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Abstract
A major goal in nuclear physics is to understand how nuclear structure comes about from

the underlying interactions between nucleons. This requires modelling nuclei as collections of
strongly interacting particles. Using realistic nucleon-nucleon potentials, supplemented with
consistent three-nucleon potentials and two-body electroweak current operators, variational
Monte Carlo methods are used to calculate nuclear ground-state properties, such as the binding
energy, electromagnetic form factors, and momentum distributions. Other properties such as
excited states and low-energy reactions are also calculable with these methods.

1. HAMII,TONIAN

Quantum chromodynamics gives some hope of eventually understanding the residual
strong force between nucleons. However, it has not yet been developed to the point where it
can make quantitative predictions for nucleon-nucleon (NN) interactions. For studying nuclear

n -bod s stems we generally must rely on potential representations, where the choice of
ma y , W Y . .__J L.......... _--e theory To fit NN scattering data and deuteronentlat tortus lS UlOea uy ntc_utt-_,x_-cu,_, "a"
pot g hcated o erator structure for the NN potenual Further, mesonproperties requires a comp' P ' "
exchange theory and the existence of low-energy nucleon resonances suggest that there should
be significant many-body forces, which require three-nucleon (NNN) or higher-order
potentials in a nucleons-only representation. In practice, NN potentials give the major
contribution to the energy and induce the major correlations in the nuclear wave function, but
NNN potentials are needed for quantitative agreement with nuclear masses and can contribute a
significant fraction of the total binding.

A realistic nuclear Hamiltonian can be written in the form:

(t)
H='_Vi 2+._.vij+ _ Vijk,i t<.l i<j<k

where vij is an NN potential fit to elastic scattering data and deuteron properties, and Vijk is an
NNN potential fit to many-body ground state energies. Most realistic NN potent",ds can be
written in an operator form:

= _ vp(rij)oP, (2)vij p=l,n

where the first fourteen operators are: _ _,ST EI_
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Ottj -- 1, _i"_j, _i.o'j, (_i'_j)(_i'_j), Sij, Sij('l:i.7:j), L.S, L.S('ci.'I:j),

L2, L2('t:i.zj), L2(_i.cj), L2(¢vi._j)(zi.zj), (L.S) 2, (L.S)2(_i.'_j) . (3)

The first eight operators are required phenomenologically to reproduce S- and P-wave NN
scattering and deuteron properties. The additional L-dependent operators are required for
fitting higher partial waves. Examples are the Reid v8 potential [1], an adaptation of the
standard Reid soft-core potential which uses the first eight operators above, and the Argonne
v14 potential [2], which uses all fourteen operators shown. Other realistic potentials, such as
the Bonn [3], Nijmegen [4], and Paris [5] models, use p2 operators instead of, or in addition
to, L2 operators.

The meson-theoretic basis for the NN potential is illustrated in Figure 1. The dominant
long-range interaction is one-pion exchange, which has the operator structure:

7g

= X_('l:i.'l:j)= [Y(rij)o'i'_j + T(rij)Sij]'l;i.'l:j, (4)vij

where Y(r) and T(r) are the usual Yukawa and tensor functions. At intermediate ranges, two-
pion exchange, with the possible excitation of intermediate A-isobar resonances, is the
dominant reaction. Analysis with interaction models that include explicit Adegrees of freedom
[2] show that these processes provide significant attraction, which is predominantly central in
character, but includes important components for the first six operators of eq.(3). At shorter
ranges the interaction may be dominated by the exchange of heavier mesons, such as the p and
o_,or the quark substructure of nucleons may start to play some more complicated role; these
features contribute to ti_e spin-orbit and higher-order terms in the potential.

