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DIIT'USION OF ~r~~ I N  BODY-CENTmD CUBIC IODIDE ZIRCONTUM 

T. S. Lundy and J. I.  ~ e d e r e r  

ABSTRACT 

Chemically pur i f i ed  Zrg5 has been used i n  determining s e l f -  

d i f fus ion coef f ic ien t s  i n  t he  body-centered cubic phase of 

iodide zirconium over the  temperature range of 900 t o  1750°C. 

I n  order t o  minimize e f f e c t s ' o r  bui ld- in  of the  daughter.  

isotope Nb9*, ' a l l  heat  treatments were completed within 48 h r  

a f t e r  the .pur i f i ca t ion . .  The temperature dependence of the  . . 

di f fus ion  coef f ic ien t s  could not be described by  the  usua.1 ' 

Arrhenius-type equation. Instead, apparent value,s of t h e '  

frequency f ac to r  Do and t he  ac t iva t ion  energy Q var ied from 

4.8 x t o  2.5 x cm"sec and 20,700 t o  46,900 cal/mole, 

respectively,  between the  lower and upper extremit ies  of t he  

.temperature range. Empirical treatment of t he  data indicated 

t h a t  Q i s  a l i n e a r  function of temperature and t h a t  D va r i e s  
0 

wi$h a power of t he  temperature. The data may be described 

i n  terms of t he  a: t o  f3 t r ans i t i on  temperature of 1136OK and 

the  absolute temperature of the  heat  treatments by the  . 

f ollowLng equation: 



INTRODUCTION 

Several s tudies  on the diffusion of Zrg5 i n  zirconium have been 

reported. 1-5 The values of the  constants contained i n  the usual 

Arrhenius-type equation f o r  describing the temperature dependence of 

the  diffusion coeff ic ient  

a r e  summarized i n  Table 1. The reported values of D the freq1.1ency 
0' 

factor,  and Q, the act ivat ion energy, a r e  seen t o  vary by factors  of 

about 60 and 1.6, respectively.  Examination of the data from any one 

study indicated reasonable consistency of experimental measurements. 

The large discrepancies of overal l  resu l t s ,  therefore, cannot be ex- 

plained on the bas i s  of experimental s ca t t e r .  One possible explanation 

f o r  the differences i n  r e su l t s  could be a varying impurity content of 

the zirconium. Another poss ib i l i t y  i s  tha t  the radioactive daughter 

influenced the values of some of the determined diffusion coeff i -  

c ients .  Therefore, onc purpo~e of t.hj-s st~1d.y was t o  explain the large 

differences i n  diffusion r e su l t s  t ha t  have been ohtaincd. 

Several empirical re lat ions have been proposed t o  r e l a t e  the diffu-  

sion coe f f i c i en l ;~  ia solido with physical properties, such as  the 

absolute melting point, the heat of fusion, and the heat of sublimation. 

I n  face-centered cubic metals the act ivat ion energy of diffusion can be 

predicted t o  within about 10% by such relat ions.  However, except f o r  

'G. B. Fedorov and V.D. Gulyakin, Met. i Metalloved. Christykh 
Metal. Sbornik Nauch, Rabot 1959, No. 1, pp 170-78. 

2 ~ .  Kidson and J. McGurn, Can. J. Phys . - 39, 1146-57 (1961) . - 
3 ~ .  S. Lyashenko -- e t  a l . ,  Phys. Metals and Metallog. $(3),  362-69 - 

(1959). , - 

4 ~ .  Volokoff -- e t  a l . ,  Compt. Rend. 251, 2341-43 (1960). - - 
5 ~ e .  V. Borisov e t  a l . ,  "Study of Diffusion i n  Zirconium and i n  -- 

Certain Alloys with a Zirconium Base," pp 196-209 i n  Metallurgiya i 
Metallovedeniyc, I z@tel 'stoo Akademii Nauk USSR, Moscow, 1958 
(NP-TR-448, ~ - ~ ~ - 9 8 4 9 / ~ )  . 

