PRODUCTION AND DECAY OF HEAVY TUP QUARKS

PRODUCTION AND DECAY OF HEATY TOI (JCARKS

Russel 1'. Kanfinian
Stanford Tincar Acrelerator center
Stanford University
Statrord. Cabliformia 9l\$09

Augua 1089

Propated for the Deportinent of linergy

Ruasel P. Kauffman, Ph.D.
Stanford University, 1989

Experimental evidence indicates that the top quark exists and has a mass between 50 and $200 \mathrm{GeV} / \mathrm{c}^{2}$. The decays of a top quark with a moss in this range arc studied with emphasis placed on the mass region near the threshold for production of real \boldsymbol{W} bosons. Topics discussed are: 1) possible enhancement of strange quark production when $M_{w}+m_{s}<m_{i}<M w+m_{b} ; 2$) exclusive decays of T mesons to B and B^{\prime} mesons using the non-relativistic quark model; 3) polarization of intermediate W 's in top quark decay as a source of information on the top quark mass.

The production of heavy top quarks in an $e^{+} e^{-}$collider with a center-ol-mass rnergy of 2 TeV is studied. The effective-boson approximation for photons, Z^{0} 's and W 's is revjewed and an analogous approximation for interference between photons and $Z^{0}{ }^{5}$ is developed. The cross sections for top quark pair production from photon photon, photon $\cdot Z^{0}, Z^{\text {D }} Z^{0}$, and $W^{+} W^{-}$fusion are calculated using the effective-boson approximation. Production of top quarks along with anti-bottom
 is made and compared with the effective. W' approximation

[^0]
ACKNOWI.EDGMENTS

Sime ne propat is compinte until die acknowletgenent is done i would bike to
express :ng gratitude to the people who have contributed to me and to this work:

To my advisor, Ferd Gilman, for his ralm gumdine over the last bive yeats,
To he mevibrs of my Reading Committer: Dick Blankenbecler, Stan Brodskg, and Saval Dmoponlors for their careful reading of the manuscript;

To Professor Peter [ay from Biology, for chairing an oral far outside his field or expertise:
 Yosef Nir. for many illuminating discussions; and Kent Hornbosicl, Panl Griffin and Chris Wend: for making the Central Lab third floor the cool, hip, happenin' place that it is:

To Sharon Jensen and Robbin Nixon. for endless 'JEX questions, countless

To levin Johnson and the rest of the crew in Terhnical Illustrations for their

To all the tnembers of Dirk's Jerks Athletic Association, past and present, but especially Jordan Nash, Jim Mactiernan, Wayne Itigby, aud Tom Dufly, berause there is a Jork in all of us just waiting to get out;

To my wife. Giria, far her love and support;
To my parents, Delhert and Helen, for everything

phome messages and the botomless coffee pol;

Abstract

work on the figures;

1. Intreduction 1
2. Tog t, ward Deways whon $m_{1} \simeq M w+m_{b}$ 4
2.1 pitroduction 4
2.2 The Decay Rate for $t \rightarrow \operatorname{be}^{+} \nu_{\mathrm{r}}$ 4
2.3 Ratio of $t \rightarrow b$ to $t \rightarrow s$ 8
2.4 Exclusive Moxles 10
2.5 W Polarization int t Decay 15
3. Tap Quark Production in a $^{-}$Colliders 21
3.1 Introduction 21
3.2 The Effective-Photon Approximation 23
3.3 T'wo Photon Production of Top Quarks 22
3.4 The Fffertive We Aproximation 29
3.5 Top-Quark Production from WW Fusion 41
3.6 Top-Quark Produrtion from 7.2. Fusion 50
3.7 Photon Z^{1} Fusion Production of Top Quarks 55
 57
3.9 Production of 1 blair: from \rightarrow W Fusion 66
3.10 Production of $1 \bar{b}$ Pars from W W Fusion 733.ll Beamstrahlung$7 h$
3.12 Summary and Conclusions RI
Referetices: 83

LIST OF FIGURES

2.1 Femunan diagram or the serni eptonic decay of the top quark 4
2.2 Semi leptonic decay rate of the top quark 7
2.3 Difterential semi-leptonic decay rate, $d \Gamma\left(t \rightarrow b c^{+} t_{+} j / d Q^{2}\right.$ 8
2.4 Ratio of $t \rightarrow s$ to $t \rightarrow 5$ wilh Kobayashi-Maskawa fastors removed 9
2.5 Ratio of longitudinal to transverse widths. 18
2. 6 Ratio of the difference of the transuerse rates to the sum 20
3.1 The Feynman diagrams for e $^{+} e^{-} \rightarrow \gamma, Z^{0} \rightarrow t \bar{i}$ 22
3.2 One-photon production of an arbitrary final state X 24
3.3 Flux of photons in the electron 27
3. $\frac{1}{}$ The Feynman diagrams for $\rightarrow \rightarrow i \bar{i}$ 28
3.5 Cross section for two-photon production of top quarks 29
3.6 The production of an arbitrary final state X via exchange of a massive vector hoson 1 31
$3 . \vec{i}$ Fluxes of 19 bosons in the plectron in leading logarithmer approximation 39
3.8 Exart flexes of H bosons in the electron 40
34 !roductern of hap quark vat 1111 fusion11
 approsimation 11
3.11 Fermman diagratus for $\mathrm{A}^{+} \mathrm{H}^{-}$. $1 t$ 12
3.12 Contributions to top quark production from fusion of transverse 11^{-1} 4.5
3.13 Contributions tw top quark produrtion from fusion of one transverse 19 with one longitudinal W 48
3.14 Contributions to top quark production from fusion
of longitudinal W's 49
3.15 Full cross section for top quark production from It'I fusion 50
3.16 Feymman diazrans for $Z^{0} Z^{0} \rightarrow 1 \bar{l}$ 51
3.17 Contributions to top quark production from fusion of two tranverse $Z^{0} \mathrm{~s}$ and from one transverse Z^{0} with one longitudinal Z^{0} 53
3.18 Coutributions to top quark production from fusion of two longitudinal $Z^{\mathrm{n}} \mathrm{s}$. 54
3.19 Full cross section for top quark production from $Z Z$ [usion 55
3.20 Frymman diagrams for $\gamma Z^{0} \rightarrow t \bar{i}$ 56
321 ('onl ribulioms lo lop quark production
from 7^{12} fuxion57
3 22 One yluton peodurtion and one Z^{6} produrtion of an arbilrary final state h 58
3.23 Distributions for 7^{0} interference 61
3.24 Diagranis contributing to $\mathrm{e}^{+} e^{-} \rightarrow \mathrm{c}^{+} \mathrm{c}^{-}$- 7 62
3.25 Diagrams for terms involving three photons and one $Z^{\prime \prime}$ 63
3.26 Diagrams for terms involving two photons and two Z^{0} 's 64
3.27 Contributions to top quark production from
7^{20} interference 66
3.28 Fiverman diagrams for $\gamma^{\gamma} W^{+} \rightarrow i \bar{b}$ 67
3.29 Cross section for $t-\bar{b}$ production via γW^{\prime} fusion 70
3.30 Feynman diagrams for $\mathrm{e}^{+} \gamma \rightarrow \bar{L} t \bar{b}$ 71
3.31 Differential cross section $d \sigma\left(e^{+} \gamma \rightarrow \bar{\nu} t \bar{b}\right) / d x$ 72
3.32 Exact cross section for $t-\bar{b}$ production compared to
the effertive-W result 73
3.33 Feynman diagrams for $Z^{0} W^{+} \rightarrow t \bar{b}$ 74
3.34 Contributions to $t \bar{b}$ production from $W Z$ fusion 71
3.35 Diflerential photon-photon luminosity from
beamstrahlung79
3.36 Differential phutun electron luminasity from
beanestrahlung
3.37 Cross section lor production of top quarks from fusion of beamstrablung photons
3.38 Cross section for $1 \bar{b}$ production by fusion of beanstrahlung

1. Introduction

The last character (exerpt the Higgs) to be added to the cast of the Standard Model with three genetations is the top quark. Since the top quark has yet to be discovrred, the first quegtion we must address is: "What lop quark?" By the top quark we mean the partner to the b quark in an $S U(2)$ doublet. The existence of the top quart is inferred from the measured properties of the b. Experiments at PEP and PETRA! in which $e^{+} e^{-} \rightarrow 7, Z^{0} \rightarrow b \bar{b}$ is measured, show a non-aeroforward-backward asymmetry. This indicates that the axial coupling of the bottom to the Z^{0} is non-zero. ruling out the possibility that the bottom quark is ant $S l^{\prime}(2)$ singlet. Furthermore, if the b were an $S U(2)$ singlet there would be decays medialed by flavor-changing neutral currents, such as $b \rightarrow s e^{+} e^{-}$, which are not seen. ${ }^{3}$ Lastly, ther top quark is needed on theoretical grounds, in order that the Standard Model be anomaly-fiter.

The 1 quarl mass is constrained to be above 29 Gel' from TriSTAN, above 44 Cirs' from $1^{\prime} A 1^{3}$, and above about 50 CieV from theoretical considerations ${ }^{6}$ based on the ARG; S result ${ }^{\text {' }}$ for $B-\bar{B}$ mixing. In fact, the $B-\vec{B}$ mixing tesults, iuterpreted within the standard model, would have one entertain t quark masses in the vicinity of 100 GeV Recent results ${ }^{9}$ from CDF. UAl, and UA2 show no pvidence for a top guark with mass less than 60 GeV and new data accurnulated by CDF should be able to and a bound that approaches the W mass

In Chapter 2 we consider in some detail the transition region between the
 The absolute width for a 1 guark with a mass in this range has been considered
 11

 how 1 he possibility of a sharp transition or threshold is smeared out be the fillite. width of the W°. [n Section 2 .3, we consider the decay rate for $t \rightarrow s+W^{+}$compared to that for $t \rightarrow b+W^{*}$. The first process is suppressed relative to the second by the ratio of Kobsyashi Maskawa matrix elements squared. $\left|V_{i s}\right|^{2} /\left|V_{i b}\right|^{2}$, which is thown "to be $=1 / 500$. Thare is a fegion, however, where the first process is abme threshokd for production of a real ' 1 ', while the second is below throshold. The quection of whether this can compensate for the Kobayashi-Maskawa suppression is answered (negatively) in Section 2.3.

In bection 2.4 we consider the prosibibity that the hadronic final state recoiling against the I° and containing a b quark will be dominated by a very few hadronic states. rather than be a sum of maty states in the form of a jel. We calculate the specific matrix elements in this case in the quark model-one of the few cases in which the nonrelativistic quark model may really be well-justified a priori.

This ties into Section 2.5, where we examine the relative population of longitudinal and transverse W 's as we move through the threshold region. The ratio of decay widths involving longitudinal and transverse W 's varies fairly rapidly near the threshold and we show how the associated lepton or quark jet angular distribution in the $\mathbf{W}^{\text {decay ran be used to mensure this quantity and help determine }}$ the t quark mass to a few ciev.

('hapuer 3 is dryuted to the' shady of top quark production via vector-boxon
 Allutior phomon approximation and then use it to ralculate the produrtion of $t-\bar{i}$ pars via photom photom fusion. We then review the effertive bosot approximation for X^{-1} and $Z^{\prime \prime}$ bosoms, deriving a consistent set of distributions and showing that the interference ternas between diferent helicities do not contribute.
 and $Z^{0} Z^{0}$ fusiofr. These calculations are carried out in the effective-Incoson approximalion. Wr present the results as a function of m for a variety of liggs masses.

The analogue of the effective-boson approximation. for the interference between photons and $Z^{0 \cdot s}$ is derived in Section 3.8. We then use this formalism to calculate the contribution of these interference terms to $e^{+} e^{-} \rightarrow e^{+} e^{-} t \bar{i}$.

The next two sections concern the production of top quarks with associated anti-botion quarks. These processes proceed through $\boldsymbol{7}^{+1}$ and $Z^{0} W^{+}$fusion. We calculate the cross section for γ^{W+} fusion in the effective- W^{+}approximation and compare the result in an exact calculation of $e^{+} \boldsymbol{\gamma} \rightarrow \bar{v} t \bar{b}$

The luminusities for beamstrahlung photons are presented in Section 3.11. The cross sections for fusion of beamstrahlung photons into top quarks and interactions of beamstrahlung photons with positrons to produce $t-\bar{b}$ pairs are calculated.

We conclude Chapter 3 with a summary and comparison to previous results.

2. Top Quark Decays when $m_{t} \approx M_{w^{\prime}}+m_{b}$

2.1. Inthonuction

The decays of a heavy top quark have a much different character than the decays of the lighter quarks. Even for values of $m_{i} \approx 50 \mathrm{GeV}$, the finite mass of the W^{\prime} results in $a \approx 25 \%$ increase in the t decay width over the value calculated with the point infinite M_{w}) Fermi inleraction; for $M_{4} \approx 100 \mathrm{GeV}$ we have deca; info a "real" W ' resonance and the width is proportional to G_{F} sather than C_{r}^{2}. In this chapter we focus on the transition region between the production of "virtual" and "rual" H "s in t decays, i.e. values of $m_{t} \approx M_{w}+m_{b}$.
2.2. Thf: Decal Rate for $t \rightarrow b e^{+} \nu_{r}$

Consider the semileptonic deray of tob. The tree level width, for any value of m_{1}, can be calculated from the diagram in Figure 2.1 .

Figure 2.1 The Feynman diagram for the semi-leptomir desay of the top quark, $1-b_{1}+\omega_{\text {r }}$.

$$
\begin{align*}
& \Gamma\left(t \rightarrow b e^{+} \nu_{\mathrm{e}}\right)= \\
& \frac{\left(C_{F}^{2} m_{1}^{3}\right.}{24 \pi^{3}} \int_{0}^{\left(m_{1}-m_{b}\right)^{3}} d Q^{2} \frac{M_{w}^{4}|\mathbf{Q}|}{\left(Q^{2}-M_{\psi}^{2}\right)^{2}+M_{w}^{2} \Gamma_{W}^{2}}\left\{2|\mathbf{Q}|^{2}+3 Q^{2}\left(1-\frac{Q_{0}}{m_{t}}\right)\right] \tag{2.1}
\end{align*}
$$

where Γ_{w} is the total width of the W and the integration variable Q^{2} is the square of the four-momentum which it carries, with the associated quantities

$$
\begin{align*}
Q_{0} & =\left(m_{l}^{2}+Q^{2}-m_{b}^{2}\right) / 2 m_{1} \\
|Q|^{2} & =Q_{0}^{2}-Q^{2} \tag{2.2}
\end{align*}
$$

In general, the right-hand side of Eq. (2.1) should contain the square of the relevant Kobayashi-Maskawa matrix element. $\left|V_{i b}\right|^{2}$, which in the case of three generations is one to high accuracy.

In the limit that $m_{i}<M_{w}$, the momentum dependence of the W propagator can be neglected and the expression simplifies to

$$
\begin{align*}
\Gamma\left(1+b e^{+} v_{e}\right) & =\frac{G_{F}^{2} m_{i}^{3}}{24 \pi^{3}} \int_{0}^{\left(m_{r}-m_{4}\right)^{7}} d Q^{2}|Q|\left[2|Q|^{2}+3 Q^{2}\left(1-Q_{0} / m_{i}\right)\right] \\
& =\frac{G_{F}^{2} m_{i}^{3}}{6 \pi^{3}} \int_{0}^{\left(m_{1}-m_{b}\right)^{2}} d Q^{2}|Q|^{3} \tag{2.3}\\
& =\frac{G_{F}^{2} m_{1}^{3}}{192 \pi^{3}}\left[1-8 \Delta^{2}+8 \Delta^{6}-د^{8}-24 A^{4} \ln \Delta\right]
\end{align*}
$$

where $\Delta=m_{b} / m_{t}$
In the other limit, where m, is sufficiently above . \mathcal{C}_{w}. we may integrate over

$$
\begin{equation*}
\sqrt{m}\left(H^{+}+t^{+} 1_{4}\right)=\frac{\left(i, M_{14}^{3}\right.}{l i a \sqrt{2}} \tag{-1}
\end{equation*}
$$

rewrite Fia (: 1)

$$
\Gamma^{\prime}\left(t \rightarrow b+W^{\prime} \rightarrow b_{c^{+}} w_{r}\right)=B\left(H \rightarrow w_{r}\right) \cdot \frac{G_{r}|Q|}{2 \pi \sqrt{2}}\left[\left.2_{r} Q\right|^{2}+3 M_{m}^{2}\left(1-\frac{Q_{0}}{m_{1}}\right)\right],(2.5)
$$

where now $Q^{\prime}=M_{n}^{\prime}$, so that $Q_{N}=\left(m_{1}^{2}+M_{w}^{Z}-n_{d}^{2}\right) / 2 m_{s}$ and $Q_{1}^{2}=Q_{0}^{*}-M_{n}^{2}$

$$
\left[\left(t \rightarrow b+H^{*} \rightarrow b_{s}{ }^{4} \psi_{s}\right)=B\left(H^{-} \rightarrow n_{r}\right) C_{r} \operatorname{mu}_{6}^{3} / 8 \pi \sqrt{2} .\right.
$$

whe contrasted with Eq. (2.3).
The fitite width of the W^{\prime} determines the belavior of the rate as we gross the threghold for produring a reat $\|^{\prime}$. Once we are seweral fuld widibs of the 14 above lirestiold. the much larger width given in Eiq. (2.5) for producing a "real" 14 donninates the total t decay tate. This is seen in Figure 2.2. where the $t \rightarrow b r^{+} \nu_{r}$ decay rate is ploned urrsuan m. The dashed surve is the resulf in Eq. (2.5) which would hold for production of a seal, infinitely narrow W, while hire solid curve gives the resutt of integrating Eq. (2.1) numerically. ${ }^{12}$ For amaller values of m_{1} the width is less than $\left(G_{r}^{2} m_{1}^{3} / 192 \pi^{3}\right.$ berause of the finite value of m_{6} |here takel to be is Gev, ser Eq. (2.3)]. but then is entaneed by the W^{\prime} propagator as m increases. The exact result quickly matches that for an infilitely narrow 1 F one wr are several W widths above threshold. The finite W width simply proxides a

Figure $2.2 \Gamma\left(1-b e^{+} \nu_{s}\right) /\left(G_{r}^{2} m_{4}^{3} / 197 x^{3}\right)$ as a function of m_{4} from the full expression in E_{4} ($\mathbf{2} .1$) for $M_{m}=83 \mathrm{GeV} . \Gamma_{m}=2.25 \mathrm{GeV}$ and $\mathrm{m}_{\mathrm{s}}=5 \mathrm{GeV}$ (colid curve), and from $\mathrm{Eq.}_{\text {. (2 }}$ (2) for decay into a real, infinitely narsow W (dsebed curve).
smooth interpolation as the decay rate jumps by over an order of magnitude in crossing the threshold

The peaking of the differential rate around the W-pole can be seen in Figure 2.3. in which we plot $d \Gamma / d Q^{2}$ for a range of values for m_{t}. We see that for top masses above the threshold for real W ploduction the peaking of the distribution becomes pronounced and the bulk of the rate comes from values of Q^{2} very near M_{w}^{2}. This rapid change in both the absolute rate and its phase-space distribution is what will drive the processes which we will study in the following sections.

Figure 2.3 The differencial width $d \Gamma\left(t \rightarrow b e^{+} v_{z}\right) / d Q^{7}$ (in arbitrary units), as a function of Q^{2} for a surcession of top quark masses, spanning the threshold for decay into a real W^{\prime} and t quark The masses are taken ss $M_{w^{\prime}}=83 \mathrm{GeV}$ and $m_{l}=5 \mathrm{GeV}$.

