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ABSTRACT

{

Lipinski, Walter Charies; Optimai Digital Computer Control of "
Nuclear Reactors; Ph.D., Electrical Enéineering Department; Illinois
Institute of Technology; January, 1969. Adviser: Professor
Andre G. Vacroux.

Prefaced by a iiterature survey of earlier applications of modern
control theory and presentation of pertinent kinetics equations; the

}

dissertation describes the sequential analytical investigation of a
digital computer control system to implegent nuclear reactor control and
estimation functions.

First, nonlinear plant and measurement equations are derived for a
deterministic one-group prompt—jump point model, using rate of reactiv-
ity chaﬁge as control input. Next, state-space conceptslare introduced, /
resultant equations are expressed in vector-matrix notation, linearized
by a first-order Taylor series expansion, and solved for a.discrete-
time input. |

Dynamic programming yiglds an optimal stationary feedback control
law which minimizes a quadratic performance index for a discrete-time
system. An index consisting of the sum squares of the'peutron density

derivations is defined and augmented to include terms in reactiyity. and

| ) '

control input. With the aid of an iterative digital computer program

\ . : , .
the stationary feedback matrix is calculated for selected values of

[

weighting coefficients. Corresponding transient behavioral plots of the

nonlinear system show that for the performance index as defined, the




neutroﬁfdensity deviation.is decreased to Qero in ghe sample interval
after a step'disrurbance in reaetivity.
: t

In order to satisfy the optimal control law requirement that all
state varlables be available, a nonlinear estimator is used Eq generate
estimates of nonmeasurable system state varlables. Eetimator'equations,
based on a set of finite-difference eduarions;pare derived by minimi;ing
a performance inder censisting of the sum squaree of errors in the
previous estimate and in the current measurement. The resulting non-
linear equations are solved 1terat1vely on a dlgltal computer. Since
the system is described by dlfferentlal equations, 1ntegrat10n is used
to obtain the numerical values required by the estimator during the
iteration sequence.

Finally, the cascade comﬁination of an'optimalAestimator and
optimal controller'yields a control system whose performancelis unequal
te a system without an estimator. Estimates generated for the nonlinear
system necessitate a large control input at the rirst sempling following
a reaetivity disturbance. Inclusion of a computation time delay results

. 1
in further degraded performance. If an integrator is incorporated into
the nonlinear estimator, the integration step size must be reduced when
a control input is present. Since tﬁe computer programs used to solve
the estlmator equatlons and to compute the control 1nput are not
compiled for minimum time execution, no conclu81on can be made w1th
regard to real-time control capability.

The dissertation.inclddee a comprehensive iiterature survey of
.earlier applications of modern control theory to nuclear,reactors; a
;detailed review,ofipertinentureactor kinetics.equations, and a wealth of

. . , , ,

selected nuclear and control engineering bibliographies.

xii




‘ | . CHAPTER 1 ' ,

INTRODUCTION

1.1 Growth of nuclear‘power plants

Achievement of the first self—Sustaiping'nuclear fission chain
, . :
' reacfion in 1942 was recognized by Enrico Fermi and his colleagues as
the inigial objectivé toward creatioh of a‘destructive weafon. However,
léach scientist also recognized the constructive potential of cpntrolliﬁgI
and converting the heat of fission into usefﬁl mechénical and electrical
energy. In fact, bne of the earlieét concepts, of éopvertihg nuclgar
e;ergy into useful electrical energy — the Daniels Expérimental Power
Pile at Oak Ridge National Laboratory — was based on studies>initiated
in 1944 by Dr. Farrington Daniels, é member of this historic group.
' Unfortunately, national security prevailed and the application of
controlled nuclear power was directed towafd milifary logistics.
;" In 1947, Congress authorized the development of a nuclear reactor
for smearine propulsion. Work initiated at Argonne National‘Laboratory
near Lemont, Illinois; led to the construction and operation, on
" March 30, 1953, of, the ?irsf nucleérhprbpulsion system in a section of

a submarine hull at the National Reactor Testing Station in Idaho. This
land-baséd installation was the forerunner of the pressurized water
system'used in the submarine Nautilus, which was launched the following

year. This launching Fépresented the first milestone.of the Naval

Reactors Program which has since revolutionized naval strategy.




- C A . :
New reactor concepts for municipal power systems also were pior

* neered by Argonne scientists and engineers through the design,

development, construction, and operetion of simplified experiments or
small-scale prototype systems at the Argonne test site in Idaho. lSueh
was the case in 1951, when Experimental Breeder Reactor-I became the:
first nuclear reactor to generate electricity (170'kilowqtts), thereby
demonstrating the technical feasibility of: usiné unmoderated reactors
for generation of useful power, employing sodium and sodium—potassium
alloy as coolants, and breeding plutenium fuel. This experiment led
the wa&'to $nbsequent construction and operation, in 1963; of: EBR—IIr

a prototype fast power breeder central station plant; and the Enrico

Fermi Atomic Power Plant, the world's first large fast breeder nuclear

power plant. .
In 1953, a series of Boiling Reactor Experiments (BORAX—I, -1T1,
-III) were started at the Idaho test site. These experiments ultimately
demonstrated the inherent power stability of the boiling water reactor
concept. On July 17 1955 .the town of Arco, Idaho, was temporarily
serv1ced with electr1c1ty generated by the BORAX- III power plant
The technology gained from the.BORAX experiments was applied in the

eonetruction of the Experimental Boiling Water Reactor (EBWR) at’

Argonne. On December 29, 1956, EBWR achieved its rated electrical

. output of 5 000 kilowatts, and thus became the first of a serles of

K

prototype central station power reactors to go into operation in the
USAEC Civilian Power Reactor Development Program.
Two years later (May, 1958), the Shlpplngport Atomic Power Station

in Pittsburgh, Pa., was dedlcated as the first large-wscale, nuclear

‘power-generating plant (60,000 electrical kilowatts) in the

i




United States. .Built by.WestinghQuse Electric Corporation as part of

thelsame Civilian iner‘Reactor Development Program, the Shippingporf
plant design is based on the pressurized, light—water‘reactor concept;
Since 1958, the growth of nuclear powered central station plants in
the United States has exceeded early predictinns. This growtn has been
achieved by making nuclear plants economica;ly competitive with conven-

tional fossil~fueled plants. The most recent survey [l]* 1iSts-13"'

!

operable, 31 being built, and 40 planned. Of these plants, 81 are
based on the boiling and pressurized light-weter reactor concepts.

As a cpnsequence of the ever—increaeiné demand for uraniun to ﬁnel'
the ligﬁt—water-cooled reactor power planté, the U.S. Atomic Energy‘l
Comm1351on (USAEC) has given the hlghest prlorlty to development of
' liqpid—metal—cooled fast breeder reactors. In August, 1968, a quuld-
Metal Fast Breeder Reactor (LMFBR) pregram plan was 1ssued. The overall
objective islto achieve, through research and development, the eech—
nology required to design, construct, and sefely, reiiably, and |
economically operate fest breeder reactors for use in‘central station
nuclear‘power plants. Volume 4 of that plan specifies the instru-

mentation and control developments essential to reliable and safe

operation of an LMFBR plant [2].

1.2 Outline of dissertation A ,
The research described in this dissertation was undertaken with the

objective of epplying modern control theory to the-anelysis and deeign

of an optimai control system for a liquid metal fast breeder reactor.

‘ EThe fundamentai problems of finding the ontimal ;egulator control law

" and of estimating the states of the nonlinear'deterministic system model

% : .
Numbers in brackets pertain to references cited on pages 164 to 173.

\
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ot

have been solved. A natural consequence of applyihg dynamic .

programming to obtain the feedback regulator solution and iteration to
‘ :
the estimation problem is the requirement that a digital computer be

used to implement the control apdvestimation functions.

Chapter 2 is devoted to a review of earlier appligatiqns of opti-

mal control theory to nuclear reactor control problems. Since it was

not feasible to discuss the specific applicatioﬁssin detail, appro-

priate references are cited. .In addition, extensive selected bibliog-

raphies of 'nuclear and control engineering literature have been

compiled for those who wish to specialize in this area.
. . i

.Chépter 3 contains the equatigns which describe the reactor system.
A one-group delayed neutron model is used~és an approximation‘to the |
six—-group system. A-furthér'simplifiéation‘oflthe'system equations ié
aéhiéVed-by using a prompt—jump apgroximation. '

In Chapter 4, the system differential equations are defined in
: ]
terms of state variables and matrices. Nonlinear system equations are

'
'

. . : . . 1
linearized using nominal values and the resulting set of equations is

! )

solved with discrete-time inputs.

Chapter. 5 treats the solution.of the closed loop regulator problem

by applying dynamic prpgramming to obtain the minimum qf a §pec1f1ed
performance index and the resulting transient response is discussed.

The closed 1aop éolutioqs of Chapter 5 idealistically assume that
ail4étaté variablés are measurable; therefore, the solution‘;flé deter-
ministic estimator is derived in Chapter 6. Chaﬁter 7 considers the
combinéd problem'of estimation .and ‘control.

Finally, the work is summarized, along with conclusions and

recommendations for future research, in Chapter 8. . ‘

'



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

From 1942 to 1960, analysis and design of control systems for
nuclear reactors‘was based on classical methods.

Modern reactqf control ﬁheory, which is concerned with ?ptimal
: : : : ;o . o : P
e

proéeésés,‘émefged'frbm ﬁienérﬂs (6] thegry in'1942, Bellman's (Z] i
dynamic ﬁrogrémﬁing.techniques;in 1954, and Poﬁtryaéin's {8] Maximum
Principle in 1956. Although severél papers on off;line bptimizatién of
nucleér fuel managemént aﬁd xenon shutdown programs were published,
Kallay [3], in 1960, wés the‘fifst to relate modern control theory to
nuclear reactors.

Eérly applicatién of‘digital computer techniques to powkr reéctdrs
was limited primarily to data handliﬁg and on-line computéfi;ns.' In
1962, an issue of Nucleonics [4] was devoted to a speciél report on on-
lineAcomputers fof power reactors. At the 1964 Geneva Conference,
Schultz and Leglef (5] présented a status report on the application'qf
digitél computer techniques to reactor oﬁeration. Today, computer con-
trol systems are instalieﬂ on>several nuclear reactors, but these
instailationsiare on critical facilitigs or Iimited oﬁl? to process con-

trol on power reactors. Literature describing these systems are listed

in the general nuclear biblioéraphy.



2.2 Previous investigations’

Kallay [3] suggested four applications of dynamic programming
techniques to nuclear reactors: optimization of poison distribution,
optimization of over-all plant efficiency with respect to component
cost, design of optimal control prcgrams, and determination of flow
distribution through a heat excﬁanger. Under control applicatioms,
Kallay outlined the optimal solution to a minimum eﬁergy start-up

problem. S . ' |

Foureau [9] used Pontryagin's maximum principle, a singie group of
delayed neutrons, .and a constraint on the rate of change of reactivity,
to determine the switching boundaries for a reaccor starc—up prqgram.

Shen and Haag [10, 11, 12, 14] and Haag [13] used Pontryagln s
maximum principle to solve an optlmum start up problem u81ng a one—group
delayed neutron model and a prompt- jump gpproximation. In the resulcing
control scheme, the switching conditions on the input were determined by
,nonllnear functions of time. '

Mulcahey [15 16] analyzed the time optimal control of nuclear
reactors with velocity-limited control devices,' His model consisted of

a fast reactor with one group of delayed neutrons and a reactivity

‘ feedback, which was a function of the power level. The prompt—jump

approximation‘was employed, and the resulting set of equations was
i _solved analytically. System behavior was studled with analog and‘dlgl—
| tal computers. He concluded that a power—level—based sw1tch1ng con—-
‘troller should be adopted.
. Rosztoczy [17, 18] used the maximum principle and analyzed three
optimizatioc problems: a shucdown program for minimum'xe?on buildup;

flux state changes in nuclear reactors, and minimum fuel loading. The




model consisted of a single group of delayed neutrons and a reactivity

feedback proportional to the power level. An integral performance index
equal to reactivity squared was minimized by solving the resulting two-
point'boundary value problem on an analog computer. A suboptimal
minimum—-time solution was investigated by.décreasing the time to execute
a change in power level. Power level changes with minimum control
energy were investiggted by assuming a performance index equal to the
integral of the reactivity rate squared. The solutions presented were
oben loop, and the control-input was generated as a function of the
adjoint variables.

Ruiz [19] used Pontryagin's maximum principle to minimize an
integral performance index consisting of the sum of power deviation
squared and square of the product of reactivity and power. One group of
delayed neutrons was assumed. A closed loop control law was derived
which required pre-programmed time Variable>coefficie6ts.

Ash [20] used dynamic programming to derive a functiomal equation
which would cause a boiling reactor to be driven‘back to its equilibri-
um condition in minimum time by continuously moving control rods.

Hermsen [21] used Wienerfs théory and a linearized model of the
reactor to design é closed‘loop control system based on minimization of
an integral squared error index. Alsb, Z trénsform theory was used to
design a control system which would be suitable f;r computer control.
Pontryagin's maximum principle was applied to a system consisting of six
groups of delayed neutrons and a model based'on Newton's law of cooling.
A set of 2(m + 7) equations resulted, Whgre m was the number of

temperature nodes. Dimensionality'bf the prbblem was reduced by going

to a one-gréup linearized model, and a cloéed—ldoﬁ control law was




derived. The maximum principle also was used to solve the minimum-time

problem with and without a constraint on the reactivity rate. In view
of the difficulties encountered in obtaining solutions, it was suggested
that dynamic programming bé applied to the problem in future research.

Kliger [22, 42] usedeolder's inequality to solve the minimum%time
cqntrol problem subject to a constraint consisting of the product of
reactivity and flux. Cne group of delayed neutrons was assumed. He
derived a closed.loop switching function, and proposed that a state
estimator be used to generate the non-measurable state variables.

Mohler [22, 24, 25] used the maxiﬁum principle to analyze the mini-
mum-time control of neutron density subject to a magniFude constraint on
reactivity. A bang-bang control law was derived. In order to"maintain
constant power level, an additional input‘was required, after the last
Iswitching, to offset the effect qf delayed neutrons. for the case of é
six-group delayed neutron model, a feedback réactivipy prbportional to
the sum of the rate of‘chapge of precursors was required to hold power
level constant. A dither cont;ol was proposed as an altgrnate solution.

Weaver et al. [26] investigated: suboptimal closed-loop control
employing the second method of Lyapunov, nonlinear stability of coupled
core reactors de§cribed by a set of diffeéential-difference equ;tions,
synthesis of optimal closed-loop control of nuclear reactor systems, and
limits of validity for some approximations in.reactor dynamics.'

Secker and Weaver [27, 28] investigated optimal closed-loop control
using a set of equations linéarized around a nominal trajectory, and a
quadratic performance index. Application of Pontryagin's maximum

principle led to a matrix Riccati equation. The optimal filter for

state-variable estimation was derived using Kalman's method for



differeﬁtial systems, and a matrix Riccati equation was solved for the

optimal‘gainl The resulting closed-loop control system required storage
of thé'preprogrammed control variable.andAnominal.state trajectory.

Melsa [29, 30] extended the work reported previously by Weaver
et al. [26]. Suboptimal control with a singular control matrix was
investigated and applied to the control of a nuclear rocket.

Kliger [31] defined a control variable which was -equal to the
product of neutron flux density and reactivity and made the neutron
kinétics equations linear. Reactivity was recovered as a true input
control quantity by dividing the control variable by the meésured‘flux.
He applied the maximum principle to thé problem using an integral
performance index, and obtained the optimal control function in terms
of the state and adjoint variables. Using back substitution, he then
solved for the control function in terms of the state variables. An
estimator waé designed to generate the delayed neutren states from
neutron flux measﬁrements. |

Duncombe {32, 33, 34] used the same linearizing approximation as

Kliger to investigate on-line optimization of nuclear reactor load

control in the présence of nonlinearities. To carry through tﬁis
simplification, the performance index included a term of reactivity
times flux squared. Based on this approXimatiéﬁ5 the results obtained
by Duncombe must be judged aécordingly. The optimal closed loop solu-
tion‘was=obtained by using the maximum principle and deriving a matrix.
Riccati<equatioﬁ. The solution of the matrix Riccati equétion varied
with the véryiﬁg load demand. ‘To apply the correct feedback at each
insiant,'it:was necessary to calculate the parameters -of the feedback

network in effectively zero time. An analog computer was used to solve




the matrix Riccati equation in 0.1 real time and to simulate the reactor

plant. All of the state variables were obtained from the simulation.
In his conclusions, DuncomBe pointed out that in an actual apﬁlication,
the reactor plant simulation would be replaced by the reactor itself,
however, he did not state that a state estimator would be necessary.to
generate non-measurable variables.

Monta and Lennox [35] investigated time-optimal digital computer
control for the NRU reactor by applying the method of Desoer and
Wing [36]. \

Kliger [37] extended his work [31] to analysis of an optimal con-
trql system for nuclear reactors with a generalized temperature
feedback. The problem was subdivided such that a specific controller
yielded the coolant flow and neutron density to minimize a performance
index, and a universal controller forced the reactor neutron density to
follow the desired neutron density. The maximum principle was applied,
and the £esu1ting set of equations was solved to obtain the optimal

control law. The control law required all state wvariables, so an

estimator was designed to generate delayed neutron estimates from

.neutron flux measurements.

Sokoiova [38] analyzed the problem of determining an optimum con-
tfol law for a nuclear power plant. A set of 29 differential equations,
bilinear in the state variables and in the state and two control
variables, was used to describe the plant, which consisted of a reactor,
a regenerator, a cooler, and a turbocompressor. A quadratic perfor-
mance index was used, and'dynamic<ﬁrogramming was applied. Twé control
equations were .derived: .one linear in the state variablgs and the other

nonlinear. Lyapunov's method was applied to guarantee stability of the
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control system. Implementation of the control scheme required that all

state variables be measurable.

WeaQer et al. [39] investigated: optimal feedback control of
: nucléar reactor systems, modeling with Lyapunov functions, anq linear
system design using state variable feedback. The optimal control
investigation used the 1ineariZing substitution of Kiiger [31]. A
quadratic error index and prompt reactor model were used and a time-
varying gain'was obtained for the optimal feedback control by means of
Bellman's equation. The analysis was fepeated on reactor models using
prompt nonlinéar, linear deléyed, and nonlinear délayed neutrons, with
aﬁd without feedback. The developed methods were then used to analyze
the.staft—up of é nuclear rocket. |

Higgins [40] and Higgins and Schultz [41] investigated the
stability of certain nonlinear time-varying systems of automatic con-
trol. They.used the second method of Lyapunov, the Popov frequency
criterion, and the matrix inequality method. As an example, the
stabilityAtheory was applied to the simplified nuclear rocket propulsion
system considered by Mohler (1962).
| Monta [43, 44, 451 investigated the time-optimal control of nuclear
reactors. One group of delayed neutrons and a prompt jgmp approximation
were assumed.‘ The maximum.principle was used to derive the switching
trajectories in state space, with and'without constraints. The discreté
version of the maximum principle was used to analyze a system with a
pulse¥width—mo&ulated—feactivity input. An experiment was performed
on the Tosﬁiba Training and Research Reactor usiﬁg a digital control

computer. Computing time delay, control rod motor time constant,



one—grohp approximation, and reactivity estimates had to be taken into

account for practical reasons.

Humphries [46, 47] used a parameter adjustment model to investigate
adaptive control of a nuclear rocket-engine. _The proportional control
gain‘fbr the cbntroi poison was the parameter adaptively adjgsted and
the maximum core surface temperature was the variable adaptively
controlled. The performance indek consisted of the integral squared
response error, which was formed by comparing the system output with
thét of the reference model. To evaluate the performance index, the
nuclear rocket engine equations were linearized, the prompt neutron
lifetime was set equal to zero, and thg effects of delayed neutrons were
neglected. Parseval's theorem was used to evaluate the performance;
index as a function of gain. It was shown that propellant savings of up
ﬁo 20,000 pounds per transition from idle to full power are possible
with adaptive control.

Saluja [48], and Saluja, Sage, and Uhrig [49] analyzed open and
closed-loop control of nuclear systems. Three performance indices were
coﬁsidered: integral of reactivity squared, integral of reactivity
squared and neutron density deviation squared, and the previous index
with reactivity set equal to a proportional flux integral function of
neutron density error. The maximum principle was applied, and quasi-
linearization was used to solve the resulting two-point boundary value
problem. Convergencé was obtained in no more than four iterations for
ail problems. The suboptimal closed-loop control law yielded poorer
'performance than the oﬁen—loop control law. It was suggestedAthat an

Aadéptive—type control be considered to improve performance.
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Eliis [50], ‘and Sage and Ellis [51] presented a sequential sub-
optimal adaptive control philosophy which encompassed both identifica-
tion and control. A general nonlinear differential system was modeled
by a linear time varying systém_of assumed form. The system was
assumed stationary over subintervals of time. This allowed a controller
to generate a sequential control léw which minimized an integral of time
weighted quadratic form of error and control effort.- The method was
used to generate an optimum. closed-loop control for the start-up
dynamics of a nuclear reactor syéfem.

Masters [52], and Sage and Masters [52].derived a sequential method
fgr on-line estimation of the state variables and parameters of
‘discrete;, nonlinear, dynamic systems. The discrete version of the
maximum principle was embloyed to obtain the canonic equations of the
least-squares optimal esfimator; Also, a discretized invariant
imbedding technique was applied to solve the resulting two-point bound-
ary value problem. A system of seqﬁential equations was then obtained
by application of variatipnal mephods to the optimal trajectory. The
esfimation procedure provided the bestlleast—squares estimate of the
state vector, given noisy measurements at'discrete intervals of time.
The mephpd was applied to a nuclear réactor, with a single group of
delayed neutrons, and the system state énd one parameter were
estimated. |

Ogawa, Kaji, and Ozawa [54] analyzed the time-optimal control of
nucleaf reactors with two kinds of internal feedback: a prompt. feedback
generated by variations of fuel temperature and coolant density, and a
delayed feedback governed by variations of moderafor temperature.

System stability was examined by investigating the behavior of the




linearized system near an equilibrium point. The maximum principle

was applied to the quasilinear sysfem to obtain the‘oftimum control law.

Rasetti and Vallauri. [55] discussed the maximum principle and
dynamic programming. A nuclear propulsion plant for a commercial ship
with four steam generators and one pressurizer was analyzed for time-
optimal control using'the maximum~principle. The canonical equations
were compared to the results dbtained by applying Bellman's equation.

Tataru, Bajenescu, and Ghetaru [561 considered the closed-loop
regulator problem of a nuclear reacﬁor. The small signal transfer
function of a reactor was used. A scheme was derived to keep the loop
gain constant by using a perturbing signal and a computing device té
offset gain changes causedAby'power level chénges.

Partain [57], and Partain and Bailey [58, 59] studied the
application of Z transforms to linearized kinetics equations. Digital
simulation was used to investigate system behavior.

