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ABSTRACT

1 1

Lipinski, Walter Charles; Optimai DigitaZ Computer control of

NucZear Reactors; Ph.D., Electrical Engineering Department; Illinois

 

Institute of Technology; January, 1969.  Adviser:  Professor

Andre G. Vacroux.

Prefaced by a literature survey of earlier applications of modern

control theory and presentation of pertinent kinetics equations, the

dissertation describes the sequential analytical investigation of a

digital computer control system to implement nuclear reactor control and

estimation functions.

First, nonlinear plant and measurement equations are derived for a

deterministic one-group prompt-jump point model, using rate of reactiv-

ity change as control input.  Next, state-space concepts are introduced,

resultant equations are expressed in vector-matrix notation, linearized

by a first-order Taylor series expansion, and solved for a.discrete-

time input.

Dynamic programming yields an optimal stationary feedback control

law which minimizes a quadratic performance index for a discretd-time

system.  An index consisting of the sum squares of the'neutron density

derivations is defined and augmented to include terms in reactiyity- and

control input.  With the aid of an iterative digital computer program

t '       the stationary feedback matrix is calculated for selected values of

i weighting coefficients. Corresponding transient behavioral plots of the

1 '1 nonlinear system'show that for the performance index as defined, the

1 Xi
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1

1

1

1

neutron:density deviation.is.decreased to zero in on
e sample interval

after a step disturbance in reactivity.

In order to satisfy the optimal control law require
ment that all

state variables be available, a nonlinear estimator 
is used 20 generate

estimates of nonmeasurable system state variables. 
 Estimator equations,

based on a set of finite-difference e4uations,.are 
derived by minimizing

a performance index consisting of the sum squares o
f errors in the

previous estimate and in the current measurement.  T
he resulting non-

1 1

linear equations are solved iteratively on a digital
 computer.  Since

the system is described by differential,equations, 
integration is used

to obtain the numerical values required by the estim
ator during the

iteration sequence.

Finally, the cascade combination of an optimal esti
mator and

optimal controller yields a control system whose per
formance is unequal

to a system without an estimator. Estimates generated for the nonlinear

system necessitate a large control input at the fir
st sampling following

a reactivity disturbance. Inclusion of a computation time delay results

 

'       in further degraded performance.  If an int
egrator is incorporated into

the nonlinear estimator, the integration step size m
ust be reduced when

a control input is present.  Since the computer pro
grams used to Solve

the estimator equatiqns and to compute the control 
input are not

compiled for minimum time execution, no conclusion c
an be made with

regard to real-time control capability.

The dissertation includes a comprehensive literatur
e survey of

earlier applications of modern control theory t6 nu
clear reactors, a

detailed review of .pertinent.reactor kinetics equations, and a.wealth of       '

./                                                                                                                              
                              '

selected nuclear and control engineering bibliographies.

Xii
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CHAPTER 1

INTRODUCTION

1.1  Growth of nudlear power plants

Achievement of the first self-sustaining nuclear fission chain

reaction in 1942 was recognized by Enrico Fermi and his colleagues as

the initial objective toward creation of a destructive weapon.  However,

each scientist also recognized the constructive potential of controlling ,

and converting the heat of fission into useful mechanical and electrical

energy.  In fact, one of the earliest concepts,of converting nuclear

energy into useful electrical energy - the Daniels Experimental Power

Pile at Oak Ridge National Laboratory - was based on studies initiated

in 1944 by Dr. Farrington Daniels, a member of this historic group.

Unfortunately, national security prevailed and the application of

controlled nuclear power was directed toward military logistics.

In 1947, Congress authorized the development of a nuclear reactor

for submarine propulsion.  Work knitiated at Argonne National Laboratory

neat Lemont, Illinois, led to the construction and operation, on

March  30,  1953,  of   the  first nuclear'.propulsion system  in a section  o f

a submarine hull at the National Reactor T6sting Station in Idaho.  This

              land-based installation was the forerunner of the pressurized water

system used in the submarine Nautilus, which was launched the following

year.  This launchibg represented the,first milestone.of the Naval

Reactors Program which has since revolutionized naval strategy.
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New reactor concepts for municipal power systems also were pior

neered by Argonne scientists and engineers through the design,

development, construction, and operation of simplified experiments or          '
1

1

small-scale prototype systems  at the Argonne  teSt  site in Idaho.      Such

was the case in 1951, when Experimental Breeder Reactor-I became the

first nuclear reactor to generate electricity (170 kilowatts), thereby

demonstrating the technical feasibility of: using unmoderated reactors

for generation of useful power, employing sodium and sodium-potassium

alloy as coolants, and breeding plutonium fuel.  This experiment led

the way to subsequent construction and operation, in 1963, of:  EBR-II,

a prototype fast power breeder central station plant; and the Enrico

Fermi Atomic Power Plant, the world's first large fast breeder.nuclear

power plant. 1

1

In 1953, a series of Boiling Reactor Experiments (BORAX-I, -II,      '

-III) were started at the Idaho test site.  These experiments ultimately

demonstrated the inherent power stability of the boiling water reactor

concept.  On July 17, 1955, the town of Arco, Idaho, was temporarily

serviced with electricity generated by the BORAX-III'power plant.

· The technology gained from the BORAX experiments was applied in the

cons ruction of the Experimental Boiling Water Reactor (EBWR) at

Argonne.  On December 29, 1956, EBWR achieved its rated electrical

output  of '5,000 kilowatts,  and thus became the first  of a 'series  of                            , ,

prototype central station power reactors to go into operation in the

USAEC Civilian Power Reactor Development Program.

Two years later (May, 1958), the Shippingport Atomic Power Station

in  Pittsburgh,   Pa., was dedicated  as the first largerscale, nuclear

power-generating plant (60,000 electrical kilowatts) in the



j

United States.  Built by Westinghouse Electric Corporation as part of

the same Civilian Power Reactor Development Program, the Shippingport

plant design is based on the pressurized, light-water reactor concept.

Since 1958, the growth of nuclehr powered central station plants in

the United States has exceeded early predictions.  This growth has been

achieved by making nuclear plants economically competitive with conven-

tional fossil-fueled plants.  The most recent survey [l]* lists·13

operable, 31 being built, and 40 planned:  Of these plants, 81 are

based on the boiling and pressurized light-water reactor concepts.

As a cpnsequence of the ever-increasing demand for uranium to fuel

the ligHt-water-cooled reactor power plants, the U.S. Atomic Energy

Commission (USAEC) has given the highest priority to development of

liquid-metallcooled fast breeder reactors.  In August, 1968, a Liquid-

Metal Fast BrBeder Reactor (LMFBR) program plan was issued.  The overall

objective is to achieve, through research and development, the tech-

nology required to design, construct, and safely, reliably, and

economically operate fast breeder reactors for use in central station

nuclear power plants.  Volume 4 of that plan specifies the instru-

mentation and control developments essential to reliable and safe

operation of an LMFBR plant [2].

1.2  Outline of dissertation 1

The tesearch described in this dissertation was undertaken with the

objective of applying modern control theory to the analysis and design

of an optimal control system for a liquid metal fast breeder reactor.

The fundamental problems of finding the optimal regulator control law

and of estimating the states of the nonlinear deterministic system model

*
Numbers in brackets pertain to references cited'on pages 164 to 173·

., ,
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have been solved.  A natural consequence of applying

 dynamic

programming to obtain the feedback regulator soluti
on and iteration to

the estimation problem is the requirement that a di
gital computer be

used to implement the control and e
stimation functions.               

            '

Chapter 2 is devoted to a review of earlier applisa
tiqns of opti-

mal control theory to nuclear reactor control problems. Since  it  was

not feasible to discuss the specific applicatiobsj'
in detail, appro-

priate references are cited.  ,In addition, extensi
ve selected bibliog-

raphies of'nuclear and control engineering literatu
re have been

compiled for those who wish to specialize in this a
rea.

Chapter 3 contains the equations which describe th
e reactor system.

A one-group delayed neutron model is used as an app
roximation to the

six-group system. A· further simplification 'of  the system equations is

achieved by using a prompt-jump approximation.

In Chapter 4, the system differBntial equations are 
defined in

terms of state variables and matrices. Nonlinear system equations are

linearized using nominal values and the resulting 
set of equations is

solved with discrete-time inputs.

Chapter. 5 treats the solution of the closed loop r
egulator problem

by applying dynamic prpgtamming to obtain the minim
um of a specified

performance index and the resulting transient respo
nse is discussed.

The closed loop solutions of Chapter 5 idealistical
ly assume that

all state variables are measurable; therefore, the 
solution of a deter-

ministic estimator is derived in Chapter
6. Chapter 7 considers the

combined problem of estimation.and control.

Finally, the work is summarized, along with conclus
ions and

recommendations for future research, in Chapter 8.

-.
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CHAPTER 2

 

LITERATURE REVIEW

2.1  Introduction

From 1942 to 1960, analysis and design of control systems for

nuclear reactors was based on classical methods.

Modern reactor control theory, which is concerned with optimal
i l,

processes, emerged from Wiener's [6] theory in 1942, Bellman's [7]

dynamic programming techniques,in 1954, and Pontryagin's [8] Maximum

Principle in 1956.  Although several papers on off-line 9ptimization of

nuclear fuel management and xenon shutdown programs were published,

Kallay [3], in 1960, was the first to relate modern control theory to

nuclear reactors.

Early application of digital computer techniques to pow er reactors

was limited primarily to data handling and on-line computations. In

1962, an issue of Nucleonics [4] was devoted to a special report on on-

line computers for power reactors.  At the 1964 Geneva Conference,

Schultz and Legler [5] presented a status report on the application of

digital computer techniques to reactor operation.  Today, computer con-

trol systems are installed on several nuclear reactors, but these

installations are on critical facilities or limited only to process con-

trol on power reactors.  Literature describing these systems are listed

in the general nuclear bibliography.
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2.2  Previous investigations

Kallay [3] suggested four applications of dynamic p
rogramming

techniques to .nuclear reactors: optimization of poison distribution,

optimization of over-all plant efficiency with respe
ct to component

coht, design of optimal control programs, and dete
rmination of flpw

distribution through a heat exchanger.  Under contro
l applications,

Kallay outlined the optimal solution to a minimum 
energy start-up

problem.

Foureau [9] used Pontryagin's maximum principle, a 
single group of

delayed neutrons,  .and a constraint   on  the  rate of change of reactivity,

to determine the switching boundaries for a reactor 
start-up program.

Shen and Haag [10, 11, 12, 14] and Haag [13] used P
ontryagin's

maximum principle to solve an optimum sta t-up prob
lem Using a one-group

delayed neutron model and a prompt-jump approximation. In the resulting

control scheme, the switching conditions  ,on the input were determined  by

nonlinear functions of time.

Mulcahey [15, 16] analyzed the time optimal control 
of nuclear

reactors with velocity-limited control devices,1 His
 model consisted of

a fast reactor with one group of delayed neutrons a
nd a reactivity

feedback, which was a function of the power level.
  The prompt-jump

approximation was employed, and the resulting set o
f equations was

solved analytically.  System behavior was studied w
ith analog and digi-    '

I tal computers.  He concluded that a power-level-bas
ed switching con-

troller should be adopted.

Rosztoczy [17, 18] used the maximum principle and a
nalyzed three

optimization problems:  a shutdown program for minim
um xenon buildup,

flux state changes in nuclear reactors, and minimum
 fuel loading.  The
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model consisted of a single group of delayed neutrons and a reactivity

feedback proportional to the power level.  An integral performance index

equal to reactivity squared ·was minimized by solving the resulting two-

point boundary value problem on an analog computer.  A suboptimal

minimum-time solution was investigated by decreasing the time to execute

a change in power level.  Power level changes with minimum control

energy were investigated by assuming a performance index equal to the

integral of the reactivity rate squared.  The solutions presented were

open loop, and the control input was generated as a function of the

adjoint variables.

Ruiz [19] used Pontryagin's maximum principle to minimize an

integral performance index consisting of the sum of power deviation

squared and square of the product of reactivity and power.  One group of

delayed neutrons was assumed.  A closed-loop control law was derived

which required pre-programmed time variable coefficients.

Ash [20] used dynamic programming.to derive a functional equation

which would cause a boiling reactor to be driven back to its equilibri-

um condition in minimum time by continuously moving control rods.

Hermsen [21] used Wiener's theory and a linearized model of the

reactor to design a closed loop cobtrol system based on minimization of

an integral squared error index.  Also, Z transform theory was used to

design a control system which would be suitable for computer control.

Pontryagin's maximum principle was applied to a system consisting of six

groups of delayed neutrons and a model based on Newton's law of cooling.

A  set  o f  2 (m  + 7) equations resulted, where  m  was the number  o f

temperature nodes,.  Dimensionality of the problem was reduced by going

to  a one-group linearized model,   and a closed-loop control law,was

)
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derived.  The maximum principle also was used to solve the minimum-time

problem with and without a constraint on the reactivity rate.  In view

of the difficulties encountered in obtaining solutions, it was suggested

that dynamic programming be applied to the problem in future research.

Kliger [22, 42] used Holder's inequality to solve the minimum-time

control problem subject to a constraint consisting of the product of

reactivity and flux.  One group of delayed neutrons was assumed.  He

derived a closed loop switching function, and proposed that a state

estimator be used to generate the non-measurable state variables.

Mohler [22, 24, 25] used the maximum principle to analyze the mini-

mum-time control of neutron density subject to a magnitude constraint on

reactivity.  A bang-bang control law was derived. In order to maintain

constant power level, an additional input was required, after the last

switching, to offset the effect of deliyed neutrons.  For the case of a

six-group delayed neutron model, a feedback reactivity proportional to

the sum of the rate of change of precursors was required to hold power

level constant: A dither control was proposed as an alternate solution.

Weaver et al. [26] investigated:  suboptimal closed-loop control

employing the second method of Lyapunov, nonlinear stability of coupled

core reactors described by a set of differential-difference equations,

synthesis of optimal closed-loop control of nuclear reactor systems, and

limits of validity for some approximations in reactor dynamics.

Secker and Weaver [27, 28] investigated optimal closed-loop control

using a set of equations linearized around a nominal trajectory, and a

quadratic performance index.  Application of Pontryagin's maximum

principle led to a matrix Riccati equation.  The optimal filter for

state-variable estimation was derived using Kalman's method for
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differential systems,  and a matrix Riccati eq·uation was solved  for  the

optimal gain.  The resulting closed-loop control systed required storage

I of the preprogrammed control variable and nominal state trajectory.

Melsa  [29, 30] extanded  the work reported .previously by Weaver

et al. [26]. Suboptimal. control with a singular control matrix was

investigated and applied to the control of a nuclear rocket.

Kliger [31] defined a control variable which was equal to the

product of neutron flux density and reactivity and made the neutron

kinetics equations linear. Reactivity was recevered as a true input

control quantity by dividing the control variable by the measured flux.

He applied the maximum principle to the problem using an integral

performance index, and obtained the optimal control function in terms

of the state and adjoint variables. Using back substitution, he then

solved  for the control function in terms  of the state variables.     An

estimator was desi·gned to generate the delayed .neutron states from

neutron flux measurements.

Duncombe [32, 33, 34] used the same linearizing approximation as

Kliger to investigate on-line optimization of nuclear reactor load

control in the presence of nonlinearities.  To carry through this

simplification, the performance index included a term of reactivity

times flux squared. Based ·on this approximation, the results obtained

by Duncombe must be judged accordingly.  The optimal closed loop solu-

tion was ,obtained by using the maximum principle and deriving a matrix

Riccati equation.  The solution of the matrix Riccati equation varied

with the varying load demand. To apply the ·correct feedback  at  each

ins.tant,   it  was  necessary to calculate the parameters  ·of the feedback

network in effectively zero time.  An analog computer was used to solve
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the matrix Riccati equation  in  0.1  real  time  and to simulate the reactor

plant. All of the state variables were obtained from the simulation.

In his conclusions, Duncombe pointed out that in, an actual application,

the reactor plant simulation would be replaced by the reactor itself,

, however, he did not state that a state estimator would be necessary to

generate non-measurable variables.

Monta and Lennox [35] investigated time-optimal digital computer

control for the NRU reactor by applying the method of Desoer and

Wing [36].

Kliger [37] extended his work [31] to analysis of an optimal con-

trol system for nuclear reactors with a generalized temperature

feedback.  The problem was subdivided such that a specific controller

yielded the coolant flow and netitron density to minimize a performance

index, and a universal controller forced the reactor neutron density to

follow the desired neutron density.  The maximum principle was applied,

and the resulting set of equations was solved to obtain the optimal

control law.  The control law required all state variables, so an

estimator was designed to generate delayed neutron estimates from

neutron flux measurements.

Sokolova [38] analyzed the problem of determining an optimum con-

trol law for a nuclear power plant.  A set of 29 differential equations,

bilinear in the state variables and in the state and two control

variables, was used to describe the plant, which consisted of a reactor,

a regenerator, a cooler, and a turbocompressor.  A quadratic perfor-

mance index was used, and dynamic programming was applied.  Two control

equations were.derived:  one linear in the state variables and the.other

nonlinear.  Lyapunov's method was applied to guarantee stability of the
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control system.  Implementation of the control scheme required that all

state variables be measurable.

Weaver et al. [39] investigated:  optimal feedback control of

nuclear reactor systems, modeling with Lyapunov functions, and linear

system design using state variable feedback.  The optimal control

investigation used the linearizing substitution of Kliger [31].  A

quadratic error index and prompt reactor model were used and a time-

varying gain was obtained for the optimal feedback control by means of

Bellman's equation.  The analysis was repeated on reactor models using

prompt nonlinear, linear delayed, and nonlinear delayed neutrons, with

and without feedback.  The developed methods were then used to analyze

the start-up of a nuclear rocket.

Higgins [40] and Higgins and Schultz [41] investigated the

stability of certain nonlinear time-varying systems of automatic con-

trol.  They used the second method of Lyapunov, the Popov frequency

criterion, and the matrix inequality method.  As an example, the

stability theory was applied to the simplified nuclear rocket propulsion

system considered by Mohler (1962).

Monta [43, 44, 45] investigated the time-optimal control of nuclear

reactors.  One group of delayed neutrons and a prompt jump approximation

were assumed.  The maximum principle was used to derive the switching

trajectories in state space, with and without constraints.  The discrete

version of the maximum principle was used to analyze a system with a

pulse-width-modulated-reactivity input.  An experiment was performed

on the Toshiba Training and Research Reactor using a digital control

computer. Computing time delay, control rod motor time constant,
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one-group approximation, and reactivity estimates had to be taken into

account for practical reasons.

Humphries [46, 47] used a parameter adjustment model to investigate

adaptive control of a nuclear rocket·engine.  The proportional
 control

gain'for the control poison was the parameter adaptively adjuste
d and

the maximum core surface temperature was the variable adaptively

controlled.  The performance index consisted of the integral sq
uared

response error, which was formed by comparing the system output
 with

that of the reference model. To evaluate the performance index, the

nuclear rocket engine equations were linearized, the prompt neutron

lifetime was set equal to zero, and the effects of delayed neu
trons were

neglected.  Parseval's theorem was used to evaluate the performance.

index as a function of gain. It was shown that propellant savings of up

to 20,000 pounds per transition from idle to full power are possible

with adaptive control.

Saluja [48], and Saluja, Sage, and Uhrig [49] analyzed open and

closed-loop control of nuclear systems.  Three performanc
e indices were

considered:  integral of reactivity squared, integral of reactivity

squared and neutron density deviation squared, and the prev
ious index

with reactivity set equal to a proportional flux integral f
unction of

neutron density error.  The maximum principle was applied, and q
uasi-

linearization was used to solve the resulting two-point bounda
ry value

problem. Convergence was obtained in no more than four iterations for

all problems.  The suboptimal closed-loop control law yielded poorer

performance than the open-loop control law.  It was sugge
sted that an

adaptive-type control be considered to improve performance.
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Ellis [50], and Sage and Ellis [51] presented a sequential sub-

optimal adaptive control philosophy which encompassed both identifica-

tion and' control. A general nonlinear differential system was modeled

by a linear time varying system of assumed form.  The system was

assumed stationary over subintervals of time.  This allowed a controller

to generate a sequential control law which minimized an integral of time

weighted quadratic form ef error and control effort.. The method was

used to generate an optimum closed-loop control for the start-up

dynamics of a nuclear reactor system.

Masters [52], and Sage and Masters [52].derived a sequential method

for on-line estimation of the state variables and parameters of

discrete:, nonlinear, dynamic systems. The discrete version of the

maximum principle was employed to obtain the canonic equations of the

least-squares optimal estimator. Also, a discretized invariant

imbedding technique was applied to solve the resulting two-point bound-

ary value problem. A system of sequential equations was then obtained

by application of variational methods to the optimal trajectory. The

estimation procedure provided the best least-squares estimate of the

state vector, given noisy measurements at discrete intervals of time.

The method was applied to a nuclear reactor, with a single group of

delayed neutrons, and the system state and one parameter were

estimated.

Ogawa, Kaji, and Ozawa [54] analyzed the time-optimal control of

nuclear reactors with two kinds of internal feedback:  a prompt feedback

generated by variations of fuel temperature and coolant density, and a

delayed feedback governed by variations of moderator temperature.

System stability was examined by investigating the behavior of the
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linearized system near an equilibrium point. The maximum principle

was applied to the quasilinear system to obtain the optimum control law.

Rasetti and Vallauri· [55] discussed the maximum principle and

dynamic programming.  A nuclear propulsion plant for a commercial ship

with'four steam generators and one pressurizer was analyzed for time-

optimal control using the maximum principle.  The canonical equations

were compared to the results obtained by applying Bellman's equation.

Tataru, Bajenescu, and Ghetaru [56] considered the closed-loop

regulator problem of a nuclear reactor.  The small signal transfer

function of a reactor was used. A scheme was derived to keep the loop

gain constant by using a perturbing signal and a computing device to

offset gain changes caused by power level changes.

Partain [57], and Partain and Bailey [58, 59] studied the

application of Z transforms to linearized kinetics equations.  Digital

simulatipn was used to investigate system behavior.

Herring [60], Herring et al. [61], Weaver [62] and Weaver and

Vanasse [68] developed a method for designing control systems by using

state variable feedback. This method was applied to a two-temperature-

region reactor and to a coupled-core reactor.  Linearized transfer

functions were used for the reactor systems. A method also was outlined

for generating non-measurable state variables by placing frequency

dependent elements in the feedback path.