2.3. Ratio of $t \rightarrow b$ тO $t \rightarrow s$

Ordinarily the weak transition $t \rightarrow s$ is suppressed relative to $t \rightarrow b$ by the ra Lio of the relevant Kobayashi-Maskawa matrix elements squared, ${ }^{11}\left|V_{t s}\right|^{2} /\left|Y_{i b}\right|^{2} \approx$ $1 / 500$ However, we have seen that $\Gamma\left(t \rightarrow b e^{+} \nu_{e}\right)$ increases sharply as m_{i} crosses the W threshold, changing from being proportional to G_{F}^{2} to being proportional to G_{i}. Thus we expect $\Gamma\left(t \rightarrow s e^{+} v_{e}\right)$ to be enhanced relative to $\Gamma\left(t \rightarrow b e^{+} v_{e}\right)$ when m_{t} lies between the wo thresholds: $M_{k}+m_{9}<m_{t}<M_{4}+m_{b}$. The ques. tion is whether the threshold enhancement "wins" over the Kobayashi-Maskawa suppression.

To examine this quantitatively we consider the ratio of the widths with the

Figure 2.4 The ratio of decay ratea with Kobayabhi-Msakawa factors taten out, $\left(\Gamma\left(t-b e^{+} \nu_{t}\right) / /\left.V_{t 1}\right|^{2}\right) /\left(\Gamma\left(t \rightarrow e c^{+} \nu_{s}\right) /\left|V_{t}\right|^{2}\right)$ with $m_{t}=3 \mathrm{GeV}$ and $m_{s}=0.5 \mathrm{GeV}$ and Γ_{m} equal to fictitious values of 0.0225 GeV (dotted curve) and 0.225 GeV (dathed curve), and the expeeted 2.25 GeV (solid curve).

Kobayashi-Maskawa factors divided out:

$$
\frac{\Gamma\left(t \rightarrow b e^{+} \nu_{e}\right) /\left|V_{t b}\right|^{2}}{\Gamma\left(t \rightarrow s c^{+} \nu_{e}\right) /\left|V_{t s}\right|^{2}}
$$

Either well below or well above threshold for a "feal" W this ratio should be near unity. For an infinitely narrow W the denorinator is strongly enhanced, but the numerator is not, when $M_{w}+m_{4}<m_{t}<M_{w}+m_{b}$. The ratio indeed drops dramatically near $1 \rightarrow s+W$ threshold, as shown in Figure 2.4, for $\Gamma_{w}=$ 0.0225 GeV (dotied curve) and even for $\Gamma_{\omega}=0.225 \mathrm{GeV}$ (dashed curve). However, the expected W width of 2.25 GeV (solid curve) amears out the threshold effect over a mass range that is of the sams order as $m_{b}-m_{s}$. and gives only a modest dip (to ≈ 0.6) in the ratio. This is hardly enough to make $f \rightarrow s$ comparable to $1 \rightarrow b$

24. Entustiv Monds

When m_{t} is in the present experimentally arceptable range, the rate for weak decay of the constituent I quarks within possihle fadrons becomes comparable with that for electronagnetir and weak derays. Weat decays of toponiun becone a major fraction of say. the $J^{\prime}=1^{-}$ground state, and even for the $T^{\prime \prime}(t \bar{q})$ vector mesun. weak decays can dominate the radiative magnetir dipole transition to its hypertine partmer, the 'l meson $J^{P}=0^{-}$ground state. ${ }^{13}$

In decays of heavy flator mesons the branching ration for typical exclusive channels scale like $\left(f / L_{Q}\right)^{2}$. where f is a meson decay constant (like f_{τ} or f_{R}), of order 100 MeV , and M_{Q} is the mase of the heavy quark. For D mesons individual chanmels have branching ratios of a few percent; for B narsons they are rough]y ten times smatler; and for T (or T^{*}) mesons they should be a hundred or more times smalla yet. It shouk be possible to treat T decays in terms of those of the constituen' (quark. $t \rightarrow b+W^{+}$. with the b quark appearing in a b jet not so differem from those already observed at PEP and PETRA.

There is one possible exception to these last statements, and that is when $m_{t} \approx m_{b}+A_{u}$. the sit uation under study here. In this case there is a premium on giving as murh energy to the W as possible. t.t., neeping as far above threshold for "real" II' production as possible, and hence on keeping the invariant mass of the hadronic system containing the b quark small. Then we expect the T and T^{*} tor decay dommantly into a few exclusive channels: a "rtal" w plus a B or a "real" W plus a B^{*}.

Furthermore, this is one place where the use of the non-relativistic quark model
with

$$
x_{+}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad x_{-}=\left[\begin{array}{l}
0 \\
1
\end{array}\right],
$$

and where E_{b} is the energy of the b-quark and $p=-Q_{w}$ is its momenturn. Evaluatiug the matrix elements from Eq. (2.7) yields
$\left\langle\left.\left(p_{p_{b}}, \lambda_{b}\right)\right|^{\prime \mu} \mid f\left(p_{1}, \lambda_{f}\right)\right\rangle=$

$$
\sqrt{\frac{2 m_{i}}{E_{b}+m_{b}}}|\mathbf{p}|\left\{\begin{array}{ccccc}
\left(E_{i}+n_{s}\right) /|\mathrm{p}|, & 0, & 0, & 1, & \lambda_{1} \lambda_{b}=++\cdots ; \tag{2.11}\\
0, & -1, & -i, & 0_{;} & \lambda_{1} \lambda_{b}=+\cdots ; \\
0, & 1, & -i, & 0_{i} & \lambda_{t} \lambda_{b}=-+;
\end{array}\right.
$$

and

$$
\left.\left(b_{\left(\rho_{b}, \lambda_{B}\right)}\right) A^{\mu} \mid 1\left(p_{t}, \lambda_{t}\right)\right)=
$$

$$
\sqrt{2 m_{1}\left(E_{b}+i,\right)}\left\{\begin{array}{ccccc}
|\mathbf{p}| /\left(E_{b}+m_{b}\right) . & 0, & 0, & 1 ; & \lambda_{1} \lambda_{b}=++; \tag{2.12}\\
0 . & 1, & i, & 0 ; & \lambda_{1} \lambda_{b}=+- \\
0 . & 1, & -1, & 0 ; & \lambda_{1} \lambda_{b}=-+; \\
-|\mathbf{p}| /\left(E_{b}+m_{b}\right), & 0, & 0, & -1, & \lambda_{1} \lambda_{b}=\cdots
\end{array}\right.
$$

Wie chusere the polarization vertors of the :1 to he:

$$
\begin{align*}
& c_{ \pm}^{\mu}=-\frac{1}{\sqrt{2}}(0, \pm 1, \mathrm{i}, 0) . \\
& c_{1}^{\prime \mu}=\frac{1}{M_{w}}\left(-|\mathrm{P}|, 0,0, E_{w}\right) . \tag{3.13}
\end{align*}
$$

where $E_{\text {u }}$ in the energy of the HI . To obtain the amplitudes we dot the currents [foun Eq: 1: 11) and (2.12) with the polarizat wh vertors:

11 approphate" polarizatoon vector to go with each spin cunfiguratoon is chusen
by angular nomentum conservaline. For the vector current we find

$$
\begin{align*}
& M_{+}^{v}=M_{-+}^{v}=-2 \sqrt{\frac{m_{i}}{E_{b}+m_{b}}}|p| . \\
& M_{++}^{v}=M_{--}^{v}=\sqrt{\frac{2 m_{t}}{E_{k}+m_{b}}} \frac{|p|}{M_{\psi}}\left(m_{t}+m_{b}\right) . \tag{2.15}
\end{align*}
$$

and for the axial current

$$
\begin{align*}
& M_{+-}^{A}=-M_{-+}^{A}=-2 \sqrt{\frac{m_{t}}{E_{b}+m_{b}}}|\mathbf{p}| \tag{2.16}\\
& M_{++}^{A}=-M_{--}^{A}=2 \sqrt{m_{1}\left(E_{t}+m_{b}\right)}
\end{align*}
$$

The quark model results for the amplitudes for $T \rightarrow B W$ and $T \rightarrow B^{\bullet} W$ are obtained by sar- Jwiching the quark level iesults between the appropriate wave functions in spin and lavor:

$$
\begin{align*}
& |T\rangle=\frac{1}{\sqrt{2}}|t ; \bar{a}|-t \downarrow \bar{a}| \rangle, \\
& \left.\left.|B\rangle=\frac{1}{\sqrt{2}}|b \uparrow \bar{a} \downarrow-b| \vec{q} \right\rvert\,\right\}, \\
& \left|B_{\lambda=+1}^{*}\right\rangle=|b \dagger \bar{q} \Gamma\rangle . \tag{2.17}\\
& \left|B_{i=-1}\right\rangle=|b \downarrow \bar{q} b\rangle . \\
& \left.\left.\left.\left|B_{i=0}^{*}\right\rangle=\frac{1}{\sqrt{2}} \right\rvert\, b\right\rceil \dot{q} \downarrow+b\right\rfloor \bar{q} T \mid .
\end{align*}
$$

Where if a a lught guark: 4-n,d, or -
He can now withe down the quark model results The decay $T \rightarrow B W$ yield only longitudirally polarized W "s. by angular monentum conservation. By parity.

$$
\begin{align*}
& W\left(T+\left(H_{1}\right)=\frac{1}{i}\left(m_{++}^{1}+N_{--1}\right.\right. \\
& =\sqrt{\frac{2 m_{i}}{E_{b}+m_{B}}} \frac{|\mathbf{p}|}{M_{w}}\left(m_{c}+m_{b}\right) .
\end{align*}
$$

The decal of a 7 'inco a lransverse 8^{*} involves hoth the axial and vertor rurrents. wheseas the dray into a longitudinal 3^{*} involves only the axial rurrent:

$$
\begin{align*}
& \left.M_{1} T+B_{\lambda=+1}^{*} M_{\lambda=+1}\right)=-\frac{1}{\sqrt{2}}\left(M_{-}^{2}+M_{+}^{A}+1\right. \\
& =\sqrt{\frac{2 m_{b}}{E_{b}+m_{b}}}\left(E_{\Delta}+m_{b}+|\mathbf{p}|\right)_{.} \tag{2.19}\\
& M\left(T-B B_{\lambda=-1}^{i} M_{\lambda+-1}\right)-\frac{1}{\sqrt{2}}\left(M_{-}^{N}+M_{-+}^{A}\right) \\
& =\sqrt{\frac{2 n_{d}}{E_{b}^{\prime}+m_{b}}}\left(E_{b}+m_{b}-|\mathbf{p}|\right\rangle \tag{2.20}\\
& \cdots\left(T-B_{1}^{*} H_{i}\right)=\frac{1}{2}\left(M_{++}^{A}+M_{-}^{A}\right) \\
& =\frac{\left(m_{1}-m_{b}\right)}{M_{w}} \sqrt{m_{1}\left(E_{b}+m_{b}\right)} . \tag{2.21}
\end{align*}
$$

The corresponding quantities in terms of che form factors are computed by dothing the poltrization vectors into F.4s. (2.8) and $\{2.9\}$:

$$
\begin{align*}
& M\left(7 \rightarrow B+H_{1}\right)=2 \frac{n_{r}}{M_{H}}\{p \mid f \\
& M\left(T \rightarrow H^{*}+H_{1}\right)-\left(a+\lambda_{W} g m_{r}|p|\right) \tag{2.22}\\
& M\left(T \rightarrow B^{*}+H_{1}\right)=\frac{1}{M_{H^{\prime}} m_{B^{*}}}\left\{a\left(|p|^{2}+\left.E_{B^{*}} E_{W_{H}}\left|+2 b m_{\tau}^{2}\right| p\right|^{2}\right\}\right.
\end{align*}
$$

Identifying $m_{f}=m_{r}$ and $m_{d}=m_{p}=m_{m_{2}}$ and comparing the quark level and

$$
\begin{align*}
f_{+} & =-\frac{m_{T}+m_{H}}{\sqrt{3 m_{T}\left(E_{H}+m_{H} \mid\right.}} \\
a & =\sqrt{2 m_{T}\left(E_{H}+m_{H}\right)} \\
y & =\frac{2}{\sqrt{2 m_{T}\left(E_{B}+m_{\mathrm{F}}\right)}} \tag{2.23}\\
d & =\sqrt{\frac{E_{B}+m_{B}}{2 m_{T}}} \frac{\left.\mid m_{B}-E_{P}\right)}{|\mathrm{P}|^{2}}
\end{align*}
$$

In the limit $|\mathrm{p}| \rightarrow 0$ the form factors reduce to

$$
\begin{align*}
f_{+} & =\frac{m_{T}+m_{\theta}}{2 \sqrt{m_{T} m_{B}}} \\
a & =2 \sqrt{m_{\tau} m_{B}} \\
g & =\frac{1}{\sqrt{m_{T} m_{\theta}}} \\
b & =\frac{-1}{2 \sqrt{m_{\tau}} m_{a}}
\end{align*}
$$

These esults agrew in the appropriate limit with previous results ${ }^{13-35}$. The form fartors f_{+}, a, and g all have stsaightorward limits as $\{p\} \rightarrow 0$, while that for b can be subte. as explicitly seen in Eq. (2.23). It is more sensitive to bound quarks being off the mass-shell. ${ }^{15}$ Our result agrees with that of Ref. 16 with the appropriale change of flavors.

2.5. W Polarization is i Decay

Within the srenario of discovery of the lop quark at a hadron collider, it would be useful to have several handles on the value of me. An indirect method would be to measure a quantity in top decays which depends strongly on the top mass.

For $m_{\boldsymbol{r}}$ in the vicinity of $M_{N}+m_{b}$, we now show that such a quantity is the ratis of the production of longitudinal W 's to that of transverse W 's in top decay

The decay widths into longitudinal and transverse W 's are defined by decom posing the mumerator of the W^{W} propagator as

$$
\begin{equation*}
g_{\mu \nu}-Q_{\mu} Q_{\nu} / M_{\omega}^{2}=\sum_{\lambda} \epsilon_{\mu}(\lambda) c_{\mu}^{*}(\lambda)=c_{\mu}^{(+)} c_{\nu}^{(+) *}+c_{\mu}^{(0)} \epsilon_{v^{\prime}}^{(0) *}+c_{\mu}^{(-)} c_{\mu}^{(-)} \tag{2.25}
\end{equation*}
$$

where the superscripis give the helicity of the W, whether virtual or real. In calculating the t decay rate in Ea, (2.1), we define $\Gamma_{L}=\Gamma^{(0)}$, originating fronk $W^{\prime \prime}$ s; with helicity zero, and $\Gamma_{T}=\Gamma^{(+1}+\Gamma^{(-)}$, originating from W 's with helicity ± 1. There is to interfercuce betwern amplitudes involving the different W helicities, since the helisity of the t and b quarks determines the helicity of the intermediate W. Separating in this way the portions of Eq. (2.1) originating from longitudinal and transuerse 1% s. we find

$$
\begin{gather*}
r_{1}=\frac{G_{F}^{\frac{1}{2} m_{1}^{3}}}{24 \pi^{4}} \int_{0}^{\left.1+n_{1}-m_{1}\right)^{2}} d Q^{2} \frac{M_{w}^{4}|Q|}{\left(Q^{2}-M_{w}^{2}\right)^{2}+M_{w}^{2} \Gamma_{w}^{2}}\left[2|Q|^{2}+Q^{2}\left(1-\frac{Q_{0}}{m_{1}}\right)\right] . \tag{2.26}\\
r_{T}=\frac{Q_{F}^{2} m_{1}^{5}}{24 \pi^{3}} \int_{0}^{\left(m_{1}-m_{\Delta}\right)^{\prime}} d Q^{2} \frac{M_{w}^{4}|Q|}{\left(Q^{2}-M_{w}^{2}\right)^{2}+M_{w}^{2} \Gamma_{w}^{2}}\left[2 Q^{2}\left(1-\frac{Q_{0}}{m_{1}}\right)\right] . \tag{2.25}
\end{gather*}
$$

I_{1} the cave $m_{t} \ll M_{4}$ the integrals become

$$
\begin{align*}
& \Sigma_{i}=\frac{G_{F}^{2} m_{t}^{5}}{24 \pi^{3}} \int_{0}^{\left.\mid m_{1}-m_{b}\right)^{r}} d Q^{2}|Q|\left[2|Q|^{2}+Q^{2}\left(1-\frac{Q_{0}}{m_{i}}\right)\right] . \\
& \Gamma_{\tau}=\frac{\left(i_{r}^{2} m_{i}^{5}\right.}{24 \pi^{3}} \int_{0}^{\left(m_{i}-m_{b}\right)^{x}} d Q^{2}|Q|\left\{2 Q^{2}\left(1-\frac{Q_{0}}{m_{i}}\right)\right] .
\end{align*}
$$

Noticing that

$$
\begin{equation*}
\frac{d|\mathrm{Q}|}{d Q^{2}}=\frac{1}{2|\mathrm{Q}|}\left(-1+\frac{Q_{0}}{m_{1}}\right) \tag{2.29}
\end{equation*}
$$

and using integration by parts, we find

$$
\begin{align*}
& \Gamma_{t}=\frac{G_{r}^{2} m_{i}^{5}}{18 \pi^{3}} \int_{0}^{\left(m_{t}-m_{t}\right)^{2}} d Q^{2} 2|Q|^{3} \\
& \Gamma_{T}=\frac{G_{r}^{2} m_{i}^{3}}{18 \pi^{3}} \int_{0}^{\left(m_{4}-m_{b}\right)^{2}} d Q^{2}|Q|^{3} \tag{2.30}
\end{align*}
$$

Without needing to perform the integzals we see that

$$
\begin{equation*}
\frac{\Gamma_{t}}{\Gamma_{r}}=2 . \tag{2.31}
\end{equation*}
$$

Sufficiently far above the W threshold we need only calculate the relative production of longitudinal and transverse real W's:

$$
\begin{equation*}
\frac{\Gamma_{L}}{\Gamma_{T}}=\frac{1}{2}+\frac{m_{t}\left|Q_{w}\right|^{2}}{E_{b} M_{w}^{2}} \tag{2.32}
\end{equation*}
$$

As m_{t} gets very large the longitudinal piece dominates because jts coupling grows like $\left(m_{1} / M_{W^{\prime}}\right)^{2}$. For the case of an infinitely narrow $W . \Gamma_{L} / \Gamma_{T}=\frac{1}{2}$, precisely at threshold. At the threshold the decay is purely s-wave and the three polarization states are produced equaliy. The value of Γ_{L} / Γ_{T} near the threshold is shown in Figure 2.5 for $\Gamma_{u}=0.0225 \mathrm{GeV}$ (dotted curve), 0.225 GeV (dashed curve). ard the expected 2.25 GeV (solid curve). In this case we see that even for the expected value of Γ_{n} the ratio varie rapidly with m_{r}, especially just below the threshold.

