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VARIATIONAL METHODS
: IN
STEADY STATE DIFFUSION FROBLEMS

Clarence E. Lee+
Wesley C.F. Fan
Robert L. Bratton

Department of Nuclear Engineering
Texas A & M University
College Station, Texas, 77843

ABSTRACT

Classical variational technigues are used to cb-
tain accurate scluticns to the sultigroup sulti-
region one disensional stealy state neutron diffu-
sion eguation. Analytic sclutions are corstructed
fcr bencheark verification. Functiorals with cutic
trial functions and conservational lagrangian
constraints are exhitited anc ccapared with nor-
conservational functicnals with respect ¢c neutren
balance and tc relative flu: and current at inte--
faces., Eucellent agreesert of the comservaticnal
functionale using cubic trial functicne is chiained
in comparisen with anal ytic sclutions.

We investigate numerical sclutions tc the neutren diffusion preblee using classical variaticnal techni-
ques and shage functions consistent uith continuity conditions, Uzing the miltigrsup approvisation, we define
the flux as B/r) and the adjoint as O (r), each are vectors of length B, the nuater of groups. The mlliigrzun

lun diffusion eguation is given by

J0=LE-hFOs=0,
n¢ the adjoint equation is given by
MR MR A Y )
where h and nt are the eigenvalues, L and L‘ represent the diffusicy flux and ad;joint speratsrs, including

leakage, ebsorption, and scattering term contributipne, anc F and F represent the fission and adjcint fiesion
operators, respectively. We fore the functional GID ,8 defined by

ste’ 03 = o', 000 = <o,0'0%,

where the ¢{,> nctation isplies inner product integration over spatial variables and sucs over the grouws in
the aultigroup approxisation. We agsure that the flux and adjoint functiors setiséy the sare beancary conii-
tions. Taking the variation of GIO 18] with respect to 0 and 0 yields the diffusion eguatiots for 0 and O,
respectively. This foraulation of BI0 ,8] is well-known and straightforward. Duadratic-lile forns for one

group self-adjoint operators (Galerkin methods) are cbtained provided integration by parts of the laplaziar
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terps exhibit continuity when evaluated at bcundaries. Boundary conditisn constraints can be agsende? to
BIC D2, as discussed by nuserous authors.”

In develocing one dimensional nurerical scheses, we define approximate flux and adjcint functicns.
Reguiring spatial continuity of flux (adjoint) and current (adjcint) at saterial interfaces, four condition:
and four eguations apply for each region and group. The cubic trial function sclution for the nodal flux
fad;oint) and current (adjoint) coefficients at rejion boundaries which sstisfies continuity is given in
Apperdix §. Each term in the trial function involves a coefficient tires a unigue hereite polyncaial shaze
function,” Satisfying the continuify corditicns in the trial functions eliminates maring that alditional
reguirenent on the functicnal BLI0 ,01.

Minieizing BI0 ,C] with respect to the nodal values (flux, adjoint, current, and adjsint current) of
these trial functions yields a set of linear coupled eguations in the nodal values for each group. Cuti:
spatial dependence of the diffusion coefficient and cross sections is allowed, although cther integrable forms
say be used. Evaluating the pclyncaial integrals the resulting ljnear algetraic eguations can be sclved b
standard technigues for source or eigenvalue probleas. Since BIB ,C] is being pinimized the nodal scliticns
satisfy the original differential equetion only at the nodal pesitionz. The function errcr: between ncles car
be quite large. Likewise, the conservation law (the spatial integral of the original equations) is satiséied
only approximately for any finite nueber of nodes. These errore decrease with increasing nusher of nodes, but
could preclude corpetition with classical finite difference methods if field guantities were of sain interest
instead of eigenvalues, A constructive solution is obtained by appencing the funztional with conmservatic-el
lagrangian constraint teras

s'ie’,e,ct,0 = aint oy ¢ et ¢ e 0Ty,

in each cell and energ, group, with the corresponding additional ieplied rinirization with reszect tc the
langrange aultipliers, c and c . The detailed form of the conservational furctional with the trial functions
substituted is given in Appendix 2. The property h = h , requisite in diffusion and transpec-t salutions, is
also easily satisfied, Ferforming the minieization for the criticality probles with respect to the caubic trial
function ncdal values results in matrix eguations of the form

