

TITLE: VARIATIONAL METHODS IN STEADY STATE DIFFUSION PROBLEMS

AUTHORS):
Clarence E. Lee
NOTICE

> THIS REPORT IS ITIEGIBLE TO A A DEGREE THAT PRECLUDES SATISFACTORY REPRODUCTION

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

By acceptance of this article. the publisher recognizes that the U.S Government retains a nenaxelusive. royatry-free license to publish or reproduce
the published form of this contribution, or to allow others to 00 so, for U.S. Government purposes.
The Los Alamos National Laboratory requests that the publisher identity this article as work performed under the auspices of the U.S Department of Energy

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

VARIATIONAL METHODS IN STEADY STÁTE DIFFUSION FROBLEMS

Clarence E. Lee ${ }^{+}$ Wesley C.F. Fan Robert L. Bratton

Department of Nuclear Engineering
Texas A \& M University College Station, Texas, 77843

AESTRACT

Classical variationel teshnique! are used to ahtain aczurate selutions to the sultigroup rult:region one dinensional steady state neutren diffusior, equation. Analytic se!utions are cerstrusted for bencheark verificatior. Funstiorals with cut: trial funstions and conservational lagrangian constraints are exhibited and canzared with nonsenserational functionals mith respest to neatren balanes and to relative flu: and current at interfases. Entellent agreanert of the conservationa! functionals using cubic trial functions is tetained in csaparisen with analytic solutions.

We investigate numerical selutions te the neutren diffusion probler using classica! variatictia teehtiques and shape functions consistent with centinuity conditions, leing the miltigraup approwisation, we define the flan as B(f) and the atjoint as $D^{+}(f)$, each are vetors of length E, the nctiter of groups. The ac! tigreua flu: diffusion equation is giver b;

$$
D \theta=L B-h F D=0 \text {, }
$$

a:ct the at joint equation is given by

$$
\theta^{+} \theta^{+}=L^{+} \theta^{+}-h^{+} F^{+} \theta^{+}=0,
$$

Where h and h^{+}are the eigenvalues, L and L^{+}represert the diffusien flux and adjaint operaters, inciuting leakage, atserption, and seattering tern contributipns, and F and $\mathcal{F}^{\boldsymbol{F}}$ represent the tission ant ajjeirt fitsion operators, respeetively. We fore the functional $5\left[0^{\circ}\right.$, defined by

$$
5\left[C^{+}, Q\right]=\left\langle B^{+}, D C\right\rangle=\left\langle D, D^{+} B^{+}\right\rangle,
$$

where the (, ? netation iaplies inner produt integration over spatial variables and sums over the grous in the aultigroup appreximation, he agsune that the flux and adjoint furictiors setisfy the sare boutctry contitions. Taking the variation of $6\left[0^{+}\right.$, 01 with respect to 0 and 0° yields the diffusion equations for 0^{+}and 0 , respectively. This foraulation of $\left.5!0^{+}, 0\right]$ is mell-known and straightforward. Quadratic-lite foras for one group self-atjoint operators (Galerkin nethods) are obtained provided integration by parts of the :aplasiar. \mp

[^0]teras exhibit continuity when evaluated ataboundaries. Boundary condition constraints an be azanded to 6ic ${ }^{+}, 01$, as discussed by nunerous authors. ${ }^{\text {" }}$

In develocing one dinensional nurerical schenes, we define approximate flux and atjoint functicns. Requiring spatial cortinuity of flux (adjoint) and current latjeint) at ceterial interfaces, four conatitions and four eguations apply for each region and group. The cubic trial funstion selution for the nodel flux - (adjoint) and current (adjoint) coefficients at region boundaries utich stisfies continuity is sive: jin Appendix \&. Each term in the trial function involves a coefficient tires a uniaue heraite polynesial. stase function." Satisfying the continuity conditions in the trial functions elininates alaing that adfitivala requirenent on the funstional 6tto, 03.

Hinieizing $5\left[0^{+}, \mathrm{C}\right.$ with respect to the nodal values (flux, ad joint, Eurrent, and adjoint current) of these trial functions yields a set of linear courled equations in the notel values for eash grouf. Cuti: spatial dependence of the diffusion coefficient and cross sections is allowed, althojght other integrable ferms say be used. Evaluating the polynosial integrals the resjiting linear algetraic equations can be selved t; standard tectniques for source or eigenvalue problens. Sinse $5\left[0^{\circ}, 0\right.$ is being aininized the nodal selcticens satisfy the original differential equation only at the nodal positions. The funstion errer: between nedes ar: be quite large. Likewise, the conservation law (the spatial integral of the original equat:ors) is setisfies only approxinately for any finite nubber of nodes. These errore deerease with increasing nuaber of notes, tut could presluse cerfetition with classical finite difference methods if field quantities mere of asir intersst insteat of eigenivalues, A construetive solution is ottained by appenting the funstional with conseriatice: e: lagrangian constraint teras