Miyazaki [63] applied Wiener's theory [6] of least-squares

optimization with quadratic constraint to the design of reactor control

systems.  The deterministic case was investigated by taking the

integral square error for the criterion function and the integral square

of reactivity rate for the control function.  The stochastic case was
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studied by substituting the mean-square error and mean-square

reactivity rate, respectively.  Transfer functions for various step

'

sizes and ramp inputs were derived.

Habegger [64], and Habegger, Bailey, and Kadavanich [65] applied

quasilinearization and Kalman filter techniques to estimate nuclear

parameters in the EBWR, PUR-I, and EBR-II reactors.

Melsa et al. [66] investigated:  system identification using a

random search method, data reconstruction using non-resetting

integrators, and sub-optimal closed-loop control using invariant

imbedding.

Mohler [67] analyzed the fuel-optimal control of a nuclear propul-

Sion system by means of the maximum principle, Lagrange multipliers and

computers.  Practical problems were shown to be complicated by state

constraints and high dimensionality.  A minimum-time, prompt-neutron

control process with reactivity rate and amplitude constraint was

analyzed.

Mohler and Price [69, 70, 102] investigated application of linear

programming procedures to optimal control of nuclear rocketreactors

which had inequality magnitude constraints imposed on the control and ·

state.  Nonlinear iquations were transformed into a form suitable for

linear programming by using a first-order Taylor series ,expansion.

Marciniak [71, 101] studied the time-optimal digital control of

zero power nuclear reactors.  Sampled-data control system theory,

including Z-transforms and discrete state variables, was used to design

a control system which would:  increase power·level while maintaining a

minimum period, and reach demand power level with little, or no,

overshoot.  Of the various data-holds investigated, the zero-order hold
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was the'most stable.  A time optimal study was made of a one-group

delayed neutron reactor using the maximum principle, and the switching

equation was derived. This switching· equation   and the zero-order  hold

were · used to derive a control program, which was applied to noise-free

reactor· models
,
simulated  on a digital ·computer. A modified version

of the control program was used on the Argonne Thermal Source Reactor.

I

-...

1

t
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CHAPTER 3

REACTOR DYNAMICS

3.1  Introdudtion

The derivation of the nuclear reactor kinetics equations, starting

from neutron physics fundamentals, is well documented.. These include

treatments of the subject by. Glasstone and Edlund [72, Weinberg and

Wigner [73], Meghreblian and Holmes [74], Isbin [75], or.Ash [76], and a

handbook presentation by Radkowsky [77].  An excellent treatment on

general reactor dynamics is given by Gyftopolous.[78], and the specific

subject Qf fast reactor kinetics is treated by McCarthy and Okrent [79].

A discussion of· the general subject of reactor dynamics and control is

given by:  Ash [76], Harrer [80]„ Keepin [81], Schultz [82], and Weaver

[83, 84].

3.2  Six-group delayed neutron model

The point-model kinetics equations for a nuclear reactor are:

dn(t) = 6k(t) - B n(t) +
 

A.C.(t) (3.1)
dt         £               1 1

and

dci(t)- Bi
- n(t) - A .C.(t) .

i = 1,...,6 (3.2)
dt     Z      · 1 1

where

li (t) = neutron density

6k(t)  = reactivity                                ·

B     = total delayed neutron fraction
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E      =  neutron lifetime

A.     =  decay constant of the  ith neutron precursor1

Ci(t)  =  concentration of delayed neutrons of group i

Bi     =  delayed neutron fraction of group i

Reactor power level is proportional to neutron density.  At low

power levels, reactivity is not a function of the neutron density;

therefore Eqs. (3.1) and (3.2) are commonly referred to as the zero

power kinetics equations.

In Eq. (3.1) 'reactivity is a function of time,. and for this condi-

tion, Eqs. (3.1) and (3.2) are linear with time varying coefficients.

At.high power levels, reactivity is a function of the neutron density,

and the equations·become nonlinear.

The values of X: and B. for U-235 fueled fast reactors'[.85,.p. 18]
1 1

are listed in Table 3.1.

TABLE  3.1

DELAYED NEUTRON YIELD FROM FAST FISSION IN U-235

Xi               Bi               ai

0.0127 0.000247 0.038

0.0317 0.00138 0.213

0.115·. 0.00122 0.188

0.311 0.00265 0.407

1.40 0.000832 0.128

3.87 0.000169 0.026

The relative abundance is given by ai = B./B. . The total delayed  .' ·                                  1

neutron fraction is obtained from B = IB., and for the1                                      '
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values of Bi in Table 3.1, B = 0.0065. Typically, g = 10-7. sec for a

fast reactor.

If the following variables are defined

a     8/ f (3.3)

 i  = Bi £
(3 ..4)

p(t)  = 6k(t)/B (3.5)

and substituted into Eqs. (3.1) and (3.2), then

n(t)  =  ap(t)n(t) - an(t) + I A.C.(t) (3.6)
i

11

Ci(t)  =  ain(t) - Xici(t)
i = 1,...,6 (3.7)

where the dot notation designates the derivative with respect to time,

and p is reactivity in dollars.  Typically, |p|<1.

At equilibrium, the time derivatives are equal to zero, which on

solving Eq. (3.7) gives

c.(0) = ain(0)/A.
(3.8)

1                  1

The delayed neutron concentration can be normalized by defining

Zi(t)  =  (Xi/a) ci(t)
(3.9)

Substitution of Eq. (3.9) into Eqs. (3.6) and (3.7) results in a set of

normalized equations

n(t)  =  ap(t)n(t) - an(t) + a I
zi(t)

(3.10)
' 1

;i(t) Xi [ain(t) - zi(t)]
.i = 1,...,6 (3.11)

where the equilibrium solution requires that zi(0) = ain(0) and

I-zi(0) = n(0) because I ai = 1.
i                           1
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3.3  Transient response of six-group model

For a step input of reactivity, the kinetics equations can be

solved by application of the Laplace transform.  Under the conditions of

a step input p(t) = p, a constant.  This constant value of reactivity is

substituted into the equation before transformation.  The initial condi-

tions of n(0) and zi(o) are the values of n(t) and zi(t) which ex
ist

just prior to the step addition of reactivity.

With p set equal to a constant, taking the Laplace transform of

Eqs. (3.10) and (3.11) results in

sN(s) - n(0)  =  apN(s) - aN(s) t a I ·Zi(s)                      (3.12)

i   =   1,  ...,6             ' (3:1 3)
szi(s) - zi(o) Xi[aiN(s) - Zi(s)] .

Equation (3.13) is solved for Zi(s) to give

aixi  N(s) +   -                  i= 1,...,6 (3.14)
Zi (0)

Zi(S) s + X. S + X.
1 .6

Equation (3.14) is then substituted into Eq. (3112) to obtain an equa-

tion for N(s). Thus
6   z.(0)O 1

n(0)+ a .1  s + A.
1=1 1 (3.15)N(s)

s+ a(1 -p) -a I   Aial
S + A.

1=1      1

Remembering that .I a. = 1, the denominator of Eq. (3.15) can be
1                                                 ·

i

rearranged to yield:

6. .zi(0)
0(0)+a.I  s t x

i=l i (3.16)N(s) =
6   aiss-ap+a I

· 1

Equation (3.16) is valid for any arbitrary initial condit
ions of n(0)

\

and z.(0). If the system is at equilibrium b5fore the reactivity
1  ·
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addition, then

Zi,(0) = ain(0) (3.I7)

and substitution of Eq. (3.17) into Eq. (3.16) results in an expression

of N(s) as a function of the initial neutron density.  Thus

6    ai
1.+·ay

L  S +.X
N(s) = n(0) (3.18)i=1'   ·. i

6   a.
s-ap+a T  is

.6  s + A.
1=1      1

In·  order  to  find the inverse Laplace trans form· of  Eq.   (3.18) ,   the

roots of the denominator must be known. If the numerator and denomina-

tor of Eq. (2.18) are multiplied by the factors s + Xi' a seventh-order

polynomial in s is obtained for the denominator, with coefficients con-

sisting of complicated combinations of products and sums of the

Xi [82, pp. 110-111].  This polynomial is then factored for the roots.

An alternate method is to apply iteration to the denominator of

Eq. (3.18) by means of the Newton-Raphson algorithm [86, p. 78] as

follows:
F
(sn 

(3.19)
sn+1 = sn - F'(sn)

which converges quadratically to yield the solution of F(s ) = 0 withn+1

F(s) =s-a p+a y ais
(3.20)

t s + A.
1 1

a X
r    ii

F'(s) =1+ (3.21)
a 2 (s + Xi)2

where F(s) is the denominator of Eq. (3.18) and F'(s) is the derivative

of F(s) with respect to s.
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Substitution of Eqs. (3.20) and (3.21) into Eq. (3.19) results in

r  aisn
sn - ap +ta. .sn' .Xi

sn + 1
S - (3.22)n               a A

r    i i

1+a   (sn + Xi)2

which can be rearranged as follows:

r   aisn2

0 - i (an + Xi)2
s       =                                                      (3.23)n+1 a.X.

1 1

,   +    i     (s n    +    X i) 2

In order for Eq. (3.23) to converge, suitable·initial values must be

chosen for the various roots.  For positive p, one root is positive and

all others are negative and range between the·Xi values [76,. p. 32].

For p negative, all seven roots are negative.  The most negative root

is approximately equal to a(p - 1).

Equation (3.18) can be expressed as a partial fraction expansion.

That is,

N(s) I    Bi n(0) (3.24)
i=l s -si

Since the poles of Eq. (3.18) are simple, the coefficients Bi of

Eq. (3·24) can be obtained from:

1+a y   ai
t s +.A.

B            1      1 n(0) (3.25)i                      F' (S)
s =.si

where F' (s) is given by Eq.  (3.21).
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The  Roots of Prompt, Jump Equation computer ·program which finds  the

S  and calculates the corresponding Bi is listed in Appendix G.

Table 3.2 lists the s. and B. for a step input of p = 0.1.
11

TABLE 3.2

ROOTS OF KINETICS EQUATIONS AND TRANSIENT
RESPONSE COEFFICIENTS FOR p= 0.1

si               Bi

.01046741 1.2924847

-.01438199 -0.03533592

-.06525568 -0.08955314

-.19093692 -0.04046886

-1.2253240 -0.01346368

-3.7713468 -0.00255375

-58,500.482 -0.11110930

The solution for the neutron density as a function of time,

obtained by taking the inverse transform of Eq. (3.24), is

7   si 
n(t) I Bie

(3.26)

i=1

The time constant corresponding to the most negative root in Table 3.2

is 17 usec.  If Eq. (3.26) is evaluated at t = 0.001 sec, using the

values in Table 3.2, n(0) = 1.0, and the Reactor Response to Step

Delta K computer program listed in Appendix G, then n(0.001) = 1.111.

The flux has jumped 11.1% in 1 msec, and remains at this level u
ntil the

terms in Eq. (3.26) with longer time constants began to exert their

influence.



24

3.4  Prompt-jump approximation

In the analysis which follows, detailed reactor transient behavior

at times.less than 1 msec.will not be.of interest.

Transient behavior in this case can be adequately described by

employing the prompt-jump approximation.  Setting n(t) = 0 
in

Eq. (3.10) results in

6

0  =  ap(t)n(t) - an(t) +a I zi(t)
(3.27)

i=1

which is then solved for n(t):

6

I  zi(t)

n(t)
i=1 (3.28)
1 - P(t)

The neutron density is eliminated from Eq. (3.11) by substituting Eq.

(3.28) for n(t) to obtain

6

A.a.  I  Zi(t)11
i=1 (3.29)

zi(t)  =
, - A.z.(t)

1  -  p (t) 1 1

Reactor response to a step input can be determined by means of

Eqs. (3.28) and (3.-29).  For the case of equilibrium conditions prior

to the step, p=0 and I zi(0-) = n(0-). Immediately after the step

n (0 +)        =       1    1         n (0
-) (3.30)

and n(t) has increased by the factor 1/(1 - p).  If p = 0.1,

1 = 1.111 (3.31)
1· - P

which is the same as the transient response calculated previously for

t = 0.001 sec  and n(0) = 1.0.
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3.5 One-group  delayed neutron model

A further reduction in system dimensionality can be achieved by

considering a single group of delayed neutrons.  With this assumption,

Eqs. (3.10) and (3.11) become

n(t) ap(t)n(t) - an(t) + az(t) (3.32)

z (t) X[n(t) - z(t)] (3.33)

The single-group decay constant X must be suitably chosen if the one-

group approximation is to provide useable results. In previous

applications of the approximation, X has been selected on the basis of

best asymptotic behavior.as  t+00. This method of.selection  is  not  the

best for studying transient behavior at times of the order of one

second; therefore an alternate method based on a matching of the

transient response is proposed.

3.6  Transient response of one-group model

The transient response of the one-group model to a step input of

reactivity can be determined by taking the Laplace transform of Eqs.

(3.32) and (3.33) or equivalently modifying the six-group result of Eq.

(3.16) to give

n C 0)    
az ( 0)
S+X

N(s)                              -                                                               (3.34)
s - ap +

as
S+X

which alternately can be written

N(s) = (3.35)
(s + A)*(0) + az(0)

s2 + (A +a- ap)s - ap X

Given the numerical values of A, a, and p, the roots of Eq. (3.35) may

be calculated directly.  These roots may be approximated by using
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the quadratic formula and the product relationship of the roots to

obtain

sl  %  AP/(1 - P) (3.36)

s2  % -a(1 - p) - A/(1 - p) (3.37)

assuming that A<<a.

The partial fraction expansion and inverse transformation of Eq.

(3.35), using the roots given by Eqs. (3.36) and (3.37), results in

Xeslt + [a(1 - p)2 + Aple    n(0)
S2t

n(t) a(1 - p)2 + A(1 + P)

  a(1 - p)[eslt - es2t] z(O)
'

(3.38)a(1 - p)2 + 1(1 + P)

3.7  Transient response of one-group prompt-jump model

The prompt-jump approximation can be applied to Eq. (3.32) by

setting n(t) = 0 and solving for n(t).  Then

n(t) (3.39)Z(t)

1  -  p (t)-

This solution for n(t) is substituted into Eq. (3.33) to obtain an

equation'in z(t) and p(t).  Thus

)
Xp(t)z(t) (3.40)Z (t)    =
1 - p(t)

The solution of Eq. (3.40) is

z(t)  =  z(0) exp              dt
Ft Ap(t)

(3.41)
Jo  1 - p (t)

and the flux density solution is obtained by substituting Eq. (3.41)

into Eq. (3.39) to obtain
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n(t)
1   -   p (t)

exp
1 - p(t)z(0)..   .  t   AP(t)

dt (3.42)

If p=O for t<0, then z(0) = n(0), and Eq. (3.42) becomes

n(0) ft Ap(t)
(3.43)n(t)  =                           dt1 - p(t) exp J0 1 - p(t)

If reactivity is constant, then p(t) = p, and Eq. (3.43) becomes

n(0) (3.44)n(t)  =  1-p exp,[Apt/(1 - P)]

The same result is obtained from Eq. (3.38) for t>0.001 sec  because

the contribution from the second exponential term fs then negligible.

3.8  Selection of one-group decay constant

In later analyses, reactor transient behavior will be examined in

response to input signals occurring at one second intervals.  It is

therefore desirable to select a X which will provide the best approxi-

mate transient response at the end of one second.  For the case of

p= 0.1, n(0) = 1.0, and t=1 sec,  Eq. (3.43) is set equal to Eq.

(3.26) using the values in Table 3.2.  This results in X = 0.312.  This

value of X will be used in subsequent calculations which utilize the

single-group model.  Note that, within accuracy limits, this particular

value.of X coincides with one of the intermediate values of X listed

in Table 3.1.

3.9  Reactivity input

Reactivity changes in an actual system are effected by a control

rod mechanism.  Figure 3.1 shows a block diagram of a reactivity input

system.
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CONTROL ROD.
INPUT CONTROL ROD POSITION REACTIVITY

K

u(t)
1

MOTOR r(t)   '
r

P(t)

Fig. 3.1  Reactivity input system

The gain Kr has been included in Fig. 3.1 to account for the control rod

calibration in terms of units of reactivity for uhits of position.

The control rod motor transfer function is given by

lits)  =     m                                             (3.45)K

U(S) S(1 + ST )m

which can be expressed as a differential equation as follows:

r(t) + Tmif(t)  = Kmu(t) (3.46)

If it is assumed that the motor time constant is negligible, then Eq.

(3.46) reduces to

6(t) = Kmu(t) (3.47)

Reactivity is related to control rod position by

p(t)  =
Krr(t)

(3.48)

which upon substitution into Eq. (3.47) yields

&(t)  =  K K u(t) (3.49)
m r

If K K  is set equal to one, then the units of u(t) are given directly
m r

in dollars per second, and Eq. (3.49) becomes

&(t) = u(t) (3.50)

Equation (3.50) shall be used in subsequent analysis to express the

functional dependence of reactivity on an input.



29

CHAPTER 4

STATE SPACE REPRESENTATION OF REACTOR DYNAMICS

4.1  Idtroduttion

The classical methods of control system analysis and design are

based on input-output relationships of systems generally' represented by

one nth order differential equation.  Modern control theory utilizes the

concepts of state space and state variables, and an nth order system is

represented by a set of n first-order differential equations.

The selection of a set of state variables to represent a system·

described  by  one nth order differential equation   is not. unique. In the

case of reactor kinetics, formulation of system equations from physical

considerations has led to a natural selection of state variables, and

the system is initially described by n first-order differential

equations.

It is convenient to first apply the concept of state space to a

reactor with one group of delayed neutrons and then extend it to a

reactor with six groups.  For the one-group reactor, the neutron density

n(t) and delayed neutron precursor density c(t) are the two variables

which uniquely describe the state of the reactor at any time t.  The

state space for the reactor is two dimensional, a plane, and its

coordinates are n(t) and c(t).  The two coordinates are specified by a

pair of ordered numbers, a vector.  The state of the reactor at any time

t. can be associated with a point in a plane.  Given n(tl) and c(tl),
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which· determine the reactor state  at  any  time  t 0,  and the reactivity

p(t) for t >to, the future.behavior of the.reactor can.be·predicted by

solving the system differential equations, and the change in system

state is traced as a line in the state plane.  If the system is simula-

' ted on an analog computer, the neutron density and delayed neutron

concentration can be individually displayed on digital meters,

individually recorded as a function of time, and plotted on an X-Y

recorder.  The readings from the two digital meters provide information

on the instantaneous state, and the X-Y recorder traces a line in the

state plane.  The individual recordings provide a parametric display as

a function of time.

If two groups of delayed neutrons are used to describe the reactor,

then the state space is three 'dimensional and has the coordinates n, cl,

and c 2• Specifying the values of n, cl, and ·(2 at any time t locates a

point in the three dimensional space which describes the state of the

reactor.  If the reactivity P(t) is given, the future.behavior of the

reactor is traced as a line in the three dimensional state space.  The

values of n, cl, and c2 at any instant are represented by an ordered set

of numbers, a vector.  The term vector is applied to the unique

description of a point by an ordered set of numbers and is not intended

to imply a directed line segment from the origin.  An analog computer

simulation will require three digital meters and three recorders.  Since

three-dimensional X-Y-Z plotters are not available, projections on the

X-Y, X-Z, and Y-Z planes may be recorded to afford an indirect

visualization of system behavior in the state space.  The readings from

the three digital meters provide information on the instantaneous state,
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and the individual recordings   provide a parametric display  as a function

of time.

With six-groups of delayed neutrons, the state space is seven-

system.  An ordered set of seven numbers, a vector, describes the system

state at any instant of time.  An analog computer simulation requires

seven digital meters and seven recorders.  Twenty-one X-Y plotters would

be required to plot all paired combinations of variables if the display

method of the three dimensional case was to be extended.  In this case,

the change in system state cannot be visualized in three dimensional

space, but the readings from the seven digital meters specify the

instantaneous state and the individual recordings provide the parametric

diSplay as a function of time.  The ordered set of meter readings gives

the numeri,cal value  of the system state vector  at any instant.

The above discussion may be summarized as follows:  n state vari-

ables xl, x2, z3'..., xn are needed to describe completely the behavior

of a system described by a set of n first-order differential equations.

The set of n state variables can be considered as n components of a

vector 2i, called the state vector.  A state space is an n-dimensional

space in which  xl,  0;2, · · · ,  Zn  are the coordinates . The state  of  the

system at time t can then be represented by a point in an n-dimensional

state space.  The locus of points in the state space is called a

trajectory.

Vector-matrix notation is convenient for the representation of

system differential equations in state-space analysis.  The solution of

vector-matrix differential equations is discussed briefly in Appendix A.

Detailed treatments of state-space analysis and vector-matrix equations

..
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have been published by: Zadeh and Desoer [87], DeRusso,  Roy,  and

Close [88], Gupta [89], Ogata [90], Timothy and.Bona [91], and Chen and

Haas [92].

4.2  Six-group representation

Using vector-matrix notation, Eqs. (3.1) and (3.2) can be written:

cl     -Al  0   0   0   0 0 Bl/£ Cl

C2      0  -4  0   0   0   0 82/£ C2

C3      0   0  -13  0   0 0 83/1       ca

(4       0   0   O  -A4  0
0 84/£       c4               (4·..1)

CS      0   0   0   0  -X5 0 85/£       CS

C6      0   0   0   0   0 -A6 86/£ C6

n       Al  X 2  X 3  X4  As  X6 [6k(t)-B]/£    n

On defining the generalized state vector:.

X 1     Cl

X2     C 2

X 3     C 3

(4.2)x i X4 =  C4

X5     CS

X6     C 6

)
X7     n
--

Eq. ·(4.1)·can be rewritten in the form

x(t) = A(t)21(t) (4.3)

where
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-4  0   0   0   0 0 Bl/Z

0  -A2  0   0   0 0 82/Z

0   0  -X 3  0   0 0 83/£

A(t) = 0 0   0  -A4  0 0 84/£ (4.4)

0   0   0   0  -AS 0 85/Z

0   0   0   0   0 -A6 86/£

Al 12 X 3 X4 *5 16 [6k(t)-B]/L
As  shown in Appendix  A, the solution  of  Eq.   (4.3) is given  by

Ect) = $(t,to)X(to) (4.5)

where $(t,to) is the state transition matrix..

