THE H-1 HIGH TEMPERATURE GRAPHITE IRRADIATION EXPERIMENT

PDF Version Also Available for Download.

Description

A high temperature graphite irradiation experinient was performed in the GETR core to determine the effects of differences in manufacturing, formulation, and graphitization temperatures on radiation-induced eontraction. The experiment was performed at temperatures of 800 to 1200 deg C in an intense fast neutron flux. The maximum integrated exposure of the sample positions was 3.2 x 10?sup 21/ nvt, E> 0.18 Mev, corresponding to approximately 24,000 MWD/AT in a conventional graphite-moderated reactor. All the graphites tested, with the exception of the controls, were needle coke filler, coal tar pitch binder graphites varying mn particle size, graphitization temperature, and impregnation. From ... continued below

Physical Description

Pages: 50

Creation Information

Davidson, J.M. & Helm, J.W. April 1, 1961.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A high temperature graphite irradiation experinient was performed in the GETR core to determine the effects of differences in manufacturing, formulation, and graphitization temperatures on radiation-induced eontraction. The experiment was performed at temperatures of 800 to 1200 deg C in an intense fast neutron flux. The maximum integrated exposure of the sample positions was 3.2 x 10?sup 21/ nvt, E> 0.18 Mev, corresponding to approximately 24,000 MWD/AT in a conventional graphite-moderated reactor. All the graphites tested, with the exception of the controls, were needle coke filler, coal tar pitch binder graphites varying mn particle size, graphitization temperature, and impregnation. From theoretical and experitnental considerations, the formulations and treatments were expected to result in a relatively stable graphite in the direction transverse to extrusion. For comparison of the experimental results to existing experience, a conventional graphite, CSF, was used at each irradiation position. The results showed that the graphite most stable to contraction was graphaitized at a high temperature(>3100hC) and made from small particle size (all flour) filler. In all cases, the needle coke graphite contracted at a lower rate than the CSF graphite. Differences attributable to the size of extrusion and/or post graphitization cooling rate were discerned readily. Auxil iary to the purposes of the experiment, the apparent thermnal neutron cross section for Co/sup 58/ (plus Co /sup 58m) was determined. Co/sup 58/ and Co/sup 58m/ are the products of the Ni/sup 58/ (n,p) reaction, which is used widely for fast flux monitoring. Both have large thermal neutron capture cross sections which must be accounted for to prevent error in fast neutron dosimetry. In this experiment, a value was determined for the apparent burn-out cross section of 3750 barns. (auth)

Physical Description

Pages: 50

Source

  • Other Information: Orig. Receipt Date: 31-DEC-62

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: HW-64286
  • Grant Number: AF(45-1)-1350
  • DOI: 10.2172/4818508 | External Link
  • Office of Scientific & Technical Information Report Number: 4818508
  • Archival Resource Key: ark:/67531/metadc1059085

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 1, 1961

Added to The UNT Digital Library

  • Jan. 22, 2018, 7:23 a.m.

Description Last Updated

  • Jan. 25, 2018, 4:26 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Davidson, J.M. & Helm, J.W. THE H-1 HIGH TEMPERATURE GRAPHITE IRRADIATION EXPERIMENT, report, April 1, 1961; United States. (digital.library.unt.edu/ark:/67531/metadc1059085/: accessed May 28, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.