$$
b^{1}\left[0^{+}, c, c^{+}, c\right]=6\left[s^{4},[]+\left\langle c^{+}, D 0\right\rangle+\left\langle\varepsilon, D^{+}, c^{+}\right\rangle,\right.
$$

in each cell and energ; group, with the correspending adcitional inplies cinicization witt ressest te the langrange aultipliers, c and c^{+}. The detailed fore of the conservational furstional with the trial furstigrs substituted is given in Appeedix 2. The property $h=h$, requisite in diffusion and transpert salutians, is
 function nodal values results in atrix equations of the form

$$
\left[\begin{array}{ll}
A & 0 \\
0 & A_{0}^{+}
\end{array}\right]\left[\begin{array}{l}
H \\
M^{+}
\end{array}\right]=n\left[\begin{array}{ll}
F & 0 \\
0 & F^{+}
\end{array}\right]\left[\begin{array}{l}
M \\
n^{+}
\end{array}\right]
$$

where the vestars M and M^{+}are coeposed of notal flux, current, ant lacrangian multipliers and their at jecints. The astrix elesents of A and A^{+}arg integrals derived fros L and L^{+}lieakage, ressval, and saattering terss!, and the satrix elenents of F and F arise fron integrals of the fission teras. The corresperdian \boldsymbol{F} fayleigh-Fiit: deteraination of the eigenvalue h is given b;

$$
h=\left\langle\langle K, A M\rangle+\left\langle H^{+}, A^{+} N^{+}\right\rangle\right):\left(\langle M, F H\rangle+\left\langle N^{+}, F^{+} H^{+}\right\rangle\right\rangle .
$$

With all these solution properties, it is still possible to generate "negative" fluxes for sufficiently coarse nodal spacings. An autonatic node generation schene can be applied to plate the notes so that a cutia trial function mill accurately approxieate the solution mithin each group, and yield positive flcues. However, for this study, we used only equally spaced nodes, a standard practice found in literature conjarisons. A!l cf the reported solutions have positive fluxes everymere inside the uter bcundaries.

He test the accuracy of this aethodology by direst corparison to presisely evaluated analytical solutions. The analytical solution technique is suanarized in Appendix 3. Both the analytical and variational solutions are evaluated in the sane conputer progran. This prosedure allows for direet cocparison of the solutions between the variation node placenent at probles execution time.

Three problens, two thereat and ope fast systef, are conpared with the analytical cultiregien resulte fer varying number of nodes in two, three, and four ', ${ }^{5}$ groups. The detailed spatial and eigenvalue errors betwee: the analytical and numerical solutions for flux and adjoint are sumarized below.

The twe group two region problee is a simplistic horogenecus, nts aylindrical core of iE in radic:
 cross setions in Table: are talien fron Lamarsho. The flux and adjaint sclutions for 10 nedes ("Ests") are displayed in Fig. 1. The relative percentage error of the variational selution is conpared to the andratical solution in Figs. 2 and 3 for the flux and ad joint, respectivele.
 volune ratio of 1.844 . The 26 cm radius core is surrounded by a 26 in reflettor, The erose settiens giver it Table 1 are taken fora Hirata, et. al. The flux and adjoint solutions for 10 nodes are displayed in Fig. 4. The relative percentage error of the variational solution is compared to the analytical selutier, in Figi. s-? for the flux and ad joint.
 to gore radius is surrounded by a 5^{50} en Th blanket. The cross sections are talen froa the report of 0 ita, et. a1. ant Kobayashi and Mishihara. The flux and adjoint solutions for 20 nodes ($10+10$) are disp!ajer in Fig. 8. The relative percentage error of the variational solution is coupares to the analitita! selutior. in Figs. - 12 .

