000-1198-621

Rec. By DTIE APR. 17, 1969

X-RAY MASS ABSORPTION COEFFICIENTS AND QUANTITATIVE MICROANALYSIS OF METALLURGICAL SYSTEMS, INCLUDING REFRACTORY METAL-INTERSTITIAL COMPOUNDS

Lawrence John Gray Department of Mining, Metallurgy, and Petroleum Engineering

and

Materials Research Laboratory * University of Illinois, Urbana, Illinois 61801

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

February 1969

This technical information document is based on a thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mining, Metallurgy, and Petroleum Engineering in the Graduate College of the University of Illinois, 1969. This research was supported in part by the U. S. Atomic Energy Commission under Contract AT(11-1)-1198.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

X-RAY MASS ABSORPTION COEFFICIENTS AND QUANTITATIVE MICROANALYSIS OF METALLURGICAL SYSTEMS, INCLUDING REFRACTORY METAL-INTERSTITIAL COMPOUNDS

Lawrence John Gray, Ph. D. Department of Mining, Metallurgy and Petroleum Engineering University of Illinois, 1969

A method, based on consideration of atomic potentials, for the estimation of mass absorption coefficients is described. Mass absorption coefficients for wavelengths up to 80 \mathring{A} can be estimated. Numerical values are given for several elements, including the refractory metals, for the characteristic emission lines of carbon, nitrogen, and oxygen. The method of calculation permits the estimation, to better than 5% in most cases, of mass absorption coefficients.

A correction procedure for the conversion of microprobe x-ray intensity data to composition is presented. The method, implemented by a described computer program, was tested in the analysis of eight metallurgical systems containing elements from carbon to gold in various combina¹ tions. The data reduction computation has been shown to be generally applicable to this variety of elements. The greatest difficulties were encountered in the analysis of carbon containing samples. Consideration of the principles on which the correction relations rest leads to the definition of a set of analytical conditions which minimize the theoretical errors.

ACKNOWLEDGEMENT

The author wishes to express his appreciation to his advisor, Professor C. A. Wert, who suggested the direction of this work and whose influence and encouragement insured its completion. The author's knowledge of many aspects of electron optics was significantly increased by discussion with Mr. F. Luehrs, presently of the Materials Analysis Company, Palo Alto, California. Several areas of electron probe microanalysis were clarified during conversations with Mr. Luehrs and Mr. J. Colby of the Bell Telephone Laboratories, Allentown, Pennsylvania. Mr. Colby generously made available his computational scheme, MAGIC I, prior to publication. The author is further indebted to numerous members of the staff of the Materials Research Laboratory, where this work was carried out, who either assisted in obtaining the necessary equipment or offered suggestions during enlightening discussions.

The author wishes, above all, to thank his wife Marjo for her understanding, patience, and encouragement.

It is a pleasure to acknowledge the support in part of the U. S. Naval Undersea Warfare Center, Pasadena, California, through a Naval Fellowship, and the U. S. Atomic Energy Commission through Contract AT(11-1)1198.

iii

TABLE OF CONTENTS

			Page
	ACKNOWLEDGMENT		iii
	TABLE OF CONTENTS		iv
	LIST OF TABLES		vi
	LIST OF FIGURES		vii
Ι.	INTRODUCTION	o •	1
II.	GENERAL CONCEPTS	0 O	12
	A. <u>Instrument Effects</u>	• •	15
	C. Effects of Electron-Target Interactions	• •	17
III.	INSTRUMENTAL EFFECTS	•	19
	A. <u>Pulse Shrinkage and Coincidence Losses</u>	o e	19
	B. <u>Detector System</u>	•	27
	D. Detector System Deadtime Measurement	•••	29
	E. <u>Instrument Drift</u>	с o	36
	F. <u>Contamination</u>	ð 0	38
IV.	SAMPLE EFFECTS	0 O	44
	A. <u>ADSORPTION COrrection</u>	• •	44 56
	2. Evaluation of Emission Line and	•	00
	Absorption Edge Wavelengths	• •	68
	3. <u>Mathematical Fitting of Experimenta</u>	<u> </u>	70
	4. Discussion of Photoeffect Cross Sec	• •	70
	tion Calculations	c •	104
	5. <u>Numerical Estimates of Mass Absorp</u> -		100
	<u>tion coerticients</u>	• •	108
	C. Fluorescence Correction	• •	117
V.	X-RAY GENERATION EFFECTS		130
•	A. Ionization Cross Section	• •	134
	B. <u>Electron Stopping Power</u>	• •	135
	L. Effective Lurrent Factor	• •	130
VI.	COMPUTATIONAL METHODS	• •	139
VII.	APPLICATIONS	o é	147
	A. <u>Copper-Zinc</u>	0 e	14/
	C. Tin-Zirconium	•••	152
	D. <u>Titanium-Niobium</u>	•	152
	E. <u>Silicon-Oxygen</u>	• •	156
	r. <u>iron-Sultur</u>	• •	158
	H. Gold-Copper	• •	161

iv

		· V
VIII.	SUMMARY	163
IX.	LIST OF REFERENCES	165
Χ.	APPENDIX	175
· .	A. COMPUTER PROGRAM FOR CALCULATION OF DETECTOR SYSTEM DEADTIME B. COMPUTER PROGRAM FOR NUMERICAL INTE- CRATION OF BELATION FOR ELECTRON	175
	STOPPING POWER FACTOR	177
	MICROPROBE DATA TO COMPOSITION	179 200
	F. TYPICAL OUTPUT FROM REDUCTION OF MICRO- PROBE DATA TO COMPOSITION	216
ΥT	νττα	224

v

~

)

.

LIST OF TABLES

Table		Page
Ι.	Characteristics of Electron Probe Micro- analyzers and Fluorescent X-ray Spectrog- raphy.	5
II.	Experimental Deadtime Determinations.	35
III.	Principle Emission Line Wavelengths and Critical Excitation Potentials for K, L, and M Series	69
IV.	Chracteristic Absorption Edge Wavelengths	74
· V.	Values of C and n for $(\mu/\rho) = C \lambda^n$ for Various Wavelength Intervals.	109
VI.	Mass Absorption Coefficients for Carbon, Nitrogen and Oxygen $K\alpha$ Emission Lines.	114
VII.	Constants for Calculating Fluorescence Yields (ω).	126
VIII.	Results of Analyses of Copper-Zinc Sample of Certified Composition 27.10 wt % Zinc; 72.85 wt % Copper.	149
IX.	Results of Analyses of Nickel-Iron Sample of Reference Composition 43.55 wt % Iron; 56.55 wt % Nickel.	151
Χ.	Analyses of Nominal 1.5 wt % Tin in Zircaloy-2.	153
XI.	Results of Analyses of Titanium-Niobium Sample of Reference Composition 34.97 wt % Titanium: 65.00 wt % Niobium.	155
XII.	Results of Analyses of SiO, Sample.	157
XIII.	Results of Analyses of Three Titanium Carbide Samples.	160
XIV.	Results of Analyses of Cu ₃ Au Samples	162
Χ٧.	Summary of Analyses Results	164

vi

LIST OF FIGURES

Figure	Page
 Interactions of an electron probe with a specimen. 	4
2. Electron microprobe analytical techniques.	7
 Examples of backscattered electron and X-ray sweeps and line profiles. 	9
 Schematic diagram of the arrangement of the basic components of an electron microprobe analyzer. 	14
5. Detector pre-amp output pulses; a) pulses widely separated in time; b) pulse shrinkage effect.	22
6. Pulse height decrease with counting rate for carbon $K\alpha$ emission line.	31
7. Schematic diagram of detector-counting system	. 33
8. Carbon contamination rate for three analysis conditions.	42
9. Relationship between incident electron probe and X-ray emergence angle, θ .	47
 Relationship between incident electron probe and electron traverse angle, β. 	50
11. Mass absorption coefficient of zirconium.	62
12. Mass absorption coefficient of titanium.	64
13. Mass absorption coefficient of tantalum.	66
14. Mass absorption coefficient of carbon.	80
15. Mass absorption coefficient of nitrogen.	82
16. Mass absorption coefficient of oxygen.	84
17. Mass absorption coefficient of vanadium.	86
18. Mass absorption coefficient of niobium.	88
19. Calculated values of coefficient, C, for function $(\mu/\rho) = C \lambda^n$ for $\lambda < K$ edge.	91
20. Calculated values of exponent, n, for functio $(\mu/\rho) = C \lambda^n$ for $\lambda < K$ edge.	n 93
21. Calculated values of coefficient, C, for function $(\mu/\rho) = C_{\lambda}^{n}$ for λ between K and L I edges.	95
22. Calculated values of exponent, n, for function $(\mu/\rho) = C \lambda^n$ for λ between K and L I edges.	97

vii

- 23. Calculated values of coefficient, C, for function $(\mu/\rho) = C \lambda^n$ for λ between L III and M I edges.
- 24. Calculated values of exponent, n, for function $(\mu/\rho) = C \lambda^n$ for λ between L III and M I edges.
- 25. Typical emission spectrum from compound target. Shaded region represents part of spectrum capable of fluorescing $K\alpha(A)$ line. 120
- 26. Examples of fluorescence effects: a) fluorescence of the matrix by the continuum generated in an inclusion containing no elements with characteristic lines capable of exciting iron; b) fluorescence due to the continuum and characteristic lines from a phase containing elements with characteristic lines capable of exciting iron.

viii

99

101

I. INTRODUCTION

The great advance in the analysis of metallurgical samples occasioned by the development of a practical electron probe x-ray microanalyzer*^{1,2} is that elemental characteristic x-ray intensity is used to determine the composition of a very small volume. The uniqueness of this analytical method is easily seen. The volume of material analyzed is of the order of one cubic micrometer (μ m³). The analysis is non-destructive. Quantitative information is generally obtained without resorting to a series of compound "standards" for intensity comparison purposes. Point-to-point analysis yields elemental distributions on a micrometer (μ m) scale. All errors of an instrumental nature, but two, have no influence on the data.

Electron probe x-ray microanalysis depends on the excitation of the sample to be analyzed by a small (10^{-8} cm^2) electron beam. X-rays generated in the excited volume are emitted by the sample. The same excitation and detection systems are used for both standards and unknowns. Intensity of the same x-ray line is measured from both standards and unknowns. It must be pointed out, however, that the directness of the method is complicated by other pheonmena which occur when an electron beam is incident on a target. These

*Also called: electron microprobe; electron probe X-ray microanalyzer; microprobe; probe; electron probe; microanalyzer a sonde electronique; Elektronenmikrosonde. phenomena, some of which must be taken into account in microprobe analysis, are illustrated in Figure 1.

Although, in a very broad sense, there is some similarity between electron probe microanalysis and fluorescent x-ray emission spectrography, it is well to point out some of the significant differences. These are summarized in Table I.

Since the electron microprobe does utilize electron bombardment as the means of excitation of the sample, several methods of analysis, some only qualitative, are possible. These approaches are illustrated in Figure 2.

It becomes clear that characterization of micro-volumes lies well within the realm of microprobe capabilities. Likewise, it is clear that the microprobe will not necessarily yield a highly reliable total composition analysis of a specimen. Rather, variations in composition from one region to another within a specimen are the significant results of electron probe x-ray microanalysis.

Relative variations in composition can be shown rapidly by raw x-ray intensity, backscattered electron intensity or sample current measurements. Figure 3 illustrates the backscattered electron intensity distribution and the elemental characteristic x-ray intensity distributions from the sample shown in the optical photograph. The x-ray intensity distributions also show intensity vs. position traces taken across the middle of the sample. Such qualitative informa-

Figure 1. Interactions of an electron probe with a

specimen.

.

Table I. Characteristics of Electron Probe Microanalyzers and Fluorescent X-ray Emission Spectrography.

	Microprobe	Analytical ³ Spectrograph
Specimen excitation	Electrons	X-rays
Power input, watts	(5)(10 ⁻³)	(2)(10 ³)
Specimen area, cm ²	10^{-4} to 10^{-8}	10^{-2} to 1
X-ray intensity per cm ² from specimen, watts	(2)(10 ³)	(5)(10 ⁻²)
X-ray intensity from specimen, watts	(2)(10 ⁻⁵)	(5)(10 ⁻²)
X-ray intensity to detector, watts	(5)(10 ⁻⁹)	(5)(10 ⁻⁷)
Counting rate, cps	(2)(10 ⁴)	(6)(10 ⁵)
Signal peak-to- background ratio	200 to l (white radiation)	l0,000 to l (scattered x-rays)
Detectable mass, grams	10 ⁻¹⁴	10 ⁻⁹
Minimum detectable concentration, ppm	500	10

Figure 2. Electron microprobe analytical techniques.

Figure 3. Examples of backscattered electron and x-ray sweeps and line profiles.

tion is obtained fairly easily. However, it is in the quantitative determination of absolute concentrations that most problems are encountered. The general foundation for the determination of concentration from characteristic x-ray line intensity was outlined by Castaing.¹ Additional contributions to the general principles of microanalysis were made by Philibert⁴, Wittry^{2,5} and Poole and Thomas.⁶ Many other authors have added to the information required for determination of composition. Some of these authors will be referred to in later sections of this thesis. Ιn fact, it is necessary to do so in the running text simply because of the diversity of terminology and notation. Several reviews and bibliographies are available in the literature.⁷⁻¹¹ In addition, at least four books on microprobe analysis have appeared.¹²⁻¹⁵ Each of these "overviews" has its good points, but of necessity reflects the incompleteness of theory and application which casts its shadow over the field.

One might easily follow the suggestion of Campbell and Brown¹¹ in evaluating the advances made in x-ray microanalysis: divide x-ray wavelengths into long and short wavelength regions with the division falling roughly at 3 Å. Such a division is motivated by both theoretical and experimental considerations. Simply stated, for analytical wavelengths less than three Angstroms, less precise theory with

many approximations and simplifications will yield relations that provide reasonably accurate concentrations from measured x-ray intensities. For analytical wavelengths greater than about three Angstroms, additional physical phenomena must be carefully considered in order to obtain a relation between measured x-ray intensity and composition. It is the consideration of the extension of the general principles of x-ray microanalysis to light elements, including carbon, that forms the subject of this thesis.

II. GENERAL CONCEPTS

The principle behind quantitative x-ray microanalysis is the irradiation with a finely focused electron beam of a selected point on a specimen surface and the detection and measurement of a characteristic x-ray line emission from a given element in the specimen. Selection of the x-ray line to be measured is made with a curved and ground diffracting crystal spectrometer. A schematic diagram of the electron probe microanalyzer is given in Figure 4. Calibration of the apparatus is accomplished by replacing the specimen by a standard containing a known amount of the element of interest. Since the measurements on the specimen and on the standard are made with x-rays of the same wavelength, there is no need to know the absolute efficiency of the spectrometer and detector. The simplicity of the analytical method appears when the calibration is made with a sample containing the pure element. In essence, this implies that a calibration curve of x-ray intensity versus concentration can be made with only two points, 100% and 0%.

The absolute nature of electron probe x-ray microanalysis has been emphasized by Castaing.¹⁶ He has shown that such a calibration curve is to a first approximation linear. For accurate analyses, the non-linearity of such

Figure 4. Schematic diagram of the arrangement of the basic components of an electron microprobe analyzer.

a two point calibration can be calculated, at least in principle.

A. Instrument Effects

The non-proportionality between concentration and detected x-ray intensity arises from several general effects. The intensity (counts per second) registered by the electronic counting circuitry is not equal to the x-ray intensity emitted by the sample within the solid angle intercepted by the spectrometer.

It is an effect of the measurement procedure which causes the lack of equality between emitted and evaluated intensities. The first complication arises because the detector, usually a proportional counter, has a finite resolving time. Under the heading of "deadtime" many authors have listed two phenomena, coincidence losses and detector output pulse shrinkage.

Coincidence losses occur because x-ray emission statistics are those of radioactive decay, Poisson statistics. Two photons very closely spaced in time generate "electron clouds" in the detector, which "overlap" and then appear as a single output pulse. A count loss by coincidence has occurred. Pulse shrinkage arises because of the finite transit time to the cathode of the ions generated within the detector. At high count rates, before the ion cloud

resulting from one incident photon arrives at the cathode, a second photon enters the detector. The residual ion cloud reduces the net gas gain of the detector and a smaller output pulse is generated.

The second instrument problem has been taken as the summation of instrument drift and contamination effects. "Drift" is usually due to electron gun filament warpage and gun and lens power supply variations. Contamination is generated on the sample surface by the interaction at the sample surface of the electron probe with organic vapors. An x-ray attenuating carbon deposit is thus built up under the probe.

B. <u>Sample Effects</u>

Because the characteristic x-rays are generated some distance below the sample surface, absorption occurs as these x-rays leave the sample on their way to the spectrometer. This absorption is only one of the several phenomena which remove the equality between the probe generated characteristic line intensity and the detected intensity.

The spectrometer, in addition to characteristic line intensity, admits to the detector some background radiation due in general to the x-ray continuum and to secondary characteristic lines from other elements in the sample. Further, intensity at the analytical characteristic line

wavelength other than probe generated intensity arises from indirect excitation. Such secondary fluorescence radiation is generated by the absorption of primary x-rays from other elements in the sample. This necessitates a characteristic fluorescence correction. Secondary fluorescence radiation is also caused by absorption of the continuum, giving rise to a continuum fluorescence correction.

C. Effects of Electron-Target Interactions

The x-ray intensity generated by the electron probe is not strictly proportional to concentration when the sample contains elements greatly different in atomic number. As the electrons from the probe enter the specimen and cause ionizations, they do not move in straight lines. Rather, the electron motion would seem to be a series of angled paths caused by collisions. In heavy elements, these paths approach random directionality (diffusion) very rapidly. Electrons from the probe could also undergo large angle scattering. These electrons leave the sample surface while still possessing energy greater than that necessary to produce characteristic x-rays. It is this variation of electron scattering and penetration with atomic number which causes the non-proportionality between concentration and generated intensity.

Each of the above-mentioned corrections will be treated

in some detail in the following sections of this thesis. The emphasis then is on the form of the corrections to be used when one of the elements in the specimen is a light element, and on the numerical values of the various constants used in these corrections.

The approach to be used will begin with a consideration of the instrumental effects, including a discussion of certain experimental difficulties. We then consider the nature of the sample effects on the generated intensity. A discussion of the "generation" effect follows. The mathematical relations for correction of the various effects are then applied to several systems of metallurgical interest, and the results are discussed.

III. INSTRUMENTAL EFFECTS

A. Pulse Shrinkage and Coincidence Losses

The use of an x-ray detection-counting system composed of a proportional counter detector and associated preamplifier, linear amplifier, pulse height analyzer and scalar introduces several limitations into the measurement of the x-ray intensity incident on the detector window. Assuming that the entire energy of a photon is lost only through the ionization of detector gas atoms, the number, N, of ion pairs produced by one photon is equal to the photon energy divided by the ionization energy of the gas. (We assume zero initial kinetic energy of the ejected electron.) As these primary electrons are accelerated toward the anode, they accumulate kinetic energy. Assuming that on their way to the anode these primary electrons also lose energy only through (n) secondary ionization collisions, secondary ion pairs are generated. If the mean number of secondary collisions, \bar{n} , is constant for a given detector voltage, the charge collected at the anode for each incident photon of a given energy, $\bar{N}2^{\bar{n}}q$, is proportional to the energy of the incident photons. The positive ions generated by the incident photon and by the avalanche are accelerated toward the cathode. Their influence on the internal field of the detector is not removed until they arrive at the detector wall.

As the x-ray intensity, i.e., photon rate, increases, it is possible for a second photon to enter the detector while the positive ion space charge from a previous photon still exists. This space charge reduces the effective detector voltage and the gas gain (2ⁿ) decreases. The resultant reduction in detector output pulse amplitude causes a non-linearity in the behavior of proportional Detector preamp output pulses are shown in counters. Figure 5a, b. The two pulses in Figure 5a are widely separated in time, and thus their amplitude differences are due only to variations in the energy of the incoming photons. In Figure 5b, the third pulse is reduced in amplitude by at least 20% from the amplitude of the second This reduction of output amplitude is due to a pulse. reduced gas gain caused by the presence of the positive charge cloud from the second photon when the third photon entered the detector.

The dependence of pulse shrinkage on counting rate, detector voltage, incident wavelength, detector geometry and detector gas flow rate has been studied extensively by Bender and Rapperport,¹⁷ with additional contributions by Burkhalter, Brown and Myklebust,¹⁸ Birks,¹³ Spielberg,¹⁹ and Heinrich, Vieth and Yakowitz.²⁰ It is obvious that detector pulse shrinkage will have an effect on counting rate when a pulse height analyzer with closely set upper

Figure 5. Detector pre-amplifier output pulses; a) pulses widely separated in time; b) pulse shrinkage effect.

and lower level discriminators is used to eliminate noise and high and low energy background.

A separate, but not entirely distinct, problem arises when a second photon enters the detector before the electron avalanche from a preceding photon has been collected by the anode. In this case, there is the possibility that the two electron avalanche "clouds" could overlap in their arrival at the anode. The detector then outputs a single charge pulse of approximately double amplitude and a coincidence loss occurs.

Experimentally, coincidence losses can never be eliminated. In fact, the problem may be aggravated if the pulse pair resolution of the scalar, pulse height analyzer or linear amplifier is worse than the detector-preamplifier combination. For the case of losses controlled by detector response time, Schiff²¹ suggested a correction of the form:

 $N = N' exp (N \tau)$

(1)

(2)

where N = true counting rate

N' = observed counting rate

 τ = deadtime

For the case where coincidence losses are controlled by a large non-extendable deadtime in the electronic pulse circuitry, Ruark and Brummer²² derived the relation:

 $N = N' / (1 - N' \tau)$

It will be noted that if Equation (1) is expanded in

a power series:

$$N = N'(1 + N \tau + N^2 \tau^2/2! + ...)$$
(3)

If N $\tau \ll 1$, we can terminate the series. Thus:

$$N = N' (1 + N \tau),$$
 (4)

or:

$$N = N' / (1 - N' \tau)$$
 (5)

The limit of the validity of such an approximation, which is of the same form as the relation of Ruark and Brummer, would be established by an experimental deviation from linearity between N and N'. Heinrich et al.²⁰ have shown that for counting rates up to 3 x 10^4 cps and deadtimes up to 3 microseconds the approximation holds for their detection system to within 5%. The point to be made is that since a precise and accurate measurement of intensity is required, deviations from linearity between N' and N must be taken into account. If one sets an arbitrary limit upon this deviation, and this limit is exceeded, higher order terms in the expansion (3) must be considered.

Various methods for determining detection system deadtime have been suggested by Beers,²³ Lonsdale,²⁴ Short,²⁵ Heinrich et al.²⁰ and Sawatzky and Jones.²⁶ In an electron microprobe instrument that has a facility for measuring sample current, it can be assumed that the x-ray photon rate reaching the detector is proportional to the sample current:

N = k i,

(6)

where (i) is the sample current. Using the linear approximation we obtain:

$$k \ i = N' / (1 - N' \tau) \tag{7}$$

or:

$$N'/i = k - k N' \tau$$
(8)

Thus, a plot of N'/i vs. N' should yield a straight line with an intercept on the N'/i axis of (k) and a slope of $(k \tau)$. τ can be determined for the plot by using

$$\tau = 1/N' - 1/k i$$
 (9)

after the intercept has been determined.

Some experimenters²⁷ have encountered detector systems which yield data suggesting that the deadtime is a function of count rate; that is, that:

 $N = N' / (1 - N' \tau (N'))$ (10)

Consideration of the above model for pulse shrinkage and coincidence losses suggests that an apparent increase in deadtime at high count rates is really a problem generated by a too high Pulse Height Analyzer baseline setting. A baseline set too closely at low count rates would cause an artificial decrease in counting rate at high photon fluxes due to the effect of pulse shrinkage.

An estimate of the quantitative effect of deadtime and pulse shrinkage can be obtained from a consideration of a counting rate of 10,000 counts per second (less than the rate usually obtained on pure iron or copper). If

the detector system has a deadtime of three microseconds, then to ignore the effect of deadtime on count rate would result in an error of 2.9% in the measured count rate. If 10,000 counts per second were the rate from the standard and the unknown produced 1000 counts per second (approximately a 10% alloy), the error in the resulting intensity ratio would be approximately 2.4%. Such an error would also appear in the calculated concentration.

If at 1000 counts per second, the linear amplifier output was centered at 10 volts, with a pulse distribution RMS deviation of 0.5 volts, then, assuming a Gaussian distribution, 95% of the pulses would occur between 9.0 and 11.0 volts. If the Pulse Height Analyzer was set with its upper and lower level discriminators at 8.0 and 12.0 volts respectively, and an increase in count rate to 10,000 cps resulted in a 10% decrease in pulse amplitude to a distribution centered at 9.0 volts, then approximately 4% of the counts at 10,000 cps would fall below the baseline. This loss of 4% of the standard counts would cause an error of approximately 4.5% in the intensity ratio and in the calculated concentration.

In the present experiments, the upper discriminator setting is chosen at low count rate, less than 100 per second. The lower level discriminator is set at high count rates, of the order of 10,000 counts per second. These criteria are chosen in reference to the discussion in
section III.C. The detection system deadtime is measured, as discussed in section III.D. and the correction is applied to all data.

B. Detector System

The precision of an analysis is directly related to the absolute number of x-ray quanta detected. If long counting time can be tolerated, low counting rates are acceptable. However, since in carbon analysis any significant sample surface carbon contamination will cause analysis errors, short counting times at low probe intensities are desirable. The analysis then requires diffracting crystals of high efficiency and detectors also of high quantum counting efficiency.

Rose and Korff²⁸ and Rose and Ramsey²⁹ investigated the amplification properties of proportional counters, and give specific recommendations for the use of an Argon-Methane gas mixture. Counting efficiencies of proportional counters and scintillation counters were investigated by Taylor and Parrish.³⁰ Their data indicate that no proportional counter can compete with a NaI(Tl) scintillatorphotomultiplier tube detector for quantum counting efficiency and uniformity of spectral response, for wavelengths below 2 Å. For the wavelength interval 2 Å to 8 Å, the highest quantum counting efficiency is exhibited by an argon filled side-window proportional counter with a Be window. The decrease in quantum counting efficiency of an $(A-CH_4)$ - Be detector for wavelengths greater than 6 Å is due to the absorption by the window material. For wavelengths greater than 8 Å, thin organic film windows hold out the most promise for eliminating the absorption problem of Be. For example, Birks³¹ has reported using a 0.25 µ nitro-cellulose window for long wavelengths. More recently, Henke et al.³² have calculated mass absorption coefficients for various organic film window materials.