Similarly, Eqs. (3.10) and (3.11) can be written as Eq. (4.3) with

Zl(t)

Z 2(t)

Z 3(t)

X(t)    =       ZLI (t) (4.6)

Z 5(t)

Z 6(t)

_n(t)

and

-A1  0   0   0   0 0 Alal

0  -X2  0   0   0 0 X2a2

0.0  -A3  0   0 0 13 a3

A(t) =   0 0 0  -14 0 0    X4 a4 (4.7)

0 0 0   0  -AS 0 Asas

0   0   0   0   0  -A 6 AGa6

a a a a a   a  a[p(t)-1]
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4.3  Six-group prompt-jump representation

The matrix .equation corresponding  to  Eq.   C3.29)   is

4 (t) = ACE)z<t)                      (4.8)

with

-zl (t)-

22(t)

z 3(t)
Z (t) = (4.9)

Z4 (t)

Z 5(t)

3 6  Ct)_

and

1
A(t) =    ·

1  -  p Ct)

Al[p(t)+al-1] Alal Alal Alal Alal Xlal

A2a2  A2[P(t)+a2-l] A 2a2 X2a2 X282
.

X282

X3a 3 13a3 X3[pct)+a3-1] 13a3 X 3a3 X 3a3

X4 a4 A*a4 X4a4 .A4[p(t)+a4-1] 1484 X4a4

Asas Asas Asas A 5a5 A5[P(t)+a 5-1] A 5a5

16&6 X6a6 X6 a6 A 6 a6 X686  X6[P Ct)+a6-1]

(4.10)

4.4  One-group representation

The kinetics equations with one group of delayed neutrons,

Eqs. (3.32) and (3.33), can be written in matrix notation as Eq. (4.3)

with

Fz (t)131(t) (.4.11)
Lnct,1
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and

-A       A
A(t) (4.12)

a      a[p C t)    -.11

If  reactivity is constant  with  p Ct) =p,   then the system equation  is

i(t)  =  Ax        -                                          (4.13)

where

-A     X
A                                                                 (4.14)

a a(p - 1)

The solution of Eq. (4.13) can be obtained, as shown in Appendix A,.by

taking the Laplace transform of Eq. G.13) to obtain

sX(s)    -   x.(0)       = A&(s) (4.15)

which can be solved for XCs):

X(s)  =  [sI - A]-121(O) (4.16)

where I is the unit matrix.  Equation (4.16) can be written in terms of

the Laplace transform of the state transition matrix $(t) as

X(S) = 0(s)2 .(0) (4.17)

where $(s), the resolvent matrix, is given by

0(s)  =  [sI - A]-1 (4. i8)

Taking the inverse Laplace transform of Eq. (4.18) results in

0(t)  =. £-1[sI -.A]-1 (.4.19)

where 0 (t) is the state transition matrix. Using Eq. (4.19), the

inverse transform of Eq. (4.17) can be written as

x Ct)        =       0 Ct)x (0)                                                                                                                                                               (4.20)---
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For.·the matrix defined by Eq.  G.14)

-s+A                     - A

sI-A (4.21)

-ra        s+a Cl-p )_

and  $ Cs) is given  by

sta Cl-p )             X
s2t(Ata-ap) s-Aap      s2+Gta-ap) s-Aap

0 (S) (4.22)

a                 S+X
s2t(Ata-ap)s-Aap     s 2+CA+a-ap) s-Aap

If the root approximations given in Eqs. (3.36) and 0.37) are

substituted. into Eq. (4.22), then

s+a Cl-p) A

(S-sl) (S-S2)    CS-Sl) (S-S2)
9 (S) = (4.23)

a            s+A

(s-sl)(s-s2) Cs-sl)(s-s2)

where

sl     AP/(1 - P)           '                                   (4.24
)

S2              -a (1   -   p)   -   1/(1   -   p ) (4.25)

The state transition matrix is obtained by taking the inverse Laplace

transform of Eq. (4.23):

-$11(t) *12(.t)
$(t) = (.4.26)

$21(t) $22 Ct)

where

[01 a. -   p)2  .+   A p]e           + 'X eSlt 62t

$11 (t) (4.27)
a(1· -   p ).2   +   A a   +   p)

10 .- P)(eslt..2.es2t)$12(t) (4.28)a C L - p)2 + Aa + p)
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a(1 - p)(eslt"-.es2t)
(4.29)$21(t) a(1 - .p)2 + 1(1 + P)

Xeslt + [a(1 - p)2.+ Xp]es2t
$22(t) (4.30)a(.1 - p)2 + AO +.P)

For t = 0, Eq. (4.26) becomes

'1 0
0(0)                   I                                            (4.31)

0   1
- -

which is one of the properties of the state transition matrix.

The solution for n(t) given by Eq. (4.20), with $(t) given by

Eq. (4.26), is identical to the result obtained previously in

Eq. (3.38), except that Eq. (4.20) gives, in addition, the solution

for the second state variable z(t).

4.5 One-group prompt-jump representation

The system based on the prompt-jump approximation is described by

Eqs.  (3.39)  and  (3.40).    If  the reactivity input  is· considered, ·the

system equations are augmented by including Eq. (3.50) as follows:

· Xpz (4.32)Z 1 -P

p                u                                                                                                                                                                          (4.33)

n      z                                                G.34)
1-P

These equations are expressed in matrix notation  as:

x   ICE, u) (4.35)

y    =    h Qi) (4.36)

where

i



-.

38

Z
(.4.37)X

3-                                                           '

3 1  (z,    p)-
f                                                              '(4.38)

-f 2 (u)

fl(Z, P)
Xpz (4.39)

1-P

f2 (u)    = u (4.40)

(4.41)Y=n

and

Z
h (x) h Cz, p ) (4:42)

1-P

Equation (4.35) is the system nonlinear vector-matrix differential

equation, and Eq. (4.36) is the scalar nonlinear measurement equation.

The system has a single input u and a single output,y.

4.6   Linearization of the system ·and measurement equations

The system and measurement equations arb·linearized by considering

small perturbations about nominal values of the neutron density n*,

normalized precursor level z*, and control input u*.  To find the

differential equations relating the deviations, expand Eq. (4.35) in a

Taylor series

3L 1
x       ='     L(30 ,    u*)    +   *    1             Qi   -   1*)

- 'X*

3f

+ E 1    (u -u*) + ... (4.43)
U*

Define

6x X - X* (4.44)
-                                       -                      -
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6u  = u-u* (4.45)

note that

4*        =       f Cx*, u*) (4.46)
--

then

Of    A- 4* (4.47)
- -

Finally, substitute Eqs. (4.44)·, (4.45), and'(4.47) into Eq. (4.43),

retaining only first-order terms, to obtain

3 f         3f

64  -  ex Ix* GE + .E lu* au                                         (4.48)
where

3fl ••• 3fl
3xl 312

Of         ·      n
-

(4.49)
3x       ·       ·

3 fn a-f-n

axl "' axn
-           -

and

3f
3u

3f
-

(4.50)
3u       ·

3f

3u

The measurement equation    (4.36) is similarly expanded to obtain

3h
y      h(x*) + -

1

«  -   '*1 + ... (.4.51)
-    3x

- .X*

which can be written

6Y 111 | 6x (4.52)
3x ,
- 'X*
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where

.,

ay    y - hQi*) (.4.53)

and

, 3h Ah  . . .  ah 7 (4.54)
.ix                     ly,                  ax.  j

By defining

3f
A -Z (4.55)

3x

3f

D -          (4.56)
3u

and

3h (4.57)H -
3x

Eqs. (4.48) and (4.52) can be written

6Q  = A6x + D6u (4.58)
- I

ay  = Hax (4.59)

The matrices A, D, and H corresponding to Eqs. (4.32), (4.33) and

(4.34)   are

Ap* Xz*
1 - p*  (1 -.P*)2

A                ·                                              (4.60)

00

0

D                                                                                                                                         (4.61)
1
--

H    l-1 - .P*  a _ P*) 2.J                                (4.62)
F i      z*   7
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For the particular case in which the reactor is at equilibrium, the

nominal values are:  z* =: 1.0, p* = 0, and u* = 0, and the system and

measurement equations become

0   X           0

ST                                          621     t.                  6u                                                                                                        (4.63)
00  1
- - --

Gy          El      1]   6x (4.64)

where

z - 1.0     -hz
6x                                                           '  (4.65)

P        -P-

6u           u                                                                                                                         (4.66)

and

6y  =  n- 1.0 =6 n (.4.67)

4.7  Solution of the state-space e4uations with discrete-time inputs

For a discrete-time input, u is constant for T seconds which can be

expressed as

uct) = u kT<ts(k + 1)T G.68)
k

After substituting Eq. (4.68) into Eq. (4.33) and integrating,

P (t)    =    P (tk)  + uk(t  - tk) (4.69)

which can be written

p (t)    =   pk + uk(t  - tk) (4.70)

where Pk is the reactivity at the beginning of the interval.  Equa-

tion (4.70) is substituted into Eq. (4.32) to obtain
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.Az[pk   +  Uklt   -.tic)]                                                                                                                  C4.71)
z  =   1-p k- uk(.t - tk)

which when integrated yields

1 - Pk,

Flz (t,-1 - (4.72)
2.n 1                               -       f-        tn i.l    -    p k    -    ulc (t    -     tk)      -A Ct    -    tk)

L. Zk 1 k    L

At t = tk*l, Eq.  (4.72) is solved for z to obtain
k+1

-     1   1.- Pk \  -· .1

zk+1
K                 _uk                    1    _    p k    -    ukT f

z. exp - Enl -1-AT (4.73)

If uk = 0'then integration of Eq. (4.71) results in

G Ct)1  _ Apk
(4.74)En'-1 -

Ct      -     tk)

L Zkj 1-Pk

which for t=t yieldsk 11

-      -

ApkT
(4.75)

Zk+1 zk exp  1 _ Pk-

Similarly is obtained from Eq. (4.70) with,t t Thus
' Pktl k+1

(4.76)Pktl  =  Pk + ukT

Equations (4.73) and (4.76) provide the finite.difference solutions of

the system equations at the sampling instants kT.  These solutions are

exact  and  do not involve any. approximation  of the derivative.     If

uk = 0, Eq. (4.75) is used in.place of Eq. (4.73).  The corresponding

finite difference measurement equation is
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Z
k                         · -                        (.4.77)

nk     1 - Pk

These finite difference equations may be expressed in matrix notation

as follows:

(4.78)
Ektl &(ffk'uk)

and

(4.79)
7k               h (4)

where

4           [ill                  -                                                                                                (4.80,

FA    /   1- .P k i
gl       zk exp   u-'  Zn'll. -P k- ukT -

AT 
(4.81)

Lk

g2     pk + ukT
(4.82)

and

Z

h(x )        k                                               (4.83)-k 1 - Pk

4.8  Solution of the linearized equations with discrete-time input                I

If the delta notation of variable deviation is omitted, Eq. (4.58)

can be written

x = Ax + Du (4.84)
- -

1 1 1
r   I t         :

When u =.u  for
t.<tst the Lap lace transformation ·of   1                         1k k+1' 1.                          i

d

Eq. (4.84) yields

U

sX(s)     - xk AE(s)    +   D
-k (4.85)

which is solved for X(s) as follows:
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X(s)  =  [sI - A]-1 fik + -1- [sI -.A]-1 Duk (4.86)
i

S

The solution for I(t) is obtained from the inverse transformation of

Eq. (4.86) as

ft
X(t ) 0 (t  -  tk)4  + uk $ (t   -   T) Ddz (4.87)

't
k

or

X(t) 0 (t  -  t  )x    + u- 4 (T) DdT (4.88)
ft-tk

- k -k    k j,

A t t=t
k+1

rT

Lktl      =      0 (T)lk   +   uk            0 (T) Ddr (4.89)
JO

Equation (4.89) can be written

ik-1.1  =  $2fic + Gu (4.90)k

where the control distribution matrix

fT

G  =    0(T)Ddr (4.91)
JO

As shown in Appendix A

fT

   0(T)dT  =  A-1[0(T) -
I] (4.92)

0

therefore

G  =  A-1[0 - I]D (4.93)

when A- exists.1

»
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On applying the above procedure to Eq. (4.58), and using the A and D

matrices of Eqs. ·(4.60) and (4.61)

:

exPI''T,;*}     -'* [1   -   ex'll,I.,;,1J
* = p*(1 - P*) (4.94)

0                    1

-z*T' z* F- , 1 ·ATp* n
p*(1 - p*) - AFF'_1 - expll - p*IJ

(4.95)G=

T

If the nominal values correspond to equilibrium conditions,

z* = 1.0 and p* = 0, and Eqs.· (4.94) and (4.95) reduce to

1  AT
(4.96)*=

0    1
-      -

XTr
2                                                      (4.97)G 

T

Substituting Eqs. (4.96) and (4.97) into Eq. (4.90) results in the

discrete system equation

1 AT AT2/2-
(4.98)

 +1 = _0   1-  + _T    uk
and the discrete output measurement equation obtained using   Eq.  (4.62)  is

yk      =       [1          1] 4 (4.99)

Equations   (4.98.).  and   (4.99)  will  be  used in deriving the optimal closed

loop control law for the regulator problem.
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CHAPTER 5

OPTIMAL CONTROL OF NUCLEAR SYSTEMS BY         '
STATE VARIABLE FEEDBACK

/

5.1  Introduction

Regulation of neutron density in. a reactor requires a feedback

  control law which will compensate for disturbances that occur infre-

quently,and randomly anywhere in time from zero to infinity.  If atten-

tion is focused  on a single dis'turbance and system .noise is neglected,  a

deterministic regulator problem is formulated.

Dynamic programming is readily applied to ,linear discrete-time

systems, and in the case of a quadratic pePformance index, leads to the

1

direct calculation of the optimal linear feedback control law., If.the

performance index  is   to be minimized  over' a finite  time   interval,   the

feedback control  law  is a function  of  time;   fgr. an  infihite  time Inter-    '

val, the feedback control law is stationary and.all state variakles are

fed back through fixed gains.  Thus, discrete dynamic programming yields

the solution to the reactor regulator problem, if the continuous system

is sampled at discrete time interrals.

For a general discussion of dynamic programming, see Bellman [93],

Bellman and Kalaba [94], and Dreyfus [95]; and for the dynamic program-

ming solution of discrete-time sys'tems .with a quadratic performance in-

dex, see Tou [96, p. 45; 97, p.  3451 and Lapidus and 'Luus [9.8, p. 155].

5.2 Dynamic programming solution  of the .linear regulator problem    

For the discrete-time linear system described by

3

, '
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=  Ax  + GE (5.1)4-1 --k    -k

and a quadratic performance index of the form

I          (tqxk + c.t-1) (5.2)
N

k=l

where 2   is the transpose of Ek' Q is an n>(n positive-definite or semi-

definite symmetrical matrix, and c is a positive constant, the optimal

control law which minimizes IN' as shown in Appendix B, is given by

11. B x (5.3)
K      N-k-k

where

GTIQ + Pj-110 (5.4)B-
j            T

G [Q + Pjj-1]G + c

and

P.     [0 + GBj]T[Q + Pj- ][# + GB ] + cB:B (5.5)
J                                                             Jj

In Eq. (5.3), the feedback matrix BN-k' a row matrix, is obtained from

the iterative solution of Eqs. (5.4) and (5.5).  The matrix P. defined
J

by Eq. (5.5) is nxn and symmetrical. Starting with P  =.0, Eqs. (5.4)

and (5.5) yield Bl, Pl, 82, P2, ·•· •  If the upper limit of s
ummation

in Eq. (5.2) is allowed to approach infinity, then B. converges to a
J

stationary matrix B and Eq. (5.3) reduces to

uk = Bak
(5.6)
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The product of the row·matrix B and the state vector   yields the

optimal feedback u  as indidated in Eq..(5.6).

5.3  Performance indides and constraints

.
'  '  Using Eq. (4.65), the general performance index given by Eq. (5.2)

can be written in expanded form as a,function of the delayed neutron

deviation, reactivity, and reactivity rate:

N

IN  =   I  (Qllazk + 2Q126zkPk   Q22Pk + cu -1) , (5.7)
k=1

where

6 zk     z  -
1.0 (5.8)

k

'

 and                                                    '

Qil Q 12

Q                       ·                                           (5.9)

_Q12 Q22_

To regulate the neutron density, a performance index,which is a

function of the neutron density deviation is defined by:

N

t,N          k=l
I 611 

(5.10)

where           '

6nk    =    nk  - 1.0 (5.11)

Equation (4.99) written in expanded form yields

6nk ,=  6zk + Pk                                       
        (5.12)
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Substitution of Eq. (5.12) into Eq. (5.10) gives

N

IN  =   I  (6zi + 26zk + P )
(5.13)

k=1

Comparison of Eq. (5.13) with Eq. (5.7) results in

1   1

Q                                                               (5.14)

1    1
-     -

(5.15)
R=O

The'Q matrix defined by Eq. (5.14) satisfies the performance index of

Eq. (5.10).  The optimal control law obtained using this matrix will

minimize the sum of the squares of the neutron density deviations at

sampling instants.

To reduce the magnitude of the reactivity rate which is

applied to correct a disturbance, a penalty term which weights u -1

can be added to Eq. (5.10).  Similarly, reactivity can be returned to

zero more quickly after a disturbance by adding a penalty term wh
ich

weights Pk.  With these additional terms, Eq. (5.10) becomes

N

I                      I       (6nt   +   aek   + cut-1) (5.16)
N     k=1

where a and c are the weighting coefficients.  If Eq. (5.12) is

substituted into Eq. (5.16), the corresponding matrix

11
(5.17)

Q
1    1+a

will   result   in the minimization  of   the   sum  of the squares   o f   the

neutron density deviation and the reactivity at the sampling instants.

Z.
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5.4 Reactor transient response  ·and the performance index

The optimal control law given by Eq. (5.6) is for a linear system

as described by Eq. (5.1).  Thus, in order to apply the method to the

control of a nuclear reactor, the linearized discrete-time Eqs. (4.98)

and (4.99) are used, and the 0 and G matrices are substituted into

Eqs. (5.4) and (5.5) with X = 0.31 and T = 1. Arbitrary values are

assigned to the a and c weighting coefficients of Eq. (5.16), and the

Q matrix of Eq. (5.17) and the coefficient c are substituted into

Eqs. (5.4) and (5.5).  Equations (5.4) and (5.5) are solved iteratively

with  N+00 to obtain the stationary control  law... The Calculation

of Feedback Matrix computer program listed in Appendix G iteratively

evaluates the B matrix until the difference between successive iter-

ations diminishes to 10-7.  Table 5.1 lists the B matrices calculated

for nine combinations of a and c.

TABLE 5.1

FEEDBACK MATRIX COEFFICIENTS

a     c         bl             b2

0      0 -0.8658008 -1.1341991

0      1 -0.5403229 -0.7918012

0     10 -0.2411739 -0.4557331

1      0 -0.6372618 -1.0987756

1      1 -0.4680735 -0.8534584

1     10 -0.2313746 -0.5005205

10      0 -0.2880492 -1.0446476

10      1 -0.2658030 -0.9705480

10     10 -0.1829017 -0.6938182
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The transient response of the reactor is calculated using the

nonlinear system  Eq.    (4.78), the nonlinear measurement  .Eq.    (4.79),   and

the linear feedback Eq. (5.6).  The Calculation of Transient Response

computer program listed in Appendix G solves these equations and plots

are generated by the Plot Program for Transient Response computer

program.  Equation (4.81) is unsatisfactory for numerical evaluation

with small values of u ; therefore, a series expansion for Eq. (4.81),

derived in Appendix C, is used in the computer program.

Although 1 sec was selected for the control law sampling interval,

the system response is evaluated at intermediate sampling instants of

0.1 sec to demonstrate that there is no inter sample ripple.

Figure 5.1 shows the reactor transient response with an initial

disturbance of p(0+) = 0.1 and performance index weighting coefficients

a = 0 and c = 0.  At t = (0-), the system is at equilibrium, which

corresponds to'p(0-) = 0, 6z(0-) = 0, and 6n(0-) = 0.  At t = (0+), a

step change of reactivity occurs which gives rise to the prompt jump

in neutron density. The control law minimizes the performance index

given in Eq. (5.10) by driving the neutron density deviation to

essentially zero in 1 sec.  The control input at time zero is

determined from the product of PO and b2'from Table 5.1 or

uo  =  -0.1134 $/sec (5.18)

The initial control effort is proportional to the reactivity distur-

bance and inversely proportional to the sampling interval.  If the

sample interval is doubled, the neutron density deviation is driven to

zero in 2 sec and the initial control effort is halved.  Similarly, if

the sample interval is halved, the initial control effort is doubled.
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Figures 5.2 and 5.3 describe system behavior for the same

performance index as above, except the initial conditions are different.

For Fig. 5.2:  p(0-) = 0, 6 z(0-) = 0.05, and 6n(0-) = 0.05; for

Fig. 5.3:  p (0-) = 0, 6 z(0-) = -0.05 and 6n(0-) = -0.05. These initial

conditions correspond to a system which has not recovered from a prior

disturbance and consequently is not at equilibrium at t = (0-).  The

disturbance for Fig. 5.2 is p(0+) = 0.05, and p(0+) = -0.05 for

Fig. 5.3. In both cases, the neutron density deviation is driven to

zero in 1 sec, and the reactivity and delayed neutron deviation

asymptotically approach zero.

Comparison of Figs. 5.1, 5.4, and 5.5 shows ·the effect of, adding a

control penalty term to the performance index with c = 0, d = 1, and

c = 10, respectively.  Here, the magnitude of the initial control

effort is reduced at the expense of the neutron density deviation not

being returned to zero in 1 sec.  In Fig. 5.4, the neutron density

returns to 1% in 2.6 sec and for Fig. 5.5 in 7.1 sec.

The effect of adding a reactivity term to the performance index

can be seen by comparing Figs. 5.1, 5.6, and 5.9, and Figs. 5.2 and 5.10.

In Fig. 5.10, the area under the reactivity cur4e has been reduced at

the expense of the neutron. density deviation remaining off-normal for a

longer period.

Figure 5.7 shows the system behavior with uniform weight assigned

! to the neutron density deviation, reactivity, and control effort.

Figure 12 shows the effect of reducing the weight assigned to the

neutron density deviation.  Comparison of Fig. 5.7 with Figs. 5.8 and

5.11 shows the effect of increased weight on control effort and

reactivity, respectively.
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Implementation  of the optimal control law given  by  Eq.   (5.6)

requirds that the system state be known at each sampling instant.  In

a nuclear reactor, the delayed neutron precursor ddnsity. and reactivity

cannot be measured; consequently, they must be estimated from

measurements of the neutron density.  An optimal estimator which

performs this function is derived in the following chapter.

(
1
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CHARTER 6 1 1

ESTIMATION OF,NUCLEAR SYSTEM STATE VARIABLES

. 2          ./
6.1  Introduction

In 1806, Legendre [103] established estidation theory as a

mathematical technique with the first publication.qn least-squares

estimation.