From the flue and at joint solutions, the variational nethat solation exhibits alasat nej?:igitle differences from the aralytical solutions (the analytical selutions are plettes with a tested line and differences are diszernable in Fig. 4). In the relative percentaje arror graphs we note that the errors between the nodes are typically of the order of 5 to 100 tines the values at the nodes. The errors co the
 cent node values. These errors derrease with mesh refireasent, but ever. with orily 10 nojes, the errore ressit below 14. In the refiestor the relative error increases towards the free surfase, but is significant snly at the 10 node approxination. At the 20 node approxieation the errors are belon 1\% throughout the reflester. Sinte the flux has decreased by several orders of aganitude riear the outside beurdary, this error does net contribute signifitantly to the atsclute values near the free surfase.
 instead, we use the funstional $6[B, 0]=\langle 0, D E ;$ in ailtigroup approxination, a balerkin sethod, nuberous knenng literature results can be reprodused; however, the aethod is nor-conservative, ant ores defs net chtain $t=h^{2}$, a desirable basic requiresent. Sieilarly, if we use tpe yariational functional 650^{+}, 01 , the anthod is a!sp non-conservative. However, if we use the functional $\sigma^{2}\left[\theta^{+}, 8, c^{\dagger}, c\right]$, the sclutions are corservative, $h=h^{\dagger}$, and excellent convergence to the analytical eigenvalues, and the flux and adjpint solittions is ottained.

In Table 2 we corpare the k-eff (K) for the conservation (c, using $5^{1}\left[8^{\ddagger}, 2, c^{\ddagger},[]\right.$) and non-canservation $\left(\mathbb{N}-\mathrm{C}\right.$, using $6\left[0^{+}, \mathrm{e}\right)$ solution to the analytic solution for the three problens asing various eaual spazed eesh cells in the core and reflector. The relative error between the numerical and analytical sciutions of the flu (DO.'B) and current (DS/J) at the core-reflector interfase are also conpared.

We observe that the eigenvalues converge rapidiv to the exact analytical results as the nesh is refined, Typically, the k-eff convergerice is nore rapid than that of the fluxes and currerts. The conservaticra! constraint ieproves the current accuracy at the expense of the flum acturacy for coarse mesh calculations. At the aesh is refined the analytical solution result is apprathed asere rapidy in these prablers using the conservational constraint.

In Table 3 we comare the percentage error of nestron balante in each energy group as the sesh is refinec. Neutron balance is essentially "east" (to sachine significance) using the ccnservaticial constraint, but significant balance errors ($4-120 \%$) oceur for the coarse mesh non-conservational results. The neted behavior of the coarse aesh non-conservation results could passibly lead to insorrezt pretictions of conversien or breeding ratios unless a nem functional mere specifically constructed for that purpose, or the corservationial constraint mere added.

The applitation of the lagrangian conservation constraint in coarse aesh calculations results in a relative degradation of the nedal fiux acearaey with an ieproved noda! current ascuracy plus nejtron balante. comared to the non-conservation results. As the sesh is refined, the conservation constraint nodal flum and current solutions exhibit rapid convergence to the analytical solution.

In conclusion, we have examined a conservational variational aethod and ccepared it with analytit solutions te siaple problens. When usect with cubic heraite polyriocial trial furitions, derived froe flu* ant current cortinuity, very arcurate solutions to the aultigroup ailtiregion neatren diffusion proter are attaines. Neutron conservation is adted to the functional using lagrangian constraints. More accurate flu:
distributions are obtained with this constraint.
Sinse the group constants can be spatially dependent between nodes instead of only constant within eash aterial region, the total number of cells neaded to represent the aaterial properties ant the fluxes iaporexinated by cubics) is considerably reduced.

The enajor differences between the variational and Galerlin approach is in the usage of the adjoint weighting funstion instead of the appreximate function itself. Although this variational aethod doubles the total number of equations to be solved, the resulting flux and adjoint solutions are readily apelied for perturbation and/or ontisization analysis in design. Necitron censervation is a neevessary coristraint on the neutron diffusion equation. Even though some approxisetions exhibit this property with fine assh spating, if neutron corservation is not satisfied for all nesh spacings, the resultant solutions can exhibit large errsers coapared te aralytic solutiens, and preclust the deternination of leakage, rembval, scattering. and fissija, contributions to the selution.

REFEPENCES

 and Enc., vol. 5C, pp. 185-199 (1973).
4. C.E. LeE, H.C.P. Fan, and J.S. Aottler, "Diffusion and Kinet: $:=5$ Analytic Bencheark Calculatiens," Trans, Af. Nuel. Soz., vol. 44, pp. 280-281 \{198こ!.
 3JE (19\%5!.
6. Y. Hirata, Y. Ende, 5. Matsura, et, al., "TCA Critical Experiserits," JAEsI-Meag 1122, dapan Atsai= Energy Research Institute (1963).
7. H. Ohta, H. Nishihara, and Y. Desuchi, "The S4 and Few-Eroup Diffision Caleulatioris of Fast Feazters," XXV, Mersirs of the Fasulty of Engineering, Kyeto University, Part ?, p. 273 (1974).
8. K. Kotayashi and H. Nishihara, "Salution of the Group-Eiffasion Equation Using Grean's Ftinatien," Nus'. Sci. and Eng., vol. 28, pp. 92-104 (1967).