6 ~ .  E. Hoff'man e t  a l . ,  Trans. Met. Soc . AIME 206, 48386 (1956) . -- - - 



Table 1. Summary of Previous Studies of t he  Diffusion 
of Zrg5 in, Body-Centered Cubic Zirconium 

Frequency Activation Temperature 
Factor Energy Range 

(cm2/sec) (kcal/mole ) (" c 1 Reference 

Empirical 

Q = 4% = 05.0 (Tm = 2125OK) 

Q = 16.5 LU = 90.8 
f 

(Dlf = 5.5 kcallmole) 

' a 
G. B. ,Fedorov and V. D. Gulyakin, Met. i Metalloved. 

Clxistykh Metal. Sbornik Nauch, Rsibot 1959, No. 1, pp 1 7 e 7 8 .  

b ~ .  Kidson and J. McGurn, can. J. Phys. - 39, 114657  - 
(1961.) . 

C 
V. S. Lyashenko -- e t  a l . ,  Phys. Metals and Metallog. - 8(3) ,  

362-69 (1959). 
9 

'D. Volokoff e t  a l . ,  Compt . Rend. 251 234143 (1960). -- -J - 
e 
Ye. V. Borisov -- e t  a l . ,  "Study of Diffusion i n  Zirconium 

and i n  Certain Alloys with a Zirconium Base," pp 196-209 i n  - -  

Metallurgiya i ~ e t a l l o v e d e n i ~ c ,  Izdate l ' s too Akademii Naub: 
USSR, Moscow, 1958 (NF-TR-448, ~ - ~ ~ - 9 8 4 9 / ~ )  . 



t h e  d f f fus ion  of ~b~~ 5.n n i ~ b i u m , ~  t he  r e l a t i ons  do not cor re la te  with 

obse-rved r e s u l t s  f o r  d i f fus ion  i n  body-centered cubic metals. . Specif - 
i c a l l y ,  t h e  empir ical  r e l a t i ons  predidt  t h a t  t he  ac t iva t ion  energy f o r  

t h e  d i f fus ion  of Z r g 5  i n  zirconium should be about 80 kcal/mole. A s  

shown i n  Table 1, experimentally determined values have ranged from 

24 t o  38 kcal/mole. Therefore, a second purpose of t h i s  study was t o  

determine t he  v a l i d i t y  of these  empirical  re la t ionsh ips  a s  applied t o  

zirconium. 

The f a c t  t h a t  l a rge  d i f fus ion  coef f ic ien t s  of zrg5 i n  zirconium 

e x i s t  throughout t he  body-centered cubic range of [:I.etrlpel-aew~ c 

(863-1852°C) makes poss ible  a study over a very wide tempera.1;~-e range. 

A t h i r d  purpose of t h i s  study w a s  therefore  t o  provide ba s i c  d i f fus ion  

data i n  a body-centered cubic metal over as la rge  a temperature range 

a s  poss ible .  

MATEFlIALS AND PRCCEDURE 

. . 

Tile zirconium used. i .n  these  experiments .was reactor-grade 1 

crysta l -bar  ingot  of 99.9476 minimum pur i ty .  The ingot was arc-melted, 

forged t o  a 14-in.-dia'm rod, and swaged t o  $-in. diam from which $-in.- 

long by 5/8-in. -diam specimens were machined. The major impuri t ies  i n  

t h e  zirconium a r e  shown i n  t he  following analysis :  

Element Content, ppm 

5 0 
25 

242 
5 3 

135 
10 
24 
19 
22 

The machined specimens were degreased with acetone, heavi ly  etched 

with 46 HN03-46 H2&8 HF solution,  homogenized i t  1150°C f o r  48 hr i n  a 

7 ~ .  Resnick and L. S. Castleman, Trans. Met. Soc. AIME 218, 307-10 
(1960) .. 

- - 



vacuum of 3 X t o r r  or better,  and furnace cooled. To prevent 

possible contamination by the mullite furnace t ~ e ,  the specimens were 

completely enclosed i n  a tantalum box which, i n  turn, was placed within 

a tantalum tube. An example of the large p grain size produced by the 

heat treatment (body-centered cubic p exists  above 865" C, close -packed 

hexagonal abelow) i s  shown i n  Fig. 1 and the room-temperature macro- 

structure i s  shown i n  Fig. 2. The specimens were probably quite coarse 

grained a t  a l l  temperatures i n  the f3 phase. It is also probable that  

the hydrogen content of the zirconium was decreased t o  less than 10 ppm 

by the vacuum anneal, although no additional analysis was obtained. 