Figure 2.5 The ratio Γ_{L} / Γ_{T} or $t-6+W \rightarrow \varepsilon^{+} \nu_{\text {e }}$ decay widehs into longitudinal compared to transverse H^{\prime} 's as a function of m , for Γ_{w} equal to fictitious values of $00223 \mathrm{Gel}^{\circ}$ (dotited curve) and 0225 GrV (dashef curve), and the expected 2.25 GeV (solid curve)

The ratio of longitudinal to transverse $\mathrm{u}^{-1 \mathrm{~s}} \mathrm{j}$ js reffected in the angular distribu tion of the efectrons ${ }^{17}$ from its decay. With the final b quark direction as a polar axis,

$$
\begin{equation*}
\frac{d \Gamma}{d \cos \theta}=1+\beta \cos \theta+0 \cos ^{2} \theta . \tag{2.33}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\frac{\Gamma_{T}-\Gamma_{L}}{\Gamma_{T}+\Gamma_{L}} \tag{234}
\end{equation*}
$$

Thus a measurement of the piece of the angular distribution even in θ gives a valur for Γ_{L} / Γ_{T} and indirectly a value for m_{t}. In particular, a becomes positive only a few Gel' below the threshold, and this may provide a useful luw. Ion m,

The coefficient of $\cos \theta$ contains information on the difference betwecn the (wo

$$
\begin{equation*}
t=2\left[\frac{I_{1-1}-\Gamma_{1+i}}{I_{1}+\Gamma_{1}}\right] \tag{2.35}
\end{equation*}
$$

If the ronergy of the b quark is much larger than its mass then the b will be laft liandert, since its coupling to the W^{\prime} is V - A. Thus if the spin of the top grark is atignod alolug the W montentum then the W will be dominanty longitudinal; if 1.1 er 1 op spun is anti-aligned with the W momentum then the W will prefer Hegative helicity: So between the two transverse states the negative helicity state will doninate when the b energy is high. Indeed, in the case of a massiess b the positive lielicit; state would not be produced at al!. However at the threshold for maling a real $W, m_{b} / E_{j}$ is no suppression at all and the two transverse states arp produced equally. To see how this comes about consider the difference of the two transuerse rates divided by their sumt:

$$
\begin{equation*}
\frac{\Gamma_{(-1}-\Gamma_{(+1}}{\Gamma_{1-1}+\Gamma_{(+1}} . \tag{2.36}
\end{equation*}
$$

Jior top mass's sufficjently far away from the threshold this ratio will be cluse to one as the positive helicity piece will be suppressed. At exactly the threshold the ratio goes to zero. in the limit that the w is infinitely narrow. The results for the experted width of the 11 are shown in Figure 2.6. along with the fictitious choices of the width for comparison. We see that for very strall values of the width the ratio becomes very small near the threshold. hut for the experted width the effert is slight, the ratio achieving a minimum of ~ 0.6

Figure 2.6 The raw $\left(\Gamma_{1-1}-\Gamma_{(++}\right) /\left(\Gamma_{i-1}+\Gamma_{i+1}\right)$ or $t \rightarrow b+W \rightarrow b e^{+}$, deray widthe mno left lianded minus right handed W 's divided by the sumn as a function of m_{i} for Γ_{w} equal in ficturnous alues of 10225 (iev (doted -urve) and 0225 GeV (dashed rurve). and the expected

2.6. Simmany and Conelustons

We have seen that the range of top masses near the threshold for production of real II bosums has a rich structure. Both the absolute width of the top quark ibid its diflerential wadih in Q^{2} vary wildly across this region. Top quarks in this region Have a slightly enhanced decays into strange quarks. The exclusive decay rates for top mesons tat calculated around the threshold using the mon-relativistic quart model. The relative populations of the different polarizations of intermediate If in top quark decays changes rapidly in this region and rould prownde information on the top quark mass.

3. Top Quark Production in $e^{+} e^{-}$Colliders

3.1. [ntroduction

In the last several years much thought has gone into the prospects for physics using an $c^{+} e^{-}$collider with energy in the TeV range. ${ }^{18}$ These machines 3how great promise for being able to address a wide range of experimental issues. These include (but are not limited to) Higgs boson searches, W'-pair production, supersymmetry searches, and rharged Higgs searches. Here we wish to study the production of top quarks in a $\epsilon^{+} c^{-}$collider with a total center-of-mass energy of order 1 TeV . Top quarks, besides being of considerable interest in their own right, provide signals and/or backgrounds in all the aforementioned experiments. In particular, since Higgs bosons emuple preduminantly to the most massive particle available, top ciuarks will figure prominently in any Higgs study, whether for a charged or neutral Higgs.

The scale of cross sertions for all Standard Model processes (and most nonstandard ones) is set by the elementary QED point cross section:

$$
\begin{equation*}
\sigma_{\mathrm{pi}}=\frac{4 \pi \mathrm{a}^{2}}{3 \mathrm{~s}}=\frac{86.8 \mathrm{fb}}{[E(\mathrm{Te} V)]^{2}} \tag{2.36}
\end{equation*}
$$

The canoniral production mechanism for fermion pair production is $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation into a platon or Z^{0}, shown in Figure 3.1. At center-ol-mass energies much larger than the $Z^{\text {b }}$ mass the lowest order cross-section for a fermion, f, can be writtell

$$
\begin{equation*}
\sigma\left(e_{r}^{+}-f \bar{J}\right)=\sigma_{w} s_{c} \frac{\left[10 Q^{2} s_{u}^{4}+2 Q J_{3} s_{w}^{2}\left(1-6 s_{u}^{2}\right)+1-4 s_{w}^{2}+8 s_{w}^{4}\right]}{16 s_{u}^{4}\left(1-s_{w}^{2} 1^{2}\right.} \tag{2.36}
\end{equation*}
$$

where f_{1} is the weak isospin of the fermion, Q its charge, and N_{c} is the number of

Figure 3.1 The Feynman diagrams for $\mathrm{r}^{+} \mathrm{c}^{-}-3, Z^{0}-\mathbf{1 I}^{\mathrm{i}}$
colors, 1 for leptons. 3 for quarks. For compact ness we have writien $\sin \theta_{w}=s_{w}$. For top quarks (or any other np-lype quark for that matter) the cross section is

$$
\sigma\left(r^{+} r^{-} \rightarrow t i\right) \simeq 2.1 o_{\mathrm{p} 1}
$$

where we have assumed $s>m_{i}^{2}, M_{z}^{2}$ and taken $s_{w}^{2}=0.23$.
The question we want to investigate is whether there are any other importint production mechanisms for top quarks. The natural candidates are the vector boson fusion processes These processes are suppressed relative to σ_{pt} by a factor of a^{2}. However, since the vector bosons are exchanged in the t-channel they can come close to being on shell in the limit where the energy they carry is much larger than their mass. Furthermore, longitudinal bosons have enhanced couplings to heavy fermions. These factus ruld combine to make vector-hoson fusion prosesses con, petilive with annihilation through y or Z^{0}.

In this chapter we will make an exhaustive survey of the vector-boson fusion processes which contribute to the production of top quarks. We will calculate cross sections for these proresses using the effective-vector-boson appraximation. For
 Ti.

3.2. [III Ebferinte Fhoton Aprnoximation

Annma the vector-boson fusion procensest, the one with the longest history by far is phuntan photon fusion, with theorelical investigations gaing all the way back 10 Willianis and Inendau amd Lifshite ${ }^{19}$ in 1934. At the energies in which we ate interested. these reactiots afe well vescribed by the effective photon approximalion. vriginally doveloped by Fermi, Weizsäcker and Williams, and landau and lifahita ${ }^{3 \prime \prime}$ and given a modern treatment by Hrodsky. Kimoshita and Teratawa." Fur completeness and as a warm-up for subsequent ralculations, we will present a bripf derivation of lic effective-photon approximation, kerping only the leading (erat. blt this steategy we will neglect the mass of the electron wherever possible. We will follow closely the treatment of Jef. 21 .

Conside: the process depieted in Figure is: 2. The essence of the effective photorn approximation is that the cross section is dominated by phase space configurations in wh ch the virtual photon is nearly on-shelh, i.e., when the timal electron goes almost straight forward. The strategy is to integrate over forwatd angles and express the result as the cross section for $7 f \rightarrow$ multiplied by an effertive flux of phetons inside the electron. In this respect the elfectiver photon approxination is identical to the parton model of hadrons. the differemer being that the distribution of photons inside the electron is calculable, whereas the distribution of quarks and gluons within a hadron must be extracted from experimental data.

Figure 3.2 One-phaton production of an arbitrary final atate X in a collision of an electron with an arbitiary intial partucle $f e^{-} f \rightarrow e^{-X}$.

The amplitude for this process can be written

$$
M=\bar{u}\left(p^{\prime}\right)\left(r e^{\mu}\right) u(p) \frac{\left(-i g_{\mu \nu}\right)}{\left(p-\eta^{\prime}\right)^{2}} \mathcal{A}^{\nu}
$$

where \mathcal{A}^{ν} describes the three point coupling. $\gamma^{2} f \rightarrow \boldsymbol{X}$. After summing over the helwities of the initial and final rectron and performing the Difac trace we have

$$
\left.\frac{1}{2} \sum_{s p \operatorname{lns}}|\cdot|\right|^{2}=\frac{2 c^{\prime}}{\left(p-p^{\prime}\right)^{1}}\left(p^{\mu} p^{\prime \mu}+p^{\mu} p^{\prime \mu}-p \cdot p^{\prime} g^{\mu \nu}\right) \mathcal{A}_{\mu} \cdot \mathcal{A}_{\nu}^{\prime}
$$

Procend to the cross section:

$$
\begin{align*}
& d J^{\dot{\prime}}=\frac{(2 \pi!}{25}\left([k+\pi j-p . t) d I^{i} .\right. \tag{132}
\end{align*}
$$

where $s=\left(p+p_{f} h^{\prime}, k=p-p^{\prime}\right.$. is the monerutum of the photon and $d \Gamma$ is the invatiant phase spare of the state d.

We now treak up the photon propagator inte a sum of palarization vectors:

$$
\begin{equation*}
-g^{\mu \nu} \rightarrow \sum_{s} x_{1}^{\mu} c_{1}^{* \mu} \tag{3.3}
\end{equation*}
$$

The sum runs over the two polarization vectors perpendicular to the photon momentum k plis a longitudinal one. Inserting Eq. (3.3) into Eq. (3.1) yields

The integral over the azimuthal angle of the final electron causea the polarization sun to be diagonal; the interference terms between longit udinal and transverse polarizations and betwern the (wo transverse polarizations integrate to give zero. Furthermore the contribution from the longitudinal polarization vectors is sup. pressed. The longitudinal polarization vector becomes proportional to k when the photon goes on shell Thus the Ward identity guaranters that it couples with an extra fartor of k^{2} comprared to the transverse mode. The longitudinal giece will only be important if it is anomabously enhanced, rg. by a small mass appearing In a propagator. of if the transverse coupling is forbidden: the longitudinal piece will not romtribute significanly to 7 produrtion of fermion pairs, and we neglect it in what follows

A fier the anarmitial integratom is prerformed. we have

$$
\begin{equation*}
d \pi(, j \rightarrow N i)=\frac{a}{\pi} \int \frac{E^{\prime} d E^{\prime} d \cos \theta^{\prime}}{d^{4}}\left(2 p_{\perp}^{2}-k^{4}\right) \frac{\ddot{n}^{\prime}}{E} d \sigma(2 f \rightarrow \lambda) . \tag{3.4}
\end{equation*}
$$

where $-E-E^{*}$ is the eusrgy of the photen amd p_{\perp} ss the projection of p

 shargl! atound $0=0$ so we teplace

$$
\begin{gather*}
k^{2}=-2 E E^{\prime}(1-\cos \theta)-m_{e}^{2} \frac{\left(E-\mathbf{E}^{\prime}\right)^{2}}{E E^{\prime}} \\
p_{-}^{2}=-\frac{E^{\prime}}{h^{\prime}} \tag{3.4}
\end{gather*}
$$

Changing variables to integrate over k^{2} we find

$$
\begin{equation*}
d \sigma\left(e^{-} f \rightarrow e^{-} X\right)=\frac{a}{2 \pi} \int d E^{\prime} \frac{\left.E^{2}+E^{\prime 2}\right)}{\omega E^{2}} \frac{d k^{2}}{\left(-k^{2}\right.} d \sigma(\gamma f \rightarrow X) . \tag{3.4}
\end{equation*}
$$

The leading term comes from the fatt that the smallest k^{2} is proportional to m_{e}^{2} :

$$
\begin{equation*}
-\int \frac{d k^{2}}{k^{2}}=\log \frac{4 E E^{\prime}}{m_{e}^{2} w^{2}} \simeq 2 \log \frac{E}{m_{e}} . \tag{3+1}
\end{equation*}
$$

We present the final answer in the form

$$
\begin{equation*}
\sigma\left(e^{-} f \rightarrow f X\right)=\int d x f_{g}(x) \sigma\left(\left.\gamma f \rightarrow X j\right|_{j=x}\right. \tag{31}
\end{equation*}
$$

Where $\dot{s}=\left(k+p_{j}\right)^{2}$. We conchudt that the leading contribution to the photon fux is

$$
\begin{equation*}
f_{\imath}(x)=\frac{a\left[1+(1-x)^{2}\right]}{\pi} \log \frac{E}{m_{r}} . \tag{3.5}
\end{equation*}
$$

The term proportional to $1 / \frac{1}{\text { derives from photons with spims aligned with the spin }}$ of the incoming electron, white the term proportional to $(1-r)^{2} /=$ provides the

Figure 3.3 The effective fux of photons in an electron with encrgy 1 TeV am a function of the momentum fraction \boldsymbol{x} the full exprosesion, Eq. (36), compared to the leading-logarithn) approximation, Eq (35)
distribution of anti-aligned photons. At an energy of $E=1 \mathrm{TeV}$ the logarithmic enhancement is $\log _{8} \frac{E}{m_{\mathrm{g}}} \simeq 14.5$. The full expression is ${ }^{21}$

$$
\begin{align*}
f_{r}(x) & =\frac{\alpha}{x}\left\{\frac{\left[1+(1-x)^{2}\right]}{x}\left(\log \frac{E}{m_{e}}-\frac{1}{2}\right)\right. \\
& \left.+\frac{x}{2}\left(\log \frac{2(1-x)}{x}+1\right)+\frac{(2-x)^{2}}{2 x} \log \frac{2(1-x)}{2-x}\right\} \tag{3.6}
\end{align*}
$$

The full photon flux compared to the "leading-log" distribution is shown in Fig. ure 3.3. We see that at these ehergies the leading term approximates the full distribution to high accuracy

3.3. Two-Photon Production of Top Quarks

In the previous section we derived the effective-photon approximation for a process inrolving one exchanged photon. To treat photon-photon collisions we need to fold in another factor of the photon flux. Accordingly, the cross section for two-photon production of top quark paira is

$$
\begin{equation*}
\sigma\left(e^{+} e^{-} \rightarrow+^{+} e^{-} t \tau\right)=\int d x_{1} d x_{2} f_{\gamma}\left(x_{1}\right) f_{\gamma}\left(x_{2}\right) \sigma(\gamma \gamma \rightarrow t \bar{t}), \tag{3.4}
\end{equation*}
$$

where $\sigma(\gamma \gamma \rightarrow t \bar{f})$ is evaluated at a center-of-mass energy squared, $\boldsymbol{j}=x_{1} x_{7} s$ and $f_{7}(x)$ is given by Eq. (3.6).

Figure 3.4 The Feynman disgrams for $\uparrow \mathfrak{q} \rightarrow 1 i$
The two-photon process proceeds through the two diagrams in Figure 3.4. The cross section is (for unpolarized photons)

$$
\begin{equation*}
\sigma(\gamma \gamma \rightarrow t \bar{t})=4 \pi N_{c} Q_{t}^{4} \alpha^{3} \frac{\beta_{t}}{j}\left[\frac{\mathcal{f}_{t}}{\beta_{t}}\left(1+4 \Delta_{t}-8 \Delta_{t}^{2}\right)-1-4 \Delta_{t}\right], \tag{3.4}
\end{equation*}
$$

with the dependence on the top-quark mass entering through

$$
\begin{align*}
& \Delta_{1}=\frac{\dot{m}_{1}^{2}}{\dot{s}} \\
& \beta_{t}=\sqrt{1-4 \Delta_{1}} \tag{3.7}
\end{align*}
$$

and

$$
C_{1}=\log \frac{1+\beta_{2}}{1-\beta_{1}} .
$$

In Figure 3.5 the full cross section at $\sqrt{s}=2 \mathrm{TeV}$ is ploted for varioua values of m_{4}. We see thal for $m_{1} \leqslant 100 \mathrm{GeV}$ the two-photon cross section is comparable to that from annitilation through a photon or Z^{0}.

Figure 3.5 The crom section for two-photon production of top quarke, $e^{+} e^{-}-\boldsymbol{y \gamma}-1 \hat{i}$. at $\sqrt{t}=2 \mathrm{Te} V$ in the effective photon approximation as afunction of the top quart mas

3.4. The Effective-W Approxination

In this section we derive the analogue for massive vector bosons of the effectivephoton approximation, in order to use this technique to calculate top quark production from the fusion of W 's and Z 's. The effective-W approximation has been discussed extensively in the literature. ${ }^{\text {t2 }}$ It has been used to calculate production of very heavy Higgs particies and heavy fermion pairs arising from W-boson fusion, both in the context of hadron-hadron collisions and electron-positran collisions. ${ }^{23}$

There are several immediate differences between processes invalving photons
 vertor couph hags fo fermions. As we will see storty. interictence betweeth thene cospling will case the bosoms of helirity +1 to have daffrem distributions from those with trebug - 1 since llir $H^{ \pm}$and $7^{\text {a }}$ are massive, processes involing these parcibles are suppressed watil very high energies are obtained if a process is to be wedl-described by the effective boson approximation, the energy that the virtual busun rarries nusi be significantly larger than its mass. This reeates a threshold below which the effective-boson anproximation is no longer applicable. For example. we do not expect the effertive-boson approximation to be applicable to the production of light fermion pairs, since these are produced most copiously at energiss much bess than M_{z} and M_{w}. Finally, the $K^{\prime \pm}$ and Z^{0}, being massive, are allowed to hate longitulinal polarization states. Longitudinal polarizations couple to the mase of fermions and ithe become important in heaty fermion production, whereas in photon interactions the longitudinal contributions are suppressed dee to the Ward istentits.

Theste dist inctions duly noted, the derivation of the effective-W approximation proceeds in a very similar fashion to our previous derivation of the effective-photon approximation. Wie will present the derivation in detail because there has been some controversy in the literature and because the eross sections for heavy fertrion production from vector bason fusion depend strongly on the parton distributions used. We will follow closely the treatment of Dawson, Ref. 22.

Figure 3.6 The production of an abitrary final state X vis exchange of a massive vector boson V between an electron and an arbitrary initial particle f. $\mathrm{e}^{-} \boldsymbol{f}-\mathrm{CX}, \mathrm{I}$ is either an electron or a neutrino depending on whether the v is a Z^{0} or a W^{-}.