For the present experiments, an argon-10% CH_4 filled proportional counter with a 0.005 in. Be window was used in the interval 1 Å to 8 Å; an aluminized 2500 Å nitrocellulose window flow proportional counter with argon-10% CH_4 gas was used for longer wavelengths.

C. Pulse Shrinkage Measurement

The data of Bender and Rapperport¹⁷ suggest that for a given detector voltage the percent shift in output pulse amplitude decreases with wavelength to a zero shift for the silicon K α emission line. It would seem likely then that the carbon K α emission line should also exhibit no shift with increasing counting rates. To test this conclusion, the pulse height distribution of the carbon K α emission line from natural diamond was measured as a func-

tion of counting rate. The pulse height spectra were obtained with a multi-channel analyzer. The channel number corresponding to the peak of the pulse height distribution is plotted as a function of counting rate in Figure 6. While little change in pulse height is observed for count rates greater than 6000 counts per second, a significant change, a reduction in output pulse amplitude with increasing count rate, is observed for lower counting rates. Since for samples containing carbon the expected carbon count rate is between 100 and 5000 counts per second, pulse shrinkage with increasing count rate cannot be ignored.

To include all possible effects of pulse shrinkage in the present analyses, the Pulse Height Analyzer upper level discriminator must be set equivalent to channel 50 in Figure 6. The lower level discriminator must be set equivalent to channel 38. These are approximately the conditions indicated at the end of section III.A.

D. Detector System Deadtime Measurement

The x-ray detection-counting system is shown schematically in Figure 7. Because each component in the system has its own effect on the net pulse pair resolution, the "deadtime" was determined for the entire detection system. This was done for each of the three spectrometers at

Figure 6. Pulse height decrease with counting rate for carbon K^{α} emission line.

Counts Per Second (x10³).

31

)

Figure 7. Schematic diagram of detector-counting system.

several wavelengths. The data were plotted following the method of section III.A. The values of the deadtime τ were also determined mathematically using the method of least squares.³³ If there are n observations of sample current I_i and count rates N'_i, then the relations:

$$\begin{array}{c} n \\ \Sigma \\ j=1 \end{array} \begin{pmatrix} N'_j / I_j \end{pmatrix} = n \\ k - n \\ \tau \\ j=1 \\ j=1 \\ \end{array} \begin{pmatrix} n \\ \Sigma \\ j=1 \\ j \end{pmatrix}$$
 (11)

$$\sum_{j=1}^{n} (N_{j}'^{2}/I_{j}) = k \sum_{j=1}^{n} N_{j}' - k \tau \sum_{j=1}^{n} N_{j}'^{2}$$
(12)

are solved for τ . A computer program, written for use in the evaluation of deadtime, is given in Appendix A. This program was written specifically to make use of the automatic readout capability added to the present instrument.

The results of several deadtime determinations are given in Table II. The values of deadtime as determined experimentally for the present instrumentation are slightly lower than that assumed in the estimate of errors made in section III.A. Thus, while the magnitude of the errors that would be encountered if we ignored the deadtime correction are slightly less than the estimates in that section, those errors are nevertheless significant. For an intensity ratio of 1000 cps/10,000 cps, the error introduced in this intensity ratio by ignoring the deadtime correction would be of the order of 2%. We thus conclude that in using the present instrumentation, a deadtime correction using

Detector	Wavelength	Number of Determinations	Mean τ,μ sec.
Sealed Prop. Counter #1	Si Ka	2	2.08
	Α1 Κα	2	2.28
			Mean 2.18 µ sec.
Sealed Prop. Counter #2	Sn La	2	2.53
	Fe Ka	3	2.49
	Zn Kα	3	1.94
		· · · ·	Mean 2.32 µ sec.
Flow Prop. Counter	C Κα	2	2.85
	Fe Ka	2	2.07
	Zn Ka	1	1.84
		· · · ·	Mean 2.25 µ sec.

Table II. Experimental Deadtime Determinations

Equation (5) with deadtime values from Table II must be made to all measured intensities.

E. Instrument Drift

In order that statistical errors in recorded data be held small, less than the errors in other input parameters, sufficient data must be accumulated. The low fluorescence vield of the light elements (less than 0.01) necessitates long counting times, ten seconds or more. During the counting interval, short term instabilities in the electron gun are encountered. Further, when many data points are taken, long term drift in the electron gun and magnetic lenses result in a changing probe intensity. Some microprobe instruments have been fitted by the manufacturers with a feedback network for stabilizing the probe current. The constancy of probe intensity is achieved by either adjusting the electron gun grid bias voltage or adjusting the condenser lens excitation current. As has been pointed out by Reed,³⁴ either method results in a defocusing of the electron probe, the extent of which is dependent on the amount of stabilization required. In addition, changes in condenser lens excitation can shift the position of the probe unless the electron optics column is completely Since probe intensity drift is usually due to aligned.

a shift in position of the filament with respect to the center of the gun grid aperture, the drift itself is a misalignment of the electron optics column. Thus, before implementation, all methods of instrumental compensation for probe instabilities must be critically evaluated since they might only aggravate the problem.

Correction for probe intensity drift is possible without instrumental adjustments. For example, if the probe current is measured and recorded, rather than stabilized, all x-ray counts can be normalized to constant probe current. The difficulty with this approach is that the x-ray intensity cannot be measured at the same time as the probe intensity. It is possible, however, to measure a "monitor" current, a fraction of the total beam current, which strikes an insulated aperture located above the magnetic objective lens pole piece. The x-ray intensity is then normalized to constant "monitor" current. This method relies on the proportionality between "monitor" current and probe current, which may not hold in the case of a badly misaligned column.

It is well to mention here that the current measured is NOT the sample current, the current collected by the sample and usually fed to ground via a current meter. Because of the change in electron scattering properties with atomic number, a constant probe current can be accom-

37 -

panied by a changing sample current. The changing sample current is correlatable in a general way with composition and thus is not a true measure of probe stability.

In the present instrument, much care has been taken to insure that the electron optics column is aligned before any analysis is performed. With an initially aligned column, misalignment caused by filament drift or warpage caused no detectable change in the proportionality between "monitor" current and probe current. Thus, in the present situation, a correction for probe intensity drift was accomplished by digitizing the "monitor" current as the x-ray data were taken. The x-ray data were then normalized to constant "monitor" current.

F. Contamination

The instrumental problems introduced by sample surface contamination have been discussed by Ong, 35 Ranzetta and Scott 36 and Neuhaus. 37 Consideration of the problem leads to the conclusion that contamination cannot be eliminated. However, the rate of buildup of a contamination layer on the sample surface can be reduced with certain precautionary measures.

Initial studies made in conjunction with the present work indicated that the rate of contamination buildup was independent of the type of sample surface introduced into

the electron microprobe. Likewise, these studies indicated that the generation of a visible contamination spot on the surface of a sample under probe bombardment occurred much more rapidly if the sample was left in the sample chamber overnight than if the sample was freshly introduced into the system. It was concluded that the contamination was due to the interaction at the sample surface, of the electron probe with organic vapors present in the probe enclosure, and the deposition of carbon products on the sample surface.

To reduce the amount of organic vapor in the probe enclosure the diffusion pump oil was changed from the manufacturer supplied Octoil to low back-streaming Convolex-10. The probe chamber was supplied only with an inefficient water cooled baffle for trapping back-streaming pump oil. The pumping system was thus modified to include a liquid nitrogen cold trap of the chevron type. This cold trap was separated from the diffusion pump by an air-cooled baffle also of the chevron type. The air-cooled baffle served as thermal insulation between the pump and the trap. It also served as an intermediate trap which reduced the amount of back-stream pump oil frozen on the nitrogen This second function proved to be of considerable trap. import since the nitrogen trap could be kept cooled for many days without too much concern being paid to the possi-

bility of depletion of pump oil from the diffusion pump reservoir. The addition of these baffles produced no significant effect on pumping speed.

To further reduce the possibility of contamination effects, the present instrument was modified to permit an automatic readout of accumulated data by way of a teletypewriter unit. Accumulated data were read out at the rate of 10 characters per second. Several channels of data, each containing six digits, were printed out and simultaneously punched on paper tape. Four channels of data, beam current monitor and three x-ray data channels, were read out in four seconds.

A test for contamination rate was made after the above modifications had been performed. Figure 8 shows the total carbon x-ray counts accumulated in ten second intervals as a function of time under three conditions of probe bombardment of a titanium sample. This obviously is a more sensitive test for contamination than looking for a visible contamination spot. It will be noted that on the average about seven minutes were required for the carbon count rate to double. At the intended probe intensity of 0.05 microamps, approximately six minutes passed before the carbon count rate due to contamination increased by six counts per second. Analysis of titanium carbide samples

conditions.

was expected to yield count rates in excess of 100 counts per second. It was thus concluded that counting times up to 50 seconds could be employed, if necessary, without significant changes in carbon intensity due to contamination. That is, the change in carbon counts due to contamination was less than the expected statistical error in the count data.

IV. SAMPLE EFFECTS

A. Absorption Correction

We turn, now, to the absorption within the sample of the characteristic x-rays generated by the electron probe. Several experimental determinations of the absorption correction for specific alloy systems and analysis conditions have been made. Castaing¹ and Kirianenko et al.³⁸ tilted the target, thus altering the electron probe angle of incidence and the x-ray emergence angle. Castaing and Descamps 39 and Castaing and Henoc $\frac{40}{2}$ covered a thin tracer layer of element A by increasing layers of element B, thus changing only the total electron retardation and the total x-ray attenuation between the sample surface and the layer of the tracer element under study. Green⁴¹ varied the x-ray emergence angle. Based on slightly different models, Philibert,⁴ Theisen,^{14, 42} and Helgesson⁴³ developed analytical methods for calculating the absorption correction in the general case.

We follow, in general, the approach of Castaing and Descamps and Philibert, with several modifications. We assume at this point that all intensity is generated by the electron probe; that is, there are no secondary flurescence effects. Letting the probe be incident normally to the surface of a sample containing element A in mass concentration C_A , the x-ray intensity generated in a thin

layer of mass thickness $d(\rho z)$, $\rho = density$, at a depth (ρz) is:

d $I_{A,z} = m_0 \phi(\rho z) d(\rho z) C_A$, (13) where $\phi(\rho z)$ gives the distribution in depth of the generated intensity. m_0 is the number of probe electrons per unit area incident on the specimen. Because of absorption in the specimen, the intensity emitted by the layer is:

$$d I_{A,z} = m_0 C_A \phi(\rho z) \exp \left[-(\mu/\rho)_u^A \rho z \csc\theta\right] d(\rho z)$$
(14)

where $(\mu/\rho)_{u}^{A}$ is the mass absorption coefficient of the sample for A characteristic radiation, say K_α radiation, and θ is the x-ray take-off angle, as defined in Figure 9.

For the entire sample, the emitted intensity is:

$$I_{u}^{A} = \int_{\rho}^{\infty} m_{0} C_{A} \phi(\rho z) \exp \left[-\chi_{u}^{A} \rho z\right] d(\rho z)$$
(15)
$$\rho z = 0$$

where $\chi_{u}^{A} = (\mu/\rho)_{u}^{A} \csc \theta$. Since the take-off angle, θ , is determined by the instrument, we need to know two quantities, $\phi(\rho z)$, the distribution in depth of the generated intensity, and (μ/ρ) , the mass absorption coefficient for A K α radiation.

Letting an incident electron have an energy $E_0 > E > E_c$, where E_0 is the probe accelerating potential and E_c is the critical excitation potential for A K α radiation, the number of ionizations per unit path length could be expressed as:

Figure 9. Relationship between incident electron probe

and x-ray emergence angle, $_{ heta}.$

e

Ë

$$dn_{A} = \psi(E, E_{c1}n) dx, \qquad (16)$$

where (n_A) is the number of "ionizable" electrons per cm³. If ψ depends only on the element A, and if (n) is not a function of atomic number (as, for example, the number of K electrons), then:

$$d n_{A} = \frac{p N}{A} \psi_{A}(E, E_{c}) d x, \qquad (17)$$

where N is Avogadro's number and A is the atomic weight of A. ψ_A now has the characteristics of a cross section. We now consider the number of ionizations of A atoms per layer (d z) at the depth (z) in a sample containing element A in concentration C_A . If an electron traversing (d z) makes an angle β with the normal, then, with β_i defined in Figure 10, we have:

$$d n_{A,z} = C_A \frac{\rho N}{A} \psi_A \frac{d z}{\cos \beta_i}$$
(18)

For all electrons crossing d z:

$$d I_{A,z} = \sum_{i} d n_{A,z} = C_{A} \frac{\rho N}{A} \psi_{A} \sum_{i} \frac{d z}{\cos \beta_{i}}$$
(19)

The summation must be taken over all electrons crossing (d z), not just those moving downward. If (m_0) is the number of electrons per unit area in the probe at the specimen surface, then at depth (z), this number will be reduced to (m_z) . But these are only the downward traveling p be electrons. Since the possibility of backscattering does exist, the net number of electrons crossing (d z) is $(r_z m_z)$, with $1 \le r_z \le 2$. At the depth of complete diffusion,

49

Figure 10. Relationship between incident electron probe and electron traverse angle, β .

Q

104

Թ

 $r_z = 2$. At the surface, $r_z = 1$. Thus we write:

$$d I_{A,z} = C_{A} \frac{\rho N}{A} \psi_{A} \sum_{i=1}^{\Sigma} \frac{1}{\cos \beta_{i}} d z.$$
(20)

Since, for a given set of conditions, the mean scattering angle, or the angle of traverse across (d z), will vary with (z), we set:

$$r_{z}^{m_{z}} \sum_{i=1}^{2} \frac{1}{\cos \beta_{i}} = m_{z} R(\rho z), \qquad (21)$$

and:

$$I I_{A,z} = C_A \frac{N}{A} \psi_A m_z R(\rho z) \rho d z. \qquad (22)$$

Before proceeding, it is well to recall that the only reason for the present manipulations is the desire to obtain some form for the distribution in depth of the generated x-ray intensity. Such a distribution is needed to obtain an estimation for the effect of specimen absorption of the generated intensity. It will be seen later that the distribution in depth can effectively be removed from the consideration of absorption.

Philibert assumed an exponential form for the dependence of R on (ρ z) as:

 $R(\rho z) = R(\infty) - (R(\infty) - R(0)) exp(-k\rho z)$ (23) He also assumed that the number of downward traveling electrons varies with depth following Lenard's⁴⁴ law:

 $(m_z/m_o) = \exp(-\sigma \rho z).$ (24) The first serious problem arises now, since the Lenard (σ) depends only on E_0 , and not on E_c . Duncumb and Shields⁴⁵ noted this problem and Duncumb and Melford⁴⁶ have suggested that the critical excitation potential dependence should be of the form:

$$\sigma = \frac{\text{const.}}{E_0^{1.5} - E_c^{1.5}}$$
(25)

Substituting for R(o z) and (m_z) , we obtain:

d I_{A,z} =
$$C_A \frac{N}{A} m_0 \psi_A e^{-\sigma \rho z} [R(\infty) - (R(\infty) - R(0)) e^{-k\rho z}]$$
(26)

From Equation (13), we had:

$$d I_{A,z} = m_{o} C_{A} \phi(\rho z) d(\rho z)$$
(13)

Thus we obtain:

$$\phi(\rho \ z) = \frac{N}{A} \psi \ R(\infty) \ e^{-\sigma \rho z} \ [1 - (1 - \frac{R(0)}{R(\infty)}) \ e^{-k\rho z}].$$
(27)

With absorption, we previously had:

$$d I_{A,z} = m_{o} C_{A} \phi_{u}(\rho z) \exp(-(\mu/\rho)_{u}^{A} \rho z \csc\theta d(\rho z))$$
(14)

or:

$$I_{u}^{A} = m_{o} C_{A} \int_{\rho}^{\infty} \phi_{u}(\rho z) \exp(-\chi_{u}^{A} \rho z) d(\rho z), \qquad (15)$$

which is just the form of the LaPlace transform of $\phi(\rho z)$. Likewise, for a standard of pure A:

$$I_{s}^{A} = m_{0}^{\prime} \int_{\rho}^{\infty} \phi_{s}(\rho z) \exp(-\chi_{s}^{A} \rho z) d(\rho z), \qquad (28)$$

$$\rho z = 0$$

where x_s^A is the product of csc0 and the mass absorption coefficient of element A for A radiation. Forming the ratio of intensities:

$$\frac{I_{u}^{A}}{I_{s}^{A}} = C_{A} \frac{m_{o}}{m'_{o}} \frac{\int \phi_{u}(\rho z) e^{-\chi_{u}\rho z}}{\int \phi_{s}(\rho z) e^{-\chi_{s}\rho z}},$$
(29)

We see that it is absolutely imperative that the probe intensity be the same for the unknown and the standard.

Taking the transform:

$$F(\chi) = \left(\frac{1}{1+\frac{\chi}{\sigma}} + \frac{\sigma}{k} \frac{R(0)}{R(\infty)}\right) \left(\frac{1}{1+\frac{\sigma}{k}+\frac{\chi}{k}}\right)$$
(30)

and letting
$$h = \frac{\sigma}{k}$$
 we have:

$$F(\chi) = \left(\frac{1}{1+\frac{\chi}{\sigma}} + h \frac{R(0)}{R(\infty)}\right) \left(\frac{1}{1+h(1+\frac{\chi}{\sigma})}\right)$$
(31)

If
$$m = m'_{o}$$
, the intensity ratio now becomes:
 $\frac{Iu}{I_{s}} = K = C_{A} \frac{F_{u}(\chi)}{F_{s}(\chi)}$. (32)

Since we had to assume some form for the rate of energy loss by the probe electrons, the above relation contains not only the correction for sample absorption, but also the effect of atomic number. It is possible to separate the two effects if we consider that in the absence of absorption ($\chi = 0$):

$$F(0) = \frac{1 + h R(0) / R(\infty)}{1 + h} .$$
 (33)

Then, defining:

$$f(\chi) = F(\chi)/F(0)$$
 (34)

we can write:

$$\frac{I_{u}^{A}}{I_{s}^{A}} = C_{A} \frac{f_{u}(\chi_{u})}{f_{s}(\chi_{s})} \frac{F_{u}(0)}{F_{s}(0)}$$
(35)

or:

$$C_{A} = \frac{I_{u}^{A}}{I_{s}^{A}} \frac{f_{s}(x_{s})}{f_{u}(x_{u})} \mathcal{F}$$
(36)

where

$$f(\chi) = \frac{1 + \frac{h}{R(\infty)} + \frac{h}{h} \frac{R(0)}{\sigma}}{(1 + \frac{\chi}{\sigma})(1 + \frac{h}{1+h} \frac{\chi}{\sigma})}$$
(37)

and (g) is a function containing the effect of atomic number. At this point, we are faced with the evaluation of the various factors in $f(\chi)$. It has been usual to assume that R(0) = 0 (Philibert⁴). However, from consideration of our model, such an assumption ignores any ionization occurring near the target surface, and would thus tend to overcorrect the intensity ratio. To a first approximation, $R(0) = 1 + \varepsilon$, where ε would be determined by the backscattered electron intensity. However, all backscattered electrons do not have the same energy. Thus the energy distribution would have

to be considered. Such an approach has been suggested by Bishop.⁴⁷ In the present case, we assume that R(0) = 1.1. If we assume, in Equation (21) that an approximate value for the average of cos β_i is 1/2, then we obtain $R(\infty) = 4$. Philibert had shown that h can be expressed as a function of

 (A/Z^2) where Z is the atomic number. Using values of R(0) and R(∞) similar to the above, Duncumb and Melford evaluated h = 4.5 $\frac{A}{Z^2}$. This value will be assumed here. The final evaluation is that of the mass absorption coefficients. As Yakowitz and Heinrich⁴⁸ have shown, it is the accuracy of (μ/ρ) which dominates the accuracy of f($_X$), and thus the accuracy of the absorption correction, Equations (36) and (37). We deal in some detail with mass absorption coefficients in the next section.

A. 1. Mass Absorption Coefficients

Since the analytical method of electron probe microanalysis can be applied to any solid sample, the correction for sample absorption of generated x-rays must be able to be applied to any sample. Necessary inputs to that correction are the values of the sample and standard mass absorption coefficients for the x-ray wavelengths used in the analysis. Two of the most recent "generalized" tables of x-ray mass absorption coefficients have been published by Heinrich⁸ and by Frazer.⁴⁹ Several comments are pertinent to both sets of values. Both authors use the approach initially suggested by Siegbahn,⁵⁰ discussed by Allen,⁵¹ Grosskurth,⁵² Laubert,⁵³ and formalized by Leroux⁵⁴ to interpolate between measured values of (μ/ρ). Leroux claimed that experimental mass absorption coefficients could be fit to an analytic relation of the form:

 $(\mu/\rho) = C \lambda^{n}$.

(38)

The exponent was said to be characteristic of the wavelength interval between absorption edges and the coefficient dependent on atomic number. These two authors tested experimental values from various investigators for internal consistency based on a minimum random error from the assumed relation, Equation (38). The data were then weighted accordingly and fit by the method of least squares to obtain values for the coefficient and exponent. Both authors obtained a set of C's and n's for several elements and wavelength intervals. In particular, these authors found that the exponent was not independent of atomic number, as had been suggested by Leroux. Heinrich graphically fitted the C's and n's he obtained by a smooth curve. A linear dependence of the exponent on atomic number and a polynomial dependence of the coefficient on atomic number were finally assumed by Frazer. These fittings assumed a smooth variation of the mass absorption coefficients with atomic number and thus permitted a tentative interpolation to atomic numbers for which no experimental mass absorption data had been obtained.

Other methods, based on semi-theoretical grounds, have been suggested for estimation of mass absorption coefficients. Victoreen^{55,56} dealt primarily with very short wavelengths, generating a semi-empirical relation for mass absorption coefficients below the K-edge. Also obtaining a semi-empirical function, Henke et al.⁵⁷ calculated mass absorption coefficients of elements up to Gallium. They give values for (μ/ρ) for wavelengths between 8.34Å and 44.Å, stopping short of the L III edge. The calculations of Bearden⁵⁸ and Henke et al.,³² leading directly to photo-effect cross sections, are based on assumed hydrogen-like wave functions for the initial and final states of the electron involved in the photoionization. Bearden gives calculated and experimental

values of (μ/ρ) for wavelengths less than or just greater than the K edge, for 9 elements. Henke et al. present results of similar calculations for elements to Calcium up to the L III edge, but also give experimental data to 113 Å for carbon and for elements found in the gaseous state.

Since it is impossible to predict the elements that might be involved in any particular microanalysis, including the light elements, some method must be used to obtain at least a reasonable estimate of the numerical value of mass absorption coefficients. Several compilations of mass absorption coefficients, generally containing only experimental values, but not necessarily, have been published by Birks,¹³ Allen,⁵⁹ Liebhafsky et al.,⁶⁰ Compton and Allison,⁶¹ Sagel,⁶² and Stainer.⁶³ However, in any of these compilations, it is generally not possible to determine which values presented are really experimental and which are values obtained by the author's own method of interpolation. Further, these tables are generally limited to wavelengths less than ten Angstroms.

The interpolated, calculated tables of Heinrich do not contain mass absorption coefficients for wavelengths longer than 11.9 Å. Thus, no numerical values, even interpolated ones, are presented for the emission lines of elements lighter than sodium. An additional difficulty arises because certain of the values presented differ by several percent

from recently measured (ν/ν) values. For example, the Heinrich given value for nickel absorbing the tin L α line differs from that measured by Hughes and Woodhouse,⁶⁴ being low by more than 4%. Likewise, for zirconium as an absorber, the Heinrich values for wavelengths between 5.7 and 8.4 Å are higher than the Hughes and Woodhouse⁶⁴ values by more than 7%.

Although the calculated values of Frazer include mass absorption coefficients for wavelengths to the fluorine K α line (18.32 Å), it is in the cases of long wavelengths (greater than the silicon K α , 7.125 Å) that significant errors appear. For example, when compared to the experimental values of Henke et al.,³² the Frazer values for (μ/ρ) for a carbon absorber for the emission lines of fluorine (18.32 Å), magnesium (9.89 Å) and aluminum (8.339 Å) are in error by 9.8%, 16.6% and 17.5% respectively. For nitrogen as the absorber, the errors are 2.0%, 12.7% and 14.3%. For oxygen as the absorber, the errors are 1.0%, 7.2% and 10.0%. For fluorine absorbing fluorine K α , the difference amounts to 96.5%.

The lack of an apparently trustworthy set of selfconsistent mass absorption coefficients for the refractory metals and for light elements prompted a search for experimental data with these materials as absorbers. Some data

for the refractory metals are available in the literature, 8,52,53,64-71 These data do not necessarily include values of (μ / ρ) for the emission lines of carbon, nitrogen and oxygen. Figure 11 is a log-log plot of experimental mass absorption coefficient data as a function of wavelength for zirconium. The solid line is a fit of that data by the method of least squares to a relation of the form of Equation (38). The data only covers wavelengths less than 9 ${\rm \AA}_{\circ}$ Data taken with titanium as the absorber, to wavelengths greater than 100 Å, is shown in Figure 12. Again, the solid line is a least squares fit of the data to Equation (38). Even allowing that the data of Ershov et al.⁶⁹ might be 5-15% low, a serious deviation from linearity is observed in this plot. Figure 13 shows the mass absorption data for a Group VB metal, Tantalum. Equation (38) seems to fit below the M I edge, although absence of data near that edge precludes any real test.

The coefficients and exponents obtained by our fit of the data available at the present time, for these three elements, were sufficiently different from those postulated or obtained by Heinrich or Frazer to warrant a re-evaluation of estimates of mass absorption coefficients for other elements, particularly in light of recently available data.^{32,68-79}

This re-evaluation was undertaken. That work required consideration of experimental and theoretical work on both

Figure 11. Mass absorption coefficient of zirconium.