Following the vacuum anneal, the specimens were abraded through 

0000-grit emery polishing papers t o  produce a smooth, f l a t  surface and 

heavily etched i n  46 H N O s 4  H20-8 HI? solution t o  remove the cold-worked 

surface layer. Another l ight  polishing with 0000-grit emery paper 

followed by etching completed the preparation of the specimens. 

The Zrg5 isotope used i n  these experiments was obtained as  an 

oxalate complex i n  oxalic acid solution which was then diluted with a 

sufficient amount of d i s t i l l ed  water t o  yield a specific ac t iv i ty  of 

about 120 counts/h-sec (17, = l om6 l i t e r s ) .  Fifteen h of solution were 

placed on the surface of each specimen and evaporated t o  dryness under 

a heat lamp, leaving a residue which was probably a zirconium oxalate 

compound. Upon heating t o  the diffusion temperature, the omlate de- 

composed t o  an oxide from which zrg5 atoms diffused into the metal. 

The maximum oxygen contamination produced by dissolution of the oxide 

was less  than 1 ppm i f  a l l  oxygen were confined t o  the 1ayers.aampled. 

The i n i t i a l  ac t iv i ty  of each specimen was about 1800 counts/sec and n o  

significant loss of ac t iv i ty  occurred during any diffusion anneal. 

The Zrg5 isotope decays (65-day hal f - l i fe)  t o  which decays 

(35-day half - l i f e )  t o  stable with 0.75- and 0.76-Mev gamma emis- 

sions, respectively, preventing discrimination by gamma spectrometry. 

For t h i s  reason, the Zrg5 was purified of Nbg5 just prior  t o  these 

experiments and a l l  diffusion anneals were completed within two days 

from the time of purification. The maximum ac t iv i ty  due t o  mg5, there- 

fore, did not exceed 3.8$ of the t o t a l  ac t iv i ty  a t  the termination of 

the anneals. 



UNCLASSIFIED 
Y-37450 

Fig. 1. Typical Zirconium Specimen After Vacuum Annealing a t  
1150°C f o r  48 hr. 7X. 



UNCLASSIFIED 
Y-37997 

Fig. 2. Same Zirconium Specimen Shown i n  Fig. 1 A f t e r  
Polishing and Etching. 7X. 



For diffusion anneals up t o  and including 1150°C, the specimens 

were wrapped with three  layers of tantalum f o i l ,  sealed i n  fused quartz 

ampoules under a vacuum of 8 X t o r r  o r  be t te r ,  and inserted in to  

furnaces previously s e t  a t  the  desired temperature. The furnaces were 

controlled within f 1°C and temperatures were measured with Pt vs ~ t - l 0 $  Rh 

thermocouples which had been calibrated with a: standard thermocouple 

(cal ibrated a t  the melting points of gold, s i lver ,  aluminum, and zinc). 

A l l  diffusion anneals above 1150°C were performed i n  a tantalum filament 

furnace under 5 ps ig  of 99.995% pure argon. Temperatures were measured 

with a Pyro micro-optical pyrometer calibrated f o r  the par t icu lar  

sighting conditions ( ident ica l  f o r  a l l  specimens) with a Pt vs ~ t - l @  Rh 

thermocouple. The accuracy of temperature measurements made with the  

pyrometer was estimated t o  vary from f 5°C a t  1200°C t o  f 10°C a t  1750°C. 

After  the diffusion anneals, a l l  the specimens were br ight  and shiny 

with a macrostructure similar t o  t h a t  shown i n  Fig. 1. 

Each specimen was aligned i n  a la the and the diameter decreased 

about 0.08 in .  t o  eliminate e f f ec t s  of surface diffusion. Between 12 

and 15 sections, each approximately 2 m i l s  thick, were then removed 

from each specimen and the turnings of each section were quant i ta t ively 

collected and weighed. The section thicknesses expressed i n  weight 

un i t s  were then used t o  determine the average distance of each section 

from the or ig ina l  isotope layer.  