For generality, we study processes involving massive vector boson, V, which may be eitser charged or neutral. We allow V to bave arbitrary vector and axialvector couplings to the electron, g_{r} and g_{a}, respectively. Consider the procest depicted in Figure 3.6. The amplitude for the process is

$$
\begin{equation*}
M=\bar{u}\left(p^{\prime}\right)(-i) \gamma^{\mu}\left(g_{v}+g_{\mathrm{a}} \tau^{5}\right) u(p) \frac{\left(-i g_{\mu \nu}\right)}{\left(L^{2}-M_{\mathrm{v}}^{2}\right)} \mathcal{A}^{\mu} \tag{3.4}
\end{equation*}
$$

where as before \mathcal{A}^{ν} detcribes the three-point coupling: $V^{\nu}+f \rightarrow \mathcal{X}$. For $W^{ \pm}$and Z^{0} bosons the couplings are

$$
\begin{equation*}
W^{ \pm}: \quad g_{v}=-g_{4}=\frac{g}{2 \sqrt{2}} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{align*}
Z^{0}: \quad g_{v} & =\frac{g}{\cos \theta_{w}}\left(-\frac{1}{4}+\sin ^{2} \theta_{w}\right) \tag{3.4}\\
g_{a} & =\frac{g}{4 \cos \theta_{w}} .
\end{align*}
$$

Squaring the amplitude and summing over spins yields

$$
\begin{align*}
|\bar{M}|^{z} \equiv \frac{1}{2} \sum_{\text {spus }}|A|^{2} & =\frac{2}{\left(K^{2}-M_{v}^{2}\right)^{2}}\left\{\left(g_{v}^{2}+g_{A}^{2}\right)\left[p^{\mu} p^{\prime \alpha}+p^{\pi} p^{\prime \mu}-p \cdot p^{\prime} g^{\mu a}\right]\right. \tag{3.8}\\
& +2\left(g_{+} g_{c} e^{\mu \sigma \rho \sigma} p_{\rho} p_{\sigma}^{\prime}\right\} g_{\mu} \cdot g_{a} A^{\prime \prime} \mathcal{A}^{1,4}
\end{align*}
$$

We mow derompuse the propagator intes a sum oner polarization vectors. Wi Cheose millary gauge and substitute

$$
\begin{equation*}
-g_{\mu \nu}+\frac{k_{\mu} k_{\mu}}{k^{2}}=\sum_{\lambda}{e_{\mu}}_{\mu}(\lambda) r_{\nu}(\lambda) . \tag{3.9}
\end{equation*}
$$

Wi chusese the belicity basis for the polarization vectors: λ runs over $\lambda= \pm 1.0$. The explicit polarization vectors we will use are:

$$
\begin{align*}
r_{ \pm}^{\prime} & =\frac{-1}{\sqrt{2}}(0, \pm 1,1,0) \\
r_{0}^{\mu} & =\frac{1}{\sqrt{-k^{2}}}(|k|, 0,0, \omega) \tag{3.10}
\end{align*}
$$

where \dot{k} defines the i axis. Note that since k is a space her vector $\left(h^{2}<0\right)$. co must be lime liker. if it is to be orthogonal to k. Thus eo $\cdot 0_{0}^{*}=+1$. whereas $t_{ \pm} \cdot x_{ \pm}=-1$
lumotug Iiq. (3.4) into Eq. (3.8) yiedds

In orde: hot the dremation to proceed it is necessary that all the inte ference terme
 ther atmuthat angle of p^{\prime}. Thes condition is inderd satislied, as we will now sere

To facilitate the atgument define explicit components for p and p '. Momentum ronservation equires that the components of p and p^{\prime} perpendicular to k be equal and upposite. With \dot{k} defining the z-axis we write:

$$
\begin{align*}
& p=\left(p_{1} \cos \theta \cdot p_{\perp} \sin \phi_{1} p_{3}\right) \\
& \mathbf{p}^{\prime}=\left(-p_{\perp} \cos \phi_{1}-p_{\perp} \sin \phi \cdot p_{3}^{\prime}\right) \tag{3.4}
\end{align*}
$$

tet us analyac each of the terms in Fq. (3.11) separately, focussing on the case $1 \neq \rho$ in the dial polarization sum. When $i= \pm 1$ and $j=0$ the first two terms are linear combinations of sin ϕ and cos ϕ and so vanish upon the ϕ integration. When $1=+1$ and $)=-1$ these terms yirld $p_{\perp}^{2}\left(\cos ^{2} \phi-\sin ^{2} \phi\right)$, which also integrates to zero. The thiri tetm, being proportional to $c_{*}^{*} \cdot f_{f}$, is automaticaliy diagonal. since the diferent polarization vectors are orthogonal. Now examine the piece rontaining $\mathrm{e}^{\text {mopo }}$. The antisymantry of the aymbol causes this term to vanish when,$=+1$ and $)=-1$, since $\mathfrak{c}_{+}^{*}=-r_{-}$. When one \boldsymbol{f} is transverse and the other is longindinal each term in the Lorentz sum is forced to bave exactly one power of rit her sin of or os again yiflding zero under the otntegral. We conclude that. as clained, hae interferaner tetits do mon somitute.

Discarding the off-diagonal terms in Eq. (3.11). and inserting the explicit polarization vectors from F.q. (3.10). we find

$$
\begin{align*}
& +\left(u_{1}^{2}+y_{a}^{2} 1\left[2\left(n, r_{n}\right)^{2}+2^{1} k^{2}\right]\left|-A \quad c_{0}\right|^{2}\right\} \tag{3.12}
\end{align*}
$$

Note that the term propurnwial to gege thanges sign depending on the belicat?
of the vitual hoson, rewulting in different distrilutions for the two transverse polarizationtis: $:$

We call now pass to the cross section:

$$
\begin{equation*}
d o\left(t^{-} j \rightarrow \mid X\right)=\left.\frac{1}{2(2 \pi)^{3}} \int \frac{d^{3} r^{\prime}}{E^{\prime}}|\bar{M}|\right|^{2} d \overrightarrow{\mathrm{~T}} \tag{3.4}
\end{equation*}
$$

where dT is defined by Eq. (3.2). The integration over ϕ gives a factor of 2π and the crows section becomes

$$
\begin{equation*}
d o\left(x^{-} j \rightarrow c-(\mu) X\right)=\frac{1}{2(2 \pi)^{2}} \int E^{\prime} d E^{\prime} d \cos \theta|\bar{M}|^{2} d \bar{\Gamma} \tag{3.13}
\end{equation*}
$$

Up to this point we have made no approximations; Eq. (3.13) is exact, with $|\overline{\mathcal{M}}|^{2}$ given by Eq. (3.12). To implement the effective-boson approximation we assume that the amplitudes $|\mathcal{A} \cdot(\lambda)|^{2}$ are slowly varying with respect to the rest of the integrand in Eq. (3.13) so that we can take them to their values at $\theta=0$ and remove them from the integral over $\cos \theta$. The cross section fo the sub-process. $V+S \rightarrow X$ is given by $|\mathcal{A}-c(A)|^{2}$, multiplied by the appropriate phase-space factor. Since the transverse polarization vectors have straightforward limits at $\theta=0$ we write

$$
\begin{equation*}
\lim _{\theta \rightarrow 0}\left|A \cdot \ell_{ \pm}\right|^{2} d \bar{\Gamma}=\frac{\omega}{E} d \sigma\left(V_{\lambda= \pm 1}+f \rightarrow X\right) \tag{3.4}
\end{equation*}
$$

The corresponding limit for the longitudinal amplitude is slightly more subte The longitudinal polarization vector in Eq. (3.10) contains a lactor of $1 / \sqrt{-k^{2}}$, which diverges in the forward direction. So in order to make our continuation to

Lhe formand direction wr Ifefine a "physical" tongitudiral polarization wecton

$$
\begin{equation*}
{ }_{\text {Hhys }}^{*}=\frac{k^{\mu}}{M_{4}} \tag{:514}
\end{equation*}
$$

We then writs.

$$
\begin{equation*}
\lim _{\theta \rightarrow 1} \left\lvert\, \mathcal{A}\left(\left.10\right|^{*} d\right]^{2}=\frac{w}{E} \frac{M_{i}^{2}}{\left(-k^{2}\right)} \operatorname{do}\left(V_{\lambda=0}+f \rightarrow X\right)\right. \tag{3.4}
\end{equation*}
$$

The fartur of $M_{2}^{2} /\left(-k^{2}\right)$ results rom the conversion from the "virtual" polarization vector to the "pilysiral" one, and the sub-process eross sertion is evaluated using ishys-

We define the effective hoson distributions, id by

$$
\begin{equation*}
d \sigma\left(e^{-} f \rightarrow(X)=\left.\sum_{\lambda} \int d x f_{\lambda}(x) d \sigma\left(V_{\lambda}+f \rightarrow X\right)\right|_{j=x s}\right. \tag{3.15}
\end{equation*}
$$

('ormparing Eq. (3.13) and Eq. (3.15) and using Eq. (3.12) for $\mid \mathbf{M} \mathbf{M}^{2}$, we can read off the distribution functions:

$$
\begin{equation*}
f_{ \pm}(x)=\frac{E_{\omega}^{\prime}}{4 \pi^{2}} \int \frac{d \cos \theta}{\left(k^{2}-M_{v}^{2}\right)^{2}}\left[\left(g_{v}^{2}+g_{a}^{2}\right)\left(p_{1}^{2}-\frac{1}{2} k^{2}\right) \pm 2 g_{v} g_{a}\left(E^{\prime} p_{3}-E p_{3}^{\prime}\right)\right] \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{0}(x)=\frac{E^{\prime} \omega}{4 \pi^{2}} \int \frac{d \cos \theta}{\left(k^{2}-M_{v}^{2}\right)^{2}} \frac{M_{v}^{2}}{\left(-k^{2}\right)}\left(g_{v}^{2}+g_{\Delta}^{2}\right)\left[\left(p \cdot \epsilon_{0}\right)^{2}+\frac{1}{2} k^{2}\right] \tag{3.17}
\end{equation*}
$$

It is convenient to define linear combinations of the transverse distributions:

$$
\begin{equation*}
F_{ \pm}(x) \equiv f_{+}(x) \pm f_{-}(x) \tag{3.15}
\end{equation*}
$$

Belore performing the integrals in Eqs. (3.16) and (3.17) we need to do some kinematics, expressing the relevant quantities in terms of s and k^{2}. The quantities
we need are

$$
\begin{gather*}
r_{1}^{2}=\frac{E^{2} E^{\prime 2} \sin ^{2} \theta}{|\mathbf{k}|^{2}}=\frac{-k^{2}}{1|\mathbf{k}|^{2}}\left|s(1-s)+k^{2}\right| . \tag{3.15}\\
E^{\prime} p_{3}-E p_{3}^{\prime}=\frac{-k^{2}}{2|\mathbf{k}|}\left(E+E^{\prime}\right) . \tag{3.15}\\
\left(p \cdot \epsilon_{0}\right)^{2}=\frac{-k^{2} s}{16|\mathbf{k}|^{2}}(2-s)^{2}, \tag{3.15}
\end{gather*}
$$

with $|k|^{2}=u^{2}-k^{2}$. With these substitutions we have

$$
\begin{align*}
& F_{+}(x)=\frac{\left(g_{v}^{2}+g_{0}^{2}\right)}{16 \pi^{2}} x \int \frac{d k^{2}\left(-k^{2}\right)}{\left(\omega^{2}-k^{2}\right)\left(k^{2}-M_{v}^{2}\right)^{2}}\left[s(1-x)+2 \omega^{2}-k^{2}\right] \\
& F_{-}(x)=\frac{g_{0} g_{r}}{4 \pi^{2}} E(2-x) \int \frac{d k^{2}\left(-k^{2}\right)}{\sqrt{\omega^{2}-k^{2}} \frac{1}{\left(k^{2}-M_{v}^{2}\right)^{2}}} \\
& \left.\left.f_{0}(x)=\frac{\left(g_{v}^{2}+g_{0}^{2}\right)}{64 \pi^{2}} \Sigma M_{*}^{2} \int \frac{d k^{2}}{\left(\omega^{2}-k^{2}\right)\left(k^{2}-M_{v}^{2}\right)^{2}} \right\rvert\, s(2-x)^{2}-4\left(\omega^{2}-k^{2}\right)\right] .
\end{align*}
$$

The integrals are straightforward to perform; the regults are:

$$
\begin{align*}
& F_{+}(x)=\frac{\left(g_{v}^{2}+g_{a}^{2}\right)}{16 x^{2}} s\left\{\left[1+\frac{(2-x)^{2}}{x^{2} y^{4}}\right] \log \left(1+\frac{1-T}{\Delta}\right)\right. \\
& \left.-\frac{2(2-x)^{2}}{x^{2} \eta^{4}} \log \left(\frac{2-x}{x}\right)+\frac{4(1-x)\left(x^{2} / 2+1-x+\Delta\right)}{x^{2} \eta^{2}(1-x+\Delta)}\right\} . \tag{3.19}\\
& F_{-}(x)=\frac{g_{0} g g_{0}}{8 \pi^{2}} \frac{(2-x)}{x^{2} \eta^{3}}\left\{\left(x^{2}-2 \Delta\right) \log \left\{\frac{(2-x-x \eta)}{(2-x+x \eta)} \frac{(1+\eta)}{(1-\eta)}\right\}\right. \\
& \left.+\frac{\Delta \eta x(2-x)}{1-x+\Delta}+x^{2} \eta\right\} . \tag{3.20}\\
& f_{U}(r)=\frac{\left(g_{r}^{2}+g_{g}^{2}\right)}{4 \pi^{2} r \eta^{2}}\left\{\frac{\Delta}{\eta^{4} s^{2}}\{2-r\}^{2} \log \left[\frac{(2-\Sigma)^{2}}{r^{2}} \frac{\Delta}{s(1-r)+\Delta}\right]+1-x\right\}, \tag{3.21}
\end{align*}
$$

with the definitions:

$$
\begin{align*}
\Delta & =\frac{M_{v}^{2}}{3} \tag{3.15}\\
\eta & =\sqrt{1-\frac{4 \Delta}{x^{2}}}
\end{align*}
$$

Although Eqs. (3.19) - (3.21) appear singular as $\eta \rightarrow 0$, they are in fact well. behaved, as they must be, since Eqs. (3.18) are clearly smooth as $\omega \rightarrow M_{v}$

The leading terms in the distributions are obtained by taking $\Delta \mathbb{x} x^{2}$ (which of course forces $\Delta<1$). The distributions in this limit become

$$
\begin{align*}
& F_{+}(x)=\frac{\left(g_{\psi}^{2}+g_{\Delta}^{2}\right)}{8 \pi^{2}} \frac{\left[1+(1-x)^{2}\right]}{x} \log \left(\frac{1}{\Delta}\right) \tag{3.22}\\
& F_{-}(x)=\frac{g_{u} g_{0}}{4 \pi^{2}}(2-x) \log \left(\frac{1}{\Delta}\right) \tag{3.23}\\
& f_{0}(x)=\frac{\left(g_{t}^{2}+g_{0}^{2}\right)}{4 \pi^{2}} \frac{1-x}{x} \tag{3.24}
\end{align*}
$$

The averaged transverse distribution, $F_{+}(r)$, is the analogue of the effectivephoton distribution, derived in Section 1. Whereas the photon flux is enhanced by a factor of $\log \left(s / m_{e}^{2}\right)$, the transverse states of a massive vector boson, V, are enfanced by a factor of $\log \left(s / M_{y}^{2}\right)$, a much weaker euhancement. The boson mass takes the place of m_{r} because it is M_{ν} that prevents the boson propagator from hitting the pole. The relative enhancements can be seen in Figure 3.7 in which we plot the fluxes in the leading log approximation for the case of a W^{-}being emitted from an electront: the photon flux is presented for comparison. We should note that approximating $F_{+}(x)$ by its leading term can lead to a gross overeatimate of the Alux, since the term proportional to $\log (1 / \pi)$ may cancel destructively against the leading term. ${ }^{16}$ especially at small r. The parity-violating distribution, $F_{-}(x)$.
 helicites to have distinct fluxes. For Z^{D} bosoms. for which the vector coupling to efectrons is very suall. $F_{-}(x)$ is negligible and the two helicities, ± 1, have approximately the same flux.

For $11^{\cdot *}$ bosons, the parity violating ternuchanges sign depending on the charge of the W, as required by C P invariance. Since W bosons have U - A couplings, $F_{-}(x)$ is negalive, causing left -handed $W^{-\prime}$ s to be enhanced over right-handed ones, and vice versa for $\mathfrak{W}^{+}+$'s. To see this in more detail, assume the neutrino in Figure 3.6 to be emitted at a small angle 0 from the incoming electron. Defining the polarization vectors as in $\mathrm{Eq} .(3.10)$ and using explicit left-handed spinors, we can readily compute

$$
\begin{align*}
& \bar{u}_{L}(p) \gamma \gamma^{\nu} u_{L}\left(p^{\prime}\right) e_{\mu j}^{+} \sim \frac{(1-r)}{I} 0 \tag{3.15}\\
& \ddot{u}_{L}(p) \gamma^{\mu} u_{L}\left(p^{\prime}\right) e_{\mu}^{-} \sim \frac{1}{x} \theta
\end{align*}
$$

We see that for a close to 1 , when the W carrics most of the momr-ium, the left-handed polarization dominates; while for small x the two helicities are equally likely. This behavior is maniffest in the leading log distributions. If we write the helicity distributions for a W^{--}we find:

$$
\begin{align*}
& f_{-}(x)=\frac{g^{2}}{32 \pi^{2}} \frac{1}{x} \log \left(\frac{1}{\Delta}\right) \\
& f_{+}(x)=\frac{g^{2}}{32 \pi^{2}} \frac{(1-x)^{2}}{x} \log \left(\frac{1}{\Delta}\right) . \tag{3.15}
\end{align*}
$$

The distribution of longitudinal bosons does not exhibit the logarithmic enhancement of the transverse modes. Instead. the longitudinal rode is enhanced by a factor of s / M_{w}^{2}, which we have absorbed into our definition of the longitudinal

Figure 3.7 The leading logarithm approximation to effective distribution for W bosons in an electron [Eqs (3.22)-(3.24)] with beam energy 1 TeV as a function of the mumentum fraction x The effecture photon distribution is shown for comparion
polarization vector. The longitudinal and transverse fluxes depend differently on M_{v}^{2} / s as a result of their different kinematics: emission of a longitudinal boson is allowed in the full forward direction, while the emission of a transverse boson is forbidden by angalar momentum conservation. We also note that for the longitudinal distribution the leading term accurately approximates the full distribution since the next order term is suppressed by a factor of M_{v}^{2} / s.

The distributions derived here agree in leading approximation with those in the literature." However, the non-leading lerms differ between authors depending on the exart definitions of the distribution functions and the extent to which higher order terms in M_{V}^{2} / s are retained. In situations in which the effectiveboson approximation is accurate these differences in the non-leading terms are not
isnpotant numerically. For definiteness we will use the distribution functions of Eqs. (3.19) - (3.21). They are displayed in Figure 3.8 for a beam energy of 1 TeV . along with the leading approximations for comparison. We see that the leading approximation to the longitudinal distribution is quite accurate, wheseas in the transverse case the leading-log distribution differs from the full distribution by as much as a farior of 10

Figure 3.8 Comparison of the full expression for the \mathcal{U} 'fluxes in an electron (Eolld lines) at energy 1 TeV with the leading logarithm approximations (dashed lines) as a function of the momentum fraction x a) Sum of the two transverse diatribution, $F_{+}(x)$, b) Difference of the two transverse distribution. $F_{+}(x)$. c) The longitudinal distribution. $f_{0}(x)$
35. Top Quark Prodiction from hew fusion

In this section we compute the cross section for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \nu \bar{\nu} t \bar{t}$ through $W W$ fuston. Wir will treat this process in the effective W approximation derived in the previous section. By employing the effective- \boldsymbol{W} approximation we restrict on allemion to the so-called W fusion diagrams, those of the form shown in Figure 3.9. We, expert these diagrams to contribute the bulk of the cross sections

Figuro 3.9 Production of top quask pars vie wh fusion
at higls emough energies. The "peripheral diagrams" that we neglect are shown in Figure 3.10. The degree to which these diagrams alter the cross section is unknown in general although there have been exact calculations in some special casea."

(a)

(b)

(c)

Figure 3.10 Pertpheral dingruras for $e^{+} e^{-}-j \dot{w}\{\bar{i}$ negleated ill the effective- W approxitnation a.c) the intrimedrate bowon coupling to the t i par can be a 2° emitted from any of the four lepton legs or a phnton from the electron es positron, b) the Z^{\prime} can be emitted from any of the four fermion lines

Since the effertive- W approximation yields diferent distributions for the threr possible polarizations of the W 's, we must treal the polarizations separately when computing the cross section for the subprocess $W^{+} W^{-} \rightarrow 1$. Furthermare, the ap propniate choice of basis for the polarization vectors of the W ''s is the helicity basis, since the effective-W' approximation io diagonal only in that basis. Accordingly. we write the $f u l \mid$ cross section as

$$
\begin{align*}
\sigma\left(e^{+} e^{-} \rightarrow \bar{w} t \bar{t}\right) & =\sum_{\lambda_{4} \bar{\lambda}_{-}} \sigma\left(e^{+} e^{-} \rightarrow W_{\lambda_{+}}^{+} W_{\lambda_{-}}^{-} \rightarrow t \bar{l}\right) \\
& =\sum_{\lambda_{4} \lambda_{-}} \int d x_{+} d x_{-} f_{\lambda_{+}}\left(x_{+}\right) J_{\lambda_{-}}\left(x_{-}\right) \sigma\left(W_{\lambda_{+}}^{+} W_{\lambda_{-}}^{-} \rightarrow d \bar{l}\right) . \tag{3.25}
\end{align*}
$$

where the helicities $\lambda_{ \pm}$of the $W^{\prime} \pm$ each run over $1,0,-1$.