Figure II. Mass absorption coefficient of zir

Figure 12. Mass absorption coefficient of titanium.

Figure 13. Mass absorption coefficient of tantalum.

the characteristic energies of emission lines and absorption edges, and mass attenuation coefficients. The work is discussed in the following sections.

A. 2. Evaluation of Emission Line and Absorption Edge

<u>Wavelengths</u>.

Since the present interest in mass absorption coefficients includes a desire to estimate values for the rate of attenuation of the carbon, nitrogen and oxygen emission lines, it was necessary to know the wavelengths of the emission lines and the position of the absorption edges of the various elements. Again, in this data, we are particularly concerned with long wavelengths.

Heinrich⁸ included a listing of absorption edges with his calculated and interpolated coefficients and exponents. These values, however, are also limited to wavelengths less than 12. Å. Further, several errors become apparent. For example, the L I edge of zinc, as given by Heinrich, differs from the value listed by Bearden⁸⁰ by 0.5 Å. Several other edges were found to differ from Bearden's values by several tenths of an Angstrom. The relatively large size of these errors indicated that a critical evaluation of published absorption edge and emission line wavelengths was needed. In addition, as indicated by the fact that Bearden's compilation is incomplete, the L sub-shell edges and M sub-shell edges had not been determined in the case of many elements.

A listing of primary $(K\alpha_1, L\alpha_1, M\alpha_1)$ emission wavelengths and critical excitation potentials for the principle atomic series is given in Table III.

At.	Wt.	Ele.	E _K (Kev)	E _L (Kev)	E _M (Kev)	^λ Κα ₁ Å	[^] LajÅ	^ک Mal
]	.008	Н	.014					
4	.003	ΗE	.025					, r
6	. 939	LI	.055			228.		
9	.012	ΒE	.111			114.		
10	. 811	В	.188	.005		67.6		
12	. 011	Ċ	. 284	.006		44.7		
14	.007	N	.400	.009		31.60	,	
15	.999	. 0	.532	.007		23.62	,	
18	. 998	۰F	.685	.009		18.32		
20	.183	<u>NE</u>	.867	.018		14.610		
22.	. 990	ΝA	1.072	.031	١	11.910		
24.	312	MG	1.303	.049		9.890		
26.	982	AL	1.560	.073		8.339		
28.	.086	Sï	1.840	.101		7.125		
30.	974	Р	2.144	.132	·····	6.157		<u></u>
32.	.064	S	2.470	.165		5.372		
35.	453	ĊL	2.820	.200		4.728		
39.	948	AR	3.203	.245	· · · · ·	4.192		
39	.102	К	3.608	.295		3.741		
40.	. 080	CA	4.038	.346		3.358	36.33	
44.	956	SC	4.489	.402	.007	3.031	31.35	
47.	.900	ΤI	4.965	.455	.004	2.749	27.42	
50.	942	V	5.464	.513	.002	2.504	24.25	
51.	996	CR	5.989	.575	.002	2.290	21.64	
<u>54</u> .	938	MN	6.538	.640	.003	2.102	19.45	
55.	847	FE	7.111	.707	.004	1.936	17.59	
58.	933	C 0	7.710	.779	.003	1.789	15.972	
58.	710	NI	8.332	.854	.004	1.658	14.561	
63.	540	CU	8.980	.933	.002	1.541	13.336	
65.	370	ZN	9.661	1.022	.008	1.435	12.254	

Table III. Principle Emission Line Wavelengths and Critical Excitation Potentials for K, L and M Series

Тa	ble	III.	Continue	d			•	
At.	Wt.	Ele.	E _K (Kev)	E _L (Kev)	E _M (Kev)	^۸ ۲۵٫Å	[×] Lα1 ^Å	λ _{Mαj} Ă
69	.720	GA	10.368	1.117	.017	1.340	11.292	
72	.590	GE	11.104	1.217	.029	1.254	10.436	
74	.922	AS	11.865	1.323	.041	1.176	9.671	
78	.960	SĘ	12.655	1.434	.054	1.105	8.990	
_79	.909	BR	13.470	1.553	.069	1.040	8.375	
83	.800	KR	14.324	1.677	.089	.980	7.817	
85	.470	RB	15.202	1.807	.110	.926	7.318	
87	.620	SR	16.107	1.941	.133	.875	6.863	
88	.905	Ŷ	17.038	2.079	.157	.829	6.449	
91	.220	ZR	17.999	2.223	.180	. 786	6.071	
92	。906	ΝB	18.987	2.371	.205	.746	5.724	
95	.940	МО	20.004	2.523	.227	.709	5.407	
99	.000	ТC	21.047	2.678	.253	.675	5 . 115.	
101	.070	RU	22.119	2.838	.279	.643	4.846	
102	.905	RH	23.220	3.002	.307	.613	4.597	·
106	.400	ΡD	24.348	3.173	.335	.585	4.368	
107	.870	ĄG	25.517	3.351	.398	.559	4.154	
112	.400	CD	26.716	3.538	.440	.535	3.956	
114	.82	ΙN	27.942	3.730	.443	.512	3.772	
<u>118</u>	.690	SN	29.195	3.929	.511	.491	3.600	
121	.750	SB	30.486	4.132	.528	.470	3.439	
12.7	.600	ΤE	31.811	4.342	.572	451	3.289	:
126	.904	ŢĨ	33.167	4.559	.631	.433	3.149	
131	.300	ΧE	34.590	4.782	.672	.416	3.017	
132	<u>.905</u>	CS	35.987	5.011	.726	. 400	2.892	
137	340	ВA	37.452	5.247	.780	.385	2.776	
138	8.910	LA	38.934	5.484	.832	.371	2.666	14.88
140).120	СВ	40.453	5.723	.883	.357	2.562	14.04
140	.907	PR	42.002	5.963	.926	.344	2.463	13.343
144	.240	ND	43.574	6.209	.973	. 332	2.370	12.68

Table III. Continued

At. Wt.	Ele.	E _K (Kev)	E _L (Kev)	E _M (Kev)	^۸ Kal	[^] LajÅ	^λ Μα ₁ Å
147.	ΡM	45.198	6.461	1.027	.320	2.282	12.
150.35	SM	46.849	6.717	1.073	.309	2.200	11.47
151.96	EU	48.519	6.981	1.126	.298	2.121	10.96
157.250	G D	50.233	7.243	1.185	.288	2.047	10.46
158.924	TB	52.002	7.515	1.241	. 279	1.977	10.00
162.500	DY	53.793	7.790	1.295	.270	1.909	9.59
164.93	HO	55.619	8.068	1.351	.261	1.845	9.20
167.26	ER	57.487	8.358	1.401	.252	1.784	8.82
168.934	ТМ	59.380	8.650	1.461	.244	1.727	8.48
173.04	ΥB	61.300	8.944	1.528	.237	1.672	8.149
174.97	LU	63.310	9.249	1.589	.229	1.620	7.840
178.49	HF	65.310	9.558	1.662	.222	1.570	7.539
180.948	TA	67.403	9.877	1.743	. 215	1.522	7.252
183.85	W	69.508	10,200	1.814	.209	1.476	6.983
186.20	RE	71.658	10.531	1.890	.203	1.433	6.729
190.2	0 S	73.856	10.868	1.967	.197	1.391	6.490
192.2	IR	76.101	11.212	2.048	.191	1.351	6.262
195.09	ΡT	78.381	11.562	2.133	.186	1.313	6.047
196.967	ΑU	80.720	11.921	2.220	.180	1.276	5.840
200.590	HG	83.109	12.286	2.313	.175	1.241	5.648
204.37	ΤL	85.533	12.660	2.406	.170	1.207	5.460
207.19	Ρ.B	88.005	13.041	2.502	.165	1.175	5.286
208.980	ΒI	90.534	13.426	2.603	.161	1.144	5.118
210.	P.0	93.105	13.814	2.683	.156	1.114	
210.	AT	95.730	14.214	2.787	.152	1.085	
222.	RN	98.404	14.619	2.892	.148	1.057	
223.	FŔ	99.999	15.031	3.000	.144	1.030	
226.	RA	99 .999	15.444	3.105	.140	1.005	
227.	AC	99.999	15.871	3.219	.136	.980	
232.038	TH	99.999	16.300	3.325	.133	.956	4.138

Table III. Continue	d
---------------------	---

		,. J					7 2
Table I	II. C	ontinued					
At. Wt.	Ele.	E _K (Kev)	E _L (Kev)	E _M (Kev)	۸ K Å	۸ L م Å	λMαlÅ
231.	PA	99.999	16.733	3.436	.129	.933	4.022
238.030	U	99.999	17.165	3.545	.126	.911	3.910
237.	ΝP	99.999	17.610	3.666		.889	
244.	ΡU	99.999	18,2054	3.778		.868	
243.	AM	99.999	18.504	3.887		.848	
247.	CM	99.999	18.930	3.971			
247.	BK	99.999	19.452	4.132			
251.	CF	`9 9 .999	19.930	4.253			
254.	ES	99.999	20.410	4.374			
253	FM	99,999	20.900	4.498			

Table IV lists values for the wavelengths corresponding to the various atomic absorption edges.

Data included in this assembly were derived from several primary sources $^{80-83}$ and secondary sources. 61,84,85 In the case of discrepancies between optical data, x-ray data and photoelectric data, the x-ray data were selected. In the absence of any experimental data, either mathematical interpolation 83 or graphical interpolation was used to obtain absorption edge wavelengths.

Having obtained a compilation of emission line and absorption edge wavelengths, it is now possible to discuss mass absorption coefficients in the various wavelength intervals delineated by absorption edges. We thus proceed to a discussion of experimental (μ/ρ) data.

				A	<u>BSORPTIO</u>	<u>N EDGES A</u>	1		-		
ELI	<u> </u>				MI	MII	MIII	MIV	M /	V	NI
н	999	ġġģ	999								
HF	499.	999	999								
11	226.5	999.	999								
BE	111.	999.	999.								
В	65.6	999.	999.	999.							
<u> </u>	43.68	999.	999.	999.					- <u>*</u>		
Ν	30.99	999.	999.	999.							
0	23.32	524.	999。	999.							
F	18.09	398.	999.	999.							
NE	14.302	275.	677.	677.491	999.						
NA	11.569	247.3	398.8	405.	999.	-					
MG	9.512	197.3	249.3	250.700	999.						
AL	/ / 948	142.5	169.49	1/0.490	999.	-					
21	0°138 E 201	105.0	123.	124.960	999,						
<u></u>	5,784	6/ 1	75 2	75 200	999.						
с С	2°013 1 302	52 1	70°5 61 8	61 000	9999. 708 / 62	000					
	2 871	43 2	50 2	50 563	490 043	999 846	999 846		•		
	3 4 3 7	36.4	41.8	42.278	365.572	696.522	696.522	999.			
Ċ Ċ Ă	3,070	30.7	35.13	35,491	283.709	488,114	488.114	999.			
$\frac{SR}{SC}$	2.762	26.8	30.6	30.826	230.447	383.842	383.842	999.			
ΤĪ	2.497	23.4	26.94	27.290	205.606	358.326	358.326	999.			
V	2.269	19.72	23.8	24.172	186.437	327.992	327.992	999.			
CR	2.070	17.84	21.24	21.581	167.315	291.720	291.720	999.			
MN	1.896	16.15	19.05	19.380	147.772	255.104	255.104	999.			

Table IV.	Characteristic	Absorption	Edge	Wavelength
-----------	----------------	------------	------	------------

Table IV. Continued

	;			AB	BSORPTION	N EDGES /	Į			
Ele.	K	LI	LII	LIII	MI	MII	MIII	MIV	MV	NI
FE	1.743	14.65	17.202	17.525	133.456	229.594	230.000	999.		
CO -	1.608	13.38	15.618	15.915	123.119	202.000	208.371	999.		
NI	1.488	12.3	14:242	14.525	110.895	182.057	188.400	999.		
CU	1.381	11.27	13.014	13.288	110.600	159.500	166.000	999.		
ZN	1.283	10.06	11.862	12.131	91.230	137.000	143.900	999.		
GA	1,196	9.517	10.828	11.100	78.419	116.087	120.487	712.534	712.534	999.
GĒ	1.117	8.773	9.924	10.187	68.878	96.936	102.633	431,989	431.989	999.
AS	1.045	8.107	9.125	9.367	60.924	84.686	88.243	300.924	300.924	999.
SE	.980	7.503	8.407	8.646	53.556	73.710	76.579	218.661	227.800	999.
BR	.920	6.959	7,753	7.984	48.336	65.494	68.309	176.863	179.682	399.000
KR	.866	6.47	7.168	7.392	43.07	55.672	57.989	129.500	139.461	421.000
RB	.816	6.008	6.644	6.862	38.491	50.114	51.984	110.895	112.403	388.000
SR	.770	5.592	6.173	6.387	34.680	44.310	46.072	91.838	93.149	317.000
Y	.728	5.217	5.756	5.962	31.499	39.687	41.286	77.682	78.768	275.600
ZR	.689	4.879	5.378	5.579	28.475	35.565	36.972	66.137	67.185	240.000
NB	.653	4,575	5.031	5.230	26.469	32.709	34.154	59.779	60.597	214.100
MO	.620	4.304	4.719	4.913	24.413	30.084	31.402	53.278	54.201	186.900
ТС	.589	4.058	4.436	4.630	22.5	27.578	28.853	47.508	48.140	162.
RU	.561	3.835	4.180	4.369	20.945	25.461	26.511	42.660	43.039	145.500
RH	。534	3.629	3.943	4.130	19.454	23.342	24,492	38.561	39.286	136.800
PD	.509	3,437	3.723	3.907	18,109	21.603	22.699	34.941	35.494	122.600
AG	。486	3.256	3.516	3.700	16.878	20.119	21.061	30.82	31.14	110.500
CD	.464	3.085	3.326	3.505	15.874	18.603	19.614	28.13	29.50	101.000
IN	.444	2.926	3.147	3.324	14.764	17.314	18,285	26.718	27.166	91.100
SN	.425	2.777	2.982	3.156	13.867	16.050	17.200	24.28	24.90	85.800
SB	.407	2.639	2.830	3.000	13.020	15.072	16.014	22.699	23.114	76.600
ΤE	.309	2.510	2.688	2.856	12.275	14.186	15.080	21.124	21.528	72.000

Table IV. Continued

.1

lable	IV. Cor	itinued		AB	SORPTION	EDGES A				
Ele.	K	LI	LII		MI	MII	MIII	MIV	MV	NI
Ī	.374	2.388	2.554	2.720	11.575	13.345	14.193	19.660	20.050	66.900
XE	.358	2.274	2.429	2.593	10.8	12.410	13.232	17.8	18.441	60.1
CS	.345	2.167	2.314	2.474	10.186	11.641	12.428	16.766	17.089	53.718
ВA	.331	2.068	2.205	2.363	9.590	10.907	11.672	15.560	15.890	49.004
LA	.318	1.978	2.105	2.261	9.108	10.294	11.036	14.612	14.907	45.851
CE	.30	1.893	2.012	2.166	8.642	9.741	10.459	13.756	14.036	42.811
PR	.295	1.814	1.926	2.079	8.205	9.270	9.975	13.122	13.394	40.716
ND	.285	1.739	1.844	1.997	7.870	8.838	9.556	12.459	12.737	39.334
РМ	.274	1.667	1.768	1.919	7.55	8.426	9.137	11.79]	12.073	37.6
SM	.265	1.600	1.695	1.846	7.196	8.047	8.732	11.288	11.552	35.864
ĒŰ	.256	1.538	1.627	1.776	6.888	7.682	8.374	10.711	11.013	34.420
GD	.247	1.478	1.563	1.712	6.592	7.344	8.030	10.186	10.461	32.991
ТΒ	.238	1.422	1.502	1.650	6.301	7.014	7.694	9.724	9.989	31.159
DY	.230	1.369	1.445	1.592	6.057	6.732	7.399	9.304	9.574	29.782
HO	. 223	1.319	1.391	1.537	5.825	6.448	7.120	8.910	9.174	28.456
FR	.216	1.271	1.339	1.484	5,619	6.181	6,843	8,601	8.847	27.606
ТМ	。209	1.225	1.289	1.433	5.374	5.933	6.579	8.186	8.487	26.284
ΥB	.202	1.182	1.243	1.386	5.170	5.706	6.359	7.865	8.115	25.448
LU	.196	1.140	1.199	1.341	4.977	5.477	6.127	7。562	7.805	24.492
HF	.190	1.100	1.155	1.297	4.767	<u>5.241</u>	5.882	7.223	7.461	23.040
TA	.184	1.061	1.114	1.255	4.585	5.020	5.650	6.870	7.110	21.924
W -	.178	1.025	1.075	1.216	4.407	4.815	5.435	6.590	6.830	20.837
RE	.173	.989	1.037	1.177	4.236	4.620	5.234	6.330	6.560	19.837
0 S	.168	.956	1.001	1.141	4.071	4.433	5.043	6.073	6.300	18.949
IR	.163	.924	<u>.967</u>	1.106	3.915	4.260	4.861	5.830	6.050	17.966
PT	.158	.893	。934	1.072	3.762	4.093	4.686	5.590	5.810	17.172
AU	.154	.864	。903	1.040	3.616	3.936	4.518	5.374	5.584	16.339
HG	.149	.835	。872	1.009	3。478	3.783	4.355	5.157	5.360	15.492
TL	.145	.808	.843	。979	3、346	3。634	4.198	4.952	5.153	14.664
РВ	.141	.782	.815	。951	3.217	3.492	4.047	4.757	4.955	<u>13.874</u>

Table IV. Continued

ABSORPTION EDGES A MIV LI ΜĪ MII MIII MV Νŀ Ele. Κ LII LIII 3.094 3,359 3.904 4.572 13.215 BI .137 .757 .789 .923 4.764 4.621 12.457 .898 2.988 3.217 3.755 4.431 .133 .732 .763 P0 3.619 4.262 4.449 11.898 2.872 3.093 .129 .709 .739 .872 AT 11.301 2.981 3.504 4.103 4.286 .848 2.766 .126 .687 .715 RN 10.753 3.385 3.952 4.133 .123 .825 2.665 2.865 .665 .692 FR 10.260 2.762 3.270 3.817 3.993 .119 .645 .671 .803 2.571 RA 9.770 .625 .650 .781 2.479 2.663 3.172 3.679 3.852 .116 AC 2.567 3.068 3.557 3.729 9.325 .630 .761 2.392 .115 .606 TΗ 3.602 8.938 2.970 3.433 .587 .610 .741 2.310 2.479 .110 ΡA 2.392 2.884 3.333 3.497 8.605 .592 2.235 .107 .570 .722 Ш 3.382 8.262 3.220 .104 ,553 .574 .704 2.166 2.310 2.796 NP 2.237 2.721 3.121 3.282 7.955 .102 .537 .557 .687 2.090 ΡU 3.030 3.190 7.667 2.026 2.171 2.656 .099 .521 .540 .670 ΑМ 2.584 2.933 3.122 7.546 1.972 2.103 .097 .507 .521 .655 СМ 7.064 2.840 3.000 .091 .637 1.891 2.017 2.491 ВΚ 2.757 2.915 6.892 .091 .475 .491 .622 1.836 1.950 2.427 CF 6.637 1.777 1.886 2.361 2.678 2.834 .089 .461 .476 .607 ES 2.756 6.401 1.721 1.825 2.297 2.601 .087 .448 .462 .593 FΜ

٥

A. 3. Mathematical Fitting of Experimental Mass

Absorption Data.

Experimental mass absorption coefficient results obtained for more than 70 elements in various wavelength intervals by several authors^{8,32,52,53,58,64-79,86-99} were obtained from the literature. These data were plotted versus wavelength on a log-log scale. The experimental points for several elements are given in Figures 11 to 13 and Figures 14 to 18.

We now assume that for any element, between two absorption edges, the mass absorption coefficient can be represented as a function of wavelength by:

 $(\mu/\rho)_{Z} = C_{Z} \qquad \lambda^{n} Z \qquad (39)$

The experimental data were fitted by the method of least squares to Equation (39). The exponent for each element in each wavelength interval was determined first. The data of each investigator were not treated separately. Rather, all data were taken together. The coefficients were evaluated using the determined value of the exponent. The curves resulting from this mathematical fitting of experimental data are represented by the solid lines in Figures 10 to 18. These curves are typical in their closeness of fit.

Before proceeding, we must make several observations. The first point to be mentioned is that we have no a priori reason to expect that the experimental data will fit exactly Figure 14. Mass absorption coefficient of carbon.

•

Figure 15. Mass absorption coefficient of nitrogen.

Figure 16. Mass absorption coefficient of oxygen.

Figure 17. Mass absorption coefficient of vanadium.

Figure 18. Mass absorption coefficient of niobium.

to Equation (39). Rather, Equation (39) is simply a semiempirical relation that reasonably approximates the change in photoattenuation with wavelength between absorption edges. However, we can make certain observations about the relation between the data and the fitted curves, and about the relation between various curves.

Let us consider the data for zirconium and titanium, Figures 11 and 12. The most obvious deviation from linearity between log (μ/ρ) and log λ is found near the L I-edge of titanium. Lesser deviations from linearity are seen at the K-edges of both elements. In each case, the data near the absorption edge suffer a depression from the mathematical fit. The data below the K-edges exhibit a steeper slope than the data between the K-edges and the L I-edges. The latter data show a steeper slope than that of the data above the L III-edges. Between the same absorption edges, the data for titanium exhibit a lower slope than that for zirconium. However, the data for titanium below the K-edge show approximately the same slope as the data for zirconium between the K and L I-edges. A similar relation is observed between the data for titanium between the K and L I-edges and the data for zirconium above the L III-edge.

The fitted values of the coefficient, C, and the exponent, n, are plotted, for wavelengths below the K-edge, between the K- and L I-edges and between the L III- and M I-edges, in Figures 19 to 24.

Figure 19. Calculated values of coefficient, C, for function $(\mu/\rho) = C \lambda^n$ for $\lambda < K$ edge.

Figure 20. Calculated values of exponent, n, for function $(\mu/\rho) = C \lambda^n$ for $\lambda < K$ edge.

Figure 21. Calculated values of coefficient, C, for function $(\mu/\rho) = C \lambda^n$ for λ between K and L I edges.

- Figure 22. Calculated values of exponent, n, for function $(\mu/\rho) = C \lambda^n$ for λ between K and L I edges.

Figure 23. Calculated values of coefficient C, for function (μ/ρ) = C λ^n for λ between L III

and M I edges.

Figure 24. Calculated values of exponent, n, for function $(\mu/\rho) = C \lambda^n$ for λ between L III and M I edges.

The surprising feature of these plots is the relative smoothness of the dependence of the coefficients, C, on atomic number. No such smooth variation is seen in the distribution of the exponents, n. It will be noticed, however, that if attention is directed to the variation of the exponent with atomic number, relatively sharp minima in n occur at the noble gases and at the noble metals. We conclude that the filling of atomic electronic shells and sub-shells has a distinct effect on the change of photoionization with energy. In particular, we suggest, at this point, that the filled outer electronic shells and sub-shells act as a type of barrier which must be overcome by an inner electron being ejected from an atom by a photoionization event.

In view of the above discussion, we will show in succeeding sections that there is some theoretical justification for concluding that a non-smooth variation in the exponent of Equation (39) with atomic number is physically meaningful. Further, it will be shown that based on atomic potential calculations, a physically sound foundation can be established for an interpolation of mass absorption coefficients. The conclusion to be reached is that while the fitting function assumed is not the best over the entire wavelength range from 1 to 80 Å, it is nevertheless possible to explain the variations in the atomic number dependence of the exponent and coefficient. The result will be that the large differ-

ences between experimental mass absorption coefficients and interpolated or mathematically estimated values can generally be eliminated.

A. 4. Discussion of Photoeffect Cross Section

Calculations

At usual x-ray wavelengths, 0.5 - 5 Å, almost all atomic species exhibit the familiar hydrogen-like behavior of mass absorption coefficient or photoionization cross (While it is reasonable to consider Compton section. scattering and pair production as photo-attenuation processes at higher energies than considered here, we assume here that photo-attenuation and photoionization are equivalent processes.) This usual behavior is characterized by sharp increases in photo-attenuation at absorption edges, followed by a smooth decrease with increasing energy. Recent experiments^{71,73-79} have suggested that at wavelengths longer thań 5 Å, involving photoionization of intermediate and outer electron shells, this behavior is by no means universal. In particular, these experiments indicate that maxima in the photoionization occur as much as 30 ev higher than the supposed absorption edge.

Theoretical calculations of atomic photoeffect cross sections have been based on a variety of models. The mentioned work of Bearden⁵⁸ and Henke et al.³² result in photoeffect cross sections based on modified Coulomb or hydrogenlike wave functions. These results are close to experimental values of (μ/ρ) for light elements where the K shell is primarily involved in the photoionization. Likewise, reasonable

values are calculated for elements in which the L shell plays the most prominent part with only a small effect from K shell screening of the nucleus. Bearden presents theoretical and experimental values for nine elements, dealing with the wavelength interval 0.3 - 14.5 Å. Henke et al. present theoretical values from 2.0 - 200 Å and experimental values from 8.34 - 113 Å. Both authors refrain from giving theoretical values near absorption edges. Schmickley and Pratt¹⁰⁰ report numerical results from computations designed to study the effects of some inner electron screening. They deal with photon energies between 10 kev and 3 Mev, generally much higher than of interest here.

Cooper^{101,102} and Manson and Cooper¹⁰³ report calculations of photoionization cross sections, dealing primarily with energies in the vicinity of absorption edges up to approximately 100 ev above an edge. These authors obtain their results using a one-electron model with a modified central potential.¹⁰⁴ The results presented are significantly different from the gross spectral shape of photoionization cross sections predicted by the hydrogenlike model. Particularly, these calculations do indicate accurately the general spectral distribution of photoattenuation near thresholds, that is, near absorption edges corresponding to electron levels located some distance from the nucleus.

