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KINETICS EQUATION FOR A CLUSTER OF ROVER REACTORS 

Gordon E. Hansen, Critical Assemblies Groups, University of 
California, Los Alamos Scientific Laboratory, Los Alamos, New 
Mexico 

I. Introduction 

A kinetics equation is a set of ordinary differential 

equations governing the coarse time-dependence of effective 

neutron populations in one or more regions of space. The present 

interest is in obtaining a simplest form of kinetics equation 

capable of giving the time-dependence of fission rates in individual 

cores of a clustered array; moreover, it is desired that all 

parameters introduced here be defined in terms of computable 

functions of the basic nuclear properties of this system. 

For the purpose of Introducing notation and general rationale, 

we first review the derivation of the "point-reactor" kinetics 

equation. Secondly, we generalize to a "two-point" equation 

wherein space is divided into two "points", one corresponding 

to the reactor proper, and the other to the environment. The 

final generalization to the kinetics equation for a cluster of 

Rover reactors will then be essentially trivial. 

II, "Point-Reactor" Kinetics Equation 

We presume the system to be completely described, neutronlcally, 

by the macroscopic collision cross section, a(E,n,r), the scattering 

kernel, a (E'-'E,l1'-lt), and the fission neutron kernels v a (E')x(E), 

Bva.(E*)Xj(E, T)p(T)dT (i.e., the delayed neutron emission kernel). 
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We presume the system to be finite and Isolated from any environ­

ment, i.e., no neutrons enter the system from outside. The flux 

distribution, •(E,T7,r,t), in this system is then given by the 

transport equation 

1 41 + n.v*+a* -
V et ^ t 

+ 

5(E',Tt»,r,t) [a^+v ajX]dE«dn» +S(E,tf,r,t) 

*(E' ,rt' ,r, t-T)0va^XjP( T)dTdE*dn' (1) 

and the prompt neutron reproduction number, k, of this system is 

defined by the eigenvalue problem 

-n-Vf^+aft* - J[ag+^Vpa^x](E-E',T^-*"i^')5'^(E',Ti,i^dEdfi' (2) 

Because the system is neutronlcally Isolated, Equations 1 and 2 

are most conveniently solved for i and i only within the system 

volume by applying the "isolation boundary conditions"- cp •- 0 

for incoming directions cp - 0 for outgoing directions Ti, 

By subtracting Equation 2 multiplied by i from Equation 1 

multiplied by • , and then integrating the result over the ranges 

of E and CI and over the volume V, one formally obtains 

J «+i 1^ dEdfidV - d- ij r»v CT̂ X»"*'dE'dn'dEdndV + J ̂ '̂ SdEdOdV 

- ^ 

+ J •(t-T)BvajXj|P(T)*''"dTdEdfidE'dn'dV 

V 

**•*!!• d^ dEdn (3) 

V 

In this formal equation, the last, or surface Integral, term 

represents the effective rate at which neutrons enter the region 

V from outside and this tenn is zero when the region V Includes 

the system. In this section, we identify V with the volume of 

the system and omit the surface integral in Equation 3. This 
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equation is readily reduced to the "point-reactor" kinetics 

equation by an artifice which renders ft absolutely independent 

of time: although reactivity variation is actually accomplished 

by material displacements, i.e., changes in the macroscopic 

cross sections, it is conveniently and essentially equivalontly 

accomplished, mathematically, by a change in the prompt neutron 

emission factor, v . From Equation 2, we see that when this 

factor is v (t), then the eigenvalue, k(t), is such as to make 

V (t)/k(t) and thence the shape of ft time independent. Since 

ft is governed by a linear homogeneous equation in the phase 

space variables, it is defined only to within an arbitrarily 

time-dependent factor. This factor we choose constant so that 

the left-hand-side of Equation 3 may be rewritten as 

I '^"^ U dEdOdV - ^ J ft+iftdEdOdV B ̂  N (4) 
V V 

We now normalize ft* such that at some time, t - t^, 
' o 

T " J ftv «TfXft'*"dE'dn'dEdndV - J ftv a^dE'dflMV (5) 

V V 

If the time dependence of ft is factorable, Equation 5 will hold 

at all times and the "prompt-neutron lifetime", i, will be a 

constant. Only for this case does N/i continue to equal the 

prompt neutron production rate and therefore be proportional to 

reactor power. To the extent that the time-dependence of ft is 

nearly factorable, i is nearly constant and N/i is nearly propor­

tional to reactor power. In words, we merely call N the "effective" 

neutron population in the reactor, and N/i the "effective prompt 

neutron production rate". With the definition of these symbols 
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by means of Equations 4 and 5 and the additional definitions of 

"effective" delayed neutron fraction, B , and "effective" neutron 

source strength, S , as 

B J j(t-T)p(T)dT • J »(t-T)va^X^jft"*'p(T)dTdE'dn'dEdndV (6) 

Sft"̂ dEdndV (7) 

V 

We may rewrite Equation 3 as the "point-reactor" kinetics equation 

dN + ^E - ̂ ^T " ̂ * Jj(t-T)p(T)dT + S* , (8) 