The cross section for the sub-process $W^{+} W^{-} \rightarrow t \bar{t}$ is strajghtforward, if te dious, to calculate. It proceeds through the diagrams in Figure 3.11

Figure s.11 Diagrame contributing $\omega W^{+} W^{*} \rightarrow$ if

Along with the Compton-like graph, familiar from photon-photon tusion, we bave the s-channel graphs involving the photon, Z^{0}, and Higgs. It is well known that the individual graphs are not well behaved at high energies and that it is only the sum of the graphs which is unitary. The cancellations between diagrams
are espectally large for proressiss involving longitudinal bosons, since they have a polarization vector whach grows with energy: $e^{\mu} \simeq k^{\mu} / A_{i v e}$. For simplicity, we will present aloss srifions summed over the apins of the $\{$ and I. We note that, since the Whas left handed rouplings to fermons, left handed top quarks (accompanied by right handed antı quarks) will dominate.

In the calculation of $W^{+} W^{-} \rightarrow i \bar{i}$ crosa gection we will take the momenta of the W's to be light-like: $\boldsymbol{k}^{2}=0$. There are two fensons for this. First, the limit of the integration over k^{2} in the effertive- W approximation is $k^{2}=0$; continuing k^{2} to $k^{2}=M_{w}^{2}$ adds additional error at the order of $M_{\mathrm{w}}^{2} / \mathrm{s}$. Second, it is simpler to perform the calculation for $k^{2}=0$ than for $k^{2}=M_{w}^{2}$. For polarization vectors we take those defined in Eq. (3.10) for helicity ± 1, and Eq. (3.14) for the longitudinal polarization.

We begin with the cases where both the \mathbb{W}^{+}and W^{-}are transverse: $\lambda= \pm \mathbf{I}$. Note that not all of these configurations are independent: $C P$ invariance requires $\sigma\left(U_{i=+s}^{+} W_{\lambda=+1}^{-} \rightarrow(\bar{l})=\sigma\left(W_{\lambda=-1}^{+} W_{\lambda=-1}^{-} \rightarrow{ }^{\prime} \bar{l}\right)\right.$. The actual calculation of the cross section is routine: add the various diagrams, square the fulf matrix element, sum over the quark spins, and finally integrate over the phase space. The cross sections for the various helicity combinations are:

$$
\begin{align*}
& \sigma\left(W_{\lambda=+1}^{+} W_{\lambda=-1}^{-} \rightarrow t \bar{I}\right)=\frac{\pi N_{c} a^{2}}{2 s_{w}^{4}} \frac{\beta_{t}}{3}\left\{\Delta \Delta_{t}^{2}\left(1-4 \Delta_{t}\right) \frac{\mathcal{C}_{t}}{\beta_{1}}+\frac{1}{3}+\frac{2}{3} \Delta_{1}-8 \Delta_{i}^{2}\right\}, \tag{3.26}\\
& \sigma\left(W_{\lambda=-1}^{+} W_{\lambda=+1}^{-} \rightarrow t \bar{I}\right)=\frac{\pi N_{c} a^{2}}{3_{W}^{4}} \frac{\beta_{1}}{3}\left\{2 \frac{\mathcal{C}_{t}}{\beta_{1}}\left[1-4 \Delta_{t}+7 \Delta_{i}^{2}-4 \Delta_{i}^{3}\right]-\frac{17}{6}+\frac{19}{3} \Delta_{t}-4 \Delta_{t}^{2}\right\} .
\end{align*}
$$

(3.27)

$$
\begin{aligned}
& \sigma\left(H_{\lambda=+1}^{+} H_{\lambda=+1}^{-} \rightarrow(\bar{f})=\sigma\left(W_{\lambda=-1}^{+} W_{\lambda=1}^{-},(\bar{C})\right.\right.
\end{aligned}
$$

$$
\begin{align*}
& +د_{1}\left|4-2 X_{2}+X_{1}+2 R_{r} \cdot X_{N}-\frac{1}{3} x_{2}^{2}-\frac{2}{3} x_{2} x_{1}+\frac{1}{3} x_{1}^{2}+\left|x_{H}\right|^{2}\right] \tag{3.28}\\
& \left.\left.-\left.2 د_{1}^{2}\left|6-2 x_{2}+x_{1}+6 R c x_{H}+2\right| x_{H}\right|^{2}\right]+\frac{1}{6}\left[2 x_{2}^{2}-2 x_{2} x_{1}+x_{1}^{2}\right]\right\} \text {, }
\end{align*}
$$

The quantities \mathcal{C}_{1}, A_{1}, and S_{1} are defined as in Esf. (3.7), while s_{w} is defined as before, $s_{n}=\sin \theta_{n}$. The other quantities are

$$
\begin{align*}
& X_{1}=\frac{M_{2}^{2}}{\bar{s}-\overline{M_{2}^{2}}} . \\
& X_{1}=4 Q_{1} \cdot s_{1}^{2}, X_{k}, \tag{3.2!}
\end{align*}
$$

There are two primpal factors at work in fiqs (3:26i (3.28) Jitso the t and \bar{i} guarhs want whe left handed and righ dianded, respertively, because of
 the H^{+}whate the helicity of the i tends to follow the H^{-}. The only configuration In wheth beth of there enditions ran the mer is when the W^{+}is left handed

From the photon, Z^{0}, and Higgs diagrams, and so have any dependence on M_{z} or M_{H})

To oltain the contribution of each of the intermediate polarizations to the full crose section for $\mathrm{p}^{+} \mathrm{F}^{-} \rightarrow \nu \bar{\nu} 1 \bar{i}$ we need to integrate over the fiux distributions using Eq. (3.25). We note that the contributions from $W_{\lambda=-1}^{+} W_{\lambda=-1}^{-}$and $W_{\lambda=+1}^{+} W_{\lambda=+1}^{-}$ are equal, sirse the cross sections for the subprocess and the distributions are equal. The results of the numerical integration are shown in Figure 3.12. Comparing with the photon-photon iesults from Figure 3.5 we see that the contribution to it production from transverse W 's is three orders of magnitude smaller. This difference is due mainly to the fluxes of W 's being much smailer than the photon flux, especially at small momentum fractions.

Nom intioner the processes involving longitudital if's. The longitudinal state

 a/Wia. However. large cancellations betwern the varions diagrame reduce this to
 the Higgs mechanism. It is the charged part of the original sealar doublet which is "eaten" to mowide the longitudinal degree of fredom of the $1 f^{\prime t}$. At high energies ($\stackrel{H_{2}}{2}$). the electro weak symmetry is restored and the longitudinal state couples like the sealar particle from which it came. Just like the Higgs, the longitudinal state couples to fermious via their masses. For very heavy fermions this can yield a substantial entancment, one factot of m_{j} / M_{w} in the amplitudefor every iongitudinal W° involved. We begin by inilading one longitudinal W^{*}. We cab casily calrulate the contributions from helicity states in which one Wi is transuerse and the other lomgitudinal. Just as in the completely transurese case, Ihe relative sises of the cross sections are delermmed by the helirity struct ire of the imitial state. The process with $\lambda_{+}=-1$ and $\lambda_{-}=0$ will be enthaced ower that in which $i_{+}=+1$ and $_{-}=0$. Invariam'f under (' P ' requires equality among the cross sections for some of the initial states:

$$
\begin{align*}
& a\left(U_{i=+1}^{+} H_{i=0}^{\prime} \rightarrow i \bar{i}\right)=\sigma\left(H_{i=0}^{+} H_{i=-1}^{-} \rightarrow i \bar{i}\right) \\
& a\left(H_{i=-1}^{++} u_{i=0}^{-} \rightarrow i \bar{i}\right)=\sigma\left(H_{i=0}^{+} H_{i=+1}^{+-} \rightarrow i \bar{i}\right) \tag{3.15}
\end{align*}
$$

Ater some algriba wer ran mrite down the two independent russ sections, for a left handed H^{+}and longitudinal if^{-}.

$$
\begin{align*}
& n\left(H_{i=-1}^{+1} i_{A=0}^{-} \rightarrow i j\right)-\frac{\pi N_{1} 0^{2}}{s_{w}^{2}}\left(\frac{\pi H_{1}}{M_{n}}\right)^{2} \frac{d_{1}}{s} \\
& \times\left\{\frac{\mathcal{C}_{1}}{j_{1}}\left\{\left(1-2 \Delta_{1}+2 \Delta_{1}^{2}\right)\left(1-x_{2}\right)-\Delta_{1} x_{1}\left(1-\Delta_{t}\right)\right\}\right. \\
& +\frac{1}{6}\left[6-3 x_{2}+\frac{9}{2} x_{1}+X_{2}^{2}-2 x_{2}, x_{t}-X_{t}^{J}\right] \\
& \left.+\Delta_{1}\left\{1-x_{2}+\frac{1}{2} x_{1}\right]+\frac{1}{6 \Delta_{t}}\left[x_{2}^{2}-x_{2} X_{t}+\frac{1}{2} x_{1}^{2}\right]\right\} \text {. } \tag{3.30}
\end{align*}
$$

atul for a right -handed W^{+}with a longitudinal W^{-}.

$$
\begin{align*}
& \sigma\left(W_{A=+1}^{+} W_{A=0}^{-} \rightarrow\right.i \bar{t}) \\
&=\frac{\pi N_{e} \sigma^{2}}{s_{w}^{2}}\left(\frac{m_{1}}{M_{w}}\right)^{2} \frac{\beta_{t}}{9}\left\{\frac{\Delta_{1} \mathcal{L}_{2}}{\beta_{1}}\left[X_{t}+\Delta_{t}\left(2-2 X_{2}+X_{t}\right)\right]\right. \tag{3.31}\\
&+\Delta_{1}\left[1-X_{2}+\frac{1}{2} X_{t}\right]-\frac{1}{6}\left[3 X_{2}-\frac{3}{2} X_{1}+X_{2}^{2}+2 X_{2} X_{1}-X_{i}^{2}\right] \\
&\left.+\frac{1}{6 \Delta_{1}}\left[X_{2}^{2}-X_{2} X_{1}+\frac{1}{2} X_{i}^{2}\right]\right\}
\end{align*}
$$

Wie ser that, as advertised, the leading terms in the eross sections at high energies ate proportional to $\left(\mathrm{m}_{1} / \boldsymbol{M}_{w}\right)^{2}$. The cross section for a left-handed \boldsymbol{W}^{+}, Eq. (3.30), contains the lugarithmic mbancernent froportional to C_{1}. The right hasided cross section. E.q. (3.31). is suppressed by a power of $\Delta_{\text {, }}$ relative to the Ieft handed proress. Nejther process depends on the Iliggs, since coupling of a transuerse W and a longitudinal W to the scalar Higgs is forbidden.

To obtain the contribution of these processes to $\mathrm{e}^{+}{ }^{-} \rightarrow \nu \bar{\nu}$ t T we again need to foid in the effective-W distributions from Eqs. (3.19) (3.21) and integrate over the momentum fractions of the two $1{ }^{\prime \prime}$ s. Tu get the full contribution we multiply by a Eactor of two waccount for the rross sections in which the 14^{++}is longitudinal and the $\mathbf{1 1}^{-}$is eransverse. The results are displayed in Figure 3.13. We see that the contribution from $\boldsymbol{H}_{\lambda=+1}^{+} W_{\lambda=0}^{-}$dominates, as expected. The factor of $\left(m_{i} / M_{w}\right)^{2}$
causea the cross sertion to be basically flat as migrows. However, it pever surpasses the two-photon result.

 fusion of a transverse W with a longitudunal one in the effertiee W ' approximation as a function of m_{1}

The remaining configuration to be considered is when both $\mathrm{HF}^{\text {"s }}$ are longitudi nally polarized. The leading contribution to this cross section is proportional to $\left(m_{t} / M_{w}\right)^{4}$. In this case the Higgs plays a critical role. The f -channel, photon, and Z^{0} diagrams add to cancel the bulk of the unitarity-violating behavior. However. there are terms of order $m_{i} \sqrt{3} / M_{m}^{2}$ in the amplitude that remain, only to be cancelled by the Higgs contribution. At energles below the Higgs mass ($\sqrt{5}<M_{M}^{2}$). this cancellation will not occur. ${ }^{28}$ This will lead to an enhancement for lop-guark masses less than $M_{\mu} / 2$.

The cross section is

$$
\begin{align*}
& \sigma\left(W_{i=0}^{+} W_{i=0}^{-} \rightarrow i \bar{t}\right)=\frac{\pi N_{c} \alpha^{2}}{B_{w}^{2}}\left(\frac{m_{i}}{M_{w}}\right)^{4} \frac{B_{i}}{\bar{s}} \\
& \times\left\{\frac{4 L_{1}}{\rho_{1}}\left[1+\frac{1}{2} \operatorname{Re} X_{N}+\Delta_{t}\left(2 X_{2}-X_{i}\right)\right]-4\left[1-X_{2}+\frac{1}{2} X_{t}+\operatorname{Re} X_{H}+\left|X_{H}\right|^{2}\right]\right. \tag{3.32}\\
& \left.-\frac{1}{3 \Delta_{1}}\left\{3 X_{1}+X_{2}^{2}+2 X_{1} X_{1}-X_{1}^{2}-\left|X_{N}\right|^{2}\right]+\frac{1}{3 \Delta^{2}}\left[X_{2}^{2}-2 X_{2} X_{1}+X_{1}^{2}\right]\right\} \text {. }
\end{align*}
$$

It contains the leading factor of $\left(m_{1} / M_{w}\right)^{4}$, as clairned. The at rong dependence on the Higgs mass comes from the term containing $\left|X_{N}\right|^{2} / \Delta_{t}$. When the center of mass energy $\sqrt{5}$ is substentially less than the Higess mass, $\left|X_{H}\right|^{2} \simeq 1$. In this case the term proportional to $\left|X_{N}\right|^{2} / \Delta_{1}$ produces a term proportional to $m_{i}^{2} s / M f_{w}^{4}$. Or course as soon as \bar{s} grows beyond M_{H}^{2}, the correct asymptotic behavior is restored.

Figure 3.14 Contributions to the crom rection for $\mathrm{c}^{+} \mathrm{e}^{-} \rightarrow$ witit at $\sqrt{t}=2 \mathrm{TeV}$ fomm funion of longitudinal W 's in the effective- W ' approximation as a function of m, for thece chaiges of the Higgs mass $M_{n}=100 \mathrm{GeV}, 500 \mathrm{GeV}$. and I TtV

The full cross section fos $e^{+} e^{-} \rightarrow$ it through fusion of longitudinal W's is shown in Figure 3.14 for representative values of the Higgs mass. The numerical
results exhibit the promised enhancement for top quark masses less than M_{H}. as much as a factor of 10 for $M_{H}=1 \mathrm{TeV}$, and 100 for $M_{N}=500 \mathrm{GcV}$. The sum of all the $\mathbf{W}^{+} \mathbf{W}^{-4}$ contributions is graphed in Figure 3.15. For Higgs masses of 500 Gr' and I Tel' the contribution from two longitudinal W 's dominates.

Figure $3.15 \quad$ The full cross ection for $e^{+} e^{-}-\nu \bar{n}!\vec{i}$ at $\sqrt{s}=2$ TeV in the effective- \mathcal{H}^{-} approximation as a function of m_{1} for three choices of the Higge mess $M_{H}=100 \mathrm{GeV}, 300 \mathrm{GeV}$, and $\mathrm{ICV}^{\mathrm{T}}$.

3.6. Tof-Quark Production from $2 Z$ Fusion

In this section we compute the cross section for $e^{+} e^{-} \rightarrow e^{+} e^{-}$1立through 22 Jusion, again treating the process in the effective-boson approximation. The Zfusion process is easier to analyze than the \boldsymbol{W}-fusion process because to a high degree of accuracy the distribution for the two transverse helicity states are the same. Recall that the differeace between the distributions for right-handed and
left handed bosons is proportional to $g_{w} g_{4}$. The vector coupling of the Z^{0} to $t h=$ electron. $g_{v}-\left(-\frac{1}{4}+\sin ^{2} \theta_{u}\right)$, is negligible, since $\sin ^{2} \theta_{w} \simeq 0.23$. \{This would not be the rase if we were considering Z^{01} s being emitted by quarks in badron collisions.) Thus, we and allowed to sum over the two transve-se polarizations in our calculation of $Z^{0} Z^{0} \rightarrow \mathbb{i}$.

The cross section for the sub-process, $Z^{0} Z^{0} \rightarrow t \bar{i}$, is readily calculated. The relevant diagrans are depicted in Figure 3.16, the two Compton-like graphs and the Higgs graph. Again, only the sum of all three graphs is well-behaved at high energies. We will present cross sections summed over the spins of the t and t. Just as in our W-fusion calculation, we will take the Z^{0} momenta to be light-like. $k^{2}=0$. For polarization vectors we take those defined in Eq. (3.10) for helicity ± 1, and E_{q} (3.14) for the longitudinal p darization.

Figure 3.16 Diagrams contributung to $Z^{0} Z^{\circ}-t i$

Let us begin with the cases where bath $Z^{0 \prime} s$ are transverse. The cross section. averaged over the two transverse polarizations is

$$
\begin{aligned}
& -4 \lambda_{1}\left(1-2 \lambda_{1}\right)\left(3-2 r_{1}^{2}(4) \lambda_{1} 26 e X_{11}\left(1-4 \lambda_{1}\right)\left(1-r_{n}^{2}\right)\right]-1-14 r_{0}^{2}-r_{r}^{4} \\
& \left.+4 \lambda_{1}\left(i+2 r_{H}^{2}-c_{\mathrm{H}}^{4}+8(1) X_{H}+4\left|x_{H}\right|^{2}\right)-61 \Delta_{1}^{2}\left(1+2 f_{C} x_{H}+\left|x_{H}\right|^{2}\right)\right\} \text {. }
\end{aligned}
$$

For convenione, we hate defined iedured verlor and axial vector couplingy of the Z^{0} to the top quark:

$$
\begin{equation*}
g_{r(a)}=\frac{g}{4 \cos \theta_{i l}} c_{r(a)} \tag{3.34}
\end{equation*}
$$

 ronstamis are defimed as it the previense sections. As a check on our calculation. we can set $r_{a}=0 . r_{1}=-1$, and $x_{11}-1$ and sor rel rime the form of the photurn photom remult from Serthon:
 the distributumas deriond in Section a The results for $\sqrt{\mathrm{s}}=2$ Tet and a llighs mass of lou cirl'are deplayed in Figute 3.1 the numeriral results depornd only weakly on the lliggs mass We sere that the transuetse z° contribution is smaller than the transuerge w' eontribution by an order of magnitude. The difference is due manly to the smallet rouplings of the $Z^{\prime \prime}$. louth to lie clertion and to the top quark.