Rau and Fano¹⁰⁵ have recently considered the variation with atomic number of the potential assumed by $Cooper^{102}$ and Manson and Cooper.¹⁰³ Rau and Fano consider the mean potential energy of a test electron as a function of its distance from the nucleus within an atom of atomic number Z. The potential energy as calculated by those authors exhibits large variations, of the order of 20%. These variations are attributed to changes in inner and outer electron screening, which may be related to the average number of electrons inside and outside a sphere of radius r. The variations of potential energy should have an increased effect on atomic properties when the influence of electronic centrifugal potential energy is also considered. The combined effect of the electrostatic and centrifugal potentials results in the occurrence of a potential barrier separating two potential wells, for various combinations of Z and ℓ , the orbital angular momentum quantum number. The maximum barrier heights occur for copper, silver or palladium and gold with lesser heights at the noble gases.

The existence of the potential barrier and extremum values of that barrier should exhibit themselves as extremum values of the exponent in Equation (39). Maxima in the barrier would cause a greatest depression in the rate of change of an atomic photoionization cross section with wavelength between two thresholds, when compared to nearby atomic

species. Likewise, the barrier would exhibit itself through the shifting of the maximum of the mass absorption coefficient from the threshold to some wavelength shorter than the threshold (absorption edge).

Indeed, as can be seen in Figures 20, 22, and 24, a minima of the exponent does occur in various wavelength intervals at the noble metals, with other minima at the noble gases. We attribute these depressions in the rate of change of the mass absorption coefficient with wavelength to the outer screening generated by the filling of outer electron sub-shells.

We do not say that variations in the exponent with atomic number are significant in every detail. Such a statement would imply a greater confidence in published mass absorption coefficient data than is had by this writer. Rather, our contention is that an attempt to fit some smooth analytical form <u>to the atomic number dependence</u> of the coefficients and exponents in Equation (39) ignores certain periodicities in these data.

A. 5. Numerical Estimates of Mass Absorption Coefficients

Since our goal is to obtain a reasonable estimation of mass absorption coefficients for use in microprobe analysis, we direct ourselves to that task. Based on the preceeding discussion, and on the general applicability of Equation (39) as expressing the wavelength dependence of the mass absorption coefficient on wavelength in the interval 1 to 80 Å, an interpolation between fitted exponents and coefficients was performed. The large number of fitted points, as shown in Figures 19 to 24, permitted graphical interpolation without too much difficulty. The results of that interpolation are given in tabular form in Table V. This tabulation permits the use of Equation (39) in the simple calculation leading to an estimation of mass absorption coefficients.

Serious consideration of the experimental difficulties encountered in the measurements of mass absorption coefficients has led the present author to question the introduction of the term accuracy at any point in the discussion of experimental values of (μ/ρ) . The discussion should perhaps be limited to consideration of precision and absence of systematic errors.

If, however, we assume that experimental values are "true" values with a precision of such and such percent, then the limits on the accuracy of the present fitted and calculated values of (μ/ρ) can be estimated.

Z	n _K	n KL	'nLM	n _{MN}	n _N	С _К	CKL	CLM	C _{MN}	CN	
1	2.335					000.144					
2	2.786					.084					
3	2.65					.250					
4	2.852					。404					
5	2.661					.889					
6	2.921	2.365				1.350	.295				
7	2.889	2.370				2311	.471				
8 .	2.850	2.346				3.529	.818				
9	2.813	2.390				4.943	.904				
10	2,803	2.452				7.322	1.098				
11	2.784	2.59				9.322	. 80				
12	2.851	2.870				11.601	700				
13	2 . 780	2.770	1.309			14.87	1.110	7.338			
14	2.780	2.68	1.34			18.122	1.88	8.5	· .		
15_	2.773	2.61	1.38		· · · ·	22.020	2.6	10.0		 	
16	2.748	2.592	1.42			27.626	3.330	11.2			···· ··· · · · · · · · · · · · · · · ·
17	2.847	2.652	1.46			27.864	3.548	12.5			
18	2.796	2.581	1.520			35.312	4.567	13.715			•
19	2.802	2 。 5 4	1.522			42.038	5.8	15.			
20	2,810	2.52	1.524			48.678	7.3	16.8			
21	2.795	2.495	1.526			54.052	8.8	18.1			
22	2.821	2.478	1.529			60.083	10.927	19.593			
23	2.847	2.308	2.453			64.977	12.056	.742			
24	2.847	2.389	1.926			77.899	12.661	6.095			
<u>25</u>	2.864	2.660	<u>1.94</u>			83.305	10.979	6.4			
26	2.836	2.644	1.965			97.144	12.734	6.8			
27	2.841	2.688	1.98			108.210	14.322	7.2			
28	2.734	2.693	1 <u>.</u> 991			117.098	15.520	7.839			
29	2.734	2.749	1.820	•		123.080	15.783	18.830			
30	2.771	2.656	1.85			146.550	19.124	18.2		 	

Table V. Values of C and n for $(\mu/\rho) = C \lambda^n$ for Various Wavelength Intervals

.60L.

Table V. Continued

Z	n _K	n _{KL}	nLM	n _{MN}	n _N	С _К	C _{KL}	CLM	C _{MN}	C _N
31	2.560	2.636	1.88			142.035	20.238	17.0		
32	2.769	2.471	1.915			169.094	24.425	16.246		
33	2.589	2,650	1.97			156.083	24.434	14.6		
34	2.782	2.672	2.05			188.918	26.852	13.5		·
35	2.771	2.647	2.14			207.363	29.204	12.0		
36	2.626	2.633	2,242			209.178	32.008	10.150		
37	2.593	2.606	2.34			217.375	35.425	9.2		
38	2.668	2.791	2.44			238.313	34.296	8.6		
39	2.578	2.594	2.53			261.398	42.122	7.8		
40	2.752	2.728	2.583	.40		277.847	41.921	7.356	6.	
41	2.661	2.734	1.923	. 48		291.277	44.976	22.304	8.	
42	2.751	2.712	1.99	.70		325.568	49.133	20.0	14.	
43	2.70	2.675	2.19	1.2		332.	53.	18.4	18.	
44	2.613	2.657	2.46	1.46		338.246	57.048	15.0	28.	
45	2.426	2.682	2.55	1.56		266.121	60.395	13.0	,66 .	
46	2.674	2.701	2.604	1.59		380.209	62.906	11.593	155.	
47	2.427	2.700	2.393	. 385		278.270	66.473	18.157	1478.19	
48	2.469	2.703	2.574	1.60		325.561	70.806	14.947	108.	
49	2.396	2.701	2.55	1.60		291.804	75.185	16.8	44.	
50	2.656	2.702	2.500	1.593		429.243	79.510	20.595	34.465	
51	2.475	2.618	2.37	1.48		360.505	87.573	30.1	51.8	
52	2.526	2.644	2.16	1.26		428.535	90.994	57.0	86。	
53	2.453	2.648	1.94	.92		391.501	94.983	74.0	156。	
54	2.44	2.616	1,880	.757		39 3。	102,108	83.443	403.675	
55	2.435	2.609	1.92	.83		396。	107.580	76。	340。	
56	2.415	2.657	1.96	<u>;</u> 90		400.642	108.976	64。	259。	
57·	2.375	2.606	2.04	1.24		406.	117.488	52。	210。	,
58	2.326	2.615	2.13	1.44		415.658	128.292	42.	155.	
59		2.617	2.28	1.72			133.322	36。	120.	
60 -		2.611	2.43	1.95			138.475	31.8	81。	

Т	аb	le	۷.	Continued
			• •	

Z n 61 62 63 64 65 66 67 66	ч. ⁿ К	n KL 2.61 2.623 2.674	n _{LM} 2.58	n _{MN} 2.12	n _N	Cĸ	<u> </u>				· .	
Z n 61 62 63 64 65 66 66	ⁿ K	ⁿ KL 2.61 2.623 2.674	ⁿ LM 2.58 2.722	n _{MN} 2.12	n _N	Cĸ	<u>C</u>	<u> </u>	~	^		
61 62 63 64 65 66 67		2.61 2.623 2.674	2.58	2,12		<u> </u>	<u> </u>	LM		^с N		
62 63 64 65 66 67		2.623	9 199				143.5	30.8	57.			
63 64 <u>65</u> 66		2 6/4		2.26			150,262	30.254	34. 10 F	·		
64 65 66			2.740	2.30			104.003	31.414	19.5			
<u>66</u> 67		2.710	2.755	2.4			182 478	35 801	5 0			
67		2.740	2 664	2 38			191 747	37 859	4.0			
		2.755	2 632	2.37			203.031	40,695	6.0			
68		2,768	2,601	2.36			210.729	42.976	8.8			
69		2.769	2.600	2.35			222.047	45.248	9.9			
70		2.763	2.568	2.34			227.861	47.589	11.8			
71		2.764	2.558	2.32			239.732	50.412	14.5			
72		2.744	2.533	2.31	.018	305 344	247.226	53,018	16.2	19900.		
73 2.	.517	2.613	2.589	2.30	.018	/85./44	221.796	53.096	18.4	19011.799		
74 2.	.043	2.668	2.541	2.28	.018	344.007	244.005	55.507	21.0	10100	-	
15		2.725	2.51	2.25	$\frac{.017}{.017}$		200 700	63573	25.5	16500		
77		2.702	2.492	2.22	016		291 982	67.423	27.6	15700.		
78		2.653	2.520	2.06	.016		277.059	66,215	27.8	14935.4		
79 ··		2,511	2:528	2.068	043		241.237	70.331	27.626	10444.5		
.80		2.595	2.474	2.12	.058		290。	75:655	24.6	9100.		
81		2.699	2.333	2.19	.073	······································	342.330	85.413	21.0	7800.		
82		2.601	2.456	2.280	.088		311.716	81.287	20.128	6500.		
83 2.	.228	2.587	2.527	2.313	.106	631.182	325.828	82.053	20.591	5216.8		
84		2.60	2.36	2.24			348.	82.	23.0			
85		2.62	2.18	2.09			3/1.	90.	27.5		<u>.</u>	
						,						
												_

Z	nĸ	n _{KL}	nLM	n _{MN}	n _N	С _К	CKL	CLM	C _{MN}	с _N
86		2.653	2.147	1.92	<u></u>		394.339	112.607	36.0	
87		2.685	2.15	1.82			420。	117.	47.0	
88		2.727	2.154	1.76			440.969	121.092	57.0	
. 89		2.715	2.28	1.73			441.	114.	62。0	
90		2.689	2.647	1.74			441.914	108.024	58.0	
. 91			2.66	1.81				108.	51.0	
. 92		3.147	2.676	1.888			649.224	108.019	46.169	
93.			2.74	1.95				122.	47。0	
94	·		2.819	2.03				144.388	48。	
95			2.82	2.08				155.	51.	
96			2.83	2.13				164.	56。	
97			2 . 84 ·	2.17				166.	63	
98			2 . 85 -	2.22				169.5	67:	
99			2。86	2.25				173.	74。	
100			2.87	2.27				175。	80	

Table V. Continued

Consideration of the precision of the experiments that provided the data for the present computations indicates that conservative estimates of the accuracy of the calculated values of the mass absorption coefficients limit that accuracy, at the extremes of error, to 5% below ten Angstroms and 15% above that wavelength.

As can be seen from Figures 11 to 18, the difference between experimental values of the mass absorption coefficient at any given wavelength below ten Angstroms and the fitted curve generally is less than 2%. The large error limits are, however, approached in some cases near absorption edges, particularly where one would expect the effect of outer electron screening to be the greatest. The error limits for wavelengths greater than ten Angstroms simply reflects the precision of experiments in this wavelength range. Generally, the calculated values as given by the solid curves in Figures 11 to 18 differ from the experimental values by less than 5%.

In consideration of the fact that some investigators would prefer numerical values of the mass absorption coefficients, Table VI lists a set of mass absorption coefficients for the emission lines of carbon, nitrogen, and oxygen.

Nitrogen	and	Oxygen	Κα	Emission	Lines
----------	-----	--------	----	----------	-------

Absorber	44.6 Å	31.68 Å	23.57 Å
С	2280	25400	12200
Ň	3820	1730	17200
0	6000	2550	12620
F	8700	3700	1700
Ne	13600	5600	2600
A1 /	33000	15900	(7800)
Ş	47500	25400	13000
Ar	45000	29000	15900
Ti	6300	3900	(10000)
V	8400	3500	(25000)
Cr	11500	6000	2300
Ni	-	6900	4500
Ge	23100	(13000)	(8000)
Kr .	31400	21500	12300
Ag	6340	5680	18800
Xe	7130	6200	4250
Ta	20440	20400	19600
Pt	15920	15800	-
Au	13000	12730	9700
Bi	7800	7550	(7100)

B. Background

The x-ray intensity measured in an electron probe instrument includes, of necessity, some background radiation. In the most general case, this background consists of continuum radiation, cosmic rays, spurious pulses in the counting electronics and secondary line radiation from other elements in the sample than that of interest. If the measurement time on the element standard is the same as that on the unknown, all background contributions can be grouped together, and measured together. This intensity is then subtracted from the peak intensities measured.

For instruments with scanning x-ray spectrometers, the usual method for measuring background is to detune the spectrometer to a wavelength both above and below the peak wavelength. The subtracted background is then taken as the average of these two readings. Obviously, this method necessitates an increase in the number of spectrometer settings by a factor of three. To be completely precise, then, the background should be measured on the standard and at each observation point on the unknown.

Two alternatives have also been used for the determination of background. Based on the concept that the amount of detuning of the spectrometer must be chosen arbitrarily, the continuum generated at the peak wavelength, but in elements adjacent in the periodic table to the element of in-

terest, could be measured. The continuum background would then be the average of these two readings. This intensity would then be subtracted from all intensity measurements, whether on the standard or on the unknown.¹⁰⁶ This method has two inherent difficulties. The biggest problem would occur when the concentration of the element of interest is less than approximately 30% in the unknown. Subtraction of the background as determined above is equivalent to subtraction of the standard background, generally 100% of that element, from intensities corresponding to much lower con-The result is a serious overestimation of centrations. the unknown background. The determined unknown concentrations would then be artificially low, the error reaching in some cases 60%. The second difficulty with this method is that while the measurement taken on the element of atomic number (Z + 1) may be free from interference by secondary emission lines, the measurement on the sample (Z - 1) will almost always encounter interference from subsidiary lines in the emission spectrum of element (Z - 1). This will again result in an overestimation of the standard background with an even more serious overestimation of the unknown background. This fact was determined in the determination of the tin concentration (1.5% nominal) in five samples of Zircaloy-2. Following the above method, the probe determined concentration was 0.6% tin.

The third method for the determination of background is that used in the present analyses. Its greatest advantage occurs when many observations must be taken. Using the scanning ability of the x-ray spectrometers, an intensity vs. wavelength recording was made for each analytical line, both on the standards and on the unknowns. The full width at half maximum of the analytical line was measured, along with the position of the line peak. If no significant shift, greater than 3%, was found in the position of the analytical line, and no obvious changes in the line symmetry were observed, the background on the standard was measured at 5/2 FWHM off the peak both above and below the line peak. The magnitude of the background subtracted from each peak intensity measurement, whether on the standard or on the unknown, was taken as proportional to the concentration of the element in the sample measured. This approach necessitates some iteration and such a procedure was employed.

C. Fluorescence Correction

The incidence of the electron probe on a target sample is followed by loss of energy of the probe electrons as electron-atom collisions occur. The lost energy is exhibited by the characteristic emission spectra of the elements present in the target and by the continuum spectrum. The characteristic emission spectra are usually called primary fluorescent radiation. Secondary fluorescent radiation is generated when the characteristic emission line wavelength, say of element B, falls below the absorption edge corresponding to another characteristic line, of element A. That is, in addition to electron excited A emission, some A emission is caused by photoionization of A atoms by B radiation. The x-ray continuum will also fluoresce the characteristic A line, since part of the continuum radiation falls below the absorption edge corresponding to A radiation. Both possibilities are indicated in Figure 25. The shaded portion of the emission spectrum is capable of causing secondary fluorescence of A radiation. The measured line intensity of the A line would be enhanced by these effects and must be corrected to obtain the true probe generated intensity.

Figure 26a illustrates how iron may be reported erroneously in the analysis of a small iron free inclusion present in an iron base matrix. The continuum emitted from the inclusion can excite the iron in the matrix, yielding an apparent iron content of the inclusion. Effects such as these can be large when the inclusion approaches, within a factor of three, the probe diameter. It is possible to minimize such errors by using an excitation potential as low as possible for the inclusion and by reducing the probe size. These operations will reduce the electron genetration volume and increase the minimum wavelength of the continuum.

Figure 25. Typical emission spectrum from compound target. Shaded region represents part of spectrum capable of fluorescing K_{α} (A) line.

Figure 26b illustrates an analysis made near the boundary of two phases containing different amounts of iron. Fluorescence of the iron rich region by characteristic lines and/or the continuum from the iron poor region will result in an overestimation of the iron content of the iron poor phase. Obviously this is a most difficult error to correct, and can be done only if the geometrical nature of the phase boundary is known.

Castaing¹ derived an expression for K line fluorescence by K lines. Other expressions have been obtained by Wittry,^{2,5} Reed and Long,¹⁰⁷ Birks,¹⁰⁸ and Reed.¹⁰⁹ Duncumb and Shields¹¹⁰ and Colby¹¹¹ have considered the various formulations proposed, and have attempted to show the range of validity and accuracy of these postulated relationships. From comparative studies by Colby, the method of Reed appears to be the most generally applicable. In particular, Reed's formulation overcomes the objections to the other formulations, by including a dependence on accelerating potential and allowing for K-K, K-L and L-K types of fluorescence. Without reviewing the details of the formulation, we make use of the results of the previously mentioned studies.

If $I_{A,u}$ is the directly excited intensity of the analytical line and I_f is the intensity contributed to the analytical line due to fluorescence by a shorter wavelength charac-

Figure 26.

Examples of fluorescence effects: a) fluorescence of the matrix by the continuum generated in an inclusion containing no elements with characteristic lines capable of exciting iron; b) fluorescence due to the continuum and characteristic lines from a phase containing elements with characteristic lines capable of exciting iron.

teristic line from element B, then:

$$\frac{I_{f}}{I_{A,u}} = K_{fA} = 0.5 P_{ij} C_{B} \frac{r_{A} - 1}{r_{A}} \omega_{B} \frac{A}{B} \left(\frac{U_{B} - 1}{U_{A} - 1} \right)^{1.67}$$

$$\frac{(\mu/\rho)_{A}^{B}}{(\mu/\rho)^{B}} \left[\frac{\ln(1 + y)}{y} + \frac{\ln(1 + y)}{y} \right] \qquad (40)$$

where:

 $C_{B} = \text{weight fraction of element B},$ $r_{A} = \text{ratio of mass absorption coefficients on}$ either side of the absorption edge for element A (absorption jump ratio), $\omega_{B} = \text{fluorescence yield for element B},$ A = Atomic weight of element A, B = atomic weight of element B, $U_{B} = \frac{E_{0}}{E_{c}} \text{ for element B},$ $(\mu/\rho)_{A}^{B} = \text{mass absorption coefficient of element A},$ $(\mu/\rho)_{A}^{B} = \sum_{i} (\frac{\mu}{\rho})_{i}^{B} \quad C_{i} = \text{mass absorption coefficient for}$ B radiation by the specimen, $y = \frac{(\mu/\rho)_{A}^{A} \text{ cosec } \theta,$

 $v = \frac{\sigma}{(\mu/\rho)^B}$ where σ is defined in Equation (25).

 P_{ij} = a constant which takes different values for different fluorescence types: P_{KK} = 1; P_{LL} = 1; P_{K1} = 2.4 and P_{1K} = 0.42.

If I_{mA} is the measured intensity of A radiation it follows that:

$$I_{mA} = I_{A,u} + I_{f}^{\circ}$$
(41)

Since

$$\frac{I_{f}}{I_{A,u}} = K_{fA}$$
(42)

$$I_{mA} = I_{A,u} + I_{A,u}K_{fA} = I_{A,u}(1 + K_{fA}).$$
 (43)

Therefore:

$$I_{A,u} = \frac{I_{mA}}{(1 + K_{fA})}$$
 (44)

and

$$\frac{{}^{1}A, u}{{}^{1}A, s} = C_{A} = K \frac{1}{1 + K_{fA}}.$$
 (45)

Numerical values of the absorption jump ratios are obtained from the calculated mass absorption coefficients described in section IV. A. 3. The fluorescence yields of various elements have been reviewed by Fink et al.¹¹² In lieu of working with a possibly ambiguous set of tables of fluorescence yields, it is possible to fit the experimental data given by Fink et al. to the semi-empirical relation due to Burhop:¹¹³

$$\left(\frac{\omega}{1-\omega}\right)^{1/4} = A + BZ + CZ^3$$
 (46)

The constants in Equation (46) have been evaluated by several authors, ¹¹³⁻¹¹⁵ most recently by Colby, ¹⁰⁶ using the complete compilations of Fink et al. and by Bailey and Swedlund, ¹¹⁶ using their new data and the data of Fink et al. The constants used for K, L, and M fluorescence yield, in the present case are given in Table VII.

Table VII. Constants for Calculating Fluorescence Yields (ω)

	К	<u> </u>	<u>M</u>
А	-0.03795	-0.11107	-0.00036
В	0.03426	0.01368	0.00386
С	-0.11634 x 10 ⁻⁵	0.21772 x 10 ⁻⁶	0.20101 x 10 ⁻⁶

Castaing and Descamps³⁹ and Kirianenko et al.³⁸ showed that the contribution, by continuum fluorescence, to the total x-ray line intensity was generally small. This fluorescence radiation is generated deeper in the specimen than the primary radiation, resulting in greater absorption of the former. Theoretical considerations are difficult since fluorescence by the continuum is produced by a whole spectrum of wavelengths.

Castaing and Descamps,³⁹ Green and Cosslett,¹¹⁷ and Henoc¹¹⁸ give correction procedures for pure elements and binary compounds. The expression derived by Henoc is very complex, but is also considered to be the most accurate (Henoc et al.¹¹⁹). Henoc followed the same approach as Castaing¹ for the fluorescence by characteristic lines, but he integrated over all the continuum from the short wavelength limit to the absorption edge of the particular analytical line.

Corrections for secondary fluorescence by the continuum are seldom made. Henoc's relation is very lengthy and is not used in the present work.

V. X-RAY GENERATION EFFECTS

In section IV. A., we began the analysis of the effect of sample absorption on the probe generated x-ray intensity with a discussion of the distribution in depth of the generated intensity. This distribution was shown to depend heavily on the atomic properties of the sample components. It was finally shown that this dependence on atomic number could effectively be removed from the absorption considerations (Equation 36). We now return to a specific consideration of the effect of atomic number on the generation of x-rays by the incident electron probe.

Electrons incident on a sample are in general subjected to interactions that can be broadly divided into two classes. The first class of scattering involves a negligible loss of energy but a significant change of direction, an elastic scattering event. The second type of scattering, inelastic scattering, involves a significant energy loss by the incident electron. Elastic scattering determines, primarily, the spatial distribution of the incident electrons within the sample. Inelastic scattering determines the rate of energy loss by the incident electrons. Ionization of an inner shell electron, K or L shell, is one form of an inelastic scattering event. Such an event is, in a certain fraction of the occasions, followed by the emission of a K or L characteristic x-ray photon. Inelastic interactions with the outer electrons

probably form the biggest contribution to the stopping of incident electrons. The model thus formed is one in which the incident electrons are more or less continuously slowed down by ionization losses, undergoing slight changes in direction by multiple scattering while still being able to experience large changes of direction by Rutherford scattering events, some electrons coming to rest inside the sample, others completely leaving the sample. Such processes have been discussed recently by several authors.¹²⁰⁻¹²⁶

In view of the realization that electron stopping is really not a continuous process, several attempts have been made to simulate electron trajectories within a target by a series of step-like paths. Worthington and Tomlin¹²⁷ had assumed for their calculation a simple straight line path. Archard^{121,128} proposed a model based on an assumption of two types of paths, one straight into the sample, the other involving 90° scatterings. Green¹²⁹ proposed the use of Monte Carlo techniques to simulate the increasing complexity of the electron paths as they lose energy by inelastic collisions. Similar calculations of a more sophisticated nature have been undertaken by Bishop.^{130,131}

In spite of the fact that these authors have considered step-like paths, they nevertheless assumed a continuous energy loss function. Thus, they did achieve a distribution for the incident electrons after they had lost all their energy, and they do give a distribution in depth of ionization. However,

while these calculations might be of interest for themselves, it would not be practical to attempt such a calculation every time a microprobe analysis was performed. Thus, we shall sidestep the step-like path approach and confine ourselves to the continuous energy loss approximation.

We had previously shown that the number of ionizations of A atoms per unit path length of the incident electron could be expressed as:

$$d n_{K} = \frac{\rho N C_{A}}{A} \psi (E, E_{C}) d x \qquad (17)$$

where C_A is the mass concentration of element A in the target, ρ is the material density in grams/cc, N is Avogadro's number, and A is the atomic weight of the sample. ψ has the characteristics of a cross section. This can now be put in a form explicitly dependent on the energy of the incident electron, as:

$$d n_{K} = \frac{\rho N C_{A}}{A} \frac{Q_{A}}{dE/dx} d E, \qquad (47)$$

with Q_A being the ionization cross section and the incremental (dE) is the mean energy change in traveling the path length (dx). Assuming that all incident electrons remained in the sample, the total number of ionizations produced by an incident electron as it decelerates from its initial energy E_0 to the critical excitation potential of the A atomic K-shell, E_c , would be:

$$n_{K} = \frac{N C_{A}}{A} \int_{E_{O}}^{E_{C}} \frac{Q_{A}}{\frac{1}{\rho} \frac{d E}{d x}} d E.$$
 (48)

133

We have here assumed that the energy loss process is a continuous one, rather than a step-like phenomenon.

Following the suggestion of Poole and Thomas,⁶ we define a stopping power, S, which describes the ability of a given material to decelerate incident electrons, as:

$$S = -\frac{1}{\rho} \frac{d E}{d x} \left(\frac{Kev}{cm}\right) .$$
 (49)

Defined this way, S should be approximately constant for each atomic species regardless of its chemical state. Thus:

$$n_{K} = \frac{N C_{A}}{A} \int_{E_{C}}^{E_{O}} \frac{Q_{A}}{S_{A}} d E.$$
 (50)

We now remove the assumption that all the incident electrons remain in the sample, by introducing a factor R < 1. Following several authors, 6,117,132 we define R as the fraction of the ionization remaining when the losses due to backscattered electrons are removed. Backscattered electrons are those which undergo large angle scattering such that they leave the sample surface with an energy greater than E_c. R will depend on the accelerating voltage and on the atomic number of the target.