APFENDIX 1

SUMMARY OF TRIA. FUNCTIDNS
A self-consistent choice of trial functions depends upon the properties of the diffusion equation and th:e iaposed boundary cencitions for the flux (adjoint) and current (adjoint current) at aderial interfaces.

Maling the standard continuity arguaent at saterial interfases, one finds the cubic hercite solynazial shape functions obtained by Hennart.

Let $n{ }^{(r)}$ be a piecewise polynovial for group g in aesh cell i defined at r with the continuity properties ${ }^{\text {gi }}$

$$
\begin{array}{ll}
W_{g i}\left(r_{i}^{+}\right)=g_{g i}, & m_{g i}\left(r_{i+1} 1^{\prime}\right)=0_{g i+1} \\
-g_{g i}\left(r_{1}^{+}\right) d w_{g i}\left(r_{i}^{+}\right) / d r=J_{g i}, & -D_{g i}\left(r_{i+1}\right) d w_{g i}\left(r_{i+1} j / d r=J_{g i+1}\right.
\end{array}
$$

Here the superseripts on the coordinate r indicate evaluation to the left $(-)$ or right $(+)$ of the irticates nodal boundary. The adjoint shape functions are constructed sisilarily using the adjoint flux and current, but with different interpolation coefficients.

Introducing the divensioniess variable p, in teres of the cell width 1_{i},

$$
p=\left(r-r_{i}\right) / l_{i}, \quad l_{i}=r_{i+1}-r_{i},
$$

We use the above four continuity conditions to solve the assuned cubse trial function forc,

$$
m_{j i}(p)=a+b p+c p^{2}+d p^{3}
$$

for the coeffitients a, b, c, and d. The resulting trial function ${ }_{g i}$ on the interval [0,id takes the fors

$$
M_{g i}(p)=Q_{g i} F_{2}(p)+\theta_{g i+1} P_{1}(p)-1_{i} J_{g i} P_{4}(p) / D_{g i}\left(r_{i}\right)+1_{i} J_{g i+1} P_{3}(p) / D_{g i}\left(r_{i+1}\right) .
$$

The hersite polymosial shape functions, $P_{n}(p), 1=n=4$, are given by

$$
\begin{aligned}
& P_{1}(p)=(1+2 p)(1-p)^{2}, \quad P_{2}(p)=(3-2 p) p^{2}, \\
& P_{3}(p)=(1-p) p^{2}, \quad F_{4}(p)=p(1-p)^{2}, \\
& \text { and satisfy the cardinality relations. }{ }^{3}
\end{aligned}
$$

Thus, the particular shaze functiens are derived directly froe the cortiguity cenditions. Usity the shape function properties the centinuity conditions are exactly satisfied or the $\mathrm{a}^{\text {th }}$ boutary ,

$$
\begin{aligned}
& M_{g i-1}(1)=W_{g i}(0), \quad D_{g i-1}\left(r_{i}{ }^{-}\right) d W_{g i-1}(1) / d p=D_{g i}\left(r_{j}^{+}\right) d w_{g i}(0) / d s . \\
& \text { APFENDIX } 2 \\
& \text { STRLCTURE OF THE FUNCTICNAL } \sigma^{1}\left[0^{+}, a, c^{+}, c\right]
\end{aligned}
$$

The eatrix equations to be solved for the criticality protlect can be easily derived free the variationa: formulation. We use the corservational functional

$$
G^{1}\left[0^{+}, Q, c^{+}, c\right]=6\left[0^{+}, \Delta\right]+\left\langle c^{+}, D 0\right\rangle+\left\langle c, D^{+} 0^{+}\right\rangle
$$

and substitute the trial functions $\mathrm{m}_{\mathrm{i}}(\mathrm{r})$ and ${ }^{+}{ }_{\text {a }}$ (r) for the flux and adjeint, respectively. Integratirigy the leakage teras by parts, we obtain the funstional ${ }^{\text {gi }}$

$$
\begin{aligned}
& I=E^{1}\left[w^{+}, m, c^{+}, c\right] \\
& =\sum_{g=1}^{5} \sum_{i=1}^{N}\left(11 / l_{i}\right) \rho^{1} D_{g i}(p)\left(d N_{g i}^{4}(p) / d p\right)\left(d x_{g i}(p) / d p\right)\left(1_{i} p+r_{i}\right)^{2} d p \\
& +1_{i} f^{1} \varepsilon_{R g i}(p) m_{g i}^{+}(p) w_{g i}(p)\left(1_{i}^{p+r_{j}}\right)^{d} d p
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{g=1}^{5} \delta_{j=1}^{N} c_{g i}^{+}\left(t r_{i}^{2} J_{g i}-r_{g i+1}^{2} J_{g i+1}{ }^{3}+1_{i} \quad \rho^{1} E_{R g i}(p) m_{g i}(p)\left(l_{i} p+r_{i}\right)^{a} d F\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-I_{i} \varepsilon_{g^{\prime}=i, g^{\prime} \neq g}^{5} 0^{1} \varepsilon_{s g^{\prime} g i}(p) w_{g^{\prime} i}^{+}(p) \quad 1_{i} p+r_{i}\right)^{2} d p
\end{aligned}
$$