Figure 3.17 Contributions to the aroes eetion for $e^{+} e^{-} \rightarrow e^{+} e^{-} \boldsymbol{t}^{i}$ at $\sqrt{a}=2 \mathrm{TeV}$ from fuaion of two teansverse $Z^{0} \cdot$ and from one traneverse Z^{0} with a longitudinal one in the effectiveZ approxitustian as a function of m_{h} The Higge mase is taken to be $\mathrm{M}_{H}=100 \mathrm{GeV}$ but the result in very inbensitive to M_{M}

Now let us include the longitudinal polarization. As with the $W^{ \pm}$, we will take the longitudinal Z^{0} to have polarization vector, $e_{\mu}=k_{\mu} / M_{z}$. Let us first present the result for one transverse and one longitudinal 2 , averaged over the two erangvetse polarizalions:

$$
\begin{equation*}
a\left(Z_{L}^{0} Z_{\tau}^{0} \rightarrow i j\right)=\frac{\pi N_{\mathrm{e}} o^{2} c_{a}^{2}}{s_{w}^{4} c_{w}^{4}}\left(\frac{m_{t}}{M_{2}}\right)^{2} \frac{\beta_{1}}{j}\left[\left(c_{v}^{2}+c_{a}^{2}\right) \frac{C_{t}}{\beta_{t}}-2 \tau_{a}^{2}\right] . \tag{3.35}
\end{equation*}
$$

As we found for $\mathrm{F}_{\lambda= \pm 1}^{+} \mathrm{H}_{\lambda=0}^{-} \rightarrow t \bar{t}$, Eq. (3.35i) is proportional to $\left(m_{i} / M_{z}\right)^{2}$ and independent of the Higgs mass. Note also that the result is proportional to C_{a}^{2}, since without the axial coupling the Z^{0} would minic the photon and its longitudinal mode would not couple. (An on-shell Z^{D} would also have a vector amplitude, but it would be suppressed by $\boldsymbol{H}_{2} / \dot{s}$.) The result after folding in the effective Z distributions is shown in Figure 3.17; it is again murth smaller than the equivalent 1 -fusion process.

Figure 3.18 Coniributions to the erom mection for $\mathrm{e}^{+} \mathrm{e}^{-}-\mathrm{e}^{+} \mathrm{e}^{-17 \mathrm{i}}$ at $\sqrt{\boldsymbol{b}}=2 \mathrm{TeV}$ from fusion of two longitudinal Z^{0}, in the effective- Z approximation as a function of m_{1} for three cheices of the Higes mave $M_{n}=100 \mathrm{GeV}, 500 \mathrm{GeV}$, and 1 TeV

Finally, consider the process with both 2's longitudinally polarized. The cross section is

$$
\begin{equation*}
\sigma\left(Z_{i}^{0} Z_{L}^{0} \rightarrow \bar{l}\right)=\frac{\pi V_{c} a^{2}}{4 s_{1}^{4} c_{W}^{4}}\left(\frac{m_{t}}{M_{2}}\right)^{4} \frac{B_{t}}{\hat{s}}\left[\left(1+2 \mathrm{Re} X_{H}\right)\left(\frac{C_{i}}{\beta_{1}}-2\right)+\left|X_{H}\right|^{2}\left(\frac{1}{2 \Delta_{1}}-2\right)\right] . \tag{3.36}
\end{equation*}
$$

It has the expected factor of $\left(m_{t} / M_{z}\right)^{\text {d }}$. The result also contains a factor of $c_{a}^{:}=1$, siare each Z_{2}^{\emptyset} couples with a power of $c_{\text {a }}$. Repeating the familiar procedure of integrating over the effective fluxes we obtain the contribution of longitedinal Z^{0}; to $e^{+} e^{-} \rightarrow e^{+} e^{-} t \bar{t}$. The full results are shown in Figure 3.18 for our three canonical values of the Higgs mass. We see again the delayed unitarity cancellation for the larger two choices of the Higgs mass. The sum of all $Z 2$ fusion contributions to top-quark production is shown in Figure 3.19 tor the same three cboires of the Higgs mass. The contribution from longitudinal Z 's dominates for the whole

Figure 3.19 The sum of the contribution to the sross section for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{t} \overline{\mathrm{I}}$ at $\sqrt{5}=$ 2 TeV from fusion of $Z^{0} \mathrm{~s}$ in the effective- Z approxamation as a function of m_{1} for three choices of the Higes mass $M_{\mu}=100 \mathrm{GeV}$. 500 GeV , and ! teV
considered range of m_{t} if $M_{M}=500$ or 1000 GeV , and for $\mathrm{m}_{1}>200 \mathrm{GeV}$ for $M_{N}=100 \mathrm{GeV}$

3.7. Photon-Z0 Fusion Phoduction of Top Quarks

Leaving no stone unturned, we now direct out attention to the production of ti paurs tircough fusion of a photon and a Z^{0}. The diagrams are the same as those for photon-photon fusion, with one of the photons replared by a Z^{0}. They are depietad in Figurr 3.20.

The calculation of the cross section for the sub-process $7 Z^{0} \rightarrow$ titholds no subtleties, we simply add the two amplitudes, square the result and integrate over the 1 I phase sprace. Since the distribution of transverse Z^{0} 's in the electron is very nearly mdajendent of the helicity, we will average over the transerse helicities.

Figure 3.20 Diagrams connobuting to $\rightarrow 2^{n}-1 i$

The cross section for transverse $2^{0} \mathrm{~s}$, averaged over polarizations, is

$$
\sigma\left(\gamma Z_{T} \rightarrow[\bar{l})=\frac{\pi N_{r} Q_{1}^{2} a^{2}}{2 s_{w}^{2} \sigma_{n}^{2}} \frac{\theta_{r}}{s}\left\{\frac{c_{1}}{\beta_{r}}\left(c_{1}^{2}+c_{r}^{2}+8 c_{1} c_{r} \Delta_{r}-16 c_{1} c_{r} \Delta_{1}^{2}\right)-c_{1}^{2}-c_{r}^{2}-8 c_{l} c_{r}\right\}\right.
$$

where c_{f} and $c_{\text {p }}$ are rediseed fight-handed and left-handed couplings of the Z^{0} to the top quark:

$$
\begin{align*}
& c_{1}=1-2 Q_{1} s_{\psi}^{2} \\
& c_{\tau}=-2 Q_{1} s_{u}^{2} \tag{3.38}
\end{align*}
$$

The cross section for photon-photon fusion to top quarks is regained if we set $c_{l}=r_{*}-Q_{1}$

The cross section for the case of longitudinal $Z^{0} \mathrm{~s}$ is equally easy to evaluate. Ther resull, averaged over photon spins, is

$$
\begin{equation*}
\sigma\left(\tau Z_{1} \rightarrow i f\right)=\frac{\pi N_{c} Q_{i} \sigma^{2}}{s_{H}^{2} c_{M}^{2}}\left(\frac{m_{1}}{M_{z}}\right)^{2}\left(c_{1}-c_{f}\right)^{2} \frac{\mathcal{L}_{1}}{s} \tag{3.39}
\end{equation*}
$$

Our resule contains the experted factor of $\left(\pi_{t} f H_{z}\right)^{2}$. Since the longitudinal Z^{0} couples nxially at high cnergies, our result is also proportimal to $\left(c_{\mathrm{r}}-\mathrm{r}_{\mathrm{r}}\right)^{2}=1$

Figure 3.21 Contributions to the cross section for $c^{+} e^{-} \rightarrow r^{+} e^{-1 i}$ at $\sqrt{h}=2$ Tell from fusion of a whobw whit a Z^{0} th the eflective-boson approxuratuoll tor houl photoll and z^{4} as a functions of m,

The canvolution of these crass sections with the relevant distributions vields the portion of the $e^{+} e^{-} \rightarrow \mathrm{e}^{+} e^{-} t \bar{t}$ cross section due to photon- Z^{0} furion. The results of the numerical integration are displayed in Figure 3.21. We sac that the tiansverse contribution is very small, two orders of magritude below the photon jheoton result. The contancenent of the longitudinal mode allows the longitindinal risult to surpass the two photon result for top masses above 300 Gev 3
3.8. Photon Z^{0} Intehfenence
[n the previnus serions we have disenssed the effertive hoson approxmation
 fact that atmplatales modothg the photoln may morfere with amplitudes involving Whe $Z^{\prime \prime}$. Theme as no "priari reasun why these amplitudes should vamish. In thes serthon we derive the amalogue of the effective boson approximation for these

Figure 3.22 Production of an arbitrary final state \boldsymbol{X} in a collision of an electrun with an arhatraty mitial parturie f by exchange of a photon or a $Z^{0}: c^{-j}, e^{-} \boldsymbol{x}$.
interference terms. We then proceed to calculate the interference contribution to $\epsilon^{+} \epsilon^{-}-\epsilon^{+} \epsilon^{-t i}$ using our formalism.

The derivation proceeds in complete analogy to our previous derivations of the effective boson approximation for photons and heavy vector bosons. We begin by considering the process depicted in Figure $3.22, e^{-} f+e^{-} X$, for some particle f and final state \mathcal{X}, both arbitrary. The full amplitude is a sum of the photon and Z^{a} diagrams:

$$
\begin{equation*}
\mathcal{M}=\tilde{u}\left(p^{\prime}\right)\left[\frac{\epsilon \mathcal{A}_{c}^{\mu}}{k^{2}}-\frac{\left(g_{v}+g_{a} \gamma^{3}\right) \mathcal{A}_{z}^{\mu}}{k^{2}-M_{z}^{2}}\right] \partial_{\mu} u(p) \tag{3.40}
\end{equation*}
$$

where, as before, \mathcal{A}_{c} is the three point coupling $\boldsymbol{f} \boldsymbol{f} \rightarrow \boldsymbol{X}$, and \mathcal{A}_{I} is the analogous quanity for the 2^{0}. When we square the amplitude and average over the spin of the electran we find

$$
\begin{equation*}
|\bar{M}|^{2} \equiv \frac{1}{2} \sum_{\text {upiot }}\left|\mathcal{M}^{2}=\left|\bar{M}_{z 2}\right|^{2}+\left|\bar{M}_{T q}\right|^{2}+\left|\bar{M}_{10 t}\right|^{2}\right. \tag{3.41}
\end{equation*}
$$

where the julderferne eomeribition is

$$
\begin{align*}
& \times g_{\mu \nu} g_{\pi \beta}\left(A_{t}^{\nu} \mathcal{A}_{z}^{\beta \beta}+\mathcal{A}_{z}^{\nu} \mathcal{A}_{t}^{* \beta}\right) . \tag{3.42}
\end{align*}
$$

When wer replace the propagstors by polarization sums [Eq. (3.9)] we obtain

$$
\begin{aligned}
& \left|\bar{M}_{\text {itut }}\right|^{\frac{1}{2}}=-\frac{2 e}{k^{2}\left(h^{2}-M_{2}^{2}\right)} \sum_{1 ;}\left\{g_{v}\left[\left(p \cdot \ell_{1}^{*}\right)\left(p^{\prime} \cdot \epsilon_{3}\right)+\left(p \cdot \ell_{3}\right)\left(p^{\prime} \cdot e_{1}^{*}\right)-\left(p \cdot p^{\prime}\right)\left(e_{1}^{*} \cdot \ell_{3}\right)\right]\right.
\end{aligned}
$$

where the surim runs over the three polarizations of the intermediate photon or \mathcal{Z}^{0} : 2. $\mathrm{J}=\mathbf{0} . \pm 1$. We see immediately that Eq. (3.43) has the same structure that we cibserved in the effective-boson approximation, Eq. (3.11). The same argument we used in that case shows to that the terms in the double sum for which $i \neq j$ vanish. either identieally or after integration over the azimuthal angle of the electron.

As we did in the effective photon approximation we will neglect the longitudinal coupling of the photon. Thus the sum in Eq. (3.43) runs only over transverse polarizations. When we insert the explicit polarization vectors defined in Eq- (3.10) into $\mathrm{Eq}_{\mathrm{q}}(3,43)$, dropping the off-diagonal and longitudinal terms in the sum, we find

$$
\begin{align*}
\left|\bar{M}_{1 n 1}\right|^{2}= & -\frac{2 t}{k^{2}\left(k^{2}-M_{i}^{2}\right)} \sum_{\lambda= \pm 1}\left\{g_{r}\left(p_{\perp}^{2}-\frac{1}{2} k^{2}\right)-\lambda g_{0}\left(E p_{3}^{\prime}-E^{\prime} p_{3}\right)\right\} \tag{3.44}\\
& \times\left[\left(\mathcal{A}_{e} \cdot\left(c_{\lambda}\right)\left(\mathcal{A}_{2}^{*} \cdot c_{\lambda}^{*}\right)+\left(\mathcal{A}_{2} \cdot \epsilon_{\lambda}\right)\left(\mathcal{A}_{t}^{*} \cdot c_{\lambda}^{*}\right)\right]\right.
\end{align*}
$$

Note that the term proportional to g_{a} in Eq. (3.44) is proportional to the helicity λ. When wer repeat our argunient for the case in which the photon and Z^{0} are emitted
from a positron we find that this term also changes sign, the sign difference roming from an interchange of p with p^{\prime}. We expect the axial portion of the distribution to dominate since the vector coupling of the Z^{\prime} to the clertron is small; howewr. the sign flip from electron to positron will canse sume of these torms to cancel, as we will ser.

We now invoke the assumptions of the effective-boson approximation: we replace the amplitudes \mathcal{A}_{f} and \mathcal{A}_{z} with their values at $k^{2}=0$ so that they can be removed from the angular integral. We define an interference eross section

$$
\begin{equation*}
\sigma_{\lambda}^{\mathrm{nnt}}\left(\left\{\cap \mid Z^{0}\right\} f-X\right)=\int d \Gamma\left[\left(\mathcal{A}_{e} \cdot c_{\lambda}\right)\left(\mathcal{A}_{x}^{*} \cdot+_{\lambda}^{*}\right)+\left(\mathcal{A}_{2} \cdot c_{\lambda}\right)\left(\mathcal{A}_{e}^{*} \cdot \epsilon_{\lambda}^{*}\right)\right] \tag{3.45}
\end{equation*}
$$

whete $d V^{\circ}$ is the invariant phase space of the state X. We write the contribulion of the interference terms to the full cross section as

$$
\begin{equation*}
\sigma^{\mathrm{ml}}\left(e^{-} f \rightarrow \epsilon^{-} X\right\}=\left.\int d r \sum_{\lambda} f_{\lambda}^{\mathrm{nt}}(\tau) \sigma^{\mathrm{nnt}}\left(\left\{\gamma(\lambda) \mid Z^{0}(\lambda)\right\} f \rightarrow X\right)\right|_{s=s,} . \tag{3.46}
\end{equation*}
$$

Just as we did in Ser:ion t, we can read off the interference distributions:

$$
f_{\lambda}^{\operatorname{Int}}(x)=-\frac{1}{(2 \pi)^{2}} L^{\prime} \cdots \int \frac{d \cos \theta}{k^{2}\left(\alpha^{2}-M_{2}^{2}\right)}\left\{g_{n}\left(\mu_{\perp}^{2}-\frac{1}{2} k^{2}\right)-\lambda g_{a}\left(E p_{1}^{\prime}-E^{\prime} p_{3}\right)\right\} .
$$

For convenience, we breati up the distributions into vector and axial vector piects

$$
\begin{align*}
& f_{1}^{\text {int }}(x)--\frac{e g_{\mathrm{r}}}{(2 \pi)^{2}} E^{\prime} \cdot \int \frac{d \cos \theta}{k^{2}\left(k^{2}-M_{2}^{2}\right)}\left(J_{-}^{2}-\frac{1}{2} k^{2}\right) \\
& f_{q}^{\text {int }}(J)=\frac{e g_{a}}{(2 \pi)^{2}} E^{\prime \prime} \omega^{\prime} \int \frac{d \cos \theta}{k^{2}\left(k^{2}-M_{2}^{2}\right)}\left(E_{p_{x}^{\prime}}^{\prime}-E^{\prime \prime} p_{3}\right) . \tag{3.48}
\end{align*}
$$

Figure 3.23 The interference diatributions [$\mathbf{E q}$ (3 . 19) and (3.50)] for a photon interfering with a Z^{0} emutted foun an electron at encigy 1 TeV as a function of the momentum fraction \boldsymbol{r}

When we insert the kinematics from Eq. (3.7) and perform the integrals, we find

$$
\begin{align*}
& \int_{t}^{\mathrm{nnt}}(x)=-\frac{c g_{v}}{8 \pi^{2} r \eta^{2}}\left\{\log \left[\frac{1-x+\Delta_{2}}{\Delta_{2}}\right]\left(1-\Delta_{2}-x+\frac{x^{2}}{2}\right)-\log \left[\frac{2-x}{x}\right] \frac{(2-x)^{2}}{2}\right\} \cdot(3.49) \\
& \int_{a}^{\mathrm{mLt}}(x)=\frac{6 g_{0}}{16 \pi^{2} \eta}\left\{\log \left[\frac{2-x-x \eta}{2-x+\pi \eta}\right]+\log \left[\frac{1+\eta}{1-\eta}\right]\right\} . \tag{3.50}
\end{align*}
$$

where η and Δ_{2}, are defined as before, $\Delta_{2}=M_{z}^{2} / s$ and $\eta=\sqrt{1-\Delta_{2} / x^{3}}$. The interfasence distributions are plothed in Figure 3.23. The axial distribution is between a factor of 2 and 10 times as large as the vertor distribution.

Now that whe have developed our formalism we can proceed to calculate the
 ferent numbers of photons and Z^{n} s. The complete set of diagrams are shown in Figure 3.24. Brite force procedures could be used to calculate each amplitude and interferc it with each of the others, followed by integration of the terms ower the

Figure 3.24 The set of diagrams contributing to the cross acetion for $e^{+} e^{-} \rightarrow e^{+} e^{-1} \bar{t}$ in the effective-boson approximation
appropriate distributions. However, since there are many contributing amplitudes, we will use our knowledge of the distributions to pick out the daminant terms and compute those only.

Since the photon distributions are much larger than the Z^{0} distributions we might naively expect the dominant contributions to come from interference terms involving the maximurn number of photons. The terms with the maximum num. her of photons are products of a photon-photon fusion diagram with a photon- Z^{0} fusion diagram as shown in Figure 3.25a. However, the axial portion of this contributiun will be cancelled by the mirror-image term, shown in Figure 3.25b, the product of a photon-photon diagrarn with a ploton- Z^{0} diagram with the photon being emitled by the positron and not the celectron. The piece left over contains only the "vector" distribution. proportional to ge. which is considerably smaller than the axial distribution. Similatly the terns involving three Z^{n} s and one pho-

(a)

(b)

Figure 3.25 The diagrams representing terms involviag three photona and one Z^{0}. Thr axial portion from the term in a), where the Z^{0} in on the positron line. cancela with the axial portion of the term in b). where the Z° is on the election line.
ton will only receive vector contributions; we will neglect these terms completely, since the flux of $Z^{0+} s$ in the electron is much smaller than the flux of photons. Contributions from the "axial" distribution will cancel out from all terms except those shown in Figure 3.26. These are the diagrams which are symmetric with respect to interchange of the electron and positron. So we expect the leading terms to be those involving three photons with a single Z^{0} and those involving two photons and two Z^{0} 's.

