down in each section is also computed. The subroutine argument is the geodesic number.

Subroutine NOCIRC - This routine computes the number of circuits and the number of patterns necessary to lay down a given thickness at a desired parallel. The first argument of NOCIRC is the geodesic number. The second argument is a flag specifying which of two approaches should be used in determining the number of circuits per pattern. If the flag.equals zero, the number of circuits per pattern will be such that one pattern will give the desired thickness of the given parallel. If the flag is one, the number of circuits per pattern will be determined so as to produce complete coverage at the specified parallel. The number of patterns necessary to buildup the thickness will then be computed. Since the specified initial helix angle will not likely produce a geodesic having the desired number of circuits per pattern, the third argument of NOCIRC is a flag specifying which of two options shouldbe taken in computing the geodesic. If the flag is zero, the initial helix angle is adjusted to produce a geodesic having the desired number of circuits per pattern. If the flag is one, the geodesic is distorted to obtain the number of circuits per pattern that is wanted.

Figure D.l. CARD-DECK ARRANGEMENT FOR COMPUTING GEODESICS AND PLOTTING THEIR CHARACTERISTICS.

Figure D.2. CARD-DECK ARRANGEMENT FOR COMPUTING AND PLOTTING GEODESICS ON A DE. VELOPED SURFACE.

Subroutine GEOPLT - This routine plots a geodesic on the developed surface. The arguments of GEOPLT are the geodesic number and the number of circuits to be plotted.

Subroutine DIVSUR - This routine computes at surface parallels, the helix angle at the parallel for each geodesic, the thickness produced by each geodesic, and the total thickness at the parallel. These values are written on magnetic tape for use by the plotting routines. The argument of DIVSUR is the interval along the contour at which the above described values will be computed.

Subroutine RZPLOT - This is the routine for plotting R and Z versus S (normalized). The first two arguments of the subroutine are the x and y coordinates of the origin for the plot. The third and fourth arguments are the lengths of the x and y axes, respectively.

Figure D.3. FLOW SHEET OF THE MAIN PROGRAM "DESIGN".

Subroutine ANGLPL - This routine plots the helix angles versus S. The four arguments are the same as those of subroutine RZPLOT.

Subroutine THPLOT - This is the routine for plotting the thickness for a single geodesic versus S. This is a normalized plot with the thickness normalizedwith respect to the maximum thickness resulting from all of the geodesics. The first argument of THPLOT is the geodesic number. The next four arguments are the same as those of RZPLOT.

Figure D. 4. FLOW SHEET OF THE MAIN PROGRAM "DEVPLT".
1

Subroutine SUMPLT - This routine plots the total thickness (normalized) resulting from all of the geodesics. The four arguments are the same as those of RZPLOT.

Subroutine CNPLOT - This is the routine for plotting the contour of the surface as it appears after the wrap. The first two arguments of CNPLOT are the origin for the plot. The third argument is the desired scale of the X (or Z) axis; the fourth is the scale of the Y (or R) axis.

Subroutine PERCOV - This routine is called by subroutines NOCIRC and DIVSUR to compute, at a given parallel, the coverage per circuit of the goedesic and the helix angle occurring at the parallel. The first argument of PERCOV is the radius of the part at the parallel. The next argument is the number of the section in which this parallel lies. The third argument is the geodesic number. The routine returns the coverage per circuit, which is the fourth argument, and the helix angle at the parallel, which is the fifth argument.
Subroutine ADJUST - This routine is called by NOCIRC to adjust the initial helix angle in order to obtain a geodesic having a predetermined number of revolutions per circuit. The first argument of ADJUST is the geodesic number. The second argument is the desired number of revolutions per pattern, and the third is the desired number of circuits per pattern. The fourth argument is the number of revolutions per circuit of the geodesic as initially specified. The fifth argument is the maximum difference that will be allowed between the number of revolutions per circuit of a new geodesic and the revolution per circuit desired. The sixth argument of ADJUST is a flag indicating to the calling program whether or not a geodesic could be found having the desired number of revolutions per circuit.

Subroutine NOFACT - This subroutine, called by NOCIRC, checks two integers for common factors. If the integers are found to have common factors, one for) both is altered to obtain new integers having no common factors. The two arguments of NOFACT are the two integers involved.

Function IGCD - This is a Fortran function for determining the greatest common divisor of two integers. This function is called by subroutine NOFACT. The two arguments are the two integers whose greatest common divisor is desired.

Subroutine SHIFT - This routine is called by subroutine DEVELP if, when plotting the developed surface, two of the sections overlap. The first argument of SHIFT is the section number. The second argument, computed by the subroutine, is the amount of shift necessary to prevent the section from overlapping.

Subroutine AXPLOT - This routine, called by the various routines for plotting geodesic characteristics, is an axis generator. Its purpose is to draw and label the axes for a plot. The first two arguments are the x and y coordinates of the origin for the plot. The third and fourth arguments are the length of x and y axes, respectively. The fifth and sixth arguments are the divisions per inch, on the x axis and y axis, to be marked. The seventh and eighth arguments are the length each division represents (x and y axes). The ninth and tenth arguments specify which divisions are to be labeled; ie, if this number is one, every division will be labeled; if two, every other division will be labeled, etc. The eleventh argument is a flag indicating the size of letters to be used in labeling the axes. The twelveth and thirteenth arguments are the names of the x and y axes, respectively.

The input format for computing a geodesic and plotting its characteristics is shown in Figure D-5. The first card of the input is a title card containing alphanumeric information. The next card states the number of points to be used in defining the contour of the surface. The points defining the surface $\left(r_{n}, z_{n}\right)$ are then given in order of increasing z, where z is the axis of revolution of the surface. The next card contains the plotting flags, one flag for each type plot available. Also included on this card is the interval along the surface contour (step length) at which thickness and helix angle are to be computed and plotted. (If all of the plotting flags are zero, thickness and helix angle will not be computed at all.) The scale of the final contour plot ($1.0=$ full scale, $.5=$ half scale, etc) is also included on this card. The next card indicates the number of geodesics to be wrapped. Then finally there is one card specifying each geodesic. This card contains the initial point of the geodesic (r_{0} and/or z_{0} is needed), the initial helix angle (this could be 900 if the initial point is the turnaround point), the desired thickness at a specified point (r and/or z needed), the band dimensions, and three flags. The first flag indicates which option is to be used in determining the number of circuits per pattern (Options 1 and 2). The second flag indicates whether a new geodesic having the desired circuits per pattern is to be found (adjust) or if the computed rotation of the geodesic is to be linearly distorted (distort) to produce the desired number of circuits per pattern. The final flag indicates whether the desired thickness is to be produced by the current geodesic alone or if it is the cumulative thickness of this and all prior geodesics.

Input Format for the Main Program DEVPLT

The input format for computing geodesics and plotting them on a developed surface is shown in Figure D-6. The format for the surface definition is identical to that used in main program DESIGN. One card is needed to specify each geodesic to be drawn. This card contains the initial radius (r_{0}), the initial helix angle (α_{0}), the advance per pattern, the number of circuits per pattern, and the number of circuits to be drawn. If the number of circuits per pattern is specified, a new geodesic will be computed (if necessary) to obtain one having the desired number of circuits per pattern. If this field is left blank, the geodesic as specified will be plotted.

Output of the Main Program DESIGN

Output of the main program DESIGN and its subroutines consists of the following:
(1) The alphanumeric information on the title card;
(2) The inilial conditions for the geodesic;

Figure D. 5. INPUT FORMAT FOR THE MAIN PROGRAM "DESIGN".

Figure D.6. INPUT FORMAT FOR THE MAIN PROGRAM "DEVPLT".
(3) Computed data for the geodesic which includes the geodesic number, the number of circuits necessary to produce the desired thickness, the number of patterns needed, the number of circuits per pattern, a ratio of integers which is the ratio of revolutions per pattern to circuits per pattern (ie, the number of revolutions per circuit), the computed thickness at the specified point resulting from this geodesic, and the parallels at which turnaround occurs;
(4) The distortion factor (the computed rotation is multiplied by this factor to achieve a wrap having the desired number of revolutions per circuit);
(5) The rotation (delta theta) and length of filament to be laid down in each conical and cylindrical section during one-half circuit; and
(6) The total rotation (degrees) and total length of filament for one circuit.

Output of the Main Program DEVPLT

Output of the main program DEVPLT and its subroutines consists of the following:
(1) The alphanumeric information on the title card;
(2) The initial conditions for the geodesic;
(3) The rotation and filament length for one circuit;
(4) A ratio of integers which is the ratio of revolution per pattern to circuits per pattern;
(5) The parallels at which turnaround occurs; and
(6) The rotation and filament length in each section for one-half circuit.

APT Program

The APT program represents the initial efforts on this project. Due to the limited amount of storage available in APT, this approach was abandoned and the Fortran program previously described was undertaken. Therefore, the APT program is limited to computing a geodesic and plotting it on the developed surface. The input to the program is a point definition of the contour to be wrapped. The 19 reserved words should be dimensioned at least as large as the number of points defining the contour.

MACl - This routine, utilizing the point definition of the surface contour, defines the developed surface and computes various section parameters. The argument of $M A C 1, M$, is the number of points defining the contour.
$M A C 2$ - This is the routine for plotting the developed surface. The argument, M, is again the number of points defining the contour.

MAC3 - This routine computes, for an initial helix angle and radius, one circuit of the geodesic. The initial helix angle is adjusted (if necessary) to produce a geodesic having a specified number of circuits per pattern. The firstargument of

MAC3, RO, is the radius of the initial point. The second argument, AZERO, is the initial helix angle at the starting point. The third argument, PRIME, is the desired number of circuits per pattern and should be a prime number. If other than a prime number is specified, the program could determine a geodesic having fewer circuits per pattern than desired. The fourth argument, M, is the number of points defining the surface contour. The final argument, EPS, is the maximum allowable difference between the number of revolutions per circuit of the computed geodesic and the revolutions per circuit desired. This value will normally be small. However, if the user does not want the initial helix angle altered, a large value (say, $E P S=1$) should be used.

MAC4 - This is the routine for plotting the geodesic on the developed surface. The first argument, TZERO, is the starting value of theta, θ_{0}. The second argument, J, is the section in which the plot will originate. The third argument, NUMBER, is the number of circuits to be drawn. The plot will begin at the left side of section J , proceed to the right, and terminate at the right hand side of section $\mathrm{J}-\mathrm{l}$. If the value specified for NUMBER is the same as that specified for PRIME in MAC3,the geodesic will return to its starting point (ie, complete one pattern).

A limited amount of program output appears after subroutine MAC3 has been executed. The parameters printed out are:
(1) Pass - The number of iterations of the initial helix angle to get desired number of circuits per pattern;
(2) Del - The difference between the desired number of revolutions per circuit and revolutions per circuit actually obtained;
(3) Rvn - revolutions per circuit obtained with adjusted initial helix angle;
(4) Integer - the integral part of Rvn;
(5) Fract - the fractional part of Rvn;
(6) Partn - the fractional part of desired number of revolution/circuit;
(7) N - the numerator of (N/PRIME) which results in the value of Partn;
(8) Alpha - the adjusted initial helix angle;
(9) Tsum - the rotation for one circuit in degrees;
(10) Cons - the constant of integration, $r_{0} \sin \alpha_{0}$ (also radius at turnaround);
(11) L - the upper turnaround section;
(12) I - The lower turnaround section;
(13) Dtheta(n) - the rotation occurring on section n in one-half circuit (in degrees);
(14) Dbeta(n) - the angle traversed on the developed surface of section n (one-half circuit); and
(15) FIngth (n) - the length of filament on section n (one-half circuit).