Herring [60], Herring et al. [61], Weaver [62] and Weaver and
Vanasse [68] developed a method for designing cqntrol systems by using
state variable feedback. This method was applied to a two-temperature-
region reactor and to a coupled—corg reactor. Linearized transfer
functions were used for the reactor systems. A method also was outlined
for generating non-measurable state variaples by placing frequency
dependent elements in the feedback path.
| Miyazaki [63] applied Wiener's theory [6]Aof least-squares
optimization with quadraticAconstraint to the design of reactor control
systems. The determinisfic case wés investigated by taking the
integral square error for the criterion function and the integral square

of reactivity rate for the control function. The stochastic case was



studied by substituting the mean-square error and mean-square
reacfivity rate, respectively. Transfer functions for various step
sizes and ramp inputs were derived. .

- Habegger [64], and Habegger, Bailey, and Kadavanich [65] applied
quasilinearization'and Kalman filter techniqueé to estimate nuclear
parameters in the EBWR, PUR—I,-and EBR-II reactors.(

Melsa et al. [66] investigated: system identification using a
random search method, data reconstruction using non—resétting
integrafors, and’sub—optimal closed-loop control using invariant
imbedding. ! | | -

| Mohler [67] analyzed the fuel—optimal'control of a nuclear propul-
sion éystem byvmeans of the maximum principle, Lagrange multipliers and
computers. Practical problems were shown to be complicated by state
constraints and high dimensionality. A minimum-time, prompt~neutron
control process with reactivity rate and amplitude constraint was

!
analyzed.

Mohler and Price [69, 70, 102] investigated application of linear
programming procedures to optimal control.of nuclear rocket\reactors
which had inequality magnitude constraints imposed on the control and -
" state. Nonlinear equations were transformed into a form Suitéble for
linear programming by using a first-order Taylor series expansion..

Marciniak [71, lOlj studied the time-optimal digital Eontrdl of
zero power nuclear reactors. Sampled-data control system theory,.
including Z-transforms and discrete state variables, was used to design
a control system which would: increase power :level while maintaining a

minimum period, and reach demand power level with little, or no,

~overshoot. - Of the various data-holds investigated, the zero-order hold
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was the most stabie. A time optimal study was made of a one-group
'delayed neutron reactor using the m;ximum principle, and tﬁe gwitching
equation was derived. This switchiﬁg-equation and the zero-order hold
were -used to derive a‘poﬁtrol program, which was applied to noise-free
reactor-modéls'simulated on a digital 'computer. A modified version

of the control program was used on the Argonne Thermal Source Reactor.



-CHAPTER 3

REACTOR DYNAMICS

3.1 "Introduction

The derivation of the nuclear reactor kinetics equations, starting
from neutron physics fundamentals, is well documented.. These include

treatments of- the subject by:: Glasstone and Edlund [72, Weinberg and

Wigner [73], Meghreblian and Holmes [74], Isbin [75], or.Ash [76], and a

handbook presentation by Radkowsky [77]. An excellent treatment on
general reactor dynamics is given by Gyftopolous.[78], and the specific

subject of fast reactor kinetics is treated by McCarthy and Okrent [79].

A discussion of the general subject of reactor dynamics and control is -

given by: Ash [76], Harrer [80], Keepin [81], Schultz [82], and Weaver

[83, 84]. .

3.2 Six-group delayed neutron model

The point-model kinetics equations for a nuclear reactor are:

dgét) - 6k(ti - B () + g.*iéi(t) | »'. ‘. | (3.1?

and
- dey(t) . By L . o S

3 - —E-n(t) - Xici(t)~ _ o ‘i = 1,00.,6 (3.2)

where |
" n(t) = neutron density’
o Sk(e) = reactivity
B = total delayed neutron fraction

17
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L = neutron lifetime

. Ai = decay constant of the 1th neutron precursor -
ci(t) = concentration of delayed neutrons of group i
Bi ‘ = delayed neutron fraction of group i

Reactor power level ié proportional to neutron density. At iow
power levels, reactivity is not a function of ;he neutron density;
therefore qu. (3.1) and (3.2) are commonly referred to,as_the zero
power kinetics equations.

.In Eq. (3.1) reactivity is a function of fime,.and for this condi-
tién, Egs. {3.1) and (3.2) are iinear with time varying coefficients:
Atfﬁiéh power levels, reactivity is‘a function of the-ﬁeutron density,

“and the equétioﬁS'become'nonlinear. '
| | )  The values of Ai and Si_fqr U-235 fueled fast reactors [85, p. 18]

"are listed in Table 3.1.-

TABLE 3.1 -

. DELAYED NEUTRON YIELD FROM FAST FISSION IN U-235

Al ABi a_
0.0127 £ 0.000247 0.038
0.0317 0.00138 10.213
0.115- 0.00122 0.188
0.311 : 0.00265 0.407 '
1.40 0.000832 0.128

3.87 0.000169 0.026

The relative abundancé is given by a, = Bi/B. . The total delayed

neutron fraction is obtained from B = ZBi, and for the




values of Bi in Table 3.1, B = 0.0065. ' Typically, 2 = 10-7 sec for a

fast reactor.

If the following variables are defined

o = B/% | K | (3.3)
a, = Bi/ZI‘ | - (34)
p(t) = Sk(t)/B : ' - (3.5)

and substituted into Eqs. (3.1) and (3.2); then

a(e) = ap(t)n(t) = on(t) + ] e, (6) ©(3.6)

W1

¢ () = ayn(e) = e, () i=1,...,6 (3.7)

where the dot notation designates the derivative with respect to time;
and p is réactivit& in dollars. Typically, |p|<l. |

| At equilibrium, the time derivatives-are équal to zero, which on
solving Eq. (3.7) gives

cim)=<ﬁﬁw)ui | o (3.8)

The delayed meutron concentfation‘cén be normalized by defining

2, () = (/a) ¢ (E) - (3.9)

Substitution of Eq. (3.9) into Egs. (3.6) and (3.7) results in a set. of

normalized equations

ae) = ap()n(t) - on(t) + o § z, (0) | (3.10)
’ i

2,(0) = A [an() - z,(0)] C i=1,...,6 (3.11)

where the equilibrium solution requitres that zi(O) = ain(O) and

- Z-zi(o) = n(0) because ) a; = 1.
i i
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3.3 Transient response of six-group model

For a step input of reactivity, the kinetics equations can be

solved by application of the Laplace transform. Under the conditions of

a step input p(t) = p, a constant. This constant value of reactivity is
substituted into the equation before transformation. The initial condi-
tions of n(0) and zi(o) are the values of n(t) and zi(t) which exist

just prior to the step addition of reactivity.

With p set equal to a constant, taking the Laplace transform of

Eqs. (3.10) and (3.11) results in

| sN(s) - n(Oj = apN(s) - aN(s) + a EiZi(s) oo (3.12)
| ! i - RS
| szi(s) - Zi(O) = Ai[aiN(s) - Zi(s)] - i= l,...,§" (3,13)

Equation (3.13) is solved for Zi(s) to give

a .\, z, (0)

. _ id i’ s
Ai(s) = E?::K—-N(S) + Py Ai i l"'f’6 (3.14)

i
Equation (3.14) is then substituted into Eq. (3.,12) to obtain an equa-

tion for N(s). Thus

6 zi(O)
n(0) + a.izl g—::igf- |
N(s) = : : 3 N (3.15)
. : .a,
- - 41 ;
sraa-o -] i
‘ i=1 i

Remembering that‘z a; = 1, the denominator of Eq. (3.15) cén be
i ’ . v
rearranged to yield:

" 6...2:(0)
R0) o ] gi—
N(s) = _ 16‘1 — (3.16)
s-op+a) =
i=1 st Al

Equation (3.16) is valid for any arbitrary initial conditions of n(0)

N

and zi(Q). If the system is at equilibrium before the reactivity




addition, then

zi(O)A= ain(O)

(3.17)

and substitution of Eq. (3.17) into Eq. (3.16) results in an. expression

of N(s) as a function of the initial neutron density. Thus

6 .. a;
1+ qizl.s -+.->‘i
N(S) = } 6 .a S u((_))
s —op + a z s i N
i=1 S §

(3.18)

In order to find the inverse Laplace transform of Eq. (3.18), the

roots of the denominator must be known. If the numerator and denomina-

tor of Eq. (2.18) are multiplied by the factors s + Aig a seventh-order

polynomial in s is obtained for the denominator, with coefficients con-

sisting of complicated combinations of products and sums of the

xi [82, pp. 110-111]. This polynomial is then factored for the roots.

An alternate method is to apply iteration to the denominator of

Eq. (3.18) by means of the Newton-Raphson algorithm [86, p. 78] as

follows:

(3.19)

which converges quédfa;ically to yield the solution of F(Sn+l) = 0 with

a.s

' i
F(s) = s - ap + o z P
i i

3304
3] = 1
F'(s) 1+a Z G+ )2
1 R §

(3.20)

(3.21)

" ‘where F(s) is the denominator of Eq. (3.18) and Ff(s) is the derivative

of F(s) with respect to s.



‘Sﬁbstitutiop of Eqs. (3.20) and (3.21) into Eq. (3.19) results in

: : ,.Aai'Sn
*n f.ap4+aa_§.sn.+AAi
1+a ) ——xs '
: p)
i (55 T4y

which can be rearranged as follows:

a.s. 2
1in

L G ip? .
iy T TS G2
%1 : ‘ ‘ , ,

1
R RIS WY.
1 n - 1

In order for Eq. (3.23) to converge, suitable-initial values must be

chosen for the various roots. For positive p, one root is positive and

all oghgrs are negative and range between the~ki véiugs [76,?p. 327.
AFor 6 negative, all sevén roots are negative. The most negative root
is approximately equal to a(p - l).

Equation (3.18) can be expressed as a partial fractién expaqsion.

That is,.

B, » - - '
——:lg— n(0) : (3.24)

' 7
N(s) = )
=1 i

Since the poles of Eq. (3.18) are simple, the coefficients B, of

Eq; (3.24) can be obtained from:

a.

l+a Z s +%A.

B, = L 2 n(0) . (3.25)
T U F'(s)

where F'(s) is given by Eq. (3.21)-
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The Roots of Prompt..Jump Equation computer'program which_finds the

Sy and calculates the coffesponding B; is listed in Appendix G.

Table 3.2 1lists the s and Bi for a step input of p = 0.1.

TABLE 3.2

ROOTS OF KINETICS EQUATIONS AND TRANSIENT
RESPONSE COEFFICIENTS FOR p= 0.1

i i
.01046741 1.2924847
-.01438199 -0.03533592
-.06525568 -0.08955314
-.19093692 -0.04046886
-1.2253240. -0.01346368
-3.7713468 ~ -0.00255375
-58,500.482 -0.11110930 -

The solution for the neutron density as a function of time,

obtained by taking the inverse transform of Eq. (3.24), is

7
n(t) = - z B.e

(3.26)

The time constant corresponding to the most negative root in Table 3.2

is 17 usec. If Eq. (3.26) is evaluated at t = 0.001 sec; using the

values in Table 3.2, n(0) = 1.0, and the Reactor Response to Step

Delta K computer program listed in Appendix G, then n(0.001) = 1.111.

The flux has jumped 11.1% in 1 msec, and remains at this level until the

.térms in Eq. (3.26) with longer -time constants began to exert their

influence.



3.4 Prompt-jump approximation"

In the analysis which follows, detéiled reactor transient behavior
at times less than 1 msec will not be.of inferest.
Transient behavior in this case can be adgquately described by
emplbying the prompt—jump approximation. Setting ﬁ(t) =0 in

Eq. (3.10) results in

6 .
0 = op(t)n(t) - on(t) +a ] z (t) (3.27)
i=1 B S :
which is.then solved for n(t):
6
, z zi(t) \
S n(t) i=1 = (3.28)
1-o0() o o

The neutron density is eliminated from Eq. (3.11) by substituting Eq.

(3.28) for n(t) to obtain

6

) Ag3y izl 25 (£)
Zi(t) = 1= o0 - kizi(t) | (3.29)

Reactor response to a step input can be determined by means of
Eqs. (3.28) and (3:29). For the case of equilibfium conditions prior

to the step, p =0 and X zi(O—) =n(@-). Immediétely after the step

n(04) = nO-) " (3.30)

1
l1-0p

~and n(t) has increased by the factor 1/ -p). I1Ifp =0.1,

T - L1 | 3 (3.31)

which is the same as the transient response calculated previously for

't = 0.001 sec and n(0) = 1.0.
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3.5 One-group delayéd neutron model

A further reduction in system dimensionality can be achieved by
‘considering a single group of delayed neutrons. With this assumption,

Eqs; (3.10) and (3.11) become

n(t) ap (£)n(t) - an(t) + az(t) | (3.32)

é(t)

An(e) - z(©)] - | . ’ (3.33)

The single-group decay constant A musf be suitably chosen if the one-
group approximation is to provide useable results. In previous
.applications of the approximation, XA has been.selected on the.basis of
' best asymptotic behavior:as t>», This method of.seleétion is .not the
best for studying Fransient behavior.at times of the order of one
second; therefore_an alfernate method based on a matghing of the
transient response is prdposed.

3.6 Transient response of one-group model

:The transient response of the one-group model to a step input of
reactivity can be determined by taking the Laplace transform of Egs.
(3.32) and (3.33) or equivalently modifying the six-group result of Eq.

(3.16) to give

‘ n(o) + 20 4
N(s) = s + A (3.34)
s — ap + as :
s + A

which alternately can be. written

(s + Mn(0) +0z(0)

s2 + (A + 0 - op)s = apA (3.35)

N(s)

Given the numerical values of A, a, and p, the roots of Eq. (3.35) may

. be calculated directly. These roots may be approximated by using




the quadratic formula and the product relationship of the roots to

obtain
S1 Q, Ao/ = p) ‘ : (3.36)
Js2 A ~a(l - p) = A=) N E X 1))

assuming that A<<a.
The partial fraction expansion and inverse transformation of Eq.

(3.35), using the roots given by Egs. (3.36) and (3.37), results in

s)t sot

Ae + [o@ - p)2 + Aple

a(l - p)% + A1 + p)

n(t) = n(0)

Lo - p)[eS1E - 525
"ol - p)2 + X1 +p)

z(0) ' ©(3.38)

3.7 Transient response of one-group prompt—jump model

The prompt-jump approximation can be applied to Eq. (3.32) by

setting ﬁ(t) = 0 and solving for n(t). Then

z(v) . . . o
n(t) = 37177;(EX . (3.39)

This solution for n(t) is substituted into Eq. (3.33) to obtain an

equation in z(t) and p(t). Thus

,
. _ . Ap(e)z(t) L - .
2 (1) i (3.40)
The solution of Eq. (3.40) is
2(t) = z(0) exp Jt Aeolt) g, o (3.41)
) :

and the flux density solution is obtained by'subsfituting Eq. (3.41)

into Eq. (3.39) to obtain



T o
n(t) = _z2(0). - ext J _Ap(e) dt . (3.42)

I-o() P J, 1 = o (®)

If p = 0 for t<0, then z(0) = n(0), and Eq. (3.42) becomes

n(t) = 1= 00 exp JO ETYO) dt | (3.43)

If reactivity is constant, then p(t) = p, and Eq. (3.43) becomes

n(t) = 12%9% exp [Xpt/(1 - p)] | (3.44)

The same result is obtained from Eq. (3.38) for t>0.001 sec because
the contribution from the second exponential term is then negligible.

3.8 Selection of oné-group dgcay constant

In later analyses, reactor transient behavior will be examined in
responsé to ihputvsignals occurring at one second intervals. It is
therefore desirable to select a’A whichrwill provide the best approxi-
mate transient response at the end of one seéond. For the case of
o = 0.1, n(0) = 1.0, and t = 1 sec, Eq. (3.43) is set equal to Eq.
(3.26) using the values in Table 3.2. This results in A = 0.312. This
value of A will be used in subsequent calculations whiéh utilize the
single-group model. Note that, within accuracy limits, this particular
value .of X coincides with one of the intermediate values'of A listed
in Table 3.1.

3.9 “Reactivity input

Reactivity changes in an actual system are effected by a control
rod mechanism. Figure 3.1 shows a block diagram of a reactivity input

system.
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CONTROL ROD.

INPUT | CONTROL ROD | .. POSITION « | REACTIVITY
(@ |  MOTOR - (1) T o (t)

Fig. 3.1 Reactivity input system

The gain Kr has been included in Fig. 3.1 to account for the control rod

calibration in terms of units of reactivity for units of position.

The control rod motor transfer function is given by .

‘ ok
R(s) _ m
U(s)  s(1 + ST ) | - (3.45)

[

whiéh can be expressed as a differential equation as follows:

r(t) + Tmf(é) ; Kmu(t) ' ’ (3.46)
If it is assumed that the motor time constgnt is negligible, then Eq.
(3.46) reduces to

é(;) = Ku(t) = ) o (3.47)
Reactivity is ?elated to control rod position by

p(t) = Kx(t) (3.48)
which upon substitution into Eq. (3.47) &ields

p(t) = KKu(t) . | ‘ (3.49)

If KmKr is set eqﬁal to one, then the units of u(t) are given directly

in dollars per second, and Eq. (3.49) becomes
p(t) = u(t) o (3.50)

Equation (3.50) shall be used in subsequent analysis to express the

functional dependence of reactivity on an input.
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CHAPTER 4

STATE SPACE REPRESENTATION' OF REACTOR DYNAMICS

4.1 ‘Introduction

The classical methods of control system analysis and design are
based on input-output relationships of systems generally represented by
one nth order differential equation; Modern control theory utilizes the
concepts of state space andAstate'variables; and an nth order system is
represented by a set of n first-order differential equétions.

The selection of a set of state variables to represent a system
described by one nth order differential equation is not unique. In the
case of reactor kinetics, formulation of system equations from physical
considerations has- led to a natural selection of state variables, and
the system is initially described by n first-order differential
equations. |

It is convenient to first apply the concept of state space to a
feactor with one group of delayed neutrons and then extend it to a
reactor with six groups. For the one-group reactor, the neutron density
n(t) and delayedineutron precursor density c(t)”arg the two variables
which uniquely describe the state of the reactor at any time t. The
state space for the ;eactor'is two dimensioﬁal, a piane, and its
coordinates are n(t) and c(t).‘ The two coordinates are sbecified by a
pair of ordered nUmbers; é vector. The state of‘;he reactor at any time

t. can be associated with a point in a plane. Given n(ty) and c(tyg),




1

which- determine the reactor .state at any time tg, and the .reactivity

p(t) for t > tg, the future behavior of the reactor can.be'prédicéed by
solving the system differential eq;ations, and the change in system
state is traced as a line in the state plane. ‘If the system is simula-
ted on an ana;og computer; the neutron density and delayed neutron
concentration can be individually displayed'on digital meters,
individﬁally recorded as a function of time; and plotted on an X-Y .

recorder. The readings from the two digital meters provide information
on the instantaneous state; and the X-Y recorder tracesﬂa‘line in the
state plane. The individuél recordings provide a parametric display as
a function of time. ‘

If two groups of delayed neutrons are used to describe the reactor;
then the state space is three‘dimensioﬁal and has the coordinétes n; cl;
and c,. Specifying the values of n, ¢, and ¢cp atlaﬁy time t locates a
point iq‘the three dimensionél space which describes the state 6f the
‘reactor. If the reactivity p(t) is‘given; the future behavior of the
reactor is tracéd as a line in the three dimensional state space. The
values of n, cj, and‘cz at any instant are represented by an ordered.set.
of numbefs, a vector. The term vector is applied to the unique
description of a point by én ordered set of numbers and is not intended
to imply a direéted line segment from the origin. An analog computer
simulation will require three digital meters and three recorderé. Since
Ithree—dimensional X-Y-Z plotters are not available, projections on the
X-Y, X-Z, and Y-Z planes may be recorded to afford an indirect

visualization of system behavior in the state space. The readings from

. the three digital meters provide information on the instantaneous. state,

¢
'




and the individual recordings provide a parametric display as a.function

of timg.'

With six-groups of delayed'neutfons; the state space is.seven-
"dimensional; and seven differential equations are used to describe ﬁhe
system. - ‘An ordered set of seven‘numBers; a vector;*describes the system
state at any instant of.time. An analog computer simulation requires
seven digital meters and seven récorders: Twenty-one X-Y plotters would
‘be required to plot all paired combiﬁations of variables if the display
-method of the three dimensional case was to be extended;. In this case;
the change in system state cannot be visualized in three dimensional
space, but the readings from the seven digital meters specify the
instantaneous state and the individﬁal recordings provide the parametric
display as a function of time. The ordered set of meter readings gives
the numerical value of the system state vector at any instant.

The above discussion may be summarized as follows: 7 state vari-
ables L1y X35 L3seees xn are ﬁeeded to describe completely the behavior
of a system described by a set of n first-order differential equations.
The set of 7 state variables can be considered as »n components of a
veétor_z, called the state vector. A state space is an n—aimensional
space in which L1y L2500, x are the coordinates. The state of the
system at time t can then be represented by a point‘inAaq n-dimensional
state space. The locus of points in ;he state space is.célled a
tragjectory.

Vector—matri#.notation'is convenient for the fepresentation of
system differential equations in state-space analysis. The solution of

vector-matrix differential equations is discussed briefly in Appendix A.

Detailed treatments of state-space analysis and vector-matrix equations




have 'been .published by: .

Zadeh. and Desoer [87], DeRusso, Roy, and

~Close [88],. Gupta (891, Ogata [90], Tlmothy and .Bona [91], and Chen and

Haas [92].

Using vector-matrix notation,iEqs.