We begin with the interference terms containing three photons and one Z^{0}. It is straight forward to calculate the product of the two amplitudes and integrate over the appropriate phase space. Since the "vector" interference distribution is independent of helisity we can sum over the helicities of the interfering bosons; we average over the helicity of the photon. At additional factor of two comes from the fact that the Z^{0} can be emitted from the electron or the positron. The result

Figure 3.20 The diagrame tepresentang the terms that are symurtas with renges bin tir
 fromin the anial destribution
is:

$$
\begin{align*}
& \tilde{a}^{3 \mathrm{nt}}=2 \cdot \frac{1}{2} \sum_{\lambda_{1} \lambda_{3}} \sigma^{\min }\left(\left\{\cap\left(\lambda_{1}\right) \mid Z^{0}\left(A_{1}\right)\right\} \cap\left(\lambda_{2}\right) \rightarrow i \bar{i}\right) \tag{3.51}
\end{align*}
$$

where a and c, desucribe the tight and left handed couplings of the Z^{0} to the top

 for 17 - it Note alser lhat this "etose section" is positive.
'The merfereme terms molving two photons and two $\boldsymbol{Z}^{\prime \prime \prime}$'s are also straight forwayd to ralculate. In this case we do not avorage ower pobarizations Since the sign of the "axias" diatributhen alternatos with the belobity we raloulate the sume over peotationtions weighted lyg a factor of t_{1} dy
 spricer

Sinte that thes "rross section" is negative
 propirialle distributictios:

The fantur of 1 in E . . (3.54) comes from the axial interference distribution off of the positran Simer $\vec{\sigma}^{\prime 2 \prime}$ is negative, both contributions are positive. The mu meral integration of Eys. $\{3.33$ atad (3.54) ate photyed in figure 3.2 z . The two contributions are of roughly comal magnitude. the vector contribution dominates it sumbler thasess suce the vector distrobution is peaked at small x while the axiat distribution is relatively flat. We night mavely expect the interference to be larger
 the loadnge astal ternw. Inetrad. the interferencer combitution is roughly compat rable with that from fusion of transverser $7^{0} \mathrm{~s}$. two ondets of magnitude hess than the $)^{\prime \prime}$ comeribution.

 from interferencer anong diagrams insolving photons and Z° ia as a function of m_{1}

3.9. Production of 16 Palrs from yif fusion

There exists another vector boson fusion process which is capable of producing top quarks. In this section we will calculate the production of $t \bar{b}$ pairs through the fusion of a photon and W^{+}. This process has an advantage over the ti processes: it has a lower thecshold energy, since the botion quark is much lighter than the top quark. Sitice the cross section for the subprocess of two bosons going to fernion and anti fermion gors like $1 / \overline{\bar{s}}$, the lower threshold provides an effective enhancement. Furthernore, the effective-photon flux grows at the lower momentum fractions aliowed in this process. Finally, the \boldsymbol{q}^{4} W fusion process involves a bottom quark propagator which may becone nearly on shell in the forward dircetion. causing an enhancement proporinual to $\log \left(\hat{s} / \mathrm{m}_{\mathrm{z}}^{2}\right)$.

We will first treat the process in the effective-W approximation, even though

His is an occasion in which we do not have much trust in the accurary of the approximation. The effective- W approximation breaks down wher the energy of the virtual W does not exceed its uass. There are parts of the phase space for which this is the case in the production of $t \bar{b}$ pairs. However, these parts of the phase space do not contribute the bulk of the cross section. Rather it is configurations where the photon is at low x and the W at relatively high x which will dominate. These parts of the phase space are well described by the effective-W approximation.

Fusion of a W^{+}and a photon to form $t \bar{b}$ proceeds through the diagrams in Figure 3.28. The photon may couple to the t quark or the anti-b. (Note that this second diagram is absent in the analogous leptonic process: $\gamma W \rightarrow$ lu.) We will restrict ourselves to top quark masses above M_{w}, so that the s-channel W will never be on-shell. We will present the analytic forms of the cross sections for the sub-process $; W^{++} \rightarrow t \bar{b}_{1}$ with the different helicity combinations treated separately. Our numerical results will ateraged over the polarization of th:e photon, since the effective-photon distributions ave polarization independent.

The calculations of the cross sections are casily carried out. The results for
transverse W's are:

$$
\begin{align*}
& \sigma\left(\gamma_{\lambda=+1} u_{\lambda=+1}^{+} \rightarrow t \bar{b}\right)=\frac{\pi N_{t} \Omega^{2}}{1 B s_{n}^{2} \cdot \dot{s}}\left\{-24 \Delta_{t} L_{f}^{\prime}\left[1-\Delta_{t}+X_{w}\left(1+\Delta_{t}\right)\right]\right. \\
& \left.+\left(1-\Delta_{1}\right)\left[16+6 X_{w}^{2}-\Delta_{1}\left(7-48 X_{w}+3 X_{w}^{2}\right)-3 \Delta_{1}^{2}\left(3+X_{w}^{2}\right)\right]\right\} . \tag{3.55}\\
& \sigma\left({ }_{\lambda=+1} H_{\lambda=-1}^{+} \rightarrow\{\bar{b})=\frac{\pi N_{c} \alpha^{2}}{9 g_{n}^{2} \hat{s}}\left\{2 \mathcal{C}_{h}^{\prime}\left(1-د_{t}\right)^{2}+8 \Delta_{1}^{2} f_{1}^{\prime}-\left(1-\Delta_{t}\right)\left(7-5 \Delta_{1}+6 \Delta_{l}^{2}\right)\right\},\right. \\
& \text { (3.56) }
\end{align*}
$$

$$
\begin{align*}
& \sigma\left(\gamma_{\lambda=-1} U_{\lambda=-1}^{+} \rightarrow t \bar{b}\right)=\frac{\pi N_{c} \alpha^{2}}{18 s_{n}^{2} s}\left\{-8 \Delta_{i}^{2} C_{i}^{\prime}\left(1+3 X_{w}\right)+4 \Delta_{i}^{2} \mathcal{C}_{b}^{\prime}\right. \tag{3.57}\\
& \left.+\left(1-\Delta_{t}\right)\left[4+6 X_{w}^{2}+\Delta_{t}\left(13+12 X_{w}-3 X_{w}^{2}\right)\right]\right\}
\end{align*}
$$ $Q_{1}=\frac{2}{3}$ and $Q_{b}=-\frac{2}{3}$. We have also taken $m_{t}=0$ wherever possible. The only place where n_{b} enters is in the logarit hanic term:

$$
\begin{align*}
& \mathcal{C}_{b}^{\prime}=\log \left(\frac{E_{6}+p}{E_{b}-p}\right)=\log \left[\frac{\left(1-\Delta_{t}\right)^{2}}{\Delta_{b}}\right] \tag{3.59}\\
& \mathcal{L}_{t}^{\prime}=\log \left(\frac{E_{t}+p}{E_{1}-p}\right)=\log \left(\frac{1}{\Delta_{1}}\right) .
\end{align*}
$$

where J_{b} is the analogue of λ_{t} for $t h_{2} b$ quark: $د_{b}=m_{6} / \hat{s}$.
The cross sections as displayed in Eqs. (3.5.5) - (3.5s) are rather complirated but their general strurture is rasily understond. Note that it is Eqs. (3.56) and (3.57) that feature the logarithmic enhancemput roming from the forward direction. The bulk of Eq. (3.56) comes from the b quark exchange diagram which is
enhanced when the t is emitted in the dirertion of the W^{+}mamentum and is lefthanded. In this case the virtual bquark becomes almost on-shell. The logarithmic cnhanconsent in Eq. (3.57) comes from the t quark exchange diagram in exactly the same way. Note that the difference in the coeflicjents ol \mathcal{L}_{b}^{\prime} in Eq. (3.56)aud \mathcal{L}_{1}^{\prime} in Fq. (3.5i) is a factor of $Q_{1}^{2} / Q_{0}^{2}=4$. The sther two belicity configurations, F.gs. (3.55) and (3.58) do not receive the lagarithmic enhancenent.

Remaining are the processes involving longitudinal W's. The cross sections for the two photon helicities are:

$$
\begin{align*}
& \sigma\left(g_{\lambda=+1} w_{d=0}^{+} \rightarrow 1 \bar{b}\right)=\frac{\pi N_{c} a^{2}}{18 s_{w}^{2} s}\left(\frac{m_{t}}{M_{w}}\right)^{2}\left\{8 \mathcal{L}_{1}^{\prime}\left(1+\Delta_{t}-2 \Delta_{l}^{2}-3 \Delta_{t} X_{w}\right)\right. \\
& \left.+2 L_{b}^{\prime}\left(1-\Delta_{t}\right)^{2}+\left(1-\Delta_{t}\right)\left[-28\left(1-\Delta_{t}\right)-6 X_{w}\left(1+3 \Delta_{t}\right)+3 X_{w}^{2}\left(\frac{2}{\Delta_{t}}-1-\Delta_{t}\right)\right]\right\} \cdot(3.60) \\
& \pi\left(\gamma_{\lambda=-1} W_{\lambda=0}^{+} \rightarrow(\bar{b})=\frac{\pi N_{c} a^{2}}{18 s_{W^{2}}^{2}}\left(\frac{m_{i}}{M_{N^{*}}}\right)^{2}\left\{8 \Delta_{1} L_{1}^{1}\left[3 X_{\omega}\left(1+\Delta_{1}\right)-3 \Delta_{1}-2 \Delta_{i}^{2}\right]\right.\right. \\
& \left.+2 \Delta_{1}^{2} \mathcal{C}_{b}^{\prime}+\left(1-\Delta_{1}\right)\left[10+\Delta_{t}\left(28-18 X_{w}-3 X_{w}^{2}\right)-42 X_{w}-3 X_{w}^{2}+\frac{6 X_{w}^{2}}{\Delta_{1}}\right]\right\} . \tag{3.61}
\end{align*}
$$

We see that only Eq. (3.60) contains the logarithmic enhancernents \mathcal{L}_{i}^{\prime} and \mathcal{L}_{b}^{\prime}, indicating that this cross section is peaked in both the forward and backward directions. The analogous logarithmic terms int F.q. (3.61) have been omitted, since they are suppressed by powers of ($m_{b} / M_{1 y}$).

To obtain the contribution to $e^{+} e^{-} \rightarrow e^{-j} \boldsymbol{t} \bar{b}$ from $\boldsymbol{\gamma} \boldsymbol{W}$ fusion we average the above cross sections over photon polarizations and integrate over the momentum fractions of the W^{\prime} and photon. The results are plotted in Figure 3.29.

As mentioned earlher, we have no guarantee that the effective- W approximation will give accurate results for $\boldsymbol{7}$ U fusion, even at energies as hight as 2 Ter', In what

Figure 3.29 The contributions to the cross section for $\mathrm{e}^{+} e^{-} \rightarrow e^{-\bar{p}} \mathbf{t} \bar{b}$ at $\sqrt{t}=2 \mathrm{TeV}$ from ${ }_{7} W$ fusion in the effective-boson approxumation ass a function of m_{t} with $m_{s}=5 \mathrm{GeV}$.
follows we will check the effective- W approximation by doing an exact calculation of the process $e^{+} \gamma \rightarrow \bar{\nu} i \bar{b}$. In calculating the full process $e^{+} e^{-} \rightarrow e^{-\bar{v}} t \bar{b}$ we will continue to treat the photon in the effective-photon approximation, since we have confidence in its accuracy. We will also neglect the peripheral diagrams that do not contribute in the effective-phaton approximation.

The cross section for the process $e^{+} \gamma \rightarrow \bar{u} t \bar{b}$ is calculated via the diagrams in Figure 3.30. Note that the diagram coupling the electron line directly to the photon line was neglected in our effective-W calculation; this diagram must be included where the effective- W approximation is relaxed, in order to cancel gauge dependent terms. The calculation of the cross section is quite lengtby. We have used REDUCE to perform the trace over γ-matrices and the angular integration of the $t \bar{b}$ system. The remaining phase-space integrals are performed numerically.

To obtain the full cross section for $e^{+} e^{-} \rightarrow e^{-\bar{\nu} t \bar{b}}$ we integrate over the photon distribution in the electron.

To compare the exact result with that obtained from the effective- W approximation we plot the differential cross section versus the energy fraction of the intermediate W :

$$
\frac{d \sigma}{d s}\left(e^{+} \gamma \rightarrow \bar{\nu} ; \bar{b}\right) \simeq \sum_{\lambda= \pm 1,0} f_{\lambda}(x) \sigma\left(\gamma w_{\lambda}^{+} \rightarrow t \bar{b}\right)
$$

where \boldsymbol{x} is the energy fraction of the W. This comparison is made, for several values of the top mass, in Figure 3.31 . We see that we achieve very good agreement for all three masses, except at very smal values of x where the exact cross section increases dramatically. Figure 3.32 show' 'he results of integrating the exact differential cross section over the photon distribution. It agrees with the effective- W calculation to within approximately $\mathbf{3 0 \%}$. This process competes with the photon-photin process for top quark masses larger than 200 GeV .

 of x calculsted exactly somigared in calculated in the effrction W approximation for three choses of the top mass a) $m_{1}=100 \mathrm{GeV}$, b) $m_{t}=200 \mathrm{GeV}$, , $\mathrm{m}_{\mathrm{t}}=400 \mathrm{GeV}$ The bottom mass is $m_{4}=5 \mathrm{Gr}$

Figure 3.32 The contrihntion to the croman section for $e^{+} e^{-}-e^{-\bar{p}} \bar{b}^{\bar{b}}$ at $\sqrt{s}=2 \mathrm{TeV}$ from rW' fusion as a function of the top mass calculated uning the effective-hoson approsimation for
 alone and treatugg the W exactly The bottom mass is mis $=5 \mathrm{GeV}$

3.10. Phoduction of tb Patrs iy wz Fusion

The final(!) production process which we will discuss is Wh $^{\prime} Z^{0}$ fusion. This process is similar in siructure to \boldsymbol{H}^{\prime} fusion, with the \boldsymbol{Z}^{0} laking the plare of the photon. We do not expect the effertive-boson approximation to have high aceuracy for this process simec. even for herivy top quarks, there are portions of the plase space in which the intermediate ${ }^{11}$ and $Z^{\prime \prime}$ carsy erwegies hess than their masses. These uncestainties aside, we will use the effertive-troson approximation to estimate the contribution from Wr Z^{0} [usion.

The process $W^{+} Z^{0} \rightarrow \bar{b}$ is calculated wia the diagrams in Figure 3.33. This is the same sel of diagrans we studied in the case of H^{-7} ? fusman. with the Z° taking the place of the photon. It is a tedions but straightorward exercise to evaluate the diagrams, and sum them to find the complete amplitude The crass sertions

for the various polarizations of the W^{+}and Z° are then obtained by squaring the amplitude and summing over the quark spins. We first write the results for the cases in which both W^{+}and Z^{0} are transverse:

$$
\begin{align*}
& \sigma\left(\boldsymbol{W}_{\lambda=+1}^{+} Z_{\lambda=+1}^{0} \rightarrow t \bar{b}\right)=\frac{\pi N_{c} \alpha^{2}}{18 s_{w}^{4} c_{w}^{2}} \\
& \times\left\{\Delta_{t} C_{t}^{\prime}\left[24 s_{w}^{2}\left(X_{w}^{\prime}-s_{w}^{2}\right)+\Delta_{t}\left(9-18 X_{w}^{\prime}-42 s_{w}^{2}+24 s_{w}^{2}\left(X_{w}^{\prime}+s_{w}^{2}\right)\right)\right]\right. \\
& +\left(1-\Delta_{i}\right)\left[16 s_{w}^{4}+6 X_{w}^{\prime 2}+\Delta_{t}\left(24 s_{w}^{2}-7 s_{w}^{4}+18 X_{w}^{\prime}-48 s_{w}^{2} X_{w}^{\prime}\right)\right. \\
& \left.\left.-3 \Delta_{t}^{2}\left(3 c_{w}^{4}+X_{w}^{\prime 2}\right)\right]\right\} \text {, } \tag{3.62}\\
& a\left\{W_{\lambda=+1}^{+} Z_{\lambda=-1}^{0} \rightarrow t \bar{b}\right\}=\frac{\pi N_{t} a^{2}}{1 B s_{w}^{i} c_{w}^{2} j} \\
& \times\left\{\mathcal{C}_{i}^{\prime}\left\{9-24 s_{w}^{2}+16 s_{w}^{4}+\Delta_{t}\left(54-132 s_{w}^{2}+80 s_{w}^{4}\right)+12 \Delta_{i}^{2} c_{w}^{2}\left(3-4 s_{w}^{2}\right)\right]\right. \\
& \left.+\left(1-\Delta_{t}\right)\left[-30+78 s_{w}^{4}-50 s_{w}^{4}-\Delta_{t}\left(57-138 s_{w}^{2}+82 s_{w}^{4}\right)-12 c_{w}^{4} \Delta_{t}^{2}\right]\right\},(3.63) \tag{3.63}\\
& \sigma\left(W_{\lambda=-1}^{+} Z_{\lambda=+1}^{0} \rightarrow i \bar{b}\right)=\frac{\pi N_{c} \alpha^{2}}{18 s_{w}^{4} c_{w}^{2} s} \\
& \times\left\{\left(1-\Delta_{t}\right)^{2} L_{b}^{\prime}\left(9-12 s_{w}^{2}+4 s_{w}^{4}\right)+\Delta_{i}^{2} \mathcal{L}_{l}^{\prime}\left(9-24 s_{w}^{3}+16 s_{w}^{1}\right)\right. \\
& \left.\left(1-\Delta_{t}\right)\left[-30+42 s_{w}^{2}-14 s_{w}^{4}+\Delta_{t}\left(33-42 s_{w}^{2}+10 s_{w}^{4}\right)-12 c_{w}^{4} \Delta_{i}^{2}\right]\right\}, \tag{3.64}
\end{align*}
$$

$$
\begin{align*}
& n\left(U_{d=-1}^{+} Z_{\lambda=-1}^{0} \rightarrow[\vec{B})=\frac{\pi N_{c} o^{2}}{18 s_{w}^{4} c_{w}^{2} s}\right. \\
& \quad \times\left\{\Delta_{i}^{2} L_{b}^{\prime}\left(9-12 s_{w}^{2}+4 s_{w}^{4}\right)-8 s_{w}^{2} \Delta_{l}^{2} L_{t}^{\prime}\left(s_{w}^{2}-3 X_{w}^{\prime}\right)\right. \\
& \quad+\left(1-\Delta_{1}\right)\left[4 s_{w}^{4}+6 X_{w}^{\prime 2}-\Delta_{1}\left(12 s_{w}^{2}\left(1+X_{w}^{\prime}\right)-13 s_{w}^{4}+18 X_{w}^{\prime}+3 X_{w}^{\prime 2}\right)\right. \\
& \left.\left.\quad-3 \Delta_{l}^{2}\left(3 c_{w}^{4}+X_{w}^{\prime 2}\right)\right]\right\} \tag{3.65}
\end{align*}
$$

with $X_{w}^{\prime}=c_{w}^{2} X_{w}$ and the other quantities are as defined in the previous sections. The structure of Eqs. (3.62)-(3.65) is determined by the same dynamics we discovered in our earlier studies: the coupling of the W to fermions is left-handed and the spin of the fermion prefers to align with the boson to which it couples. When both of these conditions are satisfied the cross section is enhanced. The cross sections involving longitudinal W^{\prime} s and Z^{0} 's are calculated in the same manner. The resules for the various combinations of helicities are

$$
\begin{align*}
& \sigma\left(W_{\lambda=-1}^{+} Z_{\lambda=0}^{0} \rightarrow t \bar{\zeta}\right)=\frac{\pi N_{c} o^{2}}{6 s_{w}^{4} c_{w}^{2}}\left(\frac{X_{w}^{\prime}}{M_{z}}\right)^{2}\left(1-\Delta_{t}\right)^{2}\left(2+\Delta_{l}\right), \tag{3.66}\\
& \sigma\left(W_{\lambda=+3}^{+} Z_{\lambda=0}^{0} \rightarrow 1 \bar{b}\right)=\frac{\pi N_{c} \sigma^{2}}{12 s_{w}^{4} c_{w}^{2} s}\left(\frac{m_{1}}{M_{2}}\right)^{2} \\
& \times\left\{3\left(1+4 X_{w} c_{w}^{2}\right)\left(C_{i}^{\prime}-1+\Delta_{1}\right)+\frac{2 c_{w}^{4} X_{w}^{2}}{\Delta_{1}}\left(1-\Delta_{t}\right)^{2}\left(2+\Delta_{t}\right)\right\}, \tag{3.67}\\
& \sigma\left(W_{A=0}^{+} Z_{\lambda=+1}^{0} \rightarrow i \bar{b}\right)=\frac{\pi N_{c} \alpha^{2}}{36 s_{w}^{4} c_{w}^{2}}\left(\frac{m_{t}}{A_{W}}\right)^{2}\left\{\left(9-12 s_{w}^{2}+4 s_{w}^{4}\right)\left(1-\Delta_{t}\right)^{2} C_{b}^{\prime}\right. \\
& +\mathcal{L}_{r}^{\prime}\left[16 s_{w}^{4}\left(1+\Delta_{1}-2 \Delta_{t}^{2}\right)-48 \Delta_{t} s_{w}^{2} X_{w^{\prime}}^{\prime}-27 \Delta_{i}^{2}\right] \\
& \left(1-\Delta_{t}\right)\left[-18+48 s_{w}^{2}-56 s_{w}^{4}+12 X_{w}^{\prime}\left(3+s_{w}^{2}\right)-6 X_{w}^{\prime 2}+12 \frac{X_{w}^{\prime 2}}{\Delta_{1}}\right. \\
& \left.\left.+\Delta_{1}\left(45-108 s_{w}^{2}+56 s_{w}^{4}-36 c_{w}^{2} X_{w}^{\prime}-6 X_{w}^{\prime 2}\right)\right]\right\},
\end{align*}
$$

$$
\begin{align*}
& \sigma\left(K_{\lambda=0}^{+} Z_{d=-1}^{i n} \rightarrow t b\right)=\frac{\pi N_{\mathrm{c}} a^{2}}{36 s_{w}^{4} \sigma_{w}^{2} j}\left(\frac{m_{1}}{M_{H^{\prime}}}\right)^{7} \\
& \times\left\{\mathcal { C } _ { i } ^ { \prime } \left[36 X_{w}^{\prime}-48 s_{w}^{2} X_{w}^{\prime}-12 \Delta_{t}\left(3-7 s_{w}^{2}+4 s_{w}^{4}-3 X_{w}^{\prime}+4 s_{w}^{2} X_{w}^{\prime}\right)\right.\right. \\
& \left.-\Delta_{i}^{2}\left(27-60 s_{w}^{2}+32 s_{w}^{4}\right)\right]+\Delta_{i}^{2} C_{b}^{\prime}\left(9-12 s_{w}^{2}+4 . s_{w}^{4}\right) \\
& +\left(1-A_{1}\right\}\left\{9-24 s_{w}^{2}+20 s_{w}^{4}-12 X_{w}^{\prime}\left(6-7 s_{w}^{2}\right)-6 X_{w}^{\prime 2}\right. \\
& \left.\left.+\Delta_{1}\left(45-108 . s_{w^{\prime}}^{2}+56 . s_{w}^{4}-36 c_{w}^{2} X_{w}^{\prime}-6 X_{w}^{\prime 2}\right)+\frac{12 X_{w}^{\prime 2}}{\Delta_{1}}\right]\right\} \text {. } \tag{3.69}
\end{align*}
$$

The leading terms in Eqs. (3.66) (3.69) are proportional to $\left(m_{1} / M_{z}\right)^{2}$ or $\left(m_{t} / M_{w}\right)^{2}$. as expected.