Program Listing

The two main programs and the 17 subroutines previously described are listed below. Following this Fortran list is a listing the the APT macros.

```
*LABEL
CDESIGN MAIN DESIGN PROGRAM FOR WINDING GEODESICS
    DIMENSION R(1ODD),Z(IOOD),AK(|OOO),F(|OOO),X|(IOOD),TITLE(| 2),
    IRO(100),2O(100), ALPHAO(IOD),CONS(100),W(100),D(IOO),THICK(100),
    2RT(100),ZT(100),NC(100),DTHETA(1000),FLNGTH(IOOO)
        COMMON M,R,Z,AK,F,XI,NOGEOD,RO,ZO,ALPHAO,CONS,W,D,THICK,NC,RT,ZT,
        I SMAX,RMAX,ZMAX,THMAX,JJ,TITLE,PI,DTHETA,FLNGTH,TSÜM,FLSUM,NHIGH,
        2 NLOW, DISTRT, ADVNCE, SHAFT।, SHAFT2
        COMMON AA, BB, CC, DEL, DELRHO, NSTART
        COMMON LLL, RHOMIN, FR , TMIN
        PI # 3.14159265
        REWIND }
    5 READ INPUT TAPE 5, IDOO, (TITLE(K) , K # 1, 12 )
IOOD FORMAT ( I2AG )
        READ INPUT TAPE 5, IOI!, M
IOID FORMAT ( I4 )
        READ INPUT TAPE 5, lO20, (R(N), Z(N),N # 1,M)
IO20 FORMAT ( 6Fl2.6)
        READ INPUT TAPE 5, IO30, ITHICK, ISUM, IANGLE, ICON,STEP, SCLE
IO30 FORMAT ( 4I3, 2F6.3)
        CALL PARMET
        READ INPUT TAPE 5, 1010, NOGEOD
        DO IOO I # I , NOGEOD
        READ INPUT TAPE 5, IO50, RO(I), ZO(I),ALPHAO(I),THICK(I), RT(I),
        I ZT(I), W(I), D(I), KK, LA, KTHICK
1050 FORMAT ( 2FI2.6, 2F6.3, 2Fl2.6, 2F6.3, 3I2,
        WRITE OUTPUT TAPE 6 , ID80, ( TITLE(K) , K # | ,12 )
I080 FORMAT ( IHI, I 2AG,
        WRITE OUTPUT TAPE 6, 1090
I090 FORMAT ( IIIHO INITIAL INITIAL HELIX DESIRED AT PO
        IINT BAND BAND CIRC/PAT ADJUST THICKNESS /
        2 108H R R ZNGLE THICKNESS R Z
        3 WIDTH THICKNESS FLAG FLAG FLAG,
        WRITE OUTPUT TAPE 6, IIDD, RO(I), ZO(I), ALPHAO(I), THICK(I),
        I RT(I), ZT(I),W(I), D(I), KK, LA , KTHICK
IIDO FORMAT ( IHO, 8FID.4, 3I8 )
        IF (I - 1 ) 95,95, 10
        IOIF ( KTHICK ) 95,95,15
        15 IF (ZT(1), 20, 20, 70
        20 IF ( RT(I) ) 25, 25, 50
        25 W'RITE OUTPUT TAPE 6 , 2000, I
2OOD FORMAT (3IHO(RT,ZT) NOT GIVEN FOR GEODESIC, I 3,| 3H (RO,ZO) USED )
        IF (20(I), 30, 30, 40
    30 IF ( RO(I) ) 35, 35,45
    35 WRITE OUTPUT. TAPE 6, 20ID, I
2OIO FORMAT ( 44HOSTARTING STATION NOT SPECIFIED FOR GEODESIC, I 3,
        I IGH CANNOT COMPUTE )
        GO TO 100
    40 ZT(b) # ZO(I)
        RT(I) RO(I)
        GO TO 70
    45 RT(I) # RO(I)
    50 CONTINUE
```

```
    DO 55 N#2,M
    IF ( RT(I) - R(N) ) 65, 60, 55
    55 CONTINUE
    WRITE OUTPUT TAPE 6 , 2020 , I
2020. FORMAT ( 38HOCOULD NOT LOCATE (RT,ZT) FOR GEODESIC , I 3 , I7H THIS
    I ONE STKIPPED )
    GO TO 100
    60 N # N + I
    65 NTH # N - I
    GO TO 84
    70 CONTINUE
        DO. 72 N # 2 , M
    IF ( ZT(I) - Z(N) ) 78,76,72
    72 CONTINUE
    IF ( RT(I), ) 74, 74, 50
    74 WRITE OUTPUT TAPE 6 , 2020, I
    GO TO InO
    76 N # N +
    78 NTH # N - I
    IF(RT(I) ) 82, 82, 84
    82 RT(I) # AK(NTH) * ( ZT(I) - Z(NTH) ) + R(NTH)
    8 4 \text { CONTINUE}
        IMI # I - I
        DO 88 K # 1, IMI
        CALL PERCOV ( RT(I) , NTH, K, PERCNT, HANGL ).
        TK # FLOATF ( NC(K) ) * D(K) * PERCNT
        THICK(I) # THICK(I) - TK
    88 CONTINUE
        IF ( THICK(I) ) 90, 90 , 95
    90 NC(I) # 0
    WRITE OUTPUT TAPE 6 , 2030, I
2030 FORMAT.I I 3HOFOR GEODESIC, 13 , 87H THICKNESS BUILT UP BY PREVIOU
    IS LAYERS EXCEEDS DESIRED THICKNESS - THIS ONE NOT NEEDED )
        go TO IOO
    25 CONTINUE
    CALL NOCIRC ( I', KK`, LA),
    IOD CONTINUE
        IF (ITHICK + ISUM + IANGLE + ICON) 250 , 250, 120
    120 IF ( STEP ) 130, 130 , 140
    130 STEP # .050
    140 CALL DIVSUR ( STEP )
    XO # 0.0
        YO # 0.0
        IF ( ITHICK + ISUM + IANGLE ) 210, 210, 142
    142 CONTINUE
        XL # 5.0
        YL # 5.0
        CALL RZPLOT ( XO, YO, XL, YL )
        IF ( IANGLE ) 160, 160, 150
    I5ח CALL ANGLPL ( XO, YO, XL , YL ),
    160 CONTINUE
        IF (ITHICK ) 19ח, 190, 170
    170 DO 180 I # I , NOGEOD
    180 CALL THPLOT ( I, XO, YO, XL, YL )
    190 CONTINUE :
```

```
    IF (ISUM, 210, 210, 200
    200 CALL SUMPLT (XO, YO,XL, YL )
    210 CONTINUE
    IF (ICON, 250, 250, 220
    220 IF (SCLE ) 230, 23n, 240
    230 SCLE # . 5
    240 CONTINUE
    CALL CNPLOT ( XO, YO, SCLE, SCLE )
    70 CONTINUE
    END FILE &
    GO TO 5
    END.
*LABEL
CDEVPLT MAIN PROGRAM FOR PLOTTING GEODESIC ON DEVELOPED SURFACE
    DIMENSION R(IOOO),Z(IOOD),AK(ICOO),F(IOOD),XI(IOOO),TITLE(I2),
    IRO(100),ZO(IOO),ALPHAO(1OD),CONS(IOO),W(IOO),D(IOO),THICK(IOO),
    2RT(IOD),ZT(IOD),NC(INO),DTHETA(IOOD),FLNGTH(IOOO)
        COMMON M,R,Z,AK,F,XI,NOGEOD,RO,ZO,ALPHAO,CONS,W,D,THICK,NC,RT,ZT,
        ISMAX,RMAX,ZMAX,THNAX,JJ,TITLE,PI,DTHETA,FLNGTH,TSUM,FLSUM,NHIGH,
    2 NLOW, DISTRT, ADVNCE, SHAFT।, SHAFT2
        COMMON AA, SB, CC, DEL, DELRHO, NSTART
        COMMON LLL, RHOMIN, FR, TMIN
        PI # 3.14159265
        REWIND 8
    10 READ INPUT TAPE 5, 1000, ( TITLE(K), K # 1, 12 )
IOOD FORMAT ( I2AG )
        READ INPUT TAPE 5, INIn, M
IOIO FORMAT ( I4 )
    READ INPUT TAPE 5 , 1020, (R(N), Z(N),N#1,M)
IO20 FORMAT ( GF12.6 )
    READ INPUT TAPE 5, 10IO, NOGEOD
    CALL PARMET
    CALL DEVELP
    DO 200 I # I , NOGEOD
    READ INPUT TAPE 5, IO30, RO(I), ALPHAO(I), ADVDEG, NCPERP, NUM
IC30 FORMAT ( 3F12.6, 2I6)
    DO 20 N # 2 , M
    IF (RO(I) - R(N) , 40, 30, 20
    20 CONTINUE
        WRITF OIITPIIT TAPE 6 , 2ODCO , I
20OD FORMAT ( 52HO COULD NOT DETERMINE STARTING SECTION FOR GEODESIC,
    I I 3, 2DH, THIS ONE SKIPPED,
        GO TC 200
    30 N # N + 1
    4 0 ~ N S T A R T ~ \# ~ N ~ - ~ I ~ I ' ~ l
    IF ( AK(NSTART)) 50, 60, 50
    50 ZO(I) # ( RO(I) - R(NSTART) ) / AK(NSTART) + Z(NSTART)
    GO TO 70
    60 2O(I) # Z(NSTTART)
    70; CONTINUE
    CALL DELTHA(I)
    NIOW * NLOW
    NHIGH * NHIGH
```

```
        IF ( NCPERP) 145, 145., 80.
        80 RVN # TSUM / 360.0
        INTGR # RVN
        FRACT #`RVN - FLOATF (INTGR)
        NB # NCPERP
        ANB # NB
        ADVNCE # ADVDEG / (ANB * 360.0.)
        N # I
        1 AN # 1.0
    PARTN # 1.0 / AANB
    90 AN # AN + 1.0
    N*N+1
    PARTNI # PARTN
    PARTN # AN / ANB
    IF ( FRACT - PARTN) 110, 150, 100
100IF (N - NB + I ) 90, 130, 130
IIO IF ( ABSF' FRACT-PARTN) - ABSF( FRACT-PARTNI) , 130, 130, 120
120N # N.- 1
    PARTN # PARTNI
130 CONTINUE
    NA # N
    EPS * . 0000חI
    NAA * NB * INTGR + NA
    CALL ADJUST (I, NAA,NB, RVN, EPS; LL ,
    NLOW # NLOW
    NHIGH*NHIGH
    IF ( LL, 150, 150, 140
I40 WRITE OUTPUT TAPE 6, 20ID, I , ALPHAOII), RO(I),
2OIO FORMAT, 28HO COULD NOT ADJUST GEODESIC, 13; 53H, THEREFORE PL
    IOT IS FOR GEODESIC HAVING HELIX. ANGLE, F6.3, IIH AT RADIUS ,F6.3)
    145 NA # 0
    NB # 0
    INTGR # 0
    ADVDEG # 0.0
150 CONTINUE
    ZLOW # (CONS(I) - R(NLOW) ) / AK(NLOW) + Z(NLOW)
    ZHIGH # (CONS(I) - R(NHIGH) ) / AK(NHIGH) + Z(NHIGH)
    WRITE OUTPUT TAPE 6 , 2020, (TITLE(K) , K # 1 , 1.2 )
2020 FORMAT ( IHI, I2AG)
    WRITE OUTPUT TAPE 6, 2030
2030 FORMAT I 93HOGEODESIC HELIX AT ADVANCE TOTAL FILAM
    I ENT . INTEGERS TURNAROUND STATIONS,
    1.99H NUMBER ANGLE RADIUS PER PAT ROTATION LENGTH N +
```



```
    WRITE OUTPUT TAPE 6, 2040, I, ALPHAO(I), RO(I), ADVDEG , TSUM ,
    I FLSUM, INTGR,NA,NB, CONS(I), ZLOW, ZHIGH
2040 FORMAT (IHO, I4, 5FIO.3, 3I4, 3FIO.3)
    WRITE OUTPUT TAPE 6,2050, ( N,DTHETA(N),FLNGTH(N),N#NLOW,NHIGH )
2050 FORMAT (.IHO % 39HO SECTION DELTA THETA FILAMENT LENGTH,
    I ( IH, I4, 2FI6.6), 
    WRITE OUTPUT TAPE 6, 2060, TSUM, FLSUM
2060 FORMAT ( 8HOCIRCUIT, FI3.6 , Fl6.6,
    IF (NUM, 160, 160, 170
    160 NUM # I
    170 CONTINUE
```

```
    CALL GEOPLT ( I ,NUM )
    2 0 0
    CONTINUE
    GO TO 10
    END
*LABEL
CPARMET COMPUTE SECTION PARAMETERS
    SUBROUTINE PARMET
    DIMENSION R(IOOU゙),Z(IOOO),AK(1000),F(IOOO),X|(IOOD),TITLE(12),
        |RO(IDO),ZO(IOD),ALPHAO(IOD),CONS(IOD),W(ICD),D(ICD),THICK(IOQ),
        2RT(100),2T(IOO),NC(IOO),DTHETA(IOOO),FLNGTH(IOOO)
            COMMON M,R,Z,AK,F,XI,NOGEUD,RO,\angleU,AL\dot{PHAU,CONS,W,D,THICK,NC,RT,ZT,}
            I SMAX,RMAX,ZMAX,THMAX,JJ,TITLE,PI,DTHETA,FLNGTH,TSUM,FLSUM,NHIGH,
            2 NLOW, DISTRT, ADVNCE, SHAFT1, SHAFT2
            XI(1) # 0.0
            MM # M - I
            RMAX # R(I)
            DO 1200 N # 1 , MM
            IF (ABSF(Z(N)-Z(N+1))-.0001) , 1010, 1010, 1040
    1010 IF (R(N+I) - R(N) ) ID2ח, ID20, 1030
    1O2O AK(N) # - (1.OE 20)
    GO TO 1035
    1030 AK(N) * I.0 E 20
    1035 F(N) # 1.0 E 20
            XI(N+I) #: XI(N) + ABSF(R(N+I) - R(N) )
            GO TO 12#0
    1040 AK(N) # (R(N+I) - R(N) ) / (V Z(N+1) - Z(N) )
    IF ( ABSF( AK(N) ) -.0001 , 1050, 1050, 1100
    1050 AK(N) # 0.0
    IIOD F(N) # SQRTF(1.ח + AK(N)**2 ,
    XI(N+I) # XI(N) + (Z(N+I) - Z(N) ) #F(N)
    I200 RMAX # MAXIF ( R(N+I) , RMAX )
    ZMAX # Z(M)
    RETURN
    END
*LABEL
CDEVELP
    SUBROUTINE DEVELP
    DIMENSION R(IOOO),Z(IOOO),AK(IDOO),F(1000),XI(1000),TITLE(12),
    IRO(IOO),ZO(IOO),ALPHAO(IOQ),CONS(IDO),W(IOO),D(IOD),THICK(IOO),
    2RT(IOO),ZT(IOD),NC(IDO),DTHETA(IODO),FLNGTH(IOOO)
    DIMENSION RI(IOO),R2(IUU),HHI\IUD),X(1IDO)
    COMMON M,R,Z,AK,F,XI,NOGEOD,RO,ZO,ALPHAO,CONS,W,D,THICK,NC,RT,ZT,
    I SMAX,RMAX,ZMAX,THMAX,JJ,TITLE,PI,DTHETA,FLNGTH,TSUM,FLSUM,NHIGH,
    2 NLOW, DISTRT, ADVNCE, SHAFTI, SHAFT2.
    COMMON AA,BB,CC,DEL,DELRHO,NSTART
    COMMON LLL, RHCMIN, FR, TMIN
    COMMON R1, R2, PHI, XC
    SHIFTI # 0.0
    MI # M - I
    DO 200 N # I , MI
    IF(AK(N) ) 10,40,70
    10 FOK*-F(N)/AK(N)
    RI(N) # R(N+1) * FOK
```

```
    R2(N) # R(N) * FOK
    PHI(N) # 360.0 / FOK
    XC(N) XI(N) + R2(N)
    IF (AK(N) - AK(N-I) - .000001 ) 30, 30, 20
    20 CALL SHIFT (N, SHIFT2 )
    SHIFTI # SHIFTI + SHIFT2
    30 XC(N) #XC(N) + SHIFT
    GO TO 200
    40.R2(N) # 2.0.* PI * R(N)
    IF (AK(N-I) ) 5n,6n,60
    50.CALL SHIFT'(N, SHIFT2)
    SHIFTI # SHIFTI + SHIFT2
    60 XC(N) # XI(N) + SHIFTI
    RI(N)#XI(N+I) + SHIFTI
    GO TO 200
    70 FOK # F(N) / AK(N)
    RI(N) # R(N) * FOK
    R2(N) # R(N+I) * FOK
    PHI(N) # 36ח.0'/ FOK
    XC(N) # XI(N) - RI(N)
    IF (N-1, 100, 100, 80
80 IF (AK(N) - AK(N-I) -.00OODI ) 100, 100, 90
90 CALL SHIFT (N, SHIFT2,
    SHIFTI # SHIFTI + SHIFT2
    100 XC(N) #.XC(N) + SHIFTI
    200 CONTINUE
    TITLE(7) # 242565254346
    TITLE(8) #472524606264
    TITLE(9) # 512621232560.
    TITLE(IO)#47434663536#
    CALL SETUP ( TITLE )
    CALL PLOT (0.0, 0.0, 1, 2,
    DO 300 N # 1, MI
    IF (AK(N) ) 220, 250, 260
    220.CALL CIRCLE (XC(N), O.O,R2(N), 180.0, - PHI(N), -1 )
    IF ( RI(N) - .00000I ) 240, 240, 230
    230 CALL CIRCLE (XC(N), D.0, RI(N), 180.0-PHI(N), PHI(N), 1, 
    240 GO TO 300
    250 CALL PLOT ( XC(N), O.O, 1, 2,
    CALL PLOT (.XC(N), R2(N), 1, l )
    CALL PLOT (R1(N),R2(N), 1, 1,
    CALL PLCT (R)(N), O.O., 1, 1 )
    GO TO 300
    260 IF (RI(N) - .00000I ) 280, 280. 270
    270 CALL CIRCLE ( XC(N), D.0, RI(N), O.O , PHI(N), -1)
    280CALL CIRCLE (XC(N), O.D, R2(N), PHI(N), - PHI(N), I )
    300 CONTINUE
    CALL PLOT (0.0, 0.0, 1, 1 )
    CALL FINISH ( 30, TITLE)
    END FILE 8
    RETURN
    END
*LABEL
```

```
CDELTHA COMPUTE DELTA THETAS FOR GEODESIC I
    SUBROUTINE DELTHA ( I,
    DIMENSION R(IODO),Z(IOOO),AK(IOOO),F(IODO),XI(IOOO),TITLE(I2),
    |RO(100),ZO(IOO),ALPHAO(IOO),CONS(IOO),W(IOO),D(IOO),THICK(IOQ),
    2RT(IOD),ZT(IOD),NC(IOO),DTHETA(।OOO),FLNGTH(IOOO)
        COMMON M,R,Z,AK,F,XI,NOGEOD,RO,ZO,ALPHAO,CONS,W,D,THICK,NC,RT,ZT,
    ISMAX,RMAX,ZMAX,THMAX,JJ,TITLE,PI,DTHETA,FLNGTH,TSUM,FLSUM,NHIGH,
    2 NLON, DISTRT, ADVNCE, SHAFT1, SHAFT2
        CONV # 180.\Gamma. / PI
        CONS(1) # RO(1) * SINF ( ALPHAO(1) / CONV)
        DO 20 N # 2 , M
        IF (ZO(I)-Z(N), 40, 30, 20
    20 CONTINUE
    3D IF (ALPHAO(I) - 90.0, 38, 33, 38
    33 1F (AK(N), 40, 40, 38
    38 N #N+I
    40 NSTART # N - I
        IF ( CONS(I) - R(|) ) I50, 45, 45
    45 J *NSTART + 1
    50 J # J - I
        IF (R(J)-CONS(I) ) 60, 60, 5D
    60 NLOW # J
    IF (CONS(I) - R(M) , 150, 70,70
    70 J # NSTART
    80 J # J + I
        IF (R(J) - CONS(I) ) 9ח, 90, 80
    90 NHIGH * J - 1
        FOK # F(NLOW) / AK(NLOW)
        NLI # NLOW + I
        TERM # (R(NLI) / CONS(I) )**2 - 1.0
        IF ( TERM ) 92, 92,95
    92 ASEC2 # 0.0
        GO TO 98
    95 ASEC2 # ATANF ( SQRTF ( TERM ) )
    98 DBETA # ASEC2
        DTHETA(NLOW) * FOK * DBETA * CONV
        FLNGTH(NLOW) # R(NLI) * FOK * SINF( DBETA)
        NHI # NHIGH - I
        IF (NHI - NLI , 135, 100, 100
IOO DO 130 N # NLI, NHI
    IF (AK(N), 120, 110, 120
IIO DBETA#CONS(I)*(Z(N+I)-Z(N))/ (R(N)*SQRTF(R(N)**2 - CONS(I)**2))
    DTHETA(N) # DBETA * CONV
    FLNGTH(N) # SQRTF(( Z(N+1)-Z(N))**2 + (R(N)*DBETA)**2)
    GO TO 130
120 FOK # ABSF(F(N)/AK(N) )
    ASECI # ASEC2
    TERM# (R(N+1) / CONS(I) )**2 - 1.0
    IF (TERM ) 122, 122, l25
122. ASEC2 # 0.0
    GO TO 126
125 ASEC2 # ATANF ( SQRTF ( TFRM ) )
126 DBETA # ABSF ( ASEC2 - ASECI )
    DTHETA(N) # FOK * DBETA * CONV
    RN2 #R(N) # FOK