The turnings from each section were t ransferred t o  counting cards 

and secured with paper tape, making the counting geometry constant f o r  

a l l  sections of a l l  specimens. Gamma counting w a s  performed using a 

single-channel analyzer and a 3 i n .  x 3 in .  NaI (Tl) s c in t i l l a t ion  

crystal, enclosed i n  a lead container. 

The boundary conditions f o r  these specimens conformed t o  the case 

of unidirectional diffusion f r m  a plane source in to  an i n f i n i t e l y  long 

medium f o r  which the following equation8 i s  applicable: 

8 ~ .  Crank, The Mathematics of Diffusion, 1st ed., p 9, OxFord 
University, 1956. ' 



where 

A(x) = the  a c t i v i t y  a t  a distance x i n to  t h e  specimen, 

M = the  a c t i v i t y  i n i t i a l l y ' d e p o s i t e d  a t  x = 0, 

D = t he  d i f fus ion  coeff ic ient ,  

t = the  time of isothermal d i f fus ion  annealing. 

Taking t h e  na tura l  logarithm of t h i s  equation yie lds .  a convenient form 

f o r  t r e a t i ng  sectioning data, f o r  the  equation ind ica tes  t h a t  Jn ~ ( x )  
- 1 should be a l i n e a r  function of 'x2 with a slope of - 
4Dt ' 

I n  a l l  penetra- 

t i o n  p l o t s  which follow, x has u n i t s  of weight (milligrams) ra ther  than 

distance.  The d i f fus ion  coef f ic ien t s  then hacl 'units of square milligrams 

per  second which were converted t o  s q k r e  cent imeters ,per  second using 

the  specimen diameter and density.  Corrections were made f o r  dens i t i e s  

a t  the  various annealing temperatures by  using t he  data of ~ r i k o r i a n . ~  

The penetra t ion p lo t s ,  o r  a c t i v i t y  p rof i l es ,  f o r  specimens annealed 

a t  temperatures from 901 t o  1098°C a r e  shown i n  Fig. 3. S l igh t  devia- 

t i ons  from l i n e a r i t y  were noted f o r  these  f i v e  specimens. The i n i t i a l  

da ta  po in t s  appear t o  l i e  0n . a  smooth curve concave upwards; however, 

the  radius  of curvature i s  s u f f i c i e n t l y  large  so t h a t  each curve may be 

t r ea t ed  a s  two s t r a igh t - l i ne  segments of . s l i g h t l y  d i f f e r en t  slope. From 

the  slopes of t he  two s t r a i g h t  l i n e s  "composing" each curve, the  two . 

diffus ion coef f ic ien t s ,  Dmax and Dmin presented i n  ,Table 2, were 

calculated.  

The penetra t ion p l o t s  f o r  a l l  specimens annealed above 1100°C a r e  

presented i n  Figs. 4,  5, and 6.  No deviations from l i n e a r i t y  were noted 

f o r  any of these specimens. The d i f fus ion  coef f ic ien t s  calcula ted from 

the  slopes ,of t he  s t r a i g h t  l ines ,  temperatures, times, and .Dt values a r e  

given i n  Table 2. 

The temperature dependence of t he  se l f -d i f fus ion  coef f ic ien t  i s  

shown i n  a n  Arrhenius-type p l o t  i n  Fig. 7. The lack of s c a t t e r  i n  .the 

90. H. Krikorian, Thermal Expansion of High-Temperature Materials, 
UCRL-6132 (Sept . 1960) . 
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Fig. 3. Act iv i t y  P ro f i l e s  f o r  Diffusion of Zrg5 i n  Body- , 

Centered Cubic Zirconium. . 



Table 2. Results  of Diffusion of Zrg5 i n  
body-Centered Cubic Zirconium 

- ~ 

Temperature lo4  - Time Diffusion Coef f ic ien t .  ~ t *  lo4 
( " C )  (OK) T°K (cm2 /set) (cm2 

Minimum Maximum 
901 1174 8.518 172,800 6 . 2 5 X 1 0 - l o  7 . 2 7 X 1 0 - l o  1 . 1 7 a v  
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Fig. 4. Ac t iv i t y  P ro f i l e s  f o r  Diffusion of Zr95 i n  Body- 
centered Cubic Zirconium. 