Thus, the total number of ionizations per incident electron becomes:

134

$$n_{K} = \frac{N C_{A}}{A} R_{A} \frac{f}{E_{c}} \frac{Q_{A}}{S_{A}} d E_{c}$$
(51)

A similar expression would hold for the standard A. If u is an alloy unknown, and s is the pure element standard, then the intensity ratio, K, can be written as:

$$\frac{I}{I_{s}} = K = \frac{m_{o}}{m_{o}} C_{A} \frac{R_{u}}{R_{s}} = \frac{\sum_{c=0}^{r} Q_{A}}{\sum_{c=0}^{r} Q_{A}} dE_{c}$$
(52)

The writing of the above relation assumes that the intensity ratio is experimental data corrected for instrumental effects and for any absorption and fluorescence effects in the sample. We assume that suitable expressions can be found for R, S, and Q, not only for the pure elements but also for alloys. We discuss each of these three quantities separately.

A. Ionization Cross Section

Bethe¹³³ derived a non-relativistic expression for the total ionization cross section of an atom as a function of the energy of an incident electron. Two adjustable constants in this relation were evaluated by Mott and Massey.¹³⁴ Worthington and Tomlin,¹²⁷ however, indicate that this formulation holds for large values of U = E/E_c only, and modify that relation to apply to all low energy electrons, based on the silver data of Webster, Hansen and Duveneck.¹³⁵ Recently Moiseiwitsch and Smith¹³⁶ have performed a complete reanalysis of cross sections. However, they deal primarily with cross sections of particular atomic levels. Glupe and Mehlhorn¹³⁷ have measured the total cross sections of four light elements and indicate that their data can be fit best to a semi-empirical relation due to Drawin.¹³⁸ The difference between the relation of Worthington and Tomlin and Drawin is a factor (1 - 1/U). Since this factor would have significance only for heavy elements at low overvoltages, the relation of Worthington and Tomlin is used here:

 $Q E_c^2 = \text{constant } \frac{1}{U} \ln U$ (53) with E_c expressed in kev.

B. Electron Stopping Power

The rate of energy loss for non-relativistic electrons has been described by Bethe 133 and written by Mott and Massey 134 as:

S = constant
$$(\frac{Z}{A})$$
 $\frac{1}{E}$ ln $\frac{E\sqrt{e/2}}{J}$ (54)

Since the Bethe relation was obtained for hydrogen as the target, the extension to heavier target atoms required the introduction and evaluation of the mean ionization potential, J. (A recent formulation of the stopping power by Bishop⁴⁷ is in error since his expression excludes a dependence on atomic number.) Bloch¹³⁹ calculated J/Z concluding that the

ratio should be constant with a value of 13.5 ev. Jensen¹⁴⁰ derived a J/Z dependence of:

 $J/Z = K (1 + k Z^{-2/3})$

with the two constants to be evaluated experimentally. Wilson¹⁴¹ experimentally obtained a J/Z value of 11.5 ev for aluminum. Recent experiments by Duncumb and DaCasa¹⁴² have shown that J/Z is only approximately constant, with significant deviations from either of the above constant values for atomic numbers less than 40. These authors have fitted their data to a relation of some complexity:

$$\frac{J}{Z} = 14.0 (1.0 - e^{-0.1\overline{Z}}) + \frac{75.5}{\overline{Z}\overline{Z}/7.5} - \frac{\overline{Z}}{100 + \overline{Z}}$$
(55)

Since this relation was obtained from experimental data taken on a fairly wide range of sample compositions with varying atomic number, and with electron accelerating potentials similar to those used in microprobe analysis, we choose to use this form for the mean ionization potential.

C. Effective Current Factor

Some experimental work has been done toward the determination of the energy distribution of backscattered electrons. $^{143-147}$ Generally, the agreement between investigators is only fair. Defining W = E/E₀ (W \leq 1), Bishop¹⁴⁶ has shown that the energy distribution of backscattered electrons given as d n/d W, rather than in terms of the actual energy as d n/d E, retains essentially the same shape as
E_o is varied. Bishop has also shown that the electron backscatter coefficient, n, which is the fraction of incident electrons backscattered, is essentially a smoothly varying function of atomic number. The electron backscatter coefficient is also almost entirely independent of E_o . Similar results have been obtained by Weinryb and Philibert.¹⁴⁷

It is recognized that if all electrons backscattered were backscattered with energy E_0 , the factor R would be given by

R = 1 - n. (56) However, there is a distribution in the energy of the backscattered electrons. Several methods have been proposed for calculating the effective current factor R.^{132,148,149} Webster et al.¹³² have shown that R may be calculated from the energy distribution of the backscattered electrons, d n/d W, if the form of the ionization cross section and the electron stopping power are known. Duncumb and Shields¹⁵⁰ have performed the numerical integration of:

$$R = 1 - \frac{\frac{dn}{dW}}{\frac{w_c}{E}} \frac{dn}{S} \frac{f}{S} dE dW$$

$$R = 1 - \frac{\frac{w_c}{W}}{\frac{E}{C}} \frac{e}{S} dE$$

$$\int_{S} \frac{Q}{S} dE$$

$$E_{C}$$
(57)

using the experimental data of Kulenkampff and Spyra.¹⁴³ In this form, the effective current factor is given as the ratio of the ionization that would be caused by the electrons that were backscattered, had they remained in the target, to the ionization generated had all electrons remained in the target.

More recently $Bishop^{47}$ used an alternative form to calculate the effective current factor:

$$R = 1 - \frac{\frac{y}{W_{c}}}{\frac{E_{o}}{\int_{c} \frac{Q}{S} dE}}$$
(58)

His results are given in graphical form as a function of atomic number and overvoltage ratio, U.

VI. COMPUTATIONAL METHODS

Thus far we have discussed the various concepts involved in the reduction of x-ray intensity ratios to composition. In the present section, we begin to describe the application of the relations obtained to the determination of concentration. We start by considering various approximations involved in the computational methods to be used.

The general relation connecting the measured intensity ratio, K, with composition can be written:

 $K = C \times (absorption correction) \times (fluorescence)$

correction) x (atomic Number correction) (59) The various correction factors are written on the right side of Equation (59) since they themselves are functions of composition. The assumption made here is that all precautions necessary for the elimination of the effects of pulse shrinkage and of contamination have been taken. It is further assumed that the raw intensities have been corrected for deadtime losses. (In the accumulation of data, drift may be encountered, and it is assumed that this also is allowed for. The computer program to be discussed has provision for correction of both long and short time instabilities. Given a numerical deadtime input, the program also corrects the raw data for this effect.)

The absorption correction is applied following the method discussed in section IV. A.:

$$\frac{I_{u}^{A}}{I_{s}^{A}} = K_{A} = C_{A} \left[\frac{f_{u}(x_{u})}{f_{s}(x_{s})}\right] \times (Fluorescence Correction) \times (Atomic Number Correction) (36)$$

The value of $f(\chi)$ is determined from Equation (37), with R(0) = 1.1 and $R(\infty) = 4$. In the parameter $\chi = (\mu/\rho) \csc \theta$, the proper value of the mass absorption coefficient must be used. For the case of the standard, assuming a pure element, the (μ/ρ) value is obvious. For the unknown, however, the other elements must also be accounted for. Thus, we use:

$$\left(\frac{\mu}{\rho}\right)_{u}^{A} = \frac{\Sigma}{i} \left(\frac{\mu}{\rho}\right)_{i}^{A} C_{i}$$
(60)

where: C_i is the weight fraction of the ith element in the unknown, and (μ/ρ) is the absorption coefficient of the ith element for A radiation. The numerical value of (μ/ρ) is obtained from section IV, A. 5.

There remain in $f(\chi)$ two factors to be determined. Since σ depends only on E_0 and E_c , this value is the same for both standard and unknown:

$$\sigma = \frac{(2.54)(10^5)}{E_0^{1.5} - E_c^{1.5}}$$
(61)

The factor (h) contains the residue of the influence of atomic number on the absorbtion correction. Thus, we must use for the pure element standard:

$$h = 4.5 \frac{A}{Z_A^2}$$

and for the unknown:

(62)

$$h = 4.5 \frac{\Sigma}{i} C_{i} \left(\frac{A_{i}}{Z_{i}^{2}}\right)$$
(63)

Had we limited ourselves to the simplified form of f(x):

$$f(\chi) = \frac{1 + h}{(1 + \frac{\chi}{\sigma}) [1 + h (1 + \frac{\chi}{\sigma})]}$$
(37')

then different values of h and σ would be necessary. These are given by Duncumb and Shields 150 as:

$$h = 1.2 \frac{\bar{A}}{\bar{Z}^2}$$
(63')
$$\sigma = \frac{4.5 \times 10^5}{E_0^{1.67} - E_c^{1.67}}$$
(61')

In these relations, \overline{A} and \overline{Z} are the mean atomic weight and mean atomic number of the target. E_0 is the probe accelerating voltage and E_c is the critical excitation potential of the emission line used for analysis.

At this point we must consider the limitations of the model used. In their work, Duncumb and Melford⁴⁶ obtained the values of (h) and (σ) for the full f(_X)by comparison to the work of Castaing¹ and Green.⁴¹ They then calculated carbon intensity ratios to be expected from SiC. When compared to their experimental data, the change of predicted intensity ratio with increasing (μ/ρ) (or correspondingly, increasing accelerating voltage and thus depth of penetration) was less than that found experimentally.

We would expect, then, at low kilovoltages for a light element, an over correction for absorption, and at high kilovoltages, an undercorrection for absorption. Since h and (σ)

were evaluated at 10 KV, we expect the proper magnitude correction in the range 8 to 12 KV. The errors found for elements heavier than aluminum were in the same direction, but significantly less in magnitude. Thus, for the metal components of a metal-light element system, we would expect approximately the proper correction for absorption at various KV, with possibly a slight undercorrection at high KV.

The fluorescence correction applied is of the form of Equations (40) and (45). Thus:

$$K_{A} = C_{A} \begin{bmatrix} f_{u}(x_{u}) \\ f_{s}(x_{s}) \end{bmatrix} \quad (1 + K_{fA}) \times (Atomic Number Correction)$$
(64)

The fluorescence yields of the light elements are low, less than 0.01. The expected fluorescence correction for, say, carbon and titanium would be small, less than 1.005. However, for other systems, for example, iron and nickel, the fluorescence effect could account for up to 10% of the total emitted intensity.

The general form of the atomic number (generation) correction is given by Equation (52). The relation between the intensity ratio and concentration now becomes:

$$K_{A} = C_{A} \begin{bmatrix} f_{u}(x_{u}) \\ f_{s}(x_{s}) \end{bmatrix} (1 + K_{fA}) \begin{bmatrix} E_{o} & Q_{A} \\ f_{s} & E_{c} \end{bmatrix} (52')$$

with the R's evaluated by Equation (57). Numerical integra-

tions of Equation (52) have been performed. (Appendix B gives a computer program used in that evaluation of Equation (52).) For the pure element standard, Q and S can be evaluated from Equations (53), (54), and (55). For the unknown, Q is the same as for the standard. However, from the definition of the stopping power:

$$S = -\frac{I}{\rho} \frac{dE}{dx}$$
(49)

it is obvious that S is not the same for the standard and the unknown. Since, from Equation (49) we see the elemental dependence of S, the additive nature of electron retardation energy losses would lead to:

$$S_{u} = \sum_{i}^{\Sigma} C_{i} S_{i}$$
 (65)

Bishop⁴⁷ has shown that using an integration performed by Worthington and Tomlin¹²⁷ and an approximation of Poole and Thomas⁶ the ratio of integrals in Equation (52') can be simplified after substitution of Q and S to:

$$\frac{\begin{pmatrix} Z \\ A \end{pmatrix}}{\sum_{i} C_{i}} \begin{pmatrix} Z \\ A \end{pmatrix}}{\sum_{i} C_{i}} \begin{pmatrix} Z \\ A \end{pmatrix}} (66)$$

where:

$$\overline{E} = \frac{E_0 + E_c}{2} .$$

Bishop has also shown that to a very good approximation:

$$R_{u} = \sum_{i} C_{i} R_{i}$$
 (67)

Thus, the relation between the intensity ratio and concen-

tration can now be written:

$$K_{A} = C_{A} \left[\frac{f_{u} (\chi_{u})}{f_{s} (\chi_{s})} \right] (1 + K_{fA}) \left[\frac{\sum_{i=1}^{\infty} C_{i} R_{i} (\frac{\overline{Z}}{A})_{A} \ell_{n} (1.166 \overline{E}/J_{A})}{R_{s} \sum_{i=1}^{\infty} C_{i} (\frac{\overline{Z}}{A})_{\ell} \ell_{n} (1.166 \overline{E}/J_{i})} \right]$$
(68)

The error in this relation, compared to the full integration of Equation (52') is less than 1% for $E_0 > 2 E_c$.

The problem arising at lower overvoltages is dual. As pointed out in the discussion of the ionization cross section, a more accurate mathematical form for the ionization cross section would yield a faster decrease in the ionization cross section with overvoltage, at low overvoltages, 1 < U < 3. For the light elements, the backscatter factor is small, and the effective current factor, R, is approximately unity. The error in the backscatter factor, η , at low overvoltages increases with increasing atomic number. The second difficulty arises from the assumption that the mean ionization potential, J, is independent of E. In fact, the data of Duncumb and DaCasa¹⁴² seems to indicate that J decreases with decreasing E. The net result of these errors would show up most in the analysis of a light element in combination with a heavy element at low kilovoltages.

The consideration of errors can be summarized as follows. In the atomic number interval 15 to 70, the approximations

appear to be applicable as long as the overvoltage for the analytical x-ray lines is 2 or greater. The biggest problem in this area would arise in the analysis of low concentrations. In the analysis of very heavy elements, e.g., uranium, the errors inherent in the effective current factor correction would limit the accuracy of the analysis. From consideration of the work of Duncumb and DaCasa¹⁴² these errors could approach 5%.

For the analysis of light elements, the biggest problem arises when that element is in a matrix characterized by a high mass absorption coefficient for the light element's emission line, and when the atomic numbers differ by a factor of 3 or more. In such a case, it is not reasonable to expect high accuracy at low kilovoltages because of the errors in the atomic number correction and in the absorption correction. At high kilovoltages, the magnitude of the absorption would essentially limit any light element analysis. Nevertheless, reasonable results could be expected at intermediate kilovoltages, 8 to 12 KV, where mass absorption coefficients less than 10,000 cm²/g are encountered.

A computer program which permits the reduction of raw microprobe data to concentration, and which uses the relations just described is given in Appendix C. The only input requirements are problem identification, kilovoltage used,

deadtimes, elements and lines used in the analysis and microprobe output. All constants are either stored internally in the computer or calculated at the time of a computer run. The data stored internally are given in Appendix D. A detailed description of input requirements is given in Appendix E. Appendix F gives a typical output.

VII. APPLICATIONS

We shall now discuss the application of the various corrections to eight metallurgical samples. Each type of analysis results points up particular characteristics of the correction procedure. The data was corrected by use of the computer program given in Appendix C. Corrections were applied for detector system deadtime, instrument drift, background, absorption, characteristic line fluorescence and atomic number effect.

Of the various constants used in the calculation, the following were stored internally: Atomic Number, Atomic Weight, Absorption Edge Wavelengths, Critical Excitation Potentials, Primary Emission Line Wavelengths, and constants for calculation of Absorption Coefficients. Data for the correction that was calculated included: Overvoltage Ratio, Effective Current Factor, Mass Absorption Coefficients, Absorption Jump Ratios, and Fluorescence Yields.

A. Copper-Zinc

A sample of National Bureau of Standards brass C-1102 was analyzed under three different analysis conditions. A total of 30 analyses were performed. The analyses were performed at 25 KV with two LiF crystals and two detectors, a sealed proportional counter and a flow proportional counter. For one-third of the analyses, pure element standards were used. For the rest of the analyses, standards supplied by the

probe manufacturer were used. The analyses using the probe manufacturer supplied standards always resulted in high concentrations. The cause was finally determined to result from the purity of these standards, approximately 98% of the element. The pure element standards contained at least 99.6% of the element. The results of the analyses using the pure element standards are given in Table VIII. The results are quite good when compared to the NBS certified composition:

Zinc: 27.10 wt %

Copper: 72.85 wt %

The significance of this analysis lies in the fact that the magnitude of the corrections should be small for this system containing adjacent elements. There is only a slightly greater correction for the absorption of the copper radiation than for the zinc radiation. The only fluorescence correction would be necessitated by the zinc K β_1 fluorescence of the copper line. The mass absorption coefficients calculated, for example, for the copper, agree well with the values measured by Hughes, Woodhouse and Bucklow.⁶⁸

Line (μ/ρ) calc. (μ/ρ) exp. 68Zinc Ka43.42.7Copper Ka52.52.2

Likewise, the Absorption Jump Ratio measured by Hopkins 93 for copper as 8.1 compares favorably with the calculated value of 7.77.

·	PRCBLEM NUMBE	R A1242
· <u>····································</u>		SEPT. 14, 196
IBMIJIED BY LA JO	GRAY	
SCRIPTION - C-1	102. NES BRASS	
MEAN	CHEMICAL COPPES	SITION AND TWO
21 GM A		IN IC ANALYSES
ELEMENT	DELGHT PERCENT	ATOPIC Percent
ZN	27.428 - C.12	26.790 - 0.185
	_	·
CU MEAN INTEN EL	72.6870 - C.57	73.220 - 0.194
CU MEAN INTER EL	72.6E70 - C.57 ISITY RATIOS AND EMERT ZN C.272 CU C.72	73.220 - 0.194
CU MEAN INTER EL	72.0 E70 - C.51 ISITY RATIOS AND EMERT ZN	15 73.220 - 0.194
CU MEAN INTEN EL ACCELERATI	72.6E70 - C.51 ISITY RATIOS AND EMERT ZN C.211 CU C.72 ING VOLTACE	25.0 KEV
CU MEAN INTEN EL ACCELERATI X-RAY EPER	72.6E70 - C.51 ISITY RATIOS AND EMERT ZN C.272 CU C.721 ING VOLTAGE RGENCE ANGLE	25.0 KEV 52.5 DEGREES
CU MEAN INTEN EL ACCELERATI X-RAY EPER STANCARC F MINIMU	72.0E70 - C.51 ISITY RATIOS AND EMERT ZN	25.0 KEV 25.0 KEV 52.5 DEGREES ND RATIOS (P/B) AND Y LIMITS (MDL)
MEAN INTER MEAN INTER EL ACCELERATI X-RAY EPER STANCARC F MINIMU ELEMENT	72.6E70 - C.51 ASITY RATIOS AND EMERT ZN. C.211 CU C.721 ING VOLTAGE RGENCE ANGLE PEAK-TC-BACKGRCI IM DETECTABILITY P/B	25.0 KEV 25.0 KEV 52.5 DEGREES ND RATIOS (P/B) AND Y LIMITS (MDL) MDL
CU MEAN INTER EL ACCELERATI X-RAY EPER STANCARC P MINIMU ELEMENT ZN	72.6E70 - C.51 ISITY RATIOS AND EMERT ING VOLTAGE REENCE ANGLE PEAK-TC-BACKGRCI IM DETECTABILITY P/B 1C1/1	25.0 KEV 25.0 KEV 52.5 DEGREES ND RATIOS (P/B) AND Y LIMITS (MDL) MDL Q.1037 WT %

B. Nickel-Iron

This system should exhibit two effects, a fluorescence of the iron by the nickel and an effect of atomic number. Fifty analyses were performed on this sample. Intensity ratios were formed with respect to the pure elements (greater than 99.7%) after correction for deadtime, drift and background. In all cases the iron concentration was within 0.5% of the vendor* supplied chemical analysis of 43.55%. Likewise, all results for the nickel were high by about 1.0% when compared to the stated composition of 56.55%. A typical set of results is given in Table IX.

The effect of the fluorescence correction is seen in the comparison of the measured intensity ratio for iron: 0.4864, with the resultant composition: 43.38 wt %.

Since the action of the atomic number effect is to reduce the apparent concentration of the heavier element and to increase the apparent concentration of the lighter element, the fluorescence effect and the atomic number effect act in a direction opposite to the absorption effect for iron. However, for nickel, the atomic number effect and the absorption effect act in the same direction. Thus, errors in these corrections re-enforce each other, and a 1% error in concentration results.

*International Nickel Co., Inc.

		23 MAR	CH 1967
UBMITIEC_BY_L	GBAY		
ESCRIPTION - PUG E	E-NI CAN SIDE S	<u> 90</u>	
	<u> </u>		
MEAN_C SIGMA	HEMICAL CEPPESI LIMITS BASEE CA	IION AND INC. IC ANALYSES	
EL ENELT	NELGH1 PERCENT	AIDPIC PERCENT	
ELEREN I			
<u>NI</u>	51.582 - 6.217	55.81C - 0.146	
EE	42.279 - 6_117	44.200 - 0.144	
	** ** * * ** ** ** ** ** **		
MEAN INTEN	SITY RATIOS AND	TWC SIGPA LIMITS	
EL	EMENT	K	
	NI C_5321 8.6 C_4864	L = 0.0023	
ACCELERATI	NE VOLTAGE	25.C KEV	<u> </u>
X-RAY EMER	GENCE ANGLE	52.5 DEGRE	ES
STANCARC P	FAR-TO-BACKEREL	ND RATIOS (P/R) AND LINITS (MDL)	L
<u>STANCARC P</u> H IN IMU	EAK-IO-BACKERCH M DETECTABILITY	LIMITS (MDL)	L
STANCARC P H IN IMU EL EMEN T	P/B	ND RATIOS (P/R) AND LIMITS (MOL) MDL	
STANCARC P H IN IMU EL EMEN T	P/B	<u>ND RATIOS (P/R) AND</u> LIMITS (MOL) MDL 0.1226 MI R	
<u>STANCARC P</u> H IN IMU EL EMEN T NI	P/B	ND RATIOS (P/R) AND LIMITS (MOL) MDL C.1726 WI R	

PROBLEM NUMBER A1246

Table IX. Results of Analyses of Nickel-Iron Sample of Reference Composition 43.55 wt % Iron, 56.55 wt % Nickel.

C. <u>Tin-Zirconium</u>

Zircaloy-2 contains nominally 1.5% tin in a zirconium matrix. The attempt in this case was to test the theoretical correction procedure in the determination of this low concentration. The analyses of five samples* yielded the tin results given in Table X. These results are particularly important because they show that the method for calculating background based on composition, as described in section IV. B., yields reasonable results. As pointed out in that section, use of the standard background in all cases resulted in a probe concentration of 0.6% tin in Zircaloy-2. The intensity ratios formed with respect to pure zirconium and pure tin were corrected for absorption, fluorescence and atomic number effects. Table X shows the more meaningful results obtained with the present background correction.

D. Titanium-Niobium

The alloy system of titanium and niobium forms an interesting challenge. It is necessary to use the niobium $L\alpha$ line for the analysis. Thus, there is a fluorescence of the niobium by the titanium, and this effect acts opposite to the effect of atomic number and absorption for niobium. This situation is in contrast to that in the

^{*}The Zircaloy-2 samples were provided by Dr. K. Tangri, Department of Mechanical Engineering, University of Manitoba.

Table X. Analyses of Nominal 1.5 wt % Tin in Zircaloy-2

Sample	Number of Analyses	Mean Tin Concentration	RMS Deviation
Y – 1	40	1.473 %	0.017
Y – 5	60	1.494 %	0.071
Y – 6	29	1.423 %	0.024
Y – 8	25	1.440 %	0.049
Y – 9	39	1.396 %	0.208

nickel-iron system. The standards used in this analysis were again the pure elements. After correcting the data for deadtime, drift and background, the other corrections were applied with the results for analysis at 20 KV given in Table XI. Other analyses were performed at 25 KV and 30 KV. Those results exhibit an enhancement of the trends given in Táble XI.

The results of chemical analysis by several laboratories* were averaged to yield reference compositions of:

Titanium: 34.97%

Niobium: 65.00%

In Table XI we again see a too high concentration for the heavy element, similar to the effect in the nickel-iron analysis. Since in the iron-nickel system, the fluorescence correction for iron yielded good results, we expect that the same would hold here. If that is so, then the error observed in the heavy element in both cases must be due to the atomic number correction over-correcting the intensity ratio. An additional complication enters in this system because of the ease of oxidation of any sample surface. Although the standards were polished to 1/4 micron diamond within 10 minutes of being put into the probe chamber, the definite possibility of a surface oxide layer still existed.

*Wet chemical analyses performed by the laboratories of various members of the Midwest Probe Users Group were averaged to obtain the results given here.

		19 SEPT 1	967
SUBMITTED BY L. J. GR	<u>AY</u>		
<u>DESCRIPTION - PAPLG</u>	11-08		
MEAN CHE Sigma Li	MICAL CCMPCSI MITS BASEC CM	TION ANC TWC 10 ANALYSES	
ELEMENT	NE IGHT PERCENT	ATOMIC PFRCENT	
<u>T1</u> 2	3.435 - (.25)	48.474 - 0.238	
NB 6	8.528 - (.18	51.536 - 0.243	<u> </u>
MEAN INTENSIT	IT RATIOS AND	TWC SIGPA LIMITS	
ELEME	ENT	K	
TI	C.312	2 - 0.0026	·····
NB	C.€€2	5 - C.CC19	· · · · · · · · ·
ACCELERATING	VCLTAGE	20.C KEV	
X-RAY EFERGEI	NCE ANGLE	52.5 DEGREES	
STANCARC PEAL MINIMUM I	K-TC-BACKGRCU DETECTABILITY	ND RATICS (P/B) AND LIMITS (MDL)	
ELEMENT	F/B	MDL	
τι	73/1	C.1252 HT \$	
NB	25/1	0.7268 WT %	
Table XI. Results of Reference	f Analyses c Composition	f Titanium-Niobium 34.97 wt % Titani	Sample of um, 65 wi

In spite of this possible face-saving problem, we still have an indication of difficulty in the atomic number correction.

