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ABSTRACT: We have used an exact s t o c h a s t i c s imulat ion of the 

Scbroedinger equation for charged Bosons and Fermions to c a l c u l a t e 

the c o r r e l a t i o n e n e r g i e s , to l o c a t e the t r a n s i t i o n s t o t h e i r 

re spec t ive c r y s t a l phases at zero temperature w i th in 10%, and to 

e s t a b l i s h the s t a b i l i t y at intermediate d e n s i t i e s of a f e r r o 

magnetic f l u i d of e l e c t r o n s . 
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The properties of the ground s t a t e of the electron gas, also 

referred to as the Fermion one component plasma and jellium, have 

rigorously only been established in the limit of high densi t ies where 
2 the system approaches a perfect gas and at low density where the 

3 electrons c r y s t a l l i z e . Furthermore, Hartree-Fock calcula ions , and 

var ia t ional calculat ions suggest that at intermediate d e r s i t i e s , the 

spin aligned s t a t e of the electrons wil l be more stable than the normal, 

unpolarized s t a t e . Precise calculations of this many-Fermion system are 

required to es tabl ish the regions of s t ab i l i t y of the various phases 

because of the small energy differences among them. This note outlines 

a Monte Carlo method, that if run long enough on a computer, can give as 

precise a solution for the ground s ta te of a given Fermion system as 

desired. 

In practice, the precision of such a calculation is limited to about 

two orders of magnitude smaller than that of an approximate trial wave 

function that is introduced as an importance function in the Monte Carlo 

process. That the introduction of such an importance function is 
5 essential, was previously demonstrated for the many-Boson problem. The 

extension of this Boson calculation to Fermions requires dealing with 

antisymmetric functions that lead to two related complications; namely 

the probability density of a random walk cannot be chosen everywhere 

positive, and unless prevented the random walk will always converge to 

the all positive, Boson ground state. It is demonstrated here, for the 

electron system, that before the effect of this inherent instability 
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becomes serious, it is possible to extract the properties of the lowest 

antisymmetric state. A more general procedure which removes the effects 

of the instability has yet to be perfected. 

The solution of the Fermion problem was carried out in two steps. 

In the first step the nodes, the places where the trial function 

vanishes, act as fixed absorbing barriers to the diffusion process. 

Inside a connected nodal region the wavefunction is everywhere positive 

and vanishes at the boundaries. With these boundary conditions, the 

Fermion problem is equivalent to a Boson problem. The energy calculated 

with this procedure, which we will refer to as the 'fixed-node' energy, 

is an upper bound to the exact Fermion ground state energy and generally 

very close to it. In principle one could next vary the nodal locations 

to obtain the best upper bound, by for example, varying the functions 

used as elements in the Slater determinant of the trial wave function. 

In practice the highly dimensional TioCal surfaces are difficult to 

parameterize in a systematic fashion. 

The second step, called 'nodal relaxation', begins with the 

population of walks from the 'fixed-node' approximation. In this second 

procedure, if a random walk strays across the node of the trial function 

it is not terminated, but the sign of its contribution to any average is 

reversed. At any stage of the random walk there is a population of 

positive walks (those that remained in the same nodal region or crossed 

an even number of nodes) and a population of negative walks (those that 

crossed an odd number of nodes). The importance function used in this 
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process is the absolute value of the trial function. It can be easily 

shown that the difference population converges to the antisymmetric 

eigenfunction. However both the positive and negative populations grow 

geometrically with a rate equal to the difference between the Fermi and 

Bose energies. If the relaxation time from the fixed-node distribution 

times this energy difference is less than unity, the Fermion energy can 

be reliably extracted. We have found that for the electron gas this 

condition is satisfied if the nodes of the Hartree-Fock wavefunction are 

used. 

Our simulation method is a simpler, though approximate, version of 

the Greens function Monte Carlo method of Kalos et. al. A trial 

wavefunction ¥ (B) of the Bijl-Jastrow-Slater type and an ensemble 

of about 100 systems are selected from a variational Monte Carlo 

calculation, where B represents the 3N spatial coordinates of the 

systems of N electrons. Let the probability density of finding a random 

walk in BdB 3 N at time t be given by f(B,t)dB . Then the value of f 

at t=0 is given by ll'(B) | properly normalized. The diffusion 

equation for f(B,t) is: 
_ N -i f uur -• 

£-li|^'-*i<*i t aiV^-[-q-'w]' « 

where H i s the Hamiltonian 

i = l K j 
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It is easily verified that for large times, f(r,t) = 1?T$0exp(-t(E f-E )) 