0 Al o F|n

where the vectors M and H‘ are coeposed of ncdal flux, current, ang lagrangian multipliers and their adjcints.
The matrix eleeents of A and A are integrals derived fron L and L (leakage, resoval, and szattering terss!,

and the satrix elesests of F and F arise from integrals of the fissicn teras, The corresperding Rayleigh-Rit:
detereination of the eigenvalue h is given by

b= cn,am ¢ AT e ¢ o Pt

Nith all these solution properties, it is still possible to generate "negative® fluzes for sufficiently
coarse nodal spacings. An autosatic node generation scheme can be appliec to place the nodes so that a cuti:
trial function will accurately approxisate the solution within each group, and yield positive fluxes, However,
for this study, we used only equally spaced nodes, a standard practice found in literature comparisone. All cf
the reported sclutions have positive fluxes everywhere inside the uter bcundaries.

Ne test the accuracy of this methodology by direct coeparison to precisely evaluated analytical solu-
tions. The analytical solution technigue is susmarized in Appendix 3. Both the analytical and variatioral
solutions are evaluated in the sane cosputer program. This procedure allows for direct cocparison of the
solutions between the variation node placesent at probles execution time.

Three probless, twc thernag and cpe fast syszei, are conpared with the analytical sultiregicn resulte for
varying nueber of nodes in twc,” three , and four’’ groups. The detailed spatial and eigervalue errors betwee”
the analytical and nuserical solutions for flux and adjoint are sussarized below.




The twa group two region problee is a simplistic hneogcnecus.r:'s eylindrical core of 1S cm radics
surrounded by an additional 15 ce water reflector, The ratio of U™ atoes to eolecules of water is £.002, Tre
cross sections in Table ! are taken from Lamarsh.” The flux and adjzint sclutions for 10 ncdes (“S+5%) a-¢

displayed in Fig. 1. The relative percentage error cf the variational sclution is coapared to the anal tical
solution in Figs. 2 and 3 for the flux and adjcint, respectivel;.

The three group twc region sphere is a 2,596% enriched I"¥"-U0, water soderated systec with an H.0/Fiel
voluse ratio of 1,844, The 26 ca radiug core is surrounded by a 26 ©r reflector, The cross secticns given in
Table 1 are taken fors Hirata, et. al.” The flux and adjpint solutions for 10 nodes are displayed in Fig. 4.
The relative percentage error of the variationa! solution is cospared to the analytical sclution in Figs. 5-7
for the flux and adjoint. 37

The four group two region sphere is & mixed oxide fact core cosposed of U™ "~Th with a Tk blanket, The ¢
ce core radius is surrounded by a .50 ca Th blanket. The cross sections are talen froa the report of Dhia, et.
al.” an¢ Kobayashi and Nishihara. The flux and adjoint solutions for 20 nodes (10 + 10! are displayed in Fig,
B. The relative percentage error of the variational soclution is cospared te the analytical sclutier in Figs,
£-12.

From the flux and adjoint solutions, the variational method solution exhibits alscst nejligitle
differences fron the analytical solutions (the analytical sclutions are plctied with & ceshed line anc
differences are discernable in Fig. #). In the relative percentage errcr graphs we ncte that the errcrs
betweer the nodes are typically of the order of & to 100 tines the values at the nodes. The errors cof the
continuaue solutions imsediately adjacent to the material interfaces are typically 10 to 100 times the acja-
cent node values. These errors decrease with mesh refireszent, but ever with orly 10 nodes, the errors res:zir
below 1Z. In the refiector the relative error increases towards the free surface, but is significant only at
the 10 node approximation. At the 20 node approxieation the errors are below 1% throughout the reflezicr,
Since the flux has decreased by several orders of magnitude rear the outside becundary, this error does nct
contribute significantly to the absclute values near the free surface. e

All the results repcrted graphically were cttained with the censerving functicnal 6 (0 B¢ ,cl. If,
instead, we use the functional BID,D) = ¢P,DC: in mitigroup appro:inmation, a Balerkin sethad, nuserous kntwy
literature results can be reproduced; however, the sethod is non-conservative, ant one dess nct chtain h =k,
a desirable basic reguiresent, Similarly, if we use tq: zaria;inna! functional BID ,21, the mathod is alss
non-conservative. However, if we use the functional 60 ,0,c ,c], the scluticns are conservative, h = h , and
excellent convergence to the analytical eigenvalues, and the flux and ad;gin; solytions is cbtained.