On defining the generalized state vector:

~ -

X1
%o

X3

'§= X'-G=

X5

Xg

7

Eq. (4.1) can be rewritten in the form

lcs

1%}
€2
c3
‘Cy

€s

n

L

x(t) = A(D)x(t)

where

e 7 [ . 7
e Ay, 0 0 0 0 0O B1/%
o 0 -Ap 0 0o 0 0 B2/ %

e |0 O 30 00 B3/2
| =10 0 0 -a 0 O Bu/L
sl |0 0 0 0 s 0 'ss/z'
| o 0 0 0o 0 - Be/L

n t A A A3 Auﬂlks.iks [sk(t)-B1/2

'c3

c2

cy
cs

Cé

(3.1) and (3.2) can.be written: .

e

(1)

(4.2)

(4.3)'



A(t) =

x(t) =

and

At) =

-\ 0
0 -x,
0 0
0 O
0 O
0 0]

z3(t)

9 (t,to)x(tg)

(6]

z,(t)

zy, (t)
zg(t)

zg (L)

n(t) _

0

B1/% .
82/2

B3/2

By /2

Bs/ %

"35/2

LA A2 Az Ay As g [6k(t)-Bl/L

‘As shown in Appendix A, the solution of Eq. (4.3) is given by

where Q(t,to) is the state transition matrix.-

EST:S1
. A2ap
. k3ag3
CAgay

Asas

0 -X¢  Apag

o

a alp(t)-1]]

(4.4)

(4.5)

-Similarly, Eqs. (3.10) and (3.11) can be written as Eq. (4.3) with

(4.6)

(4.7)
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. The matrix .equation corresponding to Eq. (3.29) is

z(t) = A(t)z(t) S | - (4.8)
with
E34€3]
22 (¢)
z3(t)
z(t) = | (4.9)
zy (t)
25 (t)
26 (t)]
ahd
' S
At —_—
Al[p(t)'i'a‘l—l]. Ajay1 Aja; \ap . - Aag ' Alél_
Azap Xz[p(t)'-l-'az—l]. Aoas B Y- U R VY- U Aoas
. Asag Azaz Azlp(t)+az-l] Azaz  Azag N3az.
Away C Auay huay Ayl (E)+ay-1] Ayay Ayay
- Asas . Asas . Asas Asas Aslp(t)+as-1] Asas
LY . Aeag Aeag . Xea6 635 Aglp(t)tag-1]
(4.10)

4.4 One-group representation

The kinetics equations with one group of delayed neutrons,
Eqs. (3.32) and (3.33), can be written in matrix notation as Eq. (4.3)

with

x(t) = [28] ‘ | | o (4.11)



=A A :
A(t) = | . . ' (4.12)
a alpCt) -1]} '

If reactivity is constant with p(t)=p, then the system equation is

x(t) = Ax S - | (4.13)

A= | - | (4.14)
a alp - 1)f :

The solution of Eq. (4.13) can be obtained, as sh;wn in Appendix A,. by
taking the Laplace transform of Eq. (4.13) to obtain
CeK(s) - x(0) = AX(s) B o S (4.15)
which can be solved for X(s):
X(s) = [sI - Al"!x(0) | | (4.16)

. where I is the unit matrix. Equation (4.16) can be written in terms of

'thévLaplace transform of the state transitién matfix @(ff‘és
R = eex@ | S (4.17)

where ¢(s), the resolvent matri#, is given by

o(s) = .[sI—A]'l : . | . (4.18)
Takipg ;he inverse Laplace transforﬁ of Eq. (4.18) results in

@(p) .= .£_I[sIA—;A]7}  _ R . (4.19)
whé?e o(t) is the state tranéition matrix. Uéing Eq. (4.195, the -
”inversé.traﬁsform of Eé. (4.17)'cg? be vri;ﬁenlgg

x() = e(t)x(©) o (4.20)




Foﬁ:the matrix defined by Eq. (4.14)

N  Tewh - - | | . | . .
sI-A = . . . S o . (4.21)
o ' -a ‘stoa(1-p)] : -

and ¢(s) is given by

S-*-a(l-—p) ........ A P M
s2+(Ata-op)s-rap  s2+(to-ap)s-Aap
o(s) = (4.22)
DR LT a ..... e e . P .S+A ,,,,, . . . A

s2+(A+a-ap)s—Aap ,32+(A+a-dp)sfkdp 
| if_the root approkimations given in Eqs. (3.36) and (3.37) are
. substituted into Eq. (4.22), then

sta(ep) X

| (s=s1) (s-s2) (s-s1)(s-s2) : ' . .
F9(s) = - ' ' ' (4.23)
g SPVTO :

(s-s1) (s-s2) ' (s-£1)(s-82)

where

s1 = d/@-e) o S (4.24)

sz = -l - p) - M/QA - 0) G2

" The state transition matrix is obtained by taking the inverse Laplace

transform of Eq. (4.23):

¢11(8). d12(t)

a(t) (4.26)

921(t)  ¢22(t)
where
' _ fa(=p)? 4 Kp1e®t g neS2t ~
¢y1(t?_ o o -p)*+ 2@t ) ((4.21)
o agepeteey
$12(0) = oy TR T 0) o | (4.28)




syt

ol - p)(eslt”;Ae

@ PR | L (4.29)

T o - )2 + A + )
syt 2 4 .Szt '

_ Xe "4+ ol =p) + Aple

922() = a@ - 0)2 + AQ + ) (4.30)
For t = 0, Eq. (4.26) becomes

1 0 . _

¢(0) = = I (4.31)
0 1

;hich is one of the properties of the state transition matrix.

The solution for n(t) given by Eq. (4.20), with ¢(t) given by.-
Eq. (4.26), is identical to the result obtained previously in
Eq. (3.38), except that Eq. (4.20) gives, in addition, the solution
for £he'éeéohd state variable z(t). | |

4.5 One-group prompt—Jump‘repreéentation

The system based on the prompt-jump apﬁ}oximafion‘is described by
Egs. (3.39)'ahd (3.&0). If the“reactivity inpu;‘is“Coﬁsidéféd,-thg

system equatiéﬁs are augmented By'incldding”Eq.“(B.SO) as follows:

1

Ao =. .>\Z . ; ‘ ‘ o -

2 = Tos G

-5 = ou , T L TR S (4.33)
= z I :

n o= 7 > (4.34)

These equations are expressed.in matrix notation as:

L]
x

£, v ' , : | (4.35)

‘h (%) | | (4.36)

«
I

where



38

. . -Z
-x- =
P
‘ £1(z, 0) \
-g_ =
 £2(u)
£1(2, 0) =._1_)\% | S (4.39)
fé(u) = u : ' ‘ o (4.40)
y = n; o l . I Lo (4.41)
~and
W@ = bz, §) = 2 . (4h2)

\

Equation (4.35) is the system nonlinear vector-matrix differential
eduation, and Eq. (4.36) is the scalar .nonlinear measuremeht.equation.

The system has a single input u and a'single'outputey.

4.6 Linearization of the system and measurement equat

The system andAmeasuremeﬁt equafions aré linearized by considering
small pertﬁrbations about nominél'values:of the neutron density n*,
nofmalized precursor level .z*, and control input u*. To find the’
differentiai eéuations relating the deviations, expand Eq. (4.35) in a

Taylor series

of : ,
x = £(&x%, u¥) + 5 . (x - x*%) A ‘ 7
. — x .
of ' - a o
— - * s " 1 ) .
t 3a (u - u¥) + ‘ (4 .43)

u*




RN

du = u - u¥ | (4.45)
ﬁoﬁe thatl

x* - £(x*, u¥) - - (4.46)
then

G = % - A | 4.47)

Finally, substitute Eqs. (4.44), -(4.45), and~(4.47) into Eq. -(4.43),

retaining only first-order terms, to obtain

. of of
§x = =— §x + — | Su (4.48)
= ax x Ju % .
) = Ix u
where
3f) ... 3f)]
9Xy 9X
3£ .. .n
3—5 = . . (4.49)
9afn 3fp
axl s an
and
[3f |
IO
e . (4.50)
of
Bu

The measurement equation (4.36) is similarly expanded to obtain

y = h(x*) +A%E (x = x%) + ve» _ A ‘ (4.51)
i — -}E * L b R
X
which can be written
. . ah i ) " . 4'
dy = % éx o o (4.52)

xX*

39.



y - h(x*)

.. oh
axn

By defining

[+
]

] i

A =

o
"
2

and

=%

Eqs. (4.48) and (4.52) can be written

O
"
[}

A8x + DSu : _ . - (4.58)

Héx (4.59)

8y

The matrices A, D, and H corresponding to Eqs. (4.32), (4.33) and

(4.34) are

. - 2

A= [T @ - 0%) J : . (4.60)
L 0 0

b - : (4.61)
-.l ’ o A

(et (4.62)



For the particular case in which the reactor is at equilibrium, the

nominal values are: .z* = 1.0, p* = 0, and u* = 0, and the system and

measurement equations become

. 0 A 0 ,
§x = §x  + du . (4.63)
10 0 1
sy = [ 1] ex (4.64)
where
z - 1.0 6z ) ' |
x = = - (4.65)
p P
Su = u ‘ (4.66)
and
dy = n-1.0=46n 4.67)

4.7 "Solution of the stateé-spaceé equations with discrete-~time inputs
For a discrete-time input, u is constant for T seconds which can be

expressed as

u(t) = kT<t<(k + I)T (4.68)

Y

After substituting Eq. (4.68) into Eq. (4.33) and integrating,

p(t) = o) + uk(t - tk). . (4..6,9)
which can be written

p(t) = pp +u e =1t) - - (4.70)

where Pr is the reactivity at the beginning of the interval. Equa-

tion (4.70) is substituted into Eq. (4.32) to obtain




~azlp, +u (£ -.t.)] .
LA kK~ k k ' ‘ _(4.71)

which when integrated yiélds'

‘ . o 1= : |
a0 %t)- - 2 g 3 lzt —5| ¢ -t (4.72)
Zx Yk “k T % Kk’ -
At t = tk+l’qu (4.72) is solved for Zpl to optain
1 ( .- Pk A
24l = P eXP| 2n -AT | ( .73)

1f u, = 0, then iﬁtegration of Eq. (4.71) results in

. AP :
z(t)| _ Tk _
lnl—E;—' = i—:—5; (t tk) | - (4.74)

which'fo? t =1t yields

fxka
zk+l = zk exp l—"B_l: (4.75)
. Similarly, Prtl is obtained from Eq. (4.70) with t = tk+l' Thus
Pre1 = Pk + ukT , | (4.76)

. Equations (4,73)tand (4.765 provide the finite difference solﬁtions of .
the system equations at the sampling instants kT. These solufions are
" exact and do not ihvolve any. approximation of the derivative. If

u = 0; Eq. (4.75) is used in place of Eq. (4.73). The corresponding

"finite difference measurement equation is



(“%.77)

L o Zx o
e 1 - pk
These finite differeénce equations may be expressed in matrix notation
as follows: ' i
|
| 1
-and o : ' |
Vi = h(§k) ‘ o 4.79)
where ' ' '
. - o ,
% = I}ﬂ : (4.80)
.8l .= 2, €xp A R,n(l_ ! —_pﬁ T) - AT . (4.81)
| U VTP T % . -
- .gz = Py '+ uk. B | -(4.82)
and ' : . .
z, ' 4 .
h(g_k) = .7 o : (4.83)
|
4.8 Solution of the linearized equations with discrete-time input |
If the delta notation of variable deviation is omitted, Eq. (4.58)

can be written

Ax + Du
1 _ 1 L _
Ststy o, the Lapjlace transformation of

é =
When u = fpr tk
"Eq. (4.84) yields
. Uy
sX(s) - x = AX(s) + D >y (4.85)

which is éolved for X(s) as follows:




'

X(s) = [sIA— A]f1 §k 4-§A[SI-—,A]f1.Duk . | (4.86)

The solution for x(t) is obtained from the inverse transformation of
{

Eq. (4.86) as

' ' : t .
cx(t) = o(t - t %+ u J ¢(t - 1)DdT (4.87)
: t .
; k
or
t-t, .
~§(F) o= o(t - tk)zk + uk Jo ¢ (t)Ddt (4.88)
At t = tk+1 .
. T |
X = @(T)zk + u JO:Q(T)DdT (4.89)
Equation (4.89) can be.written

dx, + Gu ' (4.90)

T T K

where the control distribution matrix

o , :
G ‘= J o(t)Ddt |  (4.91)
0.

As shown in Appendix A

T ' S .
J d(t)dr = A'1[®(T) - 1] - (4.92)
0 ‘ .

.therefore

¢ = Al[e - I]D S (4.93)

when A-! exists.
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On applying .the above procedure to Eq: -(4.58), and using the A and D
! B -

matrices of Egqs. -(4.60) and (4.61)

N (aTer ) LT - e [ATEE ‘]‘*
exp(1 — p*) 4—z*[? exp(l = o%
o = ‘ o% (L - p*) (4.94)

' L 0 1

m |

B “z*T' ' z% 1 - éx ATp*
lpx (1 - p*)  Ap*2|" . PIT - o

G = (4.95)
T i
L .
If the nominal values correSpénd to eduilibrium conditions,
2% = 1.0 and p* = 0, and Eqs.' (4.94) and (4.95) reduce to
(1 AT
= : (4.96)
0 1
_E— o . ! |
]2 ,
G = : ! ) (4.97)
LT |

Substituting Egs. (4.96)5aﬁd (4.97) into Eq;‘(4.90) results in the

discrete system equation

1 AT Mr2/2] '
< = S u . (4.98)
B e T PR B S T k o | |

and the discrete output}measurement‘equation obtained usiﬁg Eq. (4.62) is
v = 1 1l x ' K : (4.99)

"'Equations (4.98) and'(4.99) will be used in deriving the optimal ciosed

loop control law for the regulator problem.




CHAPTER 5 o

B ! | . .
OPTIMAL CONTROL OF NUCLEAR SYSTEMS BY ) '
STATE VARIABLE FEEDBACK

[

1
L 1 . '

5.1 Introduction-

, control law which will compensate for disturbances that occur infre-
i 1
" quently'and randomly anywhere in tlme from zero to 1nf1n1ty. If atten-
, | 1 '
tion is focused on a single disturbance and system noise is neglected, a
1 U . ' ' ' ' . ; E ,. ‘

deterministic regulator problem is formulated.

Dynamic programming is readily applied to linear discrete-time

systems; and in the case of a quadratic performance index, leads to Fhe

direct calculation of the optimal llnearlfeedbaek control law, . lﬁ:the

performance index is to be minimized over'a finite time'interval, the

, (
feedback control law is a function of time; for:an infihite time ‘inter-. '
0 1 , .

' . f

val, the feedback control law is stationary and .all state variables are

fed back through fixed gains. Thus, discrete dynamic programming yields

the solutlon to the reactor regulator problem, if the contlnuous system
, ,
| 1 . . '
is sampled at discrete time interyvals. ,
. ' o \ ) : ‘ )
For a general discussion of dynamic programming, see Bellman [93],

|
Regulation of neutron density in. a reactor requires a feedback
1
|
|

1

Bellman and Kalaba [94], and Dreyfus [95]; and for the dynamic program-
ming solutioh of discrete-time systems with a quadratic berformance-in—
dex, see’ Tou [96, P 45 97, P 345] and Lapldus and Luus (98, p. 155]

5.2 Dynamic programmlng,solutlon of ‘the llnear regulator problem o .._' !

For the discre;e—time linear system described by

i




X4 = Q§k + Guk | (5.1)

‘and a quadratic performance index of the form

"N

. B T . o :‘. o , | |
Tk Gt -t - e

T . ol R L, .
where X is the transpose of Xy Q is an nxn positive-definite or semi-
. definite symmetrlcal matrlx, and c is a p031t1ve constant, the optlmal

control law which minimizes IN’ as shown in Appendlx B, is glven by

e T By (5.3)
where |
| B, = - GT[Q i Pj 11? | . (5.4),
J GlIqQ + 3 e +e
and
P, = [0+ GB, 1T1q + 2,_ylle + GB, ]‘+ chBJ | (5.5)

In Eq. (5;3), the feedback matrix BN-k’ a row matrix, is obtaiﬁed from
the iterative solution of Egs. (5.4) and (5.5). The matrix PJ deflned'
bj Eq. (5.5) is nxn and symmetrical. Starting with P O Egqs. (5.4)
and (5.5) yield B;, Py, By, Py, ..; . If the upper limit of Summatlon
in Eq. (5.2) is allowed to approach infinity, then Bj'converges to a

.stationary matrix B and Eq. (5.3) reduces to

u = Bx, - | ' ' (5.6)

47
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The produéf of the row matrix B and the state vector X, yields the

optimal feedback uk as indlcated in Eq. (5. 6)

Using Eq. (4. 65), the general performance index glven by Eq. (5.2)

can’ be written in expanded form as a. function of the delayed neutron

1

deviation, reactivity, and reactivity rate:

- N : . . ,
Iy f55k£1'(Q1162§ + 2Qu28z,0) + szoi + cuﬁfl) | : ._(5-7)'
where '
.' sz = Zk - 1-0 " | . E (5.8) '
‘and '
. Q11 Q12 ' : 4 .
Q2 Q ' S

To regulate the neutron density, a performance index . which is a

function of the neutron density deviation is defined by:

S S | C (5.10)

o s mio e

Equation (4.99) written in expanded form yields-

bn, = Oz, + o ' : \ (5.12)



Substitution of Eq. (5.12) into Eq;.(5.10) gives

I, = ] (822 + 28z + o) . (5.13)
1

Comparison of Eq. (5.13) with Eq. (5.7) results in

(5.14)

L.
[

The Q matrix deflned by Eq. (5.14) satisfies the performance index of

Eq. (5. 10) The optimal control law obtalned u51ng this matrix will

minimize the sum of the squares of the neutron density deviations at
sampling instants.

To reduce the maénitude'of the reactivity rate which is
.applied to correct a disturbance, a penalty germ<which weights U
can be added to Eq. (5.10). Similarly, reactivity cen‘be returned to
zero more quickly after a'disturbance by adding a penalty term which

weights CHE With these additional terms, Eq. (5.10) becomes
N : ) . ‘
_ : 2 2 - .
IN . kzl (Gnk + apy + Cuk—l) . | (5.16)

where a and ¢ are the weighting coefficients. If Eq. (5.12) is

subsﬁituted into Eq. (5.16), the corresponding matrix

Q = | B ‘ (5.17)

will result in the minimization of the sum of ‘the squares of the

neutron density deviation and the reactivity at the eampling instants.

49
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5.4 Reactor transient response -and the performance index

The optimal control law given by Eq. (5.6) is for a linear system
as described by Eq. (5.1). Thus, in order to apply the method to the
control of a nuclear reactor, the linearized discrete—fime Egs. (4.98)
andf(4.99) are used, and the & and G mafrices are substituted into
Eqs. (5.4) and (5.5) with A = 0.31 and T = 1. 'Arbitrary valﬁes areA
assigned to the a and ¢ weighting coefficients of Eq. (5.16), and the
Q matrix.of Eq. (5.17) and the coefficient c are substituted into
Eqs. (5.4) and (5.5). Equations (5.4) and (5.5) are solved iteratively

with N« to obtain the stationary control law... The Calculation

of Feedback Matrix computer program listed in Appendix G iteratively

evaluates the B matrix until the difference between successive iter-
ations diminishes to 10-7. Table 5.1 lists the B matrices calculated

for nine combinations of a and c.

TABLE 5.1

FEEDBACK MATRIX COEFFICIENTS

a [of b1 'bz

0 0 ~0.8658008 -1.1341991
0 1 -0.5403229 -0.7918012
0 10 -0.2411739 -0.4557331 |
1 0 -0.6372618 -1.0987756
1 -0.4680735  -0.8534584
1 10 -0.2313746 ~0.5005205
10 0 ~0.2880492 ~1.0446476
10 1 ~0.2658030 ~0.9705480

10 - 10 -0.1829017 -0.6938182




The transient response of the reactor is calculated using the

nonlinear system Eq. (4.78), the nonlinear measurement Eq. (4.79), and
the linear feedback Eq. (5.6):. The Calcglation of Transient Response
computer program listed in Appéndi§~G solves these equations and plots
are éenerated by £hé Plbf-Pfogram forlTransient Response computer
program. - Equation (4.81).is ungatisfactory for numerical evaluafion
with small values of U s therefore, a series expansion.fof Eq. (4.81),.
derived in Appendix C, is used in the computer program.

.Although 1 sec was selected fbr the control law sampling interval,
the system response is evaluated at intermediate sampling instants of
0.1 sec to demonstrate that there is no inter sample ripple.

Figure 5.1 shows the reactor transient response with an initial

disturbance of p(0+) 0.1 and performance index weighting coefficients

a=0and ¢c =0. At t = (0-), the system is at equilibrium, which

corresponds to p(0-) 0, 8z(0-) = 0, and 6n(0-) = 0. At t = (0+), a
step change of reactivity occurs which gives rise to tﬁe prompt jump

in neutron density. fhe control law minimizes the performance inéex

given in Eq. (5.10) by driving the neutron density deviation to

essentially zero in 1 sec. The control input at time zero is

determined from the product of pp and by from Table 5.1 or
ug = -0.1134 $/sec - (5.18)

The initial céntrol effortiis proportional fo the reactivity distur-
banEé and inversély proportional to the sampling interval. If the
sample interval is doubled, the neutron density deviation is driven to
zero in 2 sec and the initial control effort is halved. Similarly, if

the sample interval is halved, the initial control effort is doubled.
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. Fig. 5.3. Transient response for a=0, c=0, p=-0.05, §zy=-0.05.
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Fig.'S.é. ‘Transient response for~a=0,~Cél, p0=0.1, 6z4=0,
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Fig. 5.6. Transient response for a=l, 'c=0, pg=0+1, 620=0.
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Figures 5.2 and 5.3 describe system behavior for the same
performance index as above, except the initial conditions are different.

For Fig. 5.2: p(0-) = 0, 6z(0-) = 0.05, and én(0-) = 0.05; for

"Fig. 5.3: p(0-) = 0, 62(0-) .= -0.05 and 6n(0-) = -0.05. These initial

conditions correspond to a system which has not recovered from a prior
disturbance and consequently is not at equilibrium at t = (0-). The
disturbance for Fig. 5.2 is p(0+) = 0.05, and p(0%) = -0.05 for
Fig. 5.3. In both cases, the neutron density deviation is driven.to
zero in 1 sec, and the reactivity and delayed neutron deviation
asymptotically app?oach zero.

| Comparison of Figs. 5.1, 5.4, and 5.5 shows ‘the effect of‘adding'a
éontrdl éenal;y term to the performance indek with ¢ = 0, ¢ =1, and
c-= 10, reépectiveiy.  Here, the maghitude of the ipitial control

effort is reduced at the expense of the neutron density deviation not

being rgturned to zero in 1 sec. In Fig. 5.4, the neutron denéity

returns to 17 in 2.6 sec and for Fig. 5.5 in 7.1 sec.

The effect of adding a reactivity term to the performance index
can be seen by comparing Figs. 5.1, 5.6, and 5.9, and Figs. 5.2 and 5.10.
In Fig. 5.10, the area under the reactivity curve has been reduced at

the expense of the neutron. density deviation remaining off-normal for a

" longer period.

Figure 5.7 shows the system behavior with uniform weight assigned
to the neutron density deviagion, féactivity,‘and control effort.
Figure 12 shows the effect of reducing the weight assigned to the
neutroq'density dev;ation. Comparison of Fig. 5.7 with Figs. 5.8 and
5.11 shows the effect of increased weight on control effort and

reactivity, respectively.