Where $a=0,1$, and 2 for slab, cylindfical, and spherical geasetry, respeetively, He thave ispesed the endition $k=k$ ($h=1 / k$) at this stage. The non-Eorservational forsus and'or Galerkia foras can be attained by setting

$$
c_{g \mathrm{i}}=c_{g \mathrm{i}}^{+}=0 \text {, and/or } \mathrm{m}^{+}=\mathrm{w} .
$$

The funstional has undeterained coefficients

$$
C_{g i}, C_{g i}^{4}, J_{g i}, j_{g i}^{+}, \varepsilon_{g i} \text { and } \varepsilon_{g i}^{+}
$$

The shape functions $P_{n}(p)$, diffusion colfficients, $D_{g i}(p)$, cress sestions,

$$
\Sigma_{f: g i}(p), \Sigma_{s g^{\prime} g i}(p), v \Sigma_{f}(p)_{g i},
$$

and fission speitrus, $X_{\text {fi }}$, are assuned knowri.
Mirinization of thi functional with respect to the nedal values of the unknown ceefficients reqcires that

$$
d: / \partial s_{g i}=d i / \partial g_{g i}=d!/ d \varepsilon_{g i}^{*}=0,
$$

and

$$
d i / d \mathrm{E}_{\mathrm{gi}}^{+}=d 1 / d \mathrm{~g}_{\mathrm{gi}}^{+}=d I / d \varepsilon_{\mathrm{gi}_{i}}=0,
$$

for $g=1,2, \ldots, 6$ and $i=1,2, \ldots, N+1$, where $N=$ the nubber of sesh cells. Taking these derivatives and rearranging the equations, the following satrix for: is ottained:

$$
\left[\begin{array}{ll}
B & 0 \\
0 & \varepsilon^{+}
\end{array}\right]\left[\begin{array}{l}
n \\
n^{+}
\end{array}\right]=\left[\begin{array}{ll}
s & 0 \\
0 & s^{+}
\end{array}\right]\left[\begin{array}{l}
n \\
n^{+}
\end{array}\right]+n\left[\begin{array}{ll}
F & 0 \\
0 & F^{+}
\end{array}\right]\left[\begin{array}{l}
r^{H} \\
r^{+}
\end{array}\right]
$$

 The uninomn vectors K and n^{+}of length $36(\mathrm{~N}+1)$ are defined as follows:

$$
H=\left[Y_{g 1}, Y_{g 2}, \ldots, Y_{g N}, Y_{g N+1}\right]^{T},
$$

and

$$
n^{+}=\left[Y_{g 1}^{+}, y_{g 2}^{+}, \ldots, Y_{g N^{+}}^{+} y_{g N+1}^{+}\right\}^{\top} .
$$

Eath of the vestors in M and M^{+}are defined by

$$
y_{g i}=t \theta_{g i} \cdot J_{g i} \cdot c_{g i} J^{\top},
$$

anc

$$
\mathrm{y}_{\mathrm{gi}}^{+}=\left[\mathrm{c}_{g \mathrm{i}}^{+}, \mathrm{J}_{\mathrm{gi}}^{+}, \mathrm{c}_{\mathrm{gi}}^{+} \mathrm{J}^{\top},\right.
$$

and sortain the unknown notal coe $\ddagger f$ ficients for the flux, cyrrent, lagrange wittiplier, and the carresarding at joints. Each of the catri: eleserts in the autrices B, B^{+}, S, S^{+}, F, and F are of the integ'al farz given ${ }^{5}$

$$
u_{k, n, a}=\int_{0}^{1} u(p) d_{B}^{k}(p) / d p^{k} d_{B}^{k}(p) / d p_{p}^{k} d p
$$

where $k=0,1$, and $1=n, E=5$, with $P_{5}(p)=1$, and

$$
u(p)=\left[D_{g i}(p), E_{R j i}(p), E_{s g g^{\prime} i}(p),\left(v E_{f}(p)\right)_{g i} j^{T}\left\langle 1_{i} p+r_{i}\right)^{2},\right.
$$

The eatrix eleants are evaluatec analytically using a resursise: reiationstif derived from the atsumed cable behavier of the flux, diffusion coeffizients, and cross sestions. Th: 5 ferauidation aldons taking inte account the presible spatial dependense of paterial properties between noses.