The calculation of the fusion of a longitudinal H^{+}and a longitudinal Z^{0} is slightly more subte than the previous cases. Our general program has been to use light-like momenta for the F^{+}and Z^{0} and to use longitudinal polarization vectors, $c^{\mu}=k^{\mu} / h_{\mathrm{L}}$. The cancellations involved in the full longitudinal calculation are very delicate. If the bosons are not taken on their physical mass shell the cancellations do not take place. Of courte, if the physical momenta and polarization vectors are used the cancellations orcur and the unitary behavior of the gauge theory is scen. Our procedure will be to ralculate the full amplitude for on-shell bosons. This amplitude will be free of unitarity-violating behavios. We will then continue the amplitude back to $k^{2}=0$ and $r^{\mu}=k^{\mu} / M_{i}$ for both H^{+}and Z^{0}.

Figure 3.34 Contributions to the cross section for \boldsymbol{t}^{E} production at $\sqrt{6}=2 \mathrm{Te} \mathrm{V}$ via $W Z$ fusion in the effective-boson approximation as a function of the top mass with mas $=5 \mathrm{GeV}$.

$$
\begin{align*}
& a\left(W_{A=0}^{+} Z_{\lambda=0}^{0} \rightarrow t \bar{b}\right)=\frac{\pi N_{\mathrm{c}} \alpha^{2}}{24 s_{w}^{4} c_{w}^{2} s}\left(\frac{m_{i}^{4}}{M_{w}^{2} M_{2}^{2}}\right) \\
& \quad \times\left\{3 C_{t}^{\prime}\left(1-4 X_{w}^{\prime}+2 X_{w}\right)+\left(1-\Delta_{1}\right)\left[-3-6 s_{w}^{2} X_{w}-\left(1-2 s_{w}^{2}+4 s_{w}^{4}\right) X_{w}^{2}\right.\right. \\
& \tag{3.70}\\
& \left.\left.\quad+\frac{1}{\Delta_{t}}\left(6 X_{w}^{\prime}+\left(-1+2 s_{w}^{2}+2 s_{w}^{4}\right) X_{w}^{2}\right)+\frac{2 X_{w}^{2}}{\Delta_{t}^{2}}\right]\right\}
\end{align*}
$$

The cross section has the expected factor of m_{i}^{1}.
To find the contribution to $\{\bar{b}$ pait production from these procestes we need to repeat the familiar process of folding in the effective boson distributions and performing the integrals over the momentum fractions. The results of this are shown in Figure 3.34, as a function of m_{i}. The resuits are comparable with those from WW fusion.

The result of this procedure is

3.11. Beamistathlung

Since most processes of intesest in a linpas collider scale like $1 / s$ it is neressary for a Tel linear collider to have a very high luminosity. If the process of interest has a cross section on the order of σ_{pt} then a luminosity of order $10^{33} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}$ is necessary to produce 10^{3} events in a year. At the bunch densities required to produce this luminosity the bulk interactions between the bunches become impor land. One of the consequences is that the incorning electrons bremsstrahlung in the tield of the positron bunch, ${ }^{30}$ This intense radiation, called "beanstrahlung," smears out the energy of the electrons and positrons

There is also the possibility of the beamstrahlung photons interacting with each other and the electrons and positrons in the colliding beams. Elankenbecler and Drell ${ }^{31}$ have shown that the effective luminositics for photon-photon or photonelectron collisions can be quite large, depending on the parameters of the machine. The beamstrahlung two-photon luminosity can even dominate the flux of "virtual" photons, calculated in the cffective-photon approximation, as shown in Figure $\mathbf{3 . 3 5}$ The electron-photon luminosity, plotted in Figure 3.36, is also substantial

We can easily calculate the production of top quarks from the fusion of beam strahlung photons

$$
\begin{equation*}
\sigma_{\text {beamatrahluag }}\left(c^{+} e^{-} \rightarrow e^{+} e^{-} t \bar{t}\right)=\left.\int d z \frac{d L_{7 T}}{d z} \sigma(77 \rightarrow i \bar{t})\right|_{\sqrt{i}=3 \sqrt{ } i} \tag{3.71}
\end{equation*}
$$

The results of the numerical integration are shown Figure 3.37. We see that for our chosen set of beam parameters the beamstrablung production process dominates the effective-photon proceas by two orders of magnitude

Figure 3.35 The differential photan-photon luminosity $d \mathcal{C}_{\text {rit }} / d$ relative to the incident electron-positron flux as a function of the energy fraction $s=\sqrt{\boldsymbol{i} / \mathrm{s}}$ at a 2 TeV linear collider. The bunches are taken to have circulas croses eection and the luminosity and laboratory bunch length are: $\mathcal{C} \sim 2.8 \times 10^{00} \mathrm{em}^{-5}$ and $t_{0} \sim 0.15 \mathrm{~mm}$, repectively. The two-photon flux from the effective-phown approximation is shown for compation (Reprinted with permimion from Blankenbecler and Drell, Ref. 31.)

Figure 3.36 The diferential photon-electron luminosity $d L_{\text {er }} / d z$ eelative to the incident eiectron-positron fux as a function of the energy fraction $:=\sqrt{2 / 4}$. The beam parametera are the game on thope in Figure 3.35 The photan flux from the effective-photon approximation is shown for comparison. (Reprinted with permisaion from Blankenbecler and Drell, Ref. 31.)

Figure 3.37 The crose section for productign of top quarka by fusion of beamstrahiung photons as a function of the top quatk man for the amic choice of beam parmeters as in Figure 3.35 The contribution from the effective-photon appraximation is dimplayed for comparion.

We can also calculate the production of $\ell-b$ pairs es a result of the interaction of beamstrahlung photons interacting with positrons:

$$
\begin{equation*}
\sigma_{\text {beamstrahlang }}\left(e^{+} e^{-} \rightarrow \bar{\nu} e^{-} t \bar{b}\right)=\left.\int d z \frac{d L_{\text {pY }}}{d z} \sigma\left(e^{+} \rightarrow \bar{\nu} t \bar{b}\right)\right|_{\sqrt{t}=2 \sqrt{ }{ }^{9}} \tag{3.71}
\end{equation*}
$$

This cross section, calculated in the effective-W approximation, is displayed in Figure 3.38. Again the beamstrahlugg contribution dominates. Of course an equal number of anti-top quarks are produced in the charge-conjugate reaction. Tihese results wese calrulated for the case of circular beams which give the maximum beamstrahlung fux. For flat beams the fluxes can be reduced by an order of magnitude. ${ }^{31}$

Figure 3.38 The cross ection for production of $t-\bar{b}$ pairs by fusion of beamstrahlung photons with virlual w bosons, calculated in the effectuee- W^{\prime} approxmation, as a function of the top quark mass for the same choice of beam parameters as in Figure 335 The contribution from the effective-photon approximation 15 displayed for comparison.

3.12. Summary and Conclusions

After reviewing the range of possible vector boson fusion processes we see that the 77 fusion dominates at the smaller top masses, mit $<200 \mathrm{GeV}$ and excceds lowest order cross section for $m_{t}<100$ GeV. At larger masses, fusion of longitudinal H's exceeds the 77 restult. due to the enhanced W couplings. Processes involving $Z^{\text {t/ }}$ s are serel to be an order of magnitude smaller that the analogous processes involving $W^{\prime \prime}$ s. The increrente between photous and Z^{0} s is seen to be murh smalle Hian owe womd amably expect due tu the small vertor compling of the electron to the Z^{0}. Our theck of the ellective 11 approximation th the reaction $c+? \rightarrow i$ in shows that $1 t$ is accurate to wathin 30%. Including bcamstrahlung cat greatly enhance the phuton lluxes. For circular beams the photon photon cross section dominates hoth the lowest order cross section and the effertive photon
result for me $<200 \mathrm{GrV}$.
These results are rasily transferable to production of other heavy quarks or heavy leptons. In 9 fusion we simply need to scale by the charge to the fourth power. The leading terms in processes involving longitudinal U^{\prime} and Z^{0} 's are the same for up type quarks, down-type quarks and heavy leptons.

Our results on processes involving longitudinal W 's and Z^{0} s agree with those presented by Yuan, Ref. 23 and Eboli et al., Ref. 23.

REFERENCES

1. S. L. Wu, in Procetdings of the 1987 International Symposium on Leptan and Photon Interactions at High Energies, Hamburg. July 27-31, edited by W'. Bartil) and R. Ruckl, (North Holland, Amsterdam. 1988), p. 39.
2. C. L. Kane and M. E. Peskin, Nucl. Phys. B195, 29 (1982).
3. A. Bean et al., Phys. Rev. D35, 3533 (1987); W. Bartel et aid, Phys. Lett. 132B, 241 (1983).
4. S. Uno, inviled talk at the Seventeenth SLAC Summer Institute on Particle Physics, Stanford, July 10-21, 1988 (unpublished).
5. I. Wingerter, in Inlemalional Symposium on Production and Decay of Heavy Flavors, Stanford, September 1-5, 1987, edited by E. Bloom and A. Fridman. (New York Academy of Sciences, New York, 1988), vol 535, p. 1.
6. J. Ellis, J. S. Hagelin and S. Rudaz, Phys. Lett. 192B, 201 (1987); I. I. Y. Bigi and A. I. Sanda, Phys. Lett. 194B, 307 (1987); F. J. Gilman, in The Fourth Family of Quarks and Leptons, edited by D. B. Cline and A. Soni, (The New York Academy of Sciences, New York. 1987), p.159; G. Altarelli and P. J. Franzini, Z. Phys. C37, 271 (1988); H. Harari and Y. Nir, Phys. Lett. 195日, 586 (1987); V. A. Khoze and N. G. Uraltsev, Leningrad preprint, 87-1290, 1987 (unpublished); L. L. Chau and W. Y. Keung, UC Davis preprint UCD-87-02, 1987 (unpublished); J. F. Donoghue et al., Phys. Lett. 195B, 285 (1987); A. Alj, in UCLA Collider Workshop, 1987, p. 110; J. R. Cudell et al., Phys. Lett. 196B. 227 (1987); A. Datha. E. A. Paschos and U. Turke, Phys, Lett. 196B, 376 (1987); D. Du and
7. 7hao, Phys. Rev. Lett. 59, 1072 (198i). Sec also F. Halzen, C'. S. Kim and S. Fakyasa, University of Wisconsin preprint MAD/PH/394, 1987 (un published).
8. H. Albrecht ef al., Phys. Lett. 192B, 245 (1987).
9. T. Rogdrigo, invited talk at the Seventeenth SLAC Summer Institute on Particle Physics, Stanford, July 10-21, 1989 (unpublished): T. Pal, it ibid (unpublished); K. Ragan, ibid (unpublished).
10. Most of the conteut of Chapter 2 has been pubished in \mathbf{F}. J. Gilman and n Kauflman, Phys. Rev. D37, 2676 (1988).
11. J. Il. Kühn, Acta Phys. Polonica B12, 347 (1981); V. Barger. Il. Bacr aud K. Hagiwara, Phys. Rev. D30, 947 (1984); I. I. Y. Bigi et al., Phys. Lett. I8! 157 (1986): S. Geer. G. Pancheri and Y. N. Srivastava, Phys. Lett. 192B, 22: (1985). See also A. Marlin. in Henvy Flavors: Proceedings. May 19-25. 1987. San Miniato, Ltaly, edited by F. L. Navarria, (North-Holland. Amsterdam. 1988), p. 133: and M. Jeżabek and J. H. Kühn. Plyys. Lett 207B. 91 (198s).
12. Particte Data Group. Phys. Lett. 204B. 1 (1988).
13. We take the total width of the W to be $\left.\Gamma_{w}=2.25 \mathrm{GeV}=9 \Gamma^{\circ}(X) \rightarrow e \mathrm{P}\right)$) accounting for thee generations of leptons and only two of quarks, since liere we are only interested in the situation where $\mathcal{W}^{+} \rightarrow t \bar{b}$ is kinematically forbidden or at least very highly suppressed.
14. I. 1. Y. Higi and H. Kirasemann. Z. Phys. CI. 127 (1981).
15. I. Hiluchilfe and C. H. Llewellyn Smith. Nucl. Phys. Bil4. 45 (19i6) 1. Hinchliffe and C. H. Liewellyn Snith. Phys. Lett. 61B, 472(1976);
16. B. Grinstein, N. Isgur and M. B. Wisc. Phys. Rev. Lett. 56, 298 (1986); A. Grinstein, N. Isgur and M. B. Wise, Galifornia Institute of Technology V'niversity of Toronto Report No, CALT 68 1311, UTPT-85-37, 1985 (unpullislied); B. Grinstein atud M. B. Wise, Caliornia Institute of Technology Report No. CALT 68 1445, 1987 (urpublished); B. Grinstein, N. Isgur. D. Srora and M. B. Wise, Plys. Rev. D39, 779 (1989).
17. T. Altomari and L. Wolfenstein, Phys. Rev. D37, 681 (1988) and Phys. Rev. Lett. 58, 1583 (1987).
18. The direction of muons, laus or quark jets in other decays of the W will of course serve the same purpose.
19. C. Ahn at ai., SLAC Repert 329. May 1988, and references therein;
G. Altarelli in Proceedings of the Workshop on Physes al Future Accelcrators (La Thuile), J. H. Mulvey, Ed. (CERN, Geneva, 1987): J. Ellis and F. Pauss, ibid.
20. F.J. Williams, Kgl. Danske Videnskab. Selskab. Mat-Fys. Medd. 13 (No. 4), (1934): L.. Landau and E. Lifshitz, Physik 2. Sowetjetunion 6, 244 (1934).
21. F. Fermi, Z. Physik 29, 315 (1924). C. Weizsäcker and E. J. Williams, ibid. 88, 612 (1934): L. Landau and E. Lifshitz, Physik Z. Sowetjetunion 6. 244 (1934).
22. S. J. Brodsky. T. Kinoshita. 11. Terazawa. Phys. Rev. D 4. 1.532 (1971).
23. 11. ('ahn and S. Dawson. Phys. Lett 138B. 196 (1984), Erratum bid, p. tint: M. Chanowitz and M. K. Gaillard, Phys Lett. 142B. 85 (1984); (i. L. Kane. W. W. Repko, and W. B. Rolnick, Phys. Lell. 148B,367
(19s4): S Dawsm. Nurl. Phys. B249.12 (1985): J. I.indfors, Z. Plys C28, 427 (1985): J. F. Gunion, J. Kalinowski, and A. Tofighi Niaki, Plys. Res Letl. 57, 2351 (1986): W. B. Rolnick, Nuct. Phys. B274, 171 (1986); P. W. Juhtuson, F. I. Oluess, W.-K. Tung. Phys. Rev. D36, 291 (1987). 2. Kuusz1, Nucl. Phys. B296, 253 (1988).
1. S. Dawson. S. S. D. Willenbrock, Nucl. Phys. B284, 449 (1987); C. P. Yuan, Nucl. Phys. B310, 1 (1988); D. A. Dicus, K. J. Kallianpur, S. S. D. Willenbrock. Phys. Lett. 200B, [87 (1988); O. J. P. Eboli el al., Phys. Rev. D34. īl (1986). O. J. P. Eboli ef al., Sao Paulo University Report IfT/P-37/88, (unpublished).
2. In the original paper by Dawson, Ref. 22, it was not discovered that the longitudinal terms do not interfere with the transverse ones. That all the interference terms varish was pointed out by Johnson, Olness, and Tung, Ref. 22, aud also by Lindfors, Ref. 22.
3. This term was omitted in the ariginal paper by Dawson, Rel. 22.
4. This rancellation was noted by Johnson, Olness and Tung, Ref. 21, and Lindfors, Ref 21.
5. A. Abbasabadi, D. A. Dicus, W. W. Repko, and R. Vega, Phys. Kev. D3s, $2 i 70$ (1988): D. A. Dicus, Nucl. Phys. B287, 397 (1987).
6. Appelquist and Chanowitz have used this to plare a unitarity bound on the scalc of electro weak symmetry breaking: T. Appelguist and M. Chanowitz. Phys. Rev. Lett. 59, 2405 (1987), Erratum, ibid, 00, 1589 (1988).
7. Fermion pair production via $\mathbf{\gamma}^{\prime \prime}$ fusion has also been studied J. Layssac, H. Leveque, and G. Moultaka, Phys. Iett. 2008, 538 (1988).
8. R. Blankerlierler and S. D. Drell. Phys. Rev. D38، 277 (1987) and 37. 3308 (1988); M. Jacob and T. T. Wu، Phys. Leth br B197, 253 (1987), Nucl. Phys. B303, 373, (1988), and ibid. p. 389; M. Bell and J. S. Bell, Part. Accel. 22, 301 (1988) and ibid, 24, 1 (1988); V. N. Baier and V. M. Katkov, Zh. Eksp. Teor. Fiz. 55, 1542 (1968) [Sov. Phys. JETP 28, 807 (1969)] and Zh. Eksp. Teor. Fiz. 53. 1478 (1967) (Sov. Phys. JETP 26, 854 (1968)\}.
9. R. Blankenterler and S. Drell. Phys. Rev. Lett. 61. 2324 (1988).

[^0]: -.