Implemenfation of the optimal control law given by ﬁq. (5.6)

requires that the system state be known at each sampling instant. In
a nuclear reactor, the delayed neﬁtron‘precursor density and reactivity
cannot be measured; consequently, they must be estimated from

measurements of the neutron density. An optimal estimator which

performs this function is derived in the following chapter.
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CHAPTER 6 oo

1

ESTIMATION OF .NUCLEAR SYSTEM STATE VARIABLES -

6.1 Introduction _
) [ \ .
: A \

In 1806, Legendre [103] established estidﬁt%on theory as a.
. . 1 .

mathematical technique with the first publication.on least-squares 4

estimation. ‘
In 1960, Kalman [104] solved the Wiener p;oblqm for discrete-time - ,t
systems using state-transition analysis and[orthogonai projections, and
: , .
presented the principle of duality which showed the relatioﬁshipl
between stochgﬁtic estima;i;n and deterministic.coﬁtrol. In a papér

on the general theory of control systems [105], he introduced the C !
. I

\
v

concepts of controllability and observability. At the joint automaric

‘control conference, Kalman anq Bucy [106] extended the metﬁoa to
con;inuous syé;ems. Iq a fourth paper,'Kalman f107ﬂ summarized‘tqe
.éontributiops of the earlier papers and added a,number of theorems and
examples. '

. _Hb [108] demonstratéd the correspbndenée between tﬁe well=known
methﬁd of leaét squares [109] and the opFiﬁal-filtering theory ' of
Kalman. He sﬁoweq that mosé of the results in 1inéar}fi1tering.and. . o

prediction theory can be easily derived via a simple lemma on matrix

“inversion. -

' . | . N
4 ! ! . : . . .
Lee [110] in his chapter on optimal estimation discussed: the

' o ’ I 1 . '
Wiener  filter, the continuous and discrete Wiener-Kalman filter,

!



least~squares estimation, maximum-likelihood estimation, and the

Bayesian approach to estimation.

Ohap and Stubberbud [ill]_developed“a technique for estimating the
state of a nonlinear system which combines Kalman's procedure with
quasi-linearization. Their technique is not optimal irn the strict sense
since the linearized dynaﬁic equations are approximétions to the non-
linear equations. One advantage of the method is that unlike perturba-
tion .equations no a priori state éf the system must be assumed.

.Cox [112] surveyed,the methods available for resolving discrete-
time estimation problemgz Bayesian and weighted least-équares
estimation. Least-squares estimation was applied'to nonlinear plant and
measufement-vector—différence equations. A cost function was formulaged
which consisted of a linear combination of quadratic forms in errors of
an a priori estimate, present observation, and plant noise. fhe con-
straint due to the plant equation was included by using a Lagrange
ﬁultiplier, and minimization of the cost function resulted in a pair of
ﬁonlinear équations. The latter were solved iteratively to obtain the
optimal estimate. Linearized Kalman filtering:was indicated as being
equivalent to a single iteration.

An alternate method of solving a cost funétion also was described.
This method reéults in a two-point boundary value problem which is
solved by Successivé approximations. M—step.smoothiﬁg was introduced as
a method to allevig;e the difficulty of computer memory requirements
incfeasing liﬁearly with the number of observations. It was pointed out
that for systems with no plant noise, the linearized Kalman filter is

asymptotically open loop because the filter gain approaches zero.



Mowery [113] presented an optimal filter solution for a plant

described by a nonlinear-vector-differential equatibn and a nonlinear-
vector-measurement equat%on. The nonlinear plant equations were
linearized about a nominai solution and a set of difference equations
"was . obtained. The nonlinear measurement equation was similarly
linearized. A criterion function was formulated which consisted of a -
linear combination of quadratic forms in errors of an g priori estimate
and bresent observation. Minimizing the criterion function ﬁith respect
to the new estimate resulted in a set of nonlinear normal equations.
The solution of the linearized plant equation was used to derive the
relationship between the a priori and a postériori error weighting
ﬁatrices. An iteration scheme was proposed -to reduce the disﬁarity
between the nominal state vector and the true value.
Deutsch [114] in‘a chapter on differential equation techniqués

for linear filtering and prediction included the Kalman—- Bucy method,

discrete-time estimation, nonstationary estimation, and Bayes '~

estimation formulation.

Sridhar and Pearson [115] presented an approximate solution to the
proBlem of digital sequential, least—squares estimation of states and
parameters in nonlinear processes. Observations were assumed fo be
linear, and a cost‘fqnction was formulated which consisted of the sum of
a linear combination of quadratic forms in errors of the state vector
estimates and observations. A.Lagrange multiplier vector was used to
add the plant constraint to the cost function. Minimization of the cost
function resulted in a nonlinear two—point boundary value problem which
was solved by invariant imbedding to qbtain the filtef equations. An

example was presented for the solution of a system represented by a




nonlinear differential equation. Integration was used to obtain the

solution of the nonlinear plant equation at discrete time intervals.
Similarly, the plant variational equation was integrated to obtain the
value of the derivative of the plant nonlinear difference equation with
respect to ehe state vector.

Peschon,met al., [116, p. 70; 117, p. 6-8] derived an extended
Kalman filter by linearizing the process and measurement nonlinear
finite difference equations around the last estimate.

Phillips [118] used least-squares theory to formulate a cost

function for a discrete-time nonlinear plant and nonlinear measurement

- system. A Lagrénge multiplier was used to include the plant equation

constraint. The ﬁwo—boint boundary value problem which results from

the minimization of the cost function was solved by invariant imbedding
to obtain the filter equations. The resulting filter equations extend
the earlier work of Sridhar and Pearson [llSj by considering a nonlinear
measurement equation.’

Sorenson [119] investigated optimal estimation and control policies
for‘discrete—time, stochaetic, dynamic systems. Perturbation tech-
niques were applied, terms higher than first order were retained, and
the estimation and control policies'were determined using the Bayesian
epproach. In Reference 120 he summarized Kalman filtering technigques.

A system consisting of a nonlinear plant and nonlinear measurement equa-
tion was analyzed by uéing linear perturbation equations with fhe
coefficients evaluated. at nominal values.

Sage and Masters [121] showed the relationship between least-—
squares-—curve fitting and optimum filtering for linear systems. The

Kalman-Bucy solution to the Wiener filtering problem was presented using




least—squares.techniques.and;the*Bayesian.rule, ARelationships between

least-squares, minimum-variance, and minimum-mean-squared-ertor
estimates also were described. |

Irwin [122] investigated estimation for discfete—time systems. The
Bayesian, maximum likelihood, conditional expectatipn, dynamic pro-
gramming, orthogonal projection, and two—-point boundary §aiue problem
approaches were used to derive the Kalmén filter equations. The solu-
tions for nonlinear systems consisted of: the‘Kalman filter lingarized
about the present estimate; iterative solution of the équations
resulting from the dyﬁamic programming approaéh; and thé two-point
boundary value probleﬁ approach. A new approach was presented for the
nonliﬁearlestimator which utilized a performance index consisting of
the logarithm of the condition;l probability of the present estimate
based on a set of measurements. Minimization of the performance index
resulted in a set of noniinear algebraic equations whose solution yields
the optimal estimate.

Pearson [123] extended the the work of Sridhar and Pearson [115] to
inclu&e nonlinear measurements. His result was the same as that of
Phillips [118].

Liebeldt [124] included a chapter on linear discrete dynamic esti-
mation and derived the Kalman filter.

Sage [125] devoted chapters to optimum state estimation in linear
stationary systems, optimum filtering for nonstationary continuous
systems, and least-squares curve fitting and state estimation in
discrete linear systems.

Of the estimation methods outlined above, the iterétive procedure

presented by Cox comes closest to providing the solution for the
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deterministic nuclear, system state estiﬁatdf} The filter gain for a
deterministic system with the fastest o?sér&ation scheme is‘different
from thg filter gain derived for a stocﬁaétic system, S0 a sequentiai
development of a nuclear system state estimator is presented'starting
with discrete-time equations and a linear Kélman estimator. Aithough
the estimator derivation is based on discrete-time difference equations,
integration is introduced into the estimator to make the mgthod direcfly
-applicable to a plant described by,a.nonlinear vector differéntial

equation and nonlinear measurement equation.

6.2 Kalman filter

For the discrete-time linear system described by

B T % | (6.1)
and

= Hx - . : ' (6.2)

the fastest observation scheme is uniquely determined by

£ = % tHG -F) . (6.3)

 where gk is the estimate of the system state at instant k; f, is the

* *
first element of the dual basis of f;, vy fn’ where

*
f.

-1

(¢Tj'iHT - ' ' (6.4)

and

5, - v, | . | o 6.)

If the dual basis of ¥ is

* *

F = [ifs.“'-'s (6.6)

£]




- Thus the estimator described by Eq. (6.3) with

then

xj

|
i P
)
S

*T, -1 s a S . . | '
b ~ o e (% )
. | h

or

F =-,.  [il.’ esey in] R . ' . ,‘ | (6..8)

!

‘Eor the discrete-time linear reactor Eds. (4.98) and (4.99),

—_1 e vy -~ : . 1

« 1 0 1] [ 1 , .
£ = S = .' ' (6.9)
br 1 [ FIERVIE B
5 1 0]-2 1] ! -
£ = = ‘ . (6.10)
T 2) [ -1 - 2xT] . : ' '
o= _ o (6.11)
1 - AT . 1 - 221 .
- [(2AT - 1)/AT 1 - 1/AT
Fo= . , , . (6.12)
- [ 1/mT 1/aT, I ' -
: : o
and
(2AT - 1) /AT| A
£, = E , e . (6.13)
1/AT ' ) ' :

' ! | - ‘ ' .
the f; of Eq. (6.13)

will generate an optimal estimate of the system state, after a distur-
bance,. using a maximum of two output measurements. In general, for an

nth-order system, the optimal estimate is obtained using a maximum of

' ' i ) ' '
n output measurements. R o ,
;o . : - N

. As shown ‘in Figs. 5.1 through 5.12, the reaétiﬁity'éﬁd'deiayéd

o _ | . o o x
neutron deviation do not correspond to the nominal values of z = 1.0

! i
!

i




and p* = 0 which were assumed in deri?ing Eqs. (4.98) an& (4.99);
thergfore, it would be better to use Eqs.‘(4s62) and (4.94) to evaluafe
the H and ¢ matrices, except the nominal values must be.known._ The
extended Kalman filter method uses the last estimate as the nominal
value, which'is;satisfactory if successive values do not chanée rapidly.
'-As will be shown later, there is a vefy large change in nominal values
after a reactivity disturbance; tﬁus the extended Kalman filter fails
to provide the correct estimates of the reactor state. The question of
unknown nominal values is resolved by using the iteration method

proposed by Cox [112].

6.3 Linear estimation by matrix inversion .

For the dynamic system described by

‘}S‘k‘*'l = (I)(k + l’ k)l{_k . | (6.14)

and
Yy = L (6.15)

assume k output méasurements have been made which are related as

follows:

y1 = Hixy
y2 = Hyxp

D ¥ ' - o (6.16)

These measurements can be referred té x; by using Eq. (6.14) with

Ej = ¢(j,k)§k,~and written in composite form. Thus
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—Hl ‘D(l ’k)_}_{_k-

Hy ¢(2 ,k)ik

- m e0cm0x, |

Equation (6.17) can be partitioned to yield

1 [H10(1,k)]

1¥2

and written more compactly as

Yy = Ekik . | (6.19)

where Xk'is Fhe vector of output measurements, and Ek is the composite
matrix shown in Eq. (6.18).

The fastest observation scheme is obtained when the number of
oﬁtput measurements is equal to the order of the system. With k = n,

Eq. (6.19) can be solved for X by left-multiplying by Ei,

By, = BEx | | . (6.20)

and by [Eiﬂk]_l’ to finally obtain

T, ,=1.T -
x = KA By 6.21)
which gives the optimél estimate_df the state at instant k for a set of

.k measurements.



*A sequentiai‘form for estimation can be obtained by writing

Eq. (6.18) as follows:

S P ' | | (6.22)

where Yy 1s a-y?cfor of k-1 output measurenents, and Ek—l is a
bompositetmatrix defined by the first k-1 elements in Eq..(6..18)f The

vector X can be written in terms of X With simplified notation

ENE R S U @izlék 6.23)

" and substitution of Eq. {(6.23) into (6.22) yields

_1
Eo1%a
X ' 0 (6.24)

Solution of Eq. (6.24) for Xy is obtained by multiplication by the

inverse matrix:

S Maeiis [ — | (6.25)

;Ek‘lgiil f#-~ =T T .7 -1 o wly 1-174°T L | T (6.26)
i L L LA R L S WS Y BJ

-T

tove (61T = 57
where.(@k_l) ¢k—l' Thgrefore
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% = [ kfl—i—lﬂk-1°ill +REIVETE Y Ry (62D

Equation (6.27) can be written in terms of by substituting for -

-1
zk_l_from Eq. (6.22) to obtain

=T LT
= k=111 L+ B 1[¢k BB m g By (6:28)

Equation (6.28) can be rearranged into a form containing an error
. correction term by multiplying both sides of the equation with the

result that
_T T e T 1. _ =T T T
Lo 11 ®m1 * B = o B Bea® T By (6.29)

If the term HEHRQkélﬁk—l

Eq. (6.29)'can be written as follows:

is added and subtracted to the right hand side,

T T - - "T _.1
[Qk—lgk-lﬂk—1°k 1t Hka]Ek = O 1 1% 1%k-1%%-1

T R
MR R IEE N g N AN Y

T.

+ Hkyk

(6.30)

Multiplication of both sides of KEq. (6.30)'finally yields .

= -T T - .
e = O1¥yq T O k—l—k—l—k—l et Hka] Hk[yk Bty 1% ]

'~ (6.31)
which is in the form of Kalman's Eq. (6.3), except that X is generated

with- the ¥y -output sample. This is the filtering equation.



Iﬁ ﬁk-l andzﬁk;aréAaéfined”as.the.6ptimal filter outputs,.then an

optimal estimate is predicted by using the transition matrix- to yield

L T Y (6.32)
‘where gkAis the predicted vélueaof_gk obtained using the Yie-1
measurement . Equation (6.32) is the prediction equation.

If in Eq. (6.31), gk_l~andf§k are replaced by %, , and %, ,
respectively, and Eq. (6.32) is used, then Eq, (6.31). becomes

2 =X + [0 T.H H d>;+HH]1H[y.—H'.;<‘]T (6.33)

=k =k k- l k- l—k 1'k-1 k*'k k—k
The éystemrstate at t = (k + 1)T is predicted from

X =08 ~ (6.34)

A+l Kk

and Eq. (6.34)'is

If both sides of Eq. (6.33) are multiplied by o

Substituted for the left side

-T T

§k+1 Qk—k + 0 [Qk—l—k—lgk-le—l + Hy e ] H [Yk kik] (6.35)
which is.Kalman's formula with
- =T T -1
£1 o= o lo gH B g0l ¥ H T H, (6.36)

k

Equation (6.33) yields the optimal estiﬁate of the system at
instant k. using an a priori estimate gk and an error correction term
based on measurement Vi gk is the a posteriori estimate. A new
a priori estimate is generated using Eq. (6.34).

Equation (6.35) generates a new q priori estimate from the old

a priori estimate with an error correction term based on the current

measurement.
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6. 4 Linear estimation by 1east-squares minimlzation

The 1east-squares estimate of Ek is obtalned by minimlzing the

following cost function.>'
= (y1 - H1§1)2 +'(y2 - Hz_&)z_ + ... + (yk - ng_ﬁk)z . (6.37)

subject to

X = %18 (6.38)
Equation (6.37) can be written using Eq. (6.22) as follows:
=y - Ek—lik—llT[Xk-l" B_ox )+ (- Bx)? (6.39)

The constraint defined by Eq. (6.38) can be included by definiﬁg a
vector Lagrangian multiplier A and augmenting Eq. (6.39). The new cost

function is

' | T
I = ey " Beoiken) Wy~ BogEe) T Oy B

+ AT[x

B T 1%k-1] (6.40)

Setting the.gradient of J with respect to X 10 Ko and A, respectively

equal to zero yields

aJ

- - B} Ty Ty o |
9x N 2[z-k--]_ Ek-lx _1] Hk—l A ¢k—l 0 (6.41)
X1 k=17,

- and

o T 2 T ] Hk 28 < 6-42)

and

oJ _ ...
X

= _ ~ 4T
YL T IS (6.43)



Equation (6.43) is.the'original system Eq. (6.38). Equation (6.42) is’

solved for AT to obtain

T o )
AT =20y - Hx IR - | (6.44)
and AT is eliminated from Eq. (6.41) with the result that

T

T T T T T T . ’
Ek;lxk—l - Ek-lﬂk—rﬁkfl = Qk—lHkyk'_ Qk-lgkﬂkzk A K | (6.45)

which on multiplication by @;Tl yields .

ST T T T LT T
PeriaBien T ferferiFerfer T Nk T A (6.46).

If x, , is replaced by using Eq. (6.38), then Eq. (6.46) can be

written

T T . =T _T 4. _ T T .
Pem1Be-17k-1 T Pkt HeenBiee1 -1 T e T (6.47).
which, in turn, can be rearranged in the form of Eq. (6.27) by using
the matrix inverse.
An alternate cost function can be defined [112, 113, 122]:

I H Gy - 012+ (g - Bx)2 + 2 Tx -0 x ] (6.48)

where g is the previous estimate. Setting the gradients of J with

respect to X and’

X1 : X respectively equal to zero yiglds
3 T, T, | - o
ox, o  oH gy IR A, =0 (6.49)
k-1 : ' : :
I _ _ T T _
3§k = 2[yk - Hkék] Hk +Ax7 =0 (6.50)

~and elimination of A results in




lﬂa%_l-ﬁ)_fﬂa o R L O

Transposing Eq. (6.51) and multiplying by Qk 1 leads to

1 -1 = T '
@k_lﬂ H X1 @k_ H H a Hkyk Hkﬂkék (6.52)
Equation (6.38) is used to eliminate X1 with the result that
o) H Ho-l x - ¢~} HH o = Hiy, - . (6.53)
k18815 T F-1Bele T Yk - BB
Equation (6. 53) can be rearranged in the form of Eq. (6.29) which is

obtained by the matrix inverse.

6.5 Nonlinear estimation by least-squares minimization and iteration

For the nonlinear plané defined by

x = £ _) , | , (6.54)

Ve = h(x, ) ' ' (6.55)

an optimal estimate of the system state can be obtained by minimizing

the following cost function:
- — )12 — hix 312 4 2T - '
J [Ea(zk_l a)lc + [yk h(z,)]1° + A [z, _f_(zk_l)] (6.56)

where o is the previous estimate. Setting the gradients of J with

respect to X1 and X respectively equal to zero yields
3J _ _ T, _,T _
o L - ClE Gy T OVE AT, =0 (6.57)
k-1
and
23

T T
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‘where

‘ .ai(’—‘k—l)

F,_, = - (6.59)
k-1 Bln_Lk_l
and
ahx) |
H = a--ik (6.60)
X
'Eliminating‘AT from Eqs. (6.57) and (6.58)‘resu1té in
B, - 018 =y, - heg) B F  (6.61)
By gy ~ IR =1y - h&ITHF .
" and after transposing, Eq. (6.61) becomes
T T T | -

Equatiéns (6,543 and (6.62) must be satisfied for J to be a minimum.
The estimation procesé may be'intérpreted’as,follows. Giveﬁlthe
last estimate o based on a measurement V-1 2@ revised estimate X1 is
made which'must satisfy
Ea(zk—i -a) =20 : : , | . {(6.63)
Tﬁis revised estimate is used in Eq.'(6.54) to obtain an estimate of
X which, in turn, must satisfy .
v - b)) =0 ' o (6.64)
Nonlinear Eqs. (6.54) and (6.62) can be solved by iteration by

‘'using a first-order Taylor expansion:

= 2D = £ ) + Ry ] - xiicé;) | (6.65)

hG ) = hGx) +H GG - x) ' " (6.66)




where the superscripts identify the iteration Sequence."Equatibn (6.62)

at the i+l iteration is

HTH ( i+l T
—oo

el T @ = SELCAER

Do  (6.67)
and substitution of Egqs. (6.65) and (6.66) info Eq. (6.67) results in

HTH (_;+i a) = FE—lHEtyk - h(xi) + szi - Hki(zi—l)
- HF kélxifl - 1_k_ =0 B - (6.68)

T i . '
The term EdH X, _q 1is addeq and subtractgd to Eq. (6.68) Fo obtain

T

[HH +F T i+l T 1

T
k-1 T P 1]§k 1" [H H + F 1HkaFk X1 |
2 il -k © - )

+HEH (@ -x ) T (6.69)

Multiplication of kEq. (6.69) by the inverse marrix yields

i+l 4 T T T oy (T T i
K1 5k-1 + [HH, +‘Fk—1HkaFk—1] {Feo By - b

FHOGP - EGp D] HEB @-x P} (6.70)

and the i+l estimate for X is obtained from

o E NN 1(x;+i e (6.71)

Equations (6.70) and (6.71) are the estimator equations for a system
consisting of a nonlinear plant with a nonlinear measurement. The

iteration sequence is started by -selecting

xl  =a (6.72)
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and

x = £@ , ' . (6.73)

'With each iteration;‘the'Hk and Fk—i matrices are.re-evaluated
and a' new matrix inverse is calculated. A matrix inversion lemma
applied to stochastic systems to eliminate the invefsion is not'appli-
cable to Eq. (6.70) [125, p. 276].

The term.ga(g_— §i_l) which appears on the right hand side of
Eq.l(6.70) is identically equal to zéro throughout the iteration

A}

sequence. ‘A proof that
waedtoes o 6.1
ST Heep? T2 S - .

is given in Appendix D.

6.6 Nonlinear estimation of continuous systems with discrete time

measurements

The nonlinear eéstimator defined byAEqs. (6.70) and (6.71) was
_derived for a system described by nonlinear difference Eqs. (6.54) and
(6.55).

For a plant described by

x = g® . (6.75)

the value of Xy is obtained by .integration:

T
=i x4t J g(x)dt : o Co (6.76)
0 -

The estimator requires aﬁ(xkél)/azkfl which is 9bta1ned by
integrating the solution of the plant'vafiational equation. The

variational equation is given by

8x .= Géx ' ' | . (6.77)
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Equation (6.77) is a linear equation and has the solution

ex, = (MoK ) ' (6.79)

where the state-transition matrix ¢ satisfies the matrix differential

equation
(t) = Go(t) : ' (6.80)
with ¢(0) = 1. As indicated by Eq. (6.79), the transition matrix of the

linearized system measures the change in §£ per unit change in X 13

therefore
aE(x ) N
R,y = Til— = F((k-1)T) = f GFdt . (6.81)
-1 0 ‘
with F(0) .= I. Thus simultaneous integration of Egs. (6.75) and (6.81)

provides the information required by the estimator, and the analytic

solution of the nonlinear plant differential equation is not required.

An analytic comparison of Eq. (6.81) for the reactor equations is

presented in Appendix E.