Realistic models for the NNN potential also have a non-mvial operator dependence.
Meson-exchange diagrams contributing to the NNN potential are shown in Figure 2, starting
with a long-range two-pion-exchange part of the Fujita-Miyazawa form [6]'

= {X[j,Xik} {'ti.'l;j,'l:i.'t:k}+ _-[Xij,Xik][_i.'l:j,_i.'l:k] ), (5)cyc

which is built up from the one-pion-exchange operators, and arises from an intermediate A-
isobar excitation. In the Urbana NNN potentials [7] a phenomenological intermediate-range
repulsive term is added:

VijR = U Y',T2(rij)T2(rjl0 (6)cyc

which can be viewed as an interference of the intermediate-range attraction between two NN

N

Figure 1. Diagrams contributing to the NN potential.

|1



pairs sharing one nucleon. The practical effect of adding such an NNN potential is additional
binding in light nuclei where the attractive long-range two-pion-exchange dominates, and more
repulsion in nuclear matter where the intermediate-range repulsive term produces a more rapid
saturation. The strengths of the attractive and repulsive parts, A and U, ,are adjusted to give an
overall best fit to nuclear binding energies in these two regimes.

Below we report results for two models: Urbana VII, which was fit to earlier variational
calculations of light nuclei and nuclear matter [8] and is used here for closed-shell nucDi, and
Urbana VIII, which was fit to more recent exact Faddeev and Green's function Monte C_u'lo
(GFMC) calculations and is used here for few-body nuclei [9]. Other NNN potentials are
available, such as the Tucson-Melbourne model [10], which has a more complete two-pion-
exchange term.

2. VARIATIONAL TRIAL FUNCTIONS

The variational method can be used to obtain approximate solutions of the many-body
Schr6dinger equation for Hamiltonians of the kind given above and for a wide range of nuclear
systems: few-body nuclei [7-9] such as 3H and 4He, light nuclei [1 1] such as 16-Oand 40Ca,
nuclear matter [12,13] and neutron stars [14]. A suitably p,'u'ametrized trial function _v is used
to calculate an upper bound Ev to the ground-state energy E0 using the Rayleigh-Ritz
variational principle:

(_PvlHIqJv}
Ev = > EO. (7)

('-I,,,I,e,,)

The parameters in _v are varied to minimize Ev, and the lowest value is taken as the
approximate ground-state energy. The corresponding _t*vcan then be used to calculate other
properties of interest. A better energy may be obtained by using _v as a starting point for a
perturbation or GFMC calculation [15]. The key steps are always to 1) find a good ansatz for
_v, and 2) accurately evaluate the expectation value (H).

The s_ong state-dependence of the interactions induces corresponding correlations in the
wave function, A good trial function can be constructed from a product of correlation
operators:

l_v> = [ 1 + 1_ULs + i<j_<kl3 iTNI ]IS 1-I(I+Uij)]IW.I>, (8)i<j a i<j

L l TTNIwhere R'j is a Jastrow wave function, and Uij, U S, and ,., ijk are two- and three-body

Figure 2. Diagrams contributing to the NNN potential.



correlation operators:

Iu?j) = I-I I_A(JMTT3) ) (9)
i<j fc(rij)

Uij = 2 [.1-.I.f3(rij,rjk,rki) ] up(rij)Op , (10)p=2,6 k;e_,j

UiLS = Z [.II. f3(rij,rjk,rki) ] up(rij)O p , (11)p=7,8 k:Xl,j

uijT_ = e Vijk('gij,'gjk,'gki). (12)

The operators OR are the same as in eq.(3); since they are non-commuting, the symmetrizationq , ,
operator S is required in the product of eq.(8). The first six operators have a nice closed
algebra and are conveniently treated together in eq.(10). The spin-orbit (LS) correlations of
eq.(11) are more expensive to compute because of their gradient operators and only a linear
term is used in eq.(8), while no correlations have been introduced for L2 or higher terms in the
interaction. The f3(rii,rik,rki) in eqs.(10)-(11) is a supplemental three-body correlation that
reduces the noncentralcbrrelation when a third particle comes between the correlated pair. The
three-nucleon interaction (TNI) correlation of eq.(12) includes all the operator dependence of
eq.(5); e is a small negative number and g a scaled radial variable.