```

```
    RN3 # R(N+1) # FOK
    TERM # RN2**2 + RN3**2 - 2.0 * RN2 * RN3 * COSF ( DBETA)
    IF (TERM, 127, 127,129
    127 FLNGTH(N) # ח.0
    GO TO 130
    129 FLNGTH(N) # SQRTF ( TERM )
    130 CONTINUE
    l 35 CONTINUE
    FOK # ABSF ( F(NHIGH) / AK(NHIGH) )
    DBETA # ABSF ( ASEC2)
    DTHETA(NHIGH) # FOK * DBETA * CONV
    FLNGTH(NHIGH) # FOK * R(NHIGH) * SINF (DBETA)
    TSUM # 0.0
    FLSUM # O.0
    DO 140 N # NLOW,NHIGH
    TSUM # TSUM + DTHETA(N)
    140 FLSUM # FLSUM + FLNGTH(N)
    TSUM # 2.0 * TSUM
    FLSUM.# 2.0 # FLSUM
    GO TO 160
    150 CONS(I) # MAXIF ( R(I) , R(M) )
    ALPHAO(I) # ATANF( CONS(I)/ SQRTF( RO(I)**2 - CONS(I)**2) ) * CONV
    WRITE OUTPUT TAPE 6, 8DOD, I , ALPHAO(I)
8000 FORMAT ( 33HD TURN-AROUNO RADIUS FOR GEODESIC, I3, 56H IS LESS T
    IHAN R(|) OR R(M) - STARTING ANGLE CHANGED TO , FIO.6 )
    GO TO 45
    160 CONTINUE
    RE TURN
    END
*LABEL
CNOCIRC COMPUTE NUMBER OF CIRCUITS TO GIVE THICKNESS
    SUBROUTINE NOCIRC (I , KK, LA )
C I IS GEODESIC NUMBER
C KK IS OPTION IN DETERMINING NUMBER OF CIRCUITS PER PATTERN
    LA IS OPTION TO ADJUST STARTING ANGLE OR DISTORT GEODESIC
    DIMENSION R(IOOO),Z(IOOO),AK(IDOO),F(1OOO),X|(IOOO),TITLE(12),
    IRO(IOO),ZO(IOO),ALPHAO(IOO),CONS(IOO),W(IOO),D(IOD),THICK(IOO),
    2RT(IOO),ZT(100),NC(100),DTHETA(IOOO),FLNGTH(IOOO)
    COMMON M,R,Z,AK,F,XI,NOGEOD,RO,ZO,ALPHAO,CONS,W,D,THICK,NC,RT,ZT,
    I SMAX,RMAX,ZMAX,THMAX,JJ,TITLE,PI,DTHETA,FLNGTH,TSUM,FLSUM,NHIGH,
    2 ~ N L O W , ~ D I S T R T , ~ A D V N C E , ~ S H A F T I , ~ S H A F T 2 ~
    PGLASS*# 1.0
    IF (D(I); 10, 10, 20
    IOD(I) # -0חI
    WRITE OUTPUT TAPE 6,1400, I
1400 FORMAT ( 35HD DIAMETER OF ROVING FOR GEODESIC , I 3, 23H NOT GIVE
    IN - .DO\ USED ,
    20 IF (W(I) , 30, 30,40
    30 W(I) # \bullet1
        WRITE OUTPUT TAPE 6,1410, I
14IO FORMAT ( 32HO WIDTH OF ROVING FOR GEODESIC, I3 , 2IH NOT
```

```
        1- .1 USED )
    40 IF ( THICK(I) ) 42, 42,48
    42 THICK(I) # 2.0 * D(1)
    WRITE OUTPUT TAPE 6,1415, I
1415 FORMATI32HD DESIRED THICKNESS FOR GEODESIC, 13, 29H NOT SPECIFIED
    | , 2 D(I) USED )
    48 IF ( 201I) ) 5n, 50, 120
    50 IF (RO(I) ) 60, 60, 70
    60 WRITE OLTPUT TAPE 6,1420, I
1420 FORMAT 1 46HO STARTING STATION NOT SPECIFIED FOR GEODESIC , I 3,
    I 16H CANNOT COMPUTE )
        GO TO 50D
    70 DO 80 N * 2,M
        IF (RO(I) - R(N) ) 90, 85 , 80
    80 CONTINUE
        WRITE OUTPUT TAPE 6,1430, I
1430 FORMAT I 72HO WITH ZO NOT GIVEN , COULD NOT DETERMINE STARTING SE
    ICTION FOR GEODESIC, I3, IOH USING RO,
        GO TO 500
    85 N # N+1
    90 NSTART # N - I
        IF ( AK(NSTART) ) 100, 110, 100
100 ZO(I) # ( RO(I) - R(NSTART) ) / AK(NSTART) + Z(NSTART)
        GO TO 160
110 ZO(I) # Z(NSTART)
    GO TO 160
120 DO 130 N # 2 , M
    IF ( ZO(I) - Z(N) ) 140, 135, 130
130 CONTINUE
    WRITE OUTPUT TAPE 6,144!,I
1440 FORMAT ( 63HO USING 2O, COULD NOT DETERMINE STARTING SECTION FOR
    | GEODESIC , I3 )
    GO TO 500
135N#N+1
140 NSTART # N - I
        IF (RO(I) ) 150, 150, 160
150 RO(I) # AK(NSTART) * ( ZO(I) - Z(NSTART) ) + R(NSTART)
160 cONTINUE
        IF( ZT(I) ) 170, 170, 240
170 IF(RT(I) ) 180, 180, 190
180 WRITE OUTPUT TAPE 6 ,1450, I
14bÜ FUKMAT(3IHO(RT'ZT) NOT GIVEN FOR GEODESIC, I3,I3H (RO,ZO) USED )
185 RT(I) # RO(I)
    2T(I) # ZO(I)
        NTH # NSTART
        GO TO 280
190 DO 200 N # 2,M
    IF ( RT(1) - R(N) ) 210, 205, 200.
200 CONTINUE
    WRITE OUTPUT TAPE 6,1460 , I
1460 FORMAT ( 83HU WITH LI NOT GIVEN, COULD NOT DETERMINE SECTION TO C
    IOMPUTE THICKNESS FOR GEODESIC, I3, 39H USING RT, SO (RO,LO) US
    2ED FOR (RT,ZT) )
        GO TO 185
205 N # N+I
```

```
210 NTH \# N - 1
    IF (AK (NTH) ) \(220,230,220\)
220 ZT(I) \# ( RT(I) - R(NTH) ) / AK(NTH) + Z(NTH)
    GO TO 280
230 ZT(I) \# Z(NTH)
    GO TO 280
240 DO 250 N \# 2, M
    IF (ZT(I) - Z(N) \(1260,255,250\)
250 CONTINUE
    WRITE OUTPUT TAPE 6,147n, I
1470 FORMAT ( 80HO USING GIVEN ZT, COULD NOT DETERMINE SECTION TO COMP
    IUTE THICKNESS FOR GEODESIC,I3,28H SO (RO,ZO) USED FOR (RT,ZT) )
    GO TO 185
255 N \# N +
260 NTH \# N -
    IF (•RT(I) ) 270,270 , 280
\(270 \mathrm{RT}(\mathrm{I})\) \# AK(NTH) * ( ZT(I) - Z(NTH) ) + R(NTH)
280 CONTINUE
290 CONS(I) \# ROII) * SINF ( ALPHAO(I) * PI / I80.0 )
    CALL PERCOV ( RT(I) , NTH, I , PERCNT, HANGL)
    IF ( PERCNT ) 300 , 300 , 310
300 RT(I) \# CONS(I)
    ZT(1) \# 0. 0
    WRITE OUTPUT TAPE \(6,148.0\), I
1480 FORMAT 142 H O COVERAGE AT (RT,ZT) IS ZERO FOR GEODESIC, 13 , 38 H
    I, TURNAROUND POINT USED FOR (RT,ZT) ,
    GO TO 160
310 IF ( KK ) \(320,320,330\)
320 B \# THICK(1) / ( O(I) *PERCNT ) *PGLASS
    GO TO 340
330 B \# 2.0 / PERCNT
340 NB \# B + . 5
    CALL DELTHA 1 1
    NLOW \# NLOW
    NHIGH \# NHIGH
    RVN \# TSUM / 360.0
    INTGR \# RVN
    FRACT \# RVN - FLOATFI INTGR )
    A \# B * FRACT
    NA \# A + . 5
    IF ( NA ) \(350,350,360\)
350 NA \# I
    GO TO 388
360 IF ( NA - NB ) \(380,370,375\)
370 NA \# NB - 1
    GO TO 388
375 INTGR \# INTGR + 1
    NA \# NA - NB
380 CALL NOFACT 1 NA, NB )
388 CONTINUE
    EPS *. 000001
    IF (LA ) 382 , 382 , 390
382 CONTINUE
    NAA \# NB \# INTGR + NA
    CALL ADJUST 1 I , NAA , NB , RVN , EPS , LL )
```

```
        IF (LL) 384, 384, 390
    384
        CALL PERCOV ( RT(I), NTH , I , PERCNT , HANGL )
        DISTRT # 1.0
        GO TO 420
    390 RVN2 # FLOATF( INTGR ) + FLOATF(NA ) / FLOATF (NB )
        DISTRT * RVN2 / RVN
        DO 4ID N # NLOW, NHIGH
410 DTHETA(N) * DTHETA(N) # DISTRT
        TSUM # TSUM # DISTRT
420 AN # THICK(I) / (D(I) * PERCNT ) * PGLASS
    NOPATN # AN / FLOATF( NB ) + . 5
        NCPERP # NB
        NC(I) # NCPERP * NOPATN
        THNESS # FLOATF ( NC(I) ) # D(I) * PERCNT / PGLASS
        ZLOW # ( CONS(I) - R(NLOW) ) / AK(NLOW) + Z(NLOW)
        ZHIGH #(CONS(I) - R(NHIGH)) / AK(NHIGH) + Z(NHIGH)
        WRITE OUTPUT TAPE 6,1490, I, NC(I),NOPATN, NCPERP , INTGR,
    | NA, NB, THNESS, CONS(I), ZLOW, ZHIGH
I490 FORMAT I IOOHD NO. OF NO. OF CIRC. PER RATIO OF
    I INTEGERS THICKNESS TURNAROUND STATIONS / 106H GEODESIC CI
    2RCUITS PATTERNS.PATTERN N N N / N AT (RT,ZT) RA
    3DIUS Z LOWER Z UPPER / IHO, I4, 6IIO, 4FIO.6,
        WRITE OUTPUT TAPE 6,I500, DISTRT
1500 FORMAT ( 23HD DISTORTION FACTOR # , FIO.6 )
        WRITE OUTPUT TAPE 6,15IO,(N,DTHETA(N), FLNGTH(N), N# NLOW,NHIGH )
I5IO FORMAT | 39HOSECTION DELTA THETA FILAMENT LENGTH / \ IH , I 4,
    | 2FI6.6 ) I
    WRITE OUTPUT TAPE 6,1520, TSUM, FLSUM
1520 FORMAT I 8HOCIRCUIT , FI3.6 , FI6.6 / IHO,
5 0 0 ~ C O N T I N U E ~
    RETURN
    END
*LABEL
CGEOPLT PLOT GEODESIC ON DEVELOPED SURFACE
        SUBROUTINE GEOPLT ( I , NUM )
        DIMENSION R(IOOO),Z(IOOD),AK(INOD),F(IOOD),XI(IODO),TITLE(12),
        |RO(IOO),ZO(IOO),ALPHAO(IOO),CONS(IOO),W(IOO),D(IOO),THICK(IOD),
    2RT(IOO),2T(IOO),NC(IOO),DTHETA(IOOO),FLNGTH(IOOO)
        DIMENSICN RI(IOO), R2(IOO ), PHI(IOD), XCIIOD )
        COMMON M,R,Z,AK,F,XI,NOGEOD,RO,ZO,ALPHAO,CONS,W,[,THICK,NC,RT,ZT,
        I SMAX,RMAX,ZMAX,THMAX,JJ,TITLE,PI,DTHETA,FLNGTH,TSUM,FLSUM,NHIGH,
        2 NLOW , DISTRT, ADVNCE , SHAFTI , SHAFTV
        COMMON AA,BB,CC,DEL,DELRHO,NSTART
        COMMON LLL, RHOMIN, FR, TMIN
        COMMON Ri, R2, PHI, XC
        KOUNT * D
        CONV # PI / 180.0
        THFTA * O.O
        WRITE OUTPUT TAPE 0,40I0, I
4010 FORMAT ( 28H DEVELOPED PLOT OF GEODESIC , 13 , 5H$ )
    READ INPUT TAPE 0,4020, ( TITLE(K) , K # 7,I2 )
4020 FORMAT ( 6A6)
    CALL SETUP ( TITLE )
```

```
    DO IO N N#:'R(NM -.000001, 20, 20, 10
IO CONTINUE
20 NSTART # N
    ZZ # Z(NSTART)
    UPDOWN # I.D
30 IF (AK(N) ) 40, 420, 70
40 AKK # -1.0
    IF ( UPDOWN, 50, 50,60
50 RR # R!(N)
    GO TO IDO
60 RR # R2(N)
    GO TO 100
70 AKK # 1.0
    IF ( UPDOWN ) 80,80,90
80 RR # R2(N)
    GO TO IOD
90 RR # RI(N)
IOD AOF # ABSF ( AK(N) / F(N) ).
    BETA # AOF # THETA
    XO # AKK * RR * COSF ( BETA * CONV )
    YO #RR # SINF ( BETA * CONV )
    IF (AKK ) 110, 110, 160
IIO IF (N - NHIGH, 130, 170, 170
130IF (UPDOWN), 140, 140, 150
|40 RE # R2(Ny
    GO TO 21!
150 RE # RI(N)
    GO TO 210
160 IF (N - NLOW ) 170, 170, 180
170 RE # RR
    BETAZ # EETA + 2.0 * AOF * DTHETA(N)
    GO TO 220
180 IF (UPDOWN, 190, 190, 200
I90 RE # RI(N)
    GO TO 210
2OD RE # R2(N)
2I0 BETAZ # BETA + AOF * DTHETA(N)
220 CONTINUE
    XD # AKK * RE * COSF ( BETAZ * CONV )
    YD # RE # SINF ( RETAZ * CONV )
    IF ( BETAZ - PHI(N) ) 230, 360, 360
230 XORE #XO+XC(N)
    XDRE # XD + XC(N)
    CALL 'PLOT ( XORE , YO, 1, 2,)
    CALL PLOT ( XDRE, YD, 1, 1,)
    THETA # BETAZ / AOF
    IF (AKK. ) 240, 290, 290
240 IF ( N - NHIGH ) 250, 270, 270
250 IF ( UPDOWN ) 280, 280, 260
260 Z2 # 2(N+I)
    N#N+I
    GO TO: 340
270 UPDOWN # - 1.0
280 ZZ # Z(N)
```

```
    N # N - I
    GO TO 34n
290 IF (N - NLOW,) 320, 320, 300
3ח0 IF ( UPDOWN ) 31ח, 310, 33ח
3102Z#Z(N)
    N#N-I
    GO TO 340
320 UPDOWN & 1.ח
330 2Z # Z(N+I)
    N#N+1
340 CONTINUE
    IF ( ZZ - Z(NSTART) ) 30, 350, 30
350 KOUNT # KOUNT + I
    IF 1 KOUNT - 2 * NUM ) 30, 510, 510
360 AI # SINF ( PHI(N) * CONV )
    B1 # - AKK * COSF (PHI(N) * CONV )
    IF (ABSF (XO - XD ) -. OODI, 370, 370, 380
370 A2 # 1.0
    B2 * 0.0
    D2 # XO
    GO TO 390
380 SLPE # (YD - YO ) / (XD - XO )
    A2 * - SLPE
    B2 * 1.0
    D2 # YO - SLPE * XO
390 DENOM # Al * B2 - A2 * 81
    IF ( ABSF ( DENOM ) - .0OOI ) 410, 410, 400
400 XI# ( - BI # D2) / DFNOM
    YI # A! * D2 / DENOM
    XORE # XO + XC(N)
    XIRE # XI + XC(N)
    CALL PLOT 1 XORE, YO, 1, 2,
    CALL PLOT (XIRE, YI , 1, 1 )
    XO # AKK * SQRTF (XI**2 + YI**2)
    YO # 0.0
    BETAZ # BETAZ - PHI(N)
    GO TO 220
4IO WRITE OUTPUT TAPE 6, 4000, N,AK(N),AI,BI,A2,B2,D2,PHI(N),XO,YO,
    I XD, YD
4 0 0 0 ~ F O R M A T ~ ( ~ 6 O H I ~ L I N E ~ C O N N E C T I N G ~ ( X O , Y O ) ~ A N D ~ ( X D , Y D ) ~ I S ~ P A R A L L E L ~ T O ~ L ~
    IINE 2 / IHO, I3, !IFIO.4 ,
    60 l'O 51B
420 IF ( UPDOWN ) 430, 430,440
430 XO # RI(N)
    XD # XC(N)
    ZZ # Z(N)
    NN #N-1
    GO TO 450
440 XO # XC(N)
    XD # RI(N)
    ZZ & Z(N+I)
    NN#N+1
450 YO # THETA * R(N) * CONV
    YD # YO + R(N) * DTHETA(N) # CONV
    SLPE # (YD - YO ) / (XD - XO )
```

```
    460 CONTINUE
    IF (YD - R2(N) ) 480, 487,47!
    470 YI # R2(N)
    XI # (SLPE # XO + YI - YO ) / SLPE
    CALL PLOT (XO,YO, 1, 2,
    CALL PLOT I XI, YI, 1, 1,
    XO # XI
    YO # 0.0
    YD # YD - R2(N)
    GO TO 460
4BO CALL PLOT (XO, YO., 1, 2,
    CALL PLOT (XD, YD, 1, 1)
    THETA # YD / i R(N) * CONV;
    IF ( ZZ - Z(NSTART) ) 500., 490, 5000.
490 KOUNT # KOUNT + 1
    IF ( KOUNT - 2 * NUM ) 500., 510, 510
500 N # NN
    GO TO 30
510 CONTINUE
    CALL FINISH ( 3n,TITLE)
    END FILE 8
    RETURN
    END
*lABEL
CDIVSUR
                                    DIVIDE UP SURFACE
        SUBROUTINE DIVSUR ( STEP ;
        DIMENSION R(1000),Z(1000),AK(1OOC),F(IDOO),XI(IOOO),TITLE(I2),
    IRO(IOO),ZO(IOO),ALPHAO(IOO),CONS(IOD);W(IOO),D(IOO),THICK(.100),
    2RT(100),2T(100),NC(1OO),DTHETA(1000),FLNGTH(IDOO)
        DIMENSION HANGLE(IOD),THNESS(IOO)
        COMMON M,R,Z,AK,F,XI,NOGEOD,RO,ZO,ALPHAO,CONS,W,D,THICK,NC,RT,ZT,
    I SMAX,RMAX,ZMAX,THMAX,JJ,TITLE,PI,DTHETA,FLNGTH,TSUM,FLSUM,NHIGH,
    2 NLOW, DISTRT, ADVNCE, SHAFTI, SHAFT2
        THMAX # 0.0
        J # 0
        S # 0.0.
        MMI #M - I
        DO.IOD N # 1, MMI
        IF ( AK(N) ) 5, 50, 5
    5 S # XI(N)
        .AKOFN # AK(N) / F(N)
        RPX # R(N) - AKOFN * XI(N)
        ZPX # Z(N)-XI(N)/F(N)
    I0J#J + I
    RR # RPX + AKOFN * S
    ZZ # ZPX + S/F(N)
    I5 SUMTH # ח.O
    DO 20 I # 1, NOGEOD
    CALL PERCOV (RR, N, I , PERCNT , HANGL )
    HANGLE(I) # HANGL
    THNESS(I) # FLOATF ( NC(I) ) * D(I) * PERCNT
    SUMTH # SUMTH + THNESS(I)
    20 CONTINUE
```

```
    THMAX # MAXIF ( THMAX , SUMTH )
    RFINAL # RR +`SUMTH / F(N)
    ZFINAL # ZZ - SUMTH * AKOFN
    WRITE TAPE I , S , RR , ZZ , ( HANGLE(I), I # I, NOGEOD ) ,
    I (THNESS(I), I # I ,NOGEOD, , SUMTH, RFINAL, ZFINAL
    IF (S - XI(N+I) + STEP ) 25, 30, 30
    25 S # S + STEP
    go TO 10
    30 IF (S - XI(N+I) +.000001 ) 35, 1חח, 100
    3.5 S # XI(N+1)
    RR # R(N+1)
    ZZ #Z(N+1)
    J # J + 1
    GO TO 15
50 J # J + 1
    S # XI(N)
    RR # R(N)
    ZZ # Z(N)
    SUMTH # 0.0
    DO 80 I # l , NOGEOD
    CALL PERCOV ( RR, N, I , PERCNT, HANGL,
    HANGLE(I) # HANGL
    THNESS(I) # D(I) * PERCNT * FLOATF ( NC(I) )
    SUMTH # SUMTH + THNESS(I)
    80 CONTINUE
    THMAX # MAXIF ( THMAX , SUMTH )
    RFINAL # RR + SUMTH
    ZFINAL.# ZZ
    J2 # I
    90 WRITE TAPE 1, S , RR , ZZ , ( HANGLE(I), I # I , NOGEOD ),
    | (THNESSII), I# |, NOGEOD, , SUMTH, RFINAL, ZFINAL
    IF ( J2 - 2 ) 95 , I חO , IOO
95 S # XI(N+I)
    J # J + 1
    ZZ # Z(N+I)
    ZFINAL # ZZ
    J2 # 2
    GO TO 90
    100 CONTINUE
    JJ # J
    SMAX # S
    ENU FILE I
    RETURN
    END
*LABEL
```

```
CRZPLOT PLOT R AND Z VERSUS S
```