In 1960, Kalman [104] solved the ,Wiener proble,m for discrete-time

systems using state-transition analysis and orthogonal projections, and

presented the principle of duality which showed the relationship,

between stochastic estimation and deterministic. control.   In a pape'r
t

on the general theory of control systems [105], he introduced the

concepts of controllability and obsetvability. ,At the joint automatic

control conference, Kalman and Bucy [106] extended the method to

continuous systems.     In a fourth paper, Kalman [107'] summarized  the

6ontributions  of the earlier papers and added ai, riumbe2 of theorems and        

examples.

Ho [108] demonstrated the correspondence between the well-known

method of least squares [109] and the optimal-filtering theory'of

Kalman.  He showed that most of the results in linear filtering andi      1

prediction theory can be easily derived via a simple lemma on matrix

inversion.

Lee [110] in his chapter on optimal estimation discussed:  the

Wiener filter, the  ontinuous and, discrete Wiener-Kalman f ilter,
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least-squares estimation, maximum-likelihood estimation, and the

Bayesian approach to estimation.

Ohap and Stubberbud [111] developed·a technique for estimating the

state of a nonlinear system which combines Kalman's procedure with

quasi-linearization.  Their technique is not optimal in the strict sense

since the linearized dynamic equations are approximations to the non-

linear equations.  One advantage of the method is that unlike perturba-

tion .equations no a priori state of the system must be assumed.

Cox [112] surveyed the methods available for resolving discrete-

time estimation problems:  Bayesian and weighted least-squares

estimation.  Least-squares estimation was applied to nonlinear plant and

measurement-vector-difference equations. A cost function was formulated

which consisted of a linear combination of quadratic forms in errors of

an a priori estimate, present observation, and plant noise.  The con-

straint due to the plant equation was included by using a Lagrange

multiplier, and minimization of the cost function resulted in a pair of

nonlinear equations. The latter were solved iteratively to obtain the

optimal estimate.  Linearized Kalman filtering was indicated as being

equivalent to a single iteration.

An alternate method of solving a cost function also was described.

This method results in a two-point boundary value problem which is

solved by successive approximations.  M-step smoothing was introduced as

a method to alleviate the difficulty of computer memory requirements

increasing linearly with the number of observations.  It was pointed out

that for systems with no plant noise, the linearized Kalman filter is

asymptotically open loop because the filter gain approaches zero.
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M6wery [113] presented an optimal filter solution for a plant

described by a nonlinear-vector-differential equation and a nonlinear-

vector-measurement equation.  The nonlinear plant equations were

linearized about a nominal solution and a set of difference equations

was   ·   obtained. The nonlinear measurement equation was similarly

linearized. A criterion function was formulated which consisted of a

linear combination of quadratic forms in errors of an a priori estimate

and present observation.  Minimizing the criterion function with respect

to the new estimate resulted in a set of nonlinear normal equations.

The solution of the linearized plant equation was used to derive the

relationship between the a priori and a posteriori error weighting

matrices.  An iteration scheme was proposed to reduce the disparity

between the nominal state vector and the true value.

Deutsch [114] in a chapter on differential equation techniques

for linear filtering and prediction included the Kalman- Bucy method,

discrete-time estimation, nonstationary estimation, and Bayes'-

estimation for*ulation.

Sridhar and Pearson [115] presented an approximate solution to the

problem of digital sequential, least-squares estimation of states and

parameters in nonlinear processes.  Observations were assumed to be

linear, and a cost function was formulated which consisted of the sum of

a linear combination of quadratic forms in errors of the state vector

estimates and observations. A Lagrange multiplier vector was used to

add the plant constraint to the cost function.  Minimization of the cost

function resulted in a nonlinear two-point boundary value problem which

was solved by invariant imbedding to obtain the filter equations.  An

example was presented for the solution of a system represented by a
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nonlinear differen2ial equation.  Integration was used to obtain the

solution of the nonlinear plant equation at discrete time intervals.

Similarly, the plant variational equation was integrated to obtain the

value of the derivative of the plant nonlinear difference equation with

respect to the state vector.

Peschon, et al., [116, p. 70; 117, p. 6-8] derived an extended

Kalman filter by linearizing the process and measurement nonlinear

finite difference equations around the last estimate.

Phillips [118] used least-squares theory to formulate a cost

function for a discrete-time nonlinear plant and nonlinear measurement

system.  A Lagrange multiplier was used to include the plant equation

constraint.  The two-point boundary value problem which results from

the minimization of the cost function was solved by invariant imbedding

tO obtain the filter equations. The resulting filter equations extend

the earlier work of Sridhar and Pearson [115] by considering a nonlinear

measurement equation.'

Sorenson [119] investigated optimal estimation and control policies

for discrete-time, stochastic, dynamic systems. Perturbation  tech-
/

niques were applied, terms higher than first order were retained, and

the estimation and control policies were determined using the Bayesian

approach.  In Reference 120 he summarized Kalman filtering techniques.

A system consisting of a nonlinear plant and nonlinear measurement equa-

tion was analyzed by using linear perturbation equations with the

coefficients evaluated at nominal values.

Sage and Masters [121] showed the relationship betwebn least-

squares-curve fitting and optimum filtering for linear systems.  The

Kalman-Bucy solution to the Wiener filtering problem was presented using
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least-squares.techniques and. the Bayesian rule.  Relationships between

least-squares, minimum-variance, and minimum-mean-squared-error

estimates also were described.

Irwin [122] investigated estimation for discrete-time systems.  The

Bayesian, maximum likelihood, conditional expectation, dynamic pro-

gramming, orthogonal projection, and two-point boundary value problem

approaches were used to derive the Kalman filter equations.  The solu-

tions for nonlinear systems consisted of: the Kalman filter linearized

about the present estimate; iterative solution of the equations

resulting from the dynamic programming approach; and the two-point

boundary value problem approach.  A new approach was presented for the

nonlinear estimator which utilized a performance index consisting of

the logarithm of the conditional probability of the present estimate

based on a set of measurements.  Minimization of the performance index

resulted in a set of nonlinear algebraic equations whose solution yields

the optimal estimate.

Pearson [123] extended the the work of Sridhar and Pearson [115] to

include nonlinear measurements. His result was the same as that of

Phillips [118].

Liebeldt [124] included a chapter on linear discrete dynamic esti-

mation and derived the Kalman filter.

Sage [125] devoted chapters to optimum state estimation in linear

stationary systems, optimum filtering for nonstationary continuous

systems, and least-squares curve fitting and state estimation in

discrete linear systems.

Of the estimation methods outlined above, the iterative procedure

presented by Cox comes closest to providing the solution for the

\.
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deterministic nuclear, system state estimator.  The filter gain for a

deterministic system with the fastest observation scheme is different

from the filter gain derived for a stochastic system, so a sequential

development of a nuclear system state estimator is presented starting

with discrete-time equations and a linear Kalman estimator.  Although

the estimator derivation is based on discrete-time difference equations,

integration is introduced into the estimator to make the method directly

applicable to a plant described by a nonlinear vector differential

equation and nonlinear measurement equation.

6.2  Kalman filter

For the discrete-time linear system described by

4+1 04
(6.1)

and

' yk = t4 (6.2)

the fastest observation scheme is uniquely determined by

4,+1    =    081' + fl (Yk - 9k) (6.3)

where 24 is the estimate bf the system state at instant k; fl is the
**

first element of the dual basis of Il, ..., fn' where

*
f. (*T)-iHT (6.4)
-1

and

fk 11 k ' (6.5)

If the dual basis of F is

*         *          * (6.6)
F                 [fl,.  · · · · ,   41
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then

*T -1
F     (F ) (6.7)

or

F         [fl,  0,0' ·fnl (618)

Eor the discrete-time linear reactor  Eqs.   (4.98) · and   (4.99),

1    0 -1  1         1
*      ·                                                        (6.9)fl

_AT        1- -1* -1-AT- .

1    0-2  1         1*
  '                                                              (6.10)

AT   2     1     -1- 2XT

11*
F                                                               (6.11)

1-A T.1- 2AT
-

(2XT - 1)/AT   1 - 1/AT
F                                                               (6.12)

1/AT 1/AT,

and

(2XT - 1)/AT
fl                           2                                                                                                           (6.13)

1/AT

Thus the ehtimator described 'by Eq.  (6.3) with the . 1 of Eq.  (6.13)

will generate an optimal estimate of the system state, after a distur-

bance, using a maximum of two output measurements.  In general, for an

nth-order system, the optimal estimate is obtained using a maximum of
1

n output measurements. t'.

As shown 'in Figs. 5.1 through 5.12, the reactivity and delayed

'.                *

neutron deviation  do not correspond   to the nominal values   of   z     =  1.0
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and p* = 0 which were assumed in deriving Eqs. (4.98) and (4.99);

therefore, it would be better to use Eqs. (4:62) and (4.94) to evaluate

the H and 0 matrices, except the nominal values must be known.  The

extended Kalman filter method uses the last estimate as the nominal

value, which is satisfactory if successive values do not change rapidly.

As will be shown later, there is a very large change in nominal values

after a reactivity disturbance; thus  the extended Kalman filter fails

to provide the correct estimates of the reactor state.  The question
 of

unknown nominal values is resolved by using the iteration method

proposed by Cox [112].

6.3 Linear estimation by matrix inversion .

For the dynamic system described by

(6.14)
Ek+1    =    0(k  +  1,  k)Ek

and

Yk = Hk4 (6.15)

assume k output measurements have been made which are related,as

follows:

Yl                     Hlxl

Y2 H 2

Yk = Hkjk (6.16)

These measurements  can be referred  to  2Sk by using  Eq.   (6.14)  with

xj  =  0 (j,k)4, and written in composite  form.     Thus
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Yl              Hl $(1,k)3 c

Y2            H2 0(2,k)2Ek
·                                                  (6.17)

fk_ _  0(k,k)313-'

Equation (6.17) can be partitioned to yield

Yl      Hl$(l,k)
--------

Y2 H20(2,k)
--------

(6.18)2ik

2'k-             3,#(k,k)_

and written more compactly as

4 = 44 (6.19)

where  c' is the vector of output measurements, and 4 is the composite

matrix shown in Eq. (6.18).

The fastest observation scheme is obtained when the number of

output measurements is equal to the order of the system.  With k = n,

Eq. (6.19) can be solved for Ek by left-multiplying by < ,

T44 = <44 (6.20)

and by [HTH ]-1, to finally obtain
-k k

1%      =       I cl -1 4 (6.21)

which gives the optimal estimate of the state at instant k for a set of

k measurements.
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A  sequential form for.estimation  can be obtained 'bf writing

Eq. (6.18) as follows:

4-1 -4-14-1
---- -------- (6.22)

yk_

where Zk-1 is a vector of k-1 output measurements, and
H is a
-k-1

composite matrix defined bythe first k-1 elements in Eq. (6.18).  The

vector fic-1 can be written in terms of  .  With simplified notation

 ic-1  =  0-1 (k,k-1)Jik = *k 12fk .(6.23)

and substitution of Eq. (6.23) into (6.22) yields

4-1 4-19-kll
----

-------- xk
(6.24)

'H.-k         K
-   -     -

Solution of Eq.  (6.24) for Ek is obtained by .multiplication by the

inverse matrix:

 -1*kil -1 lk-1

ak ----                                                                              (6.25)

Hk        Yk ·-  -   -

and  compa·rison  with  Eq.   (6.. 21) shows  that

1lt,-1 lk-1     -1«--      ·-   IC14-1 k-1'ill  +  H Hkl-l '['*Tlg -11   H l (6.26)

Hk . .1 1

,  .  'T     . -T
where·. (021) '= *k-1. Therefore
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4 -  I'Cl -14-l'kli + *kl-1 ['i 111 -14-1 + H ykl        .    (6.27)

Equation (6.27) can be written in terms of 2Ek-1 by substituting for

Fic-1 from Eq. (6.22) to obtain

4 "  I'JI<-14-1' 11 + *1,1-1 ['21<-14-13*-1 + HI'kl (6.28)

Equation (6.28) can be rearranged into a form containing an error

correction term by multiplying both sides of the equation with the

result that

[ *Cl<-lyk-1*211   +   Hklxk   =   *I  11       H         x            + HTY (6.29)-1-k-1-k-1        k-k

T
If the term H H e is added and subtracted to the right hand side,--k--k k-llk-1

Eq. (6.29) can be written as follows:

[0-T H H 0-1      +  H  H]x. =   0        IL H 0-1 0   xT              T         -T  T
k-1-k-1-k-1 k-1    k k -k k-1-k-1-k-1 k-1 k-1-k-1

T               T+1 1-H 0     x  '    -  H  H 0     x-k k k-1-k-1 k k k-1-k-1

+ HTyk (6.30)

Multiplication of both sides of Eq. (6.30) finally yields

xk = 01,-11£k-1 + I* .lf -1 1,-1* 11 + Hxl-111 [Vk - HkAk-l k-11

(6.31)

which is in the form of Kalman's Eq. (6.3), except that 2Ek is generated

with·the Yk output sample.  This is the filtering equation.
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If  -1 and: Ac are.defined 'as.the optimal filter outputs,.then an

optimal estimate is predicted by. using the transiti6n matrix to yield

x= $ R (6.32)
-k   k-1-k-1

where Ek fs the predicted value.of ik obtained using the Yk-1

measurement.  Equation (6.32) is the prediction equation.

If in·Eq. (6.31)- and' xk are replaced by  k_1 and R  -' Ek-1 -k,

respectively, and Eq. (6.32) is, used, then Eq.. (6.31) becomes

f k  -xk  +    *Cl<- A-1*21  +  HkHkl -1   Hk[Yk  -  HiA'1 (6.33)

The system, state at t = (k + 11)T is predicted from

(6.34)
lk+1 = Wkik

If both sides of Eq.  (6.33) are multiplied by (Dk and Eq.  (6.34) is

substituted for the left side

x    = 01 k t #kID-T HT  H   $-1  + H Hk]-1 H [Yk - Hk kj     (6..35)-k+1 k-1-k-1-k-1 k-I

which is.Kalman's formula with

T

fa  =  *k[*k.1 -114,-1*Cl +  H Hk] -' Hk (6.36)

Equation (6 .33) yields the optimal estimate of the system at

instant k. using an a priori estimate  k and an error correction term

based on' measurement Yk.   1£k is the a posteriori estimate.  A new

a priori estimate is generated using Eq. (6.34).

Equation (6.35) generates a new a priori estimate from the old

a priori estimate with an error correction term based: on the current

measurement.
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6.4  Linear estimation by least-squares minimization

The least-squares estimate of 3  is obtained by minimizing the

following cost function:

J   =    (Y 1   -   Hlil )2   +   (Y2   -   HID )2   +   .  . .   +    (Yk   -   Hlcik)
2 (6.37)

subject to

(6.38)4 =  k-14-1

Equation (6.37) can be written using Eq. (6.22) as follows:

J   =   [4-i   -  4-14-111'[4-1   -  4-14-11   +   Cyk  -   Htclik) 2 (6.39)

The constraint defined by Eq. (6.38) can be included by defining a

vector Lagrangian multiplier X and augmenting Eq. (6.39).  The new cost

function is

J ='[Zic-1 - Lk-lak-111[4-1 - 1 k-llk-11 + (Yk - Hkxk)2

+    ATI     - uk-l -11 (6.40)

Setting the. gradient  of  J with respect   to  214-1,  xk,   and A, respectively

equal to zero yields

3J                         T        T
3              =  -2 [4-1   -  4-l -11   lik-1   -   A   ek-1   -

0 (6.41)

xk-1

and

tic  =   -2[yk   -   Hkak]THk  +  AT   = 0 (6.42)

and

3J                  T
 51-    =       [lk     -      *k- lak- 11           =

0 (6.43)
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Equation (6.43) is the original system Eq. (6.38). Equa2ion (6.42) is

solved for AT to obtain

T
A      =-  -2 [Yk   -   Hklf ]Hk (6.44)

Tand X  is eliminated from Eq. (6.41) with the result that

T   T     .T T  T T
 k-llk-1 - Mk-A-131,-1 - Dk-li , k -- 01 -11 AA (6.45)

which on multiplication by *k 1 yields

-T  T
'I X_14-1 - *k-A-A-11 k-1 = H Yk - HXA, (6.46)

If x is replaced by using Eq. (6.38), then Eq. (6.46) can be
-k-1

written

'Jile-A,-1 - 'k 1<-A-l'klll'k = H 'k - H Hk k (6.47)

which, in turn, can be rearranged in the form of Eq. (6.27) by using

the matrix inverse.

An  alternate cost function  can be defined  [.112,   113.,   122] :

J   s    [11(1(Ek-1   -   a) 1.2   +    (Yk   -   Hk4)2   +   AT[4   - Mk-14-11 (6.48)

where a is the previous estimate. Setting the gradients of J with

respect to x and 4' respectively equal  to zero yields
-k-1

3 J                    T     T
3x       '-  2 [1 g.(1!k-1  -  2)]  11,   -  A   ek-1  - 0 (6.49)
-k-1

Ek  =  -2 [yk  -  Hk#c]THk  +  AT  = 0 (6.50)

and elimination of X results in

I
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[1!0 Ok-1  -  ·a·)] Tlt,*   =   [Yk  - lik  ,]THk01,-1 (6.51)

Transposing Eq. (6.51) and multiplying by #Cil leads to

'ill-H A-1 - ' 11HGTHE,3 - H yk - ' Hklk (6.52)

Equation  (6.38)   is  used to eliminate 2Sk-1  with the result  that

'ki,iX'kllis  - 'k11HX'a - H yk - H Hk  (6.53)

Equation (6.53) can be rearranged in the form of Eq. (6.29) which is

obtained by the matrix inverse.

6.5  Nonlinear estimation by least-squares minimization and iteration

For the nonlinear plant defined by

ak = f( k-1) (6.54)

and the nonlinear measurement equation

71,  =  h (4) (6.55)

an optimal estimate of the system state can be obtained by minimizing

the following cost function:

J  =   [litt (4-1  -   a)]2  +   [yk  -  h (1[k) ]2  +  AT[ c  -  f(4-1) 1 (6.56)

where a is the previous estimate. Setting the gradients of J with

respect  to 2Ek-1  and 4 ' respectively equal  to zero yields

33
3x          =  2 [ s (ffk-1  -  ·a)]Tlict  -  ATFk-1  = 0 (6.57)
-*-1

and

3J                                                              (6.58)
alk  -  -2[Yk  -  h (Ik)]THk  +  AT  =  0
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where

af.(2Ek-:L 
F            -                                                 (6.59)
k-1 = 325*-1

and

Hk = ':2') (6.60)

Eliminating AT from Eqs. (6.57) and (6.58) results in

[Me, (lsk-1  -  a) ]T 11*       =   [Yk  -  h (xk) ] *HkFk-1 (6.61)
./

and after transposing, Eq. (6.61) becomes

101, (sk-1  - a)  =  F -11' [Yk -  h(xk) 1 (6.62)

Equations (6.54) and (6.62) must be satisfied for J to be a minimum.

The estimation process may be interpreted as follows.  Given the

last  estimate f based  on a measurement  yk-1, a revised estimate  lik-1  is
made which must satisfy

H (x ·- a) = 0 (6.63)-0 -k-1   -

This revised estimate is used in Eq. (6.54) to obtain an estimate of

2ik' which, in turn, must satisfy .

 k - h (4) -
0 (6.64)

Nonlinear Eqs. (6.54) and (6.62) can be solved by iteration by

using a first- order Taylor expansion:

i+1 i+1 i+1    i
2 I   = f (lk-i) = f (]Ck-1) + Fk-1 (Xk-1 - Xk-1) (6.65)

i+1 i+1    i
h (31,      )    R   h (lsk)   +  Hk   (xk        - xk) (6.66)
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where the superscripts identify the iteration sequence.  Equation (6.62)

at the i+1 iteration is

T i+1 i+1
.HuHa(Lk-1  -  a)   =  FI-lll' [Yk  -  h(xk )] (6.67)

and substitution of Eqs. (6.65) and (6.66) into Eq.. (6.67) results in

101. (431   -   a)   -   F _l tyk   -  4(4)   +  Hk    -   Hkf  -1)

i+1          i
- Hkfk-llk-1 + Hkfk-l k-11 - 0 (6.68)

The term 1 Hot -1 is added and subtracted to Eq. (6.68) to obtain

I-H- Ha + F -:1.H Hkfk-llaf    = [HTH  + FT  'LTH- F    ]xi-ora    k-1 k k k-1 -k-1

*" 'Ll' {yk - "(Si )  + Hk[i   - 1(5 -1)1 }

+ a.(a - 4-1) (6.69)

Multiplication of Eq. (6.69) by the inverse matrix yields

32 1 - 4-1 + [-H Ha + r:-1 Hkfk-11-1 {F «l' [yk - h(5 )

+ Hk  (3  -  f (1£ -1)) 1  + Hx (a  - 4-1) } (6.70)

and the itl estimate for  k is obtained from

i+1 i+1    i
Ac          I(x -1)   +  Fk-1 (xk-1   - xk-1) (6.71)

Equations (6.70) and (6.71) are the estimator equations for a system

consisting of a nonlinear plant with a nonlinear measurement.  The

iteration sequence is started by selecting

..1                                                              (6.72)4-1 = a
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and

4  - f,(2) (6.73)

With each iteration, the H  and F   matrices are re-evaluatedk-1

and a new matrix inverse is calculated. A matrix inversion lemma

applied to stochastic systems to eliminate the inversion is not appli-

cable to Eq. (6.70) [125, p. 276].

The  term lia (2  - 4-1) which appears  on the right  hand  side  of

Eq. (6.70) is identically equal to zero throughout the iteration

sequence.  A proof that

ila (2   -   4- 1 )     = 0 (6.74)

is given in Appendix D.

6.6 Nonlinear estimation of continuous systems.with discrete time

measurements

The nonlinear estimatdr defined by Eqs. (6.70) and (6.71) was

derived for a system described by nonlinear difference Eqs. (6.54) and

(6.55).