In Table 2 we corpare the k-eff (K) for the conservation (C, using 6718 ,3,c ,c)) and non-canservaticn
(N-C, using 6[B ,C1) sclution to the analytic sclution for the three problems ising varioue 2qual spaced eesh
tells in the core and reflector, The relative error between the numerical and analytical sciutions of the 4lu.
{D0/8) and current (DJ/J) at the core-reflector interfaze are also caompared.

.'Me ohserve that the eigenvalues converge rapidly to the exact analytical results as the sesh is refinzl,
Typically, the k-eff convergence is more rapid than that of the fluxes and currerts. The conservational con-
straint icproves the current accuracy at the expense of the flux accuracy for coarse sesh calculations. A the
sesh is refined the analytical solution result is approached scre rapidly in these problees using the conser-
vational constraint,

In Table 3 we compare the percentage error of neutrcn balance in each energy group as the sesh is
refined. Neutron balance is essentially "esact® (to sachine significance) using the ccnservaticnal censtraint,
but significant balance errors (4-120%) occur for the coarse mesh non-conservational results. The noted
behavior of the coarse mesh non-conservation results could possibly lead to incorrect prefictions of conver-
sicn or breeding ratios unless a new functional were specifically constructed for that purpose, or the conser-
vational constraint were added.

The application of the lagrangian conservation constraint in coarse sesh calculaticns results in a
relative degradation of the nodal flux accuracy with an ieproved nodal current azcuracy plus nestren balance.
tespared tc the non-conservation results. As the sesh is refined, the conservation constraint nodal flus and
current solutions exhibit rapid convergence to the analytical solution,

In conclusicn, we have eramined a conservational variational method and ccepared it with analytic sclu-
tions tc sisple problems. When used with cubic heraite polyroeial trial furctions, derived frow flux ang
current cortinuity, very accurate solutions 4o the multigroup sultiregion nestren diffusicn proter are ob-
tained, Neutron conservation is adfed to the functicnal using lagrangian constraints. More accurate flu:

(% ]




distributions are obtaine¢ with this constraint.
- Since the group constants can be spatially dependent between rodes instead of only constant within eazh
material region, the total number of cells nesded to represent the material properties anc the fluxe: |
lapsrexinated by cubics) is considerably reduced.

The rajor differences between the variational and Galerkin approach is in the usage of the aZjcint
weighting function instead of the approximate function itself. Although this variational method doubles the
total nusber of equations to be solved, the resulting flux and adjoint solutions are readily ap;lied 4or
perturbation and/or optisization analysis in design. Neutron conservation is a necessary constraint on the
neutron diffusion equation. Even though sose approxisations exhibit this property with fine mesh spacing, i¢
neutron conservation is not satisfied for all mesh spacings, the resultant soluticns can exhibit la-3e errcrs

coapare? to aralylic soluticns, and preclude the determination of leakage, removal, scattering., and fission
contributicns to the sclution. .
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APPENDIX 1§
SUMMARY OF TRIAL FUNCTIONS

A self-consistent choice of trial functions depends upon the procperties of the diffusion eguatisn and the
ieposed boundary cenditions for the flux (adjoint) and current (adjoint current) at material interface:.
L Making the standard continuity argusent at saterial interfaces, one finds the cubic herzite solynzsial
shape functions obtaine? by Hemnart.”

Let w .(r) be a piecewise polynoaial for group g in mesh cell i defined at r with the continuity
properties

¢
'gi"i) =0 ., 'gi(riﬂ’ = .giﬂ’

1]

+ + - -
.Dgi(rl’ duqi(ri)ldr B Jgi’ _Dgi(ri+1) du'i(ri+llldr = Jgi+1'
Here the superscripts on the coordinate r indicate evaluation to the left(-) or right(+) of the indicates
nodal boundary. The adjoint shape functions are constructed sigpilarily using the adicint flux and current, but
with different interpclation coefficients.