Certain non-metallics occur as troublesome inclusions in steels. Two such materials were subjected to probe analysis. In each case, the light element of the binary compound was determined by difference since either no standard was available or the light element intensity was too low to obtain sufficient counts.

E. Silicon-Oxygen

An inclusion thought to be quartz from fluorescence data was tested in the probe. Pure silicon was the single standard. No oxygen data were taken because the oxygen intensity was of the order of the background intensity. In this work, care was taken to insure that peak intensities were measured on both the standard and the unknown. The reason for this lies in the fact that the silicon K α line shifted in position between the pure element and the oxide. The analyses results are given in Table XII.

In this difficult system, where the magnitude of the corrections approaches 10% absolute, or 20% relative, the results are a little surprising. The silicon concentration is within 0.5% of the theoretical value for SiO₂.

			16 AUGUST 196
	E <u>N L.J.</u>	GFAY	
ESCRIFIIC	<u> - SI + C</u>	<u>(\$102)CN_\$10</u>	2 PEAK
······································			
	NEAN CHE SIGMA LI	MICAL CEMPES MITS BASEE C	N 11 ANALYSES
		NEIGHT	ΑΤΩΝΙΟ
	ELEMENT	PERCENT	FERCENT
	<u>§1 4</u>	8.212 - C.58	2 34.658 - 0.527
	[* 5	1.788 - 0.58	2 65.342 - 0.529
	* CET	ERMINEC BY C	IFFERENCE
MEA	N INTENSIT	Y RATICS AND	THE SIGPA LIMITS
		1	K
	<u>SI</u>	C.3964	K 4 - C.CC56
	<u><u><u>SI</u></u></u>	C.3964	K 4 - C.CC56
A(()	ELEPER SI ELERATING V	C.3964	K 4 - C.CC56 25.C KEV
A(() X-F/	ELEPER SI ELERATING V AN EMERGENC	C. 3964 CLTAGE E ANGLE	K 4 - C.CC56 25.C KEV 52.5 LEGREES
<u>A(()</u> X-F/ S14M	ELEPER SI ELERATING V AN EMERGENC CARC FEAK- FINIMUM DE	CLTAGE CLTAGE CLTAGE TC-PACKGROUN TECTAPILITY	K 4 - C.CC56 25.C KEV 52.5 CEGREES 52.5 CEGREES 52.5 CEGREES
<u>A(()</u> <u>X-F</u> S14H	ELEPEN	CLTAGE CLTAGE E ANGLE TC-PACKGROUN TECTABILITY P/B	K A - C.CC56 25.C KEV 52.5 CECREES C RATICS (F/B) ANC LIMITS (MCL) MCL
<u>A(()</u> <u>X-</u> F/ S14P	ELEPEN	C. 3964 CLTAGE E ANGLE TC-BACKGROUN TECTABILITY P/B	K A - C.CC56 25.C KEV 52.5 CECREES AC RATICS (F/B) ANC LIMITS (MCL) MCL
<u>A(()</u> <u>y-</u> F <i>I</i> S14M E	ELEPEN SI ELERATING V AY EMERGENC CARC FEAK- PINIMUM DE LEMENT	C. 3964 CLTAGE E ANGLE TC-PACKGROUN TECTABILITY P/P S24/1	K 4 - C.CC56 25.C KEV 52.5 CECREES C RATICS (F/B) ANC LIMITS (MCL) MCL C.1125 WT ?

F. Iron-Sulfur

A specimen thought to be FeS₂ was analyzed in the microprobe. FeS₂ has a theoretical composition of 46.54 wt % Fe; 53.46 wt % S. The phase, however, is apparently not stoichiometric.¹⁵¹ With sulfur to be determined by difference, the iron intensity ratio was formed with respect to pure iron. The resultant corrections yielded:

Iron 43.30 + 0.532 wt %

Sulfur 56.70 + 0.532 wt %

These results are reasonable in view of the uncertainty of the phase diagram.

G. Titanium-Carbon

Previous attempts to perform quantitative microanalysis of metal carbides generally dealt with stoichiometric compositions.^{36,46} We have analyzed four samples of defect titanium carbide. The samples were single crystals grown by the Verneuil technique.* The microanalysis was performed using standards of pure (99.97%) titanium and natural diamond. The data were first corrected for detector system deadtime, instrument drift and background. Intensity ratios were formed and corrected in two ways. The first method used the full absorption relations, Equations (37), (61), (62)

*The TiC samples were kindly provided by Professor W. Williams, University of Illinois, Materials Research Laboratory. and (63). The second method used the simplified form for the absorption correction, as described in section VI, with Equations (37'), (63'), and (61').

In section VI, we considered the models on which these corrections are based. This review led to an expectation, in this type of metallurgical system involving carbon, of high concentrations for both titanium and carbon at low kilovoltages, less than 9 KV, and low concentrations for carbon at accelerating potentials greater than 12 KV.

One of the four samples contained a large number of graphite inclusions, and yielded a total composition in the two phase region between TiC and graphite. The other samples appeared quite homogeneous to the electron probe.

The results obtained from more than fifty analyses on each samples are given in Table XIII. The titanium intensity ratios exhibited a maximum at an excitation potential between 10 KV and 15 KV. The carbon intensity ratio continually decreases with increasing kilovoltage. With the full $f(_X)$, the carbon concentration is higher by about 1.7% absolute than with the simplified $f(_X)$. For titanium, the difference is approximately 0.2%.

For 6 and 8 KV the calculated carbon concentration is too high in all cases. For 10 KV, the results are within 1.0% of the result obtained by other methods, when the full absorption correction is used. A similar result is obtained for the titanium. At 15 KV, the effect of undercorrection

٦	able	XIII.	Resu	ults of A	nalyses of Th	iree TiC Sa	mples
F	Accele Poten KF	rating tial	Elen Lir	nent and ne Used	Intensity Ratio	Mass Con Full f(_X	centration) Simple f(_X) wt %
. 5	Sample 6	1251-	53b, Ti C	reported Kα Kα	composition: .683 .241	17.3 wt% 79.5 24.4	carbon 79.5 22.9
	8	· · ·	Ti C	Kα Kα	.708	83.1 22.0	83.2 20.2
	10		Ti C	Κα Κα	.816	85.3 16.9	85.4 15.3
	15	· ·	T_i C	Κα Κα	.790 .104	82.5 16.0	82.7 14.3
	Samp1 mated	e 1251	-59,	reported	composition:	17.9 wt%	carbon, esti-
	6		Ti C	Κα Κα	.692 .243	79.2 23.3	79.3 21.8
•••	8		Ti C	Ka Ka	.755.207	83.9 22.7	83.9 20.8
	10	· · · ·	Ti C	Ka Ka	.814 .134	85.2 16.9	85.3 15.3
	15		Ti C	Ka Ka	.779 .105	81.6 16.2	81.7 14.5
	Sampl 6	e 1251	-53a Ti C	, reporte Kα Kα	d compositior .850 .228	n: 17.3 wt% (88.5) 22.5	carbon (88.6) 20.9
•	8		Ti C	Ka Ka	.791 .206	84.5 22.7	84.5 20.8
•	10		Ti C	Ka Ka	.813 .133	85.2 16.7	85.3 15.1
	15		Ti C	Ka Ka	.784 .101	82.1 15.6	82.2 13.9

for absorption appears.

The overcorrection for absorption at low KV is explained by the fact that the Philibert model does not adequately account for surface ionization. The undercorrection for titanium at low KV is attributed to the fact that the model used for the atomic number correction does not consider the change in ionization cross section with decreasing kilovoltage and ignores the variation of the mean ionization potential with kilovoltage and with composition.

Nevertheless, in spite of the limits of the theoretical correction procedures used, it is possible to obtain estimates of the carbon concentration in refractory metal carbides by choosing analysis conditions so as to limit the theoretical errors. Such conditions exist for the titanium-carbon system when using beam accelerating potentials of approximately 10 KV.

H. Gold-Copper

The analysis of a binary containing an intermediate weight element and a heavy element would complete the variety of elements analyzed. The copper-gold system contains the phase Cu₃Au, and this system was analyzed in the microprobe. The results are given in Table XIV. The magnitude of the corrections approaches 7% absolute for both elements. However, in spite of this size of correction, the results are within 0.3% of the theoretical composition.

		AUGUST . 1966
	· · ·	AUGUST 1 1900
ED BY La Ja GR	<u>Y</u>	
TION - CUJAU		
	·	
		TON AND THO
SIGPA LIP	ITS BASEC CA	1C ANALYSES
	MEIGHT	ATOPIC
ELEFENT	PERCENT	PERCENT
		25 386 - 0.264
<u>AU</u> 50	<u>.8C6 - C.288</u>	£3,300 VI.0
<u>CU 48</u>	1.184 - 0.303	74.624 - 0.274
		*
		THE STORA LINITS
MEAN INTENSIT	Y RATIOS AND	TWO SIGPA LIMITS
MEAN INTENSIT	Y RATIOS ANC	TWO SIGPA LIMITS
MEAN INTENSIT	Y RATIOS ANC	TWO SIGPA LIMITS
MEAN INTENSIT Eleme Au	Y RATIOS ANC NT <u>C.447</u>	TWO SIGPA LIMITS K 2 - <u>C.CO61</u>
MEAN INTENSIT ELEME AU CU	Y RATIOS ANC NT <u>C.4473</u> 0.5545	TWO SIGPA LIMITS K <u>2 - C.CO61</u> 5 - C.0037
MEAN INTENSIT ELEME Au Cu	Y RATIOS ANC NT <u>C.4473</u> 0.554	TWO SIGPA LIMITS K 2 - <u>C.C061</u> 5 - C.0037
MEAN INTENSIT ELEME AU CU	Y RATIOS ANC NT <u>C.4473</u> 0.5549 VOLTAGE	TWO SIGPA LIMITS K <u>2 - (.co61</u> 5 - C.0037 30.0 KEV
MEAN INTENSIT ELEME AU CU ACCELERATING	Y RATIOS ANC NT <u>C.4473</u> 0.5549 VOLTAGE	TWO SIGPA LIMITS K - C.CO61 5 - C.0037 - 30.0 KEV - 52.5 DEGREES
MEAN INTENSIT ELEME AU CU ACCELERATING X-RAY EMERGEN	Y RATIOS ANC NT <u>C.4473</u> 0.5549 VOLTAGE ICE ANGLE	TWO SIGPA LIMITS K 2 - <u>C.C061</u> 5 - C.0037 30.0 KEV 52.5 DEGREES
MEAN INTENSIT ELEME AU CU ACCELERATING X-RAY EMERGEN	Y RATIOS ANC NT <u>C.4473</u> 0.5549 VOLTAGE ICE ANGLE	TWO SIGPA LIMITS K 2 - C.CO61 5 - C.O037 30.0 KEV 52.5 DEGREES ND RATIOS (P/B) AND
MEAN INTENSIT ELEME AU CU ACCELERATING X-RAY EPERGEN STANDARC PEAN MINIMUM C	Y RATIOS ANC NT C.4473 0.5549 VOLTAGE ICE ANGLE CE ANGLE CE TABLE	TWO SIGPA LIMITS K 2 - <u>C.C061</u> 5 - C.0037 30.0 KEV 52.5 DEGREES NO RATIOS (P/B) AND LIMITS (MDL)
MEAN INTENSIT ELEME AU CU ACCELERATING X-RAY EMERGEN STANDARC PEAN MINIMUM C	Y RATIOS ANC NT <u>C.4473</u> 0.5549 VOLTAGE ICE ANGLE CE ANGLE CE TO-RACKEREL DETECTABILITY	TWO SIGPA LIMITS K 2 - <u>C.CO61</u> 5 - C.OO37 30.0 KEV 52.5 DEGREES NO RATIOS (P/B) AND LIMITS (MDL) MDL
MEAN INTENSIT ELEME AU CU ACCELERATING X-RAY EMERGEN STANDARC PEAN MINIMUM C ELEMENT	Y RATIOS ANC NT C.4473 O.5549 VOLTAGE CE ANGLE CE ANGLE CE TO-RACKGRCL DETECTABILITY P/B	TWO SIGPA LIMITS K 2 - <u>C.C061</u> 5 - C.0037 30.0 KEV 52.5 DEGREES NO RATIOS (P/B) AND LTWITS (MDL) MDL
MEAN INTENSIT ELEME AU CU ACCELERATING X-RAY EMERGEN STANDARC PEAN MINIMUM C ELEMENT	Y RATIOS ANC NT <u>C.4473</u> 0.5549 VOLTAGE ICE ANGLE CE ANGLE CETECTABILITY P/B	TWO SIGPA LIMITS K 2 - C.CO61 5 - C.OO37 30.0 KEV 52.5 DEGREES NO RATIOS (P/B) AND LIMITS (MOL) MDL C.7657 WI %
MEAN INTENSIT ELEME AU CU ACCELERATING X-RAY EMERGEN STANDARC PEAN MINIMUM C ELEMENT AU	Y RATIOS ANC NT C.4473 O.5549 VOLTAGE CE ANGLE CE ANGLE CE TO-RACKERCL DETECTABILITY P/B 6C/1	TWD SIGPA LIMITS K 2 - C.CO61 5 - C.O037 30.0 KEV 52.5 DEGREES NO RATIOS (P/B) AND LTWITS (MDL) MDL C.7657 HT %
MEAN INTENSIT ELEME AU CU ACCELERATING X-RAY EMERGEN STANDARC PEAN MINIMUM C ELEMENT AU	Y RATIOS ANC NT <u>C.4473</u> 0.5549 VOLTAGE ICE ANGLE CE ANGLE CETECTABILITY P/B <u>6C/1</u>	TWO SIGPA LIMITS K 2 - C.CO61 5 - C.O037 30.0 KEV 52.5 DEGREES NO RATIOS (P/B) AND LIMITS (MOL) MDL C.7657 HT % C.2282 HT %

VIII. SUMMARY

A method, based on physical principles, for the estimation of mass absorption coefficients has been described. Mass absorption coefficients of several elements for the characteristic emission lines of carbon, nitrogen, and oxygen have been given.

A correction procedure for the conversion of microprobe x-ray intensity data to composition has been presented. This method was tested in the analysis of eight binary systems of metallurgical interest, containing elements from carbon to gold in various combinations. This method of data reduction has been shown to be generally applicable to this variety of elements. The analyses results are summarized in Table XV. The biggest difficulties were encountered in the analysis of carbon. Consideration of the principles of the corrections led to the definition of a set of analysis conditions which minimized the theoretical errors.

The method of estimation of mass absorption coefficients to within 5% in most cases will now permit modifications to be made to the theoretical correction relations. Particular work should be centered on the distribution in depth of the sample ionization, and on the change in ionization cross section and mean ionization potential with electron energy. Such modifications will increase the range of analysis conditions under which reasonable estimates of light element concentrations can be made by microprobe techniques.

Table XV.	Summary of	Analyses Results	
System	Chemical Analysis	Microprobe Intensity Ratios	Microprobe Composition
Cu	72.85 wt%	.7279	72.87 wt%
Zn	27.10 wt%	.2731	27.43 wt %
Ni	56.55 wt%	.5320	57.58 wt%
Fe	43.55 wt%	. 4864	43.38 wt %
Ťi	34.97 wt%	. 3122	33.44 wt%
Nb	65.00 wt%	.6625	68.94 wt%
Si	33.33 at% (theo.)	. 3964	48.21 wt% 34.66 at%
0	66.67 at%	diff.	51.79 wt%
	(theo.)		65.34 at%
Fe	46.54 wt%	. 3808	43.30 wt%
S	53.46 wt%	diff.	56.70 wt%
. · ·	(theo.)		· ·
Ti	82.7 wt%	. 816	85.3 wt%
С	17.3 wt%	. 1 3 5	16.9 wt%
Cu	75.00 at%	.5545	48.18 wt%
	(theo.)		74.62 at%
Au	25.00 at%	. 4 4 7 3	50.81 wt%
	(theo.)		25.39 at%

LIST OF REFERENCES

- Castaing, R., Ph. D. thesis, University of Paris, 1951; Office Nationale d'Etudes et Recharches Aeronautique, Publication No. 55, Paris, 1951. Translated by P. Duwez and D. B. Wittry, Interim Technical Report No. 3, under Contract DA-04-495-Ord-463, 1955; ASTIA Document No. Ad-135428.
- Wittry, D. B., Ph. D. Thesis, California Institute of Technology, 1957; Interim Technical Report No. 5, under Contract DA-04-495-Ord-463, 1957; ASTIA Document No. AD-135429.
- Zemany, P. D., in "Symposium on X-ray and Electron Probe Analysis," Atlantic City, New Jersey, June, 1963, American Society for Testing and Materials, Philadelphia, Pennsylvania, 1964, p. 1.
- Philibert, J., in "X-ray Optics and X-ray Microanalysis" (H. H. Pattee, V. E. Cosslett, and A. Engstrom, Eds.), Academic Press, New York, 1963, p. 379.
- 5. Wittry, D. B., University of Southern California Engineering Center Report 84-204, July, 1962.
- 6. Poole, D. M. and Thomas, P. M., J. Inst. Metals <u>90</u>, 1962, p. 228.
- 7. Campbell, W. J., Brown, J. D., and Thatcher, J. W., Anal. Chem. 38, 1966, p. 416R.
- 8. Heinrich, K. F. J., in "The Electron Microprobe" (T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry, Eds.), John Wiley and Sons, New York, 1966, p. 841.
- 9. Keil, K., Fortschr. Min. 44, 1967, p. 4.
- Cescas, M., Tyner, E., and Gray, L. J., in "Advances in Agronomy," <u>20</u>, Academic Press, New York. To be published.
- 11. Campbell, W. J. and Brown, J. D., Anal. Chem. <u>40</u>, 1968, p. 346R.
- 12. Elion, H. A., "Instrument and Chemical Analysis Aspects of Electron Microanalysis and Macroanalysis," Pergamon Press, New York, 1966.

- Birks, L. S., "Electron Probe Microanalysis," Interscience Publishers, New York, 1963.
- 14. Theisen, R., "Quantative Electron Microprobe Analysis," Springer-Verlag Publishers, New York, 1965.
- 15. Malissa, H., "Elektronenstrahl-Mikroanalyse, Handbuch der Mikrochemischen Methoden," <u>4</u>, Springer-Verlag Pub., New York, 1966.
- 16. Castaing, R., in "Advances in Electronics and Electron Physics," <u>XIII</u> (L. Marton, Ed.), Academic Press, New York, 1960, p. 317.
- 17. Bender, S. L., and Rapperport, E. J., in "The Electron Microprobe" (T. D. McKinley, K. F. J. Heinrich and D. B. Wittry, Eds.), John Wiley and Sons, New York, 1966, p. 405.
- 18. Burkhalter, P. G., Brown, J. D., and Myklebust, R. L., Rev. Sci. Inst. 37, 1966, p. 1267.
- 19. Spielberg, N., Rev. Sci. Inst. 37, 1966, p. 1268.
- 20. Heinrich, K. F. J., Vieth, D., and Yakowitz, H., in "Advances in X-ray Analysis" (G. R. Mallett, M. Fay and W. M. Mueller, Eds.), <u>9</u>, Plenum Press, New York, 1965, p. 208.
- 21. Schiff, L. I., Phys. Rev. 50, 1936, p. 88.
- 22. Ruark, A. E. and Brammer, F. E., Phys. Rev. <u>52</u>, 1937, p. 322.
- 23. Beers, Y., Rev. Sci. Inst. 13, 1942, p. 72.
- 24. Lonsdale, K., Acta. Cryst. 1, 1948, p. 12.
- 25. Short, M. A., Rev. Sci. Inst. 31, 1960, p. 618.
- 26. Sawatzky, A. and Jones, S., J. Appl. Phys. <u>38</u>, 1967, p. 4758.
- 27. Borelie, F. and Short, M. A., Proc. Third Nat. Conf. Electron Probe Microanalysis, Chicago, 1968, paper 38.
- 28. Rose, M. E. and Korff, S. A., Phys. Rev. <u>59</u>, 1941, p. 850.
- 29. Rose, M. E. and Ramsey, W. E., Phys. Rev. <u>61</u>, 1942, p. 504.

- 30. Taylor, J. and Parrish, W., Rev. Sci. Inst. <u>26</u>, 1955, p. 367.
- 31. Birks, L. S., Rev. Sci. Inst. <u>22</u>, 1951, p. 891.
- 32. Henke, B. L., Elgin, R. L., Lent, R. E., and Ledingham, R. B., Air Force Office of Aerospace Research, Report AFOSR 67-1254, Pomona College, Claremont, California, 1967.
- 33. Beckett, R. and Hurt, T., "Numerical Calculations and Algorithms," McGraw Hill Book Co., New York, 1967, p. 268.
- 34. Reed, S. J. B., J. Sci. Inst. Ser. 2, 1, 1968, p. 136.
- 35. Ong, P. S., in "X-ray Optics and Microanalysis" (R. Castaing, P. Deschamps and J. Philibert, Eds.), Hermann, Paris, 1966, p. 181.
- 36. Ranzetta, G. V. T. and Scott, V. D., in "X-ray Optics and Microanalysis" (R. Castaing, P. Deschamps and J. Philibert, Eds.), Hermann, Paris, 1966, p. 254.
- 37. Neuhaus, H., in Proc. of the Third Nat. Conf. on Electron Probe Microanalysis, Chicago, 1968, paper 19.
- 38. Kirianenko, A., Maurice, F., Calais, D., and Adda, Y., in "X-ray Optics and Microanalysis" (H. H. Pattee, V. E. Cosslett and A. Engstrom, Eds.), Academic Press, New York, 1963, p. 559.
- 39. Castaing, R. and Descamps, J., J. Phys. Radium <u>16</u>, 1955, p. 304.
- 40. Castaing, R. and Henoc, J., in "X-ray Optics and Microanalysis" (R. Castaing, P. Deschamps and J. Philibert, Eds.), Hermann, Paris, 1966, p. 120.
- 41. Green, M., in "X-ray Optics and Microanalysis" (H. H. Pattee, V. E. Cosslett and A. Engstrom, Eds.), Academic Press, New York, 1963, p. 361.
- 42. Theisen, R., in "X-ray Optics and Microanalysis" (R. Castaing, P. Deschamps and J. Philibert, Eds.), Hermann, Paris, 1966, p. 224.
- 43. Helgesson, C. I., in "X-ray Optics and Microanalysis" (R. Castaing, P. Deschamps and J. Philibert, Eds.), Hermann, Paris, 1966, p. 284.

- 44. Lenard, P. and Becker, A., in "Handbuch der Experimentalphysik," <u>XIV</u>, Akad. Verlagages., Leipzig, 1927, p. 178.
- 45. Duncumb, P. and Shields, P. K., in "The Electron Microprobe" (T. D. McKinley, K. F. J. Heinrich and D. B. Wittry, Eds.), John Wiley and Sons, New York, 1966, p. 284.
- 46. Duncumb, P. and Melford, D. A., in "X-ray Optics and Microanalysis" (R. Castaing, P. Deschamps and J. Philibert, Eds.), Hermann, Paris, 1966, p. 240.
- 47. Bishop, H. E., Brit. J. Appl. Phys. Ser. 2, <u>1</u>, 1968, p. 673.
- 48. Yakowitz, H. and Heinrich, K. F. J., Mikrochimica Acta., 1, 1968, p. 182.
- 49. Frazer, J. Z., S. I. O. Report Reference No. 67-29, University of California, LaJolla, California, 1967.
- 50. Siegbahn, M., Zeits. Physik. 15, 1914, p. 753.
- 51. Allen, S. J. M., Phys. Rev. <u>28</u>, 1926, p. 907.
- 52. Grosskurth, K., Ann. Physik. 20, 1934, p. 197.
- 53. Laubert, S., Ann. Physik. 40, 1941, 553.
- 54. Leroux, J., in "Advances in X-ray Analysis" (W. M. Mueller, Ed.), <u>5</u>, Plenum Press, New York, 1962, p. 153.
- 55. Victoreen, J. A., J. Appl. Phys. <u>14</u>, 1943, p. 95.
- 56. Victoreen, J. A., J. Appl. Phys. 20, 1949, p. 1141.
- 57. Henke, B. L., White, R., and Lundberg, B., J. Appl. Phys. 28, 1957, p. 98.
- 58. Bearden, A. J., J. Appl. Phys. 37, 1966, p. 1681.
- 59. Allen, S. J. M., Mass Absorption Coefficients for X and Gamma Rays, "Handbook of Chemistry and Physics," The Chemical Rubber Publishing Co., Cleveland, Ohio.
- 60. Liebhafsky, H. A., Pfeiffer, H. G., Winslow, E. H., and Zemany, P. D., "X-ray Absorption and Emission in Analytical Chemistry," John Wiley and Sons, Inc. New York, 1960.

- 61. Compton, A. R. and Alisson, S. K., "X-rays in Theory and Experiment," D. Van Nostrand Co., New York, 1957.
- 62. Sagel, K., "Tables for X-ray Emission and Absorption Analysis," Springer-Verlag, Heidelberg, 1959.
- 63. Stainer, H. M., U. S. Department of the Interior, Bureau of Mines, Information Circular 8186, 1963.
- 64. Hughes, G. D. and Woodhouse, J. B., in "X-ray Optics and Microanalysis," (R. Castaing, P. Deschamps and J. Philibert, Eds.), Hermann, Paris, 1966, p. 202.
- 65. Deslattes, R. D., Air Force Office of Scientific Research Report AFOSR TN-58-784, 1958, 76 p. ASTIA Doc. 202-009.
- 66. Sweeney, W. R., Seal, R., and Birks, L., Spectrochimica Acta. 17, 1961, p. 365.
- 67. Wrede, W., Ann. Phys. 36, Ser. 5, 1939, p. 681.
- 68. Hughes, G. D., Woodhouse, J. B., and Bucklow, I. A., Brit. J. Appl. Phys. Ser. 2, 1, 1968, p. 695.
- 69. Ershov, O. A., Brytov, I. A., and Lukirskii, A. P., Optics and Spect. (U.S.A.) <u>22</u>, 1967, p. 66.
- 70. Lukirskii, A. P., Savinov, E. P., Ershov, O. A., and Shepelev, Y. F., Optics and Spect. (U.S.A.) <u>16</u>, 1964, p. 168.
- 71. Jaegle, P., Combet Farnoux, F., Dhez, P., Cremonese, M., and Onori, G., Phys. Letters <u>26A</u>, 1968, p. 364.
- 72. Singer, S., J. Appl. Phys. <u>38</u>, 1967, p. 2897.
- 73. Jaegle, P., Missoni, G., and Dhez, P., Phys. Rev. Let. <u>18</u>, 1967, p. 887.
- 74. Jaegle, P., and Missoni, G., Comp. Rend. Acad. Sci., Paris 262B, 1966, p. 71.
- 75. Haensel, R., Kunz, C., and Sonntag, B., Phys. Let. <u>25A</u>, 1967, p. 205.
- 76. Haensel, R., Kunz, C., Sasaki, T., and Sonntag, B., Appl. Optics 7, 1968, p. 301.