6.7 Performance of nuclear system state estimator
For the nuclear system'nonlinear discrete~time Eqs. (4.75), (4.76)

and (4.83), the performance index is defined:
- v - 2 _ 2 . A
3= Iy, - by 12+ [y, - hGx))? 6.82)

subject to

z, = zk_lexp[kpk_lT/(l‘- pk_l)] o R o (6.83)



"The performance index is a minimum when-

Yk_l = h(}_(;k_l) = zk"l/(l - pk."l) ’ (6'85)

Ve = B =2z /A - p) _ : . (6.86)
Using Egs. (6.83);'(6.84), (6.85); and (6.86) and two successive output
samples, the solution. for reactivity is

en(y, /y, .5) :
by = B = T - (6.87)
- AT + zn(yk/yk_l)

and for the delayed neutron precursor density

2 = (1~ (6.88)

k-1 Preo1)Vk-1

k

(6.88). Numeriéal values for the analytic solution of the estimator

The solution for 2z, is oﬁtéined from Eq; (6.83) using Eqs. (6.87) and

equations are obtained by using the Analytic Estimator Solutions compu-
ter program listed in-Appendix G. The programmed value of y, is unity,
“and y) is calculaté&'in'response to a step éhange in reactivit&
occurring at t = (0+). Table 6.1 lists the analytic estimator solutions
for different values of reactivity disturbances. ‘These values are used
. to determineAwhether the estimator with iteration, programmed to solve
Eqs. (6.70) and (6.71), ggnerateé the correct estimate in one sample
after a disturbanqe,

The Finite Difference System with'ﬁstimator and Control computer
. program (listed in Appendik G), with the control loop opened by setting
u = 0, generates samples of the output measurement by solving the plant

i

finite difference Eqs. (6.83) and (6.84), the deaéﬁrementlEi. @7, 1.
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TABLE 6.1

ANALYTIC ESTIMATOR SOLUTIONS

) ”~

o (0+) b1 i)
0.25  0.55778428  0.65380766  1.4784811
0.20  0.49233880  0.68571204  1.3507277
0.10  0.31081242  0.79259985  1.1500494
~0.10  -0.66212729  1.4690358 0.88382870
~0.20  -3.0783149 3.2274608 0.79137116
-11.471604 9.3774779 0.75190634

=0.25

and the estimator Egqs. (6.70) and (6.71). Consecutive iterations of
the estimator equations are performed until the performance index is

equal to or less than a specified value, which can be expressed as

J < e (6.89)

Thus by changing €;, the accuracy and number of iterations can be
controlled.

The matrices F and Hk are obtained by differentiating

k-1
Eqs. (6.83), (6.84), and (6.86), respectively, to obtain

[ [ATo ATz, ATp, \'
- - - -1 {0 PR=1
exp 1-p ) (1- )Zc"P I_
k=11 Py, _3 Py, _ }
P = ' kot e (6.90)
0 1
I | i
B = [1/Q-0) z/1=p)?] (6.91)



A worst-case analysis is used to investigate the performance of the

estimator., Since a disturbance can occur ‘anywhere within one sample
interval, the worst case is when it .occurs immediately after the

measurement. The estimator is initialized by assuming the system to be

in equilibrium up to t = 0. Thus , ~
. ‘ 17 o S
a =X = x(0-) = ‘[0] (6.92)
H o= [11] | | (6.93)
and
x(04) = [ 1 ] - B (6.94)
= p (0+) :

For large reactivity disturbances; the first iteration produces an
estimate of Pr—1 which exceeds unity. - If this haﬁpens,.é discontingity
is crossed and the estimator is not able to converge. The computeropro-
_gram contains an arbitrary hard limit on Pr-1 of 0.8.. With this'iiﬁit,
thg estimator produces correct estimates for step changes in reactivity
up to +0.56$. Similarly, a discontinuity exists at -0.27$. Thus the
useable range of the estimator for step disturbances is from -0.27$ to
+5.68. |

Tables 6.2 and 6.3 show, respectively, estimato; performance
for 6k’ ik’ and ﬁk in response to step.reacfivify disturbances of +0.1$
_and —O.l$-&itﬁ an iteration accuracy of € = 10~%. .The number of
iterations is indicated in column I, and the estimated values are given
beﬁeath the true values. For p = 0.1, the estimate is generated in four
iterations and agrees up go the fifth decimal place with the values in

Table 6.1.. At the end of the second sample interval, the system state




TABLE 6.2

ESTIMATOR PERFORMANCE WITH FINITE-DIFFERENCE SYSTEM EQUATIONS,
€ = 10~ ”, AND p (0+) = 0.1 ,

k pk ' .zk nk
0 .10000000 1.00000005 1.11111114
+00000000% 1.,00000005% 1,00000005%
1 .10000000 1.03504454 1,15004947
.31082521* .79259022*% 1,15005689%*
2 .10000000 1.07131714 1,19035235°
,05907985*% 1.07241802% 1,19035855%
3 .10000000 1,10886090 1.,23206765
‘ .09999066% 1.10887280% 1,23206808%
4 .10000000 . 1,14772035 1.,27524482
. .099999g5* 1.14772158* 1,27524482%
5 10000000 1,18794163 1,31993512
.05999996% 1,18794169* 1,31993512%
6 .10000000 1.22957243 1 1,36619157
’ .0999999¢*% 1.22957249* 1.,36619157*%
7 .10000000 1,27266217 1,41406904
.05999996% 1,27266222% 1,41406904%
8 ,10000000 1.31726195 1,46362438
.09999999% 1.31726200% 1,46362439*%
9 ,10000000 1.36342472 1,51491633
.09999993* 1.36342481% 1,51491633*
10 10000000 1.41120523 1,56800579
.05999998% 1.41120525% 1,56800579%

Estimate



TABLE 6.3

ESTIMATOR PERFORMANCE WITH FINITE-DIFFERENCE SYSTEM EQUATIONS,

€] = 107%, AND p(0+) = -0.1
k Py ) B

0 +-.10000000 1.00000005 90909093
.00000000* 1.,00000005% 1,00000005*%

1 -,10000000 .97221162 .88382875
-.6€6060630% 1.46791877% . 88396555*%

2 -,10000000 .94519543 +85926857
-.09012711* 1 9.3673362* .859028843

3 -.10000000 91892997 ,83539089
-.10006901% +91900903* «83541036%

4 -,10000000 ,89339439 .81217672
-,10009105* .89346834% 181217672%

5 -.10000000 86856840 »78960765
-,09999991% .B6856834¢% .78960766%
6 -.10000000 L R4443229 76766572
: -.05999999% .R4443226% 76766571%

7 =,10000000 .82096686 074633353
-,05999995% .82096683% «74633353*

8 -.10000000 .79815353 «72559412
-,09999991% .79815348% 17255941 3%

9 -.10000000 .77597413 170543103
' -.09999999% 7759741 1% ¢70543101%
10 -,10000000 75441106 68582824
-.05999995% .75441103% - 168582824%

*
Estimate
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ESTIMATOR

TABLE 6.4

PERFORMANCE WITH FINITE-DIFFERENCE SYSTEM EQUATIONS,

€1 = 1076, AND p(0+) = 0.25

ko P 2y n
o .25000001 1.00000005 1,33333338
.00000000% 1.00000005% 1.,00000005%
1 .25000001 1.10886100 1.,47848131
.55778435% 65380763 1,47848132*
2 .25000001 1.,22957266 1,63943018
.24997180% 1,2296201 6% 1.63943187%
3 .25000001 1,36342509 1,81790011
. 24699822*% 1.36342834% 1,81790009*
4 25000001 1,51184884 2,01579849
.25000005* 1,51184879% 2,01579849%
5 ,25000001 1.67643014 2,23524020
.25000005* 1,67643008* 2,23524020
6 .25000001 1.R5892791 2.47857056
. 25000003* 1.,85892768% 2.47857056"
7 .25000001 2.06129260 1 2.74839009
.2500000%* 2.06129257% 2.,7483900%
& ,25000001 2.28566685% 3.,04758244
.25000001% 2.28568683% 3,04758241%
9 .25000001 2.53450889 3,37934517
,25000004* 2.,53450883* 3.,37934520%
10 ,25000001 2,R1041793 3,74722387
‘ ,25000002* 2,81041790% 3.74722384*

*
Estimate



ESTIMATOR PERFORMANCE WITH FINITE-DIFFERENCE. SYSTEM EQUATIONS

TABLE 6.5

IE

gp = 107%, AND p(0+) =

k . P z, n
‘ 0 -.25000001 1.,00000005 .80000001
.00000000* 1.,00000005% 1.00000005%
. 1 -.25000001 193988293 .75190635
| =11,47042594* 9.37661416% .75190811*
2 -.25000001 .88337989 ,70670392
-,24271586* - «B7823433% «70670567*
3 -.25000001 .83027365 066421894
' -,24998595" .83027136% «66422455*%
4 -.25000001 ,78036003 «62428803
-.25004289" .78038681% .62428803*
5 -,25000001 73344706 .58675765
-.24999987* «73344699% .58675765%
| 6 -.25000001 «68935435 .55148348
' -.25000008% ,68935439% 155148346*
7 -.25000001 164791237 +51832990
-.24999993% . 64791234% «51832991*
8 -.25000001 60896177 48716940
-,24999997% . 60896174% . 48716940%
9 -.25000001 57235275 145788219
-,24999992% .57235272% .45788220%
10 -.25000001 ..53794457 143035565
-.24999997% .53794455% «43035564%

* . ‘
Estimate




TABLE 6.6

ESTIMATOR PERFORMANCE WITH INTEGRATED SYSTEM EQUATIONS,

€] = 10‘“, €y =

1072, AND p(0+) = 0.1 -

At

| Ko % % ot
0 . .10000000 1,00000005 1,11111114
.00000000% 1,00000005% 1,0000000°%
1 - .10000000 1,03504454  1,15004947
 +31418966*  ,78872010% 1,15005569*% 1,00000
2 10000000  1.,07133714  1,19035235> |
+09946450%* 1,07196009* 1,19035851% 1,00000°
3 ..10000000  1,10886090. 1,23206765
+10035641* 1,10844578*% 1,23206806* 1,00000
4 10000000 1,14772035 1,27524482
«10034495%  1,14728047* 1,27524485% 1,00000
5  .10000000 1,187941635  1,31993512
© . +10034578°  1,18748521% 1,31993510% 1,00000
| 6 10000000 © 1,22057243  1,36619157
| _ ©10034587%  1,22909993* 1,36619160*% 1,00000
7 +10000000  1,27266217  1,41406904 )
+100345729%  1,27217317% 1,41406901% 1,00000
' 8+ +10000000 1,31726195 . 1,46362438
_ .+10034589*% | 1,31675571% 1,46362441% 1,00000
9  .10000000 1,36342472 1,51491633
+10034579%  1,36290086% 1,514916352% 1,00000
' 10 10000000  1,41120523  1,56800579
 +10034587*%  1,41066292% . 1,56800580% 1,00000
* — '
Estimate



TABLE 6.7

ESTIMATOR PERFORMANCE WITH INTEGRATED  SYSTEM EQUATIONS,
e;-= 107%, €5 = 1073, AND p(0+) = 0.1

k- ' Pr - 2y o At
‘ 0 .10000000 1.,00000005 1,11111114
: +00000000% 1,00000005% '1,00000005*
1. .10000000. 1.03504454  1,15004947
«31165936* .79163070% 1,15005660% «25000
2 .10000000 1,07131714  1,190352%5
.09925989%: 1,07220364% 1,19035848% 50000
3 .10000000 1,10886090 1,23206765
«10016345% 1,10865993* 1,23206809* »50000
4 .10000000 1,14772035 . 1,27524482
$1001/159%  1,14750156% 1,27524486% ' ,50000
5 +10000000 - 1,18794163  1,31993512 S
: .10017248% 1,18771397% 1,31993513* 50000
6  .10000000  1,22957243  1,36619157
' .10017/259*% .1,22933865% 1,36619160%  ,50000
7 +10000000  1,27266217 1,41406904 L
+10017251%  1,27241849% 1,41406901*  ,50000
8  .10000000  1,31726195 1,46362438 |
10017267% '1,31700924*% . 1,46362439%  ,50000
9 10000000  1.,36342472  1,51491633 |
+10017254% '1,36316331% 1,51491630%  ,50000
10 «10000000 1,41120523  1,56800579 : ,
+10017259% 1,41093461% © 1,56806582%  ,50000

* 3
Estimate
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is estimated.to within 0.1%,,requiring three iterations.. Thereafter, a

single iteration is used to track the system.

previous estimate is used to evaluate the F and H matrices.

The .estimation .sequence

~after k = 2, corresponds to an extended Kalman filter in which the

Tables 6.4 and 6.5 show, respectively, the esﬁimator performance =

in response to reactivity disturbanceé of +0.25$% and -0.25$ with an -

iteration accuracy of e; = 1076. The increase in iteration accuracy 'is,

required to obtain a good estimate for 62§ For €1

-0.15607480;. and for €

— 10-Y4 A
1077, 92

= 0.08458834. For ¢, = 107

Py =

.=0.25450338 and one additional saﬁple is required to obtain an accurafe

estimate of the system state.: As‘'indicated in Table 6.5, seven itera-

tions are required for.gl and £, and one iteration is used thereafter.

The estimates in Tables .6.2 to 6.5 are for a system described by

finite-difference equations. The performance of an estimator which uses

integration of the system equations is investigated by.using the

'Differéntial System With Estimator and Control computer program (listed

in Appendix G) with the feedback control loop opened by setting u = 0.

The plant differential equations are given by Egs. (4.32) and (4.33);

and the variational equation used to calculate F

Eq. (4.60). The matrix differential equation to be integréted is

Fi1 Fia] |Ae(e)/[1-p(t)]

Fp1 Faa| = 0
and after multiplication yiélds

. ap(e) Cxa(t)
1 =150m M1 T e @I

is given by

z2(£)/[1-p(£)12| |F11 Fi2

Foi

0

Fp1 .Fa2

(6.95)



. 200 he®) o
P12 =350 B2 Y e (172 . 6.92)

and .

» ¥Fs1 = Fop = 0O ' (6.98)
Solution of Eq. (6.98) requires that F,; = constant and F,, = constant,
but the initial conditions require F(0) = I. Therefore, Fy; = O and
‘Fpp = 1. After substitution of Fp; and Fj,, Egs. (6.96) and (6.97)

reduce to

< Xp(t) ‘ ’ o :
=150 M (6.99)
. Ap(t) Az (t) . -
Fiz2 = 1-p(t) Fip #+ [I-p(t)]2 (6.100)

The initial conditions are: F;;(0) =1 and Fy,(0) = 0.
Simulteneous integration of Egs. (4.32),.(4.33), (6.99), and (6.100)
yleld the solutions for gk and Fk-l'

The integration is performed numerically, therefofe the accqracy
of integration is dependent upon the step size. The Kutta-Merson
method [126; 127, p. 24] given in Appendix F is used because of its one-
step startiné'feature and error computation. The integratien step siée
At is automatically adjusted to meet a sﬁecified accuracy requirement.
The parameter €y in the competef preéram, specifies the integration
accuracy.

Tables 6.6 and 6.7 show, respectively, the estimator performence
for a step change in feactivity of 0.1 with integration accuracies e, of
1072 and 1073 and an iteration accuracy €j of 10f“.{ Comparison of
" Table 6.6 with Table 6.1 shows 1% accuracy of x; and 0.5% accuracy for

" X,. For x; and subsequent estimates, a steady error of approximately -




0.34% is obtained for f. The in;egration'step size At, automatically
selected by the integration subroutine, is shown to be 1 sec for each

sample interval with the number of iterations rémaining the same as in

Table 6.2. Table 6.7 shows 0.3% accuracy for x; with at = 0.25, and

0.74% accuracy for xp with At = 0.5. For %3 and subsequent estimates,
the steady error is 0.17% and At = 0.5. - When At = 0.25, the equations
of the integration subroutine are solved four times for each iteration,

or 16 times for four iterations.




CHAPTER 7
COMBINED ESTIMATION AND CONTROL OF NUCLEAR SYSTEMS

7.1 Introduction

The problem of combined estimation and éontrol has been
investigated elsewhere [96, 97, lld, 125 and 128] with a resulting'
separation theorem. This theorem states that for linear systems subject
to Gaussian noise with a duadratic cost function, the optimum stochastic
controller is realized by cascading an optimal estimator with a deter-
ministic optimum controller. The separatiop theorem does not apply to
nonlinear systems with optimality guaranteéd.. |

In Chaptef 5,. optimal control of a‘nuclear reactor was investigated
using a control law which is a linear function of the state variaBles.‘
Thé state Qariables: reactivity and delayed neutron precursor density,
are not measureable. Therefére, in Chapter 6, an investigation was made
of an optimal es;imator which generates estimates of reactivity and
delayed neutron precursor density .from medsurements of the prompt
neutron density. In this chapter, the transient performance of the
system is investigated with combined estimation and control.

7.2 Combined estimation and control

In Chapter 6, the estimator'equétions were derived with the
assumption that the plant was not under control. With the plant under

control, the linear prediction Eq. (6.32) is modified as follows:

R T ' S G
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A

‘and the linear filter Eq. (6.33) generates 2 using g% of Eq.’(7.l) and

the Yy measurement. The_controi variable U is computed from
w =AB§k A‘ | ' (7.2)

and .the predicted estimate of g%+l is obtained by using Eq. (7.1).

With control, the nonlinear plant Eq. (6.54) becomes

X = £0Gq 1, u ) | - D (7.3)

and Eq. (6.59) is written:

3 (x, s U o) | . |
F = kol k-l - | (7.4)

k-1 8)_(_k_1

Equation (6.70) for the nonlinear filter remains unqhanged, eerpt that

F is computed using Eq. (7.4), and the new fofm‘for Eq. (6.71) is

k-1 . ' |
BESREE PRSP IUE bl i | (7.5)
At the end of the iteration sequence
a =xt o o (7.6)
and the éonFrol Variablé U is compuﬁed from
'uk'; ng : : (7.7)

With control, .the nonlinear plantqu. (6.75) is

x =gk, v | | | (7.8)
and the value of Xy is obtained by integration:
X %t J , g(g, v _qp)dt _ | (7.9) -
T 0 | _ : o .

The variationél Eq. (6.77) remains unchanged, except that G defined. by '
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Eq. (6.78), is replaced by

»ibgfés-uk;i)

ax

G (7.10)

The preceding calculation of the control variable assumed that a
measurement ié made at t = kT, the eétimator equations are solved
iterativeiy for a new estimafe, the new control input is calculated, and
the control is applied at t ; kT. A more realistic control analysis
should consider that a finite time is requifed to compute a new estimate
and control input. The fastést sampiing rate ié determined by.the time
T required to execute the calculations éutlined above. \

The ésﬁimation equations remain valid, except that the.control
input must be delayed by'oné sample interval. Instead of using
Eq. (7.7) to caléulate the cohtrol at w Eq. (7.3)lwith @1 is used to
predict the system state at t = kT:

E LCART Y o | ' | (7.10)

- :

Finally, the control input to be applied at t = kT is obtained using

Eq. (7.10), with the result that

v = Bg% , o | (7.11)

If the calculations are cqmpletéd in less than T seconds, u is stored,
until t = kT, and then applied as an input after the measurement is
made; ' o . .'.M - . C ' o .
The new sequeﬁce"is:
. 1. Obtain a measurement Vi

2. Apply the previously calculated control input -
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3. Solve thé estimator equations to obtain gk'
4. Use the estimator output gk and control input Y, to predict

the state-of‘the,plant at t = (k+1)T.

5. Use the predicted estimate X4 to calculate a new control

input Ut
6. Store the control input Uil until the next measurement at
t = (k+1)T.
7. Repeat thé sequence.
If the total time to execute the ébove sequence is equal to the éampling
period T, theq the‘storage time is zero.

7.4 Nuclear control system performance

1

The.performance of the control system, consisting of an estimator
cascaded with fhe linear control law, is investigatéd with the plant
described first by a difference equation.and second by a differential
equationt

The.diffgrence\eqﬁation description of the plant is given by
Eq. (4.78), and the measurement is given by Eq. (4.83).

The matfix F,_. is obtained by differentiating Eq. (4.78) with the

' k-1
result thét

1-p
k-1
exp ( A — - AT)
Wy 1P 17T
Fee1 =
0
ATzk-l Az . lfpk*l‘

exp ( ‘T AT)

L1x
D O L e
(7.12)

1

‘and if u = 0, Eq. (6.90) is used; 'The'ﬁatrix”Hk'is givén by Eq. (6.91).



The nonlinear differential equation of the plant is given by

Eq. (4.35), and the differential equations for F are given by

Eqs. (6.99)_and'(6.i00), and Fo; =0 and Fp, = 1. In the finite-

: differenpe description, Fk—l is an explicit function of U 10 but in the
differential description, F is not a direct function ofiuk_i;- Thé
influence'of‘control on F arisés through the simultaneous integrétion of
. Eqs. (4.35), (6.99), and (6.100), as shoﬁn in Appendix E.

Figures 7.1 through 7.4 sho& the tranéient response forAthe system
described by the finite-difference equations. These equations a?e
solved by the Finite Difference System with Estimator and Coptrol
computer program. In Fig. 7.1, the responsé is- for a step disturbance
of p”éAQu;§ Wi;h‘no;dglgy ngqi?gd'for estimation and calculatiqn of
contﬁol effort. Since fhe disturbance occurs immediately'after the
'meaSurement, the coﬁtrol for ug is zero. At the end of the first
sample, the estimator generates ;n optimal éstimate fi;, which is the
same as the value given in Table 6.2, an& the control uj; = 0.173$/sec.
After the second samplé, the estimator generates the cofrect estimate of
the system state, the control input is computed, and.the neutron Qensity
deviation is dri&en to zero. For samples at t = 3 sec and greatef, the
neufron'déﬁéity deviation 'is zero, and the delayed neutron deviation and
reactivity approach zero asymptofi;ally.

