11SE SPECIAL COPY23 MASTER TECHNICAL DESCRIPTION OF A SODIUM-COMPONENT TEST INSTALLATION NAA-SR-5993 LEGAL NOTICE This report was proper rovides access to, any information m, or his employment with such (ATOMICS INTERNATIONAL A DIVISION OF NORTH AMERICAN AVIATION, INC. P.O. Box 309 Canoga Park, California SROO Celiz.

CONTRACT: <u>AT(11-1)-GEN-8</u> ISSUED: JANUARY 4, 1961

800 001

[;

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.

CONTENTS

6

1

1. T

U

U

ç

.

Page

Ι.	Introduction	1
11.	Description of Installation	2
	A. General Description	2
	B. Main Piping Systems	34
	C. Auxiliary Systems	36
III.	System Operation	10
	A. Primary and Secondary Sodium Systems	10
	B. Steam System	1
	C. Water Treatment System	12
	D. Control System	13
IV.	System Objectives	15
	A. General System Parameters	15
	B. Transient Conditions	15
v.	Safety Aspects	18
	A. General Features	18
e e e E e e e	B. Steam-Generator Emergency Vent System	18
	Appendix A	50
	Appendix B)4

FIGURES

		- 0
	Burro Flats	
2.	Site Plot Plan (303-356-XC2)	5
3.	General Arrangement, Plan; Part 1 (7593-44617)	7
4.	General Arrangement, Plan; Part 2 (7593-44616)	9
5.	General Arrangement, Section A-A (7593-446111)	11
6.	General Arrangement, Section B-B (7593-44619)	13
7,	General Arrangement, Elevation C-C (7593-44618)	15
8.	Heat Balance Diagram, 100% Load (7593-44612)	17
9.	Primary Control Diagram (7593-44613)	19
10.	Single-Line Electrical Diagram (7593-44615)	21
11.	Control-Room Floor Plan, Section and Elevation (303-356-XA1)	23
12.	Control-Room Air-Conditioning Diagram (303-356-XM3)	25
13.	Control-Room Electrical Diagram (303-356-X6)	27
	Water and Gas Availability (303-356-XP1)	
15.	Electricity Availability (303-356-X5)	31
16.	Design and Construction Schedule (793-44611)	95

Page

13

-

- []

5

I. INTRODUCTION

This report describes a Sodium-Component Test Installation (SCTI) with capabilities of providing test information similar to those of the test installation described in APDA-134, "Sodium Components Test Facility."

The installation is designed primarily for operational testing of sodiumheated steam generators and intermediate heat exchangers suitable as prototype components for large, sodium-cooled power plants. Secondly, the installation is designed to permit testing of other types of important sodium components.

The site described for this installation is located at the Nuclear Field Test Laboratory of Atomics International, a Division of North American Aviation, Inc., where supporting facilities and a substantial portion of suitable construction already exists.

The component test installation described consists of a 35-Mwt gas-fired sodium heat source, a main primary-sodium system, a main secondarysodium system, a water-steam cycle system, and a cooling tower for heat rejection to air.

The design and layout indicated in this report are based on use of existing components and structures where possible and where economically feasible.

The following Appendices may be found at the end of this report:

- A. Material Lists
- B. Schedules

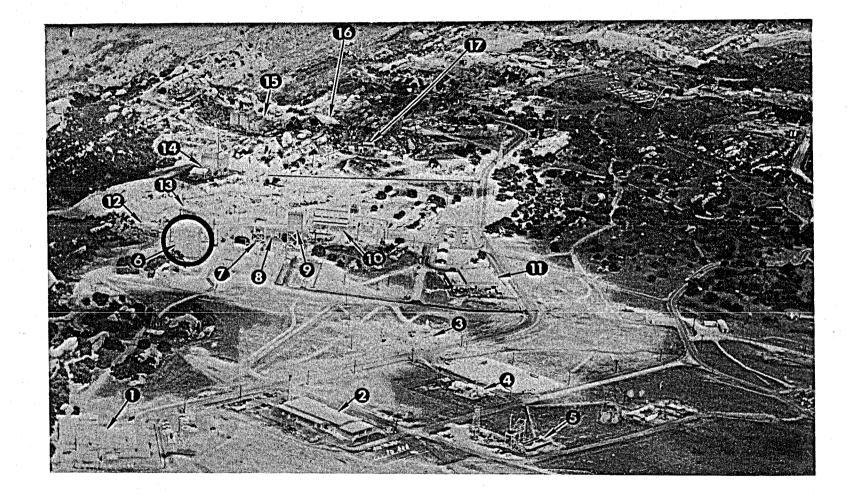
II. DESCRIPTION OF INSTALLATION

A. GENERAL DESCRIPTION

800 005

Location for the installation described in this proposal is the Nuclear Field Test Laboratory of Atomics International, located in the Santa Susana mountains (Figure 1). As designed, the complex fully utilizes the HNPF Fuel Handling Test installation, resulting in a minimum of site preparation, cell construction, and additional work area. A graded and paved area available at this installation can accommodate the entire operation except the control room. The plot plan is shown in Figure 2.

L


Ľ

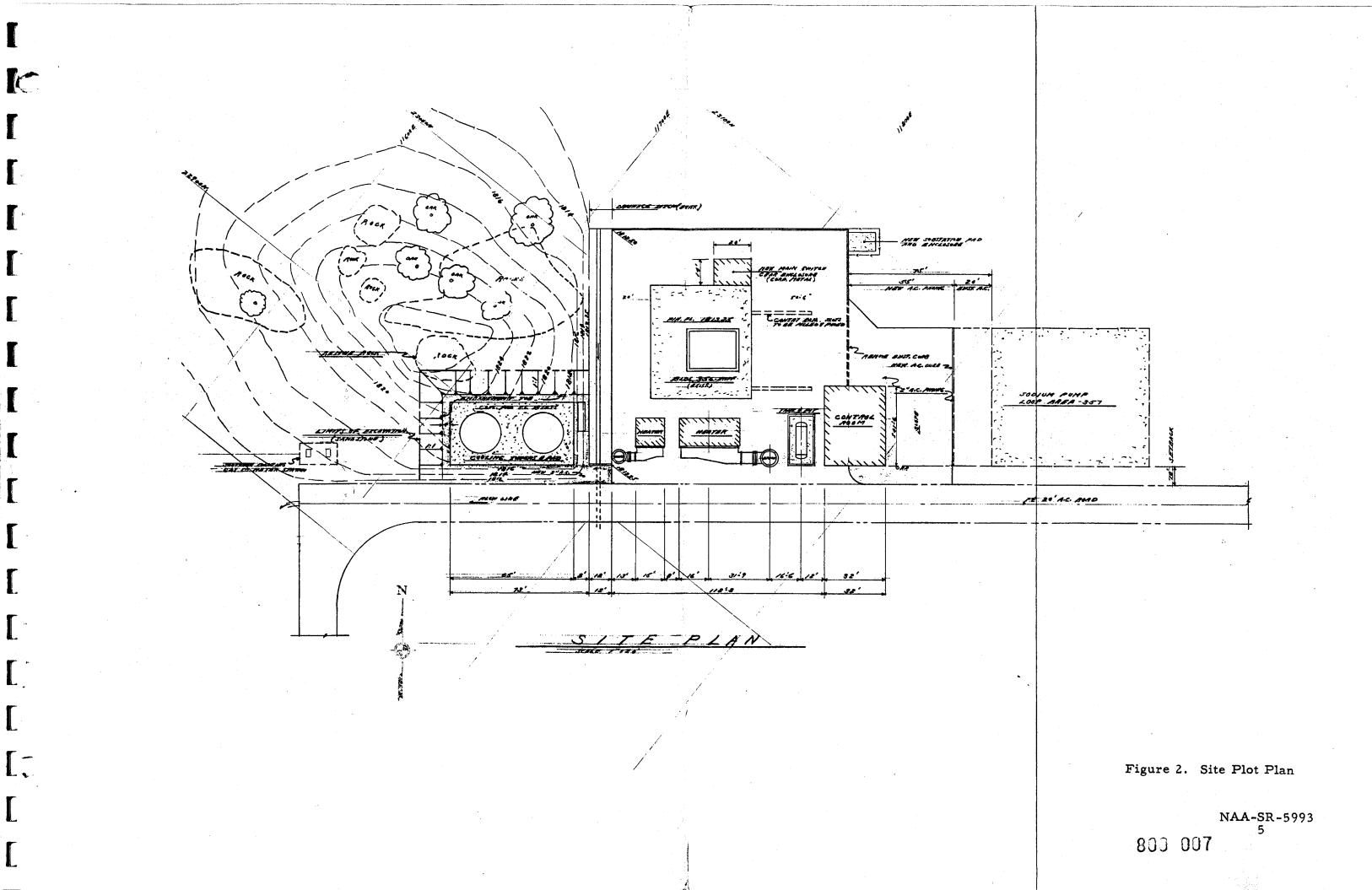
The design for a Sodium-Components Test Installation, capable of testing heat exchangers and steam generators under the conditions anticipated for advanced-sodium-reactor systems, is shown in Figures 3 through 15. The existing HNPF fuel-handling test complex includes a large, steel frame, corrugatedmetal-sided structure. This installation is 70 ft high, 60 ft square, and open on one side. Inside the structure a reinforced concrete pit 20 by 25 ft extends approximately 50 ft below grade. This pit is used as the steam-generator test cell. It is presently equipped with movable staging to facilitate test and installation work associated with test equipment. Depth of the pit is such that preheater and evaporator portions of the test steam generator may be contained, thus providing maximum blast protection in event of a major heat exchanger failure.

The installation already contains a bridge crane of 20-ton capacity capable of handling all equipment for the new installation except the test heat exchangers. Available mobile crane service will be utilized for installation of the latter.

Equipment to be located within this installation: intermediate heat exchanger, steam generator, sodium piping, both sodium pumps, and a portion of the steam piping. Feedwater heaters, feedwater pump, feedwater storage tank, feedwatertreatment auxiliaries, and startup steam generator are located on a pad on the north side of the existing structure. The sodium heater is located on the south side between the existing structure and the existing roadway. The cooling tower and associated equipment are located in line with the heater and the installation, on the south side of the building.

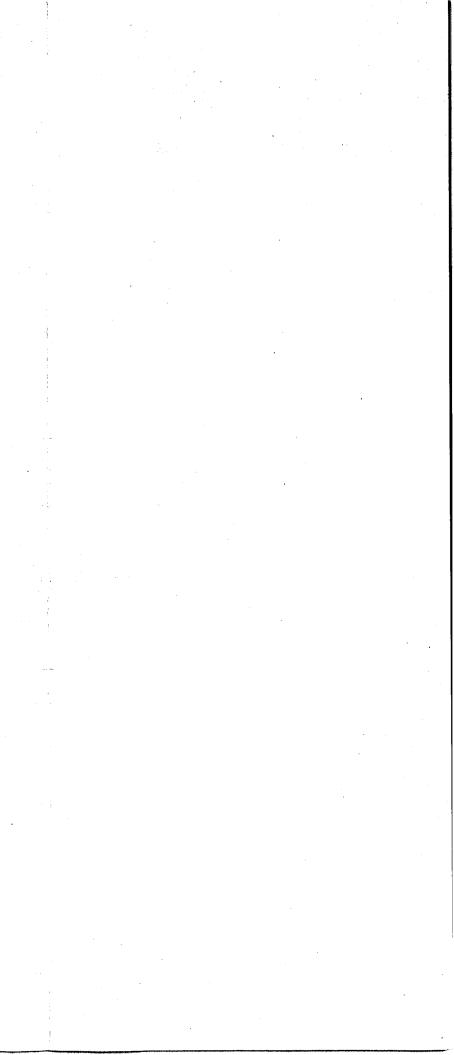
A 30- by 40-ft control room containing all instrumentation and operating controls is located away from all test apparatus (Figure 2).

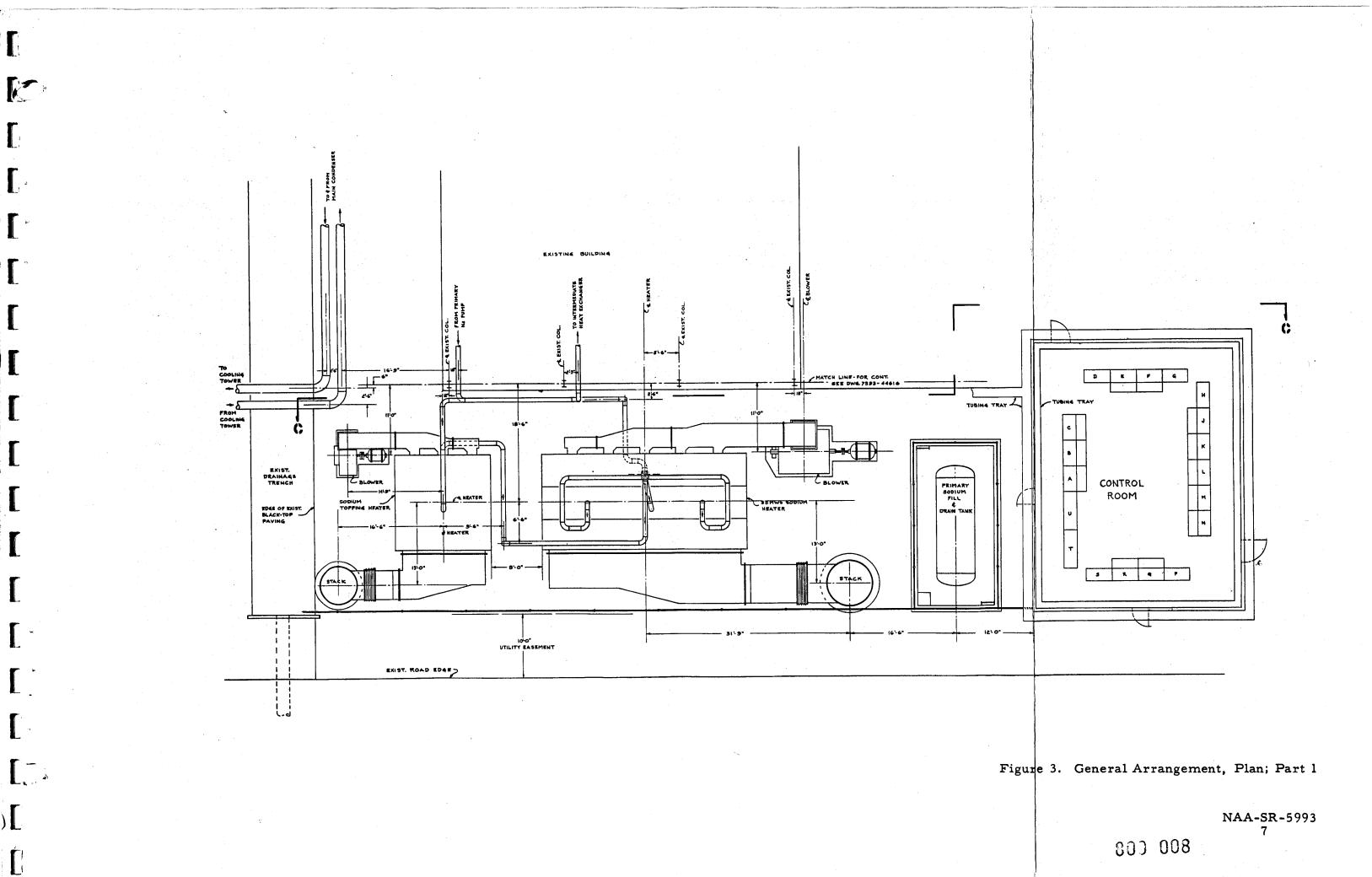
- 1. Critical Experiment Facility
- 2. Component Development Hot Cell
- 3. Sodium Instrumentation Tower and Reactor Kinetics Control Building
- 4. Experimental Development Building
- 5. Mechanical Component Development Building
- 6. HNPF Fuel Handling Test Facility
- 7. Large Component Test Loop and Tower
- 8. Sodium Laboratory

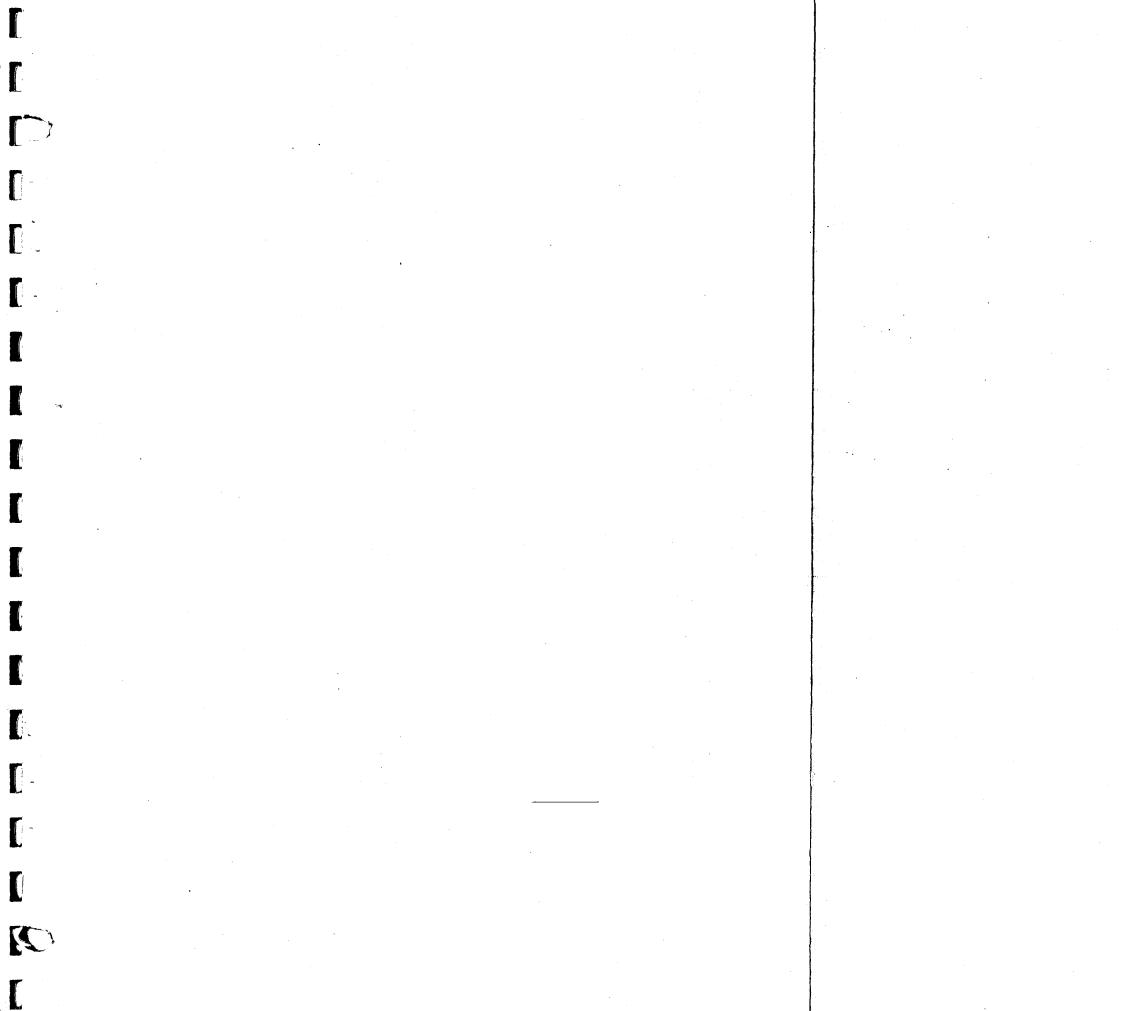

NAA-SR-5993 3

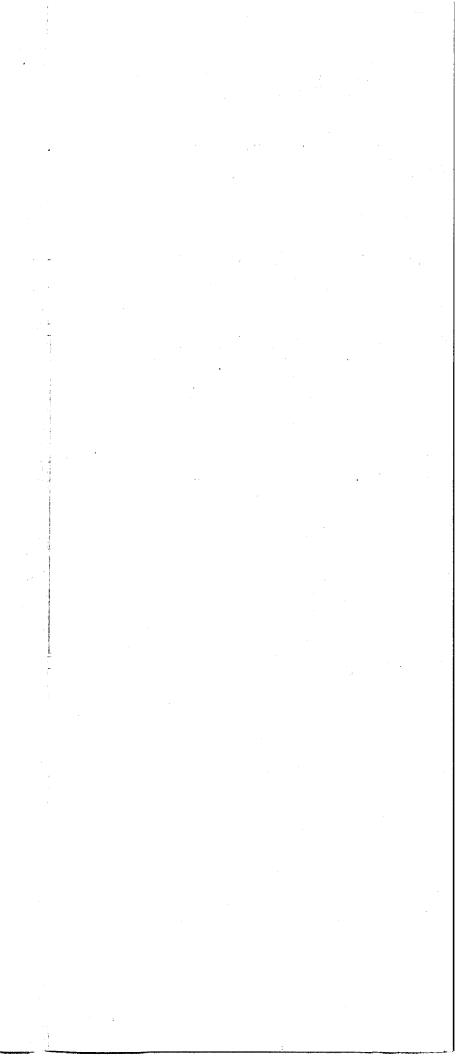
300 603

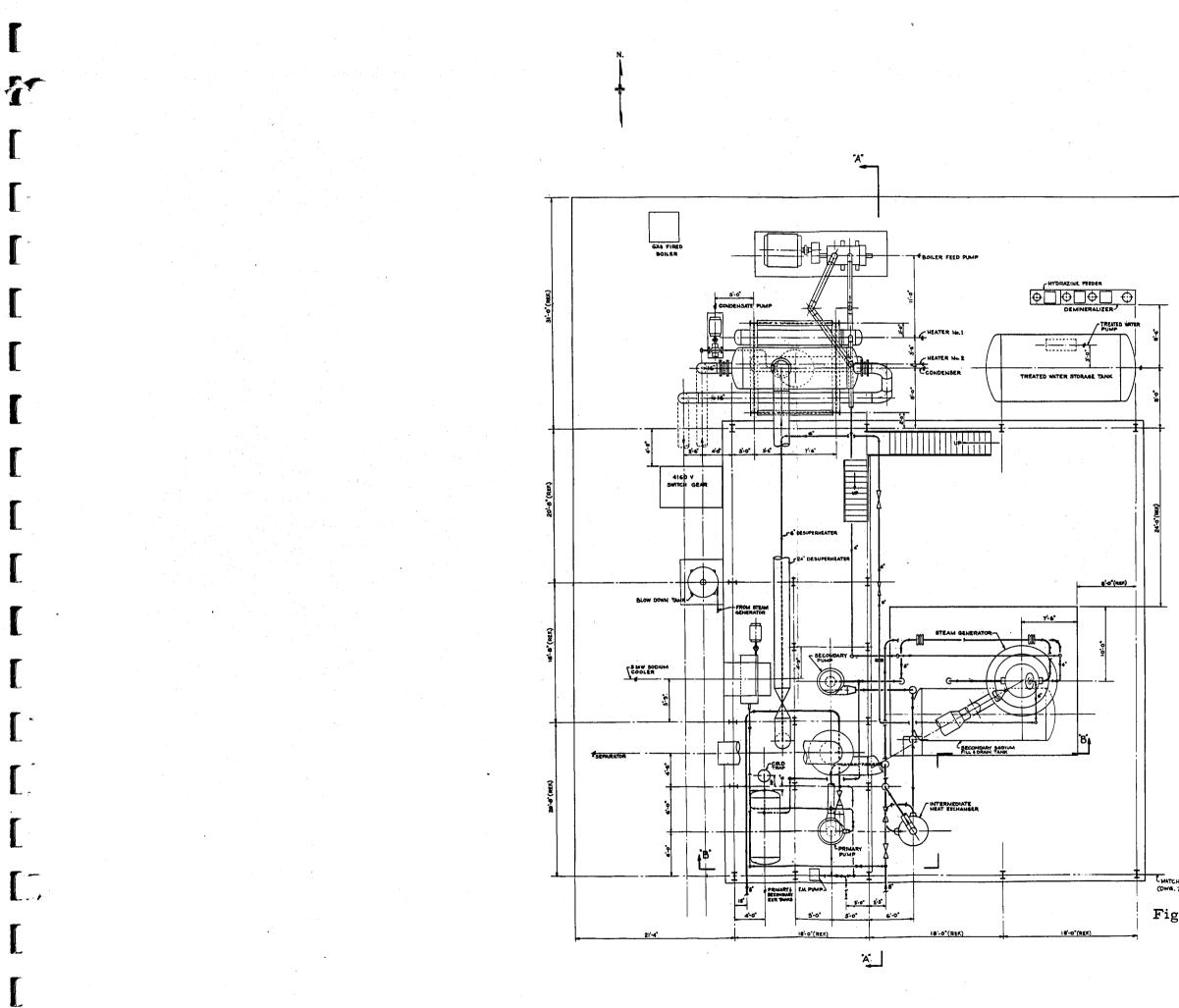
- 9. Control Element Test Structure
- 10. Organic Laboratory
- 11. Warehouse and Support
- 12. SNAP 2 Experimental Reactor Test Installation
- 13. SNAP 2 Experimental Laboratory
- 14. Radioactive Waste Storage Facility
- 15. Sodium Reactor Experiment (SRE)
- 16. Site Service Building
- 17. Experimental Neutron Physics Reactor