For a plant described by

x          -         E (x)                                                                                                                                                                                                                                        '                        (6.7 5)

the value of  k is obtained by integration:

fT

2Ek = 1(2fic-1) = ik-1 +  o
E.(ls)dt (6.76)

The estimator requires af(xk-1) / 32©1 which is obtained by

I integrating the solution of the plant variational equation.  The

, variational equation is given by

6x · = G6x (6.77)
- -
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where

32
G  =

-ax
(6.78)

Equation (6.77) is a linear equation and has the solution

64  -0 (T) 64-1 (6.79)

where the state-transition matrix $ satisfies the matrix differential

equation

0(t) = 60(t)                                                   (6.80)

with $(0) = I.  As indicated by Eq. (6.79), the transition matrix of the

linearized system measures the change   in  4  per unit change in,lk_1;
therefore

af (2% 1- 1)                  f T
F              = F(.(k-1)T) =  

GFdt (6.81)k-1 34-1    0
with F(0) .= I. Thus simultaneous integration of Eqs. (6.75) and (6.81)

provides the information required by the estimator, and the analytic

solution of the nonlinear plant differential equation is not required.

An analytic' comparison of Eq.  (6.81)  for the reactor equations is

presented in Appendix E.

6.7  Performance of nuclear system state estimator

For the nuclear system nonlinear discrete-time Eqs. (4.75), (4.76)

and (4.83), the performance index is defined:

J   =     [y              -   h (4-1 )12    +    I Yk   -   h (2Ek)] 2                                                                                        (6.82)k-1

subject to

zk = zk-lexp.[Apk-lT/(1 - pk-1)1 (6.83)

1
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Pk - Pk-1 (6.84)

The performance index is a minimum when

yk-1 = 11(lk-1) = zk-1/(1 - Plc-1) (6.85)

Yk = h (/k) = zk/(1 - Plc) (6.86)

Using Eqs. (6.83), (6.84), (6.85), and (6.86) and two successive output

samples, the solution for reactivity is

gn(Yk/Yk-i 
(6.87)

Pk-1 = Pk = AT + tn( k/Vk-1 

and for the delayed neutron precursor density

zk-1 = (1 - P-k-l) k-1
(6.88)

The solution for £k is obtained from Eq. (6.83) using Eqs. (6.87) and

(6.88).  Numerical values for the analytic solution of the estimator

equations are obtained by using the Analytic Estimator Solutions compu-

ter program listed in·Appendix G.  The programmed value of yl is unity,

and Yl is calculated in response to a step change in reactivity

occurring at t = (0+).  Table 6.1 lists the analytic estimator solutions

for different values of reactivity disturbances. These values are used

to determine whether the estimator with iteration, programmed to solve

Eqs. (6.70) and (6.71), generates the correct estimate in one sample

after a disturbance.

The Finite Difference System with Estimator and Control computer

program (listed in Appendix G), with the control loop opened by setting

u = 0, generates samples of the output measurement by solving the plant

finite difference Eqs. (6.83) and (6.84), the deasurement Eq. (4 77),   1     1,
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TABLE 6.1
-

ANALYTIC ESTIMATOR SOLUTIONS

P (0+)                                 6 1                                               2 1                                               A l

0.25 0.55778428 0.65380766 1.4784811

0.20 0.49233880 0.68571204 1.3507277

0.10 0.31081242 0.79259985 1.1500494

-0.10 -0.66212729 1.4690358 0.88382870

-0.20 -3.0783149 3.2274608 0.79137116

-0.25 -11.471604 9.3774779 0.75190634

and the estimator Eqs. (6.70) and (6.71).  Consecutive iterations of

the estimator equations are performed until the performance index is

equal to'or less than a specified value, which can be expressed as

J i El (6.89)

Thus  by changing El, the accuracy and number of iterations can be

controlled.

The matrices F
k-1 and Ii 

are obtained by differentiating

Eqs. (6.83), (6.84), and (6.86), respectively, to obtain

 ATPk-1  ATzk-1  ATPk-11
expl .. EA - 1

il-Pk-lj   (1-pk-1)4  g.\1-pk-1 
F = (6.90)k-1

0                   1
-                                 -

Hk     [1/ (1 - plc)   zk/ (1 - pk) 2 ] (6.91)
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A worst-case analysis is used to investigate the performance of the

estimator.  Since a disturbance can occur'anywhere within one sample

interval, the worst case is when it.occurs immediately after the

measurement. The estimator is initialized by assuming the system to be

in equilibrium up to t = 0.  Thus

Fll
i = AO = 2&(0-) =

LOJ
(6.92)

lia = [l 11 (6.93)

and

,(0+) = (6.94)F l l
Lp (O+)1

For large reactivity disturbances, the first iteration produces an

estimate of Pk-1 which exceeds unity.  If this happens, a discontinuity

is crossed and the estimator is not able to converge.  The computer pro-

gram  contains an arbitrary hard limit   on  Pk-1   of  0.8. ·    With this· limit,

the estimator produces correct estimates for step changes in reactivity

up to +0.56$.  Similarly, a discontinuity exists at -0.27$.  Thus  the

useable range of the estimator for step disturbances is from -0.27$ to

+5.6$.

Tables  6.2  and  6.3  show, respectively, estimator performance

for Pk' 2-k' and fik in response to step reactivity disturbances of +0.1$

and -0.1$ with an iteration accuracy of El = 10-4.  The number of

iterations is indicated in column I, and the estimated values are given

beneath the true values.  For P = 0.1, the estimate is generated in four

iterations and agrees up to the fifth decimal place with the values in

Table 6.1.  At the end of the second sample interval, the system state

\
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TABLE 6.2

ESTIMATOR PERFORMANCE WITH FINITE-DIFFERENCE SYSTEM EQUATIONS,
El = 10-4, AND p(0+) = 0.1

k             pk '              zk            '    nk             I

0 .10000000 1.00000005 1.11111114
.00000000* 1.00000005* 1.00000005*

1 .10000000 1.03504454 1.15004947
.31082521* .79259022* 1.15005689*     4

2 .10000000 1.07131714 1.19035235'
.09907985* 1.07241802* 1.19035855*     3

3 .10000000 1.10886090 1.23206765
.09999066* 1.10887280* 1.23206808*     1

4 .10000000 1.14772035 1.27524482
.09999905* 1.14772158* 1.27524482*     1

5 .10000000 1.18794163 1.31993512
.09999996* 1.18794169* 1.31993512*     1

6 .10000000 1.22957243 1.36619157
.09999996* 1.22957249* 1.36619157*     1

7 .10000000 1.27266217 1.41406904
.09999996* 1.27266222* 1.41406904*     1

8 .10000000 1.31726195 1.46362438
.09999999* 1.31726200* 1.46362439*     1

9 .10000000 1.36342472 1.51491633
.09999993* 1.36342481* 1.51491633*     1

10 .10000000 1.41120523 1.56800579
.09999998* 1.41120525* 1.56800579*     1

*
Estimate
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TABLE 6.3

ESTIMATOR PERFORMANCE WITH FINITE-DIFFERENCE SYSTEM EQUATIONS,
El = 10-4, AND p (Ot) = -0.1

k              pk               zk                   nk           I

0 -.10000000 1.00000005 .90909093
.00000000* 1.00000005* 1,0.0 0,0 0 0 0 5*

1 -.10000000 .97221162 .88382875
-.66060630* 1.46791877* .88396555*     3

2 -.10000000 .94519543 •85926857
-.09012711* .93673362* .85928843*·    4

3 -.10000000 .91892997 .83539089
-.10006901* .91900903* .83541036*     1

4 -.10000000 .8933943.9 .81217672
-·.10009105* .89346834* .81217672*     1

5 '-.10000000 .86856840 •78960765
-.09999991* .86856834* •78960766*     1

6 -.10000000 .84443229 .76766572
-.09999999* .84443226* .76766571*     1

7 -.10000000 .82096686 .74633353
-.09999995* .82096683* •74633353*     1

8 -.10000000 .79815353 .72559412
-.09999991* .79815348* .72559413*     1

9 -.10000000 .77597413 .70543103
-.09999999* .77597411* .70543101*     1

10 -.10000000 .75441106 .68582824
-.09999995* .75441103* .68582824*     1

:*

Estimate
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TABLE 6.4

ESTIMATOR PERFORMANCE WITH FINITE-DIFFERENCE SYSTEM EQUATIONS,
El = 10-6, AND p(0+) = 0.25

k             pk                 zk                 nk            I

G .25000001 1.00000005 1.33333338
.00000000* 1.00000005* 1.00000005*

1 .25000001 1.10886100 1.47848131
.55778435* .65380763* 1.47848132*           6

2 .25000001 1.22957266 1.63943018
.24997180* 1.22962016* 1.63943187* 4

3 .25000001 1.36342509 1.81790011
.24999822* 1.36342834* 1.81790009*           1

4 .25000001 1.51184884 2.01579849
.25000005* 1.51184879* 2.01579849*           1

5 .25000001 1.67643014 2.23524020
.25000005* 1.67643008* 2.23524020*     1

6 .25000001 1.A5892791 2.47857056
.25000003* 1.85892788* 2.47857056*          1

7 .25000001 2.06129260 2.74839009
.25000003* 2.06129257* 2.74839009*           1

8 .25000001 2.28568685 3.04758244
.25000001* 2.28568683* 3.04758241*     1

9 .25000001 2.53450889 3.37934517
.25000004* 2.53450883* 3.37934520*     1

10 .25000001 2.81041793 3.74722387
.25000002* 2.81041790* 3.74722384*     1

*
Estimate =
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TABLE 6.5

ESTIMATOR PERFORMANCE WITH FINITE-DIFFERENCE SYSTEM EQUATIONS,
El = 10-6, AND p(0+) = -0.25

k Pk 1     '       zk               nk          I

0 -.25000001 1.00000005 ,80000001
.00000000* 1.00000005* 1.00000005*

1 -.25000001 ,93988293 .75190635
-11.47042594* 9.376614161 .75190811*     7

2 -.25000001 •88337989 •70670392
-.24271586* .87823433* .70670567*     7

3 -.25000001 .83027365 .66421894
-.24998595* .83027136* .66422455*     1

4 -.25000001 .78036003 .62428803
-,25004280 .78038681* .62428803* 1

5 -.25000001 .73344706 .58675765
-,24999987* .73344699* .58675765*     1

6 -.25000001 .68935435 .55148348
-.25000008* •68935439* .55148349*     1

7 -.25000001 •64791237 .51832990
-.24999993* .64791234* .51832991*     1

8 -.25000001 •60896177 .48716940
-.24999997* ,60896174* .48716940*     1

9 -.25000001 .57235275 .45788219
-.24999992* .57235272* .45788220*     1

10 -.25000001 .53794457 .43035565
-.24999997* •53794455* .43035564*     1

*
Estimate
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TABLE 6.6                 t

ESTIMATOR PERFORMANCE WITH INTEGRATED SYSTEM EQUATIONS,
El = 10-4, 62 = 10-2, AND p (Ot) = 0.1

1

1

k    ,    pk             zk              nk            At        I

0 •10000000 1.00000005 1,11111114
·00000000*  1.00000005*  1.000000pD*

1    ·10 0 0 0 0 OD 1,03504454 ' 1.15004947
·31418966*.' .78872910*  1,15005509* 1,00000 4

2 •10000000 1,07134714 1.19035235
·09946450*  1.07196009*  1.19035851*  1,00000'   3

3 ·10000000 1.10886090 1,23206765
·10033641* 1.10844578* 1,23206806* 1,00000    1

4 •10000000 1.14772035 1.27524482
·10039495* 1,14728047* 1.27524485* 1.00000 1

5 ·101100UOO 1.18794163 1,31993512
·lOn34578* 1.18748521*  1,31993510*  1,00000 '   1

6    ·10000000 ' 1.22957243 1.36619157
•10034587* 1.22909993* 1.36619160* 1,00000    1

7 .10000000 1.27266217 1,41406904
·10034579*  1.27217317*  1,41406901*  1,00000    1

' 8, •10000000 1.31726195 1.46362438
•10034589* , 1.31675571*  1,46362441*  1,00000    1

9 .10000000 1.36342472 1.51491633
·16034579* 1.36290086*  1,51491632*  1.00000    f

10 .10000000 1.41120523 1,56800579
•10034587* 1.41066292* 1.56800580*  1.00000    1

*
Estimate

t

1

'' '

t'

;
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TABLE 6.7

ESTIMATOR PERFORMANCE WITH INTEGRATED SYSTEM EQUATIONS,
El   =   10-4,   E2   =   10-3,   AND   p (Ot)   =   0.1

k          pk            zk             nk             At       I

0 ·10000000 1.00.000005 1.11111114
•00000000* 1.00000005*  1,00000005*

1 ·10000000 1.03504454 1,15004947
·31165936* .79163070* 1.15005660* .25000    4

; 2 ·10000000 1.07131714 1.19035235
·09925989*· 1,07220364* 1.19035848* .50000    3

3 ·10000000 1.10886090 1.23206765
•10016345* 1.10865993* 1.23206809* ,50000    1

4 •10000000 1.14772035 · 1.27524482
•1001/159*  1.14750156*  1,27524486*  '*50000    1

5 .10000000 1.18794163 1.31993512
·lonl/248* 1.18771397* 1,31993513* ,50000    1

6 ·10000000 1.22957243 1.36619157
·1001/259* 1.22933565* 1,36619160* .50000    1

7 ·10000000 1.27266217 ,1,41406904
•10017251*  1.27241819* 1,41406901* ,50000    1

8 ·10000000 1.31726195 1,46362438
·1001/267* '1.31700924* 1,46362439* .50000    1

9 ·10000000 1.36342472 1.51491633
•10017254* '1,36316331* 1,51491630* .50000    1

10 .10000000 1.41120523· 1,56800579
·1001/259*  1.41093461* 1,56800582* ,50000    1

*
Estimate
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is estimated to within 0.1%, requiring three iterations.  Thereafter, a

single iteration is used to track the system.  The estimation sequence

after k = 2, corresponds to an extended Kalman filter in which the

previous estimate is used to evaluate the F and H matrices.

Tables 6.4 and 6.5 show, respectively, the estimator performance

in response to reactivity disturbances of +0.25$ and -0.25$ with an

iteration accuracy  of   El  =  10-6. The' increase in iteration accuracy  is  ,

required to obtain a good estimate for 82.  For El = 10-5, P2 =

-0.15607480;·and for 61 = 10-4, 82 = 0.08458834.  For el = 10-4, 03 =

-0.25450338 and one hdditional sample is required to obtain an accurate

estimate of the system state. As ·indicated in Table 6.5, seven itera-

tions are required for 21 and 1£2, and one iteration is used thereafter.

The estimates in Tables 6.2 to 6.5 are for a system described by

finite-difference equations.  The performance of an estimator which uses

integration of the system equations is investigated by. using the

Differential System With Estimator and Control computer program (listed             3

in Appendix G) with the feedback control loop opened by setting u = 0.

The plant differential equations are given by Eqs. (4.32) and,(4.33);

and the variational equation used to calculate Fk-1 is given by

Eq. (4.60).  The matrix differential equation to be integrated is

F11   12      Ap(t)/[1-p(t)]    z(t)/[1-P(t)]2   Fll  Fl2
(6.95)

F21   22           0               0 F21 F22
--    -

and after multiplication yields

Ap (t) AZ(t)
Fll = ,1-p(t) Fll + [1-p(t)]2.F21 ,

(6.96)
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F 12
= F12 + F22

Ap (t) XZ (t) (6.97)
1-p (t) [1-P(t)]2

and

 21 =  22 = 0 (6.98)

Solution of Eq. (6.98) requires that F21 = constant and F22 = constant,

but the initial conditions require F(0) = I.  Therefore, F21 = 0 and

F22 = 1.  After substitution of F21 and F22, Eqs. (6.96) and (6.97)

reduce to

 ll = Fll
Xp(t) (6.99)
1-p(t)

 12 = F12   (6.100)Xp(t) AZ(t)
1-p(t) [1-p(t)]2

The initial conditions are:  Fll(0) = 1 and F12(0) = 0.

Simultaneous integration of Eqs. (4.32), (4.33), (6.99), and (6.100)

yield the solutions  for 2Ek and  Fk-1

The integration is performed numerically, therefore the accuracy

of integration is dependent upon the step size.  The Kutta-Merson

method [126; 127, p. 24] given in Appendix F is used because of its one-

step starting feature and error computation.  The integration step size

At  is automatically adjusted  to  meet a sfecified accuracy requirement.

The parameter 62 in the computer program, specifies the integration

accuracy.

Tables 6.6 and 6.7 show, respectively, the estimator performance

for a step change in reactivity of 0.1 with integration accuracies E 2 of

10-2 and 10-3 and an iteration accuracy El of 10-4.  Comparison of

Table 6.6 with Table 6.1 shows 1% accuracy of a and 0.5% accuracy for

E.2 0     For x 3 and subsequent estimates, a steady error of approximately
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0.34% is obtained for 0.  The integration step size At, automatically

selected by the integration subroutine, is shown to be 1 sec for each

sample interval with the number of iterations remaining the same as in

Tahle 6.2. Table 6.7 shows 0.3% accuracy for xl with,At = 0.25, and

0.74% accuracy for 32 with At = 0.5.  For 23 and subsequdnt estimates,

the steady error is 0.17% and At = 0.5..· When At = 0.25, the equations

of the integration subroutine are solved four times for 6ach iteration,

or 16 times for four iterations.

:6
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CHAPTER 7

COMBINED ESTIMATION AND CONTROL OF NUCLEAR SYSTEMS

7.1  Introduction

The problem of combined estimation and control has been

investigated elsewhere .[96, 97, 110, 125 and 128] with a resulting

separation theorem.  This theorem states that for linear systems subject     -

to Gaussian noise with a quadratic cost function, the optimum stochastic

controller is realized by cascading an optimal estimator with a deter-

ministic optimum controller.  The separation theorem does not apply to

nonlinear systems with optimality guaranteed.

In  Chapter 5, optimal control  of a nuclear reactor was investigated

using a control law which is a linear function of the state variables.

The state variables:  reactivity and delayed neutron precursor density,

are not measureable.  Therefore, in Chapter 6, an investigation wad made

of an optimal estimator which generates estimates of reactivity and

delayed neutron precursor density from measurements of the prompt

neutron density. In this chapter, the .transient performance of the

system is investigated with combined estimation and control.

7.2  Combined estimation and control

In Chapter 6, the estimator equations were derived with the

assumption that the plant was not under control.  With the plant under

control, the linear predicti9n Eq. (6.32) is modified as follows:

fk = *k-18k-1 + Guk-1 (7.1)
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and the linear filter Eq. (6.33) generates  ic using 3ic of Eq. "(7.1) and

the Yk measurement.  The control variable u  is computed from

uk  =B                             '                                                                                                           (7.2)

and,the predicted estimate of 2£k+1 is obtained by using Eq. (7.1).

With control, the nonlinear plant Eq. (6.54) becomes

 ic =f (Ik-1, uk-1) (7.3)

and Eq. (6.59) is written:

31 Qk- 1,     uk-1 )
Fk-1

=

32Sk-1

(7.4)

Equation (6 .70) for the nonlinear filter remains unchanged, except that

Fk-1 is computed using Eq. (7.4), and the new form for Eq. (6.71) is

i+1 i+1    i
Eic   = f (25 -1, uk-1) + Fk-l -1 - Ik-1  (7.5)

At the end of the iteration sequence

i+1
4= 4 (7.6)

and the control variable u  is computed from

uk= 84 (7.7)

With control,.the nonlinear plant Eq. (6.75) is

21 = 6(E, u)' (7.8)

and the value of 2Ek is obtained by integration:

24' = 251,-1   fo &(ls,
Uk-1)dt (7.9)

The variational Eq. (6.77) remains unchanged, except that G defined by
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Eq.  (6.78), is replaced by

31(3&, uk-1)
G= (7.10)

3x

7.3  Combined estimation and control with delay

The preceding calculation of the control variable assumed that a

measurement is made at t = kT, the estimator equations are solved

iteratively for a new estimate, the new control input is calculated, and

the control is applied at t = kT.  A more realistic control analysis

should consider that a finite time is required to compute a new estimate

and control input.  The fastest sampling rate is determined by the time

T required to execute the calculations outlined above.

The estimation equations remain valid, except that the control

input must be delayed by one sample interval.  Instead of using

Eq. (7.7) to calculate the control at u ' Eq. (7.3) with Sk-1 is used to
predict the system state at t = kT:

4  -  f(4<-1, uk-1) (7.10)

Finally, the control input to be applied at t = kT is obtained using

Eq. (7.10), with the result that

uk = 84 (7.11)

If the calculations are completed in less than T seconds, u  is stored;

until t = kT, and then applied as an input after the measurement is

made.

: The new sequence is:

1.  Obtain a measurement Yk.

2.     Apply the previously calculated control input  uk
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3.  Solve the estimator equations to obtain 4 I
4.  Use the estimator output fk and control input u  to predict

the state of the, plant at t = (k+1)T.

5.     Use the predicted estimate x to calculate a new control
-k+1

input uk+i*

6.     Store the control input u until the next measurement at
-k-+1

t = (k+1)T.

7.  Repeat the sequence.

If the total time to execute the above sequence is equal to the sampling

period T, then the storage time is zero.

7.4  Nuclear control system performance

The performance of the control system, consisting of an estimator

cascaded with the linear control law, is investigated with the plant

described first by a difference equation and second by a differential

equation.

The difference'equation description of the plant is given by

Eq. (4.78), and ' the measurement is given by Eq. (4.83).

The matrix F is obtained by differentiating Eq. (4.78) with thek-1

result that

A 1-Pk-1
exp( £n -  - - AT)

uk-1  1-Pk-1-uk-11
F =
k-1

0

XTZ 1-pk-1k-1               X
exp n - AT)

0.-Pk-1)(1-Plc-1-uk- lT) uk-1  1-Pk-1-uk-lT

(7.12)

1

and if u& = 0, Eq. (6.90) is used. Thematrix H  is given by Eq. (6.91).
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The nonlinear differential equation of the plant is given by

Eq. (4.35), and the differential equations for F are given by

Eqs.  (6.99).and· (6.100),  and F21 = 0 and F22 = 1. In the finite-

2
difference description,

Fk-1 is an explicit function of u -1' but in the

differential description, F is not a direct function of u -1.  The

influence of control on F arises through the simultaneous integration of

Eqs. (4.35), (6.99), and (6.100), as shown in Appendix E.

Figures 7.1 through 7.4 show the transient response for the system

described by the finite-difference equations.  These equations are

solved by the Finite Difference System with Estimator and Control

computer program.  In Fig. 7.1, the response is· for a step disturbance

of  p  =0.1$  with  no delay required for estimation and calculation  of

control e ffort. Since the disturbance occurs immediately after  the

measurement, the control for uo is zero.  At the end of the first

sample, the estimator generates an optimal estimate fl, which  is  the

same as the value given in Table 6.2, and the control ul = 0•173$/sec.