Fig.  5 .  ~ c t i v i t ~  PPofiles f o r  Di f fus ionof  Zrg5 i n  Body- 
Centered Cubic Zirconium. 
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Fig. 6. Activity Profiles for Diffusion of Zrg5 in Body- 
Centered Cubic Zirconium, 
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Fig. 7. Temperature Dependence of Diffusion of Zrg5  i n  
Body-Ceri-bered C.ubii: Zirconi.um. 



data indicated t h a t  t he  data  po in t s  were b e s t  f i t t e d  by a l i n e  of small, . . 

b u t  continuous, curvature over the  e n t i r e  temperature range t h a t  was 

invest igated.  

DISCUSSION OF FBSULTS 

The d i v e r s i t y  i n  the  data obtained by other invest igators  can now 

. b e  explained i n  terms of t h e  curvature found i n  t h e  Arrhenius-type p l o t  

shown i n  Fig.  7. The curve& l i n e  representing t h e  data  obtained i n  the  

present study, bu t  omitt ing t he  data  points,  i s  shown i n  Fig.  8 with the  

- da t a  obtained b y  o ther  inves t iga tors .  Several observations may be made: 

(1) the temperature range included i n  t he  present study was l a rge r  than 

t h a t  f o r  any previous study; (2) with one exception, which may be due 

t o  a dif ference i n  t he  impurity content of the  zirconium, the  data  

previously obtained a r e  i n  very good agreement d t h  t he  r e s u l t s  of the  

present study; and (3)  the  apparent a c t i va t i on  energy f o r  se l f -di f fus ion 

i s  a function of temperature ( t o  be discussed i n  more d e t a i l  l a t e r ) .  

The frequency f a c t o r  and ac t i va t i on  energy reported by each previous 

inves t iga tor  appear t o  be dependent i n  a qua l i t a t i ve  manner on t h e  tem- 

perature  range of study ( r e f e r  t o  Table 1) such t ha t ,  in' general, t h e  

higher t h e  temperature the  higher a r e  the  values oC.frequency f ac to r  

and ac t i va t i on  energjr. 

A s l i g h t  amount of curvature was observed i n  the penetra t ion p l o t s  

f o r  specimens annealed i n  t he  temperature range 901 t o  1098°C (Fig., 3 ) .  

Such curvature i s  sometimes a t t r i b u t e d  t o  shor t -c i rcu i t  o r  grain- 

boundary d i f fus ion .  I f  grain-boundary d i f fus ion  i s  predominant, i . e . ,  

i f  t he  r a t i o  of grain-boundary d i f fus ion  r a t e  t o  l a t t i c e  d i f fus ion  r a t e  

i s  high, then t h e  a c t i v i t y  p lo t t ed  on a logarithmic sca le  vs the  

penetra t ion dis tance should y i e ld  a s t r a igh t  line.'' This was not the  

case, however, f o r  t h e  specimens re fe r red  t o  above; ra ther , .curved l i n e s  

concave downwards were obtained from such p lo t s .  The ana ly t i c a l  proce- 

dure .  seemed t o  subs tan t ia te  t h e  b e l i e f  t h a t  a s i gn i f i c an t  amount of 

grain-boundary d i f fus ion  d id  not occur i n  t he  coarse-grained specimens. 

~ O J .  C .  Fisher,  J. Appl. Phys. - 22, 74-77 (1951). - 
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Fig. 8. Comparison of Present. Results with Results Obtained 
by Other Investigators. 
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Another pbssible explanation of the curvature i s  tha t  a chemical 

diffusion b a r r i e r  exis ted a t  the surface on which the isotope was 

i n i t i a l l y  deposited. This poss ib i l i t y  i s  discounted f o r  three reasons: 

(1) the i n i t i a l  data  point f o r  each of the penetration p lo ts  shown i n  

Fig.  3 i s  i n  l i n e  with the t rend of the next four or f ive  data points 

rather  than much higher a s  would be expected i f  a s ignif icant  diffusion 

ba r r i e r  existed; (2)  the curvature extends t o  depths of 0.006 t o  0.010 i n .  