CRZPLOT PLOT R AND Z VERSUS S
SUBROUTINE RZPLOT (XO,YO,XL, YL ,
SUBROUTINE RZPLOT (XO,YO,XL, YL ,
DIMENSION R(IOOO),Z(1000),AK(IODO),F(1000),XI(!000),T TTLF(1 ?),
DIMENSION R(IOOO),Z(1000),AK(IODO),F(1000),XI(!000),T TTLF(1 ?),
|RO(IDO),ZO(IUU),ALPHAU(IDD),CONS(IDDI,W(ILD),D(ICD),THICK(IOD),
|RO(IDO),ZO(IUU),ALPHAU(IDD),CONS(IDDI,W(ILD),D(ICD),THICK(IOD),
2RT(1 IN),ZT(IOD),NC(IOD),DTHETA(IODO),FLNGTH(IODO)
2RT(1 IN),ZT(IOD),NC(IOD),DTHETA(IODO),FLNGTH(IODO)
DIMENSION XAX(12), A(12), Y(2,10)
DIMENSION XAX(12), A(12), Y(2,10)
COMMON M,R,Z,AK,F,XI,NOGEOD,RO,ZO,ALPHAO,CONS,W,D,THICK,NC,RT,ZT,
COMMON M,R,Z,AK,F,XI,NOGEOD,RO,ZO,ALPHAO,CONS,W,D,THICK,NC,RT,ZT,
I SMAX,RMAX, ZMAX,THMAX,JJ,TITLE,PI, CTHETA,FLNGTH,TSUN,FLSUM,NHIGH,

```
    I SMAX,RMAX, ZMAX,THMAX,JJ,TITLE,PI, CTHETA,FLNGTH,TSUN,FLSUM,NHIGH,
```

```
B C TITLE(7) # 606060605161
```