Equation 8 is exact when the symbols are defined as above 

in Equations 2 to 7, It is not useful, however, unless i a* 

constant and N/i can be correlated with reactor power. To illustrate, 

consider a well-reflected reactor, perhaps even a Rover reactor, 

for which neutron residence time in the reflector is comparable 

to the decay time of prompt neutron linked fission chains. Here, 

the ratio of core neutron population to reflector neutron popula­

tion depends rather sensitively on system reactivity (the so-called 

"time absorption" phenomenon) and the effective neutron population 

of the entire system is not a good index of core power. The time-

dependence of flux shape can be partially accounted for by intro­

ducing two neutron population variables, say a core population 

and a reflector population, into a "two-point" kinetics equation. 

The particular choice is somewhat arbitrary but should lead to 

simple evaluation of reactor power. In the following development 

of a "two-point" kinetics equation, we shall designate the two 

regions of space simply as reactor and «nv<»'«nment. 
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III. "Two-point" Kinetics Equation < 

We presume the reactor is identified with the volume V and 
r 

that the flux distribution is given by Equation 1. YHien Isolated 

from its environment, the reproduction number is defined by 

Equation 2 with "isolation boundary conditions" on the surface 

of V, We classify neutrons in V at time t into two groups: those 

neutrons which were born in V and remained there to time t, and, 

the remainder. The corresponding fluxes are ft, and ilr,, with 

ft,+<|r, equaling the total flux ft. The transport equations for ft, 

and %^ in V are 

i - j ^ + n̂ '̂ 'fĵ +ffftĵ  - J ftj^a^dE'dn* + J[ftj^+^j^JVpa^xdE'dn* (la) 

+ S(E,Ti,r,t) + J [ft^+i|fj](t-T)BvajX^jp(T)dTdE'dn' 

7 -Sr" -̂  T}-"̂ *l+ai|ij - J •^a^dE'dO' ' (lb) 

with boundary conditions ft.. - 0 and i|(- •» ft for incoming directions. 

For convenience, we shall label the solution of Equation 2 ft, 

and the eigenvalue k,. .Combining Equations la and 2 and also 

lb and 2, we obtain the following analogues of Equation 3. 

J ft* i -g^ dEdOdV - A - ^ jj ftjV a^xft^dE'dnMEdndV + J ft+SdEdOdV (3a) 

V ' ^ ^V V 

+ J *ĵ v a^XftidE»dn»dEdndV+ [ [ ftj^+*j] (t-T)Bvo^x^ftiP(T)dTdE'dn'dEdndV 
V V 

r$+ i .^ dEdfidV - - ^ r*jV o^XftidE'dfl'dEdn - J ftft^'cTsdEdn (3b) 
V ^ V V 

The analogue of Equation 4 is 

< 
LL. 

o 
u 
UJ 

< 
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dt "l J *t V ̂  ^̂ "̂̂^ - §t J *t v*i^^^"^v 
V V 

and the analogue of Equation 5 is r 

j i • J ftj^v a^Xft̂ dE'dnMEdndV - Jft^v a^dE'dfl'dV 
1 V V 

N* P 

• ^ • J ĵ̂ v a^xft^dE'dn'dEdndV 
^1 V 

Similarly Equations 6 and 7 generalize to 

B* J-ji(t-T)p(T)dT • J »ĵ (t-T)vâ Xjjfti p(T)dTdE'dn'dEdndV 

^ V 
• pN' p 
Bj J jf(t-T)p(T)dT H J i|(̂ (t-T)vCT̂ XjjftiP(T)dTdE'dn'dEdndV 

^ V 

S* • Jft^SdEdndV 
V 

S** • - A ftft^'dSdEdn 
V 

Finally, the analogue of Equation 8 is the "two-point" kinetics 

equation 

dN, (1-k,) N, ^ pN, • N^ ^ — 

H ^ + - i q — lY - ̂  J 2Y (t-T)p(T)dT + Ŝ  + j^ 

+ Bj J j ^ (t-T)p(T)dT 

dNj N' 1 ^1 .'• 

onr * 1^ ly " ^1 

(5a) 

(5b) 

(6a) 

(6b) 

(7a) 

(7b) 

(8a) 

(8b) 

The only parameter contained in (8a) and (8b) not defined in 

terms of basic nuclear parameters is S, , i.e., the surface integral 

of (7b) which represents the effective neutron current into V from 

the environment. This current, of course, depends on the nuclear 

parameters of the environment and these, as yet, remain unspecified. 
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Formally, one may represent S, as 

S^*(t) - < ft^; > U-r- + T^J (t-T)pj^(T)dT (9) 

with p,,(T)dT being the probability that a fission neutron, born 

at time t in V, leaves the reactor proper and then re-enters at 

time t+T in dr; < fti > is the mean effectiveness for such a neutron 

coming into V; (Nĵ /iĵ  + N V i p Is the total effective fission 

neutron production rate and is the index of reactor power. For 

brevity, we have omitted from the right-hand-side of Equation 9 

a contribution due to delayed neutrons. This contribution Indeed 

plays an important part in the kinetics of any system where k, -• 0, 

such as a cavity-reactor with the cavity considered as the reactor 

proper. 