where E and <J> are the exact eigenvalue and eigenfunction. The o o 
above equation for f(R,t) has a simple interpretation as a stochastic 

process. Each member of the ensemble of systems undergoes i) random 

diffusion caused by the zero point motion, ii) biasing or drift by the 

trial quantum force, V In | V | , and iii) branching with probability 

given by the difference between the local trial energy, E„ = H ¥_/ 4f 

and the arbitrarily chosen refernc? energy, E „. By "branching", it 

is meant that a particular system is either eliminated from the ensemble 

(if the local energy is greater than the reference energy) or duplicated 

in the ensemble (otherwise). A steady state population of the ensemble 

requires that the reference energy equal the lowest eigenvalue. This is 

one way of determining the eigenvalue. 

The trial wavefunction employed in the present calculations are 

identical with those used in an earlier Monte Carlo variational 
4 . . 

calculation. This trial function is a product of two-body 

correlation factors times a Slater determinant of single particle 

orbitals. The two body correlation factors are chosen such that they 

remove exactly the singularities in the local energy when two electrons 

approach each other, thus reducing tremendously the variance of the 

estimate of the ground state energy. For the fluid phase the single 

particle orbitals are plane waves, with the wave vector lying within the 

Fermi sea. For the polarized state, where there is only one spin for 

each spatial state, as opposed to two for the normal unpolarized state, 
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the Fermi wavevector has been increased to allow, for twice as many 

spatial orbitals. In the crystal phase, the orbitals are Gaussians 

centered around body centered cubic lattice sites with a width chosen 

variationally. 

Fig. 1 shews that the relaxation from the unpolarized nodes to the 

ground state is rapid with a small lowering of the energy. A less 

accurate trial wave function with different nodes obtained from a linear 

combination of polarized and unpolarized Slater determinants is 

nevertheless shown to lead to similar energies with a somewhat larger 

relaxation time. This shows the insensitivity of results to the 

original location of the nodes. Since at all densities the relaxation 

from the Hartree-Fock nodes was rapid, the ground state energy of the 

electron gas by the method employed could be obtained with very little 

uncertainty. 

The largest uncertainty in the results is in fact due to the number 

dependence. Due to the high accuracy of the results derived from 

employing a good trial wave function and the consequent small 

statistical error, the number dependence, which was empirically 

established for systems ranging from 38 to 246 particles is an order of 

magnitude larger than the statistical error. Extrapolation to infinite 

particle results was carried out at each density on the basis of E(N) = 

E„ + E,/N + E_ A„, where the coefficients E , E, and E„ O 1 l N o 1 2 
were empirically determined from the simulations. The E. term arises 

from the potential energy and is due to the correlation between a 
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particle and its images in the periodically extended space that is used 

in the Ewald summation procedure to eliminate the major surface 

effects. The E- term comes from the discrete nature of the Fermi sea 

for finite systems, and A^ is the size dependence of an ideal Fermi 

system at the same density. That term is absent for Bosons. In 

addition the energies have been extrapolated to zero time step by 

empirically establishing the validity of linear extrapolation. This 

correction is quite small, on the order of the statistical error for the 

time steps used. However this correction can be completely avoided by 

using an integral formulation of eq.(l). 

The results for the energy of the plasma in four different phases is 
2 given in Table I. These energies multiplied by r are plotted in 

2 Fig. 2 relative to the lowest Boson state. Multiplying by r 

corresponds to holding the density fixed and increasing the charge. 

Plotted in this manner the minute differences in energy at low density 

can be more clearly seen. The Boson system undergoes Wigner 

crystallization at r = 160 ± 10. The Fermion system has two phase 

transitions, crystallization at r = 100 *_ 20 and depolarization at 

r = 75 ^ 5. The difference in energy between a Boson crystal and a 

Fermion crystal is less than 1.0 x 10 B at r = 10^. The energies 

of the three Fermion states are sufficiently close in the low density 

regime that still more accurate calculations on larger systems would be 

desirable to confirm these results. 
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In Table II the correlation energy for the unpolarized Fermi fluid, 

that is the ground state energy relative to the Hartree-Fock energy, is 

compared to that of several other theories in the metallic density 

range. The correlation energies are very similar for all methods. The 
7 8 coupled-cluster ' formalism give. the most accurate results. It is 

seen that a variational integral equation theory, the Fermi hypernetted 
9 . . . 

chain, gives energies below the present results, indicating that the 

approximations employed have compromised the variational principle. 