- 77. Fomichev, V. A. and Lukirskii, A. P., Optics and Spect. (U.S.A.) 22, 1967, p. 432.
- 78. Lukirskii, A. P. and Zimkina, T. M., Bull. Acad. Sci., U.S.S.R., Phys. Ser. 27, 1963, p. 808.
- 79. Ederer, D. L., Phys. Rev. Let. 13, 1964, p. 760.
- 80. Bearden, J. A., Rev. Mod. Phys. <u>39</u>, 1967, p. 78.
- 81. Bearden, J. A., "X-ray Wavelengths," N.Y.O. 10586, Fed. Sci. and Tech. Inf. Center, U. S. Department of Commerce, Springfield, Virginia, 1963.
- 82. Bearden, J. A. and Burr, A. F., Rev. Mod. Phys. <u>39</u>, 1967, p. 125.
- 83. Dewey, R. D., "Computed X-ray Wavelengths" and Dewey, R. D., Mapes, R. S. and Reynolds, T. W., "Wavelength Tables," report under Research Project Code 36 XMB-220, Reynolds Metals Co., Richmond, Virginia, 1966.
- 84. Kemp, J. W., "X-ray Wavelength Tables," Applied Research Laboratories, Inc., Glendale, California, 1963.
- 85. Moore, Charlotte E., "Atomic Energy Levels" NBS Circ. No. 467, 1, 1949, 11, 1952, 111, 1958, U. S. Government Printing Office.
- 86. Biermann, H. H., Ann. Physik 26, 1936, p. 740.
- 87. Dersheim, E. and Schein, M., Phys. Rev. <u>37</u>, 1931, p. 1238.
- 88. Tomboulian, D. H., Bedo, D. E. and Neupert, W. M., J. Phys. Chem. Sol. <u>3</u>, 1957, p. 282.
- 89. Lukirskii, A. P., Zimkina, T. M. and Brÿtov, I. A., Opt. and Spect. (U.S.A.) <u>16</u>, 1964, p. 372.
- 90. Lukirskii, A. P., Savinov, E. P. and Shepelev, Y. F., Opt. and Spect. (U.S.A.) <u>15</u>, 1963, p. 290.
- 9]. Bezdenezhnykh, G. V., Zapysov, A. L., Israilev, I. M. and Saprykin, V. N., Opt. and Spect. (U.S.A.) 23, 1967, p. 553.
- 92. Fomichev, V. A. and Zhukova, I. I., Opt. and Spect. (U.S.A.) <u>24</u>, 1968, p. 147.

- 93. Hopkins, J. I., J. Appl. Phys. 30, 1959, p. 185.
- 94. Ogier, W. T., Lucas, G. J. and Park, B. J., Appl. Phys. Let. <u>5</u>, 1964, p. 146.
- 95. Cooke, B. A. and Stewardson, E. A., Brit. J. Appl. Phys. <u>15</u>, 1964, p. 1315.
- 96. Tomboulian, D. H. and Pell, E. M., Phys. Rev. <u>83</u>, 1951, p. 1196.
- 97. McCrary, J. H., Plassmann, E. H., Puckett, J. M., Conner, A. L. and Zimmermann, G. W., Phys. Rev. 153, 1967, p. 307.
- 98. Andrews, C. L., Phys. Rev. <u>54</u>, 1938, p. 994.
- 99. Woernle, B., Ann. Physik 5, 1930, p. 475.
- 100. Schmickley, R. D. and Pratt, R. H., Phys. Rev. <u>164</u>, 1967, p. 104.
- 101. Cooper, J. W., Phys. Rev. 128, 1962, p. 681.
- 102. Cooper, J. W., Phys. Rev. Let. 13, 1964, p. 762.
- 103. Manson, S. T. and Cooper, J. W., Phys. Rev. <u>165</u>, 1968, p. 126.
- 104. Herman, F. and Skillman, S., "Atomic Structure Calculations," Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1963.
- 105. Rau, A. R. P. and Fano, U., Phys. Rev. <u>167</u>, 1968, p. 7.
- 106. Colby, J. W., in "Advances in X-ray Analysis,"
 (G. R. Mallett, M. Fay and W. M. Mueller, Eds.),
 XII. To be published in 1968.
- 107. Reed, S. J. B. and Long, J. V. P., in "X-ray Optics and X-ray Microanalysis," (H. H. Pattee, V. E. Cosslett and A. Engstrom, Eds.), Academic Press, New York, 1963, p. 317.

108. Birks, L. S., J. Appl. Phys. <u>29</u>, 1961, p. 387.
109. Reed, S. J. B., Brit. J. Appl. Phys. <u>16</u>, 1965, p. 913.

,	110.	Duncumb, P. and Shields, P. K., in "X-ray Optics and X-ray Microanalysis," (H. H. Pattee, V. E. Cosslett and A. Engstrom, Eds.), Academic Press, New York, 1963, p. 329.
	111.	Colby, J. W., Report NLCO-969, National Lead Co. of Ohio, Cincinnati, Ohio, 1964.
	112.	Fink, R. W., Jopson, R. C., Mark, H., and Swift, C. D., Rev. Mod. Phys. <u>38</u> , 1966, p. 513.
	113.	Burhop, E. H. S., J. Phys. Radium <u>16</u> , 1955, p. 625.
	114.	Laberrigue, J. and Radvanyi, P., J. Phys. Radium <u>17</u> , 1956, p. 944.
	115.	Hagedoorn, H. L. and Wapstra, A. H., Nucl. Phys. <u>15</u> , 1960, p. 146.
	116.	Bailey, L. E. and Swedlund, J. B., Phys. Rev. <u>158</u> , 1967, p. 6.
	117.	Green, M. and Cosslett, V. E., Proc. Phys. Soc. <u>78</u> , 1961, 1206.
	118.	Henoc, J., Thesis, University of Paris. Publication CNET Etude No. 655 PCM, 1963.
	119.	Henoc, J., Maurice, F., and Kirianenko, A., Rapport CEA-R 2421, 1964.
	120.	Everhart, T. E., J. Appl. Phys. <u>31</u> , 1960, p. 1483.
	121.	Archard, G. D., J. Appl. Phys. <u>32</u> , 1961, p. 1505.
	122.	Nakhodkin, N. G., Ostroukhov, A. A., and Romanovskii, V. A., Soviet Physics, Solid State Physics <u>4</u> , 1962 p. 1112.
	123.	Cosslett, V. E. and Thomas, R. N., Brit. J. Appl. Phys. <u>15</u> , 1964, p. 235.
	124.	Cosslett, V. E. and Thomas, R. N., Brit. J. Appl. Phys. <u>15</u> , 1964, p. 883.
	125.	Cosslett, V. E. and Thomas, R. N., Brit. J. Appl. Phys. <u>15</u> , 1964, p. 1283.
	126.	Cosslett, V. E. and Thomas, R. N., Brit. J. Appl. Phys. <u>16</u> , 1965, p. 779.
- 127. Worthington, C. R. and Tomlin, S. G., Proc. Phys. Soc. <u>A69</u>, 1956, p. 401.
- 128. Archard, G. D., in "X-ray Optics and Microanalysis," (A. Engstrom, V. Cosslett and H. Pattee, Eds.), Elsevier, Amsterdam, 1960, p. 331.

129. Green, M., Proc. Phys. Soc. <u>82</u>, 1963, p. 204.

- 130. Bishop, H. E., Proc. Phys. Soc. 85, 1965, p. 855.
- 131. Bishop, H. E., Brit. J. Appl. Phys. <u>18</u>, 1967, p. 703.
- 132. Webster, D. L., Clark, H., and Hansen, W. W., Phys. Rev. <u>37</u>, 1931, p. 115.
- 133. Bethe, H. A., Ann. Phys., Lpz. 5, 1930, p. 325.
- 134. Mott, N. F. and Massey, H. S. W., "The Theory of Atomic Collisions," Clarendon Press, Oxford University, 1949.
- 135. Webster, D. L., Hansen, W. W., and Duveneck, F. B., Phys. Rev. 44, 1933, p. 258.
- 136. Moiseiwitsch, B. L. and Smith, S. J., Rev. Mod. Phys. 40, 1968, p. 238.
- 137. Glupe, G. and Mehlhorn, W., Phys. Letters <u>25A</u>, 1967, p. 274.
- 138. Drawin, H. W., Zeit. fur Phys. 164, 1961, p. 512.
- 139. Bloch, F., Zeit. fur Phys. 81, 1933, p. 363.
- 140. Jensen, H., Zeit. fur Phys. 106, 1937, p. 620.
- 141. Wilson, R. R., Phys. Rev. 60, 1941, p. 749.
- 142. Duncumb, P. and DaCasa, C., Proc. Second Nat. Conf. on Electron Probe Microanalysis, Boston, Massachusetts, June, 1967.
- 143. Kulenkampff, H. and Spyra, W., Zeit. fur Phys. <u>137</u>, 1954, p. 416.
- 144. Sternglass, E. J., Phys. Rev. 95, 1954, p. 345.
- 145. Kanter, H., Ann. Phys., Lpz. 20, 1957, p. 144.

- 146. Bishop, H. E., in "X-ray Optics and Microanalysis," (R. Castaing, P. Deschamps and J. Philibert, Eds.) Hermann, Paris, 1966, p. 153.
- 147. Weinryb, E. and Philibert, J., Comp. Rend. <u>258</u>, 1964, p. 4535.
- 148. Thomas, P. M., U. K. Atomic Energy Research Establishment Report A.E.R.E. No. 4593, Harwell, Berks., England, 1964.
- 149. Tomlin, S. G., Australian J. of Phys. <u>17</u>, 1964, p. 452.
- 150. Duncumb, P. and Shields, P., Brit. J. Appl. Phys. <u>14</u>, 1963, p. 617.
- 151. Hansen, M., "Constitution of Binary Alloys," 2nd Edition, McGraw-Hill Book Co., Inc., 1958, p. 704.
- 152. Brown, J. D., in "The Electron Microprobe," (T. D. McKinley, K. F. J. Heinrich and D. B. Wittry, Eds.) John Wiley and Sons, New York, p. 189.
- 153. Frazer, J., in Proc. of the First Nat. Conf. on Electron Probe Microanalysis, College Park, Maryland
- 154. Frazer, J. Z., Fitzgerald, B. W., and Reid, A. M., University of California, LaJolla, California, Report SIO 66, June, 1966.
- 155. Hobby, M. G. and Wood, G. C., Acta. Met. <u>75</u>, 1967, p. 143.
- 156. Lifshin, E. and Hanneman, R. E., General Electric Report No. 66-C-250, Part II, General Electric Co., Schnectady, New York, September, 1966.
- 157. Beaman, D. R., Proc. Sec. Nat. Conf. on Electron Probe Microanalysis, Boston, Massachusetts, June, 1967.

APPENDIX A

COMPUTER PROGRAM FOR CALCULATION OF DETECTOR SYSTEM DEADTIME

A computer program for the computation of a detector system deadtime is given. The program language is FORTRAN II. The listing is as follows:

DIMENSION XN(100), XMA(100), TITLE(8), R(100) 1000 READ 1, TITLE 1 FORMAT (8A4) D0 43 J=1,100 READ 40, XMA(J), XN(J) 40 FURMAT (F6.5,2X,F6.1) IF (XMA(J))99.42.43 **43 CONTINUE** 42 M=J-1 \$XN=0.0 SR=0.0 SXNR=0.0 \$XN2=0.0 DO 30 I=1,M SXN=SXN+XN(I) R(I) = XN(I) / XMA(I)SXNR=SXNR+XN(I) *R(I) SXN2=SXN2+XN(I)*XN(I) 30 SR=SR+R(I) C=M B=(SXN2*SR-SXNR*SXN)/(C*SXN2-SXN*SXN) A=(SXNR-B*SXN)/SXN2 TAU=A/B PRINT 20, TITLE 20 FORMAT (1H1, 10X, 13HDEADTIME FOR , 8A4///11X, 51HNO. COUNTS/SEC. 1 MICROAMPS COUNTS/MICROAMP SEC. /) DO 26 I=1,M 21 FORMAT (11x, 12, 3x, F10.2, 3x, F10.6, 7x, E12.5) 26 PRINT 21, 1, XN(1), XMA(1), R(1) PRINT 22, A, B, TAU 22 FORMAT (/// 18X,1HA,14X,1HB,10X,8HUEADTIME// 12X,3(E12.5,3X)) PRINT 23 23 FORMAT (1H1) 99 CONTINUE GO TO 1000 END

APPENDIX B

COMPUTER PROGRAM FOR NUMERICAL INTEGRATION OF RELATION FOR STOPPING POWER FACTOR

A computer program in FORTRAN II is given for the calculation of numerical values of the Stopping Power factor. The program integrates by numerical methods the relation:

The listing is as follows:

	CCMMON AA, AZ,	ED,EC						
	CIMENSION TIT	LE (10)						
F	VOLT PW17							
1001	RITTO 2 7 7AV							
1001	RIIII CICILAV	v						
	R117,2,ED.EC			<u> </u>				
	RIT7.2. RA.RA	8						
	R117.2. C						· .	
2	FERMAT (2F1C.	C)					•	
5	FCRMAT (1046)							
-	AZ=Z							· · · · · · · · · · · · · · · · · · ·
	A A = A							· .
	CA1=QUAL(VOLT	,PW17)						<u> </u>
	AZ=ZAV							
	AA=AAV			 	<u></u>			
	CA2=QUAL(VOL)	, PW171	•					
	CA=C+RA+CA1/I	RAD-LAZ	1					
	WUID:0:1111C		FO. FC. PA. RA	8.0				
6	SCOMATIZ/HI	TOMIC N	UMPER CORRE	CTION FO	R .]	046)		
2	FCRMAT(110H	7	ZAV	•••••	A	A	AV	E
	EC EC		RA	RAB		C	/98	[12.6//)
	WCT6.4.CA1.C/	12, CA						
4	FCRMAT(37H	CA1	CA2		CA	/ 3	E12.6)	
•	GC TO 10C1							
	ENC			•				
		·			:			
	FUNCTION VOL	r(E)					1997 - 19	
	CEMMON A4. AZ	EO, EC		1				
	ER=EQ/E							
	VOLT = (AZ	ELOGIEO)/(ER+(EO-ER)+E)))/(AA+EC)**0.837	*(ER+(E	U-EK)#E)
	1++C.163+ELOG	12.C+(ER	(+(EO-ER)+E)	/(11.5+4	(Z)))		. <u></u>	
	RETURN							
	ENC							
						·		
	•.					4		
				•	•	11		
						an a		
				I.	#1.	h.,		
				and the second s	1 11	9 F 1		

APPENDIX C

COMPUTER PROGRAM FOR REDUCTION OF RAW MICROPROBE DATA TO COMPOSITION

The complexity of the correction procedures and the necessity for performing the calculations in an iterative manner suggest the use of a digital computer for reduction of raw microprobe data to composition. Several computer programs are available in the literature. 106, 152-157 However, each method either has an extensive input requirement or is limited in application. Brown's¹⁵² program necessitates much looking up of constants in tables, uses a questionable atomic number correction, and by virtue of containing many subroutines, lets the user choose the correction procedure to give him the answer desired. Frazer's program^{153,154} and the program of Hobby and Wood¹⁵⁵ do not contain an atomic number correction. Lifshin and Hanneman's program¹⁵⁶ requires much input and is primarily useful only for binary systems. Colby's program.¹⁰⁶ similar in some respects to the present one, uses an inadequate background correction and does not provide for output in the case of an inhomogeneous sample, such as a diffusion couple. Beaman's program¹⁵⁷ is relatively difficult to use, lets the user choose the correction procedure and is applicable particularly to intermediate weight elements.

The goal in writing the present program was to generate a computational method that was most general in character, simple to use and easily adaptable to a time-sharing system when coupled to the now available automatic readout systems for electron microprobes. A minimum of input data is required. All constants necessary for the various calculations are either stored internally or calculated in the program.

In the listing of the program that follows, comment statements can be used to follow the course of the calculation. The constants stored internally are given in Appendix D. The input requirements are outlined in detail in Appendix E and a typical output is given in Appendix F. The program is written in the FORTRAN IV language.

	UI HEL MAGIC II PROGRAM
Ċ	UI - UNIVERSITY DE LIAINEIS
Ċ	
	MRL - MATERIALS RESEARCH LABORATORY
0	
	MAGIL - MICRUPROBE ANALYSIS GENERAL INTENSITY CORRECTION - PROGRAM
	VERSION 11
Č	AGK2TON IT
C	PROGRAM CORRECTS RAW MICROPROBE X-RAY INTENSITY DATA FOR DEAD
Ĉ	TIME LOSSES (FIXED-TIME OR FIXED-COUNT). BACKGROUND AS A
<u> </u>	FUNCTION OF COMPOSITION, ABSORPTION (DUNCUMB-SHIELDS-PHILTBERT).
· C	CHARACTERISTIC LINE FLUORESCENCE (REED), ATOMIC NUMBER EFFECTS
· · · · · · · · · · · · · · · · · · ·	(DUNCUMB-DUNCUMB & DA CASA), AND INSTRUMENT DRIFT BASED ON BEAM
- C	CURRENT. ALL PARAMETERS ARE STORED OR CALCULATED INTERNALLY.
L	AS MANY AS 8 ELEMENTS (AND ONE BY DIFFERENCE) MAY BE ANALYZED.
L C	UNLY REQUIRED INPUT ARE ACCELERATING POTENTIAL, CHEMICAL
	STABULS OF ELEMENTS ANALYZED, AND CHARACTERISTIC LINES USED FOR
C C	ANALYSIS, IF DENSITY IS INPUT, MEAN DEPTH OF PENETRATION IS
······	CALCULA IED.
ů C	
0001	DIMENSION AVPIRI POEVIRI
0002	DINENSION AVWP(9) AVAP(9)
C0C3	DIMENSION WRDEV(9), APREVIGI
0004	DIMENSION CI (8) . ATOM (9)
0005	DIMENSION CO(8), C3(8)
0006	DIMENSION SR(8), FAL(8)
0007	DIMENSION SRSQ(8), ACAL(8)
8000	DIMENSION EC(9), E(8)
0009	DIMENSION Z(9),A(9)
0011	DIMENSION VAL(8) SIGNA(8)
0012	DIPENSION HS(8),US(8)
0013	DIMENSION PICE CALL
0014	DIMENSION EL (9) AUTOR
0015	01HENSION WP(9) \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
0016	DIMENSION SWP(9) . SAPSO(9)
C017	DIMENSION SWPSQ(9), SSI(8)
CC18	DIMENSION RINT(B)
0019	REAL LIMIT(8)
0020	DIMENSION ASI(8) ,ABGD(8)
0021	DIMENSION XI(8), SI(8)
0022	DIMENSION C(9) PEAK(B)
0024	DIMENSION MPEAK(8), UAL(8)
0025	DIFENSION ELONAL CALLA CALLA
CC26	DIMENSION LIGOD_TITLE71
0027	DIMENSION DATE(ALNAME(S)
8500	DIMENSION LOOP(300) - EDGE(9)
0C29	DIMENSION WAVE (9) . MM(3)
0030	DIMENSION ABET(26), ALPHA(8)
0031	DIMENSION FIDI(8), TAU(8)
C032	RIMENSION TAUM(6), AJR(9)
0033	DIMENSION FYR(9), PF(8)

0034	DIMENSION BCSUM(8), STDSUM(8)
C035	DIMENSION BCAVG(8), BRUD(8)
0036	DIMENSION XXI(B). BEAN(300)
0037	DINE NSION BC(8,99). STDIT8.991
0038	OLMENSTON BESHMAR.B. ABE/A.B.
- CC 30	
0000	
0000	UINE 43100 AS 10 177 100 0171
6041	
0042	
0043	DIMENSION WPC(9,300), APC(9,300)
	c
	C INITIALIZATION AND IMPUT OF BASIC PARAMETERS
· .	C
	C
0C44	READ 91 , ((P(1,J),J=1,11),1=1,100)
0045	81 FORMA7 (F7.3.A3.3F6.3.6F7.3)
C046	READ 82. $((P(1,J), J=12, 22), I=1, 100)$
0047	82 FORMAT (7F7.3.4F5.3)
0049	PEAD 7. (IPII. N. 1923.20) .191.100)
0040	T = CODMAT (CE 3 (CF 3) C (C (CF 3) (CF
0050	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0050	READ 0, ((P(1,)), 3430, 397, 141, 1007
0051	8 FURMAT (DE19.8)
0052	READ 5, (AN(I),L=1,3)
0053	5 FORMAT (3A2)
C 054	READ 530, ST2,LT2
0055	530 FORMAT (A3,A2)
0056	REAU 500, (AB@T(I),I=1,26)
0057	500 FORMAT (26A1)
0058	READ 501. PRFX.NMOR
0059	501 FORMAT (AL.14)
·	C C
····· ·· ·· ··	
	······································
0040	L L DEAD 3 TAC MODOR DATE NAME TITLE
0000	I KEAU ZOLAGANANGUAIEMARENIALE
0061	2 FURMAI (AI, 14, 27, 384, A3, 22, 384, 20, 24, 384, 24, 684, AI)
0062	REAU 00 JEU J NO J LA PE J NOU J LA J INE LA J AUN
0063	88 FORMAT (F4.1,2X,12,2X,F3.1,2X,2(F3.2,2X),F4.1,2X,8F3.1)
CC64	READ 6,(EL([],L[ME(]],I=1,9)
0065	6 FORMAT (9(A3,A2,2X))
	<u>c</u>
	C DETERMINE NUMBER OF ELEMENTS IN SYSTEM, AND NUMBER ANALYZED
	C
	C
6666	00 509 [=1.9
0067	IF (EL(1).EQ.ST2) GO TO 518
8400	1F (1 [NF(1], FO. [T2] GO TO 510
0069	
CC7C	
) I D NEL-1-1 NA-1-1
0071	
0072	
0073	510 NEL #1
CC74	NA=I-1
	<u>C</u>
	c

	č	
	č	
CC75	511	1F (NPROB.NE.0) GO TO 502
6676		NMBR=NMBR+1
0017		1F (NMAR 1 F. 9999) 60 10 504
0078	•	
0076		16 (ABET(1), 60, 00 FY) 60 10 507
0000	504	
	500	
	507	PRF ATADE ((111)
6633	504	NFRUB=NMBR
<u>CC84</u>		
CC85	502	D0 508 N=1+2
CC86	1001	FORMAT (A1,14,2X,3A4,A3,2X,5A4,2X,6A4,A1)
CC87	508	WRITE (7,1001)TAG,NPROB,DATE,NAME,TITLE
	C	
	C	· · · · · · · · · · · · · · · · · · ·
	C	CHECK FOR X-RAY EMERGENCE ANGLE. IF NONE FURNISHED, ASSUME 52.5
· · · · · · · · · · · · · · · · · · ·	C	DEGREES
	С	
	C	
0088	-	IF (THETA.EQ.O.) THETA = 52.5
0000		C SC = 1 - / SI N (THE TA + 3 - 14 15 9 / 180 -)
	r	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	č	DETERMINE OF CALCULATE FOR FACH ELEMENT ANALYZED. ALL DADAMETED
		DETERMINE UN CALCULATE, FUN EACH ELEMENT ANALYZED, ALL FARAMETERS
	L L	NECESSARY FUR CURRECTIONS
	<u> </u>	
	C	
0090		PRINI 613, TAG, NPRUB, DATE
0091		PRINT 2000
0092	2000	FORMAI (//4X, THELEMENT, 3X, THAT, NO., 5X, THAT, WT., 4X, 2HPF, TX, 4HEDGE
•	1	1,6X,2HEC,7X,4HWAVE,5X,1HU,8X,1HK/)
<u>CC93</u>		DO 95 K=1,NA
CC94		00 102 1=1,100
<u>CC95</u>	· · · · · · · · · · · · · · · · · · ·	IF (P(1,2).EQ.EL(K)) GO TO 103
CC96 -	102	CONTINUE
	С	
	C	
	С	DETERMINE ATONIC NUMBER AND ATOMIC WEIGHT, AND CALCULATE
	C	FACTOR FOR ATOMIC NUMBER CORRECTION
	c	
	Ċ	
0097	103	2 (K) = 1
0098		A(K)=P([.])
0099		DF(K)=7(K)=(14_++(1_+-FXP(+_1+7(K)))+75_5/(7(K)++(7(K)/7,5))-7(K)/(
****		100.47(K))
0.00		
<u></u>	<u> </u>	NE - 2
	<u>y</u>	
	C	DETERMINE ANALYTICAL LINE ABSURPTION EDGE, CRITICAL EXCITATION
	<u> </u>	PUTENTIAL AND WAYELENGTH, AND CALCULATE OVERVOLTAGE
	С	
	C.	
A . A .		DG 4 M=1,2
CICI		TE (LINE(K).EO.MM(M)) CO TO 3
<u>C102</u>		
<u> <u> <u> </u> <u> </u></u></u>	4	NL=NL+1