The transient response plotted in Fig. 7.2 is obtained by
calculating‘fheicqﬁtro} ihpht-ﬁsihg’Eqsf (7.10) and (7.11). - The
estimate generated from the measurement made a£ t = l'sec, is used with
u; = 0 to obtain a predicted estimate'gé. This estimate is used to,
calculate'uz. The estimate generated frém the measurement made at

t = 2 sec gives the true state of the plant. The estimate %o, is used

101
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'Fig. 7.1 Transient response of system déscribed'by
finite-difference equations for €; = 107 and-pgy = 0.1,
without control delay.
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Fig. 7.3 Transient response of system described by

finite-difference equations for e, = 10=® and pgy = 0.1,
' with delayed and bounded control.
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Fig. 7.4 Transient response of system descrlbed by

f1n1te-d1fference equations for €; = 107° and pg = -0.1,.
with delayed and bounded control
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Fig. 7.5 Transieht response of éyé£Emfdéscfibed“by differential
equations for €; =.10"%, e = 1072, and pg = 0.1,
without control delay.
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. without control delay.
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Fig. 7.7 Transient response of syStem'described'bj différential
equations for e;. = 107%, €, = 1072, and po. = 0.1,
' with control delay.
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equations for € ﬁle'“, €9 ?‘10-3, and pg = 0:1,
with control delay. :
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Fig. 7.9 Transient response of system described by differenpial

equations for ¢; = 107%, ¢, = 10-%, and pg = 0.1,
with control delay.
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‘ . Fig. 7.11 Transient response of system described by diffe:@ptial

equations for €; = 10-*%, €0 = 10-3, and po = 0.1,
+ with delﬁyed and bounded control. -
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Fig.' 7,12 Transieﬁt response of system described by differéﬁtial
equations for ) = 107", €y = lQ‘3, and pg = -0.1,
' - with. delayed and bounded control. .-
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wiﬁhluz to dbtain a.predicted estimate“gé. The control u;, calculated .
using 33, drives'the.neufron'density deviation toAzero; and the delayed
neutron deviation and'reaétivity approach'zero asymptotically. ’

The control input'qz applied at t = 2 in Fig. 7.2 does not
correspond to an opéimal control because‘it-is ﬁb;‘geqeéaged from

estimates which correspond to the system state. The control is con-

strained (129, 130] by programming a hard limit of 0.15 $/sec on w

lu | < WL " BT (7.13)

[

where E - Y

UL = 0.15 $/sec L R | (7.14)

Figure 7.3 shows the transient response with w constrained. The
neutron density deviation at t = 3 is closer to normal, and uj drives

the deviation to zero. .

Figure 7.4 shows the system response to a reactivity disturbance of

-0.1$ with u constrained. .

' !
Figures 7.5 through 7.12 show the transient response for the system
described by differential equations. These equations 'are solved by the
. 1
Differential System with Estimator and Control computer program using

specified values for the iteration accuracy €; and for the integration

accuracy €j.

Thé'transient response to a étep dis£urbancé of p = 0.1$ with no
control delay is shown in Fig. 7.5 for €) = 104 and_ez = 1072,
Comparison with Fig. 7.1 shows that the contrqliuz dées nof'drive the
neutron density deviatién to zero at t = 3 sec. ,This is due to ‘an etrror

A . ] . ‘ N .
in %,. However, the control uj drives the neutron density deviation to

+

zero, and the reactivity and delayed neutron precursor density approach
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zero asymptotically. In.Fig. 7.6, whereA82f= 10™°, the estimate X, is
closer to.the true state. This results in a up which drives the neutron
"density to approximately zero. For the estimate %;, At = 0.125 sec for
the first iteratiom and At = 0.25 sec for the next three iterations.

For the estimate Xp, At = 0.25 sec for two iterations. Thereafter,

At = 1 sec:i

The transient response with control delay is shown in Fig. 7.7 for

€1 10~% and €9 =-10'2, Here, the deviation in neutron density is 197%
at t = 2 sec and up = —0.276 $/sec. The integration increment is 1 sec.
for all iterations, which results in large errors in the state.
estimates. The oscillations in the heutron density and reactivify are
damped for this particular initial conéition and set of parameters.
Figure 7.8 shows the response with e; = 107" and €, = 1073, The peak in’
the neutron density deviation at t = 5 sec is reduced, and greater
damping is shown in the oscillatory behavior. In Fig. 7.9 for € = 10-5
and €, = 10° "%, the estimate Xy results in ug which drives the neutron
density deviation to zero. Except for a neutron density deviation of
1.26% at t = 5 sec, the response‘is similar to that plotted in Fig. 7.2.
Four iterations are required for X; with an integration increment of

At = 0.0625 sec. The three iterations for X, use integration increments
of 0.0625, 0.125, and 0.25 sec, consecutively. Estimate X3 is obtained g
in one iteration with At = 0.0625; £, is obtained in two iteratioms with
At = 0.125 sec. The next two estimates, X5 and %g, are obtained in one
iteration with At ='O.5 sec. Estimates for t = 7 sec and greater. are
obtained in one iteration with At = 1 sec. Thus %) requires the

greatest number of calculations with 64 solutions of the integrator

equations.




‘Eiéure 7.10 shows the transient response for €) = 10’“, €y = 1072,

with delay and a control bound of -0.15 $/sec. The integration increment
is 0.5 sec for the first iteration and is 1 sec. thereafter. In compari-

son with Fig. 7.3, the neutron density deviation has an error of 1.7% at

t = 5 sec.
In Fig. 7.11 where €5 = 1073, the neutron density deviation at
t =5 sec is 0.4%. The first iteration requires a At = 0.125 sec, and

the next three iterations are with At = 0.25 sec to obtain X;. For Xj,

0.25 sec, whereas, one iteration

three iterations are required with At
is required with At = 1 sec for succeeding estimates. Figure 7.12 shows

the sjstem response for a reactivity disturbance of —O.l$;




CHAPTER 8

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

8.1 Summary

The six—gréup point-model kinétics equations for a nuclear reactor
were normalized, solved with a step change in-reactivity, and compared
to the transient response obtained using a prompt-jump approximation.
This demonstrated that for the control system inVestigation, it is
satisfactory to use the promét—jump ;ppfoximation with a resulting
reductioﬁ in order of the system. A furthér»approximation was intro-
duced by using a single group of delayed neu;roﬁs. The decay constant
for the one—group_model was selected by making a comparison with the
transient response of the six-group model at 1 sec. The rate of change
of reactivity_wgs choéen as a control input by neglecting the control
rod motor time constant.

State-space concepts were introduced and vector matrix notation was
used to express: the six-group point model kinetics equation, the
normalized six-group kinetics equation, the six—group prompt-jump model,.
the one-group kinetics equgtion, and tﬁe one—grouﬁ prompt-jump model.

A first-order Taylor series expansion was used to linearize the one-
group prompt—jump equation.  The one-group prompt—-jump equation and the
linearized equations were solved with a. discrete-time input.

An optimal stationary feedback control law was used to minimize a

quadratic performance index for a discrete-time system. A




.

performance index was defined which consisted of the sum of the squares
of the neutron density deviation. This index was augmented to include
terms in reactivity and control. For selected values of the weighting

~coefficients, the stationary feedback matrix was calculated using an

v

iterativg digital computer program. System transien;'behavior was
plotted to demonstrate the influence of the weighting coefficients: For
the performance index as defined, the neutron denéity deviation is
driven to zero in oﬂe sample interval after a step disturbance in
reactivity. The control law assumes that all state variables are avail-
able, but the specific variables reactivity and delayed neutron precur-
sor density cannbt be measured. ‘ - .

| Kalman's filter was derived for a linear deterministic system by a
matrix inversion lemmé and by ﬁinimization of a leasthquares:cost
function. The resulting filter equa;ions showed the relationship of the
optimal filter gain to the state transition and measurement matrices. A
‘noniinear estimatdr was derived by miﬁimizing a least-squares perfor-
mance index and iteration was used to solve the resulting nonlinear
equatiogs. . The filter derivations were based on the assumption that the
system was deséribed by finité—difference equations. Therefore, the
plant énd variational equations were integrated to obtainvthe necessary
"numerical values required by the estiﬁator. |

: An algebraic solution of the reactor equations was derived to
obtain the estimated syétem state after a step disturbance in reactivi-
ty. . This solution'wéé compared to the solution obtained by iteration to
measure the performénce of the nonlinear estimator. A digital computer
‘progrém was used to éolvéﬁthe:esfimatof‘équatiohs and iterations'were

performed autoﬁatically until the estimator performance index was




reduced to a specified value. The performance of the estimator for a

nuclear system described by finite-difference equations was investigated
with different itergtion accuracies. Because of its one-step starting
feature and error estimation, the Kutta-Merson algorithﬁ was used to
integrate the plant and.variatioﬂal equations. The error estimate was
used to automatically adjust the integration step size to meet a
specified accuracy requirement. The performance of the estimator using
integration was investigated as a function of iteration accuracy and
integration accuracy.

Control of a nuclear reactor was investigated by cascading the
optimal estimator with the optimal controller. After a reactivity
disturbance, the optimal estimator requires two samples to estimate the
true state of the plantl After the second sample, the optimal con-
troller drives the neutron densiﬁy deviation to zero in one sample. If
-i; is assumed that one sample interval is required to perfoim the esti-~
mation and control calculations, then the délayed neufron deviation is
driven'to zero in one sample after the third measurement is made. A
constraint on the control variable was introduced to reduce the
magnitude of the control input applied after the second estimate is
made. The performance of the cascaded control system with an estimator
using integration was investigated as a function of iteration accuracy
and integration accuracy. With a small integration step size, system
performance with integration is.equal to that of the system described by

finite-difference equations. The penalty for increased accuracy is an

increase in computation time.
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8.2 -Conclusions

The optimal control }aw derived for a discrete-time 1inear.system
with a quadratic cost function demonstrated that a deviation im neutron
density could be reduced to. zero ih»oné-s;mplé interval. ‘The stafionary
feedﬁack control law for the reactof waé derived by linearizing the
reactor equations éround the desired nominél values. "The plotted
responses (Figs. 5.1 -'5.l2) are idealistic because the optimal control
requires knowledge of the reactivity and delayed neutron precursor
density ét each sampling instant. From a process standpoint, this is a
physical impossibiiity, because these variables are not meaSureabie and
therefore must be estimated.

The nonlinear estimator using iteration works very well for‘a
system described by nonlinear plant and measurement diffefence-ééuations.
If integration is used to estimate the state of a system described by
a nonliqear differential equation, the inﬁegration step size must be
reduced to maintain eétimation dccuracy; as a consequence, the computa-
tion time is increased. For higher-order systems, the combination of
iteration and sequential integration can easily result in an estimation
time exceeding one second..'Integration of a set of simultaneous equa-

tions can be more profitably assigned to an analog computer . with a

factor of ten applied to the problem time scale. Thus, an integration

over one samble interval in problem time can be obtained in one—tenth of
a sample interval in real time. The number of equations to be inte-
grated will not change the inﬁegration‘time, since all equations are
integrated simuitaneously. Thus, the nonlinear estimator becomes a

~

hybrid system, with a digitai computer solving the estimator difference
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equations and an analog computer solving ‘the system differential
equations.

The cascade combination of an estimator and controller results in
a control system whose performance is no longer equal to thaf of a |
system without an estimator. Whereas, the linearized reactor equations
result in a linear stationary control law which controls the nonlinear
system satisfactorily under the assumption that all state variables
are measureable, the performance of the cascaded system demonstrates
that the estimates generated for the nonlinear system resuit in a large
control input at the first sampling instant after a disturbance.
Inclusion of computation time delay results in further degraded perfor-
mance. A bound on the control variable can be used to limit the control
inputs until the estimagor establishes the true state of the system. If
an integrator is included as part of the nonlinear estimator, the
integration step size must be reduced to even smaller values when a
control input is present.

The computer programs used to solve the estimator equations and to
compute the control input are not compiled for minimum time execution;
therefore, no conclusions can be made as to real-time control
capability.

8.3 Recommendations for future research

A hybrid computer system should be used to establish feasibility of
feal—time‘control. An analog computer should be used to simulate ;he
‘reactor.syétem, and a‘digital compﬁter should be used for the estimation
and control calculations. The reactor eﬁuations should be expanded to

include six groups of delayed neutrons. Use of ﬁhe six-group model will
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encourage inclusion of an integrator in the estimator, because an

analytic description by finite-difference equations will be.diffiéult.

Starting with the one-group model, the regulator problem should be
‘investigated with noise added to the plant and measurement equations. -
The‘stochastip systeﬁ should be expanded to inclﬁde the six-group model.

The deterministic and stochastic oﬁe—group and six-group models
should be used to investigate control of demand changes in reactor power
level from source range‘to power 6peration, with and without reactivity
feedback. | | |

At véry low power levels, a nuclear reaction is a multiplicative
Poisson process. Optimal estimation theory should.be applied to the.
design of a reactivity meter.

' The methods bf estimation and control applied toithe.kinétiés eqﬁa—
tions should be expanded to inciude the primary system, the secondary
system, and the‘turbine-generator system, with automatic start-up,
operation, and shutdown. ‘

Optimal cdntrol theory ghould be used to establish ultimate system
performance without regard to cost. Since total optimization of the
contrpl of a nuclear plant includes the performance of the controller
and its cost, ‘an investigation should be made to determine whether a
‘significant savings in equipment cost'is possible by accepting slightly

less than optimal performance.




APPENDIX A

VECTOR-MATRIX DIFFERENTIAL EQUATIONS

Thé homogeneous differential equation for a linear time—invariantg

system is given in vector-matrix form by

x(t) = Ax(t), * x(tg) = xg - | (A.1)
- The solution to Eq. (A.1l) is

x(t) = o(t - tg)x(tg) ,, ‘ (A.2)

where the state transition matrix is defined by

o(t - tg) = éxp[A(t - tg)] | . (A.3)
The matrix exp (At) is defined"by the infinite series

exp(At) = I + At +;A2t2/2! + A3t3/3! +'7--,' ‘ (A.4)
Substit;tioﬁuof Ed.‘(A.Z) ingé Eq.-(A.lj &ieldé

S(t - tg) = AS(t - tg) e (A

Use of Eq. tA.4)‘1n Eq. (A.5) verifies that Eq.;(A.Z) is a solution

of Eq. (A.1). Note that when t = tg,

(0) =1 - , ST (A.6)

and the boundary conditions of Eq. (A.2) are satisfied. . ,

.The state transition matrix ¢(t) can be calculated by using

. Eq. (A. 4’) ! . | . 4
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o(t) = I + At +.A2t2/2) +a%t3/31 + +o" o (A7)

or by'taking the Laplace transform of both=$ides of Eq. (A.l) to obtain
'sX(s) = x(0) = AX(s) , ‘ (A.8)

Rearrangement of Eq. (A.8) leads to

t

CX(s) = [sI - A]"!x(0) - (4.9)

which alfernagély can be writteﬁ as
© X(s) = #(s)x(0) | © (A.10)

where ®(s), the resolvent of matrix A, is given by

®(s) = [sI - A]™! . . ' . (A1)
The state transition matrix @(t) is obtained by taking the inverse

Laplace transform of both sides.of Eq. (A.1ll) which.can be expressed: l

®(t) =&7ls1 - A]"! | . , (A.12)
The solution to the nonhomogeneous equation

x(t) = Ax(t) + Bu(t) | (A.13)

is obtained by first taking the Laplace transform of both'sides

to obtain

'sX(s) = x(0) = AX(s) + BU(s) - C (AL
~.rearranging. , ,l ‘ . . |
X(s) = [sL - A]"'x(0) + [sI - A]"1BU(s) - " (a.15)

and then ﬁéking the inverse Laplace transform of both sides with the

result that

. Tt . ' .
‘.E(t) = @Gt)gﬁO) + J o(t - 1)Bu(t)dr (A.16)

0
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where the convolution theorem is used to obtain the integral term.

If the initial time is given as t0~insteéd of zero, then

t

x(£) = o(t - tg)x(tg)+ J o(t - 7)Bu(r)dt (a1

to

For a discrete-time input U where

u(t) =, KT <t g (DT |  @aae

Eq. (A.l7) is written

. : t ' .
x(t) = @(t'— tk)zk + uk J o(t = T)Bd1 | (A.19)
- ty o S
or '
t-t, . .
x(e) = 0t —r)x + J “e(nBdr S (aa20)
0.

The. integral term of Eq. (A.20) can be evaluated by integrating

Eq. (A.7) from zero to T:

T
f o(t)dt = IT + AT%/2 + A®T¥/31 + ... : o (a.21)
0 .

Multiplication by A of both sides of Eq. (A.21) yields

T .
A J o(t)dt = AT + A%T2/2 + AST3/31 + «+- e (A.22)
. : :

The unit matrix .can be added to both sides of Eq. (A.22) as follows:

(T ' :
I+A J o(7)dt = I + AT +.A2T2/2 + A3T3/31 + +-- (A.23)
. T :

bﬂf the right.hénd side of Eq. (A.23) is &(T). ;Therefore,




. T . : . .
I+A J o(t)dt = &(T). .. : S (A.24)

0

which ‘can be rewritten

et , S . :
' J $(t)dt = A" M[o(t - tk) - 1] (A.25)
0 N
if A™! exists. Substitution of Eq. (A.25) into Eq. (A.20) yields
- _ “liotr — £ ) — ~ S
x(t) = o(t tk)lgk + A~ [e(t tk) . I]Bgk ‘ (A.26)
and at 't = (k+1)T
fo= -1 - X . ! A :
Xy = My + A7) - I]Bu | | (A.27),

'+ The homogeneous matrix differential equatibn of a time-varying

linear system is

x(6) = AOx();, x(d =% . . (A28 -

i

Any solution of Eq. (A.28) is given by

x(t) = o(t, to)x(to) , : ' ' S (.A.29)

' This is verified by substituting Eq. (A.29) into Eq. (A.28) with the
result that |

d(t, to) = A(t)O(t, to) | I o (A30)

and

x(t) '%t'[q’(t, tov)z(to)]

A, tOx(E))

A(t>£<t> S P ¢ 53 §)




Also

o(tg, tg) = I , . (A.32)

and fhé boundary conditions are satisfied. Integratioﬁ of Eq. (A.28)
yields

. gt o . |
x(t) = x(tg) + J- A(t)x(T)dT (A.33)
- to '

which can be solved by repeated substitution of. the right side into the

integral -for x. The first substitution yields

t (T ' . ‘
x(t) = x(tg) + J A(T)[x(tg) + J A(v)x(v)dv]dr (A.34)
: to ty '
Define the operator’
¢ , o
Q() = J ()dr i". E (A.35)
to .

which leads to the following series as a solution of Eq. (A.22):

x(t) = [T+ Q(A) + QUAQA)) + Q(AQ(AQ(A))) + +--]x(tq) (A.36)

Comparison of Eq. (A.36) with Eq. (A.29) ShoWé that thé’state tfanSition
matrix for a time-varying system is given by:

o(t, tg) = I + Q(A) +-Q(AQ(A)l,+ Q(AQ(AQ(A))) + oo o (A37)
If A is constant matrix, then

o(t, to) = I + At = tg) +.4%2(t - tg)?/2v+ A3(t = to)3/31 + -+~

, (Ai38)

which is the same as Eq. (A.7) with:the'afgument replacéd by t —.to.

' Assume that the solution of ;he'nbhhomogenebﬁs differential equa-

tion
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A1) = ADK® +BOuE®), © x(e)) =x0 (4.39)

+ 1is given by

Cx(e) = 6, ty(®) o @

Then !

() = e(t, t)y(e) + b(t, tdy(e) - RO

and gqu (A.30) is substituted'into Eq. (A.41) to eliminate b. Thus

- f‘g(‘t‘)- = o(t, t"g)i(t)'+ A('t')<1>(.t, to)y(t) | ' ‘(:AA.42).
Substitution of Eq. (A.39) info Eq} (A.38) results:in A

" (e) NS to)y(e) +B(OW) (A.43)

»  which on comparison with Eq. (A.42) results in
' ’ 1

o(t, to)i(t) = B(t)u(t) - | ‘ €A.44)

i

and y(t) is obtained by integration. Thus L ,

. . t i B
y(t) =.Z(t0) + J ‘ o1 (1, tg)B(t)ul(t)dr ' " (A.45)

= to

At t = tgp, Eqs._(A.32) and (A.4Q) resulq in
y(to) = x(to) | : R - (A.46)

Equétion (A.40) is'sqlvéd'for'y(t) and substituted with Eq.(A.46)

into Eq. (A.45) to yield '

. ’ ) ! t.,

o7 (t, to)x(t) = x(tp) +f o7l (1, to)B(Du(v)dr (A.47)
‘ to .

The solution. for x(t) is
) _ o

@‘1(f, té)B(f)u(T)dT'  (A.48) 3 '
to o - . e . . )

' §ﬁ§) =;¢(t,'tQ)§KFo) + Q(t;fﬁp) J



Using the properties of the state transition matrix

-1(t, to) = ®(tg, 1)

and
o(t; to)¢(to;f%) = ?(t,‘f)'

Eq. (A.48).can be writgen

t

" e(t,T)B(1)ult)dr

T x(t) = o(t, to)x(tg) + f
to
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(A.49)

 (A.50)

‘ (A.51)

For the discrete-time input defined'by»Eq, (A.18);'Eq. (A.51)

becomes

| o (kL N
E(tk+l)—= <I>(tk 1° tk)gc_(tk) + U f <D(tk+l,‘t)B(‘c)d'c

Yy

which- can be written

et .
Xy = O+l K)x + u J o(t, 1 ,T)B(1)dr

tk :

(A.52)

(A.53)
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APPENDIX B

. OPTIMAL CONTROL LAW FOR A DISCRETE-TIME LINEAR SYSTEM
WITH A QUADRATIC PERFORMANCE INDEX

For a discrete-time linear syétem desecribed by
TS Qﬁk +'Guk S . o ' ' | 4(B'1)

and a quadratié performance index.of the form

N .
v T S o
Iy = kzl (szx] + cui_l) | ‘ K (B.Z) |

the optimal control- law can be found by ;he method bf dynamic

programming.
There is a sequence: ug, Uy, Uy, ---;‘uN_l which Wi}limakeflmvaA
minimum. Let the minimum value of IN be dénoted by
fxix(0)] = min szl Qg *+ ey, 0 ~(B.3)
u). '
UN-1
For the last N-j stages of an N-stage process
. N T " ’ .
; = min .. : 2
fy-y 2] mﬁg‘ '=Jz+1 (%, Qx, +cu? ] _ (B.4)
Y41 - '

UN-1
The principle of optimality [132, p. 57] méy be used to interpret
the selection of ug, ujy, uz, *°**, Uy-p a@s.a sequehce of decision pro-

.cesses. The principle of optimality stateés: 'An optimal policy has the




'property<thatAwhatever the initial state and the initial .decision are,
the remaining.decisions must constitute an optimal.policy with regard to
the state resulting from the first.decision."

Then, by the pfinciple of optimality, Eq. (B.4) reduces to
. _ e T 2 4 ol _
ey &) = mﬁ? (21 Q40 + U]+ (Gany &) (B.3)

Starting with j = 0,

| T o - -
fN(ED) = mﬁg,[EIQil + cuj + fN_l(§l)] | .(B.6)
‘ T o :
fN—l(EJ) = mt? [§2Q§2 + cu% + fN_Z(gz)] | (B.7)
) _ T s | ‘ .
fl(gN_l) = %;n [ENQEN + cug ¢ + fo(xN)] | (B.8)
-1 ,
Define:
f£o(xy) = 0 ‘ ' (8.9)
Since the functional f is quadratic in x, both fN-j and fN—(j+1)
'can be expressed in quadratic forms. Let
E (x) = xP .x. (B.10)
CN=3=37 0 =3 N§
and
£ (x,..) = xo L P X (B.11)
N-(3+1) S§+17 S5+l N-(§+L)=5+1
" where the P matrices are nxn: and symmetrical.