Introducing the disensioniess variable p, in terss of the cell width 1,

p = (r-rillli, li = r“1 =T

we use the above four continuity conditions tc sclve the assumed cubic trial function fore,

'gi(p’ za+bpecp 4 dpx,

for the coefficients a,b,c, and d. The resulting trial function 'g‘ on the interval [0,!) takes the fors

4

w.ipb= B P W
i FH

P 5 19}
: p) +80 P, (p) li Jgi P‘(p)lbgi(ri ) ¢ li J P, {pi/D

2P i By giet 300 0Ty

The hersite polynozial shape functions, Fh(p), 1=n=4, are given by
Pl(nl = (1 +2p) (1-p)2, P.lp) = (3 - 2p) pz,

L]
P3(pl ={1-p)p°, P‘(p) zp (l-p}z,
T
and satisfy the cardinality relations.”
Thus, the particular shage functicns are derived directly fros the :ontipuitv cenditions, Using the shane
function properties the continuity conditions are exactly satisfied or the i ' boundary,

hi-1 (ri ) du

+
°i_lll)/dp s nbi(ri ) dusi(O)ldc.

CIE UM W

APPENTIX 2 bk
STRUCTURE OF THE FUNCTICNAL 67(8 ,2,c ,cl

The ratrix equations to be solved for the criticality probles can be easily derived frce the variational
forsulation. We use the corservational functional

!

6'a%,8,c",c1 = 610%, 01 + ¢c*,000 + ¢ 00"

and substitute the trial functions w i(r) and l’ .Ir) for the flux and adjcint, respectively. integrating the
leakage terss by parts, we obtain the' functional




e Bt e el
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L z'sg,q",#g of By 00 0w ) 10010
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R o of NEIBN o o 0 @) (Lpor ) gp)
3 1 ¥
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t By tum M d T Yt Y of B Vi NP

E 1 + a
li o= 0 Oj - ll(p) v g,ilp) ui’"i) dp

1 . .
y M of T BRI X w0 et e,

where a = 0, 1, and 2 for slab, cylindrical, and spherical geoeetry, respectively. We have isposed the
candition k = k (h = §/k) at this stage. The non-conservational forsms and’/or Balerxin foras can be cttained
by setting
+ +
/
‘qi = 6 =0, and/or w =W,
The functional has undeterained coefficients
e.,0 Vg 4 and ¢
g gt gt Vg’ i g’
The shape functions Pn(p), diffusion coefficients, Dgi(p” cross sections,

tﬁ-i p), tsg'gi (p!y v!‘ (p) g’

and fission spectrue, X ., are assused knowr.
Mirimization of tﬁe functional with respect to the ncdal values of the unknown ccefficients regiires
that "
QR . =d10) . =dqllkc . =0,
gi gi gi




anc ™ "
/& o =41/&) o = llldcoi'- 0,

for g=1,2,...,Candi = 1,2,...,“01,'nherl N = the nusber of msesh cells. Taking these derivatives and
rearranging the equations, the following matrix fors is obtainec:

= + k

where B, B’, 5 S’, F, and F* are each tridiagonal block matrices containing JMExING suboatrices, eazn 3.3,
The unknown vectors M and M pf length 36(N+1) are defined as follows:

T

LR (AR 1

g N get
and

@ T

+ + +

Each of the vectors in M and H* are defined by

Tt X R T A
Q 2 g
ant
+ + + + T
Y % = [ gi’d qi’c gi] ’

ng cartain the unknown nodal coedficients for the flux, cyrrent, lagrange myltiplier, and t"2 carrezzonding
ac;oints, Each of the ratri: elesents in the smatrices B, B, 5, S, F, and F are of the integ-al 4orz given
by