After the second sample, the estimator generates the correct estimate of

the system state, the control input is computed, and the neutron density

deviation is driven to zero. For samples at t=3 sec and greater, the

neutron density deviation is zero, and the delayed neutron deviation and

reactivity approach zero asymptotically.

The transient response plotted in Fig. 7.2 is obtained by

calculating the   control input using Eqs.  (7.10) and (7.11).   The

estimate generated from' the· measurement made at t=1 sec, is used with

Ul  -  0 to obtain a predicted estimate 32· This estimate  is  used  to

calculate u2•  The estimate generated from the measurement made at

t = 2 sec gives the true state of the.plant.  The estimate 22 is used
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with  u2 to obtain a predicted estimate  x3 · The control u3, calculated ·

using x 3, drives the neutron·density deviation to zero, and the delayed

neutron deviation and reactivity approach zero asymptotically.    '

The control input u2 applied at t=2 i n Fig. 7.2 does not                     '

correspond to an optimal control because it is not generated from

estimates which correspond   to the system state. The control   is   con-

strained [129, 130] by programming a hard limit of 0.15 $/sec on u :

lukl S
UL (7.13)

where

UL = 0.15 $/sec                                                (7.14)

Figure 9.3 shows the.transient response with u  constrained.  The

neutron density deviation at t=3 i s closer to normal, and u3 drives

the deviation to zero.

Figure 7.4 shows the system response to a reacpivity disturbdnce qf

-0.1$ with u  constrained.

Figures 7.5 through 7.12 show the transient response for the system

described  by di fferential equations. These equations are solved  by  the

Differential System with Estimator and Control computer program using

specified values for'the iteration accuracy El and for the integration

accuracy 62•

The'transient response to a step disturbance of p = 0.1$ with no

control delay is shown in ·Fig. 7.5 for el = 10-4 and 62 = 10-2.

Comparison  with  Fig. 7.1 shows  that the control  u2  does not ·drive  the

neutron density deviation  to  zero  at  t=3  sec.    ,This   is  due  to 'an error

in 22•  However, the contro  up drives the neutron density deviation to

zero, and the reactivity and delayed neutron precursor density approach
i

'' /

3
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zero asymptotically.  In,Fig. 7.6, where E2 = 10-3, the estimate *2 is

closer to the true state.  This results in a u2 which drives the neutron

density to approximately zero.  For the estimate 11, At = 0.125 sec for

the first iteration· and  At  =  0.25  sec  for  the next three iterations.

For the estimate 22, At = 0.25 sec for two iterations.  Thereafter,

At = 1 sec.

 

The transient response with control delay is shown in Fig. 7.7 for

El = 10-4 and 62 6 10-2.  Here, the deviation in neutron density is 19%

at t=2 sec and u2 = -0.276 $/sec.  The integration increment is 1 .sec

for all iterations, which results in large errors in the state

estimates. The oscillations in the neutron density and reactivity are

damped for this particular initial condition and set of parameters.

Figure 7.8 shows the response with El = 10-4 and 62 = 10-3.  The peak in

the neutron density deviation at t=5 sec is reduced, and greater

damping is shown in the oscillatory behavior.  In Fig. 7.9 for El = 10-5

and E2 = 10-4, the estimate  4 results in us which drives the neutron

density deviation to zero. Except for a neutron density deviation of

1.26% at t=5 sec, the response is similar to that· plotted in Fig. 7.2.

Four iterations are required for Al with an integration increment of

At = 0.0625 sec.  The three iterations for fl -use integration increments

of 0.0625, 0.125, and 0.25 sec, consecutively.  Estimate 63 is obtained

in one iteration with At = 0.0625; 64 is obtained in two iterations with

At = 0.125 sec.  The next two estimates, 1&5 and 16, are obtained in one

iteration with At = 0.5 sec.  Estimates for t=7 sec and greater, are

obtained in one iteration with At = 1 sec.  Thus Al requires the

greatest number of calculations with 64 solutions of the integrator

equations.
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Figure 7.10 shows the transient response for El = 10-4, E2 = 10-2,

with delay and a control bound of 0.15 $/sec.  The integration increment

is 0.5 sec for the first iteration and is 1.sec. thereafter.  In compari-

son with Fig. 7.3, the neutron density deviation has an error of 1.7% at

t = 5 sec.

In Fig. 7.11 where 62 = 10-3, the neutron density deviation at

t = 5 sec is 0.4%.  The first iteration requires a At = 0.125 sec, and

the next three iterations are with At = 0.25 sec to obtain Rl·  For 22,

three iterations are required with At = 0.25 sec, whereas, one iteration

is required with At = 1 sec for succeeding estimates.  Figure 7.12 shows

the system response for a reactivity disturbance of -0.1$.
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CHAPTER 8

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

8.1     Simlmary

The six-group point-model kinetics equations for a nuclear reactor

were normalized, solved  with  a step change in· reactivity, and compared

to the transient response obtained using a prompt-jump approximation.

This demonstrated that for the control system investigation, it is

satisfactory to use the prompt-jump approximation with a resulting

reduction in order of the system.  A further approximation was intro-

duced by using a single group of delayed neutrons.  The decay constant

for the one-group model was selected by making· a comparison with the

transient response of the six-group model at 1 sec.  The rate of change

of reactivity was chosen as a control input by neglecting the control

rod motor time constant.

State-space concepts were introduced and vector matrix notation was

used to express:  the six-group point model kinetics equation, the

normalized six-group kinetics equation, the six-group prompt-jump model,

the one-group kinetics equation, and the one-group prompt-jump model.

A first-order Taylor series expansion was used to linearize the one-

group prompt-jump equation.  The one-group prompt-jump equation and the

linearized equations were solved with a discrete-time input.

An optimal stationary feedback control law was used to minimize a

quadratic performance index for a,discrete-time system.  A
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performance index was defined which consisted of the·sum of the squares

of the neutron density deviation.  This index was augmented to include

terms in reactivity and control.  For selected values of the weighting

coefficients, the stationary feedback matrix was calculated using an

iterative digital computer program. System transient behavior was

plotted to demonstrate the influence of the weighting coefficients.  For

the performance index as defined, the neutron density deviation is

driven to zero in one sample interval after a step disturbance in

reactivity. The control law assumes that all state variables are avail-

able, but the specific variables reactivity and delayed neutron precur-

sor density cannot be measured.

Kalman's filter was derived for a linear deterministic system by a

matrix inversion lemma and by minimization of a least-squares cost

function.  The resulting filter equations showed the relationship of the

optimal.filter gain to the state transition and measurement matrices.  A

nonlinear estimator was derived by minimizing a least-squares perfor-

mance index and iteration was used to solve the resulting nonlinear

equations. The filter derivations were based  on the assumption  that  the

system was described by finite-difference equations.  Therefore, the

plant and variational equations were integrated to obtain the necessary

numerical values required by the estimator.

An algebraic solution of the reactor equations was derived to

obtain the estimated system state after a step disturbance in reactivi-

ty.  This solution was compared to the solution obtained by iteration to

measure the performance of the nonlinear estimator.  A digital computer

program was used to solve the estimator equations and iterations were

performed automatically until the estimator performance index was
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reduced to a specified value.  The performance of the estimator for a

nuclear system described by finite-difference equations was investigated

with different iteration accuracies. Because of its one-step starting

feature and error estimation, the Kutta-Merson algorithm was used to

integrate the plant and variational equations.  The error estimate was

used to automatically adjust the integration step size to meet a

specified accuracy requirement.  The performance of the estimator using

integration was investigated as a function of iteration accuracy and

integration accuracy.

Control of a nuclear reactor was investigated by cascading the

optimal estimator with the optimal controller.  After a reactivity

disturbance, the optimal estimator requires two samples to estimate the

true state of the plant.  After the second sample, the optimal con-

troller drives the neutron density deviation to zero in one sample.  If

it is assumed that one sample interval is required to perfotm the esti-

mation and control calculations, then the delayed neutron deviation is

driven to zero in one sample after the third measurement is made.  A

constraint on the control variable·was introduced to reduce the

magnitude of the control input applied after the second estimate is

made.  The performance of the cascaded control system with an estimator

using integration was investigated as a function of iteration accuracy

and integration accuracy.  With a small integration step size, system

performance with integration is·equal to that of the system described by

finite-difference equations.  The penalty for increased accuracy is an

increase in computation time.
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8.2  Conclusions

The optimal control law derived for a discrete-time linear system

with a quadratic cost function demonstrated that a deviation in neutron

density could be reduced to zero in. one sample interval.  The stationary

feedback control law for the reactor was derived by linearizing the

reactor equations around the desired nominal values. The plotted

responses (Figs. 5.1 - 5.12) are idealistic because the optimal control

requires knowledge of the reactivity and delayed neutron precursor

density at each sampling instant.  From a process standpoint, this is a

physical impossibility, because these variables are not measureable and

therefore must be estimated.

The nonlinear estimator using iteration works very well for a

system described by nonlinear plant and measurement difference· dquations.

If integration is used to estimate the state of a system described by

a nonlinear differential equation, the integration step size must be

reduced to maintain estimation accuracy;   as a consequence, the computa-

tion time is increased.  For higher-order systems, the combination of

iteration and sequential integration can easily result in an estimation

time exceeding one second.  Integration of a set of simultaneous equa-

tions can be more profitably assigned to an analog computer with a

factor of ten applied to the problem time scale.  Thus, an integration

over one sample interval in problem time can be obtained in one-tenth of

a sample interval in real time. The number of equations to be inte-

grated  will not change the integration time, since all equations   are

integrated simultaneously.  Thus, the nonlinear estimator becomes a
r                                               -

hybrid system, with a digital computer solving the estimator difference
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equations and an analog computer solving the system differential

equations.

The cascade combination of an estimator and controller results in

a control system whose performance is no longer equal to that of a

system without an estimator.  Whereas, the linearized reactor equations

result in a linear stationary control law which controls the nonlinear

system satisfactorily under the assumption that all state variables

are measureable, the performance of the cascaded system demonstrates

that the estimates generated for the nonlinear system result in a large

con·trol input at the first sampling instant after a disturbance.

Inclusion of computation time delay results in further degraded perfor-

mance.· A bound on the control variable can be used to limit the control

inputs until the estimator establishes the true state of the system.  If

an integrator is included as part of the nonlinear estimator, the

integration step size must be reduced to even smaller values when a

control input is present.

The computer programs used to solve the estimator equations and to

compute the control input are not compiled for minimum time execution;

therefore, no conclusions can be made as to real-time control

capability.

8.3  Recommendations for future research

A hybrid computer system should be used to establish feasibility of

real-time control.  An analog computer should be used to simulate the

reactor system, and a digital computer should be used for the estimation

and control calculations.  The reactor equations should be expanded to

include six groups· of delayed neutrons.     Use  o f the six-group model  will
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encourage inclusion of an integrator in the estimator, because an

analytic description by finite-difference equations will be difficult.

Starting with the one-group model, the regulator problem should be

investigated with noise added to the plant and measurement equations.

The stochastic system should be expanded to include the six-group model.

The deterministic and stochastic one-group and six-group models

should be used to investigate control of demand changes in reactor power

level from source range to power operation, with and without reactivity

feedback.

At very low power levels, a nuclear reaction is a multiplicative

Poisson process.  Optimal estimation theory should be applied 10 the

design of a reactivity meter.

The methods of estimation and control applied to the kinetics equa-

tions should be expanded to include the primary system, the secondary

system,,and the turbine-generator system, with automatic start-up,

operation, and shutdown.

Optimal control theory 9hould be used to establish ultimate system

performance without regard to cost.  Since total optimization of the

control of a nuclear plant includes the performance of the controller

and  its  cost, an investigation should  be  made to determine whether  a

significant savings in equipment cost is possible by accepting slightly

less than optimal performance.

.

.
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APPENDIX A

'

VECTOR-MATRIX DIFFERENTIAL EQUATIONS

The homogeneous differential equation'for a linear time-invariant

system is given in vector-matrix form by

i(t)  =  AE(t),      3(to)  =  310                                                                            (A. 1)

The solution to Eq. (A. 1) is

11(t) ·= 0(t - to)2£(to) (A. 2)

where the state transition matrix is defined by

0(t - to) exp[A(t - to)] (A. 3)

The  matrix  exp (At) is defined  by the infinite series

exp(At) =I+A t+ A2t2/21 + A3t 3/31 + •••, (A. 4)

Substitution of Eq. (A. 2) into Eq. (A. 1) yields

$(t - to) = AD(t - tO) (A. 5)

Use of Eq.  A. 4) in Eq. (A. 5) verifies Ehat Eq..(A. 2) is a solution

of Eq. (A. 1).  Note that when t = tl,

.  4
0(0) = I (A. 6)

and the boundary conditions of Eq. (A. 2) are satisfied.

The state transition matrix $(t) can be calculated by using

Eq. (A. 4)

'.
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0(t) =I t Att.A2t2/21.+ A3t?/31 + ,(A: 7)

or by taking the Laplace transform of both :sides of Eq.  (A.1) to· obtain

sli(s) - x(0) = Ali(s) (A.8)

Rearrangement of Eq. (A.8) leads to

X(s) = [sI - A]-lx(0) (A.9)

which alternately can be written as

.lics) = $(s)li(0) .(A. 10)

where *(s), the resolvent of matrix A, is given by

*(s) = [s I - A]-1                                            (A.11)

The state transition matrix $(t) is obtained by taking the inverse

Laplace transform of both sides of Eq.'(A.11) wh'ich.can be expressed:
..

0(t) - £-l[s I - A]-1 (A. 12)

The solution to the nonhomogeneous equation

*(t) = AE(t) + Bu(t) (A. 13)

t

is obtained by first taking the Laplace transform of both sides                        -

to obtain

sX(s)  - 21(0)  =  a-(s)  +  BU(s)           '                                     '               ,    (A. 14)

rearranging  ,  ,

X(s) = [sI.- Al-lx(0) + [sI - A]-1BU(s) (A. 15)

and then taking the inverse Laplace ,transform of both sides with the

result that

rt

.
2&(t)   =  0 (,t)2£(6,  +

1 0

$(t - T)Bu(T)dT (A.16)
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where the convolution theorem is used to obtain the integral term.

If the initial time is given as tl·instead of iero, then

ft

3(t) = 0(t - to)3(to)+     $(t - T)Bu(T)dr (A. 17)
to

For a discrete-time input u  where

U(t)     =    Uk , kT <t s (k+1)T (A. 18)

Eq. (A. 17) is written

ft

x(t)   =   0(t  -  tk)2 k  +  uk  J        $(t  -   T)Bd
T (A. 19)

t
k                           '

or                                                                  '

t-t

2£(t) = 0(t -,tk).2Sk + uk k *(T)lidT (A. 20)

0

The integral term of Eq. (A. 20) can be evaluated by integrating

Eq. (A. 7) from zero to T:

T

$( T) dT  =  IT + AT 2/2  + A 21: 3/ 31  +  · · ·                                          .  (A. 21)
0

4
Multiplication by A of both sides of Eq. (A. 21) yields

T

A    0( T) d T = AT + A2T 2/2 + A 3T 3/3 i + · ·
· (A. 22)

0             ··

The unit matrix.can he added to both sides of Eq. (A. 22) as follows:

'

fT

I+A    0( T) d T =I+A T+ . A2 T2 /2 + A3 T3 / 31
+ ... CA.23)

0

but the right hand side of Eq. (A.23) is $(T). 'Therefore,
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•
1

T
I+A 0(T)dT = ,0(T) (A. 24)

0   •

which can be rewritt,en

ft-t

    k.$(T)dT = A-1IA(t - tk) - I] (A. 25)

0

if A-1 exists.  Substitution of Eq. (A. 25) into Eq. (A.20) yields

x(t)  =  0(t -  tk)Ak + A-3 [$(t  - tk)  -' I]Buk (A. 26)

and at t = (k+1)T

2Ek+l =, 0(T) k + A-1[0(T) - I]Buk (A. 27)

'· The homogeneous matrix differential equation of a time-varying

linear system is

i(t) = A(t)2&(t),  2&(to) = x0                             (A.,28)

Any solution of Eq. (A. 28) is given by

3(t) = $(t, to)2&(to) (A. 29)

This is verified by substituting Eq. (A. 29) into Eq. (A. 28) with the
0

result that

$(t, to)' = A(t)$(t,'to) (A. 30)

and                                                                                  '

42(t) = d--[$(t, to)x(to) 1dt

= A(t)$(t, to)x(to)

=   A(t )25(t) (A. 31)
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Also

0(to, to) = I (A.32)

and the boundary conditions are satisfied.  Integration 02 Eq. (A. 28)

yields

t

21(t) = Ecto, + A(t)x(T)dT (A. 33)

to

which can be solved by repeated substitution of. the right side into the

integral · for x· The first substitution yields

ft                  fT

2£(t)  = 2&(to)  +       ACT) Ix(t )  +       A(v)x(v) dv]d·r (A. 34)

to                to

Define the operator

ft

Q()=   C )dr (A. 35)

to

which leads  to the following series  as a solution  of  Eq.   (A. 22):

2£(t) = [I + Q(A) + Q(AQ(A)) + Q(AQ(AQ(A))) + ···]x(to) (A. 36)

Comparison of Eq. (A. 36) with Eq. (A. 29) shows that the state transition

matrix for a time-varying system is given by:

$(t, to) =I t Q(A), + QfAQ(A)).+ Q(AQ(AQ(A))) + ··· ..(A. 37)

If A is constant matrix, then

$(t, to) =It*(t' -'to) t.A2(t - to)2/2!1 + A3(t - to)3/31 -F ···

(A. 38)

which is the same as Eq. (A. 7) with the argument replaced by t - tl.

Assume that' the solution of the nonhomogeneous di*ferential equa-

tion
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A(t) = A(t)x(t)' + B(t)u(t),   2&(to) =xo (A. 39)

is given by

x(t) = 0(t, to)y(t)                                  (A.40)
-

Then        '

*(t) = 0(t, to),(t) + $(t, to)y(t) (A.41)
- -

and  Eq'·   (A. 30) is substituted  into  Eq.   (A.41) to eliminate  0.    Thus

%(t) = $(t, €0)y(t) + A(t)$(t, t )y(t) (A.42)

Substitution of Eq. (A. 39) into Eq. (A. 38) results in

x(t) ='A(t)$(t, to)y(t) + B(t)u(t) (A.43)

which on comparison with Eq. (A.42) results in

0(t, to)y(t) = B(t)u(t) (A.44)    '

and y(t) is obtained by integration.  Thus                

ft                                                   
y(t) = y(to) +    , 0-1(T, to)B(T)u(T)dT (A.45)
-           -               to

At t = to, Eqs. (A. 32) and (A.40) result in

y(to) = 1(to) (4:46)

E4uation  (A.40)  is  solved' for y(t) and substituted with Eq. (A. 46)

into Eq. (A. 45) to yield

It 7

0-1 (t' to)*(t) .= 3.(to) +     0-1(T, to)B(T)u(T)dr (A.47)

to

1 1

The solution. for x(t) is                          ·
ft

21(t) =.4,(t, to)X(,to). + $(t,;'to)     0-1(T, to)B(T)u(T)d'r (A. 48)

J to                  ..
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Using the properties of the state transition matrix

0-1 (T, to) = 0(to, T) (A. 49)

and

$(t, to)$(to,'T) = 0(t, T)            '                  (A.50)

Eq. (A. 48) can be written

t

.(t) = 0(t, to)3(to) + $(t,T)B(T)u(T)dT (A.51)

to

For the discrete-time input defined by Eq. (A. 18), Eq. (A. 51)

becomes

tk+1

x(tk+1)  =  0(tk l'  tk)x(tk)    uk $(t ,f)8(T)dT (A. 52)k+1
tk

which can be written

tk+1

lk+1  =  0 (k+1,   k)3ic  + uk $(t ,T)B(T)dT (A. 53)k+1
t
k
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APPENDIX B

OPTIMAL CONTROL LAW FOR A DISCRETE-TIME LINEAR SYSTEM
WITH A QUADRATIC PERFORMANCE INDEX

For d discrete-time linear system described by

6ktl = 91, + Guk (B.1)

and a quadratic performance index.of the form

N

IN =  I  (aIQisk + cut-1) (B.2)
k=1

the·optimal control law can be found by the method of dynamic

programming.

There is a sequence: un, ul' up, "•, UN-1 which will make IN a

minimum.  Let the minimum value of IN be denoted by

N.

fN[x(0) 1    =   min         .I       [isIQ -   +   cu -1 1 (B.3)
UO  k=1
U 1
...

uN-1

For the last N-j stages of an N-stage process

N
fN- j  [x(j) 1    =   milin             I          [2 Q sk  + c€-11 (B.4)

u J  k=j+1
j+1

. . .

UN-1

The principle of optimality [132, p. 57] may be used to interpret

the selection of ul, ul, u2, ..., UN-1 as.a sequence of decision pro-

cesses. The principle·of optimality states: "An optimal policy has the
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property that whatever the initial state and the initial decision are,

the remaining decisions must constitute an optimal policy with regard to

the state resulting from the first.decision."

Then, by the principle of optimality, Eq. (B.4) reduces to

f   (x ) = min [x:+iqxj+1 + cu2 + f (x )] (B.5)
N-j -j U -J j         N- (j+1)  -j+1j

Starting with j = 0,

fN (xo)    =   min    [2 (}211   +   cu20   +   fN-1 (211) ] (B.6)
UO

f          (x 1)    = min [2JQ,2   +   cui   +   f (2£2)] (B.7)
N-1 -

Ul N-2

f 1(EN-1)  = W.n   [4QEN + cu -i + f  (xN) ] (B.8)
-N-1

Define·

f o (.EN)    - 0 (B.9)

Since the functional f is quadratic in x, both f and f
N-j N-(j+1)

can be expressed in quadratic forms. Let

T
f   (x ) = x.P x. (B.10)
N-j -j -3 N-j-3

and

T
f        (x ) (B.11)
N- (j+1)  -jtl     =  Ejtl N-(j+1)fjtl

where  the P matrices  are  nxn, and symmetrical.