The _A is an antisymmetric single-particle state, with appropriate properties for the system
of interest, e.g., the quantum numbers JMTI' 3 for a particular nucleus. For few-body nuclei
we have used a single-particle _A with spin-isospin indices and no spatial dependence, e.g.,
for 4He:

1_4(JMTI"3)) = I_a(0000)) = A Ipl"p,l,n'['n,l,). (13)

For closed-shell nucl,el like 160 and 40Ca we use a product of four determinants, one for spin-
up protons, one for sp!n-down protons, etc.:

1_16(JMTT3)) = I_o(0000)) = l_ (-1) P D'l'pD,l,pDl"nD,l,n. (14)

For 160 each deten'ninant is constructed from one 1s and three lp radial functions. A term in
the sum (14) is obtained by letting particles il to i4 be ?p, i5 to i8 be ,l,p, i9 to i12 be l"n, and i13
to i16 be Sn. The sum is over ali partitions of the 16 nucleons into four groups of four
particles, and the sh,n"7 (_I)P is chosen so that I_) is antisymmetric. For 40Ca additional 2s and
ld orbitals are added. For open-shell nuclei like 12C a fully antisymmetrized _A is much more
complicated.

The central fc(r) and noncentral, up(r) pair. correlation.. functions reflect the influence of the
two-body potential at short distances, while satisfying asymptotic boundary conditions of
cluster separability. Reasonable functions are generated by minimizing the two-body cluster
energy of a somewhat modified NN interaction (V-L), which contains a number of variational
parameters. This leads to a set of eight coupled differential equations for the first eight
operators [9]. The fc and u6=uta:are shown in Figure 3 for several nuclei. Here fc(r) is small
at short distances, to reduce the contribution of the repulsive core of the NN potential, and
peaks at an intermediate distance con'esponding to the maximum attraction of the NN potential.
For light nuclei fc falls off at larger distances to keep the system confined. For closed shell
nuclei confinement is provided by the one-body correlations and fc goes to a constant value at
large distances. The noncentral up(r) are ali relatively small; the most important is the long-



range tensor-isospin part ut_:,which is induced mainly by the one-pion-exchange part of the
potential.

In calculations of five- and six-body nuclei the first four nucleons fill the 1s shell and have
no single-particle radial function, while the fifth and sixth nucleons go into the lp shell. We
allow for the possibility of different central correlations fss, fpp, and fsp for pairs in the s-shell,
pairs in the p-shell, and mixed pairs, respectively. For five nucleons,

IWj) = A { I-I fss(rij) l<__kN<4fsp(rk5)I_a(0000)×_p(JMTT3)) } (15)1<i<j_<4 _

ml 1 V5(2T3). (16)I_p(JMTT3)) = d_p(R5a) [Y1 (_5a)×X5(_ms)]JM

There is an explicit antisymmetrization over the five p.articles, and d_pis a single-particle
correlation with Ria = ri-R cre. The five-body nuclei 5He and 5Li are, not stable against
breakup into an o_ and a nucleon, but we can study the scattering in both J=3/2 and J=l/2
states, using an R-matrix approach to minimize the energy inside a region with boundary
conditions that correspond to an asymptotic scattering state [16]. The difference in energy
between these states is a measure of the spin-orbit splitting in nuclei, which in turn is the key to
the nuclear shell model.

The six-body nuclei of interest are 6He and 6Li with JMTT3 = (001-1) and (1100). They

,are weakly bound and easily broken into an o_and a two-bod_ cluster; 6Li (6He) is only 1.5MeV (1 MeV) more bound than a separated c_and deuteron ( SOnn pair). However breakup
into a five- plus one-body system costs .--6 MeV because the five-body nuclei are unstable.
This dual character can probably best be modelled by a linear combination of shell-model and
o_-clustercorrelations:
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Figure 3. Correlation functions.



IWj} = A { _ 1-I .fss(rij) 1-I fsp(rk5)fsp(rk6) fpp(r56)laOsrn+ bOo,c) } (17)
' l_<i<j<4 ' l<_k_<4 "

where the shell model wave function is:

I_sm) = _a(0000) x d_p(R5a)_p(R6a) x (18)
1 1 , 1 1 •

{ [y_nI(_5a)xYTt(_6a)]LML X [Z5(_ms)XZ6(_ms)lsg s }JM [v5(_t3)xv6(_t3)lrr3,

while the o_-cluster correlation has s- and d-wave components induced by a tensor-like
operator:

IOc_c)- Oa(0000) x (19)
A A

{ (u(Rotc) + w(Rotc) [3(o5'Rotc)(o6'Rotc)- (o5'o6)1) Zc(SMs) }JM vc(TT3).