On substitution of Eq. (B.11) into Eq. (B.5)
f_ . (x.) = min [xT Qx + cu? + xT 'P X ] (B.12)
N-j =—j u, —jHl =+l 3 =4+1"N-(j+H1)=—j+1
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‘Define

Q+P, , ' '. ‘ o (B.l3)

SN-(3+1) ~ N-(§+1)

Then

. . . : —- . el .‘ '- 2 . . . " .
£ .(x.) = mﬁ?-[§j+lsN*(j+1)xj+l + cuj]‘ : (B.14)

but x‘j+1

Eq. (B.14)‘becbmeS'

is a function of uj. 'Then, after substitution of Eq. (B.1),

' s T, - A-2 4.
f.o . (x.) = min [(<I>§j + Guj? S )(ng + Guj) + cuj] (B.15)

N-j =j i N=(j+1

The minimum of Eq. (B.15) may be found by téking the derivative with

respect to uj and equating the result to zero. Thus

. T _ g
2[Q§j + Guj] SN—(j+l)G + 2cuj =0 | o (B.16)

which can be expanded to give

T ' T '
. 0S .. .G+GS_ .. .Gu, + cu, =0 B.17
Z370N-(3+1) 7 N-(j+1) 7" i (8.17)

‘Taking the transpose of Eq. (B:17) and éolving for uj results in

GT

Sn- g+ ®
= ,

}_(_j (B.18)
. SN-'(j+l)Ga + :

J - G c

which may be expressed in linear form by’

u, B. .x. (B.19)
h| N-3—] ,

where

- ¢l

B, .=-

e

(B.20)




1o

G [Q +. PN (J+1)

BN_j = (B.21)
16t [Q, + PN_(J,'+1)]'G'J + ¢ |

The recurrence relationship for tlie P matrices. is obtained by

substituting Eqs. (8.10), (B.13), and (B.19) into Eq. (B.15) to obtain

ESN A Teo+ GBy, ) (Q + Py_(3 41y €@ + GBy j)‘ﬁj
T : : :
+ cx,B. .B: ' B.22
2oN-57N-555 _ : . ( . )

Comparing both sides of Eq. (B.22) leads to

I

N-1 N j (B.23)

} T >+
Py = (0 + GBy Y (Q* By ) (2 + GBy J) + cB

Equations (B.21) and (B.23) give the desired recurrence. relationship for
the B and P matrices. Starting with j = N-1, and P = 0, the sequence
is: B3, Py, By, Py, *°*, PN"];”' BN.

When N+« in Eq. (B.2), the control pfdcess becomes an infinite

stage processy and the feedback control law given by Eq. (B.19) becomes

time invaridnt.
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" The Taylor series expansion for Eq. (C.2) is

APPENDIX C :

'SERIES EXPANSION OF DISCRETE-TIME REACTOR EQUATION

\

Integration of the reactor kinetics equations results in the
following discrete-time solution for the normalized delayed neutron

precursor density:

exp 2 - AT | (C.1)
K

which is unsatisfactory for numerical computation as uk+0.

Equation (C.1l) may be expanded in a Taylor series by defining

1- pk :
f(qk) = fn 1= oy - ukT ' (C.2)
Then -
f'(uk)4= { - DT -1 T : ’ -‘(C;3)‘
o “k k '
flv( ) - 'T2 , l (C-l*)
YT @ -, - w T)2
; 213
A S Ik (c.5)
and '
u) = g DL c.6)

(I-p - uDP | e

E



(c.7)
Substitution of Eq. (C.7) into Eq. (C.1) results in
_ AT . ATZ S L
zk+l = zk exp T-o +.2(l*p Y2 uk + + n(l-p )n'uk + - AT
Tk Tk : k
(C.8)

The first and last terms inside of the bracket méy be combined with the

result that

ATp Cym2 n
. ’ k }\T . e AT n-1 .
zk+l = zk exp[;_pk + 2(1-Ok)2 pk + +.;?I:E;73 uk + (C.9)
Let
Then Eq;‘(C.9) may be expressed as follows
_1 _
= A )\T X x2 es o En .
241 T % EXPl:l_pk (pk + 2 + 3 +. + 0 + )} (C.11)

When W = 0, x = 0, and Eq. (C.11) reduces to Eq. (4.75).
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APPENDIX D

PROOF THAT ONE ERROR TERM OF OPTIMAL ESTIMATOR IS ZERO

) o . : i+l .
For the nonlinear estimator with iteration, the estimate Ek 1 is

-given by

S TSR IR LR PR TC

+ H-k(z,i S EGEE )+ HE (@ - x5 )] (p.1)
It can be»demonsfrated that
. i A . A ‘.
H@-x_4)=0 | (D.2)

throughout the iteration sequence by first rearranging Eq. (D.1) and

multiplying both sides to obtain

T T T i+l o gl g . Y
(BB, + F Ah P15 k—lHkaFk -1 ¥ Pty ~ RGy)
i T
+ Hk(zi - f(zi_l))] + HHa (D.3)

Then,'if the term FE-lHinFk 1a is ‘added and subtracted to the right
side -

rul T T i+l T T T T T ,

(B H, * g R 5 Py e BB o+ B iy,

y h(gi) R - BEG ) - BF e
i -
NIRRT R ' (D.4)

If 8" is defined
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i, i i ~ .
substituted into Eq. (D.4).
T T T il _ T T
(B H, + BB 1%e 1 [H B+ F IHRHka 1]“ tE- lHk[yk
i i i
- hix) + Hk(§k~" 811 (D-6)
and both sides are multiplied
i+l T, . T .T PR DS S | AT .
Xy = ot BE + R GHER TR G hDy - hG) + G - 8]
(D.7)
If the term a is subtracted from both sides of Eq. (D.7) and the
resulting-equation is multiplied by Ed
i+l . _ T,. T T -1.T T _ i
HGe =@ = HIHHE + R BEF ] by -G
+H (g - 8] (D.8)

If the left side of Eq. (D.8) is equal to a zero column vector and the

error terms in the bracket on the right side are not zero, then

T T .T -1.T T _
BB * FeihFeg] “Fgfy = 2 (D.9)
The equality of Eq. (D.9) can be demonstrated by using the matrix
inversion e ) : y
H -1 '
B, %y .
X_q = ——;—-— . (D.10)
Befe-1]) Pk
or ‘ .
x, o =it ) EL %ﬁ_ (D.11)
X1 L :
Tk
where
oo T _T,.
M=HH + F B HF g (D.12)
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Multiplying both sides of -Eq. (D.11l) by the composite H matrix yields

T, | T
N el 0 2T LT T
- T W ; (0.13)

k

The left side is equal to the measurement vector, therefore Eq. (D.13)

can be written

-

N r y=1uT oy ow=1wl T
| o el |
| = |- - o C(D.14)
k Pt Mt By TR BT R HR

Since y and ¥, are indepeﬁdent, the partioned matrix of Eq. (D.14) is

an nxn unit matrix, and

M luT =1 (n-1 x n-1) . ' (D.15)
= o ‘ _

HMlFY B = 0 (n-1 x 1) (D.16)
EM "Fefe =2

a1l g N ,

Fk—lHkM Eﬂ 0 (1 x n-1) _ . (D.17)‘
F M-1pl gt o= 1 (D 1.8)

k-1 Pt T -

Equation (D.9) is verified by Eq. (D.16).

Since the iteration sequence is started with 5&_1 = o, the first
error correction term contributed by gd(g = Eé_l) is zero, and all

subsequent values are zero. Therefore, the term (a - 5;_1) may be

H
L1

omitted from the estimator.



APPENDIX E

DIFFERENCE -SOLUTIONS. BY INTEGRATION

Althqugh,nuﬁ;rical integration is used in the digital computer
calculation of the redctor state estimates, thg reactor.equations can be
integrated analytically to démonstfate th?; Fkrl p?tained by integration
is gqual to Fk—l obtained by differentiation of the plant difference

equation: The following equations are integrated simultaneously from

zero to t:

Az(£)p (£)/[1 = p(t)] 2(0)

z(ty = =z (E.1)
plt) = u \ . p(0) = 0o 4 (E.2)
1) = A ()61 (/1L = p(0)] $11(0) =1 (E.3)
$12(8) = Ap(t)o1, () /11 - o(B)]
+ az(t)/[1 - ()12 - . $12(0).=0 (E.4)
" First, Eq. /(E.2) is integrated to obtain
Cp(e) =g Ty gt . | (E.5)
which i$ substituted info Eq.'(Eal), yielding
' b S N ' ' i
. - A T Pg-1 ' .
z(t) = z,__ exp|*— ln( —— ) - At (E.6)
R SRR L

Next Eq.. (E.5) is substituted into Eq. (E.3) and integrated



i . . 1=y : v
$11(t) = exv A ( —— €)4~AF (E.7)

Gy 1P %t

Finally, Eqé. (E.S), (E.6), and‘(E.7).are substituted into Eq. (E.4)

and integrated, with the result

. R : gd..1.=.p,.. .
k-1 ‘A k-1 (E.8)
120) = = e L) }
‘ 1=y 1) =Py 1~y 1t) U1 \TPpo1 Yt
At t = T, Eqs. (E.7) and (E.8) agree with matrix Eq. (7.12), which is

obtained by differentiating the plant‘finite—difference equations.




APPENDIX.F

KUTTA-MERSON INTEGRATTON ALGORITHM

Merson [126] proposed an integration method which does not require

a special starting feature and which can be used with automatic interval

adjustment. The Kutta-Merson process uses the equations

y1 =y t §hf(xO, yo) ~ (F.1)
o AU '
Y2 = yo + ghf(xg, yo) + ghflxe + 30, y1) (F.2)
! 3 1 |
¥3 = yo t+ ghf(xo, yo) + Fhf(xe + 3h, y2) _ L (F.3)

1 3 1
yy = yo + 5hf(xg, yo) - Shf(xg + Fh, y2) + 2hf(xg e y ¥3) (F.4)
0%73 2 3 2

' 1 2 1 1
¥s = yo t ghf(XO, vo) + §hf(XO + 5h, y3) + ghf(xo + h, yy) (F.5)

Merson showed that the error in yy is -hsy(v)/lZO, and in ys5 is
—h5yfv)/720; and that a good'estimate of the error in thg computed ys is
0.2(yy = ys).

Autématic igteryal adjustment is accomplished by specifying the

integration accuracy € and adjusting h. If
[0.2Gyu = ¥5)| > &2 - " (F.6)
h is halved. If

64 10.2(yy = y5)| <e2 I (£.7)

then h is doubled;
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The .advantage of .the Kutta-Merson method is.that it facilitatés
rapid interval selection for exploratory calculations.requiring

épecified‘accuracy; however it does require additional compu;atibn time

in comparison to other methods.




" APPENDIX G

DIGITAL COMPUTER PROGRAMS

1. Roots of prompt jump equation

. ‘2. Reactor response ta step delta k
3'ﬁ Calculation of feedback matrix
4. Calcuiation of transient réspbqse
5. Plot program for transient response
6. Anaiytic estimator solutions |
7. Finité—differencelsystem with estimatpr and control

8. Differential system with estimator and control
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TN GNP

10

11

12

16
17
13

14

TA(2)

. D5
L 0(6)

‘SUM 2

DIMENSI

FORMAT.
F.ORMAT

FORMAT'
FORMAT
FORMAT
A(1)

A(3)
A(4)
A(5)
A(6)
b(1)
D¢2)
D3
D(4)

S5(1)
S(2)

- 8(3)= =

5(4)
S(5)
S(A)
S(7)
ALPHA
X = 1,
RHO =
ERR =
bo 15
ST([)
SUM 1.

a4 n N

C t u N —~pPrroomn

Do 12
SumMl
SumMp
CONTINU
S5(1) =
DIFF =

-9T(1) =

WRITE T
[F (D1F
DIFF =
IF(DIFF

‘SUM 3 =
DO 14 K

SUM3 =
CONTINUY

S

1, RQOTS OF PROMPT JUMP' EGUATION

ON.S(7)s B(7), A(7) 5.D(7),ST(7)
(1H1) o :
(F12.8)

(9X, 1KB, 16X, 1HS)
(E14.8, 4X, E14.8)
(1H ) ‘
0.038

0,213

0.188

0.407

0,128

0,026

0.0127

0.,0317

0.115

0.311

1.40

3.87

f00014

0.065

04,19

*1.,25

. *3475

’6500000
65000,0

ol i
oUE'?
= 1,7
040
0.0 ‘
0.0 ’
s 1,6
SUM1
SUM2
E L
(RHO - SUMl)/(SUMZ ¢ X/ALPHA)
S(I)y - ST(D)

+ +

ACJI®L(I)/Z(S(1yeD(g))yrw2

S(I)
YPE 2, S(I)
F) 16, 17, 1/
- DIFF ’
- ERR) 130 13:,11
0 .‘ O'I . i e
= 1,6

SUM3 + A(K)/(S(I) + D(K))
E 4 ‘

ACJ) *(SCI)/(S(1)*D(JI))we2




15

B(1) =(SUM3 + X/ALPHA)/(SUM2 + X/ALPHA)
WRITE TYPE 5 ‘
CONTINUE .
SPRINT 1

PRINT 3 :
PRIWT 4, (B(I1)s SCI)

PUNCH 4, (B(I1)» S(I), 121,7)

121,7)

END

145




146

. 2, REACTOR RESPONSE TO STEP DELTA X

DIMENSION 'S(7)» B(7)
1 FORMAT (1H1) '
2 FORMAT (2F16.8) o . S
3 FORMAT (6X, 4KTIME, 12X, 4HFLUX, 12X, 6HFLUX 1,/)
. READ 2, (B(I1), S(I)s 1=1,7)
PRINT 1
PRINT 3.
De(T = 0.,0001
DO 11 N = 1,101
T = (N = 1) « DELT
FLUX = 0,0 -
© DO 101 = 1,7 .
10 FLUX = FLUX + B(I) * EXPF(S(])«T)
~ PRINT 2, T, FLUX
11 CONTINUE
END -




10
21
11

20
12

13

44
15
17

i8
19

100

99

101

‘102

QA(1,2)

. %.° CALCULATION 'OF FEEDSACK MATRIX -

DIMENSION PHIC7,7) #H(7)20C7:7),P(7,7),5(7,7)  HISPHI(7),

1B(7),PS1(7.,7),PSIPSI(7+7), BTB(7 7)

FORMAT (F16.8)

FORMAT (4F16.8)

FORMAT (I1)

READ 11, N

READ 10, ALArBD T

REAU 10, - c- ‘

FORMAT (1H1//40x51HLALcULATION OF FEEDBACK MATRIX WITH

1CONTROL PENALTY)

FORMAT (1H0,9X»6HLAMBDA,20X, 1HY.23!.1HA»23X:1HC023X01HN)
PRINT 12

PRINT 13 .

FORMAT (1H ,4(4X,F16.8,4X),11X,11) -

PRINT 14, ALAMBD,T»A,C,N:

FORMAT (1H0,24X,3HPHI,32X,1HH,33X, 1HQ)

PRINT 15

FORMAT (1H0,10X,2F16.8,10X,F16,8,10X,2F16,8)

FORMAT (1HU,14X, 1HS;29X:1H8.28X 34pSI, 28Y,1HP) .

FORMAT (1HU0,1X%»3(2F14.8,2X),2F14,8)

FORMAT (1H0,1X-2F14. 8.32x.2r14 8,2X,2F14,8)

PHI(1,1) 1.

PHI(1,2) T « ALAMBD

PHI(2,1) 0.

PHI(2,2) 1.

H(1) = w T wx 2 « ALAMBD

H(2) = ve e R
Q(1,1)

ARt non

1,

1,

Q(2,1) 1.

0(202) ‘10 + A

PRINT 16, PHI(1,1),FHI(1,2),H(1),3¢1,1), 0(102)
PRINT 16, PHI(2,1),PHI(2,2),H(2),212,1),0(2,2)

TR R L

PRINT 17
DO 100

e
- -
z =

DO 100
P(I,J)
B1TEMP
B2TEMP
DO 101
DO 101
S(I)J)
HTSH =
DO 102
DO 102
HTSH =
DEN =

DO 105

- ® o
- oo
- .
4

1)'\ ! '
(I:u) + P(I,U)

onnNoconu

HeD) ow S(l J) v H(J)

. wm—
WX ! uu
-

4+ v .

x
R TIT C—O I C— 0 N 0 C e
.
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104
105

. D0 106J

106

107

108

109

30

31

32
33
34
35
36

37

DO 109 J

HTSPHT . (
DU 104 1
DO 104 J
HTSPHI (K
B(K) = =H
DO 106 1

iy
o
-

-»sH‘brAL*v W . a
-z

Z.?P-ZZ--IZ

KTSPHI (K) « HCI) * SC1,J) « PHICJsK)
1(K)/DEN

PSIC(I,Jd
Do 107 1
DO 107 J
PSIPSICI,
DO 107 K
DO 107 L
PSIPSI(I,
Do 108 I
Do ios J
BTB(I,d)
DG 100 1

(1, J) + H(I) *» B(JY .

.
P
=z =z
N =1
-

PSIPSI(I J) d PSI(K l) * S(KsL) » PSI‘L J)

) w B&J)‘

\A.bl]bt"b-I\sI

[l e o o
2 22

Hllllllv-QIL!lu(_llllllnfl—lvll "~
T

1,N
P(1,J) = PSIPSI¢I,J) « C » BTB(I J)

DIFF1 = BITEMP =~ B(1)

IF (DIFF1) 30,31,31,

DIFF1 = =DIFF1 ° :

IF(DIFF1 = 0. 0000001) 33,33,32 E o T
BLTEMP =.B(1) . S

GO TO 99

DIFF2 = B2TEMP ;» B(2)

IF (DIFF2) 34,35,35

DIFF2 =.=DIFF2

IF(DIFF2 = 0.0000001) 37,37,36

B2TEMP = B(2)

GO TO 99 ‘ -
PRINT 18, $(1,1), 5(1.2>.9<1) B(2), PSIC1,1), PSI(an)o

1P(1,1),P(1,2)

. PRINT 19, S$(2,1),5(<,2)5PS81(2,4), 951(20 )oP(Zal)r 9‘202)

111

PUNCH 21, B(1), B(2), Ao C
GO TO 20 : . ‘ o




10
11
12
13
14
15
16
17
13
19
25

20

21

22

4.

FORMAT (1H1,28X,18HTRANSIENT RESPINSE)

CALCULATION OF TRANSTIENT RESPONSE

FORMAT (1H0,20X,2HB1,27X,2HB2)

FORMAT (1H

FORMAT (F14.8)

FORMAT (1HO, éthHN 214X, 1HU ‘17X, 3HRHO,17X,1HZ, 16X 4HFLUX,

116X,2HP17)

FORMAT (1H

FORMAT (15,4F14,8)
FORMAT (15,F14.8)

FORMAT (1

5)

FORMAT (4F16.8)
FORMAT (84X,F16,8)

ReEAD 18,
READ 13,
READ 13,
ﬂEAU 13,
READ 13,
KReAD 13,
READ 19,
PRINT 10
PRINT 11
PRINT 12,
PRINT 14
N = 0

Pl = 0,

FLUX = Z07(1.0

U = 81 W

4
T

ALAMBD

RHOO
20

RUNNQ

B1.,

B1,

(20

RHO = RHOO
 DELTAN =

DELTAZ =
PRINT 15,
PUNCH 16,
K = Z0

FLUX

BZ,

B2,

A»C

1.0

0 - 1,0

N,
N,

RHOK = RHOQ

Do 22 K =

1,1

(2

Us

0

RHO,
RHO,

X = UeK*T/(1.0-RHOK)

SER = (ALAMBD*Ke#T/(1.0- RHUK))*(RHJK*Xt(l 0/72,0+X*(1,0/2
1+X*(1,0/4,0+X%(1.0/5,.0+Xw(1.0/6.0eX*(1,0/7. 0¢Xt(1 0’8, 0*

»14,4(3X»F1648))

RUNNO

= RHGOD)
- 1.m)

DELTAZ,
DELTAZ,

2X%(1.0/9.0+X/710,03))))))))

RHO = RHO

DELTAN =

DELTAZ =2 Z - 1.0

N = N*i

PRINT 15,
PUNCH 15,
CONTINUE

K +

FLUX

N,
N,

-7 = ZK'tXPF(SCRi

U*KeT
FLUXA = Z/(1,0=RK0)

Lo
Us

1.0

RHO,
RHO.,

DELTAZ,
DELTAZ,

»14X,F14.8,15%X,F14,B,59%, F4 0)

‘+ B2 « RHOON

-

DELTAN

DELTAN

DELTAN
DELTAN
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K = Z ’
RHOK = RHO ‘
PI = Pl + (FLUX = 1,0)%%2 « AYRHO#w2 ¢ Cwlwe2
U = B1*(ZK=1.0)+B2*RHOK .
PUNCH 17,N,U
PRINT 25, PI

: [F (N=M) 21,23-23

23 IF(SENSE SWITCH 1) .24,20

24 PAUSE 1 Co
GO T0 20
"END




o S VI

31

32
33
34

Bl i b b a3 4B 4b 35 35 Jb db 4> Jb db b db db Jb db db b S

5.