On substitution of Eq. (B.11) into Eq. (B.5)

fN- j (Ej)   =  min   [31:+1QE.1+1  +  cuj  +2Ej+1PN- (j+1)2Sj+11 (B.12)
U Jj
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Define

=Q+P (B.13)SN-(j+1) N- (j +1)

Then

f N- j ( 1)  t=  1"u:   Ilsj+1  N-(j+l)*j+1            1
T

S + cu2] (B.14)

J

but x. is a function of u..  Then, after substitution of Eq. (B.1),
J+1                 J

Eq. (B.14) becomes

T-
fN-j (11)   =  mp.'   I (01!1   +  Guj)   bN- (j+1) (021   +  Guj)   + cuj] (B.15)

J

The minimum of E4. (B.15) may be found by taking the derivative with

respect to u  and equating the result to zero.  Thus

2 I $31   + Guj]Ts G + 2cu. = 0 (B.16)
N-(3+1)               J

which can be expanded to give

T
x *S G + GTS Gu + cu. = 0 (B.17)
-j    N- (j+1) N-(j+1)  j     J

Taking the transpose of Eq. (B.17) and solving for u  results in

GTS       0N- (j+1)u. = - (B.18)

J      T        G.+ c -1GS
N- (j+1)

which may be expressed in linear form by

u  = B x. (B.19)
j    N-j-3

where
.T.

G.SN-(jtl) 9
B = (B.20)
N-j     GT        G+cSN-(j+1)
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or
T ..

G.[Q + p       :14
=.        N-(.1+1)_B                                                               (B.21)

N-j   GF[Q +.P ]G +'c
N- (j+1)

The recurrence relationship· for tlie· P matrices. is obtained by

substituting Eqs. (B.10), (B.13),'and (B.19) into Eq. (.B.15·) to obtain

T        =- <0 + GBN-j)'.(Q + P )(0·+ GB·   )x.X.P .X.-j N-J-3 N- (j+1) N-j -0

T T
(B.22)+ cx.B   F  .x.-1 N-j N-1-1,

Comparing both sides  of  Eq. (B·.2'2) leads  to

PN_j  =  (0 + GEN-j )T(Q + PN-(j+1)) (.0 + GBN-j) + cE#_1BN-j (B.. 23)

Equations   (B·. 21)   and   (B. 23)   give the desired recurrence. relationship   for

the  B  and P matrices. Starting  with  j   =  N-1,   and  F     =  0, the· sequence

is:  Bl, Pli 82,'P2, "', PS-1, BN'

When N-*= in Eq. (B.2),. the control process becomes an infinite

stage proce'ss„  and the feedback control law given  by  Eq. (B.19') becomes

time in*ari rit.
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''                                    APPENDIX C

SERIES EXPANSION OF DISCRETE-TIME REACTOR EQUATION

Integration of the reactor kinetics equations results in the

following discrete-time solution for the normalized delayed neutron

precursor density:

-

1-P'

A

zk+1   =   zk   exp _u En   1   -   P    -     T      -
A T (C.1)

-

which is unsatisfactory for numerical computation as u +0.
k

Equation (C.1) may be expanded in a Taylor series by defining

1-Pk
f '(uk) =

En (C.2)
1- pk-ukT

Then                                                              ·

f'(uk)   =  1   -  p   -
ilkT

(C.3)

f"(uk) = (1 -    - ukT)2
(C.4)

2T3

f' 1'(uk)  =   (1  -  pk  -  ukT) 3 (C.5)

I and

(n - 1)1 Tn (c.6)
fn(uk) = (1 - pk - ukT)n                                                        --

The Taylor series expansion for Eq. (C.2) is
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T2                   Tn
f(u ) 6 0 4, ·1- k Uk   2(1-pk)2.11  4 ..6 -1. 11(1-pk)n.u  4- "·    (C.7)

Substitution of Eq. (C.7) into Eq. (C.1) results in

F AT AT2 ATn n-1

Zk+1  =  zk  exp 13=Ek + .i (1--pk)2  ukUk +  . . . + n(1-p  )n uk    +  . . .  - AT k

(C.8)

The first and last terms inside of the bracket may be combined with the

result that

-1TPk AT2 ATn n-1

Zk+1 - zk exp 1-pk + 2(1-p·k)2 Uk + "' + n(1-Pk)n uk   + ...  (C.9)
-                                               -

Let

x =.ukT/(1 - Pk) (C.10)

Then Eq. (C.9) may be expressed as follows

-                                    -

XT X x2 xn-1zk+l=zkexp 1-8  (Pk   2+3          n+... + - +...) (C.11)
k

-                               -

When u  = 0, x = 0, and Eq. (C.11) reduces to Eq. (4.75).
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APPENDIX D

PROOF THAT ONE ERROR TERM OF OPTIMAL ESTIMATOR IS ZERO

i+1
For the nonlinear estimator with iteration, the estimate is

  -1

given by

i+1    i       T      T   T
xk-1 Ik-1 -or-a k-1 K+ [H H+F  E Hkfk-11-1    < Fk-l Iyk   -   h (4)

i

+  Hk(4   -   f.(4-1.))]   +  al (2  -  Ek-1) 1 (D.1)

It can be demonstrated that

 (8  -  4-1)   = 0 (D.2)

throughout the iteration sequence by first rearranging Eq. (D.1) and

multiplying both sides to obtain

[H Ha +  -i' Hkrk-1.1,   " F -1. kfk-lis -1 + F -l' Iyk - 4(4)

+ Hk (15: - f (1, -1))1 + 0,2 (D.3)

Then, if the term FT_1H IikFk-lf is added and subtracted to the right

side

[Oa + 'k-iH>kfk«11521 - 'k-kH Hkfk-lf   H Hua + Fk-l" tyk

i

- h (4) + Hkfk - likf (1[ _1) - HkFk-1· 

1                         (D.4)+ HkFk-14-11

If 81 is defined
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Bi   =   f <-1)   +   Fk-1 [s  « ·14«11 (D.5)

substituted into Eq. (D.4)

[HT- a + 'Li'>krk-lll'   = [H Ha t FkT-IH Hkfk«11.3 + '· -l" Iyk

-   h(4)   +   Hk (4   -   Bi) 1 (D.6)

and both sides are multiplied

3Sll   . .a t    [48,   +   '11*k'k-11-1 'Ll': [ yk   -   h(1' )    +   Hk  4   -   Bi)1

(D.7)

If the term 2 is subtracted from both sides of Eq.  (D.7) and the

resulting equation is multiplied by H-a

11,(1 2 I  «  s)   -  M, [HX  +  'Li'>t,Fk-11-, F -1-'t [yk  -  h(3:)

+ Rk(4  -  Bi) 1 (D.8)

If the left side of Eq. (D.8) is equal to a zero column vector and the

error terms in the bracket on the right side are not zero, then

T T T__
H[H H +F H F   ]-1 FT  HT = 0 (D.9)--a -or-a        k-1--k--k k-1 k-1 -k    -

The equality of Eq. (D.9) can be demonstrated by using the matrix

inversion

4-1 = ---                                          (D.10)
HF
-k k-1_     fk_

or --

4
31,-1 = M-1 [lc  1  '11'1:1

--- (D.11)

fk_

where

T                T     KTH' FM=H H+F (D.12)-ora    k-1--k-k k-1
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Multiplying both sides of Eq. (D.11) by the composite H matrix yields

-                                                                                                                               F

H
-el

M- 1  [HT.    1    FT       HT] --- (D.13)
------ xk -1

-
--a     k-1-k

F K -Fk-A_ -yk_k-1-k
-     -

The left side is equal to the measurement vector, therefore Eq. (D.13)

can be written

                    H   M- 1 H T              . |  H  M- 1 F T      117                  .4,--·a -Ia
1 -a                k- 1--k---     -----------                    ---                    (D.14)

Yk                   F         H   M-1 H T   |  F         F M-1 F T      MT      Ykk-1-k --a   i    k-1 -k k-1  k-  -

Since Za and Yk are independent, the partioned matrix of Eq. (D.14) is

an nxn unit matrix, and

H M-1HT = I (n-1 x n-1) (D.15)-0         --a

H M-1 FT  HT = 0 (n-1 x 1) (D.16)
-0           k-1 1        -

Fk- 1HkM- 141  - 0 (1 x n-1) (D.17)

Fk-1HkM- l 'k-1'   = 1 (D.18)

Equation (D.9) is verified by Eq. (D.16).

Since the iteration sequence is started with 2 -1 * 2, the first

error correction term contributed by H (2 - 2 -1) is zero, and all1

subsequent values   are zero. Therefore,   the   term  H   (a - 3 -1)   may  be1-

omitted from the estimator.
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APPENDIX E

DIFFERENCE SOLUTIONS BY INTEGRATION

Although numerical integration is used in. the digital computer

calculation of the reactor state estimates, the reacter equations can be

integrated· analytically to demenstrate that Fk-1 obtained by integration

is equal to Fk-1 obtained by differentiation of the plant difference

equation.  The following equations are integrated simultaneously from

zero to t:

z(t) E Xz(t)p(t)/[1 - p(t)] Z (0)  =· Z (E.1)k-1

A (t)    = uk-1 PCO) = Pk-1 (E.2)

011(t) =.Ap(t)011(t)/[1 - p(t)] $11(0) = 1 (E.3)

 12(t) = AP(t)011(t)/[l - p(t)]

+ Az(t)/[1 - p(t)]2 012(0).= 0 (E.4)

First, Eq..(E.2) is integrated ·to obtain

(E.5)p (t).= Pk-1 + uk-lt

which is substituted into Eq. (E.1), yielding

X ..1.-.Pk-1  j

z (t)   =  zk-lexp  - gn
<1-'k-1 uk-1

1 -At (E.6)

"k-1                     t /

Next E4. (E.5) is.substituted into Eq. (E.3) and integrated
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k     / .1- Pk-1   $11(t) = exp- Zn i-At (E.7)

-uk-1      l 1-Pk-1-Uk-lt./.     1

Finally, Eqs. (E.5), (E.6), and (E.7) are substituted into Eq. (E.4)

and integrated, with the result

Atz
A    ./ .1.-.Pk-1

1 (E.8)

012(t)  =  (1-pk-1) (1 -1-uk-lt) exp _uk-1 Zn l-pk-1-uk-lt  - At_

At t = T, Eqs. (E.7) and (E.8) agree with matrix Eq. (7.12), which is

obtained by differentiating the plant finite-difference equations.
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APPENDIX.F

KUTTA-MERSON INTEGRATION ALGORITHM

Merson [126] proposed an integration method which does not require

a special starting feature and which'can be used with automatic interval

adjustment.  The Kutta-Merson process uses the equations

1
Yi = Yo + ·3hf (x , yo) (F.1)

Y2  =  Yo  +  f (xo,  yo)  +  f (xo  +  h,   yl) (F.2)

Y3  =  Yo  +  hf (xo,   yO)   +   f (xo  + · h, y2) (F.3)

Yit  =  yo  + 12hf (xo,   yo)   -  .2hf (xo  + 13h,   y2)  +  2hf (xo  +  h,   y3)        (F.4)

Ys  =  yo  +  hf (xo,  yo)  + 23hf (xo  + 12h,  y3)  + ' hf (xo  +  h,  y4)         (F.5)

Merson showed that the error in Y4 is -hSy(v)/120, and in y5 is

(V)
-hsy,  /720; and that a good estimate of the error in the computed ys is

0.2(Y4 - Y 5)·

Automatic interval adjustment is accomplished by specifying the

integration accuracy £2 and adjusting h.  If

 0.2 (Y4 - ys) 1 '> 62
'

(F.6)

h is halved.  If

64 |0.2(74 - YS)1 < £2 (F.7)

then h is doubled.
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The advantage of the Kutta-Merson method is that it facilitates

rapid interval selection for exploratory calculations requiring

specified accuracy; however it does require additional computation time

in comparison to other methods.
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'

1

1.   RoOTS OF PROMPT JUMP. EQUATION

DIMENSION,S(7), 8(71, A(7) i..D<7),ST(7)
1 FORMAT·(1Hl)
2 FORMAT (F12.8)
3 FORMAT'(9X, 1HB, 16*, 1HS)
4·FORMAT (E14.8, 4X, .614.8)
5 FORMAT (1H )

1

A(1)   0.038
A(2) = 0.213                                  -              .,
A(3) = 0.188

: A(4) = 0.407
A(5) = 0.128
A(6) = 0'•026
D(1) = 0.0127
D(2) = 0.0317
D(3) = 0.115
O(4) = 0.311
D(59 = 1.40
0(6) = 3.87
5(11 = 0.01
9(2) = -0.014
S(3)= -0.065
5(4) = -0•19
5(5)   -1,25
5(6) = -3,75
S(7) = •65000.0
ALPHA = 65000.0
X = 1.0

..

RHO = 0•1
ERR·   1.OE-7

10 DO 15 I = 1,7
ST(I) = 0,0

11 SUM 1 = 0.0
SUM 2   0.0
DO 12 J = 1,6
SUMI = SUM1 + A(J) *(SCI)/(SCI)+D(J)))-*2
SUM2 = SUM2 + A(J)*D(J)/(SCI)+D('J))**2

12 CONTINUE
SCI) = (RHO - SUM1)/(SUM2 + X/ALPYA)
DIFF = S(I) - 'ST(I)
ST(I) = S(I)
WRITE TYPE 2, SCI)
IF (DIFF) 16, 17, 1/

16 DIFF = - DIFF                '
17 IF(DIFF - ERR) 13, 13, 11
13 SUM 3 = 0•0'·

DO 14 K = 1,6
SUMJ = SUMG + ACK)/CS(I) * DCK))

14 CONTINUE
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8(I) =(SUM3 + X/ALPHA)/(SUM2 + X/ALPHA)
wHITE TYPE 5

15 CONTINUE.
PRINT 1
PRINT 3
PRINT 4, (B(I), S(1), 1 1,7)
PUNCH 4, (8(I), SCI), I=l,7)
END



146                                                                               : '

2.  REACTON RESPONSE TO STEP DELTA K

DIMENSION S(7), 8(7)
1 FORMAT (1Hl)
2 FORMAT (2F16.8)
3 FORMAT (6*, 4HTIME, 12X, 4HFLUX, 12X, 6HFLUX 1,/)

READ 2, (8(I), SCI), I=l,7)
PRINT 1
PRINT 3
DELT = 0.0001
DO 11 N = 1,101
T = (N - 1) * DELT
FLUX = 0.0
DO 10 I = 1,7

10 FLUX = FLUX + 8(I) - EXPFCS(I)*T)
PRINT 2, T, FLUX

11 CONTINUE
END
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3'.  CALCULATION OF FEEDBACK MATRIX

DIMENSION PHI(7,7),H(7),Q(7,7),P(7,7),S(7,7),HTSPHI(7),
18(7),PSI(7,7),PSIPS1(7,7),BTB(7,7)

10 FORMAT (F16.8)
21 FORMAT (4F16.8)          '
11 FORMAT (Il)

READ 11, N
READ 10, ALAMBD,T

20 READ 10, 'A, C
12 FORMAT (1Hl//40*51HCALCULATION OF FEEDBACK MATRIX WITH

1CONTROL PENALTY)
13 FORMAT (1H0,9X,6HLAMBDA,20*,1HT,23X,lHA,23X,1HC,23X,1WN)

PRINT 12
PRINT 13

14 FORMAT (1H ,4(4*,Fle.8,4X),11X,Il)
PRINT 14, ALAMBD,T,A,C,N·

15 FORMAT (1HO,24X,3HPHI,32*,1HH,33X,1HQ)
PRINT 15

16 FORMAT (1HO,loX,2F16.8,10*,F16,8,10X,2F16.8)
17 FORMAT (100,14X,1HS,29%,1HB,28*,3•IPSI,281,1HP)
18 FORMAT (1HO,1*,3(2F14.8,2X),2F14.8)
19 FORMAT (1HO,1X,2F14.8,32X,2F14,8,2x,2Fl4.8)

PHI(1,1)   1.
PHI(1,2)   T• ALAMBD
PHI(2,1)   0.
PHI(2,2)   1.
H(1) = 0.5 * T ** 2 * ALAMBD
H(2) = T
Q(1,1) = 1,
0(1,2) = 1.
0(2,1) = 1.
0(2,2) = 1, + A
PRINT 16, PH1(1,1),PHI(1,2),H(1),2(1,1),Q(1,2)
PRINT 16, PHI(2,1),PHI(2,2),H(2),2(2,1),9(2,2)
PRINT 17
00100 I = 1,N
DO 100 J = 1,A

100 P(I,J) = 0.
BlTEMP = 0.0
82TEMP = 0,0

99 DO 101 I = 1,N
DO 101 J = 1,N

101 SCI,J) = Q(I,J) + P(I,J)
HTSH = 0.
DO 102 I = 1,N
DO 102 J = 1,N

102 HTSH = HTSH + H(I) * SCI,J) * H(J)
DEN = HTSH + C
DO 105 K = 1,N
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HTSPHI (K) = 0•
DU 104 I =1,N
DO 104 J = 1,N

104 HTSPHI (K) = HTSPHI (K) + H(I) * SCI,J) • PHICJ,K)
105 8(K) = -HTSPHICK)/DEN

D O    1 0 6.    I   *=    1,IV
DO 106 J z 1,N

106 PSI(I,J) = PHICI,J) + H.(I), • 8(J)
DO 107 I = 1,N
DO 107 J = 1,N
PSIPSI(I,J) = 0,
DO 107 4 a 1,N
DO 107 L = 1,N

107 PSIPSI(I,J) =.PSIPSI(I,J) • PSICK,I) * SCK,L) * PSI(L,J)
DO 108 I 9 1,N
DO i08 J = 1,N

108 ATB(I,J) = 8(I) * BKJ)
DO,,109 I = 1,IV
DO 109 J = 1,N

109 P(I,J) = PSIPSICI,J) +C• BTB(I,J)
DIFFl = BlTEMP - 8(1)
IF (DIFFl) 30,31.31,

30 DIFFl = -DIFFI
31 IF(DIFF1 - 0.0000001) 33,33,32
3 2    B l'TEMP    =    8(1)

GO T099
33 DIFF2 = 82TEMP:• 8(2)

lF (DIFF2) 34,35,35
34 DIFF2 =.-DIFF2
35 IF(DIFF2 - 0.0000001) 37,37,36
3 6    8 2 T E M P    =    8( 2')

GO TO 99
37 PRINT 18, S(1,1),S(1,2),8(1),8(2),PSI(1,1),PSI(,1,2),

1 P(1,1),P(1,2)
PRINT 19, S(2,1),S(2,2),PSI(2,1),PSI(2,2),P(2,1),P(2,2)
PUNCH 21, 8(1), 8(2), A, C
GO TO 20

111 END       «
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4.  CALCULATION OF TRANSIENT RESPONSE

10 FORMAT (1Hl,28X,18HTRANSIENT RESPONSE)
11 FORMAT (1HO,20X'.2H81,27*,2H82)
12 FORMAT (1H ,14X,F14.8,15X,F14.8,59X,F400)
13 FORMAT (F14.8)
14 FORMAT (1Ho,3X,lAN,14X,1HU,17X,3HRHO,17%,1HZ,16)(,4HFLUX,

116X,2HPI/)
15 FORMAT (1H ,I4,4(3X,F16.8)>
16 FORMAT (15,4F14,8)
17 FORMAT (15,F14·8)
18 FORMAT (I5)
19 FORMAT (4F16.8)
25 FORMAT (84*,F16.8)

READ 18, M
READ 13, T
READ 13, ALAMBD
REAU 13, RHOO
READ 13, ZO

20 READ 13, RUNNO
READ 19' 81, 82, A,C
PRINT 10
PRINT 11
PRINT 12, 81, 82, RUNNO
PRINT 14
N=0
Pi = 0.
r-LUX = ZO/(1.0 - RHOO)
U = 81 m (ZO - 1.·n) + 82 * RHOO
R H.0    =    R H O O
DELTAN = FLUX - 1.0
DELTAZ = ZO - 1,0
PRINT 15, N, U, RHO, DELTAZ, bELTAN
PUNCH 16, N, U, RHO, DELTAZ, DELTAN
ZK = ZO
RHOK = RHOO

21 DO 22 K = 1,10
X = U*K*T/(1.0-RHOK)
SER = (ALAMBD*K.T/(1.0-RHOK))*(RHOK+X*(1,0/2.0+X*(1•0/3.0

1+X*(1.0/4.0+X*(1.0/5.0+X•(1.0/6.0+X*(1.0/7.O+X*(1.0/8.04
2**(1.0/9.0+X/10,0)))))))))
Z = ZK*EXPF(SER)
RHO = RHOK + U*K*T
FLUX = Z/(1.0-RHO)
DELTAN = FLUX - 1.0
DELTAZ =Z- 1·0
N = N+1
PRINT 15, N, L, RHO, DELTAZ, DELTAN
PUNCH 16, N, U, RHO, DELTAZ, DELTA.N

22 CONTINUE
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ZK = Z
RHOK = RHO
PI = PI + (FLUX - 1.0)**2 + A•RHO*•2 + C*U**2
U = 81*(ZK-1.0)*82*RHOK
PUNCH 17,N,U
PRINT 25, PI
IF(N-M) 21,23,23

23 IF(SENSE SWITCH 1) 24,20
24 PAUSE 1

GO TO 20
END
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5.  PLOT PROGRAM FOR TRANSIENT RESPONSE

DIMENSION N(111),U(111),RHO(111),Z.t111),FLUX<111),A(111)
1 FORMAT (F6,0)
2 FORMAT (5F16.8)
3 FORMAT (I5,4F14,8)
6 FORMAT (1HO, 5 F 1 6 . 8,4 X, F 6 . 0 )

SN = 20.0
S = 0.2
SU = S
SRHO = S
SZ = S
SFLUX = S

9 READ 1, RUN NO
12 READ 3, (N(I),UCI),RHO(I),Z(I),FLUX(I),I=l,111)

1 RUNNO = RUN NO
DIGITl = IRUNNO/ln
DIGIT2 = RUN NO - DIGITl • 10.
DO 27 J = 1,3
A = PLOTF (2.0,2.0,1)
X = PLOTF (0·0'0·0'2)
X = PLOTF (0.0,0.02,3)
X = PLOTF (DIGIT1,0.0,4)
X = PLOTF (10.0,0.0,3)
X =PLOTF(0.0,0.0,2)
X = PLOTF(DIGITZ,0.0,4)
X = PLOTF (0.0 ,/ 11·0,3)
X = PLOTF (0.0,0.0,2)
x = PLOTF (1.0,1.0,1)
X = PLOTF (0.0,2.5,3)
X = PLOTF (0.0,-2.5,4)
x = PLOTF (0.0,2.0,3)
X = PLOTF (0•12,2.0,4)
X = PLOTF (0.0,2.0,3)
x = PLOTF (0.0,0.0,3)
X = PLOTF (5.0,0.0,4)
X = PLOTF (0.0,0.0,3)
X = PLOTF (0.0 '. 2.0,3)
X = PLOTF (0.12,-2.0,4)
x = PLOTF (0.0,-2.0,3)
X =, PLOTF (0.0 '. 2.5,3)
DO 34 I = 1,9