A feel for the various time delay parameters appearing in 

(8a) and (8b) may be obtained from the following typical prompt 

neutron regeneration loop: a neutron enters the reactor proper 

(the source for Equation 8b), and, in the meantime k,i', diffuses 

into the core and produces a fission; the neutrons from this 

fission (the source for Equation 8a) produce a chain of fissions 

of mean time duration k,i-/(l-k,); some neutrons from this chain 

diffuse out of the reactor proper but eventually return to complete 

the loop — the mean time being "r - .frp,, (T)dT/fp,, (T)dT. 

IV, Kinetics Equation for a Cluster of Rover Reactors 

A cluster of reactors can still be described as one reactor 

proper in V, plus an environment and the Equations 8a and 8b are 

still applicable. The source term, S, , however, depends on the 

power histories of each reactor of the cluster, and its evaluation 
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for an n-cluster array Involves the solution of n such "two- 2 

point" kinetics equations. The whole set is generated from 
r 

(8a) and (8b) by replacing the subscript 1 by 1 - 1,2,...,n. 

The source term, S. , for the 1 reactor proper is then 
formally 

t 

^±>l l(^*^)^*-^^Pji^ si* - < •. > ) 1 / T ^ + 74)(t-T)p,,(T)dT (9a) 

with p..(T)dT the probability that a fission neutron born in 

j enters 1 a time T in dr later. The evaluation of p.. may be 

quite complicated if there are important indirect paths from 

J to 1 such as perhaps ones >M.ch Involve other elements of the 

cluster or the "environment" of the cluster-system. Nevertheless, 

once the macroscopic cross-sections of cluster-system and environ­

ment have been specified, a PJJ can, in principle, be computed 

by available Monte Carlo methods. 

The set of 2n equations, described above, may be simplified 

somewhat in the application to a cluster of Rover reactors. 

Experimentally, a single Rover reactor has a well-defined Rossi-a 

and its time behavior thus is described by a point-reactor kinetics 

equation; we are thus permitted to choose, as the i reactor 

proper, the 1 Rover reactor and have k. 2r 1, i.e., each Rover 

reactor in the cluster is nearly critical. For this case, 

N̂ /ijî  » Nj^/^{. and we may approximate (N̂ /î ^̂  + N^/ip 2i N^/i^. 

With this approximation. Equation 8b is readily Integrated to 
OB' If 

•r-'<'^±>ySS ^ (t-T)Pjĵ (T-T')e"*̂ '/'*i dTdrVi' (8c) 
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Substitution of this expression for N'/i' in (8a) reduces < 
^ 

the set of 2n equations for the N. and N* to a set of n equations 
r 

for the N^, Before making this substitution, it is convenient 

to introduce the s^bols 

^jl • <*!> SS Pji<T-T')a'"̂ '/''i dTdxVii' (10) 
oo 

p*̂  -T'/i] / « T -T'/i] 
WJ^(T) • J Pj^(T-T')e ^ dT'/iJ / rr Pji(T-T')e ^dTdTVi^ 

oo (11) 

As seen from their definitions, ^J4 represents the transfer 

probability of a fission neutron from j to 1, and W..(T) is the 

time distribution function for this transfer. ^±i is t̂ © transfer 

probability from 1 to i via its environment. With this symbolism, 

Equation 8a becomes 

dN N * p N ^ p N , 
^ + (1-k^)^ " ®i J •]r-(t-T)p(T)dT + I Akj^ J yi(t-T)Wj^(T)dT + S. 

1 1 J J 

(12) 

Equation 12 is the desired form of the kinetics equation 

for a cluster of Rover reactors. Computational procedures for 

evaluation of the parameters i., i], etc, have been indicated. 

Seale and Chezem have examined solutions of this form of equation 

with Ak, . - 0, Wji(T) •• 6(T-T. j) where T. . equals the effective 

mean drift time of neutrons between the boundaries of j and 1, 

and with P(T) corresponding to the Keepln-Wimett six delayed 

neutron groups. This is a shrewd choice of parameters for antici­

pated Rover reactor clusters although, strictly speaking, the 

choice WJJCT) - 6(T-T..) prevents Equation 12 from being represent-

able as a finite set of ordinary differential equations: thus, 
u 

( E 
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(1), k.. decreases approximately as the inverse fourth power of 

reactor separation distance whereas k. .(j •^ 1) decreases only as 
r 

the inverse square, and at anticipated separation distances 

k^j«k..(J ^ 1); (2) the first moment of the distribution function 

W..(T) is the sum of three mean times — the time for a fission 

neutron to leak out of j, the drift time T.. from boundary of j 

to boundary of 1, and the time from entrance to absorption in 

1 — and for the anticipated separation distances, the drift 

time term is dominant; furthermore the product of the Rossi-a 

by any T.^ is small compared to unity and only the first moment 

of W..(T) is of Importance, 
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