Defining the aatrices $A=B-S$, and $A=B=S$, we have the atrix syster

$$
\left[\begin{array}{ll}
A & 0 \\
0 & A^{+}
\end{array}\right]\left[\begin{array}{l}
r_{n} \\
n^{+}
\end{array}\right]=n\left[\begin{array}{ll}
F & 0 \\
0 & F^{+}
\end{array}\right]\left[\begin{array}{l}
n \\
r^{+}
\end{array}\right]
$$

given in the sain text. The satrises A, A^{+}, F, and F^{+}are block ciagonal. These equations are of the fore

$$
\Delta x=h R X,
$$

where Q, X, and R are defined by the previous eqaation. This astrix eigenvalue problen san be soived iteratively using the Power aethod, or, after coteining an estieate, h, by ki:e'andt's aEtined in the fore

$$
: 0-h_{E} R I X=h^{\prime} R X_{0}
$$

where $h=h^{+}+h^{\prime}$. If either instance, X is found iteratively after direct inversion of G (Power aethos) gr
 will ${ }^{\text {E }}$ necessitate gelving the equations iteratively for eash group and wing Chebsyscher accel eratian si the power iterations.

AFPENETX 3
ANALYTICAL MLLTIERJJF MUSTIREETOH SOLSTIOMS
The steady state aultigroup diffusion equation for one di eensional problers cat be written as

$$
\nabla \cdot \nabla_{y} \nabla g_{g}+\sum_{g} B_{g}=\Sigma_{g^{\prime}=1}^{3} \sum_{5 g^{\prime} g}+\left(1 / k!\Sigma_{f g^{\prime} g} g_{g^{\prime}},\right.
$$

where
D $=$ Diffusion coefficient in group g,
$\varepsilon_{5}=$ Total eress section in grous g,
$\Sigma_{\text {sg'g }}=$ Sreip transfer trass settion frow group g' te group g,
$\Sigma_{f g^{\prime} g}=x_{g} \Sigma_{f g^{\prime}}$,
$\Sigma_{\text {fg }}=$ Fission cress section in grouF g,
$x_{g}=$ Fission speetrun in group 9,
yg = Average number of nectrans per fission in group g,
k = Effaztive oultiplication \{aztro.
The analytical sc!ution to the aultigroup diffusion Rquation is not easily chtaired exaen for sireis arcblens, as, for exanale, in whith the grous constants are assuast constant within each gaatiol region. in this case, for K regions, the diffusion equation takes the fork

$$
\text { v. } \nabla_{g} \nabla 0_{g n}+E_{g} \theta_{g n}=\varepsilon_{g^{\prime}=1}^{E} E_{5 g^{\prime} g n}+(1 / k) \Sigma_{f g^{\prime} g n} 10_{g^{\prime} n},
$$

for $n=1,2, \ldots, N$. Fer suth sieplified problers the docain of interest can be divided inta N regions with $N+$:

$$
\begin{array}{ll}
\int_{g!}\left(r_{1}\right) / d r=0 & \text { (Sjasetry), } \\
3_{g n}\left(r_{N+1}\right)=0 & \text { (2ers flux), } \\
g_{g n-1}\left(r_{n}\right)=\theta_{g n}\left(r_{n}\right) & \text { (FILux Eentinuity), }
\end{array}
$$

and

$$
\operatorname{D}_{g n-1} d 0_{g n!}\left(r_{n}\right) / d r=g_{g n} d \theta_{g n}\left(r_{n}\right) / d r \quad \text { (Current Ecntinuity). }
$$

The diffusion equation can be rewritteri for each region as

$$
v^{2} g_{g n}+\sum_{g^{\prime}=g}^{5} 5_{n g g^{\prime}} \varepsilon_{g^{\prime} n}=0
$$

where

$$
\left.S_{n g g^{\prime}}=E_{g^{\prime} n} \delta_{g^{\prime} g}+E_{5 g^{\prime} g^{\prime}}+(1 / k) E_{f g^{\prime} g^{\prime}}\right) / D_{g n^{\circ}}
$$

where $G_{g \prime g}$ is the Kronecker deita. Assuning a solution of the fora

$$
g_{g n}(r)=A_{g n} Y\left(m_{n} r\right),
$$

where the function Y satisfies the Helsteltz equation,

$$
\nabla^{2} \gamma-w_{n}^{2} v=0
$$

we have the eigenvalue condition

$$
\sum_{g^{\prime}=1}^{5}\left(m_{n}^{2} \delta_{g^{\prime} g}+5_{n g g^{\prime}}\right) A_{g^{\prime} r}=0
$$