Finally, Table III displays the differences between the pair product 

variational results, the fixed-node results and the final energies. 

Although the Bijl-Jastrow-Slater results are quite accurate, the error 

is different for the different phases, changing their relative 

stability. This demonstrates how essential it is to perform exact 

simulations to reliably calculate phase transitions densitites. 

The authors would like to thank M. H. Kalos for numerous useful 

discussions and for inspiring the present work. We thank Mary Ann 

Mansigh for computational assistance. 
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Table I 

r S 
EPMF EFMF EBF EBCC 

1.0 1.174(1) 1.0 1.174(1) 

2.0 0.0041(4) 0.2517(6) -0.4531(1) 2.0 0.0041(4) 0.2517(6) -0.4531(1) 

5.0 -0.1512(1) -0.1214(2) -0.2166j(6) 5.0 -0.1512(1) -0.1214(2) -0.2166j(6) 

10.0 -0.10675(5) -0.1013(1) -0.12150(3) 10.0 -0.10675(5) -0.1013(1) -0.12150(3) 

20.0 -0.06329(3) -0.06251(3) -0.06666(2) 20.0 -0.06329(3) -0.06251(3) -0.06666(2) 

50.0 -0.02884(1) -0.02878(2) -0.02927(1) -0-02876(1) 

100.0 -0.015321(5) -0.015340(5) -0.015427(4) -0.015339(3) 

130.0 -0.012072(4) -0.012037(2) 130.0 -0.012072(4) -0.012037(2) 

200.0 -0.008007(3) -0.008035(1) 200.0 -0.008007(3) -0.008035(1) 

The ground state energy of the charged Fermi and Bose systems. The 
density parameter, r s, is the Wigner sphere radius in units of Bohr 
radii. The energies are Rydbergs and the digits in parenthesis represent 
the error bar in the last decimal place. The four phases are: 
paramagnetic or unpolarzed Fermi fluid (PMF); the ferromagnetic or 
polarized Fermi fluid (FMF); the Bose fluid (BF); and the Bose crystal 
with a BCC lattice. 
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Table II 

r s ^MC eCCl ECC2 eDE EFHNC 

1.0 0.121(1) 0.118 0.123 0.112 0.138 

2.0 0.0902(4) 0.0884 0.0917 0.089 0.098 

5.0 0.0563(1) 0.0567 0.0568 0.058 0.058 

10 0 0.03722(5) 0.03888 0.037 

Caption Comparison of the correlation energy with other theories. e^c 
is the correlation energy from this calculation with the 
parenthesis representing the error bar in the last decimal 
place. ecCl a n <* eCC2 a r e t^ i e f*-rst a n <i second order of 
the coupled cluster or (es) theory. epE is the 
correlation energy in the dielectric formulation and epjjjjc 
is the Fermi-hypemetted chain correlation energy-
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Table III 

r S ^PMF YPMF 6FMF YFMF fiBF 5BCC 

2 40 9 11.0 12.0 

5 17 2 7.2 6-8 

10 11 1 6.5 1.8 5.1 
20 6.7 0-7 3.0 1.0 3.3 

50 2.9 0.31 1.6 0.25 1.7 2.0 

100 1.7 1.2 1.2 0.41 

130 1.1 0.30 

The error in the variational approximation in 10"^ Rydbergs for 
four different phases. 6= Ey - E 0 (the difference between the 
Jastrow trial function and the exact ground state energy). 
Y = EFN ~ E o (the difference between the 'fixed-node' energy with 
plane wave nodes and the exact ground state energy). 
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FIG. 1. The energy in Bydbergs per particle of a 38 electron system 

at the density r = 1 0 versus diffusion time (in inverse Bydbergs) 

from removal of the fixed-nodes. The lower curve is the relaxation of 
4 an ensemble of 1.6 x 10 systems from the nodes of the unpolarized 

determinant of plane waves. The upper curve is the relaxation of 1.0 x 

10 systems from the nodes of a linear combination of polarized and 

unpolarized determinants. 
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FIG. 2. The energy of the four phases studied relative to that of 
9 the lowest Boson state times r,. in Rydbergs versus r in Bohr 
'it S 

radii. Below r = 160 the Bose fluid is the most stable phase, while s 
above, the Wigner crystal is most stable. The energies of the polarized 

and unpolarized Fermi fluid are seen to intersect of r 75. The 

polarized (ferromagnetic) Fermi fluid will be stable between r = 75 

and r = 100. 
s 

14 