Here Rac is the separation between the ct and two-body cluster centers of mass. The fss(r) =-
fc(4He), fpp(r) = fc(2H), and fsp(r) is shown in Figure 3.

3. CALCULATIONS OF FEW-BODY NUCLEI

Tile method used to evaluate the energy expectation value varies with the size of the system
under consideration. For small systems, A<8, essentially exact integration is possible using
Monte Carlo sampling [17]. For larger nuclei, 8<_A<40,a cluster expansion is required [11],
with Mente Carlo techniques used to ev,-duate the terms in the expansion. For nuclear matter a
cluster expansion is also used, but so far integral equation techniques have been used to sum
terms [12-14].

We represent _v(R) as a vector in spin-isospin space, with NS x NT complex numbers,
where NS and NT are the number of spin and isospin basis states; Nx = 2A in the basis of
def'mite third components of spin or isospin. In the case of isospin, charge conservation can be
used to reduce NT to A!/[Z!(A-Z)!], but a further reduction is possible by choosing states of
def'mite T and Tz. In this latter basis, the vector lengths for 3H, 4He, 5He, and 6Li are 16, 32,
160, and 320, respectively. The Metropolis Monte Carlo algorithm is used to perform the 3A-
dimensional integrals. Sampling is done both on the set of positions, R=(-r+ I,...?_A), and the
order of operators in the symmetrized product of eq.(8). For few-body nuclei a complete sum
over ali the spin-isospin variables is made. The computational effort required for this complete
sum increases rapidly with A. The time required to calculate the binding energy with a
reasonable statistical error for one trial function grows from about 3 minutes for 3H to nearly 2
hours for 6Li on a Cray-YMP. Thus direct integration will probably be limited to A<8 nuclei.

The results of variational calculations [9] for ground-state binding energies of 3H and 4He
are shown in Table 1 along with prelimina__ results for 5He and 6Li. For comparison we also
show 34-channel Faddeev results [18] for 3H and GFMC results [19] for 3H, 4He and 5He.
There is also an older coupled-cluster result [20] for 4He. The variational trial function gives
upper-bound energies that are 3-4% above the exact results for 3H and 4He. These and other
calculations show that realistic NN potentials alone do not give enough binding for few-body
nuclei, but it is possible to pick a supplemental NNN potential that will give the correct energy
in exact calculations.

For 5He the J=3/2 and J=l/2 scattering states have been calculated with a boundary
condition that has a node in the ot+n scattering wave function at 12.5 fm. The corresponding
"experimental" energies, obtained from phase shift analyses, are 1.1 and 2.5 MeV above the ot
binding energy, which give a spin-orbit splitting of 1.4 MeV. The variational results for the
Argonne vi4 + Urbana VIII model are 2.1 and 3.1 MeV above the variational ct binding energy



Table 1
Binding and breakup energies (in MeV) for few-body nuclei, with different Hamiltonians and
calculational methods. Estimates of MC statistical errors are also given.

nucleus Hmniltonian method binding breakup

3H nature experiment 8.48

Reid v8 variational MC 7.31 + 0.02
GFMC 7.54 + 0.10
34-ch. Faddeev 7.59

Argonne v14 variational MC 8.21 + 0.02
+ Urbana VIII 34-ch. Faddeev 8.49

4He nature experiment 28.3

Reid coupled cluster 24.
Reid v8 variational MC 23.6 + 0.1

GFMC 24.5 + 0.1

Argonne v14 variational MC 27.2 + 0.1
+ Urbana VIII GFMC 28.3 + 0.2

'l

5He(J2) nature experiment 27.2

Argonne v14 variational MC 25.1 + 0.1 -2.1
+ Urbana VIII GFMC 26.8 + 0°2 -1.5

5He(J 1) nature experiment 25.8 -2.5(_n)

Argonne v14 variational MC 24.1 + 0.2 -3.1
+ Urbana VIII GFMC 25.6 + 0.2 -2.7

6Li nature experiment 32.0 1.5(o_+d)

Argonne 714 variational MC 27.5 + 0.3 -1.9
+ Urbana VIII

giving a splitting of 1 MeV. The GFMC results are 1.5 and 2.7 MeV above the GFMC o_,
which gives 1.2 MeV cr 85% of the "experimental" spin-orbit splitting with this Hamiltonian.
The variational results required 25 hours of Cray-YMP time, including the parameter search,
while the GFMC calculation required 200 hours, starting from a reasonable variational trial
function.