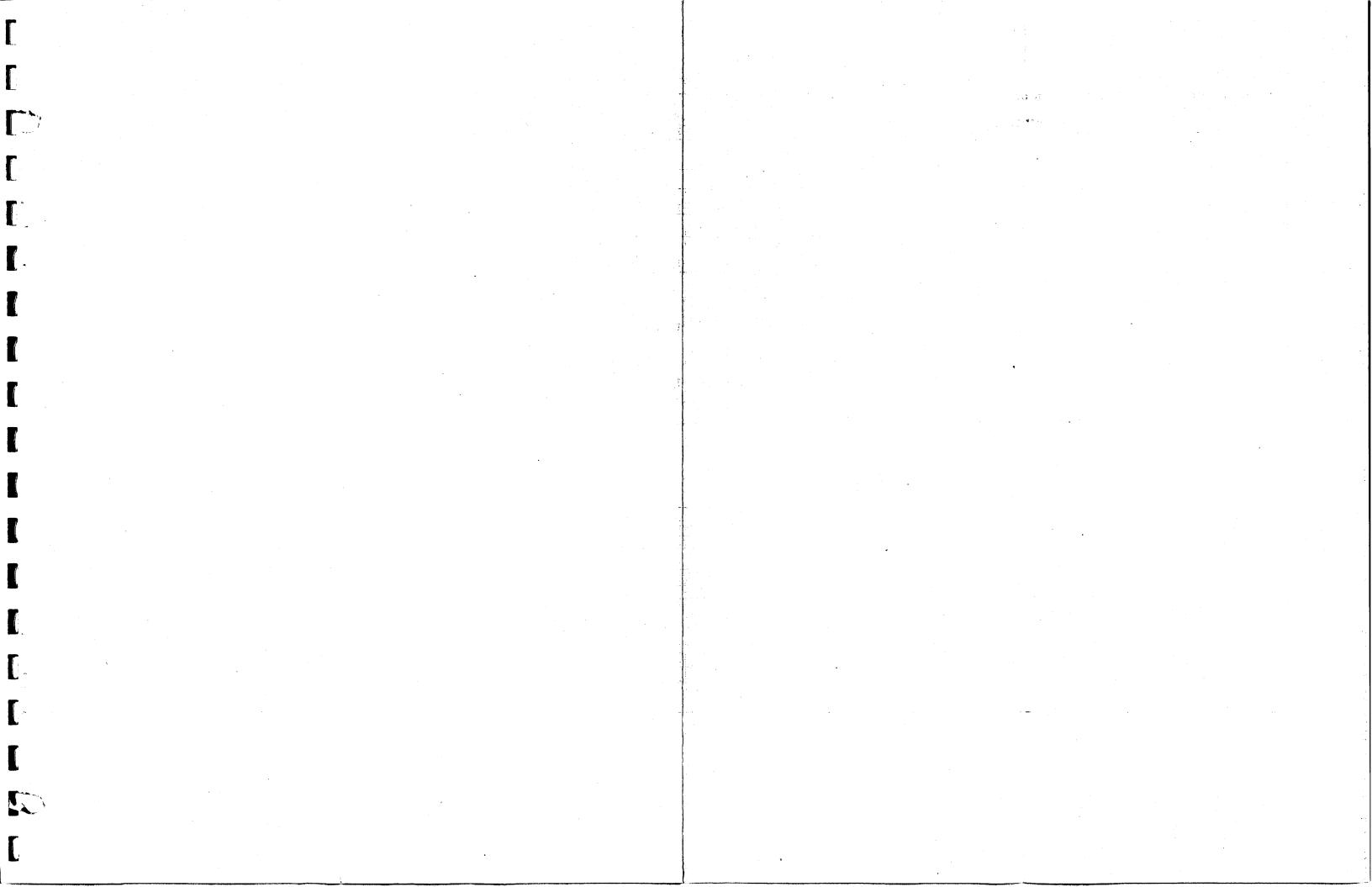

Figure 1. Burro Flats

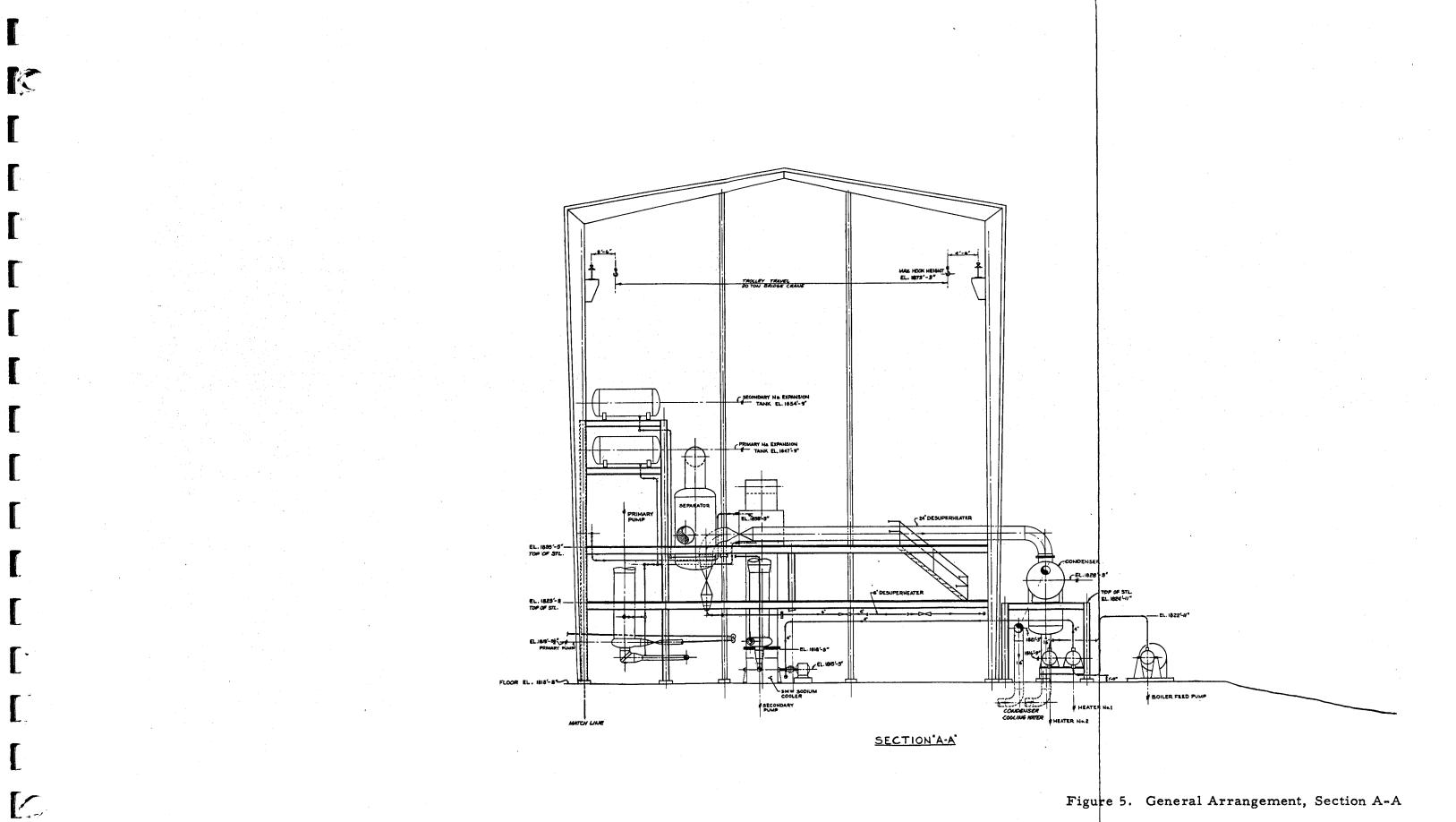





. **....** Ľ

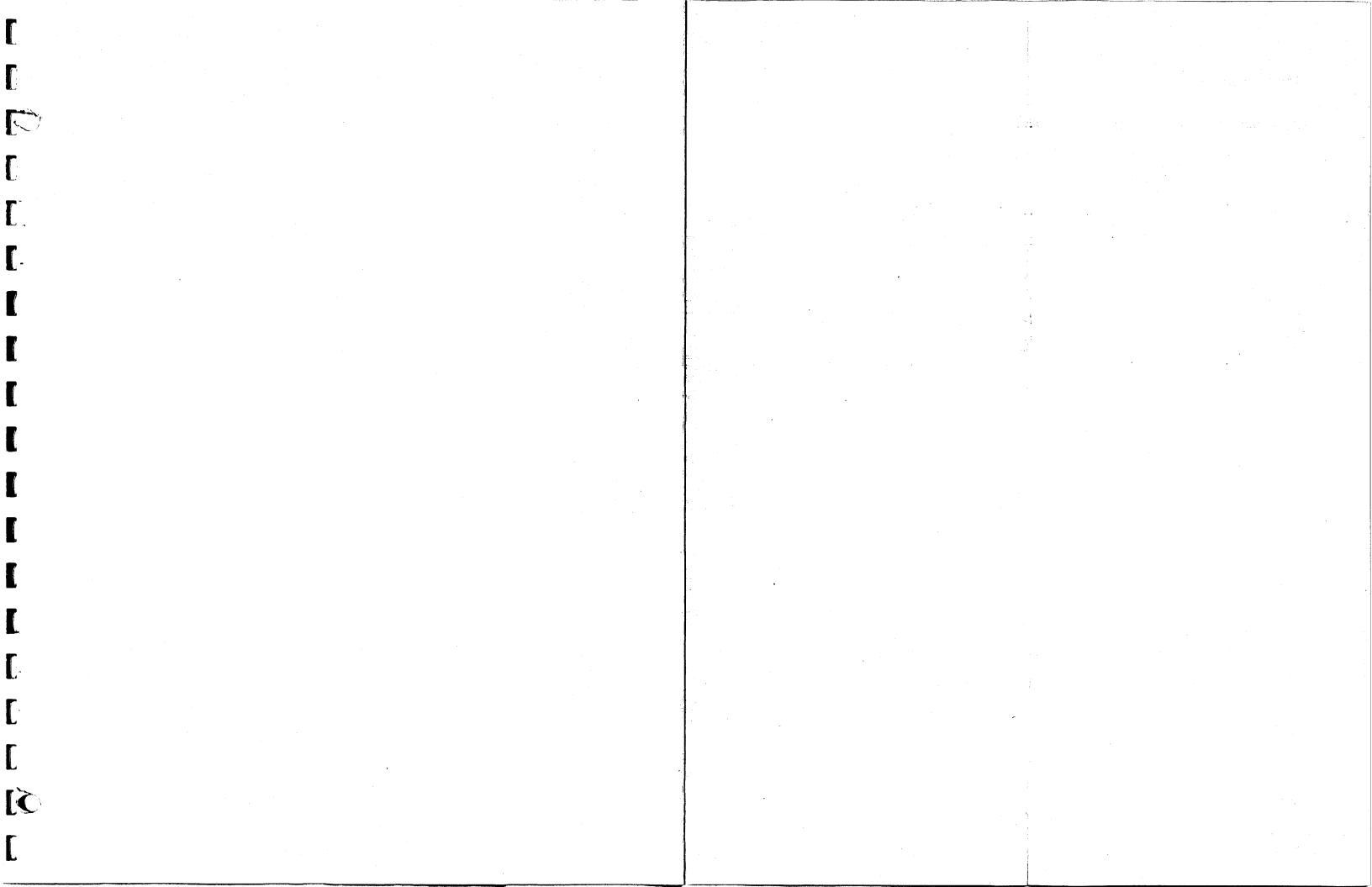

L

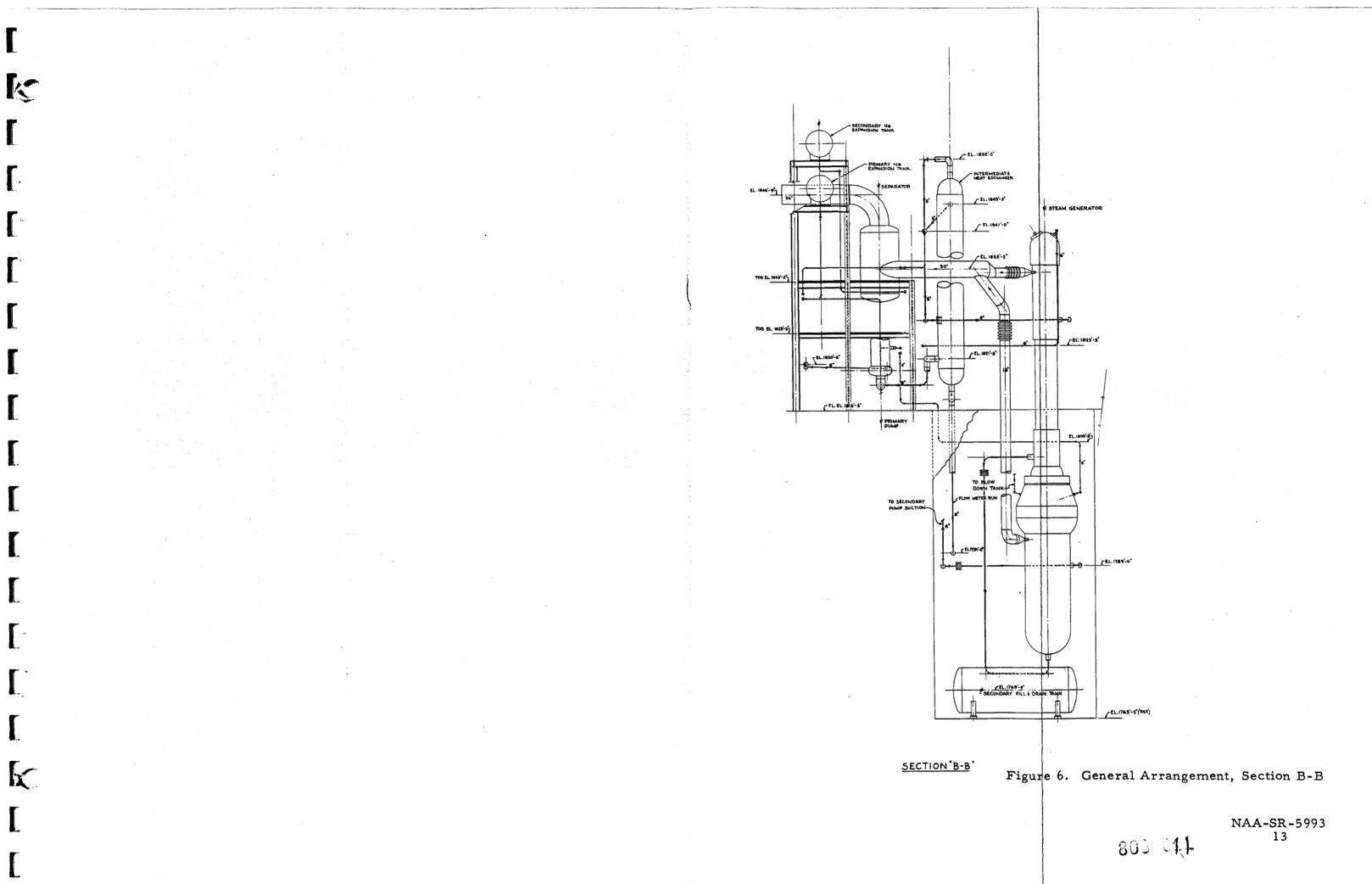


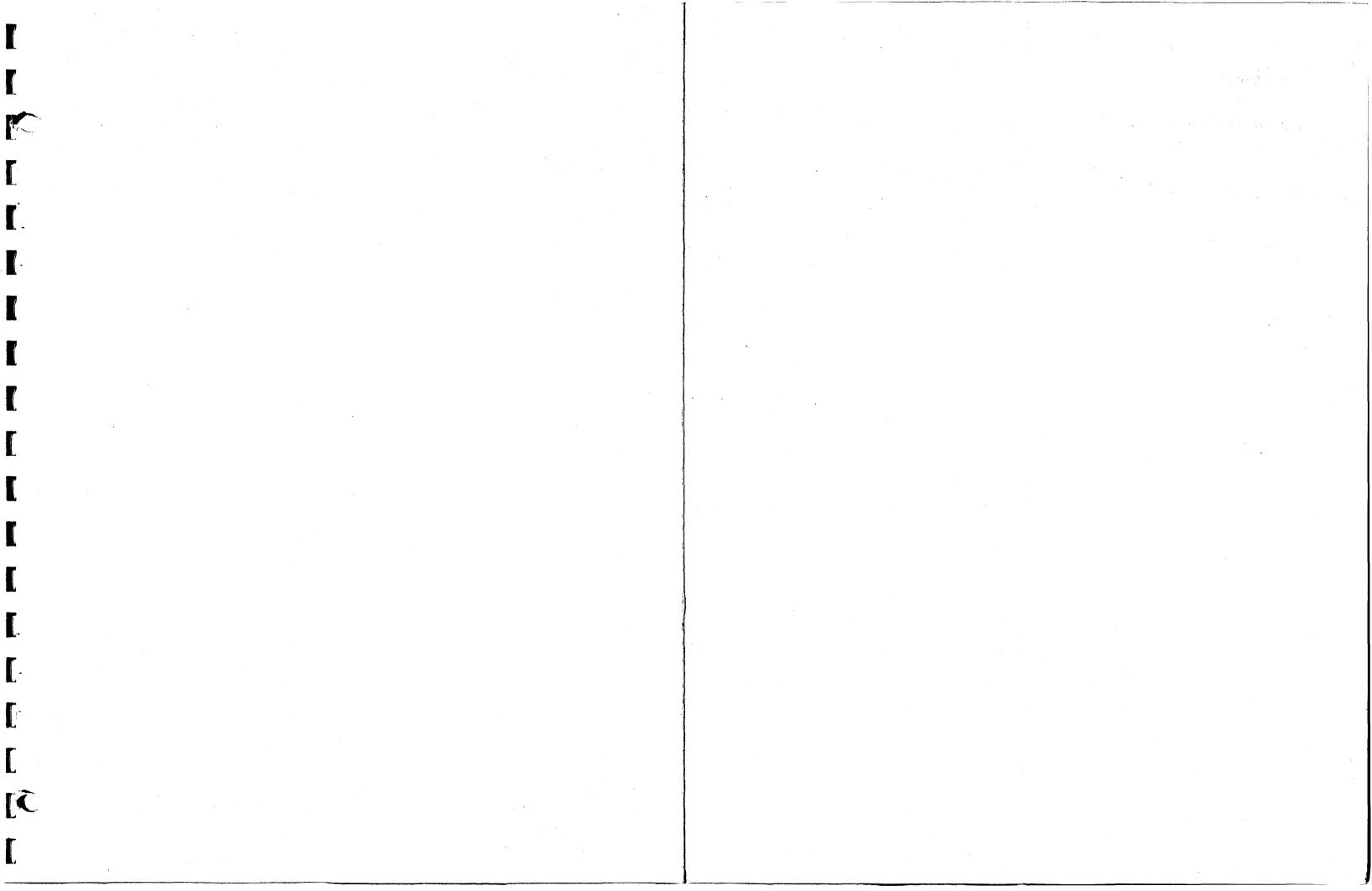


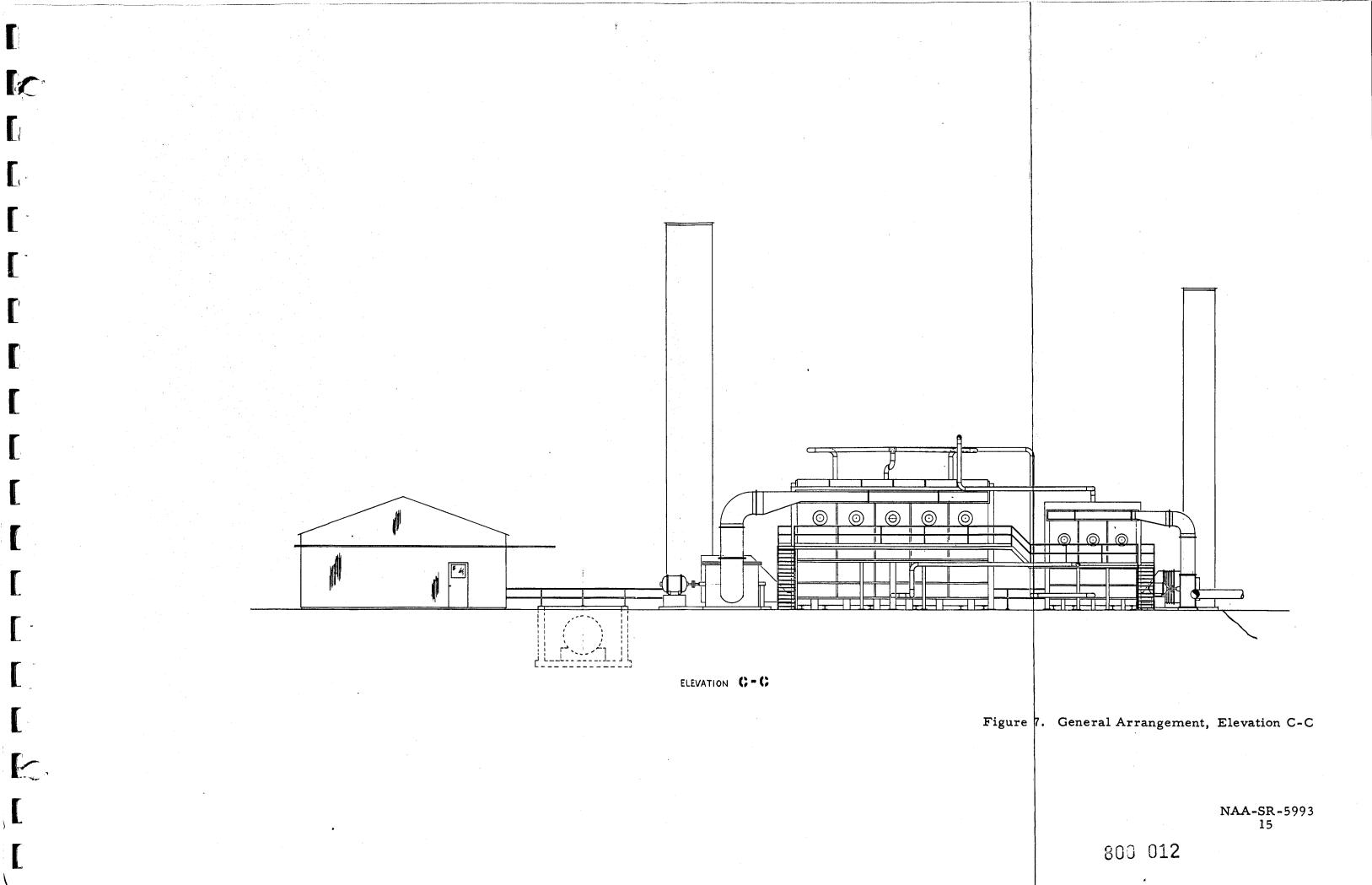
CMATCH LINE (DWG. 7593- 4617) Figure 4. General Arrangement, Plan; Part 2 NAA-SR-5993 9 800 009

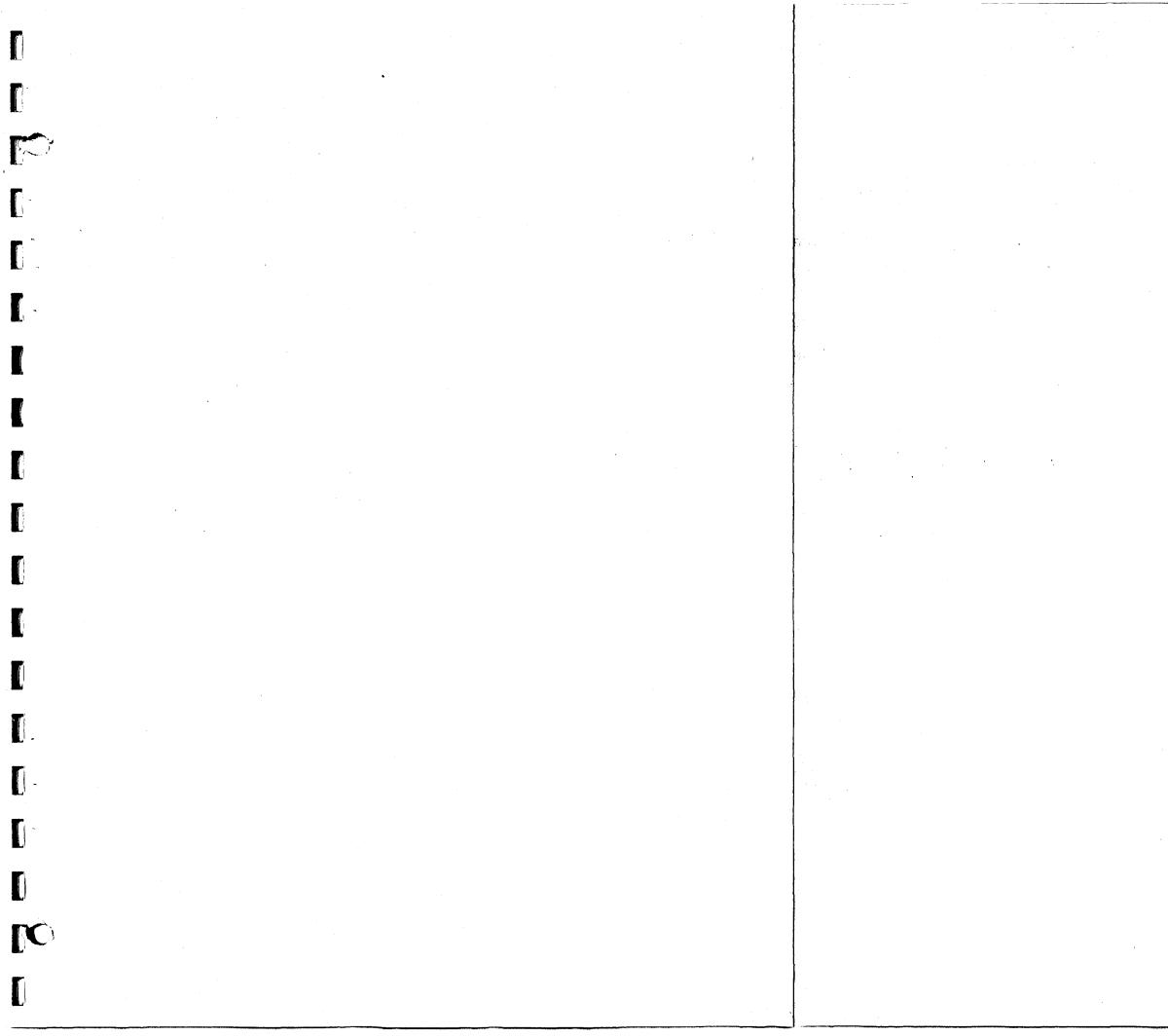
.