1 2 k k k "
bona® of vl EE I & (e’ o

where k = 0,1, and 1 ¢ n,e 2 §, with Ps(pl = |, and

T a

ulp) = [bgi(p), Eﬂgi (), Esg’gi {g), (vE‘ ‘F”gi] (liporil -
The eatrix elenents are evaluated analytically using a recursion relaticnship derived from the assumsc
cubic behavicr of the flux, diffusion coefficients, and cross sections, This forzulaticn allows taking intc

account the prszible epatial degerdence of ’aterill pgoperties between nodes.
Defining the matrices A=B -5, and A =B - §, we have the matrix syster

r
I A o £ |8 n-‘
\ =h
Y B o ¢f|r)
given in the sain te:t. The matrices 4, A’, F, and ¢ are block ciagonal. These equationz are of the fore

OX = h RY,

where O, X, and R are defired by the previous eguation. This matrix eigenvalue problem can be sdlved
iteratively using the Power method, or, after cbtaining an estisate, h‘, by Kielandt’s methcd in the forc




f- h‘ RIX = h* RX,

wheegh = h +h', In gither instance, X is found iteratively after direct inversion of G (Pomer seitod! o

{0-h_ R} lﬂ?z!andt’s method). As the probles size increazes, eventually corputer seacry storage reguiresents

will necessitate ;civiag the eguations iteratively for eazh group and using Chebsyschey acceleratizn of the
" power iterations.

AFPENDIX 3
ANALYTICAL MULTIBROUF MULTIREEION SOLUTIONS
The steady state aultigroup diffusion eguation for one cisensional problers can be written as

V.0 VD + 3 WKE 10,
d VL By f5'g 5"

]

where i
Dg = Ditfusion coefficient in group g,
t; = Tptal cross section in grous g,
,. = Broop transfer cross section
S§ ¢ Felas :
froe group g’ to group gy
L. =1 &K .
§ G
- = Fiesion cress section in group g,
Y
Xg = Fission spectrum in group g,
vg = fverage nunber of nectrons per fission in grovp g,
and
k = Effective sultiplication factar.

The analytical sclution to the eultigroup diffusion equation is not easily cbiaired exzect for sincle
preblems, as, for e:amle, in which the groun constants are assumed constant within pach spatial regize, In
this case, for N regions, the ¢iffusion equation takes the fore

v.0v0 +20 =28 ®m  cumr, 30, ,

§ 9 g g0 g'=l sg'gn fg’gn” §'n

for n = 1,2,...,N. For such sigplidied problecs the dorain of interest can be divided ints N regions widh K+!
boundaries. The innermost coordinate is rl, and the ogutside boundary is 'H+1‘ The 25N boundary conditizns are

”;1"1”"’ =0 (S;anetry),
b
8°N(rﬂ*x) =0 {Zers flux},
. P T
a;n-l(rn) = Ucn(rﬂ) {Flux continuityd,

ang

ngn-! cagq;(rn)lnr . Dg

The diffusion equation can be rewritter for each region as

Yo +F
B *Tgrer Sngy Un

‘ dﬂgatrn)ldr {Current continuityl.

0



where

§ ,=®,d,6 +E +UWE D .
59'¢

ngs’ g'n 9'g fg'g on

where ‘B,! is the Kronecker delta. Assuming a solution of the fors

lin(r) = “gn Ylunr),
where the function Y satisfies the Helehcltz equation,
""Y-uz Y= 0
n ]
we have the eigenvalue condition

5 2
( 5
3 “nﬂw’

g'=t "

DR, =0
ngg' g'r

far g = 1,2,.009 B, and n = 1,2,,.., N. This result can be written in satrix fors as
2
%%'wn%

where the subscript n indicates the region nueber, and the dimension of S is B:5. The eigenvalues are readily
ceterzined by perforaing a sieilarity transforsation of S_ to upper Hesserterg fore, by applying the COF
algsrithn to solve for the eigenvalues and eigenvectors of the real HMesserberg satrix, anc, finally, by
applying a similarity transforeation 4o obtain the eigenvectors of the original eatrix sr. In each material
region there are & eigenvalues, -w , and eigenvectors, A , which represent coupling coefficients,