for $g=1,2, \ldots, E$, and $n=1,2, \ldots, N$. This result can be written in atrix fors as

$$
S_{n} A_{n}=-w_{n}^{2} A_{n}
$$

where the scbsiript n indicates the region nurber, and the diuension of 5 is 605 . The eigenvalues are reasiliy deterained by perforaing a sisilarity transformation of S to upper Hessefiterg form, ty applying the GF. algerithn to solve for the eigenvalues and eigenvectors of the real Hesserberg astrix, and, finally, 5 ; applying a sinilarity transforeation to obtain the eigenvectors of the original atrix $\mathbf{S p}_{\text {p }}$. In eash materia'. region there are 5 eigenvalues, $-{ }^{n}$, and eigenve:tors, $A_{n g}$, which represent coupling cseificients.

The group flux if each region ' can be e:pressed as

 and? are given in iatle A3.1

TABLE A3. 1
HELMHOLTZ SJUUTIONS

Using symmetry arguments and the function identification given in Table AJ. 1 the coefficient: fin, $=1,2, \ldots, 6$, can be set to zero. Applying the outside boundary condition and the continuity of flux aniz curpent at each aaterial interface, we find the aatrix equation
$T X=0$,
where the vector $\&$ erntains all the $26(N-1)$ unknown $p_{n m}$ and $q_{n s}$, and the atrix T contains all the coesfi-
cients resulting fron applying the boundary conditions. The necessary condition for the solution ef this hoargenesus equation is that the deterkinant of the aatriz I vanish, i.e.
det $(T)=0$,
which is the criticality condition. A variety of parasetric representations for the deteraination of the critical eigenvalue can be used. For example, k-eff, critical radius for a specified compesition, critica: conposi tion for a specified radius, thichness of one or more recions, etc. In the siaplest case, given the critical dinension, a search is perforsed k to alake det (T) $=0$, or, given the k, a search is perforeed fer the dieension (${ }_{p}, \ldots, r^{\prime}+1$ ' to alake det $(T)=0$. In this instance, it is assuned that all the group esnstarts are spesified. Oñe the criticality condition is satisfied, a single additional overall normalization ($\mathrm{C}_{\mathrm{o}}(\mathrm{r})=1$ at sone point for sone group or total power) allows the coaplete numerical evaluation of the group flemes in eath region to be aade.

TABLE 1
CROSS SECTIONE
REEION EROUP D(En) $\quad E_{R} \quad v E_{f}\left(E e^{-1}\right) g_{g} \quad g^{\prime}=1 \quad g^{\prime}=2^{E} g^{\prime} g g^{(E t}=g^{-1}, \quad g^{\prime}=4$
THO GFDUP TWO REETON CYLINDEF.

COFE	1	1.13	0.0419	0.0	1.0	0.0	0.0
	2	0.16	0.06	0.0845	0.0	0.0419	0.0
REFLECTOF 1	1.13	0.0419	0.0	0.0	0.0	0.6	
	2	0.16	0.0197	0.0	0.0	0.0419	0.0

THREE GRJJP TWS REGTOR SPHERE

CORE 1	1.475	0.05329	0.8695-3	1.0	0.0	0.0	0.0
2	0.709	0.10 ?	1.49095-2	0.0	E.003E-2	0.0	0.0
:	0.233	0.10236	0.16901	0.0	0.0	8.504E-2	0.0
REFLECTOR 1	1.698	7.372E-2	0.0	0.0	0.0	0.6	0.0
2	0.58 ?	0.1526?	0.0	0.0	7.2E2E-2	0.0	0.0
3	$0.14 t$	1.916E-2	0.0	0.0	0.0	0.15166	0.0

FOUP GROUP TID GEGION SFHERE

cores	3.351	0.3654	9.94141E-3 0.577	0.0	0.0	0.0	0.0
	2.456	1.157E-2	8.41624E-3 0.362	2.963E-2	0.0	0.0	0.0
	1.870	9.2E-3	9.60885E-3 0.061	2.9E-3	6.75-3	0.0	0.0
	1.259	1.10215-2	$1.463625-30.0$	0.0	3.0E-4	3.25-3	0.0
REFLECTOR $\begin{array}{r}1 \\ 2 \\ 3 \\ 4\end{array}$	2.668	5.531E-2	4.83123E-3 0.577	0.0	0.0	0.0	0.0
	2.032	1.051E-2	0.00 .362	4.736E-2	0.0	0.0	0.0
	1.402	B. CJE-2	$0.0 \quad 0.061$	$5.128-3$	$7.35-3$	0.0	0.0
	0.976	9. $11 \mathrm{E}-3$	$0.0 \quad 0.0$	0.0	4.CE-5	0.0	0.0

