Incorporation of particle collisions in the time-dependent Hartree-Fock approximation

PDF Version Also Available for Download.

Description

In the time-dependent Hartree-Fock (TDHF) approximation, particles interact only through the mean field, and the collisions between particles are not included. Previously, we formulated the extended time-dependent Hartree-Fock (ETDHF) approximation to include particle collisions in terms of a temporal variation of the occupation probability n/sub lambda/ for the single-particle states. In the simplest approximation, the single-particle potential is modified only through the particle density which depends on n/sub lambda/. We wish to refine the extended TDHF approximation by studying how particle collisions affect the single-particle potential. We find that it acquires two second-order contributions which are state-dependent and are the ... continued below

Physical Description

Pages: 22

Creation Information

Wong, C.Y. January 1, 1982.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In the time-dependent Hartree-Fock (TDHF) approximation, particles interact only through the mean field, and the collisions between particles are not included. Previously, we formulated the extended time-dependent Hartree-Fock (ETDHF) approximation to include particle collisions in terms of a temporal variation of the occupation probability n/sub lambda/ for the single-particle states. In the simplest approximation, the single-particle potential is modified only through the particle density which depends on n/sub lambda/. We wish to refine the extended TDHF approximation by studying how particle collisions affect the single-particle potential. We find that it acquires two second-order contributions which are state-dependent and are the generalization of the core polarization and correlation contributions one encounters in the study of the nucleon-nucleus optical potentials. In consequence, concepts such as energy-dependent single-particle potentials and effective masses may be properly introduced in the extended TDHF approximation. We also wish to review the conservation of energy in the ETDHF approximation. We find that the total energy should include a second-order contribution due to correlations arising from particle collisions.

Physical Description

Pages: 22

Notes

NTIS, PC A02/MF A01.

Source

  • International symposium on time dependent Hartree-Fock and beyond, Bad Honnef, F.R. Germany, 7 Jun 1982

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE82017481
  • Report No.: CONF-820654-2
  • Grant Number: W-7405-ENG-26
  • Office of Scientific & Technical Information Report Number: 5186659
  • Archival Resource Key: ark:/67531/metadc1059534

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1982

Added to The UNT Digital Library

  • Jan. 22, 2018, 7:23 a.m.

Description Last Updated

  • Feb. 1, 2018, 1:31 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Wong, C.Y. Incorporation of particle collisions in the time-dependent Hartree-Fock approximation, article, January 1, 1982; Tennessee. (digital.library.unt.edu/ark:/67531/metadc1059534/: accessed May 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.