The graup flux in each re;icnnEan be e:pressed as A

uqn(') = tFl’l Aneg Ipn. Y(un.r) + %a ;(nn.r)l
for 0 = 1,2,...,6 and n = 1,2,...,N. The 26N coefficients, p _ and g__, can be detergined by esploying the 28
bouncary conditions. The functions Yiwr) and Ilwr) satisfy the Helerdlts esaation fcr each w. I we let 2 = 0
1, ant 2 for (infinite syseetric) slab, (infinite symeetric) cylinder, and (syecetric) sphere, the functices Y
and I are given in Tatle A.1

TABLE A3.1
MELMHOLYZ SOLUTIONS
a Yiwr) 2lur)
0 cosh lwr) sinh (wr!
(]
13 Io.lr) Ko(ur!
2 coshlwr)/r sinh(ur)/r

g1 and K are the ecdified Bessel
funztions aof the first and secand kind.

Using sysmetry argusents and the function identification given in Table A3.1 the coefficient ¢, ,
#=1,2,...,6, can be set to zero. Applying the outside boundary condition anc the continuity of flux'ane
current at each saterial interface, we find the matrix eguation

TXx=0,

where the vector X contains all the 2G(N-1) unknown pn' and qn‘, and the satrix T contains all the coeffi-




ctients resulting from applying the boundary conditicns. The necessary cordition for the solution cf this
hozogeresus equation is that the deterzinant of the matrix T vanish, i.e.

det (T) =0,

which is the criticality condition. R variety of parasetric representations for the detersination cof the
critical eigenvalue can be used. For exarple, k-eff, critical radius for & specified compcsition, critical
coeposi tion for a specified radius, thickness of one or more regions, etc. In the simplest cace, given the
critical dinension, a search is perforsac k to sake det(T)=0, or, given the k, a search is perforeed fc~ the
digension (r TTITL ) to make det(T)=0, In this instance, it is assused that all the group constants are
specified. Once the :}iti:ality condition is satisfied, a single additional overall normalization ( Q_(ri =
at scoe point for some group or total power) allows the complete nuserical evalustion of the group flEies in
esch region to be made.

TABLE 1
CROSS SECTIONS
REEIN GROP Diea) E VE‘(cl-’) X E. i h
TH0 GROUP THO REGION CYLINDER
CRE 1 L.I3 0.0419 0.0 1.0 0.0 0.0
2 0.6 006  0.0845 0.0 0.0010 0.0
REFLECTOR 1 1.3 0.0819 0.0 0.0 0.0 0.0
2 016 0.0197 0.0 0.0 0.0H9 0.0
THREE GRIUP TW3 REGION SPHERE
CFE 1 LATS G.0T29  O0.8ESE-3 1.0 0.0 0.0 0.0
2 0709 0,109  1.4908E-2 0.0 SO00E2 0.0 0.0
T 0.2 0.1023  0.16%01 0.0 0.0 8.E04E-2 0.0
REFLECTOR 1 1,898 T.37%-2 0.0 0.0 0.0 0.0 0.0
2 0.5% 0.1582 0.0 0.0 722 0.0 0.0
T 0.4 1.914E-2 0.0 0.0 0.0 0.15166 0.0
FOUR GROUP TWD FEGION SFHERE
CORE 1 3351 0.365%  9.914E-3 0,577 0.0 0.0 0.0 0.¢
5 2.8%  LISTE-D  B.AISTME-3 0.362 %32 0.0 0.0 0.0
T B0 9.2E-3  Q.408B3E-2 0.0  2.9E-3  &JE-3 0.0 0.0
b L2 LI0ME-2 1.4662E-3 0.0 0.0 TOE-A LET 0.0
REFLECTOR 1 2.668 5.531E-2 A.B3123E-30.577 0.0 0.0 0.0 0.0
2 2.0 1.0SE-2 0.0 0.32  ATME-2 0.0 0.0 0.0
T 1402 B.EE-2 0.0 0.081  SAET  LEI 0.0 0.0
0.9 SUES 0.0 0.0 0.0 LOES 0.0 0.0
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TRELE 2

TR0 GROUF, TWO REGICN CYLINDER
ANALYTIC K = 1,0019437
relative error of therssl flux and current at core-reflector interface