DIMENSION

PLGT PROGRAM FOR TRANSIENT RESPONSE

N(lll:.U(lll)oRHO(lll) Z(lll)oFLUX(111’aA(111)

FORMAT (F6,0)

FORMAT (5F16 8)

FOCRMAT (15,4F14,8)

FURMAT (1HO, 5F16.8,4X,F6.0)

S = 0.2
SU & §
SRHG = S
5S¢ = S
SFLUX = §

READ 1, RUN NG
READ s (NCI) UCI)»RHOCI)SZZCI)FLUX(I),121,111)
IRUNNO = RUN NO

UDIGIT1 = IRUNNO/1n

UIGIT2 = RUN NO - DIGITL « 10,

DO 27 J =
PLOTF
PLCTF
PLOTF
PLOTF
PLOTF

PLOTF
PLOTF
PLOTF
PLOTF
PLOTF
PLOTF
PLOTF
PLGTF
PLOTF
PLOTF
PLOTF
PLOTF
PLOTF
PLOTF .
. PLOTF
0 34 I =
3 0,5 »
X = PLOTF
IF(T = 5)
X 8 PLOTF
GO TO 33

X s PLOTF
X = PLOTF
CONTINUE

1,3
(2.0,2.0,1)
(0.0,0.052)
(0.0,0.02,3)
(DIGIT1,0.0,4)
(10,0,0,023)

PLOTF(0.,0,0,0,2)
PLOTF(DIGIT2,0.0,4)

(0.0»»11.0,3)
(0.0-0.0,2)
(1.0-,1.0,1)
(000’205’3)
(0.0,%22,5,4)
(0.0,2.0,9)
(Do121200’4)
(0.022.0,8)
(000’0001\5)
(500’0'0’4)
‘000’00“'5)
(0.0,22,0,3)"
(0.12,‘200'4)
(0.0-22,0,3)
(0.0-,%2.523)
1,9 |

I' .
(T;"2~'504)
31,32,31
(T,%2,44,4)

(Tl..-‘2.38’4)
/(T‘_.Z.S,S’



152

PLOTF

' \
X = (530"2.5fﬁ)
X = PLOTF (5-0"'200‘4,'
..X 2 PLOTF (4-88.'200;4’
X =2 PLOTF (5.0,e2,0,3)
X =2 PLOTF (5.022.0,4)
} X 2 PLOTF (4088l200‘4)
. X 3 PLOTF' (5.0s2.0s3)
X = PLOTF (5.0s2.5,4)
[} \(DO 38 I = 1)9 L
: ‘Tz 5,0:= 0,5 * 1
CX =8 PLOTF - (T,2¢5,4)
- IFtl = 5) 35,36,35
35 X 3 PLOTF (T,2.44,4)
Go TO 37
36 X = PLOTF (T,2.38,4)
37 X = PLOTF (T7,2+5,3)
38 CONTINUE .
X = PLOTF (0.0,2.5,4)
X = PLOTF (0.0+0.0,3)
DO 14 [ = 1,111 -
14 ACD)=NCT)
© A(L) = 0.3
. X = PLOTF (SN,SU»1)
X 5 PLOTF (040s0.0s28)
’ X = PLOTF(AC1)s(1)43)

13 00 15 122,110
XsPLOTF(CACL),L(]),4)
15 CONTINUE |
X PLOTF(0.0,0,0,3)
) "PLOTF{SN,SRKO,1)
PLOTF(0.0,0,0,2)
0

2 + 11wK
9 + I1
7 1= 11,12
R 3 PLOTF(A(I).RHO(I) 3)
17 CONTINUE
K = K o+ 1
( [F (K = 10) 18,19,16
19 REF s 0.0

X PLOTF(0.0,0,0,3)

X PLOTF(SN,SZ,1)
PLOTF (0.0,REF,2)
PLOTF(A(L)»2(1)23)
0 , ,

X
X .
K
18 1
1
D

1
2
0

Hl!“

16

20

X

A

K

21 11 = 2 + 11+K

12 s 9 + 11

Do 22 1 = 1,12

‘XK. = PLOTF (ACL),Z(1),3)
CONTINUE '

Kz K + 1

IF (K = 10) 21.,23,29$

X = PLOTF (0.0sREF»3)
X=PLOTF(SN,SFLUX,1)

22

23



24
25
26

27

PLOTF(0.0,REF,2)
PLOTF (A(1), FLUX(1),3)
i )

[l VI

25 1 = 11,1¢

ONT INUE :
= K+ 1

IF(K = 10) 24,26,26

X2PLOTF(0+0,REF,3)

X =z PLOTF(1.,0,1,0,1)

X = pLOTF(U.O'OQD)Z’

X =z PLOTF ('5.0517i5:3)

CONTINUE

GO TO 9

END

RO X O R XX
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1
2

6. .ANALYTIC ESTIMATOR SOLUTIONS

FORMAT (6F16.8)
FORMAT (4H1)
D =10,31

" PRINT 2

ST

DO 10 N = 1,200
RHO = «1,01 + 0,01 * N

¥4 EXPF(D « RHO0/(1.0 = RHO))
Y = Z/7(1.0 - RHQ)

RHO1 = LOGF(Y)/(D#LUGF(Y))

Z1'= 1,0 = RHC1

2 = 71 « EXPF(D'RHC1/(1 0 ~ RHO1))
PRINT 1, RHO. Z, Y, RHOl. 1, 22
END ‘




7. FINITE DMFFERENCE SYSTEM WITH ESTIMATOR AND CONTROL

DIMENSION ALPKA(2), X1(4),. X2(4),  HTH1(2,2),
1F(2,2)s H2(2), HTH2(2,2), C2INV(2,2).,
2X1ERR(2),%X2ERR(Z), XBAR(4),H1(2), €2(2,2), - :
SHOF (2) HF THF (2, 2) »HeFTYE(2) ,HTHIDX(2),VECTOR(2) s DELTX1(2)
4, X1LTEMP(2),X1DIFF(2),FX1DIF(2), Y2(4) ‘
10 FORMAT(1H1,26X»18HTRANSIENT RESPONSE,30X,4HBL =,F1446,5X,
14kKZ =, F14,8)
11 FORMAT (1H ) -
12 FORMAT (5X,4(3X,F16+8),27X, 13)
13 FORMAT (F14.8)
14 FORMAT (1HO,3X»1HN, 14X,1HUS17X,3HIK0,17X, 1HZ.16Xo4HFLUX/>
1% FCRMAT (1H ', 14-,4(3XsF16.8)) . :
16 FURMAT (15,4F14,8) T
17 FORMAT (15,F14.8)
18 FGRMAT (I5) .
19 FORMAT (4F16.8)
Real 18, M
READ 13, T
REAL 13, ALAMBU
Real 13, 40
. "KgAal719, Bl B2, A,C
20 KEAL 13, REOOD
PRINT 100 El: 82

FRINT 11
PRINT 14

EPS1 = 1,0E=6
N =0 '

Pl = 0.

FLUX = Z0/(1.0 = KHGD)-.
U s 000

UT-= 0.0

UL = 1.0

YK = FLUX

D = ALAMBD
ALFrRA(1)

= 1.0
ALPHA(Z2) & 0.0
PRINT 15, N, RHGO, £0, FLUX
DELTAZ = ZO - 1.0 . . ]
DELTAN = FLUX - 1.0 ‘ '
PUNCH 16, N, Ls RHOU, DELTAZ, DELTAN
RHCOR = RHOD

LK = 720

DELT = 0,1

H1(1) = 1.0
H1(2) = 1.0
HTHi(1,1) = 1,0
hTH1(1,2) = 1,0
HTH1(2,1) = 1.0
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- HTH1(2,2) = 1,0
21 DO 22 K = 1,10 - '
IF (U) 25,24,25
.24 z = ZK * EXPF((ALAMBD * RHOK * K # 0,1 = T)/(1 0 -~ RHOK))
05 U= ZKﬁEXPF((ALAMBD/U)*LOGF((l 0=RHIK)/(1.0-RHOK-U*K#0, 1*7)
. 1)-ALAMBD#K#0:1*T) ;
26 kM0 = RHOK + U*Kw(. 1*T . .
FLUX = 2/(1., 0- Hn0> oo ' L
N = Ne1 . : ) ' o : :
PRI'\AT 150 Np RHG: Zﬁ FLUX 2 :
‘ © DELTAZ'= Z-- 1.0 I . L o
. : DELTAN = FLUX = 1,0 : s '
PUNCH 16, N, L» RHO, DELTAZ, DELTAN
. 22 LUMTINUE :

LK = 7

RHOK = RHO

YK = FLUX

L= 1 . \
X1(1) = ALFHA(1) .
X1(2) = ALFHA(Z)

IF (u) 28,23,2¢8. -
23 EXPC = EXPF(DwTleX1(2)/7¢1.,0 = X1(2)))

"X2(1) = X1(1) * EXPC
X2(z2) = X1(2)
Gyg TO 27

26 EXPC = EXPF((D/U)*LCGF((1,0-X1¢2))/(1,0e X1(2)-U'T))'DtT)
Xg(1) ='X1(1) * EXPC ,
Xz(e) =2 X1(2) * U » 7T
GU TO 29
27 EXPU = EXPF(D*TwX1(2)/(1,0 = X1(2)))
XEAR(1) = X1(1) = EXPO
xgak(2) = Xx1(2) :
F(1,1) = EXPO _ : : ,
F(1,2) = (DeT*X1(1)/(1.0 = X1(2))*#a2)+EXP)D : -
GO TO 30
29 EXPU = EXPF((L/U)«LCGF((1,0~X¥1¢2))/7(1,0= x1(2> U*T))'D*T)
- XBAK(1) = X1(1) * EXPC
XgAk(2) = X1(2) + U « 7

F(1,1) = EXPC '

F(1s2) = DeTox1(1)*EXPC/((1,0~ X1(2))*(1 0-X1(2)°UeT))
30 F(2,1) = 0,0

F(Z:'Z) = 1 0

H2(1) = 1.0/(1.0 = X2(2))

H2(g) .= X2(1)/(1 N = X2(2))ws2

Lo 31 1 .= 1,2 . .

DO 31 J = 1,2
31 HTH2(1,J) = Hz(l) * H2(J)
Do 32 1 = 1,2 ‘ :
H2F(I) = 0,0
DO 32 J = 1,2 L
32 HZF (1) H2F (L) + HE(J) + F(J, 1) ' r
DC 33 1=1,2 . L - . .
Co 33 4 = 1, 2 : : ' .




33

34

35
36

37

38

39
49

41

42
43
44

45

46

47

48

HFTHF (1, J) =
DO ¥4 1 = 1,2
Do 34 J = 1,2
C2INV(I,d) = HTHI(I»J) + HPTHF(I J)
DEN2 = C2INV(1,1)*CEINV(2,2)
. C2€1,1) = C2INV(2,2)/DEN2
- Cet1,2) = =C2INy(1,2)/DEN2
C2(2,1) = =C2INy(2,1)/DEN2
C2(2s2) = C2INV(1,1)/DEN?2
DC 85 I = 1,2
X1ERR(1) = ALPHACI) - X1i(D)
HXLERR = 0.0 -
00'3641 = 1,2 .
HXLERR = HXL1ERR + H1(1) « XlERR(I)
_PI1.= HX1EKR#*#2 =~
DO 37 1 = 1,2 ,
X2ERR(I) = X2(1) = XBAR(])
YH = X2(1)/ (1.0 = X2(2))
"YERR1 = YK = YH S
PI2 = YERR1 »#2
HX2ERR = 0.0
Do 38 1 = 1,2 - ~
‘HX2ERR = HX2ERR + Hc(l) « X2ERR(1)
YERK = YERR1 + HX2ERR
DO 39, I = 1,2
H2FTYE(I) = HgF (1) * YERR
DO 40 1 = 1,2
HTH1DX(I) = H1(]) * HX1ERR
DO 41 | = 1,2
VECTOR (1) = KZFTYE(I) + HTH1DX(])
DO 42 1 = 1,2
DELTX1(¢I) = 0,0
Dy 42 J = 1,2 .
DELTX1¢1) = DELTX1(1l) + Cc2(],J) = VECTOR(J)
DO 43, I = 1,2 : '
X1TEMP(1) = X1(])
DO 44, 1 = 1.2
X1(1) = x1(1) + DELTX1(I)
IF(X1(2) = 0.8) 46,46,45
X1(1) = XlTEMP(1) + DELTX1(1) « (0,8 = UsT = x1TEMP&2)>/
10ELTX1(2)
X1(2) = 0,8 = U « T
CONTINUE .
Lo 47, I = 1,2
XIDIFFCL) = X1(1) = XLTEMP(I])
DC 48 1 = 1,2
FX1DIF(I) = 0,0
Do 46 J = 1,2
FX1DIFCIY = FXIDIF(I) + F(l,J) = X1DIFF(J)
DO 49 I = 1,2.
X2CL) = XBAR(I) + Fx1DIF<I>

49

50

F1 = Pl1 + Pl2

IF (P1 -
L =L +1

EPS1

HEF (1) « HZF(J)

) 51.,51,50

- C21NV(1 2)-021NV(2.1) '




158

IF (U) 29,27,29 '
51 YH = X2(1)/ (1.0 = X2(2)) .
U = Bl # (X2(1) = 1.0) « B2 * X2(2)
PRINT 12, U, X2(2), X2(1)s YHs L
PUNCH 17;N,U C -

DO 56 I = 1,2

. DO 56 J = 1,2

56 HTH1(1,J) = HTH2(I,4)
DO 57 I = 1,2 :

57 ALPHACI) = X2(1)
De 58 1 = 1,2
H1(D) = H2(D)
58 X1(1) = X2(1)
IF (U) 61,60,61 L
60 EXPO =z EXPF(D*T#X1(2) /(1,0 = x1(2)))

X2€(1) = X1(1) * EXPG A : ‘
Xeteg) = X1{2) B aL
GO TO 62

61 EXPC = EXPF((L/U)*LCGF((1,0=X1¢2))/7¢1,0=X1(2)
L X2 X1(1) * EXPC
X2¢2) X1(2) *+ U « 7
62 UT = Bl % (X2(1) = 1,0) +« B2 % X2(2)
IFCUT - UL) 53,52,52
52 UT = UL '
GO TO &5
53 IF(UT + UL) 54,55,55
54 UT = =-UL
5% IF (NeM) 21,59,59
59 CONVINUE °
GO TO 20
END

1

»U*T))~DeT)
i \
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8. DIFFERENTIAL SYSTEM WITH ESTIMATOR AND CONTROL

COMMON U, H, EPS? ) - ‘ '
DIMENSION ALPHA(2), T X4(4), X2(4), HTH1(2,2),
1F(2,2), H2(2), HWTHZ2(2,2), C2INV(2:2), '
2X1FRR(2),X2ERR(2), XBAR(4),H1(2), C2(2,2),
SH2F(2) ,HFTHF(2,2) ,HEFTYE(2),HTHIDX(2), VECTOR(2)oDELTX1(2)
4,X1TEMP(2i,X1D1IFF(2),FX1IDIF(2), Y2(4)
~ 10 FORMAT(1H1,28X,18HTRANSIENT RESPOVSE;SOX 4HBL =,F14. 8.5x.
14HRZ =, Fl4.8) ‘
11 FORMAT (3H )
12 FORMAT (5X,4(3X%,F16.8),27X.13)
13 FURMAT (F14,8)
14 FORMAT (1HD,3Xs1HN»14X,1HU.17X, SHQHO 17x 1HZ.16Xo4HFLUX/J
19 FORMAT (1H ,14,4(3Xs>F1648)) L
16 FORMAT (15,4F14,8) r : '
17 FORMAT (15,F14.8)
18 FORMAT (15)
19 FOURMAT (4F16.8)
, _ READ 18, M
‘ READ 13, T
READ 13, ALAMED
READ 13, Zn
READ 19, B1., 52. AsC
20 KEAD 13, RROO
PRINT 10, #1, B2
T PRINT 11
PRINT 14
EFS1

m
©
v
n
nwan
e

20/¢(1.0 = RHCO)

L = ALAMBD
ALPRHA(L) = 1
ALPRAL2) = 0
FPRINT 15, N, U»
DELTAZ = 20 - 1,
DelLTAN = FLUX -
PUNCH 16, N s
RHOK = RHOO
K = 70"
DELT 0.
RL(i) = 1
. H1(eg) = 1
P HTH1I(1,1)

HOU, zo. FLUX
.0
HOO, DtLTAZ. DELTAN

"o~

1

"noo

100 ' ! ‘ : :

+




HTH1(1,2)

s 1,0 ‘ I
HTH1(2,1) = 1.0
HTH1(2,2) = 1.0

21 DO 22 K = 1,10 L. . i
IF (U) 25,24,25 "’ ' A
24 Z = ZK * EXPF((ALAMED * RHOK K # 0,1 * TI/(1,0 = RHOK))
GO TO 26
25 1= ZK~EXPF((ALAMBD/U)*LOuF((i 0w RHJK)/(i o-RHOK ~UrKe0,qT)
1)=ALAMBD#Kw0.1*%7)
26 RHO = RHOK + U*K=*(. 147 o ' _ .
FLUA = Z/(l.U RHO) o . o ! . o vl
N = N+1 . ’
PRINT 15,N,UsRHC,Z,FLUX e
DELTAZ 3 Z = 1.0 o e
" DELTAN = FLUX = 1,0 |
PUNCH 16, N, L» RHO» DELTAZ, DELTAN
22 CONTINUE : ! '
WRITE TYPE 11 P

K = 7

RHOK = RHO

YK = FLUX

L =1

X1(1) = ALPHA(L)
X1(2) = ALPHA(Z2)
X1¢(3) = 1.0
X1(4) =

040 : .
‘CALL INTEGF (X1, X2) :
29 X1(3) = 1,0

X1(4) = 0.0

CALL 'INTEGR (X1, XBAR)

F(1,1) = XBAR(3)
F(1,2) = XBAR(4)
30 F(2,1) = 0,0
F(2,2) = 1,0
H2(1) = 1.0/(1.0 = X2(21})
M2(2) = X2(1)/7¢L.0 = X2(2))we2

Do 811 = 1,2
Do 31 J = 1,2 : ’
31 HTH2(1,J) = Hez(]) = HZ(Ja : ’
g 32 1 = 1,2
HZFCT) = 0.0
Do 32 U = 1,2
32 H2F(I) = H2F (1) + He(d) » F(J,1)
Bo 33 1=1,2
DO 33 J = 1,2
33 HFTHF(I,J) = FHZF(1) = H2F(J)
. D0 34 1 = 1,2
. DG 34 = 1,2
34 C2INV(I,J) = HTHl(I JY * HFTHF (I, ) ’
DENZ = C2INV(151)¢CcINV(2,2) - C21NV(1;2)*C2!NV(2 1)

- £2(1,1) = C2INV(2,2)/DEN2:
'C2(1,2) = =-C2INV(1,2)/DEN2
. C2(2,1) = ~C2INV(2,1)/DEN2

C2(e,2) LZIhV(l,l)/DENZ o
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‘Lo 35 1 = 1,2

5 X1ERR(l) = ALPHA(I) - X1(¢I)
HX1ERR = 0,
DO 36 1 = 1, 2
35 HX1ERR = HX1ERR + H1(][) » XlFRR(l)
- P11 s HXlERRttZ
Vo 37 1 = 1,2 o ;
$7 X2ERR(I) = X2(I) = XBAR(I)
YH = X2(1)/ (1.0 X2(2))
YERRL = YK « YH
Pi2 = YERR1 *s2 S
HXZ2ERR = 0,0 : ' ’
Do s8 1 = 1,2 "
33 HX2ERR = KWX2ERKR + Hz(I) # X2ERR(I)
YERR = YERR1 + HWX2ERR '
00 39, I = 1,2
39 HZFTYE(I) = H2F(¢1) * YERR
D0 401 = 1,2
H
2

40 HTHIDYX(I) & H1(]) * HX1ERR
DO 41 1 = 1,
, 41 VECTOR (I) = R2FTYE(I) + HTHLDX(I)
DO 42 1 = 1,2
DELTXLCI) = .0,
by 42 J = 1,2 ' . o
472 DELTX1(I)Y = DELTX1C(I) + 2(¢(1,J)Y * VECTOR(J)
DO 43, I 5 1,2 L
43 X1iTEMP(I) = x1(q>
Dy 44, 1 5 1,7
44 X1.01[) = X1¢1) + DELTX1i(ID)
IF(X1(2) = 0.8) 46,46,45 ,
45 X1(1) = XL1TEMF(1) + DELTX1(1) + 0. 8 - u-T = X1TEMP(2))/
LUELTXL(2) :
X1(2) = 0.8 = U = T
46 CUNTINUE
bo 47, 1 = 1,2
47 XADIFFCI) = X1(1) = X1TEMP(])
DO 48 [ = 1,2
= 0
1 2

0

FX1DIF(I)
Ug 43 J =
43 FXIDIF(L) = FXIDIFCL) « F(I,J) « K101FF(J)
Do 49 1 = 1,
49 X2(1) = XBAR(I) + FX1DIF(I)
Pl = PI1 + PI2 : :
IF (P71 .= EPS1 . ) 51,51,50 = . . '
SO L =L 4 . ol . S
WRITE TYPE .18, L

GO TO 29 .
51 YH = x2(i)/ (L.0 = X2(2))
U = UT

PRINT:12, U, X2(2), X2(1), YH, L
PUNCH 17,N,U ’
D0 56 1 = 1,2
i ' 20 56 4 = 1,2
) s H

56 HTHL(I,J TH2(1sd) B \
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57

58

62

53
54
55
59

1

30
39

38

48

41
42
44

45

34

ALPHACI) .= X2(1)

+

DO 57 1 = 1,2

D0 58 1 = 1,2

HICI) = K2(I)
X1(I), = x2(I)

CALL INTEGR(X1,» X2) i
UT = B1 + (X2(1) - 1.0) « B2 » X2(2) S L ' -

IFCUT = UL) 58,52,52 L ‘ o :

UT = UL . , ' :

G0 TO 55 . !
[F(UT + UL) 54,55,5% '

Ut s «UL .

IF (N=M) 21:59059 ' C |
30 TO 20

END \

SUBROUTINE INTEGR (X1, Y2)
COMMON U, H, EPS2 B ‘ : :
DIMENSION Y0(4), Y1(4), Y2(4), FOC4), F1(4), F2(4),

1ERROR(4), F(4)» Y(4), X1(4)

FORMAT (F14.8).

N = 4 _

H = 1,0

DO 30 I=1.N

Yotld = x1(I) '
LOC = 0

MLOC = 1

HA = ,33333333*H

HB 3 ,16666667*K o

HG = ,125%*H : ' ' i
HD 3 . 375%H o - S

HF = 1,57 : : '
MG = 2,%H '

He = ,60666667*H

Wi [TE TYPE 1, H
CALIL FCT (Y0, FO)

0 41 [=1.N ~ -
YLCI) = YG(I) « HA » FO(I) , '
CalLi FCT (Y1, FL) . _ ‘
D0 42 [st.n T ' S
YLUI) = YO(I) « HB*Fg(l) « HBeF1(1)
CALL FCT (Y1, F2) | o
00 44 I=1.N . . :
Y1(Il) = YO(I) + HE=FOQ(I) = HF-Fitx) + HG*F2(])

CALL FCT (Y1, F1)

20 45 I=1,N !

Y2(I) = YO(I) + HB*FO(l) + HHe#F2(I). ¢+ HB*Fi(I)
D0 34 Is1,N ‘
ERROR(I) = ,2 * ABSF(Y1(I) =~ Y2(ID) , .

CIF (EPS2= ERRQOR([)), 3%, 34, 34’

CONTINUE Y gy '
DO 32 I=1.N ‘ : e |
Yaely = ya2«1) - , :



o

33
37
47
49

31
24

35

39

LQC = LOC »

LOC = LOC + 1

[F (LOC = MLOC) 375 99, 99

IF (LOC + 1) 48, 47, 48

IF (M_OC = 2) 48, 45, 49

DO 31 [=1,N -

IF (EPS2~ ERROR¢I) » 64,) 48, 48, 31
CONTINUE

H = HG .
LUC = LOC 7/
MLOC = MLOC
4o TO 38

H s HE

MLOC = MLOC

N
N

N #
N

Go To 38
RETURN

END

SUBROUTINE FCT (Y, F)
COMMON U

DIMENSION Y(4), F(4) _
0.31 % Y(1) » Y(2) /(1,0 =~ Y(2))

F(1)
F(2)
F(3)

u
0.81 . % Y(3) * Y(2)/(1.0 = Y(2))
RETUR
END

F(a) 2 0,31 «(Y(2)*Y(4)+Y(1)/(1.0=¥(2)))/(1.0~Y(2))
N A '
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