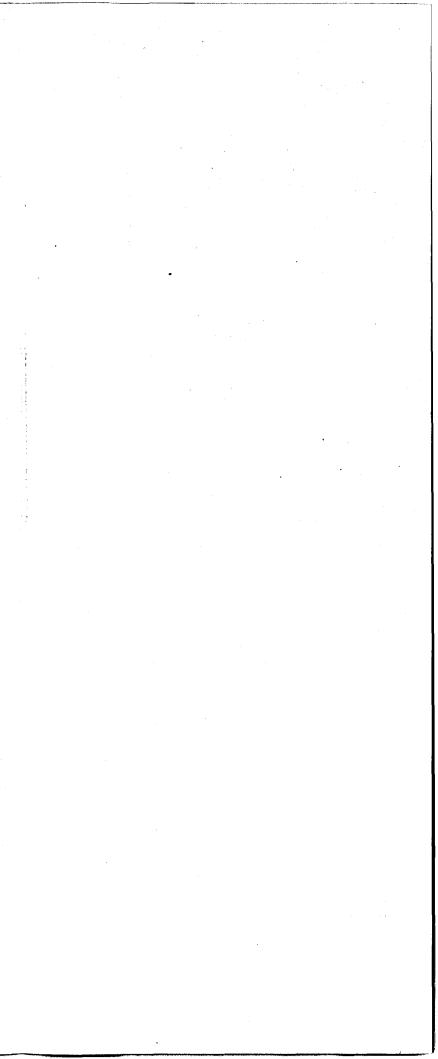

L

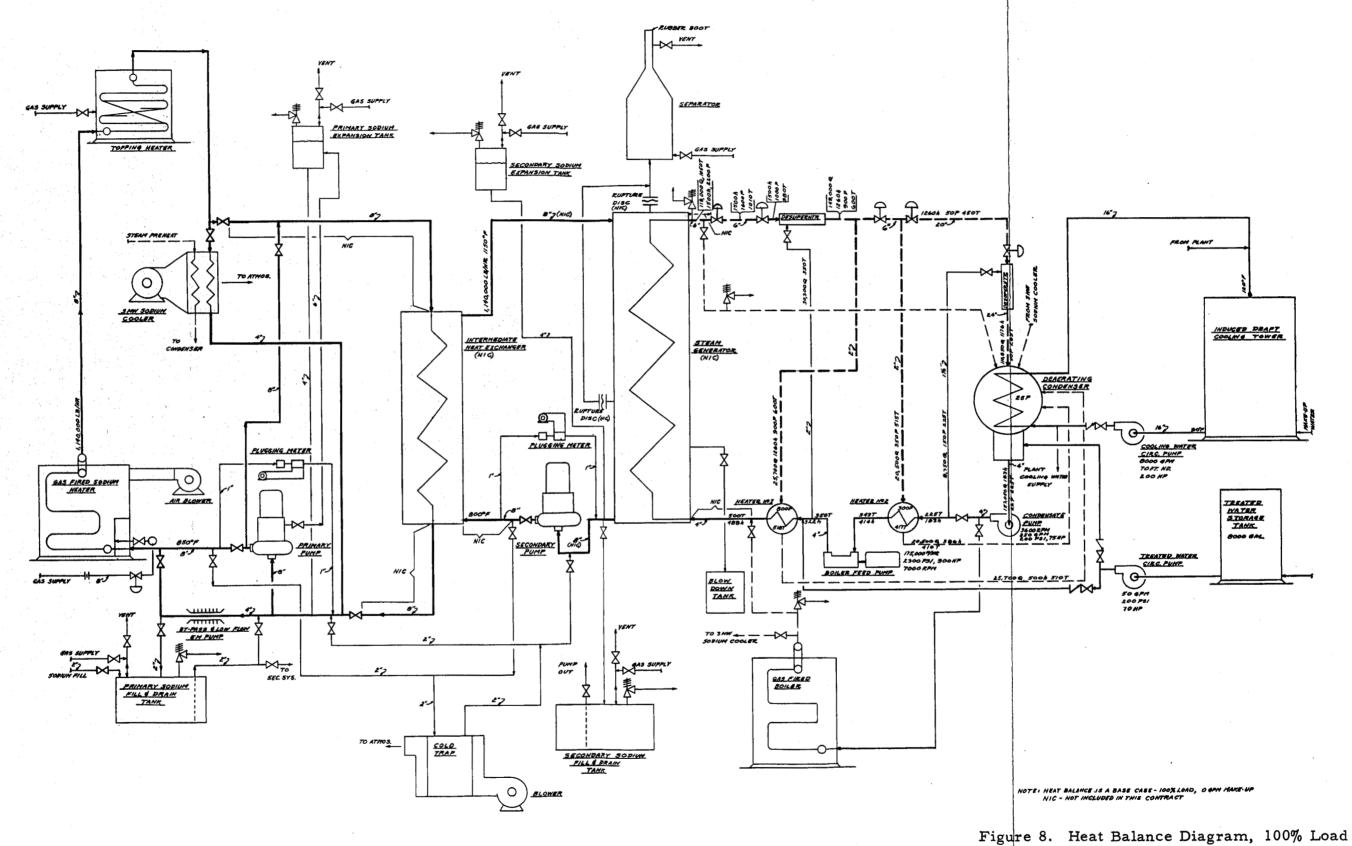

•

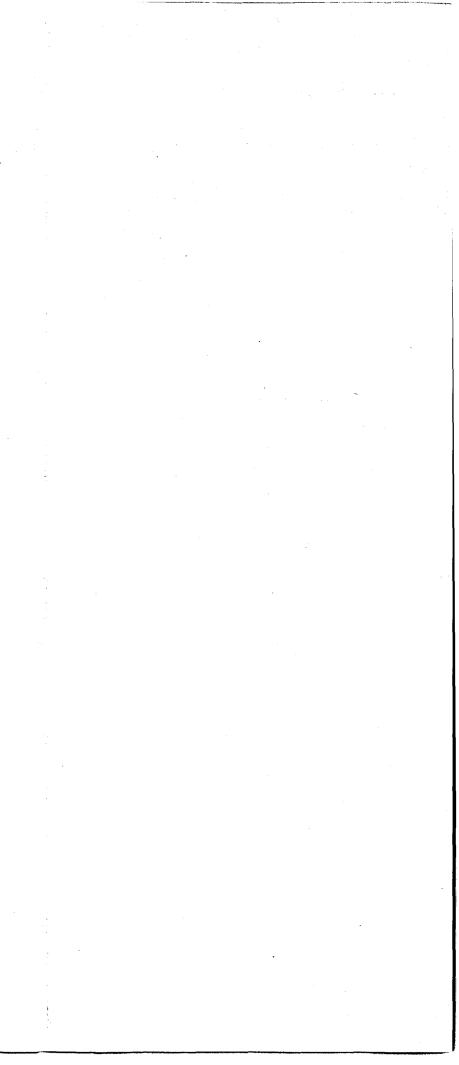

L

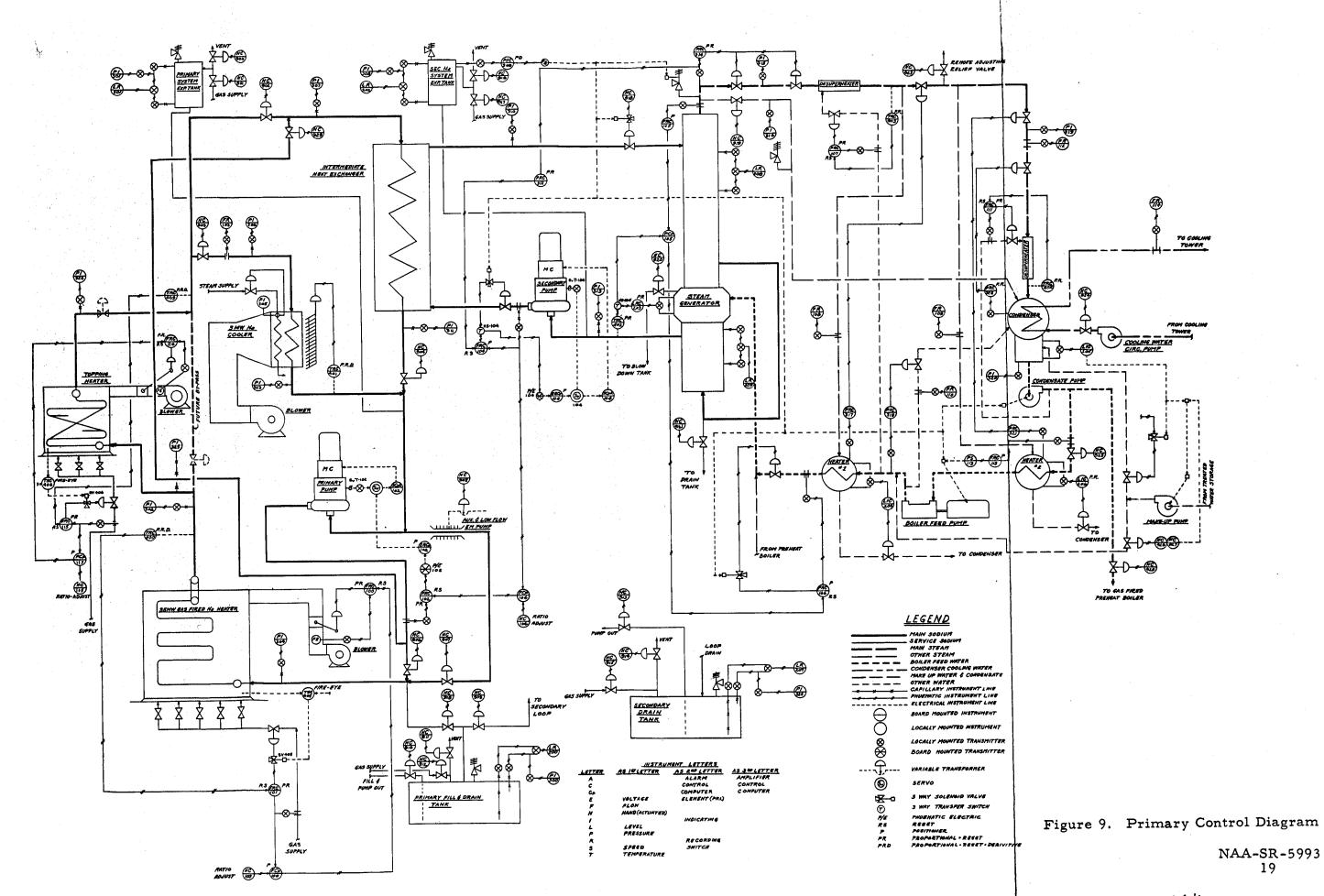

L


NAA-SR-5993 11

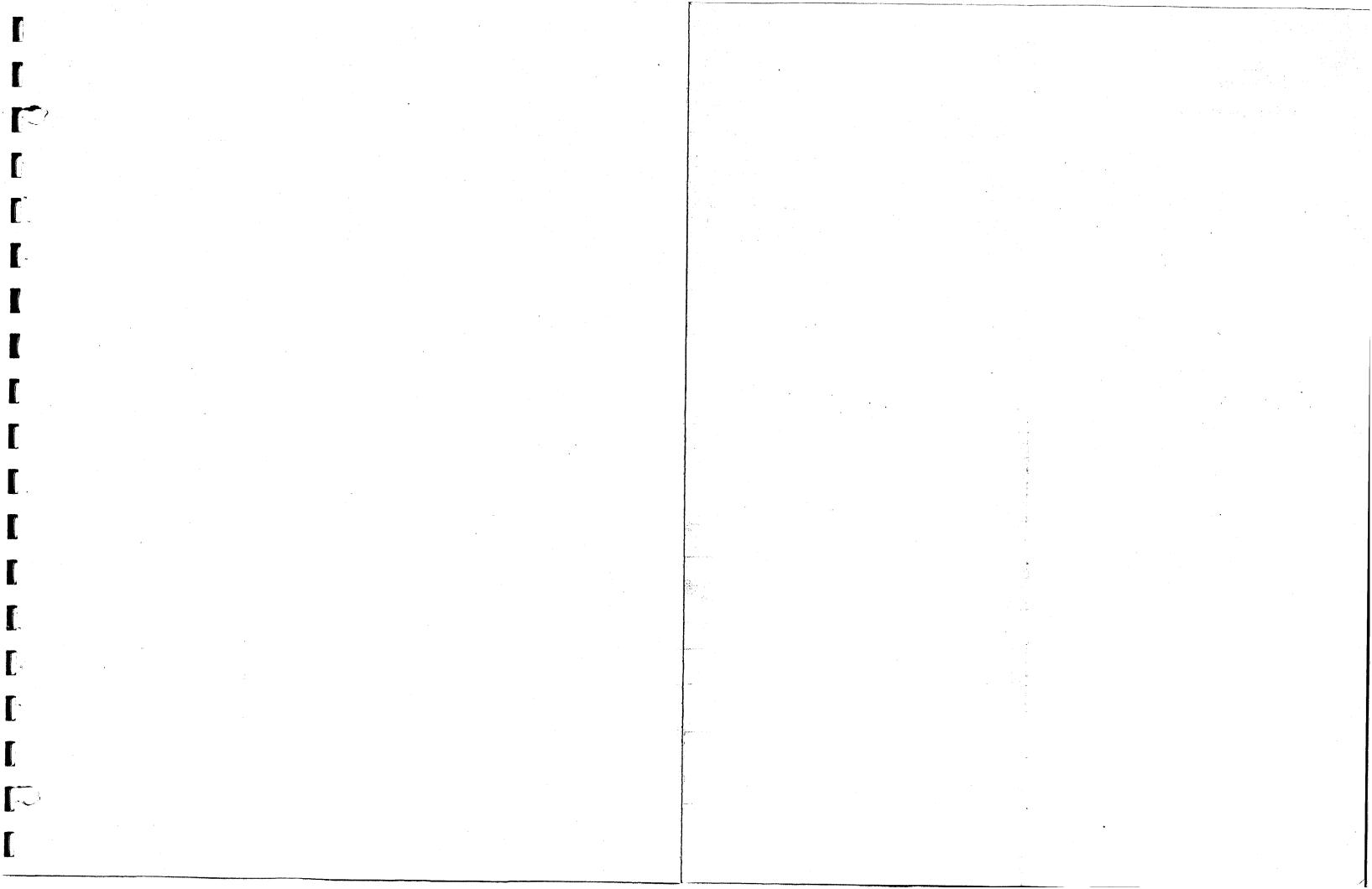


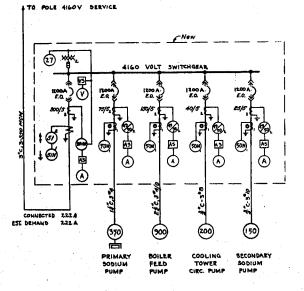


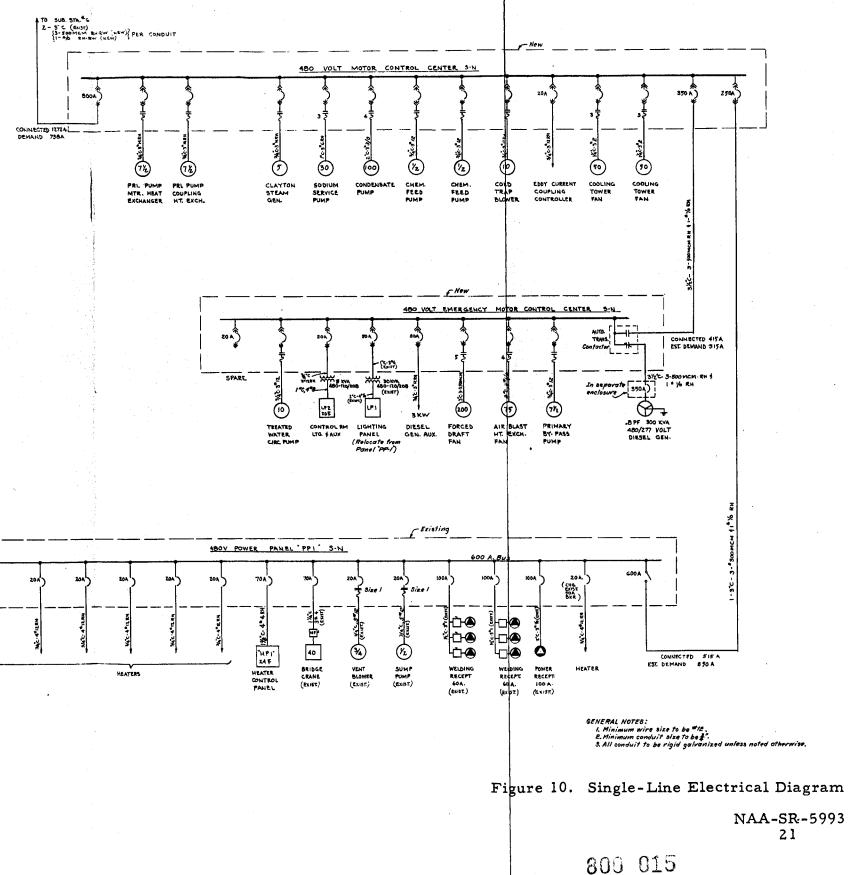


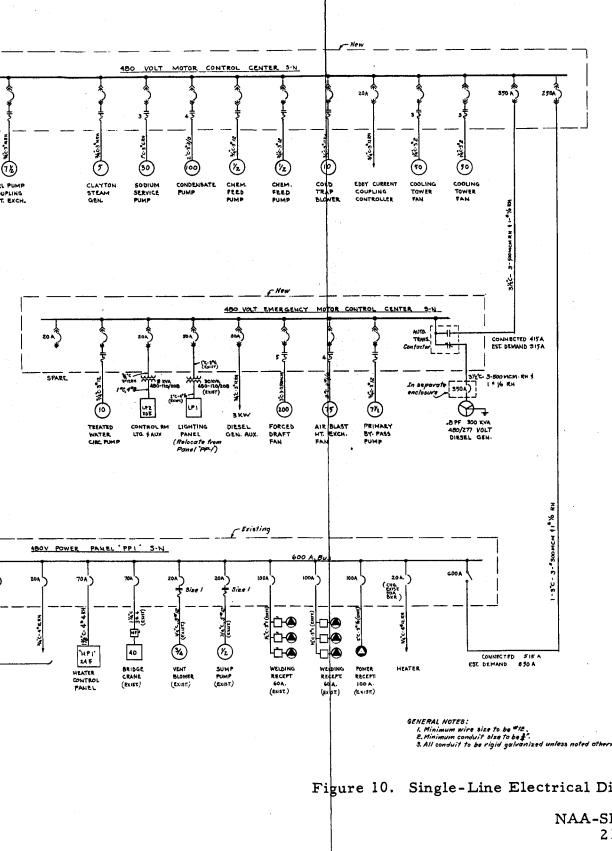


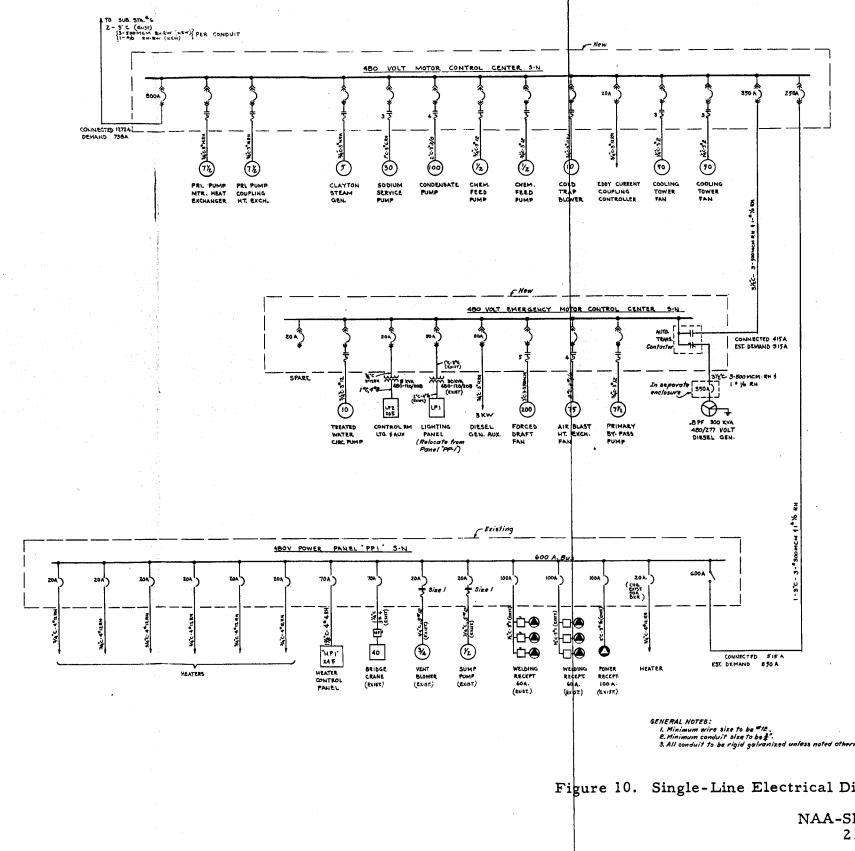
i c

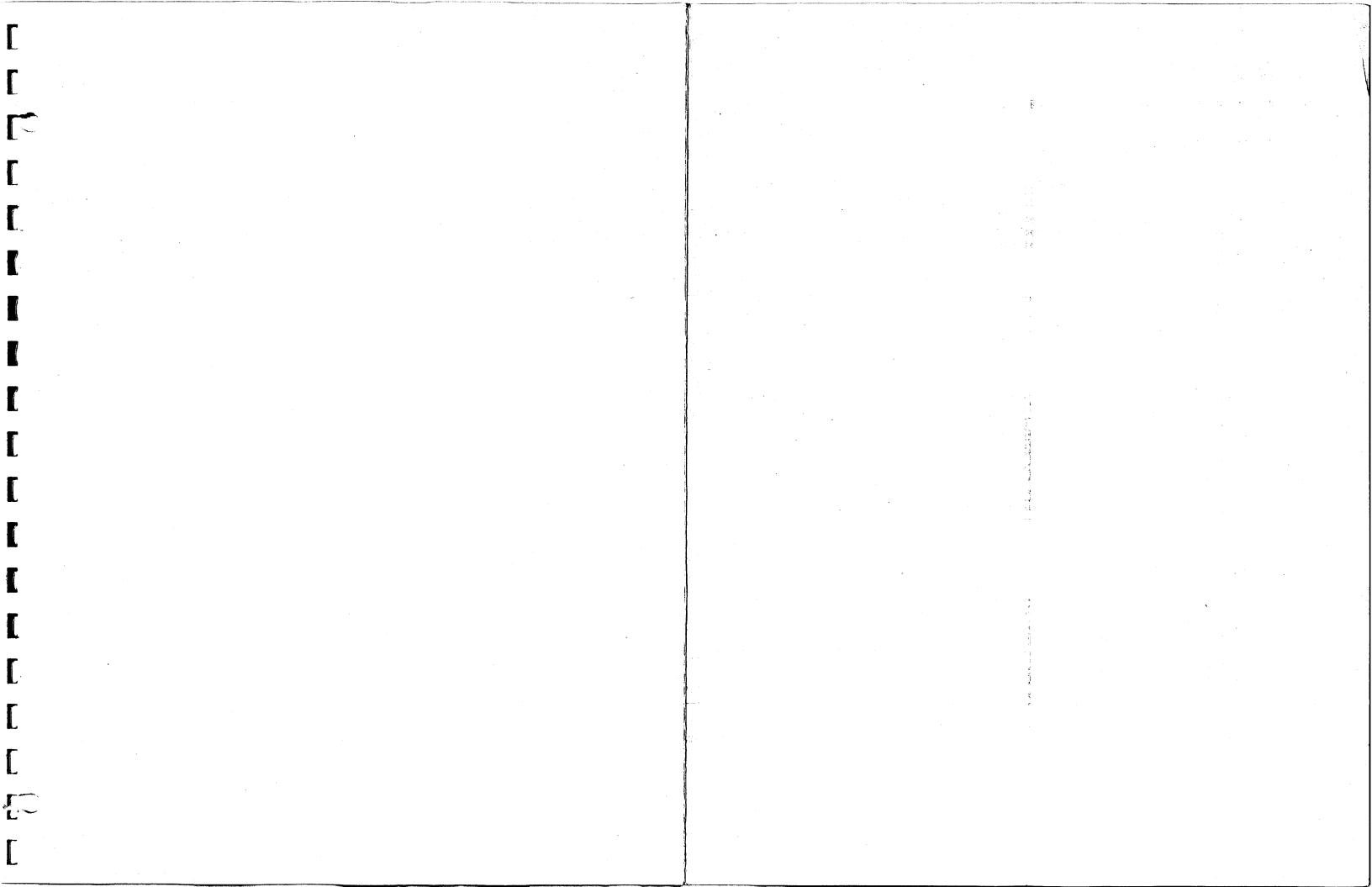

NAA-SR-5993 17

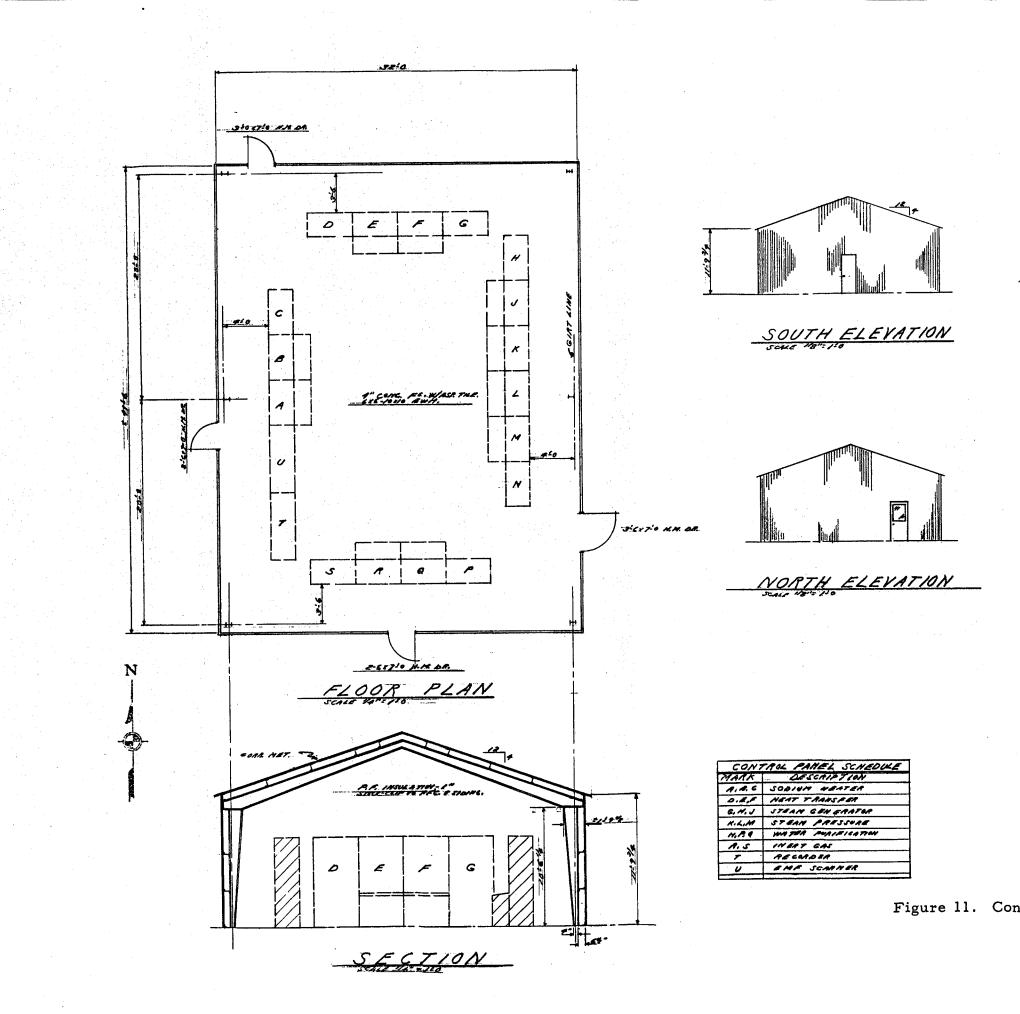