--/

T 9 0,5 * I
* g PLOTF (T,-2,5,4)
IF(I - 5) 31,32.31

31 X = PLOTF (T,-2.44,4)
GO TO 33

32 X = PLOTF (T,.-2,38,4)
33 X m PLOTF CT,-2,5,3)
34 CONTINUE
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1

4 X = PLOTF (5.0,.2.5,4)
X   PLOTF (5.0,•2.0,4)
X = PLOTF (4.88,-2.0,4)
X = PLOTF (5.0,•2.0,3)
X = PLOTF (5.0,2.0,4)
X = PLOTF (4.88,2.0,4)
X = PLOTF' (5.0,2.n,·3)
X = PLOTF (5.0,2.5,4)
.DO 38 I = 1,9
T= 5.0 ·- 0.5 * I

'X m PLOTF (T,2.5,4)
IF(I - 5) 35,36,35

35 x m PLOTF (T,2•44,4)
Gp TO 37

36 X   PLOTF (T,2.38,4)
37 X = 'PLOTF (T,2•5,3)
38 CONTINUE

x = PLOTF (0.0,2.5,4)
X = PLOTF (0.0,0.0,3)
DO 14 I = 1,111

14 ACI)=N(I)
t

A(1) = 0.3
X = PLOTF (SN,SU,1) 1,

X = PLOTF (0·0,0.0,2)
X = PLOTF(A(1),U(1),3) 1

la DO 15 I=2,110
X:PLOTF(ACI),l(I),41

15 CONTINUE
X = PLOTF(0.0,0,0,3)
X ='ALOTF(SN,SRHO,1)
X = PLOTF(0.0,0,0,2)
K=0

18 Il =2+ 11*K
I 2=9+I l

16 DO 17 I = Il,12
* v .PLOTF(ACI),RIIO(1),3)

17 CONTINUE
K=K+1
IF (K - 10) le,19,19

19 REF = 0.0
X = PLOTF(0.0,0.0,3)
x = PLOTF(SN,SZ,1)

20 X = PLOTF (0.0,REF,2)
X = PLOTFCA(1),2(1),3)
K=0

21 Il =2+ 11*K
12  9 + Il
DO 22 I = Il, I 2
*.  PLOTF (A(1),Z(I),3)

22 CONTINUE
K=K+1
IF (K - 10) 21,23,23

23 X = PLOTF (0.0,REF,3)
X=PLOTF(SN,SFLU*,1)



153

X = PLOTF(0.0,REF,21
X = PLOTF (A(1), FLUX(1),3)
K=0

24 11 =2+ 11*K
1 2   9+I l
00 25 I = Il, I 2
x = PLOTFCA(I),FLUX(I),-3)

25 CONTINUE
K=K+1
IF(K. - 10) 24,26,26

26 X=PLOTF(0,0,REF,3)
X = PLOTF(1.0,1,0,11
x = PLOTF(0.0,0.0,2)
X = PLOTF (-5.0,17.5,3)

27 CONTINUE
GO TO 9
END

-



154

6.  .ANALYTIC ESTIMATOR SOLUTIONS

1 FORMAT (6F16.8)
2 FORMAT (1Hl)

D = 0.31
;     PRINT 2

DO 10 N = 1,200
RHO = -1.01 + 0,01 * N
Z = EXPF(D * RHO/(1•0 - RHO))
Y = Z/(1.0 - RHO)
RHol = LOGFCY)/(D+LOGFCY))
Zl = 1.0 - RHCl
Z2 z Zl * EXPF(D*RHOl/(1.0 - RHOl))

" 10 PRINT 1, RHO, 20 Y, RHOl, Zl, Z2
END

L
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7. FINITE D,IFFERENCE SYSTEM WITH ESTIMATOR AWD CONTROL

L    DIMENSION ALPHA(2), X 1 ( 4 ), X 2 ( 4 ), HTH1(2,2),
lF(2,2), H2(2), HTH2(2,2), C2INV(2,2),
2XlEHR(2),X2ERR(2), XBAR(4),Hl(2), 02(2,2),
3H2F(2),HFTHF(2,2),HZFTYE(2),WTH1DX(2),VECTOR(2),DELTX1(2)
4,xllEMP(2),XlDIFF(2),FxlDIF(2), Y2(4)

10 FORMAT(1Hl,28*,18HTHANSIENT RESPOVSE,3OX,4H81 =,F14•8,5X,
14H82 =, F14.8)

11 FORMAT (1H )
12 FORMAT (5X,4(JX,F16.8),27*,13)
13 FORMAT (F14.8)
14 FORMAT (1HO,3X,1HN,14X,1HU.17X,3HRHO,17X,1HZ,16X,4HFLUX/)
15 FORMAT (1H',I#,4(3X,F16.8))
16 FORMAT (I5„4F14,8)
17 FORMAT (15,F14·8)
18 FGHhAT (15)
19 FORMAT (4F16.8)

READ 18, M
READ 13, T
READ 13, ALAMBU                          '
READ 13, ZO
hEAD"19' Bl, 62, A,C

3
20 READ 13, RHOO \-

PRINT 10, el, 82

2 '' PRINT 14
PRINT 11

EPS1 = 1.OE-6
N=0
PI = 0.
FLUX = ZO/(1.0 - RHOO)
U = 0.0
U T   ;   0.0
UL   1.0
YK = FLUX

3                 D = ALAMBD
ALPrA(1) - 1.0
ALPHA(2) 9 0•0
PRINT 15, N, RHOO, ZO, FLUX
DELTAZ = ZO - 1,0
UELTAN = FLUX - 1.0
PUNCH 16, N, l, RHOU, DELTAZ, DELTAN
RHOW = RHOO
ZK = ZO
DELT = 0.1
Hl(1) = 1.0
hl(2) = 1.0
HTH£(1,1) = 1.0
hTH1(1,2) = 1,0
HTH1(2,1) = 1.0
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HTH1(2,2) = 1,0
21 DO 22 K = 1,10

IF (U) 25,24,25
24 Z=Z K* EXPF((ALAMBD • RHOK *K• 0,1 - T)/(1.0 - MHOK))

GO TO 26
25 Z=ZK*EXPF((ALAMBD/U)*LOGF(el.0-RHOK)/(1.0-RHOK-U*K*001*T)

1)-ALAMBD•K*0.1*T)
26 kHO = RHOK + U*K*0.1*T

FLUA = Z/(1.0-RHO)
N = N+1. '   -
PRINT 15, N, RHO, Z, :FLUX
DELTAZ'= Z·- 1.0  2
DELTAN = FLUX - 1.0                      '
PUNCH ·16, N, l, RHO, DELTAZ, DELTAN

22 ColTINUE
ZK.= Z
RHOK = RHO
YK = FLUX
'L  =  1
X1(1) = ALPHA(1)
X1(2) = ALPHA(2)
IF (u) 28,23,28·

23 EXPO = EXPF(D*1*Xl(2)/(1.0 - X1(2)))
x2(1) = X1(1) '* EXPO
*2(2) = X 1(2)
GO TO 27

28 EXPO = EXPF((D/U)*LOGF((1.0-x112))/(1.0 Xt(2)-U*T))-D*T)
X2(1) ='Xl(1) * EXPC
X 2 ( 2 ) = X 1 ( 2 ) *U*T
GU TO 29

27 Expo = EXPF(D*T•Xl(2)/(1.0 - X1(2)))
*BAR(1)' = X1(1) * EXPO
ABAk(2) = *1(2)
F(1,1) = EXPO                               t

F(1,2) = (D*T•Xl(1)/(1.0 - X1(2))•*2)*EXPO
GO TO 30

29 EXPC = EXPF((2/U)*LOGF((1.0-x1(2))/(1;0-Xl(21-U*T))-DIT)
ABAR(1) = X1(1) * EXPC
XeAR(2) .= X1(2) + U * T
F(1,1) = EXPC                             '
*(1,2) = D•T*Xl(1)*EXPC/((1.0-Xl(2))*(1.'0-Xl(2)eu*T))

3 0    F(2, ,1)    =    0.0
F(2,2) = 1.0
H 2 ( 1 ) = 1 • 0 / ( 1 · 0 - X 2 ( 2 ) )

H 2 ( 2 ) .= ' X 2 ( 1 ) / ( 1 . 0 - X 2 ( 2 ) ) * *2
DO 31 I.= 1,2
DO 31 J = 1,2

31 HTH2(I,J) = H2(I) * H2(J)
DO 32 I = 1,2
h 2 F ( I ) = 0,0
DO 32 J = 1.2

'32 H2F(I) = H2F(I) + H2(J) * F(J,I)
DO 33 I=l,2
00 33 J = 1,2
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33 HFTHF (I,J) = H2FC I ) * H2 F.(J)
DO 34 I = 1,2
DO 34 J = 1,2

34 02INV(I,J) = HTH1(I,J) + HFTHFII,J)
DEN2 = C2INV(1,1)*CEINV(2,21 - C21NV(1,2)*C2INV(2,1)
(2(1,1)   C2INV(2,2)/DEN2
(2(1,2) = -C2 INV(1,2)/DEN2
62(2,1) = -C2 INV(2,1)/DEN2
62(2,2) : C2INV<1,1)/DEN2
DO 35 I = 1,2

35 XlERR(I) = ALPHACI) - Xl(I)
HXIERR = 0.0
DO 36 I = 1,2

36 HXIERP = HxlEAR + Hl(I) * XlERR(I)
PIl.= HXlERR**2   '·
DO 37 I = 1,2

37 X2EkR(I) = X2(I) - *BAR(I)
YH , X2(1)/ (1•0 - X2(2))
'YERH1 = YK - ¥H
PI2 = YERRl **2
HX2ERR = 0.0
DO 38 I = 1,2

38 HX2ERR = HX2EAR + 02(I) * X2ERR(I)
YERR = YERRI + HX2EAR
DO 39, I = 1,2

39 H2FTYE(I) = HEF(1) * YERR
DO 40 I = 1,2

40 HTH1Dx(I) = Hl(I) * HXlERR
DO 41 I = 1,2

41 VECTOR (I) = H2FTYE(I) + HTHiDX(I)
DO 42 I = 1,2
DELTxl(I) = 0,0
DO 42 J = 1,2

42 DELTX1(I) = DELTX1(1) + 22(I,J) * VECTOR(J)
DO 43, I = 1,2

43 XlTEMP(I) = Xl(I)
DO 44, I = 1,2

44 X1(1) = Xl(I) + DELTX1(I)
IF(*1(2) - 0.8) 46,46,45

45 X1(1) = XlTEMP(1) + DELTX1(1) * (0.8 - U•T - XlTEMP<2))/
1DELTX1(2)
X 1(2) = 0,8 -U*T

46 CONTINUE
DO 47, I = 1,2

47 *1DIFF(I) = X1(I) - X1TEMPCI)
DO 48 I = 1,2
FX1DIF(I) = 0.0
DO 46 J = 1,2

48 FX1DIF(I) = F*1DIF(i) + F(I,J) * X1DIFF(J)
0049 I =1,2

49 X2(1) = XBAR(I) + FX1DIF(I)
PI = PIl + PI2
IF (PI - EPS1 ) 51.51,50

5 O L=L+1
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IF (U) 29,27,29

51 YH = X2(1)/ (1•0 - X2(2))
U  , 81 * (*2(11 - 1.0) + 82 * X2(2)
PRINT 12, U, *2(2), X2(1), YH, L
PUNCH 17,N,U
DO 56 I = 1,2
DO 56 J = 1,2

56 HTH1(I,J) = HTH2(I,4)
DO 57 I = 1,2

'57 ALPHA(I) = X2(1)
DO 58 I = 1,2
Hl(I) = H 2(I)

58 *1(1) = X2(I)
IF (U) 61,60,el

BO EXPO = EXPF(D*T*Xl(2) /(1.'0 - X1(·2)))
X2(1) = X1(1) * EXPO
*2(2) = X 1(2)
'G O    T O    6 2

61 hxPC = EXPF((C/U)*LOGF((1.0-X122))/(1.0-*1(2)•U*T))-D•T)
1    *2(1)      =     X l ( ,1 )     *     E X P C                                                                                                                           1
X 2 ( 2 ) = X 1 ( 2 ) +U*T

62 UT = Al • (X2(1) - 1.0) + 82 *, X2(2)
IF(UT - UL) 53,52,52

' 52 UT = UL
60 TO 55

53 IF(UT + UL) 54,55,55
54 VT = -UL
55 IF (N-M) 21,59,59
59 CONTINUE

KO TO 20
END

1

t
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8.  DIFFERENTIAL SYSTEM WITH ESTIMATOR AND CONTROL

  COMMON U, H, EPS2
DIMENSION ALPHA<2), X 1 (4 ), X 2 ( 4 ), HTH1(2,2),

lF(2,2), H2(2), HTH2(2,2), C2INV(2,2),
2*1FRR(2),X2ERA(2), *BAR(4),H1(2), (2(2,2),
3H2F(2),HFTHF(2,2),HEFTYE(2),HTH1DX<2),VECTOR<2),DELTXi<2)
4,XlTEMP(2),XlDIFF(2),FX1DIF(2), Y2(4)

f 10 FORMAT(101,28X,18HTRANSIENT RESPOVSE,BOX,4H81 =,F14•8,5X,
14HR2 =, F14.8)   I

11 FORMAT (1H )                                                   '
12 FORMAT (5X,4(3X,F16.8),27X,I3)
13 FORMAT (F14.8j
14 FORMAT (1HO,.3X,1HN,14X,1HU,17X,3HRHO,17X,1HZ,16X,4HFLUX/)
15 FORMAT (10 ,14,4(3X,F16.8))
1 6      F  OR M A'r       (   I  5 ,  4 F 1  4,8  )
17 FORMAT (I5,F14•8)
18 FORMAT (15)
19 FORMAT (4F16.8)

READ 18,'M
READ 13, T
READ il, ALAMED
READ 13, Zn
READ 19, 81, 82, A,C

20 READ 13, RHOO
PRINT 10, Al, 82
PRINT 11
pKINT 14
EPS1 = 1.OE-6
EPS2 = 1.OE-4
N=n                          i
Pl = 0.
FLUX = ZO/(1.0 - RHOO)
U i 0.0
UT   0.0
UL ; 1.0
YK = FLUX
b = ALAMBD
ALPHA(1) = 1:0
AL Ph A k 2 )   0.0                      1
PAINT 15, M, U, RHOO, ZQ, FLUX
DELTAZ : ZO - 1,0      bb
DELTAN = FLUX - 1.0
PUNCH 16, &, U' RHOO, DELTAL, DELTAN
RHOF = RHOO
ZK = 70'
DELT = 0.1
Hl(1) = 1.6
Hl(2) = 1,0

i HT'Hl(1,1) = 1,0.
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''              1

HTH1(1,2) = 1.0
HTH1(2,1) = 1.0
HTH1(2,2) = 1.0

21 DO 22 K = 1,10
IF (U) 25;24,25

24 Z=Z K* EXPF((ALAMBD * RHOK *K• 0.1 - T)/(1.0 - HHOK))
GO T,0 26

25 Z=ZK*EXPF((ALAMBD/y)*LOGF((1.0-RHOK)/11.0-RHOK-U*K*001*T)
1)-ALAMBD•K*0.1*T)

26 RHO = RHOK + 6*K*0.1*T  .                                       9
FLUX = Z/(1.0-RHO)                        1
N = N+1
PRINT 15,N,U,RHO,Z,FLUX
DELTAZ =Z- 1.0
DELTAN = FLUX - 1.0            '
PUNCH 16, Nt U, RHO, DELTAZ, DELTAN

22 CONTINUE                        i                             'i  C
WRITE TYPE 11
ZK = Z
RHOK .= RHO
Y K    =   'F L U  
L=1
X1(1) = ALPHA(1)
X1(2) = ALPHA(2)
X 1(3) = 1.0
*1(4)   0.0                        1
CALL INTEGR (*1, X2)

29 X1(3) = 1.0
X 1(4) = 0.0
CALL INTEGR (Xl, XBAR)
F(1,1) =: XBAR(32
F(1,2) = XHAR(41                                            1

30 F(2,1) = 0.0
F(2,2) = 1.0
H 2(1) = 1.0/(1•0 -.*2(2))
H 2 ( 2 ) = X 2 ( 1 ) / ( 1 . 0 - X 2 ( 2 )1 ) * * 2
DO 31 I = 1,2
DO 31 J = 1,2

31 HTH2(I,J) = H2(I) * H2(Jl
DO 32 I = 1,2
H 2 F ( I )   0 .0
DO 32 J = 1.2

32 H2F(I) = H2F(1) + HY(J) * F(J,I)
DO 33 I=1,2
DO 33 J = 1,2

33 HFTHF(I,J) = H2F(I) * H2F(J)
DO 34 I = 1,2
DO 34. J = 1,2

34 C2INV(I,J) = HTH1(I,J) + HFTHFCI,J)
,DENy = 22INV(1,1)*£2 INV(2,2) - 62INV(1,2)*C2INV(2,1%
C2(1,1) = C2'INV(2,2)/DEN2
(2(1,2) = -C2INV(1,2)/DEN2
C2(2,1) = -C2INV(241)/DEN2
C 2(2,2) = C 2 1 IN V ( l, 1 ) / DE 2 .

1
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DO 35 I = 1,2
35 *1FRR(I) = ALPHACI) - Xl(I)

HxlERR = 0.0
DO 36 1 = 1,2

36 HXlERR = ·HXlERR + Hl(I) • XlERR(I)
911 = HXlERR*•2
DO 37 I = 1,2

37 X2ERR(I) = X2(I) - *BAR(I)
YH = X2(1)/ (1·0 - *2(2))
YERRl = YK - YH
Pi2 = YERRl **2
HX2ERH = 0.0
00 38 I = 1,2

38 HX2ERR = H*2ERk + HE(I) * X2ERR(I)
YERR   YERR1 + HX2ERR
00 39, I = 1,2

39 H2FTYE(I) = HZF<I) * YERR
DO 40 I = 1,2

40 HTHiDY(I) = Hl(1) * HXIERR
1

DO 41 I = 1,2
 

41 ·VECTOR (I) = h2FIYELI) + HTH1DX(I)*
DO 42 I = 1,2
DELTX1(I) = i0.0
DO 42 J = 1,2

42 DELTX1(I) = DELTX1(I) + 82(I,J) * VECTOR(J)
DO 43, I = 1,2

4 3    X l T E M P(  I  )    =    X 1(  I i)
DO 44, I = 1,2

44 Xl.(I) = X1(I) + DELTX1(I)
IF(Xl(2) - 0.8) 46.46,45

45 Al(1) = kITEMP(1) + DELTX1(1) * (0.8 - U•T - XlTEMP(2)1/
1UELT*1(2)
X 1(2) = 0.8 -U*T

46 CONTINUE
DO 47, I = 1,2

47 X101FF(I) = X1(1) - X1TEMP(I)
00 48 I = 1,2
FxlDIF(I) = 0.0
DO 48 J = 1,2

48 F*1DIF(I) = F*1DIF(1) + F(I,j) * KiDIFF(J)
UO 49 I = 1,2

49 X2(1) = XHARCI) + FX1DIF(I)
PI = PIl + PI2
IF (PI - EPSl ) 51,51,50

S O L=L+1
WHITE TYPE 18, L
GO TO 29

51 YH = X2(1)/ 21·0 - X2(2))
U = UT
PRINT'12, U, X2(2), X2(i), YH, L
PUNCH 17,N,U
90 56 I = 1,2
00 56 J = 1,2

56 HTH1(I,J) = HTH2(I,u)
/
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DO 57 I = 1,2
57 :ALPHACI) = X2(1)

D058 I =1,2
t

Hl(I) = H 2(I)
58 X1(I), = X2(I)

CALL INTEGR(Xl, X2)
62 UT = 81 • (%2(11 - 1.0) + 82 • X2(22                           I

IFCUT - UL) 53,52,52
I

52 OT = UL           '
GO TO 55                                                      M

53 IF(UT + UL) 54,55,55
54 UT = -UL
55 IF (N-M) 21,59,59
59 GO TO 20

END

SUBROUTINE INTEGR (*1, Y2)
COMMON U, H, EPS2

  DIMENSION Yo(4), Yl(4), 92(41, FO(4), Fl(4), F2(4),
lERROR(4), F(4), Y(4), X1(4)

1 FORMAT (F14.8)
1\1=4
H = 1.0
DO 30 I=l,N

30 YO(I) = Xl(I)
39  LOC = 0

MLOC = 1
38 HA = .33333333*H

HA = .16666667*4                    i
HC = .125*H
HD = .375*H
HE i •5*H
HF = 1.5*H
HS   2.*H

1 HH   •66666667*H '
W R I T E    T Y P E    1,    H

48  CALL FCT (YO, FO)
00 41 I=l,N

41 Yl(I) = YO(I) + HA * FOCI)
CALL FCT (Yl, Fl)
00 42 I l,N

42 Yl,I) = YO(I) * HB*FO(1) + HB•Fl(I.)
CALL FCT (Yl, F2)

1

1

DO 44 I=l,N
44  Yl(I) = YO(I) + HE*FOCI) • HF•Fl(I) + HG•F2(I)

CALL FCT (Yl, Fl)
DO 45 I=l,N             1

45 Y2(I) = YO(I) + HB*FO(I) + ¤H*F2(1).+ HB•Fl(I)
30 34 I=l,N
ERRORCI) = .2 *    A B.S F  (Yl(I)     -    Y 2. (I t) )        i

IF (EPS2- ERROR(I)),35, 34, ·34'
34 CONTINUE li                                                           1DO 32 I=l,N                              '     '         1
32 YO(I) = Y2(I) r
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LOC = LOC + 1
33 IF (LOC - MLOC) 37, 99, 99

8  37 IF (LOC * 1) 48, 47, 48
4 7     I F   ' (M L O C    -    2)     4 8,     4 9,     49
49 DO 31 I=l,N

IF (EPS2- ERRORCI) * 64,) 48, 48, 31
31 CONTINUE
24 H.= HG

LOC = LOC / 2
MLOC = MLOC / 2
GO TO 38

35 H = HE
MLOC = MLOC * 2
.LOC = LOC * 2
GO TO 38

99 RETURN         '
END

SUBROUTINE FCT (Y, F)
COMMON U
DIMENSION Y(4), F(41
F(1) = 0.31 * Y(1) * ¥(2) /(1.0 - Y(2))
F(2) = U
F(3) = 0.31 * Y(3) * Y(2)/(1.0 - Y(2))
F(4) = 0.31 *CY(2)*Y(4)+Y(1)/(1.0-Y(2)))/(1.0.Y(2))
RETURN
END
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