For 6Li only variational results are available at present, and they are unsatisfactory. The
results shown here are for a trial function that gives the correct experimental charge radius, and
while the energy is not terrible, it is nearly 2 MeV above that of the corresponding separated ot
and deuteron. If the radius is unconstrained the trial function expands and the energy
asymptotically approaches that of an ot plus a deuteron with some residual Coulomb repulsion
between them. Early results for 6He show a similar problem.



4. CALCULATIONS OF LIGHT NUCLEI

For larger nuclei we use a cluster expansion for the noncentral correlation operators Uij,
etc., to evaluate the energy expectation value. Consider the expansion for the NN potential:

Z nij + _ nij k+ +n
( ._.vij ) - i<i i<i<k "' 12...A (20)

1<.1 1 + Z d i. + _ di; k + + d
i<j -_ i<j<k J '" 12...A

where the numerator and denominator cluster terms are given by:

nij = (Vjl(l+Ui_)vij(l+Uij)lqJj), (21)

dij = (Vjl(l+Ui])(l+Uij)IVj) - 1, (22)

nijk = <_jI[S E (I+U;)](I+U;k) E vii (l+Uijk)[S E (l+Uij)ll_j)- E nij, (23)cyc cyc - cyc cyc

etc. The brackets denote a full 3A-dimensional integration, with the central correlations and
antisymmetry of the Jastrow wave function treated completely. This may be regrouped as a
linked cluster expansion:

( ._.vij >= E ci: + <j_< + + (24)l<j i<j J i kcijk '" Cl2'"A '

cii = nij/(1+dij), (25)

Cijk= [nijk -c_ycCij(djk+dki+dijk)]/(1+cyc2dij+dijk) • (26)

The expectation values of these individual cluster terms,, ni',jdi',j etc., are evaluated using the
same Monte Carlo techniques used for few-body nuclei. The spin-isospin algebra is only
needed for the particles in the cluster that have noncentral correlation operators. However, the
clusters are not in definite isospin states T,Tz and only charge conservation can be used to
reduce the size of the spin-isospin basis vector. The final 160 energy evaluation reported
below required some 80 hours of Cray-2 time, after the trial function had been optimized.

The cluster expansion is not useful tmless it converges rapidly. The convergence for 160 is
reasonably good at the four-body cluster level, as shown in Table 2, where the contributions of
the kinetic energy, NN and NNN potentials are shown at the one-, two-, three-, and four-body

Table 2
Convergence of cluster expansion for ground-state energy of 160 with Argonne v14 + Urbana
VII interaction. Energies are in MeV/nucleon.

....term 1-body 2-body 3-body 4-bod), E 1-4 Z 1-16

T 18.8 _+0.1 17.2 _+0.1 -1.7 __.0.1 0,2 __0.2 34.5 +_0.3 34.5

Vii -46.8 _+0.2 8.0 _+0.1 -1.0 + 0.2 -39.8 _ 0.2 -39.7

Vijk -4.0 + 0.1 2.2 _+0.1 -1.8 + 0.1 ......2.6
H 18.8 + 0.1 -29.6 + 0.1 2.3 + 0.1 1.4 + 0.1 -7.1 + 0.1 -7.8



Table 3
Binding and breakup energies (in MeV/nucleon) for light nuclei with different Hamiltonians
and calculational methods.

nucleus Hamiltoni_m method binding breakup

160 nature experiment 8.0 0.9 (4o_)

Reid coupled cluster 5.0 -1.0
Reid v6 variational MC 6.2 + 1.1

Argonne vr4 cluster MC 7.8 + 0.3 0.2
+ Urbana VII

4°Ca nature experiment 8.5

Reid coupled cluster 6.0

Argonne v14 cluster MC 8.6 + 1.5
+ Urbana VII

cluster levels. The next to last column gives the sum of these terms through the four-body
cluster level, while the last column gives an extrapolated estimate for the total energy through
the sixteen-body cluster level. The kinetic energy converges rapidly, as does the NN potential
contribution. The NNN potential has not converged at the four-body level, however, and there
is a significant extrapolation in this term. An alternate cluster expansion, which may be more
useful for open-shell nuclei like 12C, has been studied; in 160 it gives a similar extrapolated
result for the Viik expectation value.