÷

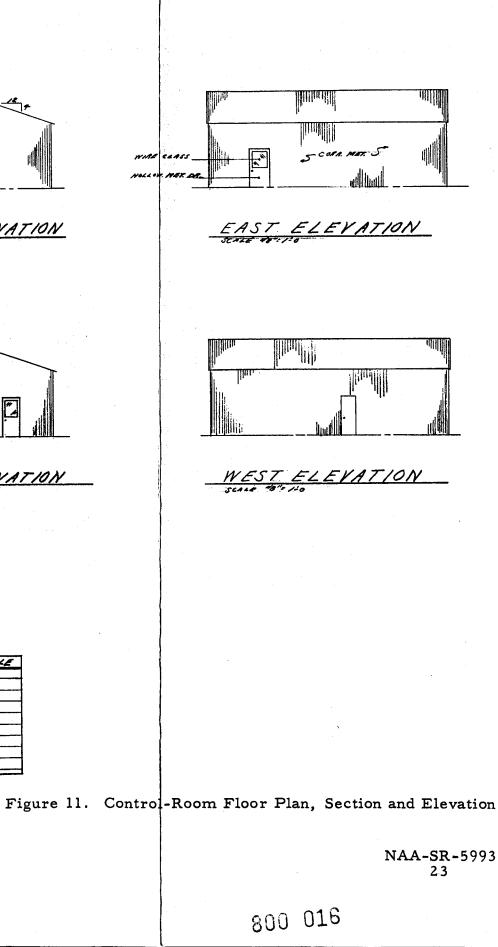

[^

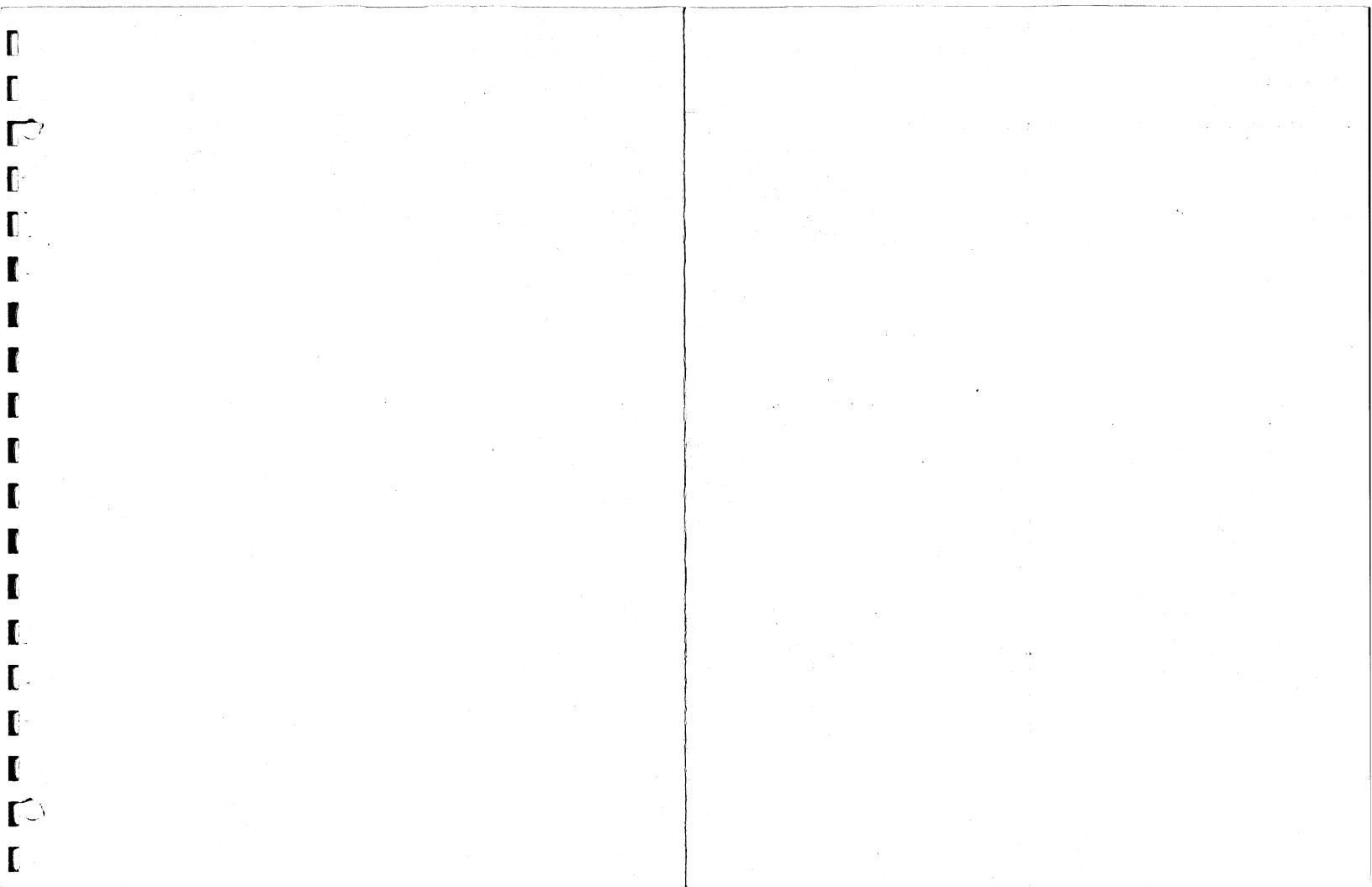


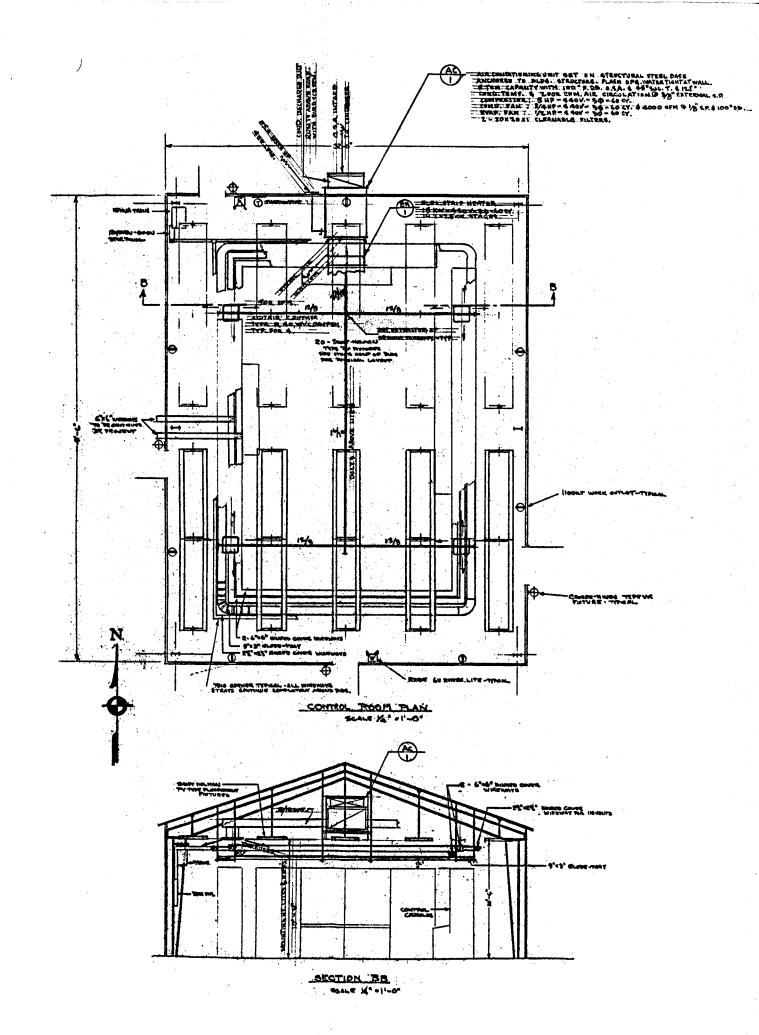



NOTE: SYMBOL O IS WINDOW CT. ENCLOSING 3 PHASES


wil-





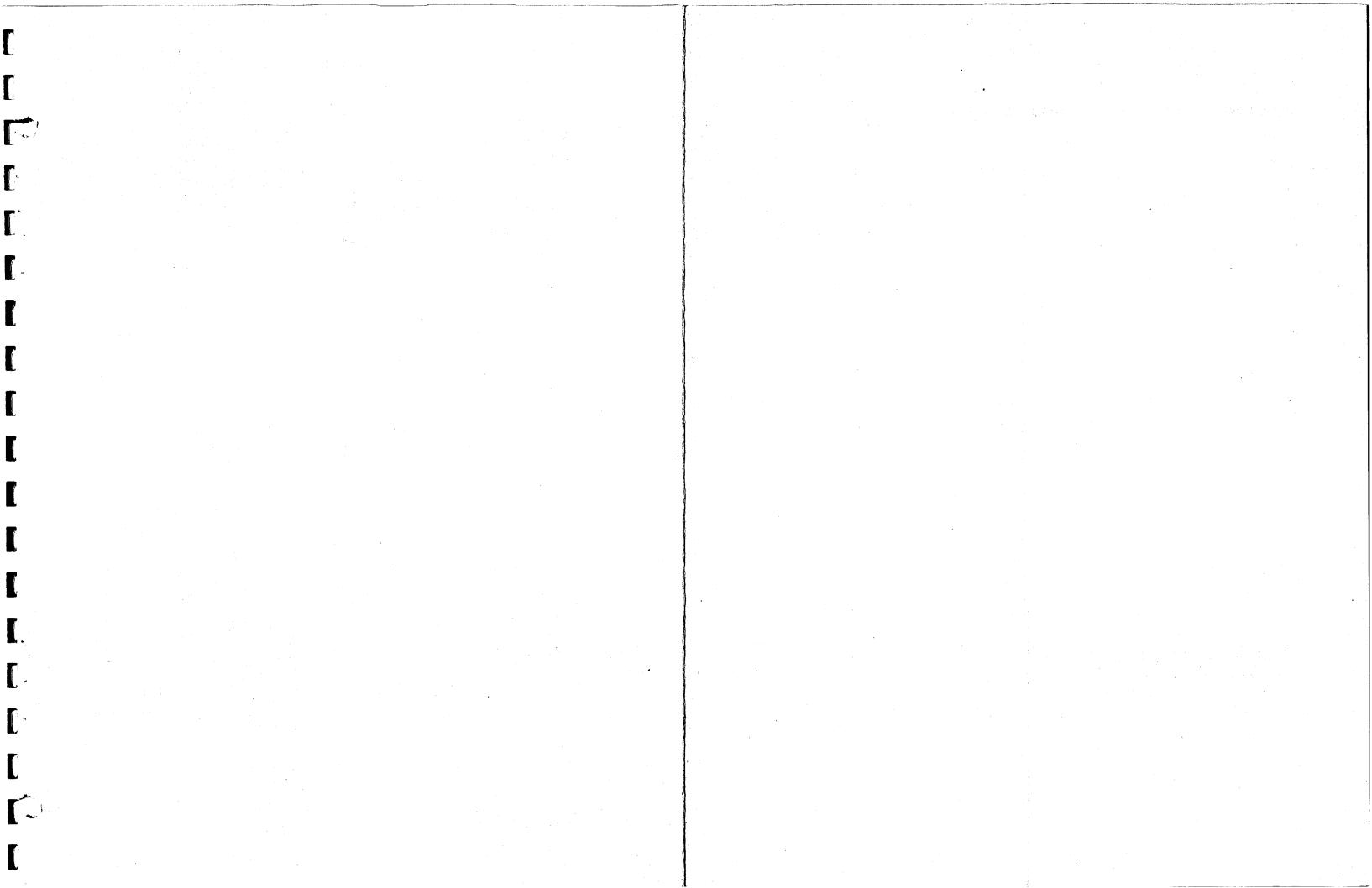

L

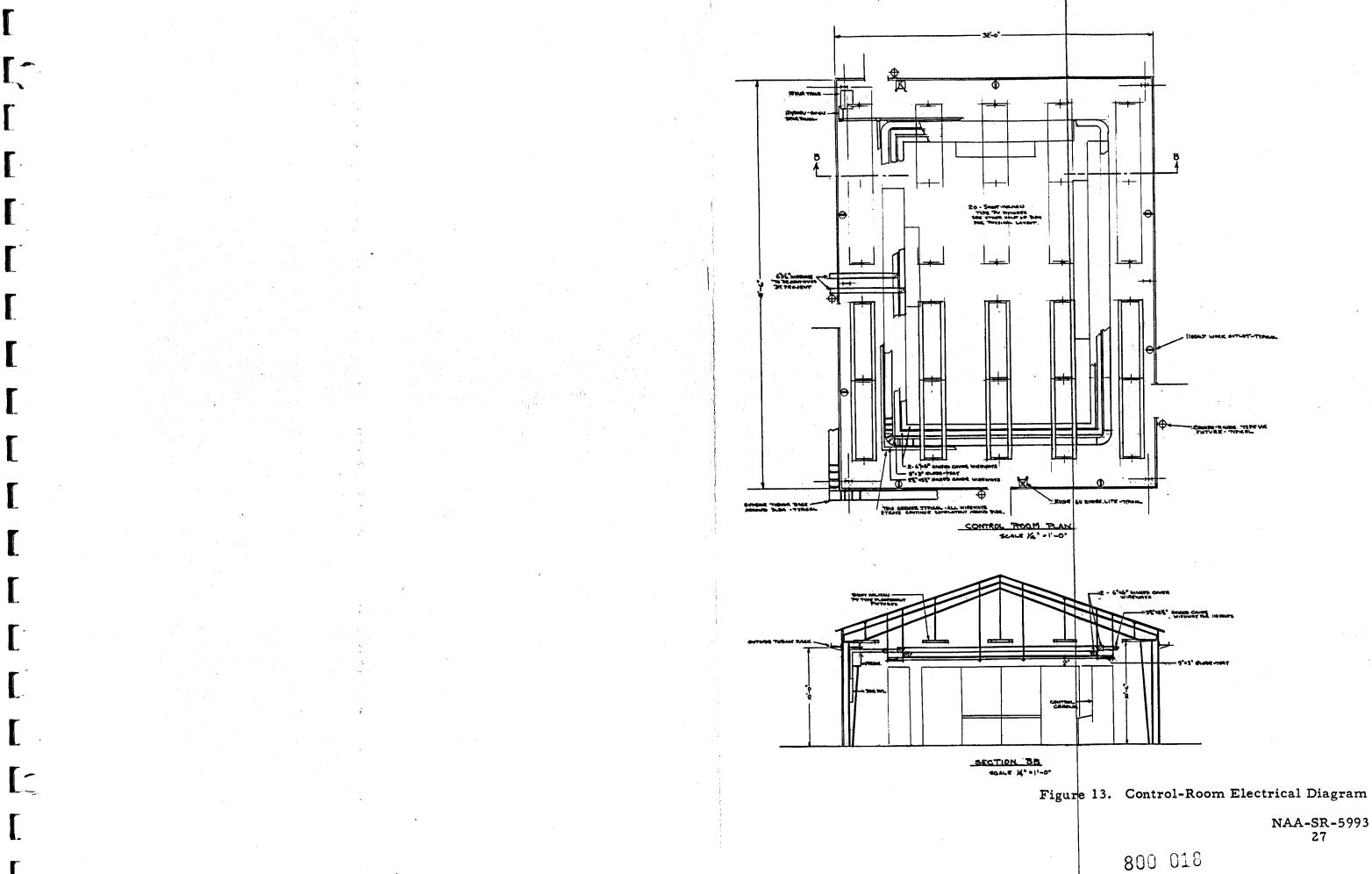
.

[]

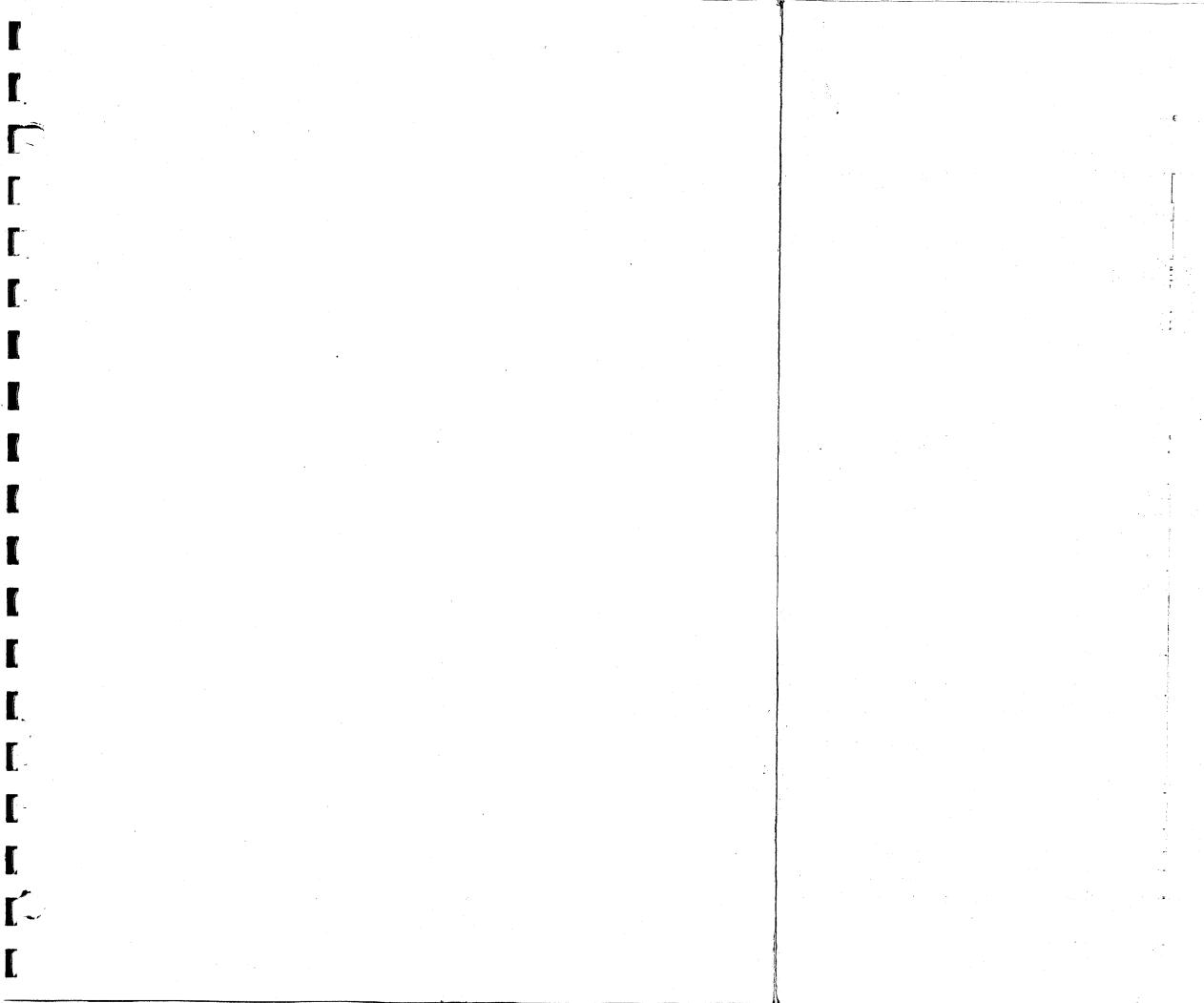
L

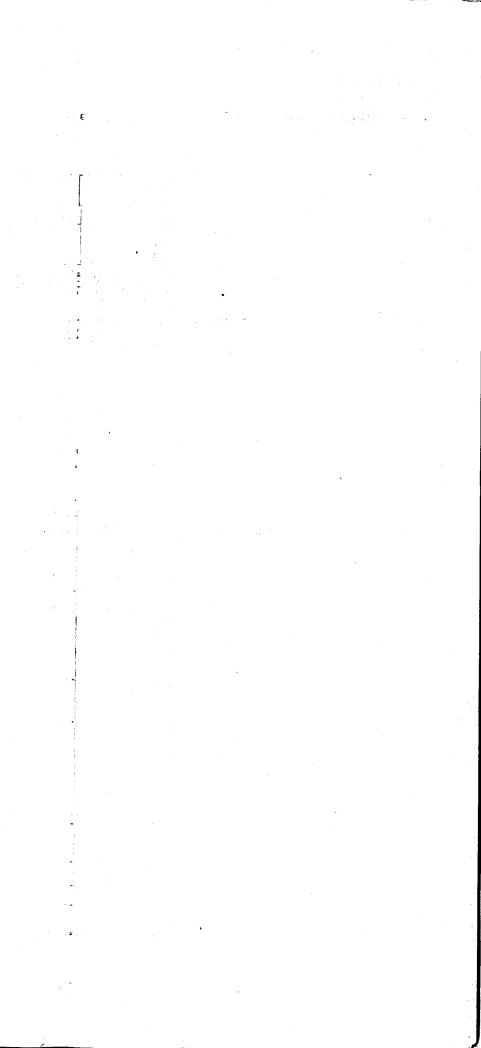
[-

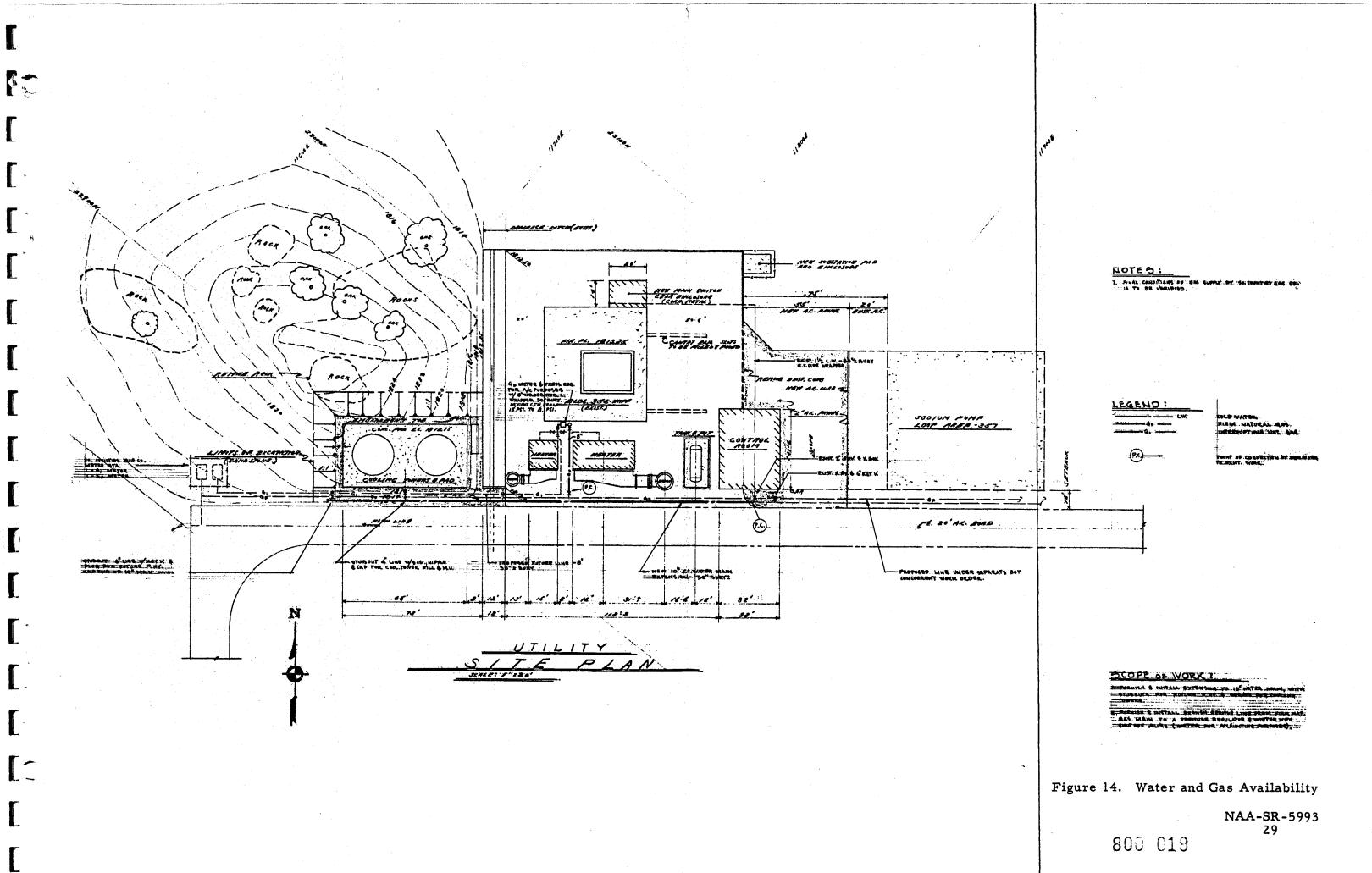

L

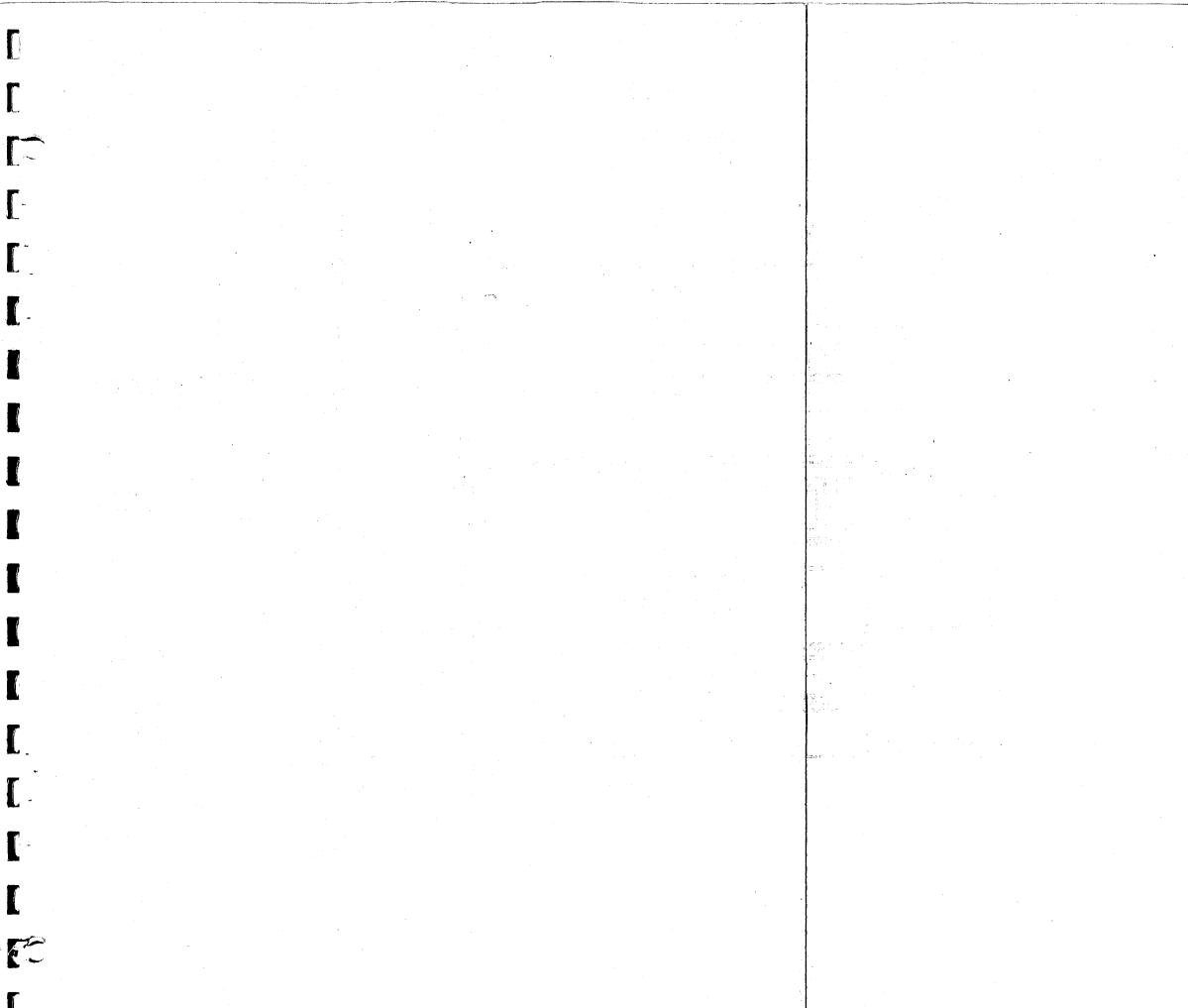

SCOPE OF WORK :