TAB'E 2

TWO GROUF, TWO REGIN CYLINDEF: ANALYTIC $K=1.0019437$
relative erfor of therabl flux and current at core-refieztor interface

NUMEER DF	K	K	D0/6	De:'G	DJ/3	DS/3
MESH CELLS	C	N-C	c	$\mathrm{N}-\mathrm{C}$	C	N-C
$2+2$	1.0023148	1.0021535	3.9E-3	3.EE-3	$2.35-2$	2.85-2
$5+5$	1.0019890	1.0019464	1.15-5	2.4E-5	1.5E-3	4.1E
$10+10$	1.0019438	1.0019438	5.3E-6	1.1E-5	1.1E-4	7.2 F
$15+15$	1.0019437	1.0019437	2.7E-6	5.3E-6	2.3E-6	$2.55-4$
$20+20$	1.0019437	1.0019437	0.0	2.7E-6	7.7E-6	1.2E-4

THEEE GRCIF, TKO REEION SPHERE
AKA YTIC $\mathbb{K}=0.999879$
relative erfor of thermal flux and current at core-refleztor interface

NLYEE OF	K	K	DO/Q	DE/O	DS $/ 1$	$D J / J$
MESH CELLS	C	$N-C$	C	$N-C$	C	$N-C$

FOUP GROUF, TWO REEIOK SPHERE

ANALYTIC $K=0.9950425$
relative error of first group flux and current at core-blanket interface

NUMBER OF	K	K	$D E / Q$	$D D / E$	$D J / J$	$D J / J$
MESH CELLS	C	$N-C$	C	$N-C$	C	$N-C$

TABLE 3
COMFARISON DF NET NEUTKOK BALANEE (\% ERRDK)

NUMEER OF		FOUR EROUP	SPHERE	THFEE GTOU	SPHERE	TWO GROUF	CYLINDER
MESH CELLS	GROUP	C	N-C	C	H-C	C	N-C
$2+2$	1	--	\cdots	-1.11E-13	8.12E+0	1.82E-13	$5.445+1$
	2	--*	--	1.83E-13	3.58E-1	-6.80E-14	-7.19E-
	3	-	--	-2.41E-13	4.21E+0		
	4	--	--				
$5+5$	1	-7.03E-11	$1.29 \mathrm{E}+3$	3. $822 \mathrm{E}-13$	-3.70E-1	4.44E-13	8.565-1
	2	3.51E-13	1.97E+1	-1.80E-13	1.345-1	-7.42E-13	3.48E-2
	3	-4,67E-12	1.11E+0	1.44E-13	4.14E+0		
	4	1.81E-12	3.15E-1				
$10+10$	1	3.225-11	-2.49E+1	2.18E-12	7.89E-1	$1.76 E-12$	3.6EE-1
	2	7.13E-11	7.83E+0	2.4EE-13	8.60E-2	1.c55-12	B. $865-$
	J	$9.27 \mathrm{E}-13$	4.10E-1	-3.87E-14	1.02E+0		
	4	-2.42E-12	1. 225 -				
$15+15$	1	1.07E-10	-2.7TE+0	7.27E-12	6. DOE-1	1.39E-11	$2.75 E-1$
	2	1.64E-20	5.265+0	1.205-12	7.32E-2	6.57E-12	4.90E-2
	3	5. $955-12$	2.56E-1	-2.66E-13	5.33E-1		
	4	-7.13E-11	7.68E-2				
$20+20$	1	2.10E-80	$9.195-1$	1.195-11	4.47E-1	$2.095-11$	1.59\%-1
	2	2.26E-10	3.99E+C	1.97E-12	5. 82E-2	1.265-11	3.445-2
	3	1.57E-10	1.835-1	2.64E-12	3.435-1		
	4	-3.03E-12	5. $655-2$				

Fig 2 Relative Percentage Error

Fig. 5 Relative Percentage Error

Fig. 6 Relative Percentage Error

Fig. 7 Relative Percentage Error

Fig. 9 Relative Percentage Error

Fig. 10 Relative Percentage Error

Fig. 11 Relative Percentage Error

Fig. 12 Relative Percentage Error

Fig. 12 Relative Percentage Error

[^0]: Consultant, Applied Theoratical Physies Division, Los Alanes National Laboratory, Los Alanes, New Mexice.