Results for _he ground-state binding energy per nucleon of 160 and 40Ca are given in Table
3. A previous calculation of 160 using the coupled cluster method and the Reid potential has a
problem similar to the 6Li calculation discussed above; the nucleus is less bound per nucleon
than 4He. A variational Monte Carlo calculation sampling all cluster sizes for the Reid v6
interaction also gave too little binding, and had a large statistical error [21]. In the present
calculation, with a realistic interaction including a three-nucleon potential, 160 is slightly more
bound per nucleon than 4He, thus demonstrating stability for the first time. The result is also
quite close to the experimental value, as is the preliminary result for 40Ca with the same
Hamiltonian. However, a variational search has not been made for the best trial function in
40Ca and the present result has a large statistical uncertainty, as shown in the table.

Calculations are now in progress for a variety of other p-shell nuclei using the cluster
8i 12Monte Carlo method, including He, C, and 1SN. A first result for the spin-orbit splitting in

15N has been obtained by calculating the energy difference between states obtained by
removing a single proton from either the P3/2 or Pl/2 shell in the trial function for 160. The
calculated spin-orbit splitting is 6.1 + 0.9 MeV, in reasonable agreement with the experimental
value of 6.3 MeV. About 2/3 of the splitting comes from L-dependent terms in vij or qJv, and
about 1/3 comes from Vijk terms. This result is also in general agreement with earlier
Brueckner G-matrix calculations that used the Reid Vij and Tucson-Melbourne Vijk [22].

5. FORM FACTORS AND MOMENTUM DISTRIBUTIONS

Other properties which we have studied include the electromagnetic form factors and
nucleon momentum distributions. The form factors have significant contributions from two-
body charge and current operators attributable to meson exchange (MEC). These include both
a "model-independent" (MI) part which is constrained by requiring current conservation with



Table 4
Magnetic moments for A=3 nuclei

3H 3He
variational Faddeev variational Faddeev

m ,,,,

LA 2.592 2.588 -1.782 -1.776

IA+MI 2.988 2.968 -2.144 -2.122

IA+MI+MD 3.031 3.010 -2.175 -2.152

_experiment 2.979 -2.127 l ,

the chosen vii, and a "model-dependent" (MD) part that includes currents associated with prtr,
co_T, and A-e-xcitation mechanisms [23,29]. Results for the magnetic moments of 3H and JHe
are given in Table 4 and for the charge form factor of 4He in Figure 4. These include impulse
approximation (IA) calculations with and without MEC for both variational and exact
calculations. The results show that the few-body variational trial functions are good for more
than just the energy, and that the MEC are essential for quantitative agreement with data. The
charge form factor for 160 is also shown in Figure 4; here the present variational wave
function is not as satisfactory and the charge radius is too small.

The nucleon momentum distribution is given by the integral:

!

.---) --_ ,,_
9(k) = _dR .Z _d_i' _(R') exp[-i-_ .( r i- r i)l _(R), (27)

i 1

wlt'.!ereR'=(--? 1,...,--? i',...-?A). The operator expectation values are calculated by direct
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Figure 4. Charge form factors for 4He and 160.
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intem'ation in the few-body nuclei, but a cluster expansion is again needed for larger systems.
Results for 4He and 160 are shown in Figure 5 along with the exact deuteron and a correlated
basis function calculation of nuclear matter [241]. Ali these systems show a remarkably similar
high-momentum tail, which is indicative of the strong nuclear correlations; this tail may be
useful in understanding phenomena such as low-energy pion and antiproton production.