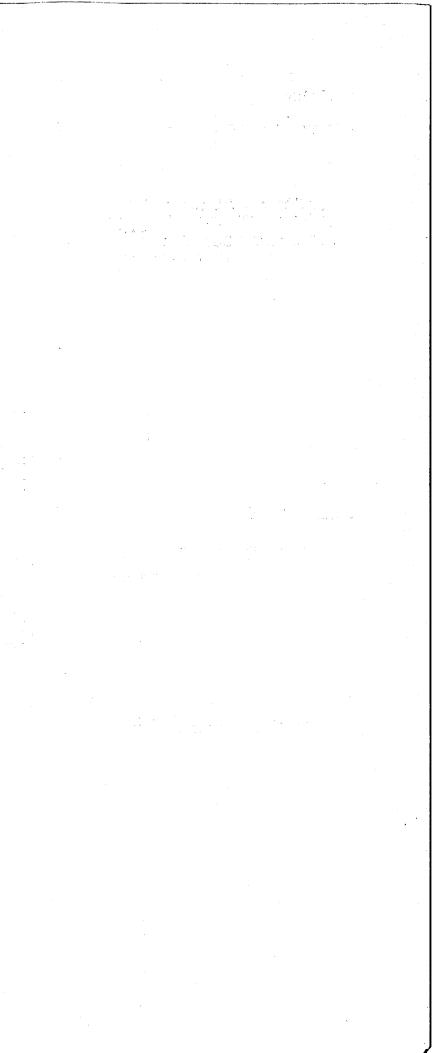
DURNISH & INSTALL AIR CONDITIONING THE FOR CONTRACTOR ST. TO DO ALLENTANDO AGRELAGATION AND AND A STATA TILL CONTRACTOR NAMES FOR NON. MEAT, CONSULTANT, ILLERGONNECTINA POINT & CONTRACT, CONSULTANT,

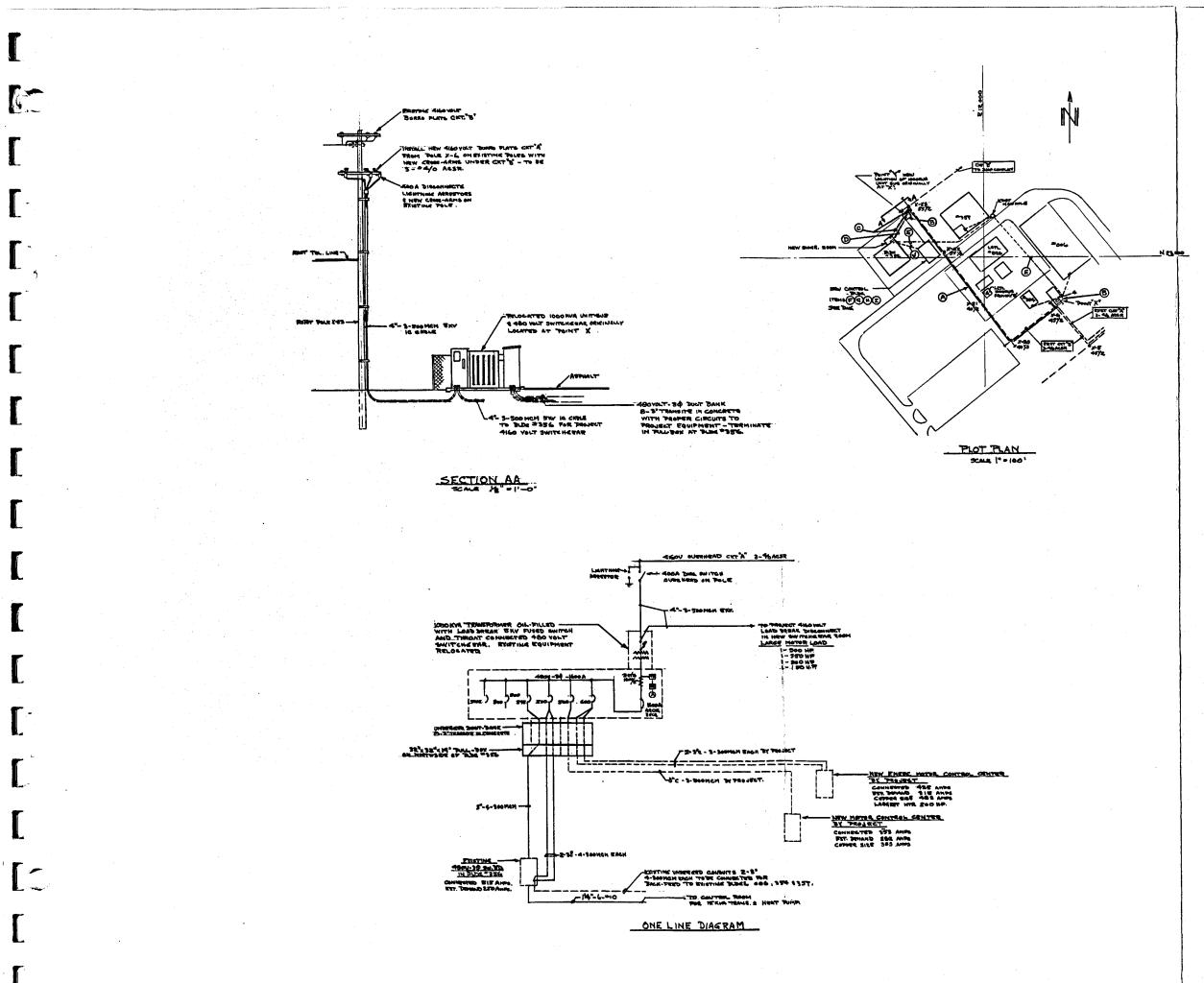

Figure 12. Control-Room Air-Conditioning Diagram


NAA-SR-5993 25






NAA-SR-5993 27



SCOPE OF ELECTRICAL WORK

GENERAL

- A. Burro Flats h160 volt 3 phase overhead circuit "A" is to be extanded from pole X-6 to X-23. Circuit to be 3 - 4/0 ACSR installed on new crosserms on existing poles and located below the existing circuit "B".
- B. Disconnect and remove existing 1000 KVA unit sub and associated switchgear at X. Reinstall this same equipment on new pad at Y.
- C. Install new hi60 wolt service drop from pole X-23 to unit sub and building 356. Project shall supply load break disconnect switch for h160 wolts in new Switchgear Room - See Section AA.
- D. Install new 480 volt underground duot bank and circuits as required by project from 480 volt switchgear at unit sub to pullbox at building 356. See Section AA.
- 5. Re-establish 500 ampere 480 volt circuit through existing conduit and cables by feeding from building 356. This requires that where 480 volt writchload is removed at point X that new weatherproof pullbox be installed over existing conduit sub-ups and that feeder cables to buildings 357, 354 and 006 be lugged together.

CONTROL ROOM

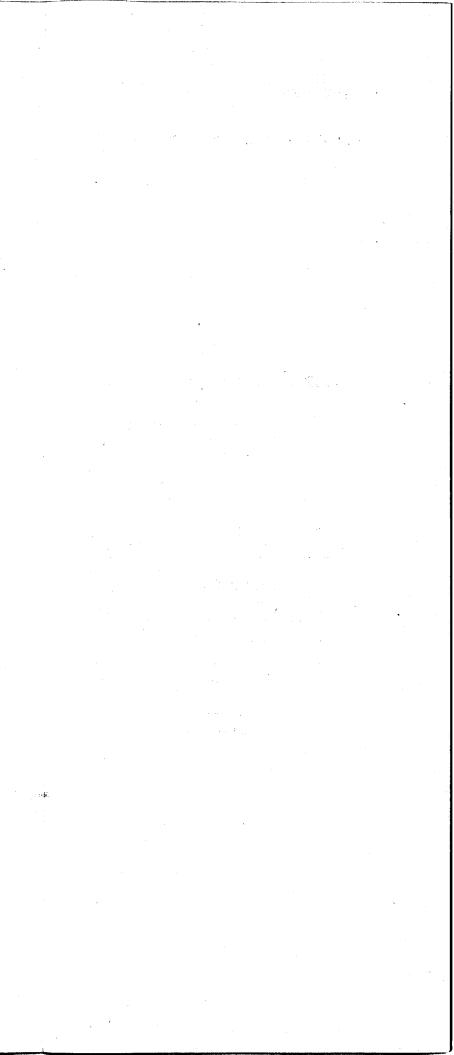

- F. Provide room with 90 foot candles of low brightness indirect illumination by the use of Smoot Holman type FV286L luminaires. See Section HE, Drawing 303-356-16.
- Provide room with 15 KVA 480 volt/120/208 volt transformer for lighting and instruments with a 120/208 volt hw-SN 20 circuit distribution panel.
- H. Provids in the rooms for use over control consoles 250 ft. of 6" x 6" hinged cover wireway, 125 ft. of 9" x 3" globs-tray, and 125 ft. of 2d" x 2d" hinged cover wireway. See Section HB, Drawing 303-356-36.
- I. Provide room with miscellaneous outlets and lights.
- J. Provide 1,80 volt 3 phase circuits for lighting transformer and heat pump from building 356 existing switchboard to Control Room.

Figure 15. Electricity Availability

NAA-SR-5993 31

I - **I**

1. Services

A railroad spur to the site is considered unnecessary. A Southern Pacific main line extends through the San Fernando Valley with a spur through Chatsworth, a short distance from the site. North American Aviation maintains an access road suitable for heavy trucking, from Chatsworth to the Field Test Laboratories. Components as large as 60 ft long by 12 ft diameter, and weighing in excess of 55 tons have been transported on this road.

2. Nearby Facilities

A machine shop (Building 011) capable of fabricating sodium-system components is located within a short distance (see Figure 1) of the site. Sodiumsystem technicians and engineers are presently located in an adjacent sodium laboratory (Building 006). Shops located at Atomics International's central facility, within 10 miles of the proposed site, are adequately equipped to fabricate large sodium-system components. Metallurgical analyses equipment is located at Building 006, and the analytical chemistry laboratory (Building 003) is a short distance away. Computer services are available within the various company's facilities.

3. Existing Equipment

The design shown in this report is based on installation of a gas-fired Babcock & Wilcox sodium heater presently at Lewiston, New York. This heater has a capability of 120,000,000 Btu/hr and a maximum flow capacity of 4000 gpm of sodium at 850°F. All required operating auxiliaries are part of this heater, including a control system.

An additional topping heater capable of continuous operation at 1200 °F, and suitable for intermittent operation for transient testing to 1350 °F will be installed. The heat duty capability of the topping heater is required to be 31.0 x 10^6 Btu/hr with an approximate heating surface of about 2000 ft² with natural gas firing. Both heaters will be fired with natural gas. The existing firing equipment of the B&W heater will be modified for use with natural gas.

A combustion control system will maintain the terminal sodium temperature from each heater constant over the entire range of operation. This outlet temperature setting provides the master control signal for the individual combustion control systems which vary fuel and air supply to the unit over the operating range. In addition, the control system will permit manual division of loads

> NAA-SR-5993 33

between each heater, or operation of each heater alone, to obtain a desired sodium delta t or outlet temperature.

The 3-Mw sodium-to-air cooler for minimum-load heat rejection in the primary-sodium system is available at the Mine Safety Applicance Research Company in Callery, Pa. This unit has never been used and was originally intended as the replacement coil for the 3-Mw NaK heater being used in the MSA test loop.

The primary-system sodium pump is the HNPF test prototype freesurface unit available at Atomics International. This unit has a capacity of 7000 gpm at 165 ft of sodium head at 1000°F. The unit is complete with Dynamatic coupling for speed control, coupling control panel, and motor control cubicle.

The secondary-system sodium pump is presently installed in the LCTL and is a freeze-seal type. To obtain head and capacity required for this equipment, a new drive motor is needed. A single-speed open-frame ac motor of 150 hp is considered appropriate. A replacement pump of adequate capacity is available for installation in the LCTL.

Three 12-in. sodium valves are available at Atomics International for incorporation into this equipment. Two of these are disigned for precise flow control. In additon, a 10-in. flow-control valve built by Ohio Injector Co. may be available.

A 2-bbl sodium melt station complete with holdup tank, sodium filters, valving, and electrical control panels is available in the LCTL. This unit is portable and plugs into a power cable to become operable at any desired location.

Ľ

The start-up steam generator is a flash boiler of 15 boiler horsepower currently installed as a part of the HNPF fuel-handling test installation. This is a self-contained unit requiring only a water and electrical connection to make the unit operable.

B. MAIN PIPING SYSTEMS

1. Primary Heat Transfer System

The primary-sodium system is a single loop which transfers heat from a gas-fired sodium heater to the intermediate heat exchanger to be tested. Sodium

leaves the heater at 1200°F, passes through the intermediate heat exchanger, and is pumped back to the heater at 850°F. Installed as system parts are necessary filling, draining, and sodium-storage equipment, as well as purification equipment. Piping is of Type 304 stainless steel. At the rated 350°F delta t, 1,140,000 lb/hr of sodium at 1200°F passes through the gas-fired sodium heater and enters the intermediate heat exchanger, where heat is transferred to the secondary sodium loop. The free-surface pump, rated at 7000 gpm and 165 ft of sodium head, returns sodium to the fired heater. Installed as part of the primary system, 3-Mw sodium-to-air cooler rejects heat to the atmosphere. For this bypass-flow, an electromagnetic pump having 100-gpm capacity is used. This bypass loop provides minimum flow for the gas-fired sodium heater at all ratings. It is also used for startup of the plant in order to establish the desired sodium temperatures. A sodium fill-and-drain tank permits rapid sodium dumping from the system and is used to fill the primary system.

2. Secondary Heat Transfer System

The secondary-sodium system transfers heat from the intermediate heat exchanger to the steam generator under test. Major components of the loop are: intermediate heat exchanger, test steam generator, and secondary-sodium pump. Also included are necessary fill, drain, storage, cover-gas, and sodium purification equipment. Piping is Type 304 stainless steel. The steam generator and the intermediate heat exchanger indicated on the layouts are the present designs being considered as part of the Sodium Components Committee program. Loop design is flexible enough so that a wide variety of other test units may be readily installed.

The steam generator is located in the existing reinforced concrete pit along with the secondary-sodium-system drain tank. Pit depth is such that the evaporator and preheater section of the steam generator are below grade. As an added precaution against a possible violent sodium-water reaction due to equipment failure, rupture discs discharging into an emergency separator are provided. This is further described under Safety Aspects (Section V).

Sodium flow rate for the secondary system is 1,140,000 lb/hr. Sodium enters the steam generator at 1150°F and returns to the intermediate heat exchanger at 800°F.

NAA-SR-5993 35

3. Steam System

The steam system is the heat dump and load simulator for the entire plant. The system is a closed loop which receives steam from the steam generator at desired pressure. Steam flow is controlled by the throttle simulator. The steam pressure is reduced, desuperheated, and eventually is condensed in the steam-to-water surface condenser where heat of the system is rejected to atmosphere via a cooling tower.

The system is designed at 100% base load to permit generation of 118,000 lb/hr of steam at 2200 psig and 1050°F total temperature when supplied with feedwater of 500°F to the steam generator. In addition, two feed-water heaters form a regenerative type of cycle. This regenerative, condensing-cycle system is similar to a basic power-plant cycle with the throttle valve simulating steam expansion through the turbine. Steam can be generated in the test unit between 2200 and 2400 psig at a temperature of 1050°F. Steam first passes through the throttle simulating station, then through the high-pressure reducing station, and then exits at 1000 psi and 980°F to the high-pressure desuperheater. The steam is further reduced in pressure to 50 psi, desuperheated, and passed to the condenser.

L

A cooling tower supplies sufficient water to the condenser to cool the condensate to 250°F. Maximum cooling-water flow rate is 8000 gpm; it enters the tower at 120°F and leaves at 90°F.

C. AUXILIARY SYSTEMS

1. Sodium Purification

Low oxide level required for operation of the sodium systems is maintained by use of a circulating cold trap. This unit is based on HNPF design. It is an air-cooled unit with an internal economizer of over 200 lb oxide capacity. Rapid system cleanup is achieved with the 10-gpm sodium flow rate through the unit.

With the large sodium oxide capacity of the unit and the rapid cleanup rate, a single unit is adequate to maintain the desired oxide level in both sodium loops. With the high degree of piping system tightness, only intermittent operation of the cold trap is required after initial system cleanup has been achieved. Oxide plugging meters in each loop monitor the oxide levels in the system sodium. These meters are self-contained units with a solenoid-operated plug, sodium flowmeter, and cooling blower. Plugging-temperature determinations can be made approximately every 20 min.

Oxide monitoring of the secondary sodium is most important as most steam generator failures result from slow leaks rather than from major breakdown. An unusual oxide rise rate is usually the first indication of possible failure. This permits an orderly shutdown before any gross damage occurs. A hydrogen detector, now under development, may also be installed.

2. Inert Gas System

The inert gas system serves as a protective atmosphere to prevent excessive contamination of sodium. In addition it serves as a pressurization medium to provide required NPSH for sodium circulating pumps and to effect transfer of sodium from storage tanks into operating loops.

Gas required is supplied from bottles attached to appropriate pressure regulating systems and manifolds. No gas purification (NaK bubbler) or recovery system is included in the installation. It is more economical and convenient to remove, by cold trapping, the small quantities of oxide contributed by the covergas system to the sodium. During normal operation, only a small amount of inert gas is added to the loop, so that a minimal amount of oxide is contributed to the sodium metal from this source.

For general use in the test equipment, nitrogen cover gas is utilized because of availability and economy. For critical areas of the system (Such as those operating at temperatures of 1200°F and higher) helium or argon cover gas is utilized to eliminate the possibility of nitride formation. Although such formation has not been conclusively demonstrated in all cases, the conservative approach of using helium or argon is followed to eliminate any such possibilities.

To minimize carryover of sodium vapor and attendant vent-pipe plugging, vent lines are heated to the point where they terminate in sodium vapor traps. These traps are of the disposable type, thus permitting continuous loop operation.

> NAA-SR-5993 37 800 024

3. Preheating

Sodium piping in the primary and secondary loops is heated by tubular resistance heaters. The heating units are placed adjacent to the pipe and backed by a stainless reflector sheet. The reflector is covered by thermal insulation which is in turn covered by a protective metal jacket. Very satisfactory heating and reliability has been achieved by using this method on existing sodium piping systems at Atomics International.

For sodium tanks where heating problems are not so critical, the use of strip heaters is adequate. Continuous operation of the heaters at low operating temperatures permits this approach.

The steam generator under test will be heated by the gas-fired auxiliary steam boiler to the sodium melt temperature.

4. Sodium Loading

Appropriate filling connections are provided for each sodium system. Sodium is added to each system through the LCTL drum melt station. Use of drum sodium, together with the melt-station filtering system, assures that initial sodium is of comparatively high purity.

5. Feedwater System

The steam plant is furnished with demineralized water from a storage tank of 8000-gal capacity. This tank is of aluminum-clad steel construction to prevent any contamination during storage.

Purity of the steam-system water is maintained by a side-stream polishing unit. The latter continuously processes 5% of the condensate. This system contains regeneration equipment, chemical mixing tanks, conductivity meters, and necessary controls.

A small hydrazine injection pump serves as a backup to the deaerating hotwell for oxygen removal from the condensate.

6. Cooling Water

Water supplied at the site requires only intermittent chemical treatment. A combination acid and phosphate feed system controls pH, and algicide is periodically added. The blowdown rate is somewhat higher than would result with lower mineral-content supply water.

7. Instrument and Control System

The installation control system is similar in design and operation to an actual nuclear power facility. All necessary instrumentation and control equipment is provided for automatic or manual control during steady-state or transient conditions required by the testing program. The control room contains instrumentation, control sub-panels, electrical starters, valve actuator controllers, and alarm annunciators. Data-logging equipment is capable of indicating and recording any variable desired from equipment test or operation. The control system is a load-following, self-stabilizing system with a steam-pressure controller which operates as a master controller for the plant. A detailed control diagram is given in Figure 9.

8. Electrical

Branch a training of a

A one-line diagram of the facility electrical system is shown in Figure 10. The system consists of a high-voltage (4160) system to supply power to large power equipment and a 480-volt system. The latter is further divided into a motor control center, an emergency motor control center, and a power panel. The emergency motor control center can be fed from either the normal electrical power source or a 300-kva automatic-starting diesel-generator set. The system is provided with automatic switching in case of power outage on the electrical feeder; the emergency system will permit operation of critical auxiliaries so that orderly plant shutdown can be carried out and damage to equipment prevented.

Electrical resistance heaters similar to those on the sodium storage tanks will be installed on each intermediate-heat-exchanger unit received for test.

The steam generator is partially preheated by the 15-boiler-horsepower auxiliary steam generator. Steam at 150 psig is circulated through the unit until a temperature of 300°F is reached. Portions of the outer shell of this unit have electrical resistance heaters to speed up the heating process.

> NAA-SR-5993 39

III. SYSTEM OPERATION

A. PRIMARY AND SECONDARY SODIUM SYSTEMS

Primary sodium is transferred through the intermediate heat exchanger and gas-fired heaters by a motor-driven, free-surface pump. A side stream of approximately 10% flow is continually bypassed through the air-blast heat exchanger. This air-blast heat exchanger, which is in parallel flow with the main system, provides a minimum flow to protect the sodium heater during emergency and transient operation. The basic heat-transfer system as designed, is capable of operation with a delta t as low as 300°F across the primary system at 100% load. At this delta t, the sodium flow rate is 1,326,000 lb/hr. The loops are capable of full-load operation with a delta t as high as 550°F and a corresponding flow rate of 724,000 lb/hr, or approximately 1800 gal/min. The heat balance (Figure 8) is a base case of 350°F delta t and 1,140,000 lb/hr sodium flow.

There are two gas-fired sodium heaters provided with all necessary firing controls. The main sodium heater is a 35 Mw and a second topping heater is connected in series. Both sodium heater outlet temperatures are maintained by three-mode temperature controllers installed at the heater outlets. These temperature controllers remote-set the fuel gas flow controllers set points which in turn establish the correct fuel gas flow for each heater. Heater fuel gas flow establishes proper combustion air flows by remote-setting the combustion air flow controllers. An adjustable fuel gas and combustion air flow ratio is provided for maximum controllability. The combustion air flow final control elements are located in the blower discharge ducts.

Sodium flow in the primary loop can be varied either by the variable-speed coupling on the sodium pump or by operating the flow control valves in the main and auxiliary piping loops. This arrangement permits a maximum of flexibility especially desirable during the transient testing described under System Capability (Section IV). L

The heat-exchanger bypass system contains a 3-Mw sodium-to-air heat exchanger, a 100-gpm electromagnetic sodium pump and a sodium-flow control valve. This bypass heat-rejection system protects the sodium heater against damage in the event of test-loop outage. To accomplish this protection, the loop is designed to handle 10% of full flow and to reject 5% of the system heat capacity.

> NAA-SR-5993 40

This system is also utilized during thermal transient tests to bypass the main sodium heater during thermal-shock testing of the heat exchangers.

B. STEAM SYSTEM

ing uus

The steam section of the test installation is the heat dump for rejecting 35 Mw of heat. This system receives steam at 2200 psi or 2400 psi and 1050°F and through a series of pressure-reducing and de-superheating stations, rejects its heat to a water-cooled condenser, which in turn rejects heat to a forceddraft cooling tower located on the west side of the facility. The heat rejection system duplicates that of a typical power-plant cycle. There are two regenerative feedwater heaters in series, a boiler feed pump, a booster pump, and a deaerating condenser.

Steam leaving the generator passes through a throttle valve which controls plant load. It then passes through a pressure-reducing and desuperheating station for which steam exit conditions are 900 psia and 600°F. The steam is further throttled and reduced to 50 psia at 450°F and is then passed through a desuperheater to the condenser. Steam enters the condenser at 30 psia and 265°F. The entire system is maintained under a positive back pressure of not less than 25 psia to prevent in-leakage of air to the system. In this way minimum deaeration requirements are imposed. Deaeration is accomplished within the condenser. On leaving the condenser, condensate enters the booster pump which provides a pressure of 200 psia to the suction of the boiler feed pump. The boiler feed pump is rated at a top discharge pressure of 2500 psi absolute and discharges via a high-pressure feedwater heater to the steam generator. The feed pump is a 7000-rpm unit driven by an electric motor and is of constant-speed design. Feedwater is returned to the steam generator at 500°F.