NUMBER OF K K pa/e et DA N
MESH CELLS c N-C c N C N-C

2+2 1.0023148  1.0021535 3.9E-3 3.SE-3 2.3E-2 2.BE-2
S8 1.00194%0  1.0019464 1.1E-3 2.4E-§ 1.5E-3 4.1E-3
10 + 10 1.0019438  1.001%438 5.3E-6 1.1E-5 (.1E-4 7.26-4
15415 1.0019437  1.0019437 2.7E-6 S5.3E-6 2.J%-6 I.5E~4
20 +20  1.0019437 1.0019477 0.0 2.TE-6 T.TE-6 1.1E-4

THREE BRCUF, TWQ REEION SPHERE
ANALYTIC K = 0.99°879
relative error of thersal flux and current at core-reflector interface

NUMEER OF K K pa’s oe/d WA DA
MESH CELLS c N-C C N-C C N-C

2+2 1.0074584  1.0028754 4,26-2 2.1E-2 4.0E-1 4.BE-!
S+8§ 1.0000816 1.0000371 7.1E-4 S.4E-4 S.3E-2 1.0~
10 + 10 0.9999904  0.99998°%4 §,JE-4 3.3E-4 S.2E-3 2.2E-2
15415 0.9997882 0.9999881 2.9E-3 9.9E-T (.IE-3 T.E-D
20420 0,99996B0 0.9995280 &.7E-7 3.0E-S 3.1E-4 3.7E-3

FOUR GROUF, THO REGION SPHERE
ANALYTIC K = 0,9950425
relative error of first group flux and current at core-bianket interface

NUMBER OF K K pe/e  pe'e DI/ DA
MESH CELLS C N-C c N-C c N-C

5¢5 0.9950455 0.9950428 .4E-3 1.5E-3 2.%E-3 1.3E-2
10 4+ 10 0.9950427 0,9950425 1.0E-4 1.4E-4 2,1E~4 2.%-3
15415 0.9950425 0,9950425 2.0E-5 3.0E-5 4.4E-5 7.7E-4
20 +20 0.9950425 0.9950425 6.6E-6 1.1E-5 1.4E-5 J.3E-4

11




NUMBER

OF

NESH CELLS

242

5¢§

10 + 10

15415 .

20 ¢ 20

BROUP

o Ld Py e ., A Ny - F O N

» ol Ny -

., td Py e

FOUR GROUP SPHERE
c N-C

BER
48

=7.0%E-11 1. 29E+3
3.S1E-13  1.97E+!
=4.67E-12 1.11E+0
1.B1E-12 3.15E-1

3.22E-11 -2.49E+)
7.138-11 7.B3E+0
9.276-13 4.10E-1
=2.428-12 1.228-1
1.07E-10 -2.7TE+0
1.68E-10 3,26E+0
S.PE-12 2.56E-1
<7.13E-11 7,68E-2

2.10E-10
3- 265-10
1.57E-10
-3,03-12

9.19E-1
3.99E40
1.88E-1

s. 655'2

12

TRABLE 3
COMFARISON OF NET NEUTROK BALANCE (X ERROR)

THREE GROUP SPHERE  TWC GROLF CYLINDER

C

=1.11E-13
1.83E-13
<2.41E-13

3.82E-13
=1, BOE'I!
1.44E-13

2,1BE-12
2.4BE-13
-3.87E-14

1.276-12
1.20E-12
~2.66E-13

§:195-11
§.YiE=12
:o 645'1:

N-C =
B%H0  1.B2E-13
3.98E-1 -4.BOE-14
4.2IE9
=3.70E-1 AL Q4E-13
1,J4E-1 -7.42E-13
5ED

7l B?E-l ll?bE’ 2

B.408-2  1.05E-12
1.02E+0

6.9%E-1  1.3BE-11
7.32%8-2  &.5TE-12
33381
4.476-1  2.0%E-11
S.B%-2  1.2eE-11
3. 4351

NC

.84+
-7.19E-1

8.34E-1 .
3.4BE-2

:o bgg‘l
B.BsE-2

Sieet=i
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