6. LOW.ENERGY ELECTROWEAK TRANSITIONS

We have also begun to adapt the variational methods to the study of low-energy few-
nucleon reactions. Faddeev methods have already been used with success in the study of
three-nucleon reactions [25,26], but variational methods are the best available for the study of
four-nucleon reactions at present. Our initial studies have been of the electroweak capture
reactions: 2H(d,y)4He below 500 keV c.m. energy, 3He(n,3,)4He with thermal neutrons, and
3He(p,e+Ve)4He at solar energies [27-29]. The first reaction is discussed by Arriaga elsewhere
in this conference; here we discuss the two capture reactions on 3He. There is good recent data
for the thermal neutron capture, while the weak proton capture is of interest because its Hep
neutrinos might be detectable in the next generation of solar neutrino experiments.

These two capture reactions have very small IA contributions due to a pseudo-orthogonality
between the dominant S-wave parts of the nucleon-3He continuum state and 4He ground state.
MEC contributions are very important, and accurate evaluation of two-body current operators
requires good correlated wave functions. In this case, the continuum wave functions were
generated for the Argonne V14+ Urbana VIII Hamiltonian with methods similar to those used
for studying 5He. The scattering lengths obtained are 3.50-2_0.25fm for n+3He, and 10.1+0.5
fm for p+3He (the errors are Monte Carlo statistics), in excellent agreement with effective-
range parametrizations of low-energy data which give 3.52+0.25 fm and 10.2+1.4 fm,
respectively.
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Figure 5. Nucleon momentum distributions.



The IA cross section for thermal neutron capture on 3He is only 6 bib, compared to tile
experimental value of 55 bib. The MEC contributions again include a MI part, and mesonic trod
intermediate A-isobar MD parts. The MI matrix element is opposite in sign to the IA, lind
much larger, raising the calculated cross section to 72 bib. In our first studies, the A-isobar
contributions were calculated with a standard first-order perturbation estimate, and raised the
total calculated cross section to 112 _tb [28]. More recently, we have used explicit A-isobar
components in the wave functions, introduced by mmsition correlation operators:

= [1 + .E. UiTR ] _-ISN= [1 + .E. ( UiN_ + Ui_.N + Ui_.A)] _PN (28)
l<j l<j

B'• B
where _N is the nucleons-only wave function [29] The correlations U.. are generated by an
approximate fit to exact two-body calculations with the Argonne v28 t_Jotential [2], which has
explicit A-isobar degrees of freedom and is phase equivalent to the v 14 potential. Contributions
of A-isobars to the electroweak current operators then appear at the one-body level, and one-
and two-A components are evaluated. This approach should give more reliable results than
first-order perturbation theory. The final themral neutron capture cross section is significantly
reduced, to a value of 86 l.tb. This improved treatment of the A-isobar MEC contributions is
also included in the magnetic moment calculations of Table 4.

The astrophysical S-factor for the zero-energy proton weak capture on 3He has an lA value
of 6.9 × 10"23MeV-b. The MEC contributions are ali MD, and in order to reduce uncertainty
in their contributions, they are adjusted to reproduce the Gamow-Teller matrix element in 3H
_-decay. Again, the MEC matix element is opposite in sign to the IA, but not so big, resulting
in a reduction of the S-factor to 1.4 × 10-23 MeV-b. Both the thermal neutron radiative capture
and the zero-energy proton weak capture are very sensitive to the nucleon+3He scattering
length, and the results can vary by +20-30% as the scattering length is changed within the
theoretical limits (which are smaller than the experimental errors).

7. CONCLUSIONS

Good progress has been made in the microscopic study of nuclear structure for few-body
and light nuclei in recent years. Current work is now concentrating on the ground states of
intermediate size systems, 4<A<_40, where the number of nucleons is large enough to make
calculations difficult, yet small enough that the finite nature of the system is an important aspect
of the physics. Studies will also continue on a variety of low-energy few-body reactions.

The difficulty in explaining the stability of light nuclei may be due to inadequacies in the
variational ansatz, or it may be due to the crude parametrization of the NNN potential.
Obtaining a consistent description of nuclear systems with realistic interactions remains a
challenging problem. Continued progress will require advances in the many-body
Hamiltonian, the many-body theory, and the available computational resources.
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