As studies of current power cycles indicate that feedwater temperatures do not normally exceed 550°F, feedwater temperature of 500°F was selected. This selection significantly decreases the cost of feedwater heating equipment. The two feedwater heaters are closed shell-and-tube types. The heaters take steam from the high-pressure steam lines and are drained to the condenser.

Cooling water for the condenser is provided by a tower which supplies a sufficient quantity to cool condensate in the hot well to 250°F. Cooling water requirement is 8000 gpm; water enters the tower at 120°F and leaves at 90°F. Tower make-up rate, including blow-down, is 100 gpm.

The steam condenser is of once-through design, and cooling capability is controlled by regulating flow of cooling water through the condenser. Feedwater flow is controlled by use of either a three-element flow-regulating valve which senses steam flow, feedwater flow, and drum level for the drum (recirculating) type generators or a temperature element in the return sodium flow in a nonrecirculating type steam generator replacing the level unit. In addition to the three-element feedwater control valve, there is a feedwater recirculation system which, at minimum flow for the boiler feed pump, opens a valve and returns part flow of the boiler feed pump to the condenser. This valve operates only at low flow through the boiler feed pump. In this way a constant-speed boiler feed pump can be utilized with significant cost savings. The boiler feed pump has been sized to permit generation of steam at 2400 psia and 1050°F, in accordance with current power-plant practice.

C. WATER TREATMENT SYSTEM

Once-through steam generators require solid-free water with a conductivity between 1.0 and 0.1 micromhos, total dissolved solids not over 0.5 ppm, and a silica content not over 0.2 ppm. In addition, make-up must be oxygen free, and equipment must be supplied which will maintain the system at the above purity. In order to obtain make-up water of this purity, demineralized water is necessary. System make-up requirements are estimated at 2% of flow from the steam generator. This requirement takes into consideration emergency blow-down required during cleanup of the system. Therefore, this make-up rate is adequate for system leakage, flushing, and normal blow-down from both drum-type and once-through steam-generator units where the steam generator to be tested is a steam-drum type and is suitable for a continuous blow-down system. Blow-down from this plant will be sent to the blow-down tank outside the plant building. Demineralized water for the test equipment is contained in an aluminum-lined, carbon-steel storage tank of about 8000-gal capacity.

A transfer pump provides system make-up. The transfer pump takes demineralized water on demand and supplies it to the hot well of the steam condenser. Sufficient storage for a 24-hour supply of make-up at the 2% rate is provided. The pump is sized to provide 2 hours of emergency operation of the test steam generator at 20% of capacity. This protects the steam generator in event of power outage or failure of the boiler feed pump. The transfer pump

> NAA-SR-5993 42

may be operated from the emergency power supply, and can supply water at 200 psi through the high-pressure feed-water heater into the steam generator. This prevents undue thermal shocking of the cold end of the steam generator, as well as providing sufficient water during the time necessary either for recovery of the main power supply or for an orderly shutdown of the system.

D. CONTROL SYSTEM

all give

The control system is load following and self-stabilizing. The master controller is the steam pressure valve, which simulates a turbine throttle valve. A control diagram is presented in Figure 9. Feedwater flow is regulated by a throttle valve. Secondary-sodium flow may be controlled by either a throttle valve or by pump speed, through a magnetic coupling to the pump drive motor. Primary-sodium flow is regulated by pump speed.

Changes in steam pressure will adjust the sodium flow. Feedwater flow from the boiler feed pump is adjusted by signals from the water-level sensing element in the steam generator, from the steam flow controller, and, for improved stability, from feedwater flow. The boiler feed pump is of constantspeed design with a minimum permissible flow. When the flow requirement is below this minimum, a part of the pump output is automatically returned to the steam condenser.

Secondary-sodium flow is held proportional to steam flow and varies directly with the throttle (master controller) setting. A reset signal from the sodium temperature at the outlet of the steam generator trims the sodium flow to maintain a constant outlet temperature.

The control system permits variation in the ratio of primary-to-secondary flow. A flow meter in the secondary-sodium loop provides the signal to maintain the required flow in the primary loop. The outlet temperature from the sodium heaters is held constant by controls on the gas burners and forced-draft fan dampers

Output of the plant is indicated by the product of primary-sodium flow and delta t across the heater.

In order to protect the heaters from the possibility of gas explosion, a flamefailure system for trip-out is provided. The forced-draft fan remains in operation. Sodium outlet temperature above the setpoint trips an alarm. Sodium flow

rate lower than minimum first alarms, and then trips the unit if uncorrected. Fan failure equipment indicates the air flow across the fan; in event of loss of flow the entire unit is shutdown. A time delay system for startup of the unit causes a number of air changes to take place in the heater prior to automatic light-off of the unit. Automatic restart is not available in event of trip-out of the unit; it must be manually restarted.

A steam-generator isolation system isolates the steam generator in event of a major sodium-to-water leak. This is detected by a rise in pressure in the secondary expansion tank (or, if violent, by failure of the rupture discs). This closes the steam throttle valve and the feedwater regulating valve, and opens the Electromatic relief valve. Sodium valves on the inlet and outlet of the steam generator close, thereby isolating the unit, which then exhausts through rupture discs or through the Electromatic relief valve. The boiler feed pump is stopped, and the fired heater continues to operate at low power through its own bypass heat-rejection system.

In addition, a hydrogen-detector installation in the sodium system at the steam-generator outlet provide an alarm in the steam-generation system; the operator can then manually shut down the unit.

NAA-SR-5993 44

800 031

IV. SYSTEM OBJECTIVES

The following discussion presents the design objectives of the test installation described in this report and may be modified during final design of the actual equipment.

A. GENERAL SYSTEM PARAMETERS

Both sodium systems are designed for continuous operation at 1200°F with capability up to 1400°F for short intervals. The primary-sodium pump system has a flow capability of 7000 gpm at 165 ft of sodium head. This extra flow capacity permits evaluating the intermediate-heat-exchanger heat transfer coefficients over a wide range of sodium flow. Flow variability becomes especially useful when determining shell-side film coefficients. System design is based on a flow rate of 3240 gpm at a heater delta t of 300°F or a flow of 1760 gpm at a delta t of 550°F.

The steam system is designed for a operating pressure of 2400 psia at a temperature of 1050°F. Thermal capacity of the entire complex is about 35 Mw.

B. TRANSIENT CONDITIONS

APDA-134 lists expected transients for sodium-cooled reactors. These transient conditions may be simulated in the proposed test equipment as described below. In all transients, the sodium heater and other permanent components of the test installation are protected against thermal shock to the maximum possible extent. The transients can be imposed on the test pieces repeatedly and as rapidly as the system valves, piping, and controls other than the permanent units can be brought to the required operating temperature.

1. Reactor Scram Simulation

Severity of temperature and flow transients imposed upon heat exhangers by load rejection depends to some extent upon the quantity of sodium in the system. The rate at which heat decay occurs depends upon the quantity of sodium stored at the reactor outlet temperature. It is desirable in this facility to simulate different decay heat rates for various reactor designs. Scram conditions may be simulated in this plant design by a reduction in temperature at a predetermined rate. Desired reduction in temperature, of $35^{\circ}F/sec$ for 10 sec, in

the primary system may be obtained by returning primary sodium from the pump directly to the intermediate heat exchange, bypassing the heater. The heater is protected from thermal shock by dropping the fire in the heater and maintaining flow through the 3-Mw airblast heat exchanger.

2. Loss of Sodium Pumping

Temperature decay following loss of pumping depends, in general, upon sodium velocity in the lines at the time of the scram, the flow resistance, and the inertia of the pump rotating assembly. In the primary and secondary system of the design shown, electrically driven, centrifugal pumps are utilized. The effect on the heat exchangers of loss of pumping may be observed directly by interrupting the power supply to the pumps. Sodium control valves on both the primary and secondary loops may be positioned in order to vary rate of flow decay.

3. Rapid Load Swings

The basic control concept in sodium-reactor power plants is that a constant steam outlet pressure from the generators be maintained. Changes in steam demand affect steam pressure, which in turn affects the steam-generator cold-leg temperature. This change in cold-leg temperature sets flow rates of primary- and secondary-sodium pumps. In the installation described, similar to reactor plants, steam pressure is the master-control variable. Changes in steam flow may be made by varying the throttle simulator valve, which in turn sets the flow rate of primary and secondary pumps. A change in the primary flow tends to change the heater outlet temperature, and adjustments of the fuel gas valve and the dampers controlling the flow of air in the fired heater result automatically. Therefore, rapid load swings, whether they be ramp changes or step changes, may be made by changes in adjustment of the throttle valve.

4. Loss of Feedwater Flow

Failure of the boiler feed pump in a power plant results in loss of feedwater to the steam generator. The steam generator boils dry and temperature transients are introduced into all components in the plant. This type of transient may be simulated on this test system by closing the feedwater valve and opening the pump bypass line to the condenser. In this way, the boiler feed pump is completely protected, and a fast transient may be imposed upon the heat

exchangers without damage to the test equipment. In addition, any feedwater flow transient may be simulated by proportioning of the bypass value as well as the boiler feedwater value.

A reactor outlet sodium temperature rise of 11°F/sec may also be simulated by raising the sodium temperature from the heater and cooling a portion of it in the bypass loop. The cooled sodium would then be mixed with the flow to the intermediate heat exchanger. By shutting down the bypass cooler, a ramp increase in the temperature of the inlet sodium to the intermediate heat exchanger may be accomplished.

V. SAFETY ASPECTS

A. GENERAL FEATURES

Experience at Atomics International has indicated that, with proper design and inspection, leaks in sodium systems can be kept to a minimum. About 95% of sodium-system leaks which occurred were of a size that the sodium did not penetrate the thermal insulation. The characteristic dense white smoke of burning sodium serves as a reliable leak indicator and locator for nonradioactive systems. Because of the very limited usefulness and doubtful reliability of leakdetection systems as applied to sodium piping, none has been included in this design.

All critical inert gas vent lines and sodium drain lines are equipped with quick-acting valves with pneumatic operators. An adequate compressed-air tank permits valve operation even in the case of an electrical power failure.

The test pit which contains the steam generator is designed with a carbon steel liner to a height sufficient to contain the entire secondary-system sodium charge.

B. STEAM-GENERATOR EMERGENCY VENT SYSTEM

This system is designed to prevent damage to the sodium systems and feedwater systems in the unlikely event of a rapid tube rupture within the steam generator. Tube failures usually begin as minor leaks. In the event of small leaks, an oxide buildup occurs on the sodium side of the system, as pressure in the steam system is higher, and leakage occurs toward the secondary-sodium system. These small leaks may be detected through sodium oxide monitoring. The operator may then shutdown and make necessary adjustments or repairs to the system. In event of a large leak, a buildup of pressure occurs in the expansion tank and sounds an alarm.

In the test steam generator under consideration, which has a gas space over the sodium in the unit, the buildup of gas pressure occurs within the unit and in the secondary-system expansion tank. A signal alerts the operator in event of this pressure rise. Should the pressure rise be normal (slow), the operator may manually shutdown the system. Should pressure rise continue and the operator not take action, or should pressure rise be rapid, the automatic rejection system begins its operation in the following sequence: the feedwater regulating

> NAA-SR-5993 48

valve begins to close, and the electrically driven feedwater pump stops, the steam throttle valve on the discharge side of the superheater begins to close, and the Electromatic relief valve begins to open and discharge its pressure to atmosphere; sodium valves on the inlet and outlet of the steam generator and in the secondary system begin to close, and the secondary-sodium pump stops. This effectively shuts down the sodium system. The sodium dump valve opens and dumps the contents of the secondary-sodium system to the drain tank within the steam-generator pit. If the pressure still rises rapidly in the steam generator, the rupture discs located on the superheater and evaporator sections fail and discharge the sodium-water reaction products to the separator provided, which in turn discharges steam and water to atmosphere and contains the solids and liquids within the separator tank.

The gas-fired heater is protected. On failure in the secondary system (that is, the steam generator), the alarm signals are delivered to the fuel gas valve on the heater, and immediately drop the heater to the minimum fire (5% heat load and 10% flow rate). The primary pump is de-energized, and the auxiliary pump continues its operation, passing sodium through the airblast low-levelheat rejection system, which is always in operation. This minimum fire maintains temperatures in the primary-sodium system, and the operators may prepare an orderly shutdown of the gas-fired heater.

APPENDIX A: MATERIAL LISTS

I CRITICAL - SYSTEM MATERIALS

Ļ

L

 \square

R

1

Ttom			4 _	1
Item	System	Temperature (°F)	Material	Notes
main (all) 8-in. Na piping	sodium	1200 (maximum operating fluid temperature)	304 SS (seamless)	all joints welded
main (all) 8-in. Na valves	sodium	1200	304 SS	piston operated
main gas- fired sodium heater	primary sodium circuit	1200	316 SS	existing-test- facility heat source
Na - to- air,low-level heat rejector	primary sodium circuit	1200	347 SS	tube sections, Cu fins, stainless clad
main Na circulating pump	primary sodium circuit	850 (operating fluid temperature)	304 SS	existing free- surface pump
main Na fill-and- drain tank	primary sodium circuit	850	carbon steel	
2-in. fill- and-drain piping and valves	primary sodium circuit	850	carbon steel	connecting nipples of SS as necessary
main Na expansion tank	primary sodium	1200	304 SS	•
cold-trap assembly	sodium	800	carbon steel	
main Na circulating pump	secondary sodium circuit	800	304 SS	existing freeze- seal pump
nain Na ill-and- lrain tank	secondary sodium circuit	800	carbon steel	
e-in. fill- nd-drain piping and alves	secondary sodium circuit	800	carbon steel	connecting nipples of SS as necessary

NAA-SR-5993 50

I CRITICAL - SYSTEM MATERIALS (Continued)

U

11

U

Ũ

Item	System	Temperature (°F)	Material	Notes				
main Na expansion tank	secondary sodium circuit	1150	304 SS					
high-pres- sure, spray- type desuper- heater	steam circuit	1000	2-1/4 Cr - 1 Mo					
low-pres- sure, spray- type desuper- heater	steam circuit	500	carbon steel					
high-pres- sure, feed- waterheater	steam circuit	600	carbon steel					
low-pres- sure, feed- water heater	steam circuit	500	carbon steel					
main-steam condenser	steam circuit	300	carbon steel					
main-steam pipe	steam circuit	100	2-1/4 Cr 1-Mo	to high-pressure, spray-type desuperheater				
main-steam pipe	steam circuit	750	carbon steel	after high-pres- sure spray-type desuperheater				

II EQUIPMENT LIST

Item	Quantity	Description	Remarks
		Primary Sodium Circuit	
1	1	Test Installation heat source. Full Load, Test Installation, base operating conditions:	Consisting of existing oil-fired sodium heater, now located at Lewiston, N.Y.
		Heat load: 120,000,000 Btu/hr Sodium temp, in: 850°F Sodium temp, out: 1200°F Flow: 1,142,000 lb/hr	Requires conversion for natural-gas firing and a new topping heater with a duty of
1	1		31.0 x 10 ⁶ Btu/hr with outlet temp. capability of 1300°F.
2	1	Main F.D. Fan and Motor - for Heat Source	
		Fan-53,400 cfm with inlet boxes and Dampers 200-hp drive	Existing equipment, now located at Lewiston, N.Y.
3	1	Sodium-to-air, low-level, heat rejector.	
		Test Facility base, operating conditions:	Existing sodium heating sections now
		Service: startup and low-load testing Heat Load (max): 10,000,000 Btu/hr	located at Callery, Pa.
4		Sodium temp in (max): 1200°F Sodium temp out (max): 850°F Flow: 100,000 lb/hr	
4	1	Forced-draft fan for low-level Heat rejector with motor and	
		duct work Fan: 30,000 cfm, 75-hp motor	
5	1	Main sodium circulating pump with motor.	Existing free-surface sodium pump located
		Capacity of available equipment: Flow: 7000 gpm Head: 170 ft	at AI test site near Chatsworth, Calif. (possible use of ex-SIR EM pump of 3300-gpm capacity)
6	1	Low-flow sodium circulating EM	capacity
		pump and motor Service: Startup and low load testing	
-		Flow: 300 gpm Head: 50 ft	

NAA-SR-5993 52

800 039

Ū

L

Ľ

l

II EQUIPMENT LIST (Continued)

ĥ,

			II EQUIPMENT LIST (Continued	nued)			
	Item	Quantity	Description	Remarks			
6 T			Primary Sodium Circuit				
	7	1	Primary Sodium Expansion tank 1,000 gal				
	8	1	Primary-sodium fill and drain tank 5,000 gal				
	9	1	Sodium cold trap, Air Cooled (for primary and secondary sodium) with Blower and Motor				
	10	· · · 1	Plugging-meter assembly				
			Secondary Sodium Circuit				
	100	1	Main sodium circulating pump capacity of available equipment Flow 3000 gpm Head 120 ft	Existing freeze-seal sodium pump located at AI test site near Chatsworth, Calif.			
	101	1	Secondary-sodium expansion tank 1,000 gal	(possible use of ex- SIR EM pump of 3300- gpm capacity)			
	102	1	Secondary-sodium fill- and -drain tank, 3,000 gal	Possible use of 5000 gal ex-SIR tank now at ANL			
	103	1	Plugging-meter assembly				
	-		Water-Steam Circuit				
	200	1	High-pressure spray-type desuperheater Full load base, operating				
			conditions: operating pressure: 1,000 psia inlet temperature: 980°F outlet temperature: 600°F main steam flow, in: 118,000				
			lb/hr spray-water flow: 30,300 lb/hr				

II EQUIPMENT LIST (Continued)

Item	Quantity	Description	Remarks
		Water-Steam Circuit	
201	1	Low-pressure spray-type desuper-	
		heater	
		Full load base, operating condi- tions:	
		operating pressure: 50 psia	
		inlet temperature: 450 °F	
		outlet temperature: 265°F	
		main-steam flow-in: 102,100 lb/hr	
		spray-water flow: 8750 lb/hr	
202	1	High-pressure feed-water heater	
		Full load base, operating conditions:	
		duty: 19,600,000 Btu/hr	
	• •	flow main condensate: 118,000 lb/hr	
		temp in condensate: 350°F	
		temp out condensate: 500°F	
		design pressure: 2500 psig	
		flow steam: 25,700 lb/hr	
		condensing pressure: 800 psia	
203	1	Low-pressure food-motor boston	
205	1	Low-pressure feed-water heater Full load base, operating conditions:	
		duty: 18,000,000 Btu/hr	
·		flow main condensate: 148,300 lb/hr	
		temp in condensate: 225°F	
		temp out condensate: 343°F	
		design pressure: 300 psig	
		flow steam: 20,500 lb/hr	
		condensing pressure: 300 psia	
204	1	Main-steam condenser equipped for	
		deaeration	
		duty: 120,000,000 Btu/hr	
1.1		condensing pressure: 25 psia	
		steam flow: 110,850 lb/hr	
		cooling water temp in: 90°F	
		cooling water temp, out: 120°F	
		cooling-water flow: 8000 gpm	
205	1	Cooling tower with induced draft	
		fan and motor	
		duty: 120,000,000 Btu/hr	
	$h_{i}=1, h_{i}=1, \dots, h_{i}=1$	flow: 8,000 gpm	
		temp water, in: 120°F	
the second		temp water, out: 90°F	

NAA-SR-5993 54 Û

Ũ

in ||

[]

Ĺ

4

II EQUIPMENT LIST (Continued)

Ù

نسا

Item	Quantity	Remarks	
		Water-Steam Circuit	
206	1	Condenser cooling-water pump flow: 8000 gpm head: 70 ft	
207	1	Condenser cooling-water-pump motor, 200 hp	
208	1	Main-condensate circulation pump 350 gpm, 250°F water head: 500 ft	
209	1	Main-condensate circulative- pump motor, 100 hp	
210	1	Boiler feed pump flow: 400 gpm discharge temp: 350°F head: 6,000 ft	
211	1	Boiler-feed-pump motor and gear 900 hp	
212	1	Gas-fired startup boiler 15 hp, 160 psi	Existing equipment located at AI test site near Chatswort Calif.
213	1	Treated-water storage tank, 8,000 gal	
214	1	Treated water circulation pump 50 gpm; head: 50 ft with 10-hp motor	
215	1	Steam generator blowdown tank 1,000 gal	
216	1	Demineralizer unit flow: 7 gpm	
217	1	Subcooler for demineralizer unit 10 gpm cool condensate from 250°F to 100°F 50-psig nominal design	

III MATERIAL LIST, ELECTRICAL SINGLE LINE

Amount	Description	Remarks
1	 4160-volt switch gear Gen. Electric class M20 outdoor 5 breakers rated 1200 A Protective devices: On incoming line (1 only) 	
	3 CT 1 51 1 27 on bus 2 PT 4200-120	
	3 CT W.H. meter Ammeter and switch Voltmeter and switch	
	2) On each branch circuit (4 only) 1 Window CT 1 50N 2 CT 1 49 1 50	
1	480-volt motor control center consists of four 20-inwide sections and contains 1 800-amp incoming breaker 1 350-amp branch circuit breaker	
	 1 250-amp branch circuit breaker 1 20-amp branch circuit breaker 6 size 1 CBS 3 size 3 CBS 1 size 4 CBS 	
	All CBS to have individual 120-volt trans- former for control	
1	 280-volt motor control center consists of three 20-inwide sections. Contains Auto transfer switch 3Ø 400 amp 50-amp branch circuit breaker 20-amp branch circuit breaker size 1 CBS size 4 CBS 	
	l size 5 CBS All CBS to have individual 120-volt trans- formers for control	
1	480-volt power panel	Existing, but replace one existing breaker with 30 20-amp breaker

800 043

Ľ

Ĺ

C

L

III MATERIAL LIST, ELECTRICAL SINGLE LINE (Continued)

.

L

Amount	Description	Remarks
1	480-volt 30 emergency diesel, generator .8PF 300-kva with 350-amp circuit breaker. Aux to include pneumatic start unit	
1	lighting panel 120/208 3Ø 4W with 20 1Ø cts.	
1	10-kva 480-120/208 indor transformer	
1	lighting panel "LPI"	Existing
3300 ft	500-MCM RH-RW 600-volt conductor	
150 ft	350-MCM conductor	
180 ft	No. 2/0 conductor	
150 ft	No. 1/0 conductor	
150 ft	No. 2 conductor	
1000 ft	No. 4 conductor	
250 ft	No. 6 conductor	
2000 ft	No. 12 conductor	
600 ft	No. 4 conductor	
1000 ft	No. 4/0 conductor	
450 ft	No. 4/0 4160-volt.conductor Okonite No. OK10519	
120 ft	No. 6 4160-volt conductor Okonite No. OK10505	
120 ft	No. 1 4160-volt conductor Okonite No. OK10511	
600 ft	No. 8 4160-volt conductor Okonite No. OK10503	
800 ft	3/4-in. conduit	
50 ft	l-in. conduit	

III MATERIAL LIST, ELECTRICAL SINGLE LINE (Continued)

Amount	Description	Remarks
400 ft	1-1/4-in. conduit	
300 ft	2-in. conduit	
50 ft	2-1/2-in. conduit	
260 ft	3-in. conduit	
1	riser on 4160-volt service pole	
3	nonfused cutouts on 4160-volt pole	
1	new 40-ft 4160-volt service pole with cross- arm dead-end construction (next to existing pole)	
1	heating control panel 3Ø 4W S-N with 24 l-pole 15-amp "EH" breakers	

NAA-SR-5993 58 L

•

ĺ

Ū

1

IV. INSTRUMENT INDEX

-

Measuring-systems and control-loop instrumentation are separated into process-variable group numbers. All components in the same instrument-circuit use the same suffix number.