B C TITLE(7) \# 606060605161
TITLE(9) \# 214524607161
TITLE(9) \# 214524607161
TITLE(IO)\# 714421676060
TITLE(IO)\# 714421676060
TITLE(||)\# 536060606060
TITLE(||)\# 536060606060
XAX(1) \# 606060606261
XAX(1) \# 606060606261
XAX(2) \# 624421676760
XAX(2) \# 624421676760
XAX(3) \# 536060606060
XAX(3) \# 536060606060
DIVX \# 10.0 / XL
DIVX \# 10.0 / XL
DIVY \# IO.0 / YL
DIVY \# IO.0 / YL
CALL SETUP (TITLE)
CALL SETUP (TITLE)
CALL AXPLOT`(XO,YO,XL , YL ,DIVX,DIVY, .1,.1, 5,5,50,XAX , CALL AXPLOT`(XO,YO,XL , YL ,DIVX,DIVY, .1,.1, 5,5,50,XAX ,
I TITLE(7))
I TITLE(7))
INK \# 2
INK \# 2
DO 3 N \# I ,M
DO 3 N \# I ,M
YI \# R(N) \# YL / RMAX + YO
YI \# R(N) \# YL / RMAX + YO
SI \# XI(N) \# XL / SMAX + XO
SI \# XI(N) \# XL / SMAX + XO
CALL PLOT (SI , YI , I , INK)
CALL PLOT (SI , YI , I , INK)
INK \# I
INK \# I
3 CONTINUE
3 CONTINUE
INK \# 2
INK \# 2
DO 4 N \# 1 , M
DO 4 N \# 1 , M
YI \# Z(N) * YL / ZMAX + YO
YI \# Z(N) * YL / ZMAX + YO
SI. \# XI(N) * XL / SMAX + XO
SI. \# XI(N) * XL / SMAX + XO
CALL PLOT I SI , YI, I,INK)
CALL PLOT I SI , YI, I,INK)
INK \# I
INK \# I
4 CONTINUE
4 CONTINUE
WRITE OUTPUT TAPE 0,40ID, XAX(2) , SMAX
WRITE OUTPUT TAPE 0,40ID, XAX(2) , SMAX
40IO FORMAT (AG , IH\#, F8.4, IH$)
40IO FORMAT (AG , IH#, F8.4, IH$)
READ.INPUT TAPE 0,4020, (A(K), K I,3)
READ.INPUT TAPE 0,4020, (A(K), K I,3)
4020 FORMAT (3A6)
4020 FORMAT (3A6)
XX \# XL./ 4.0 + XO
XX \# XL./ 4.0 + XO
YY \# YL + .5 + YO
YY \# YL + .5 + YO
CALL LETTER I XX , YY , 50, 52 , A I.
CALL LETTER I XX , YY , 50, 52 , A I.
WRITE OUTPUT TAPE 0,4010, TITLE(8), RMAX
WRITE OUTPUT TAPE 0,4010, TITLE(8), RMAX
READ INPUT TAPE 0,402D, (A(K), K\# 1, 3)
READ INPUT TAPE 0,402D, (A(K), K\# 1, 3)
YY \# YL + . 3 + YO
YY \# YL + . 3 + YO
CALL LETTER (XX; YY, 50, 52 , A)
CALL LETTER (XX; YY, 50, 52 , A)
WRITE OUTPUT TAPE 0,40ID, TITLE(10), ZMAX
WRITE OUTPUT TAPE 0,40ID, TITLE(10), ZMAX
READ INPUT TAPE O,4020,(A(K), K\#1, 3,
READ INPUT TAPE O,4020,(A(K), K\#1, 3,
YY \# YL + -1 + YO
YY \# YL + -1 + YO
CALL.LETTER (XX, YY, 5ח, 52, A)
CALL.LETTER (XX, YY, 5ח, 52, A)
YY \# YO + YL + 2.O
YY \# YO + YL + 2.O
CALL LETTER (XO, YY, 50, 52 , TITLE)
CALL LETTER (XO, YY, 50, 52 , TITLE)
CALL FINISH (30, TITLE)
CALL FINISH (30, TITLE)
END FILE 8
END FILE 8
RETURN
RETURN
END
END
*labEl
*labEl
CANGLPL. PLOT HELIX ANGLE VERSUS S
SUBROUTINE ANGLPL (XO, YO, XL, YL ,
DIMENSION R(IOOO), Z(IOOO),AK(1000),F(IOOO),XI(1ODO,),TITLE(12),

```
```

 (RO(100),ZO(100),ALPHAO(100),CONS(100),W(IDO),D(IOD),THICK(IOO),
 2RT(100),ZT(|OD),NC(IOD),DTHETA(1000),FLNGTH(1000)
 DIMENSION XAX(12), A(12), Y(210)
 COMMON M,R,Z,AK,F,XI,NOGEOD,RO,ZO,ALPHAO,CONS,W,D,THICK,NC,RT,ZT,
 I SMAX,RMAX,ZMAX,THMAX,JJ,TITLE,PI,DTHETA,FLNGTH,TSUM,FLSUM,NHIGH,
 2 NLOW, DISTRT, ADVNCE , SHAFTI , SHAFT2
 TITLE(7) # 603025433167
 TITLE(8) # 602145274325
 TITLE(9) # 5365160606060
 XAX(1) # 606060606261
 XAX(2) # 624421676060
 XAX(3) # 536060606060
 DIVX # 10.0 / XL
 DIVY # 9.0 / YL
 CALL SETUP (TITLF.)
 CALL AXPLOT (XO,YO,XL,YL,DIVX,DIVY,.1,IO.0, 5, 3, 50, XAX,
 | TITLE(7) ,
 DO 20 1 # 1, NOGEOD
 INK # 2
 REWIND I
 DO 20 J # 1 , JJ
 I2*I + 2
 READ TAPE l, S , (Y(K), K # | , I2)
 IF (Y(I2)) 20, 20, 5
 5 YI # Y(12) # YL / 90.0 + YO
 SI # S # XL / SMAX + XO
 CALL PLOT (SI , YI , I , INK)
 INK # I
 20 CONTINUE
 WRITE OUTPUT TAPE 0, 40ID, XAX(2) , SMAX
 40IO FORMAT (A6, 1H\# , F8.4 , IH\$)
READ INPUT TAPE 0,4020, (A(K), K \# 1,3)
4020 FORMAT (3A6)
XX \# XO + XL / 4.0
YY \# YO + YL + . 1
CALL LETTER (XX , YY , 50, 52 , A)
YY \# YO + YL + 2.0
CALL LETTER (XO, YY , 5n, 52 , TITLE)
CALL FINISH`(3n, TITLE)
END FILE 8
REWIND I
RETURN
END
*LABEL
CTHPLOT PLOT THICKNESS VS S FOR GEODESIC I
SUBROUTINE THPLOT (I , XO , YO , XL , YL)
DIMENSION R(1000),Z(1000),AK(1000),F(1000),XI(1000),TITLE(I2),
|RO(100),ZO(100),ALPHAO(100),CONS(100),W(100),D(100),THICK(IOD),
2RT(IOO),ZT(IOD),NC(ION),DTHETA(|DOD),FLNGTH(1000)
DIMENSION XAX(12), A(12), B(12), Y(210).
COMMON M,R,Z,AK,F,XI,NOGEOD,RO,ZO,ALPHAO,CONS,W,D,THICK,NC,RT,ZT,
I SMAX,RMAX,ZMAX,THMAX,JJ,TITLE,PI, DTHETA,FLNGTH,TSUM,FLSUM,NHIGH,
2 NLOW , DISTRT, ADVNCE , SHAFTI, SHAFT?

```
```

B XAX(1) \# 606060626061
B XAX(2) \# 606244216760
B XAX(3) \# 536060606060
TITLE(7) \# 60.006360616n
TITLE(8) \# 634421676026
TITLE(9) \#465165272546
TITLE(|D) \# 242562312360
DIVX \# 10.0 / XL
DIVY\# IO.D/YL
XLD \# -1
YLD \# . 1
NX \# 5
NY \# 5
II \# 50
WRITE OUTPUT TaPE D,IOIS, XAX(2), SMAX
10I5 FORMAT (AG, IH\#,; F8.4, IH$)
 READ INPUT TAPE 0,1020, (A(K), K # 1,3)
1020 FORMAT (3AG)
 WRITE OUTPUT TAPE 0,1ח25, THMAY
1025 FORMAT 1 2DHMAXIMUM THICKNESS # ,F9.6 , IH$)
READ INPUT TAPE ก,ID30, (B(K), K \# l, 5)
IO30 FORMAT (5AG)
5 0 ~ W R I T E ~ O U T P U T ~ T A P E ~ D , ~ I D ח 5 ~ , ~ I ~
I005 FORMAT \& I2 , IHS)
READ INPUT TAPE @,IDIO, TITLE(II)
10IO FORMAT (AG)
60 REWIND I
CALL SETUP(TITLE)
CALL AXPLOT (XO,YO,XL,YL,DIVX,DIVY,XLD,YLD,NX,NY,II,XAX,TITLE(7))
INK \# 2
DO 70 J \# 1 , JJ
I2 \# I + NOGEOD + 2
READ TAPE I, S, (Y(K), K \# 1., I 2)
SI \# S \# XL / SMAX + XO
YI \# Y(I2) * YL / THMAX + YO
CALL PLOT , SI, YI, l , INK ,
70 INK \# 1
XX \# XO + XL / 4.0
YY \# YO . + YL + .3
CALL LETTER (XX, YY, 5ח, 52, A)
YY \# YO + YL- + . I
CALL LETTER (XX, YY, 5Õ, 52, B)
YY \# YO + YL + 2.O
CALL LETTER (XO, YY, 50, 52 , TITLE.)
CALL FINISH (3n, TITLE)
80 END FILE 8
REWIND I
RETURN
END
*LABEL
CSUMPLT PLOT SUM OF THICKNESS VERSUS S
SUBROUTINE SUMPLT (XO, YO , XL, YL,

```

```

 IRO(IOO),ZO(IOO),ALPHAO(IOQ),CONS(IOO),W(IOD),D(IOO),THICK(IOO),
 2RT(100),ZT(IOD),NC(ION),DTHETA(IOOO),FLNGTH(IOOO)
 DIMENSION XAX(12), A(12),B(12), Y(110)
 COMMON M,R,Z,AK,F,XI,NOGEOD,RO,ZO,ALPHAO,CONS,W,D,THICK,NC,RT,ZT,
 I SMAX,RMAX,ZMAX,THMAX,jJ,TITLE,PI,DTHETA,FLNGTH,TSUM,FLSUM,NHIGH,
 2 NLOW, DISTRT, ADVNCE, SHAFT1, SHAFT2
 XAX(1) # 606060626061
 XAX(.2) # 60624421676п
 XAX(3) & 536116116116[J6ח
 TITLE(7) # 606063606160
 TITLE(8) # 634421676026
 TITLE(9) #465160272546
 TITLE(ID) # 24256231235त
 55 TITLE(I|) # 606264445360
 DIVX # 10.0 / XL
 DIVY # IO.0 / YL
 XLD # •I
 YLD # •I
 NX # 5
 NY # 5
 II # 50
 WRITE OUTPUT TAPE 0,IDI5, XAX(2), SMAX
 IOI5 FORMAT I AG, IH\#, F8.4, IH\$)
READ INPUT TAPE n,ID2D, (A(K), K \# l;3)
IO2D FORMAT (346)
WRITE OUTPUT TAPE D,Iח25, THMAX
IO25 FORMAT (2OHMAXIMUM THICKNESS * ,F9.6 , IH\$ I
REAC INPUT TAPE D,ID30, (B (K) , K * 1, 5)
1030 FORMAT (5A6)
REWIND I
CALL SETUP(TITLE)
CALL AXPLOT (XO,YO,XL,YL,DIVX,DIVY,XLD,YLD,NX,NY,II,XAX,TITLE(7))
INK \# 2
DO.70 J \# 1, JJ
12 \# 2 * NOGEOD + 3
READ TAPE l, S, (Y(K), K \# | , I2)
SI. \# S * XL / SMAX + XO
YI \# Y(I2) * YL / THMAX + YO
CALL PLOT (SI, YI, I, INK)
70 INK \#
XX \# XO + XL / 4.0
YY \# YO + YL + .3
CALL LETTER (XX, YY, 5ח, 52, A)
YY * YO + YL + .1
CALL LETTER (XX, YY, 50, 52 , B)
YY \# YO + YL + 2.O
CALL LETTER (XO, YY , 5ח , 52, TITLE)
CALL FINISH (30 , TITLE)
END FILE 8
REWIND I
RETURN
END
*LABEL

```
```