which a r e  un rea l i s t i c  thicknesses f o r  surface bar r ie rs ;  and ( 3 )  the  

surface oxide i s  rapidly dissolved i n  the specimen under the emerimentaA 

A t h i r d  poss ib i l i t y  i s  t h a t  the outer layers of the specimens became 

contaminated during the diffusion anneals. For these anneals, the speci- 

mens were wrapped i n  degassed tantalum f o i l  and sealed i n  evacuated fused 

quartz ampoules. The only other source of contamination was the oxalate 

compound containing the Zrg5 isotope. However, conservative calculations 

indicated t h a t  the maximum amount of impurities (hydrogen, carbon, and 

oxygen) available from t h i s  source was extremely low (<< 1 ppm) . 
A metallographic examiqation of specimens diffusion annealed a t  the 

lowest, intermediate, and highest temperatures revealed a second phase 

exis t ing a s  p l a t e l e t s  i n  the matrix. The method of select ive anodizationl1 

was used t o  show t h a t  t h i s  phase was not zirconium hydride. The phase 

may be an intermetal l ic  of i ron  and zirconium. Contamination by oxygen , 

was not indicated i n  any of the  microstructures examined. 

Maximum and minimum diffusion coefficients were calculated from the . 

curved and s t r a igh t  portions .of each of the penetration p lo ts  discussed. 

Although there i s  no ready explanation f o r  the curvature of the penetra- 

t i o n  plots ,  t he  maximum and minimum values f o r  a par t icu lar  temperature 

d i f f e r  by no more than 20%. The e f fec t  of the maximum and minimum 
- 

values on the Arrhenius-type p lo t  (Fig. 7), therefore, i s  small. 

"M. L. Picklesimer, Anodi zing a s  a Metallographic Technique f o r  
Zirconium-Base Alloys, ORNL-2292 (April 26, 1957). 



Data obtained i n  t h i s  work a r e  b e s t  f i t t e d  by a continuously curving 

l ine ,  a s  shown i n  Fig. 7. The curvature, however, i s  su f f i c i en t l y  small 

t h a t  t he  usual  Arrhenius-type equation 

. . +  

adequately represents the  data over temperature ranges of 100 t o  200°C. 

Thus, f o r  any' small temperature range there  i s  an  apparent ac t iva t ion  
. . 

energy & and frequency f ac to r  D a s  defined by t he  Arrhenius-typc 
0 

1 Q equation. Accordingly, the  slope of the  Rn D vs  p l o t  equals - fi.; and, 

having . obtained . .  Q i n  t h i s  manner, D i s  read i ly  calculated.  Tangent 
0 

l i n e s  drawn a t  spec i f i c  temperatures on t he  Arrhenius-type p l o t  i n  

Fig.  7 were used t o  calcula te  apparent a c t i va t i on  energies and frequency 

rac-tors (Table 3 ) .  The apparent ac t iva t ion  energy ( Q ) ~  was found t o  be 
. 'Y 

a l i n e a r  function of temperature a s  shown i n  Fig. 9. The temperature 

dependence of the  apparent ac t iva t ion  energy may be represented by the .  
, . 

equation 

where 

a = 19,600 cal/mole 

b = 31 cal/mole-deg 

T = temperature of transformation of a t o  ,3 zirconium = 1136°K. t 

The apparent frequency f ac to r  (D ) was found t o  obey the  following 
0 A 

re la t ion :  
. . 

( D )  o A =.('>" , 
Tt 

where 

c = 3 x l om6 cm2/sec 

. n = 15.6. 

The f i t  of (D ) t o  t h i s  equation i s  demonstrated by the  l i n e a r i t y  of 
3 A 

the p l o t  shown i n  Fig. 10. , . 