Specific instrument identification numbers have been assigned in accordance with the following table;

First Lette:	r Designations	Type	Group Numbers
	F	Flow	100 through 199
and and a second se	L	Level	200 through 299
	P	Pressure	300 through 399
	Т	Temperature	400 through 499
	X	Misc.	900 through 999

INSTRUMENT		CATEGORY	ATOMICS		7593	NO. 44611	.0	T	
INST RUI	a si i	Index INTERNATIONAL			PROJECT	SCTI		PAGE	60
TAG NO. Series			REFERENCE DWGS	INST Spec No.		ADDITION	L DATA		
100	Flow	Record	Section A		Page 1				
100	Flow	Record & Control	Section A		Page 2				
100	Flow	Computer	Section A		Page 3				
200	Level	Record	Section B		Page 1			:	
200	Level	Indicate Contrel	Section B		Page 2				
200	Level	Record Control	Section B		Page 3				
300	Press.	Indicate	Section C		Page 1				
300	Press.	Indicate	Section C		Page 2	يربساني ورايد ورويه ور			
300	Press,	Indicate Control	Section C		Page 3				
300	Press.	Record Control	Section C		Page 4				•
1	EMF	Scanner	Section D		Page 1			-	
400	Temp.	Record Control	Section E		Page 1				النزير الد ما
400	Temp.	Safety Control	Section E		Page 2				
100	Flow	Trans.	Section F		Page 1			<u> </u>	
100	Misc.	Trans.	Section F		Page 2				
200	Level	Trans.	Section F		Page 3				
300	Press.	Trans.	Section F		Page 4				
REMARKS:			<u></u>		.	ENGR	M.B.B.	agley	
			e e e e e e e e e e e e e e e e e e e	6 14	7	CHK APPD DATE	11-15	like	ė

11-1-19 REV 12-00

INSTRU	AENT	CATEGORY	ATOMICS		7593	NO. 4461	10	
NDEX		Index	INTERNATIO	NAL	PROJECT	SCTI		PAGE 6
TAG NO. Beries		APPLICATION	REFERENCE DWGS	INST SPEC NO.		ADDITION	AL DATA	
· ·					7			
300	Press.	Trans.	Section F		Page 5			
100	Flow	Control Valves	Section G		Page 1			
200	Level	Control Valves	Section G		Page 2			
300	Press.	Control Valves	Section G		Page 3			
400	Temp.	Control Valves	Section G		Page 4			
900	Misc.	Control Valves	Section G		Page 5			
900	Misc.	Control Valves	Section G		Page 6		, , , , , , , , , , , , , , , , , , ,	
100	Flow	Solenoid Valves	Section J		Page 1			
200	Level	Solenoid Valves	Section J		Page 2			
400	Temp.	Soleno i d Valves	Section J		Page 3			
900	Misc.	Solenoid Valves	Section J		Page 4			
100	Flow	Hand Control	Section K	a di sana serit	Page 1			
900	Misc.	Hand Control	Section K		Page 2		· · · · · · · · · · · · · · · · · · ·	
900	Misc.	Hand Control	Section K		Page 3			
100	Flow	Misc.	Section L		Page 1			
EMARKS:	•	· · · · · · · · · · · · · · · · · · ·	a llen an en en			ENGR	M.B.B	gley
			608	048		СНК		
	en e		000			APPD	11-15	2 And

INSTRUMENT		CATEGORY	ATOMICS		7593 NO. 446110	Sec A
INSTRUM		Recorder	INTERNATIONAL		PROJECT SCTI	PAGE 62
TAQ	Flow		REFERENCE DWGS	INST	ADDITIONAL DATA	
NO.	100	APPLICATION		SPEC NO.		
	100	Z Mar analam			3-to 15-1b receiver a	ecorder
FR-103	bd.	3-Mw cooler Na inlet			and 4" meter run	
FR-108	bd.	steam to feedwater heater l			3-to 15-1b receiver a run using 2" flow nog	
FR-109	bd.	steam to feedwater heater 2			3 - to 15-1b receiver run using 2" orifice	
FR-110	bd.	feedwater heater 1 by- pass to cond.			3- to 15-1b receiver run using 2" flow nor	
FR-112	bd.	main L.P. steam header			3- to 15- 1b receiver run using 20" flow no	
	·					·
						· · · · · · · · · · · · · · · · · · ·
PMARMA						
EMARKS:		•		مراجع	ENOR 757 A CHK APPO	Bagley

INSTRUM	ENT	CATEGORY Record	ATOMICS			7593	NO. 4461	10	Sec.A
INDEX		Control	INTER	NATIO	VAL	PROJECT	SCTI		PAGE 63
TÃO NO.	Flow	APPLICATION	REFERENCE	DWGS	INST SPEC NO.		ADDITION	AL DATA	
	100								
FRC-100	bd.	air to main Na heater					3-to 15 mote set		
FRC-101	bd.	fuel gas to main Na heater					3-to 15 mote set		
FRC-102	bd.	main heater Na inlet					3-to 15 mote set		
FRC-104	bđ.	sec. pump Na outlet				control	-lb rece ler sing 8" mete	le mode	
FRC-105	bđ.	steam-gen. steam outlet				3-to 15 single	-1b rece: mode and low nozz	iver con 6" mete	
FRC-106	bd.	steam-gen feedwaterlet inlet				single	-1b rece: mode and _nozzle:	meter r	un usin
FRC-107	bd.	atemperation H ₂ O to H.P. desuperheater				2 = mode flow no	-1b rece and meter zzle rem	r run us ote set.	ing 2"
FRC-111	bđ.	atemperation H _. O to L.P. desuperheater		• • •		2-mode run usi	-1b rece with rem ng 1-1/2"	ote set orifice	and meta
FRC-113	bd.	feedwater to heater l			•	single 4" orif	-1b rece mode and ice plat	meter 1 e	un usin
FRC-114	bd.	cooling-tower water		·		run usi plate	-1b rece ng 16" 1	ine and	orifice
FRC-115	bd.	Gas to Na Topping Heater			·	remote	3-15 lb set and	8" meter	run
FRC-116	bd.	Air to Na topping heater					3-15 lb set and		
REMARKS					800	050	ENGR CHK	M. B. Bs	igley
÷							APPD	44	ff and

INSTRUMENT		CATEGORY	ATOMICS		7593 NO. 446110	Sec.A	
INSTRUM		Computer	INTERNATIONAL		PROJECT SCTI	PAGE 64	
TAG	Flow		REFERENCE DWGS	INST	ADDITIONAL DATA		
NŌ.	100			SPEC NO.			
FC _p -100		heater air-to gas ratio			3-to-15-1b proportions relay	al ratio	
	Tear.	control					
FC104 p	bd. rear	sec-to-pri. Na ratio control			3-to 15-1b proportions relay	al ratio	
FCp-115	bd. rear	topping Htr. air-gas ratio adjust			3-to 15-1b proportions relay	al ratio	
P Cp-105		Main steam flow			Proportional ratio rel pneumatic	lay	
		-					
REMARKS:				<u></u>	ENOR M.B. B	agley	
80(051		an The second s		CHK APPD DATE 11-13-	Tilling)	

.

INSTRUI	MENT	CATEGORY	ATOMICS		7593 NO. 446110	Sec.B
NDEX		Recorder	INTERNATIO		PROJECT SCTI	PAGE 65
TAG NO.	Level	APPLICATION	REFERENCE DWGS	INST SPEC NO.		
	200		and the second			
LR-200	bd.	Pri. drain tank			3- to 15 - 1b received	r
		Pri. exp. tank				
<u>LR-201</u>	<u>_bd.</u>	Sec. exp.				
LR-202	bd.	tank Sec. Na drain			¥	
LR-207	bd.	tank			3- to 15- 1b receiver	•
LR-208	bd.	Steam-gen upper Na level			3 - to 15- 1b receive)T
LR-209	bd.	Steam-gen lower Na level			3- to 15- 1b receiver	•
	1					
	1					
						· · · · · · · · · · · · · · · · · · ·
	1					
TEMARKS			۰ ۵۸	0 052	ENGR M. B. CHK	Bagley
***	nav 12-60		OU	J U52	APPD DATE 111-1	5-60

INSTRUM INDEX	IENT	CATEGORY Indicator Control	ATOMICS INTERNATION	NAL	7593 NO. 446110 Sec. B PROJECT SCTI PAGE 66		
TAG NO.	Level		REFERENCE DWGS INST SPEC NO.		ADDITIONAL DATA		
LIC- 204	200 bd.	Heater 1 H ₂ 0 level		570	3-to-15 lb receiver controller, two mode		
LIC- 205	bd.	Condenser Level		300	3-15-1b receiver controller, electric on-off control action		
LIC-206	bđ	Heater 2 H ₂ 0 level		570	3-to-15-1b receiver controller, two mode		
				• • •			
		1					
		-					
REMARKS:	0 053	3		ŝ.	ENGR M.B.Bagley CHK APPD DATE Nov. 15, 1900		

INSTRUM	ENT	CATEGORY Recorder Control	ATOMICS INTERNATIO	NAL	7593 PROJECT	NO. 446110 SCTI	Sec. B
	Level 200		REFERENCE DWGS	INST Spec No.		ADDITIONAL DATA	
LRC-203	bd.	Steam-gen H ₂ 0 level			3-to 15 two mod	5- lb receiver le	control]
	an a						
				-			
		· · · · · · · · · · · · · · · · · · ·					
						<u></u>	
							····#

REMARKS						ENGR M. B CHK	. Babley
			800 ()54		APPO DATE 11-1	Miliciae

INSTRUMENT		CATEGORY Indicator	ATOMICS		7593 NO. 446110 Sec. C
INDEX			INTERNATIONAL		PROJECT SCTI PAGE 68
TAG NO.	Press	APPLICATION	REFERENCE DWGS	DWGS INST SPEC NO.	ADDITIONAL DATA
	300				
PI-300	bd.	Pri. Na drain tank			3-to-15- 1b 6" receiver
PI-301	bd.	P ri, Na Expansion Tank			3-to 15- 1b 6" receiver
PI-302	bd.	Heater Na Outlet			3- to 15- 1b 6" receiver
PI-304	bd.	Heater Na Inle t			3- to 15- 1b 6" receiver
PI-305	local	Steam to Na cooler			6" gauge with pig-tail and 3/4" block valve
PI-306	bd.	Na cooler Inlet			3- to 15- 1b 6" receiver
PI-307	bd.	I.H.X. Na inlet			3-to 15- 1b 6" receiver
PI-308	bd.	Sec. Na exp. tank	· · · · · · · · · · · · · · · · · · ·		3-to 15- 1b 6" receiver
PI-310	bđ.	I. H. E. sec. Na outlet			3- to 15- 1b receiver 6"
PI-311	bd.	I. H. E. pri. Na inlet			3- to 15- 1b 6" receiver
PI-313	bd	Sec. Na pump suction			3-to 15- lb receiver 6"
PI-315	bd.	Steam header 1st stage			3-to 15- 1b 6" indicator
PI-316	bd.	Main steam by-pass to condenser			3- to 15- 1b 6" indicator
PI-319	bd.	Condenser pressure			3- to 15-1b receiver, 6" indicator
PI-320	bd.	Hot-well pressure			
PI-323	bd.	N& cooler outlet			3- to 15-1b receiver, 6" indicator
PI-324	bd.	Sec. Na drain tank			3- to 15-1b receiver, 6" indicator
REMARKS:					ENGR M. B. Bagley
an ^{an} an an An Anna An An Anna An			800 (55	CHK APPD Allaliano DATE 11-15-60

INSTRUM	AFNT	CATEGORY		TOMICS		7593	10. 446110	Sec. C
INDEX	* he 7 * 1	Indicator	INTE	RNATIO	NAL		SCTI	PAGE 69
TAG NO.	Press		REFERENC	E DWGS	INST		ADDITIONAL DATA	
NO.	300	AFFCIDATION			SPEC NO.			
PI-325	local	topping heat- er Na inlet	े हा जिंदी 			3- to 15	-lb, 6" rece	iver
PI-326	bd.	topping heat- er Na outlet				3- to 15	-lb, 6" rece	iver
							· · · · · · · · · · · · · · · · · · ·	
								<u> </u>
			· ·	• • • • • • • • • • • • • • • • • • •				
								
		······································					• • • • • • • • • • • • • • • • • • •	
ی در این ا مراجع								
<u>.</u>		ang ^{bat} ang tang tang tang tang tang tang tang t	• • • • • • • • • •					
						an a		
								
EMARKS:						l	ENGR M. B	. Bagley
					300 05	6	СНК	
			-	•	· ·		APPD DATE 11-	15-60

INSTRUM	IENT	CATEGORY Indicator	ATOMICS	;	7593 NO. 446110 Sec.	C
INDEX		control	INTERNATIO	NAL	PROJECT SCTI PAGE 7	
TAG NO.	Press 300		REFERENCE DWGS	INST SPEC NO.	ADDITIONAL DATA	
PIC- 309	bd.	Sec. Na exp. tank			3t to 15-1b receiver controll P&D control functions and pressure switch in output	er
PIC-318	bđ	Feedwater by- pass to con- denser			3-to 15-1b receiver controll 1-mode	er
				4		
<i></i>						
					N	
			•			
EMARKS				803 0	57 ENGR M. B. Bagley CHK APPD	

INSTRUM	ENT	CATEGORY Record	INTERN	MICS	AL	7593 PROJECT		46110		Sec. C PAGE 71
TAG NO.	Press 300	Control Application	REFERENCE	DWGS	INST SPEC NO.		ADDIT	IONAL D	ATA	
PRC- 312	bd.	Steam-gen steam outlet	\$			3- to contro	ller,	2 mode		
PRC- 314	bd.	Steam-gen steam outlet				3-to 15 control	ler, 2	2 mode		
PRC- 317	bd. ·	Main steam 2nd stage				3- to 1 control	ler,	single	mode	
PRC-321	bā.	Main-steam third-stage pressure				3- to 1 control	ller, 1	L- mode)	
PRC- 322	bđ	Main-steam first-stage pressure				3- to contro	L5-1b	receiv 2-mode	er	
	-									
						-				
								<u></u>		
							· · · · ·			
									<u></u>	
						_				
)										
REMARK	B:							ENGR	M. 1	B. Bag
					800	058		CHK APPD DATE		15-60

ł

INSTRUMENT INDEX				7593 NO. 446110 Se	
	E. M. F. Scanner	INTERNATION	NAL	PROJECT SCTI PAGE	72
TAG NO.		REFERENCE DWGS	INST SPEC NO.	ADDITIONAL DATA	
TS _c -1	Process and pre-heat temp			C. A. type thermocouples	
	Alarm scanner Other feature	for 300 points to include:	ith TAH	and TAL functions for all po	oint
	b) Any ind	licator.	ually sv	• itched to a recorder or	
	d) Var e) Rēp	ible and audible iable scan rate. eatability of ala	rm setti	ng ± 0.05 ^{mv} .	
	g) Ala	omatic alarm rese rm test. nination of group		acknowledgment. ints from scan sequence.	
	i) Loc j) Cir	c-up circuit for cuitry provided f	momemtar or alarm	y alarms. printer.	
		cision temperatu	e indica	tor.	
	Six 12-			recorder controllers for ints, and control of pre-	
		1-	-	and TAL functions.	
	Scanner acces	sories include:]	
		ea 4" SS thermome thermocouples we			
	c) 300 d) 50	thermocouple run 20 amp contactors	s of 75 ¹ for con	ea (extension wire) trol elements for preheat	
	con	trol.			
			·		
REMARKS				ENGR M. B. Bagl	0 <u>7</u>

INSTRU INDEX	MENT	CATEGORY Recorder	ATOMICS		7593 NO. 446110 Sec. I PROJECT SCTI PAGE 73
TAG NO.	Temp 400	Control APPLICATION	REFERENCE DWGS	INST SPEC NO.	PROJECT SCTI PAGE 73 ADDITIONAL DATA
TRC- 400	bđ	35-Mw heater Na outlet	>#**		C. A., T. C., well & ext. with 3-mode pneumatic control, el null bal. measuring circuit.
TRC- 40¢	bđ	Sodium cooler outlet			
TRC- 402	bđ	Steam-gen Na outlet			C. A., T. C., well & ext. win 2-mode pneumatic control, ele null bal. measuring circuit.
TRC- 403	bd	Main-steam attemperator			
TRC- 404	bđ	Main-steam attemperator			
TRC- 409	bd	Topping heat- er Na outlet			C. A., T. C., well & ext. win 3-mode pheumatic control, ele null-bal measuring circuit.
			n an		
			· ·		
•					
REMARK			٩٩	0 060	ENGR M. B. Bagley CHK
·* .				-	APPO

INSTRUM	IENT	CATEGORY Ssfety	ATOMICS INTERNATION		7593 NO. 446110 Sec. E
INDEX		Control		r	PROJECT SCTI PAGE 74
TAG NO.	Temp 400	APPLICATION	REFERENCE DWGS	INST Spec No.	ADDITIONAL DATA
TSC- 405		Gas-fired heater		Exist.	Fire-eye control unit, power supply, gas solenoid valve and start-stop stations.
TSC- 406	local	Topping heater			Fire-eye control unit, power supply, gas solenoid valve and start-stop stations.
TSC- 407	local	Gas-fired heater			Purple peeper system (Brown Inst. Co.)
ISC - 408		Topping Heater			Purple Peeper System (Brown Inst. Co.)
				· ·	
· · · ·					
· · · · · · · · · · · · · · · · · · ·					
REMARKS			<u></u>	<u>مر</u>	ENGR M. B. Bagley CHK
				ب الم ب	G4 APPD

740-L-19 REV 12-60

INSTRUM	ENT	CATEGORY		MICS		7593	NO.	446110		Sec.
INDEX		Transmitter	INTERN	ATION		PROJECT	5	SCTI		PAGE 7
TAG NO.	Flow		REFERENCE D		INST Spec No.		ADO	ITIONAL I	ATA	
FT-100	Local	Air to 35-Mw heater				0-100" 15-1b o Tube In	utpu side	t & 24" Length	Pito [.]	t
FT-101		Gas to 35-Mw heater				15 - 1b	outpi	مسترجي ينفح مرجعت مردان		
FT-102		Pri. Na pump discharge				3- to 1 D/P sys range	5-1b tem,	output 0 - 100	NaK H2C	fill;
FT-103		Sodium cooler Sodium imlet				3- to 19 D/P sys	tem o	- 100 [°]	' [#] 2 ⁰	rang
FT-104		Sec. Na pump discharge					stem,	0 - 10	00" H ₂	0 rai
FT-105		Steam-gen outlet	·			3- to 1 H ₂ 0 ran bIock v	ge, alve	condens s for 3	ate c 000 1	hambe b ser
FT-106		Feedwater to steam gen.				H_O ran 3000 lb	ge, ser	vice	ck va	lves
FT-107		F. W. to de- superheater				3- to 1 H ₂ 0 ran 3000 lb	ser	vice		
FT-108		Steam to heater No. 1 shell				3- to 1 H ₂ 0 ran & block	: v _a l	ves for	2000	1b 8
FT-109		Steam to heater No. 2 shell				3- to 1 H ₂ 0 ran & block	ge, val	condens ves for	ate c 3000	hambe 1b a
FT-110		Heater No. 1 By-pass to condenser				3- to 1 H_0 ran 3000 1b	ser	vice		
FT-111		F. W. to de- superheater No. 2				3- to 1 H_O ran 300 lb	ge, serv	block v ice	alves	for
FT-112		Main steam final stage				H ₂ O ran & block	ge, val	ves for	ate c 300	hambe 15 se
FT-113		Condensate to heater No. 1, T. S.				3 - 15- range, 300 lb	bloc serv	k valve ice	s for	
FT-114		Cooling tower water	antina Secondaria Maria Secondaria Maria Secondaria			3- to 1 H_O ran 300 lb	serv	and blo ice	ck va	
FT-115		Gas to Na Topping Heater				3-15 pa	iğ o	an Thursday		
FT-116		Air to Na Topping heater				0-100 ^M 3-15 ps			1	
REMARKS:			; 4	800).062			ENGR M CHK	. В.	Bagle

INSTRUM		CATEGORY	ATOMICS)	7593 NO. 446110 Sec.	F
INDEX	i 6,1% ,1	Transmitter	INTERNATIO		PROJECT SCTI PAGE 7	
TAG NO.	Misc.		_REFERENCE DWGS	INST SPEC NO.	ADDITIONAL DATA	• •••• ••
SvT-102		Pri. Na pump		Exist	Tach. generator unit with electric output signal	
P/ET- 102		Pri. Na flow		Exist	3 - to 15-16 input, and 10-5 M.V. output, pneumatic - electric trans.	0
S vT- 104		Secondary Na pump			Tach. generator unit with electrical output signal	
P/ET- 104		Secondary Na flow			3- to 15-1b input and 10-50 M.V. output, pneumatic- electric trans.	
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
	· · · · · · · · · · · · · · · · · · ·					
			·			
REMARKS:	0 06 Ev 12-58			·.	ENGR M.B. Bagley CHK APPD DATE 11-15-60	

INSTRUM		CATEGORY	ATOMI	CS	7593 NO. 446110	Sec. F
INDEX		Transmitter	INTERNAT	ONAL	PROJECT SCTI	PAGE 77
TAG	Level		REFERENCE DWG		ADDITIONAL DATA	
NO.	200	APPLICATION		SPEC NO.		
LT-200	Local	Pri. Drain tank	ter, and the second s		3 - to 15-1b output, O H ₂ O D/P system NaK fil	-100" led
LT-201					3 - to 15-1b output, 0 H ₂ O D/P system NaK fil	-100" led
LT-202		Sec. Exp. tank			3 - to 15-1b output, O H ₂ O D/P system NaK fil	led
LT-203		Steam Gen.			3 - to 15-1b output, 0 H ₀ range, condensate & ² block valves for 300	chamber 0 1b ser
LT-204		Heater No. 1 Shell Side			3 - to 15-1b output, 0 H ₂ O range, and block v for 3000 lb service	alves
LT-205		Hot Well			3 - to 15-1b output, 0 H ₂ O range, and block v for 300 1b service	alves
LT-206	an an tao ang	Heater No. 2 Shell Side			3 - to 15-1b output, 0 H ₂ O range, and block v for 300 1b service	valves
LT-207		Sec. Na Drain Tank			3 - 15-1b output, 0-10 H ₂ O D/P system NaK fil 2	00" .led
LT-208		Steam Gen. Upper Na Level				
LT-209		Steam Gen. Lower Level				
						1
		1				
REMARKS				800 064	ENGR M.B.BE CHK APPD DATE 11-15	ellisme

		CATEGORY	ATOMICS		7593 NO. 446110 Sec.	
INSTRUM	IENT	Transmitter	INTERNATION			
	Press		REFERENCE DWGS	INST	PROJECT SCTI PAGE 7 ADDITIONAL DATA	
TAG NO.	300	APPLICATION	REFERENCE DWGS	SPEC NO.	ADDITIONAL DATA	
	_				3- to 15-1b output, 0 to 100	
PT-300	Local	Pri. drain tank			1b trans with helical pressu	
			l 		element 3- to 15-1b output, 0 to 100	
PT-301	Local				1b trans with helical pressu	
		tank	l	/ . 	element	
PT-302	Local	Na heater			3- to 15-1b output, 0 to 100 1b trans. and NaK filled	/- _ [
		Na outlet			helical element	•
PT-304	Local	Na heater,				- 1 - f
		Na inlet				\ \
PT-306	Local	Na to Na				i e
		cooler				
PT-307	Local	•				
		inlet			لم	
PT-308	Local	Pri. exp.			3- to 15-1b output, 0 to 100)
		tank			3- to 15-1b output, 0 to 100 1b trans and helical press e	le
PT-309	Local	Pri. exp.			3- to 15-1b transmitter, o t	
		tank			100-1b with NaK filled sense element	
PT-310	Local	IHX Na sec.				- [
11-)10	DUCAI	outlet				
PT-311	Local	IHX Na pri.				7 [
• • -) - 1	DOCAT	outlet				
PT-313	Local	Sec. Na pump				
/-/		suction				
PT-314	Local	Main-steam			3- to 15-1b output, 0 to 250	0- r
		gen-outlet			lb range with condensate chamber and block valve	
PT-315	Local	Main-steam			3- to 15-1b output, 0 to 200	
		lst stage reduction			lb range with condensate cha ber and block walve	m -
		Main steam			3- to 15-1b output, 0 to 50-	
PT-316	Local	condenser by-pass			lb range, condensate chamber and block valve	
		Heater No. 1			3- to 15-1b output, 0 to 100	0-
PT-317	Local	shell			1b range, condensate champer	
		Feedwater			and block valve 3- to 15-1b output, 0 to 300	
PT-318	Local	pump dis-			1b range and block valve	
DØ 730		charge			3 to 15-1b output, 30" vac t	_
PT-319	Local	Condenser		-	+ 45-1b range, condensate	
IEMARKS:					chamber and block valve	[
	· · ·				ENGR M. B. Bagley CHK	╺╼┥┤ ┕╸
603	065				APPO MI Millien	
	· · · ·				DATE 11-15-60	
.4 24 mile 148	1.18 PAR 18 99 88		فعيفدا فالشاق الرواكي بالبالك فيتجدى متتجاد فالتجرب بي		ويلد الجواب بالا بالمعادير وينعد فلألفظ أوراف فبجاد التجولية القادات الابوار والمجرب الم	

30-L-19 REV 12-00

T

INSTRUM	ENT	CATEGORY	ATOMIC	S	7593	NO.	446110	Sec. F
NDEX		Transmitter	INTERNATIO		PROJECT	SCT		PAGE 79
TAG	Press		REFERENCE DWGS		[TIONAL DAT	
NO.	300	APPLICATION		SPEC NO.				
PT-320		Hotwell					output, O ock valve	to 50-16
PT-321		Heater No.2 shell			3- to 1 range, block v	conder	output, O nsate cha) to 400-11 mber and
P T-3 22		Main steam final stage			3- to 1	5-1b conder	nsate cha	to 100-11 mbers and
PT-323		Na outlet, Na cooler			3 to 15	-lb ti	cans., 0- led senso	100 lb r element
PT-324		Sec. Na drain tank			3- to l lb hel	5-1b (ical (output, O element	- to 100-
PT-326		Topping heat- er Na outlet			3-15 lb system,	outpi 0-100	it, Nak f)° H ₂ 0 ra	itted D/P nge
				n Stan Station		•		
							· · · · · · · · · · · · · · · · · · ·	
REMARKS			.	- I		EI	In the second	. Bagley
				80	0 066	Ā	PD I.C.	1-15-60

INSTRU	MENT	CATEGORY Control		OMICS			NO. 446110	Sec. G
INDEX	1	Valve			1	PROJECT	SCTI	PAGE 80
TAG NO.	Flow 100		REFERENCE	DWGS	INST Spec No.		ADDITIONAL DAT	<u>`A</u>
FCV 100		35-Mw Na heater com- bustion air					actuator and r - type uni	
FCV 101		35-Mw heater fuel gas					matic and po cast iron, b	
FCV 104		sec. Na pump discharge				8" vane seal, p	-type valve, ositioner, 3	freeze -to 15-1b
FCV 106		feedwater to steam gen					0-16, RTJ F1	
FCV 115		desuperheater H ₂ 0	· · · · · · · · · · · · · · · · · · ·			2",3000	-lb carbon-s	teel body
FCV 115		Topping heate fuel gas	r				matic & posi cast iron,br	
FCV 116		Topping heate combustion at	r r				actuator & p r type, pneu	
				•				
						-		
REMARKS	Prov:	ide valve posit	ioners for	all w	alves	•	CHK	.Bagley <i>Will chief</i> 15-60

INSTRUI	AENT	CATEGORY Control	AT	OMICS	NAL	7593 PROJECT	NO. 4463 SCTI		Sec.G
TAG NO.	Level 200	Valve Application	REFERENCE	DWGS	INST SPEC NO.		ADDITION		
204		Heater No.l level				2", 15 body	00-16 RTJ	, carbo	on-ste
205		make-up H ₂ 0				2", 30	0-1b carb	on-stee	el bod
206		Heater No. 2 level				2", 30 with s	0-lb carl s trim	oon-stee	el bod
				· .					
									-
		an a						1999 - 1999 -	
n an taon an taon 1995 - Anna Anna Anna 1997 - Anna Anna Anna Anna Anna Anna Anna An									
									· · · · · · · · · · · · · · · · · · ·
REMARKS	Brond	a walua mané éé	onora for	0]]	1 705		ENGR	M.B.B	gley
	FFOVIO	le valve positi	UNERS IOF	all va	1800	068	CHK	1.1.0	itte

INCTOIN		CATEGORY	ATOMICS		7593 NO. 446110 Sec.G
INSTRU		Control Valve	INTERNATION		PROJECT SCTI PAGE 82
TAG	Press.		REFERENCE DWGS	INST	ADDITIONAL DATA
NO.	300	APPLICATION		SPEC NO.	
305		steam to Na cooler			2", 300-1b, raised face flange
314a		main-steam steam-gen. out			4" double-pt. high-pressure body and valve construction
314b		main-steam second stage			6", 1500-1b raised-face carbon steel body and stellated seats and guides
317		2nd-stage- steam main hdr.			6", 600-1b raised-face carbon stell body, ss trim
318		heater No. 1 feedwater by- pass			2", 600-1b, raised face flange control valve
321		3rd Stage Steam Main Header			6",600-1b raised-face carbon- steel body, ss trim
322		4 ^m -stage steam main hdr.			
	,				
EMARKS:	Provid	e positioners			ENGR M.B.Bagley CHK
		800 069			APPO DATE 11-15-60