CCNPLOT PNLOT OF FINAL CONTOURE, RVVS Z
C SURROUTINE, CNPLOT (XO , YO, XSCALE, YSCALE)

```

```

C
DIMENSION R(1000),Z(1000),AK(1000),F(IOOOO),XI(1000),TITLE(I2),
IRO(100),ZO(100), ALPHAO(1O0),CONS(100),W(100),D(1DO),THICK(IOO),
2RT(IOO),ZT(IOO),NC(IOO),DTHETA, (IOOO),FLNGTH(IDOD)
DIMENSION A(12), Y(210), XAX(12), YAX(12)
COMMON M,R,Z,AK,F,XI,NOGEOD,RO,ZO,ALPHAO,CONS,W,D,THICK,NC,RT,ZT;
I SMAX,RMAX,ZMAX,THMAX,JJ,TITLE,PI,DTHETA,FLNGTH,TSUM,FLSUM,NHIGH,
2 ~ N L O W ~ , ~ D I S T R T , ~ A D V N C E , ~ S H A F T I , ~ S H A F T 2 ,
TITLF(7) \# 602631452143
TITLE(8) \# 6002346456346
TITLE(9) \# 645153606060
XAX(1) \# 606071536060
YAX(1) \# 606051536060
CALL SETUP (TITLE)
XL \# (ZMAX + THMAX + .1 1 * XSCALE
YL \# (RMAX + THMAX + .1) \# YSCALE
DIVX \# I.0 / XSCALE
DIVY \# 1.0/ YSCALE
NX \# DIVX + .99
NY \# DIVY + .99
CALL AXPLOT (XO,YO,XL,YL,DIVX,DIVY,I.O,I.O, NX,NY,50,XAX,YAX.)
INK \# 2
DO 280 N\# 1,M
XX \# Z(N) \# XSCALE + XO
YY \# R(N) \# YSCALE + YO
CALL PLOT (XX, YY, I, INK)
INK \# I
280. CONTINUE
REWIND i
INI \# 2 * NOGEOD + 4
IN2 \# INI + I
INK * 2
DO 300 J \# 1 , JJ
READ TAPE I , S, (Y(K),K \# I. IN2)
XX \# Y(IN2) * XSCALE + XO
YY \# Y(INI) * YSCALE + YO
CALL PLOT, XX, YY, 1, INK)
INK \# I
300 CONTINUE
XX \# XO + XL / 4.0
YY \# YO + YL + . 3
WRITE OUTPUT TAPE D,IOOD, XSCALE, YSCALE
1000 FORMAT (9HZ SCALE \#, F7.4, I2H R SCALE \#, F7.4, IH\$,
READ INPUT TAPE ח,IODI; (A(I), I \# l ,6)
1001 FORMAT (GAG)
CALL LETTER (XX , YY, 50, 52,A 1
YY \# YO + YL + 2.0
CALL LETTER (XO , YY , 50, 52 , TITLE.)
CALL FINISH (30, TITLE)
END FILE }

```
```

 REWIND I
 RETURN
 END
 *LABEL
CfERCOV COMPUTE pErcent coverage and helix anGle at a station
SUBROUTINE PERCOV (RR , N , I , PERCNT, HANGL)
DIMENSION R(IOOD),Z(1000),AK(1000),F(1ODO),XI(IDOD),TITLE(I2),
(RO(IOO),ZO(IOO),ALPHAO(IOO),CONS(IOD),W(IOU),D(IUU゙),THICK(IDU),
2RT(100),2T(10ח),NC(1OD),DTHETA(100ח),FLNGTH(IODO)
COMMON M,R,Z,AK,F,XI,NOGEOD,RO,ZO,ALPHAO,CONS,W,D,THICK,NC,RT,ZT,
ISMAX,RMAX,ZMAX,THMAX,JJ,TITLE,PI, DTHETA,FLNGTH,TSUM,FLSUM,NHIGH,
2 NLOW., DISTRT, ADVNCE, SHAFTI , SHAFT2
IF(AK(N)) 60, 162,60
GO FOK \# F(N) / ABSF (AK(N))
WO2 \# W(I) / 2.0
RHO \# FOK \# RR
IF (RR - CONS(I)) 140 , 130 , 100
IOD RMC \# SQRTF ((RR-CONS(I))* (RR+CONS(I)))
HANGL \# ATANF (CONS(I) / RMC) * 180.0 / PI
SINA \# CONS(I) / RR
COSA \# RMC / RR
FI \# RHO * SINA + WO2
FAC \# (RHO + FI) * (RHO - FI)
IF (FAC) 120, 120., 110
110 Y2\# - COSA * FI + SINA * SQRTF (FAC)
X2 \# COSA * Y2 / SINA + WO2 / SINA
DPHI2 \# ATANF (ABSF(Y2) / (RHO + X2))
F2 \# RHO * SINA - WO2
FAC2 \# (RHO + F2) * (RHO - F2)
FAC2 \# MAXIF (FAC2 , 0.0)
Y3 \# -COSA * F2 + SINA \# SQRTF (FAC2)
X3 \# COSA \# Y3 / SINA - WO2 / SINA
DPHII \# ATANF (Y3 / (RHO + X3))
PERCNT \# FOK * (DPHII + DPHI2) / PI
GO TO 170
120 F3 \# RHO \# SINA - WO2
FAC3 \# (RHO + F3) * (RHO - F3)
FAC3 \# MAXIF (FAC3 , O.0)
Y3 \# - COSA \# F3 + SINA \# SQRTF (FAC3)
x3 \# COSA * Y3 / SINA - WO2 / SINA
DPHII \# ATANF (Y3 / (RHO + X3))
Y2 \# - COSA \# F3 - SINA * SQRTF (FAC3)
x2 \# COSA \# Y2 / SINA - WO2 / SINA
RHOX2 \# RHO + X2
IF (RHOX2) 122, 122, 126
122 DPHI2 \# ATANF (ABSF(RHOX2 / Y2) ,
DPHI2 * DPHI2 + PI / 2.0
GO TO 128
176 DPHI2 \# ATANF (ARSF(Y2) / RHOX2)
l28 PERCNT \# FOK * (DPHII + DPHI2) ((2.0 * PI)
GO TO. 170
130 HANGL * 90.0

```
```

 140 HANGL # 0.0
 RHOMIN * FOK * CONS(II - WO2
 IF I RHO - RHOMIN, 150, 160, 160
 150 PERCNT # 0.0
 GO TO 170
 160 RHOT \# FOK \# CONS(I)
F4..*.RHOT - WO2
FAC4 \# (`RHO - F4) *. ('RHO + F4)
IF I FAC4, 150, 150, 161
161 Y1 \# SQRTF I FAC4),
DPHII \# ATANF i Yi'/ F4)
PERCNT \# FOK * DPHII / PI
GO TO 170
162 IF (RR -. CONS(I)) I68 , I68 ,..164
164 RMC \# SQRTF ((RR+CONS(I)) * (RR-CONS(I)))
HANGL \# ATANF (CONS(I) / RMC) * 180.0./ PI
PERCNT \# W(I) / (PI * RMC)
GO TO 170
168 HANGL \# 0.0
PERCNT \# !.0
17D CONTINUE
RETURN
END
*label
CADJUST ADJUST STARTING HELIX ANGLE
SUBROUTINE ADJUST (I,NA , NP, FRACT, EPS, LL)
DIMENSION R(IDOD),Z(IOOD),AK(IODO),F(IODO);X|(IODD),TITLE(12),
IRO(IOO),ZO(IOO),ALPHAO(IOO),CONS(IOO),W(IOO),D(IOO),THICK(IOO),
2RT(IOD),ZT(IOD),NC(IOD),DTHETA(IDOD),FLNGTH(IOOD)
COMMON M,R,Z,AK,F,XI,NOGEOD,RO,ZO,ALPHAO,CONS,W,D,THICK,NC,RT,ZT,
I SMAX,RMAX, ZMAX,THMAX,JJ,TITLE,PI,DTHETA,FLNGTH,TSUM,FLSUM, NHIGH,
2 NLOW, DISTRT, ADVNCE, SHAFTI, SHAFT2
CONV \# 18ח.ח / PI
ITER \# 0
AZERO \# ALPHAO(I)
RZERO \# RO(I)
ZZERO \# ZOII)
C \# CONS(I)
IF (ALPHAO(I) - 89.0, 30, 30, 20
20 RO(I) \# RMAX
ALPHAO(I) \# ATANF(CONS(I)./ SQRTF(RO(I)**2 - CONS(I)**2)) *CONV
DO 22 N \# 2 , M
IF(RO(I) - R(N)) 24, 24, 22
22 CONTINUE
24 ZO(I) \# Z(N)
30 FRC\# FRACT
RV \# FLOATF(NA) / FLOATF (NB) + ADVNCE
AAZERO \# ALPHAO(I)
40 CONTINUE
DELA\# RV - FRC
IF (ABSF(DELA) - EPS, 110,110, 50
50. DTDA \# 0.0
CSQ \# CONS(I)**2

```
```

 RCOS # RO(I) * COSF (ALPHAO(I.) / CONV)
 NLI # NLOW + I
 NHI # NHIGH - I
 SQ2 # 1.0 / SQRTF (R(NLI)**2 - CSQ)
 DTDA # DTDA - F(NLOW) * RCOS * SQ2 / AK(NLOW)
 IF (NHI - NLI) 85 , 55, 55
 5 5 \text { DO 80 N \# NLI, NHI}
 IF (AK(N)) 6ח, 70,60
 60 SQ1 # SQ2
 SQ2 # 1.0 / SQRTF (R(N+1)**2 - CSU)
 DTDA # DTDA + F(N) * RCOS * (- SQ2 + SQ1) / AK(N)
 GO TO 80
 7O DTDA * DTDA + RCOS * R(N) * (Z(N+1) - Z(N)) * (SQ2 **3)
 80 CONTINUE
 85 DTDA # DTDA + F(NHIGH) * RCOS * SQ2 / AK(NHIGH)
 DTDA # 2.0 * DTDA
 IF (ABSF(DTDA) - .01) 140, 140 , 90
 90 DALPHA # DELA* 360.0 / DTDA
 ALPHAO(I) # ALPHAO(I) + DALPHA
 IF (ITER - 10) IOD , 150 , 150
 IOD ITER \# ITER + I
CONS(I) \# RO(I) * SINF (ALPHAO(I) / CONV)
CALL DELTHA (I)
NLOW \# NLOW
NHIGH \# NHIGH
FRC \# TSUM / 360.0
GO TO 40.
IIO DALPHA \# ALPHAO(I) - AAZERO
IF (ABSF (DALPHA) - 500) 120, 130, 130
120 LL \# O
GO TO 170
I30 WRITE OUTPUT TAPE 6, , IODO, DALPHA
IOOO FORMAT I 2OHD CHANGE IN ALPHA , , FID.6 , 43H , TOO GREAT - GEOD
IESIC DISTORTED INSTEAD
GO TO 16!
140 WRITE OUTPUT TAPE 6, IחIn , DTDA
IOID FORMAT 1 22Hח D THETA / D ALPHA \# , F9.6 , 7IH , LARGF CHANGE IN
IALPHA WOULD BE REQUIRED - GEODESIC DISTORTED INSTFAD,
GO TO 16!
150 WRITE OUTPUT TAPE 6, In20
IO20 FORMAT (7IHO ALPHA DID NOT CONVERGE IN IO ITERATIONS - GEODESIC
IDISTORTED INGTEAD)
160 LL \# I
CONS(I) \# C
RO(I) \# RZERO
ZO(1) \# ZZERO
ALPHAO(I) \# AZERO
CALL DELTHA (I)
170 Continue
RETURN
END
*LABEL
CNOFACT ALTERS FRACTION SO NO COMMON FACTORS

```
```

 SUBROUTINE NOFACT (NUMER', IDENOM)
 100 JJJ # 0
 200 JJJ \# JJJ + I
MI \# IGCD (NUNER,IDENOM)
IF (MI - 1), 300, 30ח, 250
250.GO TO (1 , 2!,3, 4, 5 , , JJJ
I IDENOM \# IDENOM + 1
GO TO 200
2 IDENOM \# IDENOM - 2
GO TO 200
3 IDENOM \# IDENOM + I
NUMER \# NUMER + I
GO TO 200
4 NUMER \# NUMER - }
GO TO 20ח
5 NUMER \# NUMER + 2 .
IDENOM \# IDENOM + 1
GO TO IDO
300 CONTINUE
RETURN
END

```
        FUNCTION IGCD (MM,NN)
C PROGRAM AUTHOR M.ELSON,
        M\#MM
        N\#NN - . . 3
        CENTRAL DATA PROCESSING, \(1 / 1 / 65\)
        IF (M-N) 2,2,1 \(\quad . \quad . \quad 4\)
        1 I\#M
        M\#N
        N*I
        2 IGCD\#M \(\cdot \cdots \quad . \quad . \quad 8\)
        IGCDI\#XMODF (N,M) 9
        IF(IGCDI)4,4,3 . . 10
    3 N\#M
        11
        M\#IGCDI 12
        GOTO2
        13
        4 RETURN . . . . . 14
        END . . . . 15
* LABEL
CSHIFT
    SUBROUTINE SHIFT ( N , SHIFT2 )
    DIMENSION R(IOOO), Z (1000), AK (IOOO),F(IODO),XI(1000), TITLE(12),
    IRO(IOD), ZO(IDO), ALPHAO(IOO),CONS(IOO),W(IOO),D(IDO),THICK(1OO),
    2RT(IDO), ZT (IDO),NC(IDO), DTHETAI IDOO), FLNGTH(IDOO)
    DIMENSION. RI(IOO ) , R2(IOD) , PHI(IQO ), XC(IOO )
    COMMON M,R,Z,AK,F,XI,NOGEOD,RO,ZO,ALPHAO, CONS,W,D,THICK,NC,RT,ZT,
    I SMAX, RMAX, ZMAX, THMAX, JJ, TITLE, PI, DTHE TA, FLNGTH, TSUM, FLSUM, NHIGH,
    2 NLOW, DISTRT, ADVNCE, SHAFTI, SHAFT2.
    COMMON AA,RE,CC,DEL,DELRHO,NSTART
    COMMON LLL , RHOMIN, FR , TMIN
    COMMON RI, R2, PHI, XC
    SHIFT2 \# D.O
    I \# N-I
    5 IF (AK(I)) \(10,6 \pi, 10\)
```