Table 3. Apparent Activation Energy and Frequency Factor Values 
for Diffusion of Zrg5, in Body-Centered Cubic Zirconium 

Apparent Activation Apparent Frequency 
lo4 Temperature Factor - Energy, 



UNCLASSIFIED 

TEMPERATURE ( O K )  

Fig. 9. Temperature Dependence of the  Apparent Activation 
Energy f o r  Diffusion of zrg5 i n  Body-Centered Cubic Zirconium. 
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Fig. 10. Temperature Dependence of the Apparent Frequency 
Factor for Diffusion of ~r~~ in Body-Centered Cubic Zirconium. 



Thus, t he  r e s u l t s  of t h e  present  work can be described by t h e  

following equation: 

which describes the  data over the  e n t i r e  temperature range invest igated.  

Recall ing t h a t  the  Arrhenius-type eqmt ion  i s  v a l i d  f o r  small tempera- 

t u r e  ranges, t he  data  a r e  well  described by an equation of the  same form 

where t he  usual  constants T I  and. Q a.re temperati- re dependent. 
0 

The present data  might a l s o  be described ana ly t i c a l l y  i n  other  ways. 

The curvature i n  Fig. 7 could be produced i f  e i t h e r  t he  ac t i va t i on  energy 

o r  frequency f ac to r  were constant and t he  . other  continuously changing. 

However, the  present data  do not permit an individual  evaluation of 

e i t h e r  D o r  Q - ra ther ,  one i s  uniquely determined b y  t he  other .  The 
0 

curvature could a l s o  be obtained by the  addi t ion of th ree  s t r a i g h t  ' 

l ines ,  i.e., 

where the  components represent competing d i f fus ion  mechanisms. There a r e  

undoubtedly other methods of describing the  data;  however, the  r e s u l t s  

of the  various curve- f i t t ing  methods attempted a r e  be s t  represented bjr. 

t he  equation having t he  power of temperature i n  t he  pre-exponential 

f a c to r  and having a l i n e a r  var ia t ion  with temperature. of t h e  ac t iva t ion  

energy. 

A temperature-dependent pre-exponential f a c to r  of temperature i s  

not sJithout precedent i n  describing d i f fus ion  r e s u l t s .  Swets e t  a l . ,  -- 
described t h e i r  r e s u l t s  on t he  d i f fus ion  of helium i n  fused s i l i c a  by 

. . 
1 two in te r sec t ing  s t r a i g h t  l i n e s  on a Rn D vs  - p l o t .  Doremus, l3 how- T 

D 1 ever, found t h a t  p l o t t i n g  t he  data of Swets e t  a l .  as Jn - vs - -- T T 
resu l ted  i n  a s ingle  s t r a igh t  l i n e  over the  e n t i r e  temperature range 

investigated,  giving an equation having t he  form of 

1 2 ~ .  E. Swets -- e t :  a l . ,  J. Chem. ~ h y s .  - 34, ii (196i) .  - 
13n. I-I. Doremus, J. Chem. l?hys. - 34, 6 .(1961). . - 



Other departures .from l i n e a r i t y  i n  Arrhenius-type p l o t s  of d i f fus ion  data 

have been reported f o r  beryllium i n  Be0, l 4  i r on  i n  a-Fe, l5 and carbon i n  

a-Fe . l6 

CONCLUSIONS 

The present  study has revealed t h a t  r e s u l t s  of pa s t  e ~ p e r i m e n t s ' ~ - ~ ~  
I -- 

on the  d i f fus ion  of Z r g 5  i n  zirconium a r e  i n  good agreement with one 

another and with present  r e s u l t s  i f  t h e  ac t iva t ion  energy and frequency 

f ac to r s  a r e  not constant b u t  vary with temperature. The previously 

reported empirical  r e l a t i ons  involving melting point ,  heat  of fusion, 

and heat  of sublimation do not p red ic t  t he  cor rec t  ac t iva t ion  energies 

f o r  d i f fus ion  i n  zirconium. The temperature dependence of the  coef f i -  

c i e n t  of d i f fus ion of Zrg5  i n  zirconium can b e s t  be described by an 

equation involving a power of the  absolute temperature i n  the  pre-  

exponential  term and an ac t i va t i on  energy that, i s  a linear function of 

temperature. This equation i s  

14s. B.  Austermann, Diffusion of Beryllium i n  Beryllium Oxide, 
P a r t  11, NAA-533-5893 (May 1961). 
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