750-L-19 REV 12-68

V 16 VU

INSTRUM	AENT	CATEGORY Control Valve	AT	OMICS NATION	NAL	7593 PROJECT	NO. 446110 SCTI	Sec.G PAGE 8
TAG NO.	Temp 400	APPLICATION	REFERENCE	DWGS	INST SPEC NO.		ADDITIONAL DA	ТА
C¥ 401	+00	Na cooler louver				4" str pneuma	oke, air cyli tic position	inder, and er
						· .		
								· · · · · · · · · · · · · · · · · · ·
			1					
	-							
								<u> </u>
REMARKS	Prov	ide positioner	s for size 800 07		J 3"		CHK APPD	B. Bagley

NDEX Value INTERNATIONAL PROJECT SCTI PADE 84 Tag Misc. APPLICATION REFERENCE DWGS INAT ADDITIONAL DATA 900 Gas Sec. Sec. NO. Sec. NO. Sec. NO. 901 Gas Sec. Sec. NO. Sec. NO. Sec. NO. 901 Gas Sec. NO. Sec. NO. Sec. NO. 902 JHX Sec. Sec. NO. Sec. NO. 903 Gas Sec. NO. Sec. NO. Sec. Sec. Trim and lubricator 901 Gas Sec. NO. Sec. Trim and lubricator Sec. Trim and lubricator 902 JHX Sec. NO. Sec. Trim and lubricator Sec. Trim and lubricator 903 Ma to pri. Sec. No. Sec. Trim and lubricator Sec. Trim and lubricator 904 Pri. Na IHX Sec. No. Sec. Trim and freeze seal, positioner, 3-15415 905 sur. pri. Bay Sec. No. Sec. No. Sec. No. 906 Sec. No. Sec. No. Sec. No. Sec. No. 907 pupp disch. Sec. No. Sec. No. Sec. No. 907 sur. pri. Na Sec. No. Sec. No. Sec. No. 906 Sec. No.	INSTRU	MENT	CATEGORY Control	ATOMICS	-	7593 NO. 446110	Sec.G
NO. APPLICATION SPEC NO. 900 Gas %" air-operated, single-port S.S. trim and lubricator 901 Gas %" air-operated, single-port S.S. trim and lubricator 901 Gas %" vane-type valve, freeze seal, positioner, 5-151b 902 JIX % vane-type, freeze seal, positioner, 5-151b 903 Ka to pri. Ka cooler 3" vane-type, freeze seal, positioner, 5-151b 904 Out 0" Na gate valve, pneumatic cyloperated, and freeze sea 905 aux. pri. EN pump 0" vane-type valve, freese seal pneumatic 906 disch. 3" gate and freeze seal vith pneumatic positioner 906 wir.pri.Na pump disch. 3" gate and freeze seal vith pneumatic positioner 908 & 907 war.pri.Na pump disch. 3" gate and freeze seal vith pneumatic positioner 910 Na 2" bellows seal, single-port, velded nipples with S.S. trim 911 Gas %" air-operated, single-port s.S. trim and lubricator 913 Na 2" bellows seal, single-port S.S. trim and lubricator 914 Gas \$" air-operated, single-port S.S. trim and lubricator 915 Gas \$" air-operated, single-port S.S. trim and lubricator	INDEX			INTERNATIO		PROJECT SCTI	PAGE 84
900 Gas Study 901 Gas S.S. trim and lubricator 902 JRX S.S. trim and lubricator 903 Sature S.S. trim and lubricator 904 Sature Sature 905 Sature Sature 906 A.S. trim Sature 907 Sature Sature 908 A.S. Sature 909 * Na Sature 900 Na Sature 910 Na Sature 911 Gas Sature 912 Gas Sature 913 Na Sature 914 Gas Sature 915 Gas Sature 916		Misc.	APPLICATION	REFERENCE DWGS		ADDITIONAL DATA	
900 Gas S.S. trim and lubricator 901 Gas 8" Vane-type valve, freeze seal, positioner, 5-154bb pneumatic HCV Pri. Na to 3" vane-type, freeze seal, positioner, 5-154bb pneumatic HCV Na to pri. 3" vane-type, freeze seal, positioner, 5-154bb pneumatic HCV Na to pri. 901 HCV Pri Na IHX 6" Na gate valve, pneumatic 904 out 904 905 aux. pri. 2" variable auto-transformer 2905 aux. pri. 3" gate and freeze seal vith pneumatic positioner 906 disch. 3" gate and freeze seal vith pneumatic positioner 907 punp disch. 3" gate and freeze seal vith pneumatic positioner 909 * Na 2" bellows seal, single-port, welded nipples with S5 trim 910 Na 2" bellows seal, single-port S.S. trim and lubricator 911 Gas 2" bellows seal, single-port S.S. trim and lubricator 912 Gas 2" bellows seal, single-port S.S. trim and lubricator 914 Gas 2" bellows seal, single-port S.S. trim and lubricator 915 Gas 2" single-port S.S. trim and lubricator 915					SPEC NO.		
HGV pri. Na to B" Vane-type valve, freeze 902 HX B" Vane-type valve, freeze 903 Na to pri. J" vane-type, freeze esal, positioner, 3-154b 903 Na cooler Denmatio 904 pri Na IHX B" Na gate valve, pneumatic 905 aux. pri. B" vane-type valve, freeze seal, positioner, 3- to 15-1b 904 out Cyl-operated, and freeze seal 905 aux. pri. Variable auto-transformer 906 disch. S" vane-type valve, freeze seal vith 907 pump disch. S" vane-type valve, freeze seal vith 908 wurth of the seal, single-port, valve, freeze seal vith 909 * Na 910 Na 2" bellows seal, single-port, valded nipples vith SS trim 911 Gas S. trim and l	900		Gas				
902 IHX seal, positioner, 3-154bb HOV Na to pri. positioner, 3- to 15-1b 903 Na cooler Privanationer, 3- to 15-1b HCV pri Na IHX 6" Na gate valve, pneumatic cyloperated, and freeze seal, positioner, 3- to 15-1b HCV pri Na IHX 6" Na gate valve, pneumatic cyloperated, and freeze seal cyloperated, and freeze seal cyloperated, and freeze seal cyloperated, and freeze seal seal preumatic cyloperated, and freeze seal seal preumatic cyloperated, and freeze seal vith good 905 aux. pri. Na gate and freeze seal vith pneumatic positioner 906 disch. 3" gate and freeze seal vith pneumatic positioner 907 aux. pri.Na 3" gate and freeze seal vith pneumatic positioner 907 aux. pri.Na 3" gate and freeze seal vith pneumatic positioner 906 disch. 2" bellows seal, single-port, welded nipples with S.S.trim 910 Na 2" bellows seal, single-port S.S. trim and lubricator 911 Gas 2" bellows seal, single-port S.S. trim and lubricator 913 Na 2" bellows seal, single-port S.S. trim and lubricator 914 Gas S.S. trim and lubricator 915 Gas S.S. trim and lubricator	901		Gas				
HCV Na to pri. 3" vane-type, freeze seal, positioner, 3- to 15-1b HCV pri Na IHX 8" Na gate valve, pneumatic cyloperated, and freeze seal 905 aux. pri. variable auto-transformer HCV pri. pump 8" vane-type valve, freeze seal 905 aux. pri. 8" vane-type valve, freeze seal 906 disch. 8" vane-type valve, freeze seal vith 907 pri. pump 8" vane-type valve, freeze seal vith 906 disch. 3" gate and freeze seal vith 907 aux. pri.Na 3" gate and freeze seal vith 908 # Na 2" bellows seal, single-port, welded nipples with S.S.trim 910 Na 2" bellows seal, single-port S.S. trim and lubricator 912 Gas 2" bellows seal, single-port S.S. trim and lubricator 913 Na 2" bellows seal, single-port S.S. trim and lubricator 915 Gas 2" single-port S.S. trim and lubricator 916 Gas X" air-operated, single-port S.S. trim and lubricator						seal.positioner.3-15	
HOV 904 pri Na IHX out 6" Na gate valve, pneumatic cyloperated, and freeze sea 905 aux. pri. EM pump variable auto-transformer HCV 906 pri. pump disch. 8" vane-type valve, freese seal pneumatic 907 pump 8" vane-type valve, freese seal pneumatic 908 aux. pri.Na pump disch. 3" gate and freeze seal with pneumatic positioner 908 * Na 2" bellows seal, single-port, velded nipples with S.S.trim 910 Na 2" bellows seal, single-port S.S. trim and lubricator 912 Gas 2" bellows seal, single-port S.S. trim and lubricator 914 Gas 2" bellows seal, single-port S.S. trim and lubricator 915 Gas 2" bellows seal, single-port S.S. trim and lubricator			-			3" vane-type, freeze	
EM pumpHCV 906pri. pump disch.8" vane-type valve, freese seal pneumaticCV 907 909aux. pri.Na pump disch.3" gate and freeze seal with pneumatic positioner208 & 209*Na2" bellows seal, single-port, welded nipples with S.S.trim910Na2" bellows seal, single port, welded nipples with SS trim911Gas2" bellows seal, single-port S.S. trim and lubricator912Gas2" bellows seal, single-port S.S. trim and lubricator913Na2" bellows seal, single-port S.S. trim and lubricator914Gas\$"air-operated, single-port S.S. trim and lubricator915Gas*916Gas\$"air-operated, single-port S.S. trim and lubricator						8" Na gate valve, pn	eumatic
906 disch. seal pneumatic GV aux. pri.Na pump disch. 3" gate and freeze seal with pneumatic positioner 907 pump disch. 2" bellows seal, single-port, welded nipples with S.S.trim 910 Na 2" bellows seal, single port, welded nipples with S.S.trim 911 Gas 2" bellows seal, single-port S.S. trim and lubricator 912 Gas 2" bellows seal, single-port S.S. trim and lubricator 913 Na 2" bellows seal, single-port S.S. trim and lubricator 914 Gas \$" air-operated, single-port S.S. trim and lubricator 915 Gas \$" air-operated, single-port S.S. trim and lubricator 916 Gas \$" air-operated, single-port S.S. trim and lubricator	905		_			variable auto-transf	ormer
907 pump disch. pneumatic positioner 208 & Na 2" bellows seal, single-port, welded nipples with S.S.trim 910 Na 2" bellows seal, single port, welded nipples with SS trim 911 Gas 2" bellows seal, single-port 912 Gas %" air-operated, single-port 913 Na 2" bellows seal, single-port, welded nipples with S.S.trim 914 Gas 2" bellows seal, single-port 915 Gas %" air-operated, single-port 916 Gas %" air-operated, single-port 916 Gas %" air-operated, single-port							freege
2009 * Na * Velded nipples with S.S.trim 910 Na 2" bellows seal, single port, welded nipples with SS trim 911 Gas %" air-operated, single-port 912 Gas 2" bellows seal, single-port, welded nipples with S.S.trim 913 Na 2" bellows seal, single-port, welded nipples with S.S.trim 914 Gas 2" bellows seal, single-port S.S. trim and lubricator 915 Gas #" air-operated, single-port S.S. trim and lubricator 916 Gas #" air-operated, single-port S.S. trim and lubricator							eal with
910 Na welded nipples with S5 trim 911 Gas %" air-operated, single-port 912 Gas 2" bellows seal, single-port, 913 Na 2" bellows seal, single-port, 914 Gas %" air-operated, single-port 915 Gas %" air-operated, single-port 916 Gas %" air-operated, single-port		*	Na				
911 Ugs S.S. trim and lubricator 912 Gas 2" bellows seal, single-port, welded nipples with S.S. trim 913 Na 2" bellows seal, single-port, welded nipples with S.S. trim 914 Gas %"air-operated, single-port S.S. trim and lubricator 915 Gas %" air-operated, single-port S.S. trim and lubricator 916 Gas %" air-operated, single-port S.S. trim and lubricator	910		Na				
913 Na 2" bellows seal, single-port, welded nipples with S.S.trim 914 Gas %"air-operated, single-port S.S. trim and lubricator 915 Gas %" air-operated, single-port S.S. trim and lubricator 916 Gas %" air-operated, single-port S.S. trim and lubricator	911		Gas				
915 Na welded nipples with S.S. trim 914 Gas \$\mathbf{X}^{\mathbf{w}} air-operated, single-port 915 Gas \$\mathbf{y}^{\mathbf{w}} air-operated, single-port 916 Gas \$\mathbf{X}^{\mathbf{w}} air-operated, single-port	912		Gas				
914 Gas 915 Gas 916 Gas 316 Gas 317 Gas 318 34" air-operated, single-port 319 S.S. trim and lubricator	913		Na				
916 Gas X" air-operated, single-port S.S. trim and lubricator	914		Gas				-
S.S. trim and lubricator	915		Gas				
	916		Gas				
	¥ 2 va		800 07:	L		APPO DATE 11-15	-60

INSTRU	MENT	CATEGORY	ATOM		7593 NO. 446110	Sec.G
NDEX		Control Valve	INTERNAT	IONAL	PROJECT SCTI	PAGE 85
TAG NO.	Misc. 900	APPLICATION	REFERENCE DW	GS INST SPEC NO.	ADDITIONAL D	ATA
917		Gas			¾", air-operated, s S.S. trim and lubri	
HCV 918		Na to steam gen.			8" Na gate valve, j cyloperated, and	neumatic freeze sea
919	*	Hi-pressure desuperheater water			2", 3000-1b carbon-	steel bod
919	*	startup by- pass to con denser			2", 2500-1b body	
920		steam-gen.			2" 304 S.S. 1200°F, ating pressure,2500 bellows seal,& pneu)-1b design
921		steam-gen Na drain				
923		steam-header relief adj.			2",600-lb raised-fa sheel body	ice c arbon
924		cooling H ₂ O from tower			16", butterfly and	piston
925		condenser condensate pump disch.			4", 600-1b, raised gate	ball flan
926		Make-Up Water			2", 300-1b carbon-4	steel body
928		H ₂ O to gas fired preheat	er Fr		2", 300-1b carbon- with S.S. trim	steel body
929		Na Heater By pass			8" vane-type, free pneumatic position	
EMARKS	Provi	de positioners	for 2" and la	rger	ENGR M.	B. Bagley
			.	800	072 APPO	-15-60

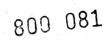
INSTRUM	IENT	CATEGORY Solenoid	ATOMICS		7593 NO. 446110 Sec.J
INDEX TAg	Flow	Valve	REFERENCE DWGS	INST	PROJECT SCTI PAGE 86 ADDITIONAL DATA
NÔ.	100	APPLICATION		SPEC NO.	
s⊽- 104		Air			¼", 3-ŵay solenoid, 110 VAC operations
SV- 106		Air			14", 3-way solenoid, 110 VAC operation
SV- 115		Air			¼", 3-way solenoid, 110 VAC operation
EMARKS:	00 07	73			ENGR M.B.Bagley CHK APPD
0-L-19 R					DATE 11-15-60

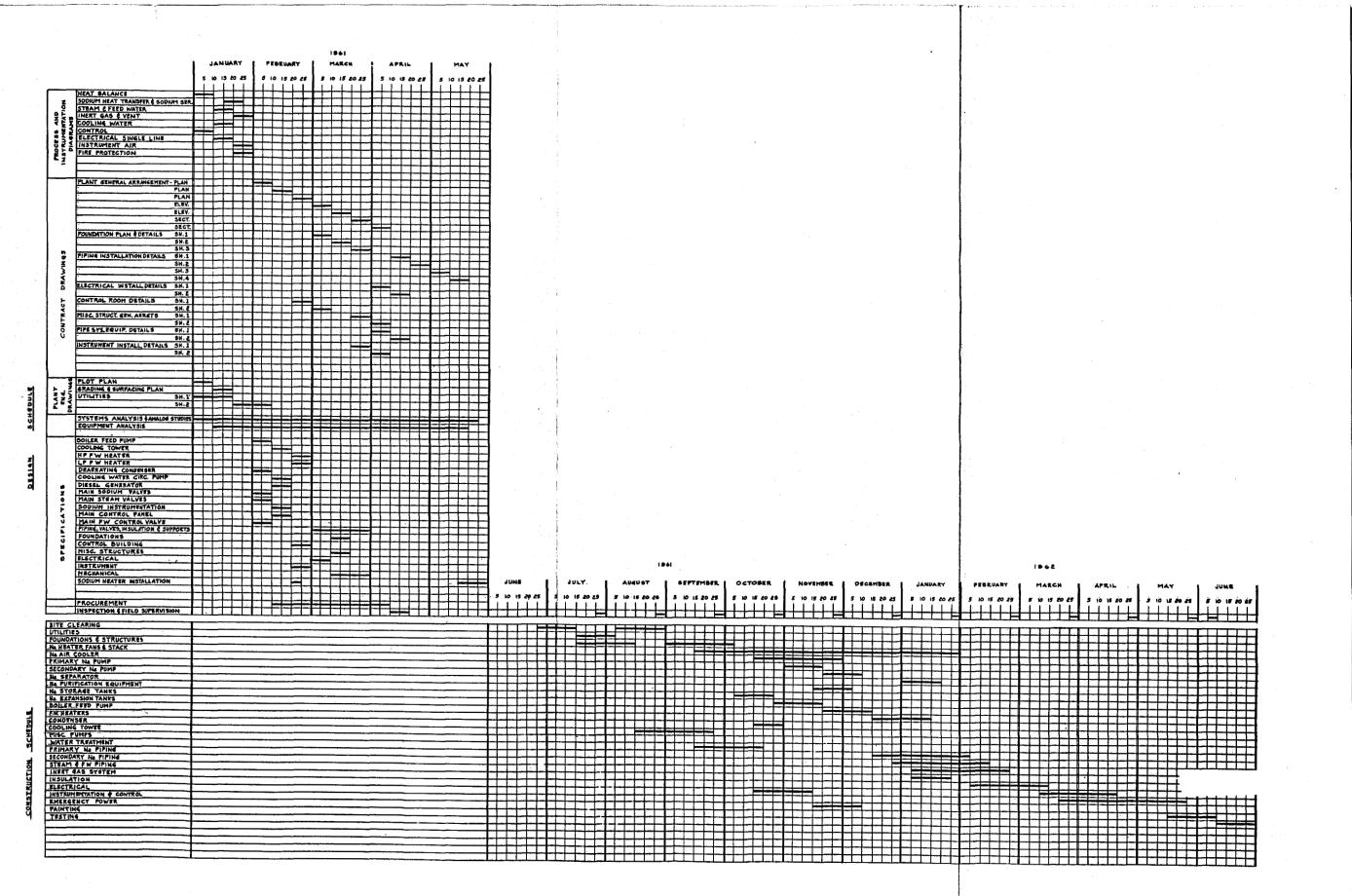
INSTRUM	AENT	CATEGORY Solenoid		OMICS	IAL		NO. 446110 SCTI	Sec.J PAGE 87
INDEX		Valve	REFERENCE		INST	PROJECT	ADDITIONAL DA	
TAG NO.	Level 200	APPLICATION	REFERENCE	UNUS	SPEC NO.			
S¥ 205		Air				14", 3- operat	way solenoid ions	, 110 VAC
							-	
				· .				
								:
							I RUGO IM	B.Bagley
REMARK	8: 				800 C)74		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.

INSTRU	MENT	CATEGORY Solenoid	ATOMICS	3	7593 NO. 446110	Sec.J
INDEX		Valve	INTERNATIO	NAL	PROJECT SCTI	PAGE 88
TAG NO.	Temp.		REFERENCE DWGS	INST Spec No.	ADDITIONAL DAT	A
SV	400				¼", 3-way solenoid,	110
405		Air			VAC operation	110
	1					
-						
·						
EMARKS			.	I	ENGR MB.I	Bagley
	800 0				APPO /	Millians

INSTRU	AENT	CATEGORY Solenoid	AT	OMICS	AL		NO.446110 SCTI	Sec.J PAGE 89
NDEX		Valve				PROJECT	ADDITIONAL DA	
TAG NO.	Misc.	APPLICATION	REFERENCE	DWGS	INST SPEC NO.		ADDITIONAL	
SV	900	Air				14", 3-w VAC ope	ay solenoid, ration	110
918		AIT						
							<u></u>	
					 		المراجع والمراجع والم	
			an an taon an an ag An taon an					
								<u> </u>
							an La companya di Salawia	
}		n an						
REMAR	K8:		I	800	076		CHK	1.B.Bagley

INDEX Control INTERNATIONAL PROJECT SCPI Pace 5 Tag 100 APPLICATION APPL	INSTRUM	AENT	CATEGORY Hand	ATOMICS		7593	NO.446110	Sec.K
Tag Plow APPLICATION REFERENCE DWGS INST BPEC NO. ADDITIONAL DATA HG-100 Gas flow ratio adjust Better air-to define to pri. adjust 3-to 15-15 remote loading so 3-gauge unit and precision regulator HG-104 Ns flow ratio adjust			Control	INTERNATIO	NAL		وعادقات البابغا العادة والمغالي البرساكين	PAGE 90
100 Imater size to get the first size to the loading size of the result of the size to the loading size of the size to t	TAO	Flow		REFERENCE DWGS		1		
HG-100 heater air-to ges flow ratio adjust	NO.	100	APPLICATION					
Au-100 ges flow ratio 3-gauge unit and precision adjust regulator #0-104 sec. to pri. Adjust regulator HC-115 Air-gas flow Air-gas flow y	WO 300					3-to 15	-1b remote 1	oading sta
HC-104 sec. to pri. Na flow patio adjust Topping HTR Air-gas flow ratio-adjust	T0- 100					3-gauge	e unit and pr	ecision
HC-104 Na flow patio adjust Topping HTR Air-gas flow ratio-adjust			sec. to pri.		t	regulat		
HC-115 Air-gas flow ratio-adjust	HC-104		Na flow patio			1		
HC-115 Air-gas flow ratio-adjust			Topping HTR			{		
	HC-115		Air-gas flow					
ENGR M.B.Bagley			ratio-adjust	•			<u>¥</u>	
ENGR M.B.Bagley								
ENGR M.B.Bagley	······································							
ENGR M.B.Bagley								
ENGR M.B.Bagley								
ENGR M.B.Bagley								
ENGR M.B.Bagley								
ENGR M.B.Bagley								
ENGR M.B.Bagley					1	1		
ENGR M.B.Bagley				· · ·				
ENGR M.B.Bagley								
ENGR M.B.Bagley								
ENGR M.B.Bagley								
ENGR M.B.Bagley								
ENGR M.B.Bagley								
ENGR M.B.Bagley		a de la composition de la composition						
ENGR M.B.Bagley								
ENGR M.B.Bagley								
ENGR M.B.Bagley						• • • • • •		·····
ENGR M.B.Bagley								• .
ENGR M.B.Bagley								
ENGR M.B.Bagley								
ENGR M.B.Bagley								
ENGR M.B.Bagley			· · · ·					
ENGR M.B.Bagley						-		
ENGR M.B.Bagley								
ENGR M.B.Bagley						·	· · · · · · · · · · · · · · · · · · ·	
ENGR M.B.Bagley								
ENGR M.B.Bagley								
СНК	EMARKS						ENGR M.B.I	Bagley
		n an	800 077	· ·				
800 UT			800 01.					Milliese


INSTRUM	ENT	CATEGORY Hand Control	ATOMICS INTERNATION			NO. 446110 SCTI)	Sec.K PAGE 91
TAG	Misc.	CONCLOI 2	REFERENCE DWGS	INST	PROJECT	ADDITIONAL	DATA	FROL 71
NO.	900	APPLICATION	ALICHENCE DWOO	SPEC NO.				
HC-900	bd	CV-900			3-to 15- station, gauge an	lb remote control id precisi	and p	ing osition gulator
HC-901	bđ	CV-901						
HC-902	bd	CV-902						· ·
HC-903	bd	CV-903						
нс-904	bd	cv- 904						
HC-905		CE-905						
HC-906		CV-9 06						
HC-907		CV-907						
HC-908		CV- 908	ang sa					
HC-909		C V- 909						
HC-910		CV-910					-	
HC-911		CV-911				•	-	
HC-912		CV-912						
HC-913		CV-913						
HC-914		CV-914						
HC-915		€₹-915						
HC-916		CV-916					1	
REMARKS				800	078	CHK		geley Williss


INSTRUI	MENT	CATEGORY Hand	AT INTER	OMICS	NAL		NO. 4463 SCTI	110	Sec. K
TAG	Misc.	Control	REFERENCE		INST	PROJECT	ADDITION		PAGE 92
NO.	900	APPLICATION			SPEC NO.				14 T
HC-917		CV-917				3-to 15- station, gauge an	contro	l and p	osition
HC-918		€₹-918							in a star Anna anna anna anna anna anna anna anna
HC-919		C ▼-919							
HC-920		C V -920							
HC-921		CV-921				-			
HC-922		CV-922			P is				
HC-923		CV-923							- *
HC-924		CV-924							
HC-925		CV-925							
HC-926		CV-926							
HC-927		makeup pump				2-positi auto-on makeup p	on elec operate ump mag	tric sw s relay netic s	itch, circuit tarter
HC-928		CV+928							station ige and
HC-929		Na Heater By-pass							i i i i i i i i i i i i i i i i i i i
						· · · · · · · · · · · · · · · · · · ·		- E-	
REMARKS:			· •				ENGR	M.B.Bs	gley
	800	079				· ·	CHK APPD DATE	<u> ////////////////////////////////////</u>	Man

INSTRUMENT INDEX		CATEGORY Misc.	ATOMICS		7593 NO. 44611	
					PROJECT SCTI PAGE	
TAG NO.	Flow 100	APPLICATION	REFERENCE DWGS	INST SPEC NO.	ADDITIONAL	
v-102		Pri.Na Flow	Eristing		220-v, 3-phase regulation con trol system & servo, d.c. output to M.C.	
ERCp- LO2		Pri.Na Flow	Existing		10-50-Mv, input & d.c. output 1-mode null bal. controller	
SCpA- 102		Pri.Na Flow	Existing		0-90-v.d.c. ampli	fier
Sv-104		Sec.Na Flow			220-v, 3-phase re control system & output_to M.C.	gulation servo, d.c.
ERCp- 104		Sec.Na Flow			DQ-50-Mr.input & 1-mode null-bal c	d.c. output ontroller
SCpA- 104		Sec.Na Flow			0-90 - v.d.c. amp	
HS-104		CV-104 and P/E-104 Selector			3-way double-angl transfer switch l panel	ocated behi
HS-105		LRC-203 and TRC-402 Selector			3-way double-angl transfer switch 1 panel	ocated behi
PS-113		Feedwater Flor & pump Cut-out			3-15 1b pressure electric contact	BWITCH WITH
				·		
						1999
REMARKS				800 08	CHK I	M.B.Bagley

APPENDIX B: SCHEDULE

1

Ľ

Figure 16. Design and Construction Schedule

NAA-SR-5993 95

800 082