 10 IF (PHIlI) - 90.ח) 50, 50, 20
 20 IF (PHI(I) - 18ח.0) , 30, 4\Pi, 40
 30 SHIFT2 # SHIFT2 + RI(I) - R2(I) * COSF (PHIII) * PI / 180.0)
 GO TO 60
 40 SHIFT2 # SHIFT2 + RI(I) + R2(I)
 CO TO 60
 50 SHIFT2 # SHIFT2 + RI(I) # (1.0- COSF (PHI(I) # PI / 180.0))
 GO IF (I - N) 70, 80, 80
 70 I * N
 GO TO 5
 80 CONTINUE
 RETURN
 END
 *label
\&
CAXPLOT DRAW AXES FOR PLOTS
SUBROUTINE AXPLOT (XO,YO,XL,YL,DIVX,DIVY,XLD;YLD,NX,NY,II,XAX,
| YAX)
C
XO, YO IS. THE ORIGIN
XL, YL IS LENGTH OF AXES
DIVX,DIVY IS DIVISIONS PER INCH
XLD, YLD IS LENGTH DIVISION REPRESENTS
NX, NY IS DIVISIONS TO BE LAFELED (I,EVERY DIV, 2,EVERY OTHER)
II IS SIZE OF LETTERS
XAX, YAX IS NAME OF AXES
DIMENSION XAX(12), YAX(12)
XXL \# XL + XO
YYL \# YO + YL
CALL PLOT (XO,YYL, 1, 2)
CALL PLOT (XO, YO, 1 , 11
IX \# DIVX * XL +.05
IY \# DIVY * YL +.05
YOFFI \#YO +.04
YOFF2 \# YO - .04
XOFFI \# XO-.04
XOFF2 \# XO +.04
DO 20 I \# I , IY
YI*I
YYI \# YI / DIVY + YO
CALL PLOT (XOFFI; YYI, 1; ?)
20 CALL PLOT (XOFF2, YYI , 1 , 1)
CALL PLOT (XXL, YO, 1, 2)
CALL PLOT (XO, YO, 1 , 1)
DO IO I \# 1 , IX
XI \# I
XXI \# XI / DIVX + XO
CAIIL PLOT (XXI, YOFFI, 1, 2,
ID CALL PLOT (XXI , YOFF2, 1, 1 ,
IF (II - 51) 30, 40, 50
30 SIZ[* .096
GO TO 90
40 SIZE \# . 192

```
```

