Mechanical design issues associated with mounting, maintenance, and handling of an ITER divertor

PDF Version Also Available for Download.

Description

Several designs that address plasma-facing plate configurations and thermal-hydraulic design issues have been developed for the ITER divertor. Design criteria growing out of physics requirements, physical constraints, and remote handling requirements impose severe mechanical requirements on the support structure and its attachments. These pose a challenge to the mechanical design of a divertor, which must be addressed before a functional divertor is practical -- that is, one that can be remotely handled, aligned, and maintained; that functions reliably under thermal loading and disruptions; and that gives the required life in the nuclear environment predicted for ITER. This paper discusses the ... continued below

Physical Description

Pages: (5 p)

Creation Information

Goranson, P.L.; Fogarty, P.J. & Jones, G.H. January 1, 1991.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Several designs that address plasma-facing plate configurations and thermal-hydraulic design issues have been developed for the ITER divertor. Design criteria growing out of physics requirements, physical constraints, and remote handling requirements impose severe mechanical requirements on the support structure and its attachments. These pose a challenge to the mechanical design of a divertor, which must be addressed before a functional divertor is practical -- that is, one that can be remotely handled, aligned, and maintained; that functions reliably under thermal loading and disruptions; and that gives the required life in the nuclear environment predicted for ITER. This paper discusses the design criteria for the divertor mounting structure and identifies the mechanical design issues that need to be addressed. Achieving the criteria may require the development of new components and innovative configurations, specifically a new class of remote fasteners and electrically resistant material for mounts. The possible design of such components and an R D program to develop them are described, and issues specific to the high-aspect-ratio design (HARD) configuration are summarized. Analysis and experiments that will resolve these issues and concerns and lead to a final ITER design are identified. 2 refs., 2 figs.

Physical Description

Pages: (5 p)

Notes

OSTI; NTIS; INIS; GPO Dep.

Source

  • 14. IEEE symposium on fusion engineering, San Diego, CA (United States), 30 Sep - 3 Oct 1991

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE92000742
  • Report No.: CONF-910968-12
  • Grant Number: AC05-84OR21400
  • Office of Scientific & Technical Information Report Number: 5175886
  • Archival Resource Key: ark:/67531/metadc1059795

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1991

Added to The UNT Digital Library

  • Jan. 22, 2018, 7:23 a.m.

Description Last Updated

  • Feb. 1, 2018, 6:18 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Goranson, P.L.; Fogarty, P.J. & Jones, G.H. Mechanical design issues associated with mounting, maintenance, and handling of an ITER divertor, article, January 1, 1991; Tennessee. (digital.library.unt.edu/ark:/67531/metadc1059795/: accessed June 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.