 GO TO 90
 50IF (II - 53, 60, 70, 80
 60 SIZE # . 384
 GO TO 90
 70 SIZE #.768
 GO TO 90
 80 SILE # 1.53.6
 90 CONTINUE
 YOFF # YOFF2 - SIZE - .I
 DO IDO I # NX, IX, NX
 XI # I
 XXI # XI / DIVX
 XXXI # XI # XLD
 WRITE OUTPUT TAPE D,IDDO,XXXI
 1000 FORMAT I F5.2, IHS)
READ INPUT TAPE ח,IOO2, A
1002 FORMAT (AG)
XXI \# XXI - 2.5 * SIZE + XO
IOO CALL LETTER (XXI, YOFF, II, 52 , A)
YOFF \# YOFF - SIZE - - 1
XX \# XO + XL / 4.0
CALL LETTER (XX , YOFF, II , 52, XAX.).
XOFF \# XOFFI - .05 - 5.0 * SIZE
DO 1ID I \# NY, IYY,NY
YI.\# I
YYI \# YI / DIVY + YO - SIZE / 2.0
YYYI \# YI \# YLD
WRITE OUTPUT TAPE D,IDCD, YYYI
READ INPUT TAPE ח, IDO2, A
1IO CALL LETTER I XOFF, YYI, II , 52, A ,
XOFF \# XOFF - SIZE - . I
YY \# YO + YL / 4.0
CALL LETTER (XOFF, YY , II , 53, YAX)
RETURN
END

```

IOI2）K（N）\＃－（10＊＊20） ..... 1032
\(R 1(N) \neq R(N+1)\) ..... 1034
R2（N）\＃R（N） ..... 1036
\(X C(N) \# X I(N)+R 2(N)\) ..... 1038
JUMPTO／1014 ..... 1040
\(10131 \quad K(N) \neq 10 * 20\) ..... 1042
RI（N）\＃R（N） ..... J044
R2（N）\＃R（N＋I） ..... 1048
\(X C(N) \neq X I(N)-R \mid(N)\) ..... 1050
 ..... 1052
PHI（N）\＃359．9 ..... 1054
\(X \mid(N+1) \neq X)(N)+R 2(N)-R \mid(N)\) ..... 1056
X2（N）\＃X1（N＋1） ..... 1058
JUMPTO／I050 ..... 1060
1018）\(K(N) \neq(R(N+1)-R(N)) /(Z(N+I)-Z(N))\) ..... 1009
F（N）\＃SQRTF（1＋K（N）＊＊2） ..... 1011
\(X|(N+1) \neq X|(N)+(Z(N+1)-Z(N)) * F(N)\) ..... 1013
\(\times 2(N) \neq X 1(N+1)\) ..... 1014
\(\operatorname{PHI}(N) * A B S F(K(N) / F(N)) * 360\) ..... 1015
\(\operatorname{IF}(A B S F(K(N))-.0 D 0001) 1040,1040,1020\) ..... 1017
（ח2ח）IF（K（N））1025，IO25，1030 ..... 1019
\(1025) \quad X C(N) \neq X I(N+1)-R(N+1) * F(N) / K(N)\) ..... 1021
\(R I(N) \neq X C(N)-X \mid(N+I)\) ..... 1023
R2（N）\＃XC（N）－XI（N） ..... 1025
JUMPTO／I05D ..... 1101
1030）\(\quad X(N) \neq X I(N)-R(N) \# F(N) / K(N)\) ..... 1103
\(R 1(N) \neq X I(N)-X C(N)\) ..... 1105
\(R 2(N) \neq X 1(N+1)-X C(N)\) ..... 1107
JUMPTO／105ח ..... 1109
1040）R2（N）＊6．283181＊R（N） ..... 1111
\(K(N) \neq 0\) ..... 1112
XC（N）\＃D．门 ..... 1113
1050）IF（N－M＋1．1）1010，1060，1060 ..... 1114
1060）N\＃1 ..... 1116
1070）\(\quad \mathrm{N} \neq \mathrm{N}+\) ..... 1118
IF \((K(N)-K(N-1)) 1080,1080,1090\) ..... 1120
1080）IF（N－M＋1．111070，1200，1200 ..... 1122
1090）SHIFT\＃D ..... 1201
I \＃N－I ..... 1203
（100）IF（K（I））1110，1160，1110 ..... 1207
（1｜IF）IF（PHI（I）－90）｜ \(120,1120,1130\) ..... 1209
（Iフロ）SHIFT＊SHIFT＊RI（I）＊（1－COST（PHI（I））） ..... 1211
JUMPTO／I 160 ..... 1213
1130）IF（PHI（I）－180）1140，1150，1150 ..... 1215
（140）SHIFT\＃SHIFT＋RI（I）－R2（I）＊COSF（PHI（1）） ..... 1217
JUMPTO／I160 ..... 1219
1150）SHIFT\＃SHIFT＋RI（I）＋R2（I） ..... 1221
1160）IF（I－N＋．1）1170，1180，1180 ..... 1223
1170）I \(\# N\) ..... 1225
JUMPTO／I IDO ..... 1301
1180）I\＃N－I ..... 1303
（190）I\＃I＋1 ..... 1305
XI（I）\＃XI（I）＋SHIFT ..... 1307
X2（I）\＃X2（I）＊SHIFT ..... 1309
\(X C(I) \neq X C(I)+S H I F T\) ..... 1311
IF（I－M＋1．1）1190，1070，1070 ..... 1313
1200）LI\＃LINE！O，O，IO， ..... 1401 ..... 1403
N\＃口
N\＃口
（210）\(\quad N \neq N+1\) ..... 1405
1F（K（N）） \(1220,1240,1230\) ..... 1407
1220）PC（N）\＃POINT／XC（N），O ..... 1409
L． \(2(N) \neq L I N E / P C(N), A T A N G L,(180-P H I(N))\) ..... 14 11
CI（N）\＃CIRCLE／CENTER，PC（N），RADIUS，RI（N） ..... 1413
C2（N）\＃CIRCLE／CENTER，PC（N），RADIUS，R2（N） ..... 1415JUMPTO／I2501417
1230）\(\cdot P C(N) \neq P O I N T / X C(N), 0\) ..... 1419
L2（N）ALINE／PC（N），ATANGL，PHI（N） ..... 1421
CI（N）\＃CIRCLE／CENTER，PC（N），RADIUS，RI（N） ..... 1423
C2（N）\＃CIRCLE／CENTER，PC（N），RADIUS，R2（N） ..... 1425
JUMPTO／I250 ..... ＇1501
1240）L2（N）\＃LINE／PARLEL，LI，YLARGE，R2（N） ..... 1503
L3（N）\＃LINE／（POINT／XI（N），D），PERPTO，LI ..... 1505
L4（N）\＃LINE／（POINT／X2（N），O），PERPTO，LI ..... 1507
1250．）IF（N－M＋1．1）1210，1260，1260 ..... 1509
1260）TERMAC ..... 1511
MAC2 \＃MACRO／M ..... 2001
\＄\＄M IS THE NUMBER OF POINTS DEFINING THE CONTOUR ..... 2002
ロ＊PのINT／ח．ก ..... 2005
STRT\＃POINT／O，10 ..... 2007
TLON ..... 2011
FROM／STRT ..... 2013
GOTO／O ..... 2015
DRAFT／ON ..... 2009
2010）\(\quad \mathrm{N} F \mathrm{~N}+1\) ..... 2017
IF（PHI（N）－180）2012，2012，2014 ..... 2025
2012）II\＃1 ..... 2027
JUMPTO／2016 ..... 2029
2014）I1\＃2 ..... ． 2031
2016）IF（K（N））2020，2025，2030 ..... 2021
2020）GOBACK／C2（N），ON，II，INTOF，L2（N） ..... －2023
2022）GORGT／L2（N），ON，CI（N） ..... 2101
TLON，GORGT／CI（N），TO，II•INTOF，LI ..... 2103
JUMPTO／ 2040 ..... 2.105
2025）DNTCUT ..... A2 130
GODLTAノ \(1,1,0,0\) ..... B2130
INDIRV／－1，0，0 ..... C2130
GO／ON，L3（N） ..... D2130
CUT ..... E2130
GORGT／L3（N），ON，L2（N） ..... F2130
2027）GORGT／L2（N），ON，L4（N） ..... 2132
TLON，GORGT／L4（N），TO，LI ..... 2134
JUMPTO／2040 ..... ． 2136
2030）GOBACK／CI（N），ON，II，INTOF，L2（N） ..... \(2!07\)
2035）GORGT／L2（N），ON，C2（N） ..... 2109
TLON，GORGT／C2（N），TO，II，INTOF，LI ..... 2111
2040）IF（N－M＋1．1）2050，2070，2070 ..... 2113
2050）IF（ABSF（X）（N＋1）－X2（N））－．000001）2010，2010，2055 ..... 2115
2055) GOTO/(POINT/XI(N+I),0) ..... 2117
\(N \# N+1\) ..... 2119
IF \((P H I(N)-180) 2057,2057,2059\) ..... 2160
20571 II\#1 ..... 2162
JUMPTO/2060 ..... 2164
2059) 11\#2 ..... 2166
2060) IF(K(N))2062,2064,2066 ..... 2140
20621 GOLFT/C2(N) ,ON,II,INTOF,L2(N) ..... 2142
JUMPTO/2022 ..... 2144
2064) GOLFT/L3(N),ON,L2(N) ..... 2146
JUMPTO/2027 ..... 2148
\(2066)\) GOLFT/CI(N) ,ON,II,INTOF,L2(N) ..... 2150
JUMPTO/2035 ..... 2152
2070) GOTO/O ..... 2125
DRAFT/OFF ..... 2201
TERMAC ..... 2203
MAC3 \#MACRO/RO, AZERO,PRIME,M,EPS ..... 3001
\$\$ RO IS THE RADIUS OF THE STARTING STATION ..... A3000
\$\$ AZERO IS THE HELIX ANGLE AT THE STARTING STATION ..... B3000
\(\$ \$\) PRIME IS THE DESIRED NUMBER OF CIRCUITS PER PATTERN (A PRIME NO. ) ..... C3000
\(\$ \$\) M IS THE NUMBER OF POINTS DEFINING THE CONTOUR\$ \(\$\)EPS IS THE MAXIMUM ALLOWABLE DIFFERENCE EETWEEN REVOLUTIONSE3000
\$ \(\$\) PER CIRCUIT OBTAINED AND REVOLUTIONS PER CIRCUIT DESIRED ..... F3000
NHO3002
\(30101 \quad N \neq N+1\) ..... 3003
IF ( \(\mathrm{R}(\mathrm{N})-\mathrm{RO})\) ) \(3012,3018,3015\) ..... 3004
3012) IF ( N-M.) 3010,3355,3355 ..... 3005
\(30151 \quad \mathrm{~N} N-1\) ..... 3006
3018) JHN ..... 3007
3020) PASS\#I ..... 3011
DEG\#180/3.1415927 ..... 3012
ALPHA\#AZERO ..... 3010
3ח30) SINA*SINF(ALPHA) ..... 3013
COSA\#COSF (ALPHA) ..... 3015
CONS*RO*SINA ..... 3017
IF(CONS-R(I))3280,3040,3040 ..... 3019
30401 I\#」 ..... 3021
3050) I\#I-I ..... 3023
IF(R(I)-CONS) \(3060,3060,3050\) ..... 3775
3060) IF(CONS-R(M) 13780.3070,3070 ..... 3103
3070) L\#」 ..... 3105
3080) L\#L+1 ..... 3107
IF(R(L)-CONS) 3090,3090,3080 ..... 31.09
30901 L\#L-1 ..... 3111
N\#I ..... 3113
ASEC2\#ATANF (SQRTF( \((R 1 N+1) /\) CONS \() * * 2-1))\) ..... 3115
DBETA(N)\#ASEC2 ..... 3117
DTHETA (N)\#F \(N\) ) *DRETA \(N(N) / K(N)\) ..... 3119
FLNGTH(N)\#R2(N)*SINF(ORETA(N)) ..... 3120
3100) N\#N+I ..... 3121
IF(K(N))3120,3110,3120 ..... 3123
3110) DTHETA(N)* ..... 3201
FLNGTH(N)*SQRTr( \((Z(N+1)-Z(N)) * * 2+(R(N) * D T H E T A(N) / D E G) * * 2)\) ..... 3202
JUMP TO/3100 ..... 3203
3120) IF (N-L) \(3130,3140,3140\) ..... 3205
:3.130) ASECT\#ASEC2 ..... 3207
ASEC 2 \#ATANF (SQRTF ( \((R(N+1) / C O N S) * * 2-1)\) ..... 3209
DBETA(N)\#AESF(ASEC2-ASECI) ..... 3211
\(\therefore \quad\) DTHETA \((N) \nRightarrow F(N) * D B E T A(N) / A B S F(K(N))\) ..... 3213
FLNGTH(N) \#SQRTF(RI(N)**2+R2(N)**2-2*RI(N)*R2(N)*COSF(DBEFA(N))) ..... 3214
JUMPTO/3IIn ..... 3215
\(3140)\) DBETA(N)\#ASEC2 ..... 3217
DTHETA(N)\#F(N)*(-ASEC2)/K(N) ..... 3219
FLNGTH(N)*R2(N)*SINF(DBETA(N)) ..... 3220
TSUM\#D ..... 322.1
\(N \neq 1-1\) ..... 3223
3150) N\#N+ ..... 3225
TSUM\#TSUM+DTHETA(N) ..... 3301
IF (N-L) 3150,3160,3160 ..... 3303
3160) TSUM\#2*TSUM ..... 3305
RVN\#TSUM/360 ..... 3307
N\#口 ..... 3309
3170) NAN+1 ..... 3311
IF (RVN-N) \(3180,3190,3170\) ..... 3313
3180) INTGER*N-1 ..... 3315
FRACTARVN-INTGER ..... 3317
JUMP TO/3200 ..... 3319
31901 INTGER\#N ..... 3321
FRACTAD ..... 3323
3200) NH ..... 3325
PARTN\#I/PRIME ..... 3327
3210) \(N \neq N+1\) ..... 3401
PARTNI\#PARTN ..... 3329
PARTN\#N/PRIME ..... 3331
IF (FRACT-PARTN ) \(3230,3260,3220\) ..... 3403
3220) IF (N-PRIME+1)32ID,3250,3250 ..... 3405
3230) IF(ABSF(FRACT-PARTN )-ABSF(FRACT-PARTNI )/3250,3250,3240 ..... 3407
3240) N\#N- ..... 3409
PARTNAPARTNI ..... 3410
32501 DELAPARTN -FRACT ..... 3411
IF (ABSF (DEL)-EPS) \(3270,3270,3290\) ..... 3413
3260) DELA0 ..... 3415
3270) PRINT/3,PASS,DEL,N,PARTN ,FRACT,INTGER,\$ ..... 3417
RVN,ALPHA,TSUM, CONS, L,I ..... 3418
N\#I-I ..... 3430
3272) \(N \# N+\) ..... 3432
PRINT/3,DBETA(N),DTHETA(N), FLNGTH(N) ..... 3434
IF \((N-L) 3272,3380,3380\) ..... 3436
32801 PRINT/D ..... 3423
TITLES MINIMUM RADIUS IS LESS THAN R(I) OR R(M) ..... 3425
JUMPTO/338п ..... 3501
3290) IF(PASS-10)3295,3295,3360 ..... 3503
32951 CSQ\#CONS**2 ..... 3505
RCOS*RO*COSA ..... 3507
N\#I ..... 3508
SQ2\#1/SQRTF(R(I+1)**2-CSQ) ..... 3509
SUM\#0 ..... 3511
SUMASUM-F(I)*RCOS*SQ2/K(I) ..... 3513
\(33001 \quad \mathrm{~N} \# \mathrm{~N}+\mathrm{I}\) ..... 3515
IF (N-L+1)3310,3310,3340 ..... 3517
3310) IF(K(N))3320,3330,3320 ..... 3519
33201 SQI\#SQ2 ..... 3521
SQ2\#1/SQRTF(R(N+1)**2-CSQ) ..... 3523
SUM\#SUM+F(N)*RCOS*(-SQ2+SQI)/K(N) ..... 3525
JUMPTO/33nn ..... 3601
3330) SUM\#SUM+RCOS*R(N)*(Z(N+I)-Z(N))*(SQ2**3) ..... 3603
JUMP TO/3300 ..... 36П5
\(3340)\) SUM*SUM+F゙(L)*RCUS*S(N2/K(L) ..... 3607
SUM\#2*SUM ..... 3609
IF (ABSF (SUM) - . 0 חחOOII \(3370,3370,3350\) ..... 3611
33501 DALPHA*DEL/SUM *360 ..... 3613
ALPHA\#ALPHA+DALPHA ..... 3615
PASSAPASS+1 ..... 3617
JUMP TO/3ח3п ..... 3619
3355) PRINT/D ..... 3630
TITLES RO AS GIVEN IS GREATER THAN R MAX OF PART ..... 3634
JUMP TO/3380 ..... 3636
33601 PRINT/0 ..... 3621
TITLES ALPHA DID NOT CONVERGE IN TEN PASSES ..... 3623
JUMPTO/338! ..... 3625
3370) PRINT/0 ..... 3701
titles change in alpha will not change theta ..... 3703
33801 TERMAC ..... 3705
MAC4 \#MACRO/TZERO,J,NUMBER ..... 4001
\$s TZERO IS THE STARTING VALUE OF THETA ..... A 4002
\$\$ J IS.THE STARTING SECTION FOR THE PLOT ..... B4002
\$\$ NUMBER IS THE NUMEER OF CIRCUITS TO BE DRAWN ..... C4002
NHJ4003
THETA\#TZERO ..... 4008
ZZ\#Z(J) ..... 4002
RADIAN\#3.1415927/180 ..... 4004
ZFLAG\#口 ..... 4005
TLON ..... 4006
\(4010) \quad\) IF (K (N) 14020,4330,4050 ..... 4007
4020) KK\#-I ..... 4009
IF (ABSF (ZZ-Z \(N\) ) )-.000001)4030,4030,4040 ..... 4011
4030) RFLAG\#2 ..... 4П13
RRHR2(N) ..... 4015
JUMPTO/4080 ..... 4017
4040) RFLAG\#I ..... 4019
\(R R \notin R 1(N)\) ..... 4021
JUMPTO/4П80 ..... 4023
4050) KK\#I ..... 4025
IF(ABSF(ZZ-Z(N+1))-.000001) 4070,4070,4060 ..... 4101
4060) RFLAG\#I ..... 4103
RR\#R1(N) ..... 4105
JUMPTO/4080 ..... 4107
4П70) RFLAG\#2 ..... 4109
RR\#R2(N) ..... 4111
4!ુ்u) BETA\#KK*K(N)*THETA/F(N) ..... 4113
XO\#KK*RR*COSF(BETA) ..... 4115
YOFRR*SINF (BETA) ..... 4117
IF(KK)4090,4090,4110 ..... 4119
4090) IF (N-L+•1)4120,4100,4100 ..... 4121
4100) RE\#RR ..... 4123
BETAZ\#BETA+2*DBETA(N) ..... 4125
JUMPTO/4160 ..... 4201
4110) IF (N-I-.1)4100,4100,4120 ..... 4203
\(4120) \quad\) IF (RFLAG-1.5)413ח,4130,4!40 ..... 4205
41.30) RE\#R2(N) ..... 4207
JUMPTO/4150 ..... 4209
4(40) RE\#R1(N) ..... 4211
4(50), BETAZ\#BETA+DBETA(N) ..... 4213
4160) XD\#KK*RE*COSF(RETAZ) ..... 4215
Y.D\#RE*SINF(BETAZ) ..... 4217
IF (BETAZ-PHI(N)) \(4220,4170,4170\) ..... 4219
4170) AI\#SINF(PHI(N)) ..... 4221
BI\#-KK*COSF(PHI(N)) ..... 4223
IF (ABSF (XO-XD) -. DOOOOI) \(4180,4180,4190\) ..... 4225
4(80) A2\#1 ..... 4301
B2\#0 ..... 4303
D 2 \#×O ..... 4305
JUMPTO/4200 ..... 4307
\(4190) \quad\) SLPE \#(YD-YO)/(XD-XO) ..... 4309
A2\#-SLPE ..... 4311
B2\#1 ..... 4313
D2\#YO-SLPE *XO ..... 4315
4200) DENOM*A!*B2-A2*B1 ..... 4317
IF (ABSF (DENOM)-.000001)4420,4420,4210. ..... \(43!9\)
4210) XI\#-BI*D2/DENOM ..... 4321
YI\#Al*D2/DENOM ..... 4323
XOREF\#XO \(+X \subset(N)\) ..... 4401
XIREF\#XI +XC(N) ..... 4403
GOTO/(POINT/XOREF,YO) ..... 4405
DRAFT/ON ..... 4407
GOTO/(POINT/XIREF,YI) ..... 4409
DRAFT/OFF ..... 4411
XO\#KK*SQRTF (XI**2+YI**2) ..... 4413
YO\#口 ..... 4414
BETAZ\#BETAZ-PHI(N) ..... 4415
JUMPTC/4160 ..... 4417
4220) XOREF\#XO+XC(N) ..... 4419
XDREF \#XD \(+X \subset(N)\) ..... 4421
GOTO/(POINT/XOREF,YO) ..... 4423
DRAFT/ON ..... 4425
GOTO/(POINT/XDREF,YD) ..... 4501
DRAFT/OFF ..... 4502
\(\therefore \quad\) THETA\#KK*F(N)*BETAZ/K(N) ..... 4503
IF (KK)4230,4230,4270 ..... 4505
4230) IF (N-L+.1)4240,4260,4260 ..... 4507
42401 IF (RFLAG-1.5)4260,4260,4250 ..... 4509
4250) \(\quad 2 Z \# 2(N+1)\) ..... 4511
\(\mathrm{N} \# \mathrm{~N}+1\) ..... 4513
JUMPTO/4310 ..... 4515
4260) \(\quad 2 Z \# Z(N)\) ..... 4517
N*N-I ..... 4519 ..... 4521
4310
4310
4270) IF (N-I-•1)4300,43n0,4280 ..... 4523
4280) IF(RFLAG-1.5)4300,4300,4290 ..... 4525
4290) 2Z\#Z(N) ..... 4601
\(\mathrm{N} \# \mathrm{~N}-1\) ..... 4603
JUMPTO/43In ..... 4605
4300) \(\quad 22 \# 2(N+1)\) ..... 4607
\(\mathrm{N} \# \mathrm{~N}+1\) ..... 4609
\(4310)\) IF (ABSF (ZZ-Z(J))-.000001)4320,4320,4010 ..... 4611
4320) \(\quad 2 F L A G \# Z F L A G+1\) ..... 4613
IF (ZFLAG-2*NUMBER+.1)4010,4010,4430 ..... 46 : 5
4330) \(\quad \operatorname{IF}(\operatorname{ABSF}(Z Z-Z(N))-.000001) 4340,4340,4350\) ..... 4617
43.40) \(X O A X I(N)\) ..... 461.9
XD\#X2(N) ..... 4621
ZZ\#Z(N+1) ..... 4623
NN*N+1 ..... 4625
JUMPTO/436 ..... 4701
4350) - XOKX2(N) ..... 4703
XD\#XI(N) ..... 4705
ZZ\#Z(N) ..... 4707
NN\#N-I4709
4360) YO\#THETA*RADIAN\#R(N) ..... 4711
DY\#DTHETA(N)*R(N)*RADIAN ..... 4713
YDAYO+DY ..... 4715
DENOMAXD-XO ..... 4717
SLPE \#DY/DENOM ..... 4719
4370) IF(YD-R2(N))439ח,4380,4380 ..... 4721
4380) YI\#R2(N) ..... 4723
XI\#(SLPE \#XO+YI-YO)/SLPE ..... 4725
GOTO/(POINT/XO,YO) ..... 4801
DRAFT/ON ..... 4803
GOTO/(POINT/XI,YI) ..... 4805
DRAFT/OFF ..... 4807
XO\#XI ..... 4809
YO\#D ..... 4811
YDAYD-R2(N) ..... 4813
JUMPTO/4370 ..... 4815
4390) GOTO/(POINT/XO,YO) ..... 4819
DRAFT/ON ..... 4821
GOTO/(POINT/XD,YD) ..... 4823
DRAFT/OFF ..... 4825
THETA\#YD/(R(N)*RADIAN) ..... 4901
IF (ABSF (ZZ-Z (J))-.000001)4400,4400,4410 ..... 4903
4400) ZFLAG\#ZFLAG+ ..... 4905
IF (ZFLAG-2*NUMBER+. 1\() 4410,4410,4430\) ..... 4907
4410) N\#NN ..... 4909
JUMPTO/4010 ..... 4911
44201 PRINT/0 ..... 4913
TITLES LINE CONNECTING POINTS IS PARALLEL TO L2(N) ..... 4915
PRINT/3,N,AI, \(81, A 2, B 2,02, P H I(N), X O, Y O, X D, Y D, K(N)\) ..... 4917
44301 TERMAC ..... 4919

\section*{REFERENCES}
(1) Gold, S. P.; Filament Winding a Surface of Revolution, SCL-DR-65-102; Sandia Corporation Livermore Laboratory, Livermore,..California; Eebruary 1966.
(2) Bookhart; T. W. and Fowler, A\%H, Compüter Programs for Determining Payout Eye : Positions for Laying Filaments Along Geodesic Paths on Surfaces of Revolution, \(\mathrm{Y}-1620\); Union Carbide Corporation - Nuclear Division Y-12 Plant, Oak Ridge, Tennessee (in preparation).
(3) Lyusternik, L. A.; Shortest Paths Variational Problems, translated by P. Collins and Robert B. Brown; The Macmillan Company, New York, New York. (1964).
(4) Bolza, Oskar, Lectures on the Calculus of Variation, 2nd Edition; Chelsea Publishing Company, New York, New York (1960).
(5) Bliss, Gilbert A.; Lectures on the Calculus of Variation; The University of Chicago Press, Chicago, Illinois (1964).
(6) Fowler, A. H. and Wilson, C. W.; Cubic Spline, \(\dot{A}\) Curve Fitting Routine, Y-1400 (Revision 1), pp 104-109; Union Carbide Corporation - Nuclear Division, Y-12 Plant, Oak Ridge, Tennessee; June 28, 1966.```