0104	$EDGE(K) = P(I \cdot 17)$
0105	GC YO 96
0106	3 EDGE(K)=P(1,3*bL)
0107	96 EC(K)=P(1,NL)
C108	WAVE(K)=P(I,NL+3)
0109	U(K)=EO/EC(K)
0110	IF (U(K).GT.20.) U(K)=20.
0111	R(K) ≠0.
C112	KK=34
	C DETERMINE AVERNAL TARE DEBENDENT BARYSCATTER LASS FACTOR
	-č
0113	DC 107 J=1,6
C114	Ŕ(K)=U(K)≠Ř(K)+P(Ĭ,KR)
0115	1C7 KK=KK-1
0116	PRINT 2001,EL(K),T ,A(K),PF(K),EDGE(K),EC(K),WAVE(K),U(K),R(K)
0117	2C01 FORMAT (6X,A3,7X,12,6X,F8.3,2X,F8.3,2X,F7.3,3X,F6.3,3X,F7.3,3X,F5
	1.2,3X, #8.6)
C118	95 CONTINUE
0119	IF (NEL.EQ.NA) GO TO 98
	<u> </u>
	L
	C IF AN ELEMENT IS TO BE DETERMINED BY DIFFERENCE OF ENTITE CATE
	C ARGENTIAN FORF, CRITICAL EXCITATION POTENTIAL AND WAVELENGTH.
	C AND CALCULATE OVERVOLTAGE AND BACKSCATTER LOSS FACTOR
	Č
C120	DQ 104 I=1,100
0121	IF (P(1,2).EQ.EL(NEL)) GO TO 105
<u>C122</u>	104 CONTINUE
0123	105 Z(NEL)=I
0124	<u>A(NEL)=P(I,L)</u>
0125	
0120	
0128	
C129	500 00 - 76 1 A = P(1,17) EDGE(NEL)=P(1,17)
0130	G0 T0 101
0131	99 EDGE(NEL)=P(I,3*NL)
0132	101 EC(NEL)=P(I_NL)
0133	WAVE(NEL)=P(1,NL+3)
0134	LINE(NEL)=MM(NL-2)
C135	U(NEL) = EC/EC(NEL)
0136	<u>IF (UINEL).61.20,1 UINELJ=20,</u>
0137	RINEL)=U.
0120	
0137	0 105 0-170 0 105 1 11(1 NF1 ) *R(NF1 ) +P(1.KK)
C141	108 KK=KK-1
0142	PF{NEL}=0.
C143	PRINT 2001, EL(NEL), I , A(NEL), PF(NEL), EDGE(NEL), EC(NEL), WAVE(NE
	11),U(NEL),R(NEL)
	C
	<u>c</u>
	C CALCULATE ABSORPTION COEFFICIENT MATRIX
<b></b>	· · · · · · · · · · · · · · · · · · ·

	С	
0144		UQ 200 1=1.NEL
C145		D0 200 J=1.NEL
0146		N7 = 7(-1)
C147		E=1.0
0148		DD 202 M=9-18
0140		16 (HAVE(1)) 1 P(N), MILCO TO 203
0150	202	
C150	202	
(1)1		
0152		
0153		
C154	203	INIEK=M-8
C155		GC 10 (204,205,206,207,208,209,210,211,212,213), INTER
0156	204	CON * P (NZ , 24)
C157		Ex=P(N2,19)
C158	×	GO TO 201
0159	205	CON*P(NZ +25)
C16C		EX=P(NZ,20)
0161		GO TO 201
0162	206	F=0.961
C163		GC 10 205
0164	207	$F = C \cdot S17$
0165		60 10 205
0166	20.8	
0167		
0149		
0140	200	
0169	209	
	210	
<u> </u>		<u>60 10 208</u>
C173	ž11	F=0.548
<b>C174</b>		<u>GD TO 208</u>
C175	212	F=0.894
<u>C176</u>		<u>GO TO 208</u>
0177	213	CON=P(NZ,27)
<u> </u>		EX=P(NZ,22)
	C	
	<u>c</u>	
·	C	CALCULATE ABSORPTION COEFFICIENT OF ELEMENT J FOR I RADIATION
	C	
	C	
<u>C179</u>	201	AC(1, J) = (CON+WAVE(I)++EX)++F
0180	200	CONTINUE
C181		PRINT 52
0182		1F (NA.LE.3) GO TO 2060
0183		PRINT 648. (FL(I), IINF(I), T±1.NA)
C184	• • •	DRINT 646
C185		DD 2050 Jal NEI
0184		
A107	2060	CONTINUE
	44.20	
0100	2010	GU TU ZUGƏ Dotat 4/7 /si/ta itas/ta i=3 aas
0109	2060	PRINI 09() [EL(1/] LINE(1/)[=1,NA)
0190		
		DU 2007 J#LINEL
0192		PRINT 667, EL(J), (AC(I,J),I=1,NA)
0193	. 20.65.	
	C	

	C
	CALCULATE COMMON EXPRESSIONS
	C
C194	DC 3C 1=1,NEL
0195	30 NS(1)+2(1)/A(1)
C196	PRINT 2002
C197	ZOCZ FORMAT ( 7/13x,2HWS,8X,1HE,8X,3HVAL,7X,3HSTGMA,6X,2HHS,8X,2HUS,8X,
•••	12HFS,7X,4HFACT/)
C158	DO 11 I=1,NA
0199	ALPHA(I)=1.
0200	E(1)=(EC(1)+EO)/2.
0201	VAL(1)=7.061+ALOG(E(1))
0202	SIGNA(1)=2.54E+05/(E0++1.5-EC(1)++1.5)
0203	MS(1)=4, 5+A(1)/(Z(1)+Z(1))
0204	US(1)=1.+CSC+AC(1.1)/SIGAX(Y)
0205	ES(1)=((1,+MS(1))+(1,+1,1+MS(1)/(4,+1,1+MS(1))+CSC+AC(1,1)/STGMA(1
0203	1111/44541941.0051194451111
0004	FACT(1)=FS(1)+B(1)/(WS(1)+(VAL(1)-ALOG(PF(1))))
0200	2007 E00MAT ( 4Y A1 1 Y F7 4 3Y F7 4 3X F7 4 3X F8 2 2X F7 4 3X F7 4 3X
0207	2003 FURNALL CATASTAN TOTISATION STUDIES CONTRACT
12272° ***	TT TO THE ART GO OF THE MEAN AND AND AND AND AND AND AND AND AND A
0208	II PRIMI 2003, ELII, ASII, ELII, ALII, ELII, ALII, ALIII, ALII, AL
C2C5	DC ACC LaT'A
0210	F YR { [ ] =0.
0211	A JR ( I ) =0.
0212	DC 908 J=1,8
0213	900 B(J,[]=0.
	С
	C CALCULATE PHILIGERT-LENAPO ELECTRUN STUPPING POWER
	C
	C
0214	5 24 - 22 44 / 2 - E - E - E - E - E - E - E - E - E -
	1,139975-9111
C215	PRINT 2004, ESP
<u>C216</u>	2004  FCRMAT  (7/43.6HESP = 18.44.8773
	C
	C
	C CHECK FOR FLOURESCENCE AND BALLOR
	C VIELDS AND ADSORVIIUN JUNY MAILUA
0217	DD 878 K=1,NEL
0218	N=2(K)
0210	IF (LIME(K), EQ. MM(3)) GO TO 876
0220	1F (LIME(K), EQ. MM(1)) GQ TQ 876
	A.M.(K)=P(N,25)+P(N,10)++P(N,20)/(P(N,26)+P(N,12)++P(N,21))
0223	$n_{m-1}$ 11065+2 (K)+(.013680-2 (K)+2(K)+.217720E-06)
0222	
0223	(74 A 10/1/ D/N, 74) #D(N, 9) ##P(N, 19)/(P(N, 25) #P(N, 9) ##P(N, 20))
	$(1) = \frac{1}{2} \frac{1}{2$
0225	
0227	
C229	DU 875 KHI, NA
0230	Lt. LL (RE LE) . EN ARL311. UN. LV. 9/.3
C231	DU 852 I=1,NEL

¢

0232	IF ((EDGE(K).LE.WAVE(I)).OR.(LINE(I).EQ.MM(3))) GO TO 852
0233	TF (LINE(T).EQ.LINE(K)) 60 TO 855
0234	IF (LINE(1).EQ.MM(1)) GO TC 859
0235	60 10 840
6236	A55 FF=.5
6230	20 TO 856
6238	950 FER_21
1236	20 YA 844
237	
6241	
0292	RJARTRI
	CALCULATE FACTOR FOR FLUCRESCENCE CORRECTION
0243	
	LTLOF
CZ44	PRINT ZUUSTELLITELINTTOINTIT
0245	2003 PURHAL & GRAZANTEGURESCENCE FACTOR FOR PASTIST FERENCES IN THIS STATE
	113 (77.8)
C24E	ESZ CONTINUE
0247	E73 CONTINUE
0248	00 901 [*1,8
0249	SAP(1)=0,
C25C	SwP(1)=0.
0251	SAPSQ([]=0.
C252	SWP SQ(1)=0.
0253	SSI(I)=0.
C254	SR(1)=0.
0255	901 \$R\$Q(1)=0,
0256	SAP(9)=0.
6257	SAP SQ(9)=0.
6258	SWP(9)=0.
0259	ShP50(9)=0.
	C
	C IF COMPOUND STANDARDS ARE USED INSTEAD OF PURE ELEMENTAL
	C STANDARDS, INPUT NECESSARY DATA AND CALCULATE APPROPRIATE
	C PARAMETERS TO CORRECT STANDARD DATA USING THE SAME GENERAL
	C METHODS OUTLINED
	C
	C
0260	IF (NB.EQ.0) GO TO 53
0261	DQ 603 K=1,N8
C262	READ 13,10, STO(K,11, STO(K,2),CS,EL2
6263	13 FORMAT (12,44,4),F6,4,431
0264	
0.265	IF (P(I,2),EQ.EL2) GG TO 109
0.264	106 CONTINUE
	C
	у. С
	DETERNINE ATOMIC NUMBER AND ATOMIC WEIGHT OF SECOND ELEMENT IN
	C COMPOUND STANDARD
0747	
	**************************************
C 7 4 0	

C 269		NL≠3
C C C C C C C C C		DETERMINE CRITICAL EXCITATION POTENTIAL AND CALCULATE OVER- VOLTAGE AND BACKSCATTER LOSS FACTOR FOR SECOND ELEMENT IN COMPOUND STANDARD
C 27C C		DD 110 J=1,2
0271		IF (P(I,NL).LT.EC) GC TO 94
C272	110	NL=NL+1
C273	94	EC2=P(1,NL)
C274		U2=E0/EC2
C275		IF (U2.GT.20.) U2=2C.
C276		R2=C.
C277	-	KX=34
C278		DO 112 J=1,6
0279		R2=U2+R2+P(I,KK)
C28C	112	KK=KK-1
C		
Ċ		
C		CALCULATE SECOND ELEMENT ABSORPTION COEFFICIENT
- C		
C C		
C281		F=1.0
C282		DC 3C2 M=9,18
C283		IF (WAVE(ID).LT.P(I,M)) GO TO 303
C284	302	CONTINUE
C285		CON= P([,28)
C286		EX= P(1,23)
C287		
C288	303	INTER=M-8
0289		60 10 1304,305,306,307,308,309,310,311,312,3131, INTER
0290	304	CON= P(1,24)
6251		EX=P(1,19)
C292		GC TC 301
0253	305	CON=P(1,25)
C254		EX=P(I,20)
<u>C2S5</u>		<u>GO 10 301</u>
C296	306	F=C.961
<u>C297</u>		<u>GC 10 305</u>
0298	307	
0299	200	
0300	306	
0301		
0302		
0303	208	
0304	210	
0305	:10	$r = L_0 J I Z$
0300	211	
	211	
3060	217	50 IU 500 E-0 904
0210	512	F-0+077
0311	212	CON±2011.271
0212		5Y±D(1,22)
0312	301	LATINAYEE/ AC2=/CANAWAVE/ID)**FX)**F
0314		

₩AB=CS+₩S(ID)+C2+Z2/A2
C C CALCULATE OTHER PARAMETERS FOR COMPOUND STANDARD C
C ZAB=CS+Z(ID)+C2+72
PFAB=ZAB+(14.+(1EXP(14748))+75.57(74844774877 8)-74877 8)
1ZAB))
RAB=CS+R(1D)+C2+R2
$ACAB=CS \neq AC(1D, 1D) + C2 \neq AC2$
UAB=1.+CSC#ACAB/SIGMA(TO)
HAB=4.5/(ZAB+WAB)
FAB=((1.+HAB)*(1.+1.1+HAB/(4.+1.1+HAB)+CSC+ACAB/SYGHA(1D)))/(UAB*(
II.+MASTUAS)
603 ELO(K)=EL(ID)
C .
C CHECK FOR TYPE OF DATA (FIXED-TIME OR FIXED-COUNT) AND
C ESTABLISH DEAD-TIME CORRECTION C
C
53 IF (TAG.EQ.ABET(26)) GO TO 331
<u>IF (TIME.EQ.O.) TIME=1.</u>
00 l0 J=1,NA
IF $(TAUM(J) \cdot EQ \cdot O \cdot J TAUM(J) = 1$ .
[10 TAU(J)=1.CE-OS¢TAUA(J)
C BEAN BEAN FURRENTE AND STANDARD INTENSES
C C C C COMENTS AND STANDARD INTENSITIES
Č
DO 5005 J=1.NA
BCSUP(J) = 0.
STD SUM ( J) =0.
<u></u>
5002 FCRMAT (12)
M = 1
00 5003 R=1, N
A004 COM 19 500 BC (J,K), STDI(J,K)
16 ( F ( ) N = 0 A ) A ( ) N = 1
$\frac{31}{10} \frac{10}{10} 10$
<u>C</u>
C DEADTIME CORRECT STANDARD INTENSITIES AND AVERAGE DRIFT C CORRECTED INTENSITIES
<u>c</u>
STDI(J+K)=STDI(J+K)+TINF/(TINF-TA(())*STDI(L+K))
5CO3 STDSUN(J)=STDSUN(J)+STDI(J+K)
BCAVG(J)=BCSUP(J)/NN
IF (J.EQ.1) BCREF=BCAVG(1)
SI(J)=STOSUM(J)/NN+BCREF/BCAYG(J)
5005 ASI(J)=SI(J)
PRINT 2008

	IRIET)	
7.72.6	PRINT 2009 (ELLJ)	• J=1 • NA)
0350	2009 FORMAT (/4X-12HBE	AN CURRENT,9(5X,A3,3X))
0000	PRINT 2010 BCREF.	(SI(J), J=1, NA)
0351	2010 EDBNAT (/7X-E8-1-	31.9159.2.211
0352	00 5008 1#1 8	
0353	DO 5008 U-140	
0354		
0355	5008 BKSUHIJIKI+0.	
• · ·		
	ATAD BEAN CURRE	NTS AND BACKGROUNDS
	KEAU DEAH CORRE	
C356	DU 5009 J#1,88	
0357	BCSUM(J)=U.	
C358	READ SUDZ+N	
C359		
C36C	DO 5010 K=L,N	(044) 4 () (-1 NA)
C361	READ SOLL, BC(J,K)	+ [DK[J;K;L];L=1;NA]
C362	5011 FORMAT (91F6.0,2X	11
0363	IF (BC(J,K).EQ.0.	J BUIJORJELO
0364	BCSUM(J)=BCSUM(J)	+8((J,K)
		ACHEROLUNDE AND AVERAGE ORIET-CORRECTED
	DEADTIME CORRECT	BALKUKUUNUS ANU AVERAGE DRIFT-CORRECTED
	C BACKGROUNDS	· · · · · · · · · · · · · · · · · · ·
0365	DU 5010 L#1 + NA	1 1 4 T 1 ME / (TT ME - TAUL 1 1 4 8 W/ 1. K. 1 1)
C366	$BK(J_{1}K_{1}L) = BK(J_{1}K_{1})$	L] + 1 1 ME/ (   1 ME- 1 AU ( L) + DN( J) N/ L//
0367	5010 BKSUM(J+L)=BKSUM	J,LJ+DR(J,R,L)
C368	BCAVG(J)=BCSUM(J)	/ NN
C369	DO 5014 L=1 NA	
C37C	SO14 ABK(J,L)=BKSUM(J	L)/NR#BCKEF/BCAVG(J)
0371	BKGD(J)=ABK(J,J)	
C 372	SCC9 NAB(J) = ABK(J,J)+	,5
<u>C373</u>	PRINT 5100, TIME	
0374	IF (NA.LE.3) GO	0 2080
<u>C375</u>	PRINT 5201, (EL()	1, LINC(1), 1=1, NE)
C376	PRINT 5202	
C377	DO 2070 J=1 . NA	
0378	PRINT 5204, EL(J	I, (ADK(J)LI, L≖1,MAJ
<u>C379</u>	2070 CONTINUE	
C 3 E C	GO TO 331	
C 381	2080 PRINT 5101 . (ELC	1) + LINE(1) + I=1, MAJ
C382	PRINT 5102	
C383	DO 2085 J=1,NA	
0384	PRINT 5104, EL(J	, {ABK{J}L},L≖L,NA}
0385	2085 CONTINUE	
	С	
	Ç	
	C READ BEAM CURR	ENTS AND KAN INIENSLIES FRUM UNKNUNN, AND
	C COMPUTE CONCEN	TRATIONS
	C	
	<u>c</u>	
C386	331 SWSAL=0.	
<u>C387</u>	DO 4C L=1.300	
C388	ITER=0	
		* ~ ~ * * = = * * * * * * * * * * * * *

Ж

C 389		READ 5015, BEAM(I), (XI(J), J=1, NA)
0390	5015	FURMAT (9(F6.0,2X))
0391		IF (BEAM(I).LE.999997.) GO TO 5016
(392	• - · · • •	KODE=BEAM(1)-999997.
0393		GC TO 78
0354	5016	IF (TAG.NE.ABET(26)) GU TC 5017
0395		DC 5018 J=1,NA
0356	5018	SI(J)=1.
0397		GC TO 5019
0358	5017	1F (BEAM(1).EQ.0.) EEAM(1)=1.
0395	5019	D0 75 J=1.NA
6400		IF (TAG.NE.ABET(26)) GO TO 5020
C4C1		IF (ITER-NE-0) GD TC 22
0402		GO TO 333
6463	F020	IE (ITER.NE.0) GO TO 5023
0404	2020	A = A = A = A = A = A = A = A = A = A =
0404	c .	
	ř.	······ · · · · · · · · · · · · · · · ·
	C C	DEADTINE AND DRIFT CORRECT LINKNOWN INTENSITIES
	~~~~~~	PERMITE HER OUTLY SERVEST SUBJECT STREAM THE PATTER
	C C	
0 / 0 F	L.	YATT IN THE THE TANK THE TANK IN AVATING A REPARAMING
0405		AAT J/+AT J/+THE/THE/THE/THE/TAG // AT J// DONE//DEAUT/
0406		NAI(J,I)*AA((J)
	C C	
	<u> </u>	
	C	LUKRECI FUK STANDARD BACKGRUUNUS
	<u> </u>	······································
	L	
C4C/		XI(J) = XI(J) - DRGU(J)
C408		$IF (I \cdot EQ \cdot I) = SI(J) = SI(J) = BRGU(J)$
C4C9		551(J)=551(J)+51(J)
C41C		GU IU 333
<u>C411</u>	5023	ABGU(J)=0.
	C	
	C	
	C	CORRECT FOR CONCENTRATION DEPENDENT BACKGROUNDS
	<u> </u>	
	C	
C412		DO 5024 K=1,NA
0413	5024	ABGD(J) = ABGD(J) + C(K) = ABK(K, J)
0414		XI(J) = XXI(J) - ABGD(J)
	C	
	<u> </u>	
	C	FORM K-RATIOS
	<u>C</u>	
	С	
0415	333	RINT(J) = XI(J)/SI(J)
C416		IF (RINT(J).GT9999) RINT(J)=.9999
_0417		IF (RINT(J).LT.O.) RINT(J)=0.
C418		IF (ITER.EQ.0) ROUT(J,I)=RINT(J)+.0005
C419	75	CONTINUE
C42C		IF (ITER.NE.2) GO TO 5030
C421		DO 41 J=1,NA
C422		SR(J) = SR(J) + RINT(J)
C423	41	SRSQ(J) = SRSQ(J) + RINT(J) + RINT(J)
C424	5030	DO 5C40 J=1,NA
C425		RINT(J)=ALPHA(J)=RINT(J)
0426		1F (ITER.EQ.O) C(J)=RINT(J)

C427	5040	CONTINUE
C42E	22	ITER=ITER+I
C429		1F (ITER.NE.1) GO TO 5060
0430		00 5050 J=1 .NA
0431		CO(J)=RINT(J)
0432	5050	C DAY I HUE
0433		GD TO 5070
0434	5060	IF (ITER.LE.2) GO YO 5070
0435		DC 5080 J=1.NA
0436	5080	
6437	5070	IF (NEL.EQ.NA) 60 TC 25
0438		CINEL]=1.
6439		00 24 J=1.NA
0440	24	
C441		IF (CINEL), IT.0,) C(NEL)=0,0
7442		RAI #d.
0443		
C444		
0445		
~~~~		
C440	602	
	704	HCHC 0-00
·····		CALCULATE AN COMPTION COFFETCTENTS FOR UNKNOWN
	č	CRECKERTE ADDERTICA DETTICIENTS FOR GRANDER
	~~~~	
0448	L L	
0446		
6450		
6450		
0451		
0452		
6423	<u> </u>	CONTINUE
		· · · · · · · · · · · · · · · · · · ·
	L L	CALCIMATE BACKECATTER LOSS SACTOR, MEAN ATOMIC NUMBER AND MEAN
		A A REAL MAN MALE
	Č,	
	<u> </u>	
	L	DD 37 1-1 M64
0929		
6433		RAL=RALVR[]]76[]]
<u>U420</u>		
0457	21	834 - 884 - 884 - 884 - 884 - 884 - 884 - 884 - 884 - 884 - 884 - 884 - 884 - 884 - 884 - 884 - 884 - 884 - 884
9428		
0459		PRUSERL 4144.44.1 EAP(1+2AL)) // 2.3/ (2.4L) // 3)) - 2.4L// 1000 // 4L
		۲
	Ĺ	
	k	
	L ·	CALLULATE CURCENTRATIONS
	<u> </u>	
	C	
<u>C46C</u>		
0461		UA_(R)=1.4C3C4RCAL(R)/SIGPA(R)
0462		YP= 50 485 45 1 KI
C463		DO 800 J=1,NEL
0464		Y@YP/ACAL(J)
0465		V=E \$P /ACAL (J)
<u>C466</u>	Q83	
0467		FAL(K)=((1.+HAL)+(1.+FID[(K))+(1.+1.1*HAL/(4.+1.1*HAL)+CSC+ACAL(K)

	$1/SIGMA(K)$ $1/(UAL(K) \pm 1)$ and that $f = 1$	
046E	CIK)=RINTIKI WCALATUKI THI A AATAKI CI	
0469	IF $(C(K) + I + 0) = C(K) + 0$	ALT
C47C	IFICIKI, GT. 199991 FIVE BAKA	
C471	IF (TER.NF.1) CO TC 5000	
0472		
C473	60 10 28	· · · · · · · · · · · · · · · · · · ·
0474	SCSO IF /ITER GT 31 FILES - FALES	
C475		· · · ·
0476		
0477	$IF (CDFM, I \in O, I, CDFM, DODDA, DDDDA, DDDDA, DDDDA, DDDDA, DDDDA, DDDA, DD$	
0478		
C479	IF(C(R), CT BOOK) - CI(R) - CI(R) / CDEN	· · · · · · · · · · · · · · · · · · ·
CAEC		
0481		· · · · · · · · · · · · · · · · · · ·
	Č	· · · · · · · · · · · · · · · · · · ·
	L TEST FOR COMUSSIONER AND ATTACT	
	C CONVERGENCE AND CHECK NUMBER OF ITERATIONS	11 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1
C482	15 /1750 / X 3) CO 30 DALA	
C483	DA AN MALINAJ GU TE 5019	
0484		
C485		
C486	B& CANTING (000) GO TO 86	
C487		(
C488		
6489	t 1 cd 1 i len L1.201 G0 T0 5019	
	C COPILIER	
	C C C C C C C C C C C C C C C C C C C	
	Ċ	
C49C	Susal = Susal + usal	
<u>C491</u>	PRINT 615-TAG . MPRCB . DATE	
C492	PRINT 2011.1	
<u>C453</u>	2011 FORMAT (SX-12MCASERVATION 17)	
C494	DO 31 K=1.NA	
0495	IF (SR(K).LT.,0001) SR(K)= 0001	
0496	IF(SRSQ(K),LT., 00000011 CPC0/FL- 00000001	
0497	PRINT 2014. ITER. ELIKI XXTINI ABOUNT VILL	
0458	2014 FORMATIAX, 13HON ITERATION 17.44 FOR ATTAL STICK)	
	10 = F8.2,3X, SHXI = F9.2.3Y, EMET - F9	Z, 3X, 7HABG
0499	PRINT 2016, ITER, ELIKI, SRIKI, SPECIKI, BTHY 2, 3X, 6HSSI = ,F	12.2)
0500	2016 FORMAT (/4X.13HON ITERATION .12.5H ECO. AT AN ANA	
	1850 = ,F9.6,3X,19HC = RINT Y AIDWA - 16 43,2X, 5HSR = ,	9.6,3X,7HS
0501	PRINT 2017, EL(K) . ACAL (K)	
0502	2017 FORMAT (/4X, 38HABSORPTICN COFFFICIENT OF INVESTIG	
	1100 = (F9.1)	S+12HRADIAT
0503	PRINT 2018, RAL, ZAL, WSAL, HAL, PAL	·
0504	2018 FORMAT (//6X .1 SHEOR UNKNOWN . PAL - FO F TH	
	1SAL = , F9.5 , 3X. 6HHAL = . 50 6 . 3V (1004)	-5 +3X+7HW
0505	PRINT 2019-EL(K) . UAL (K) . VD . EIDT (V) EAL (VA. 6/)	
0506	2019 FORMAT (4X.4MFOR .A3.11MIN UNMOUN STALING (K)	
<u> </u>	112.4.3X. THEIDI # .F9.5 . 24 ANEAL	, 5HYP = , F
0507	PRINT 2021 JTER FLIKL COURS CALL = F9.5 JX, 4HC = F8.6	1
0508	2021 FORMAT (4X,13HON ITERATION - CI(K),C(K)	
	1.F8.6.31.5HC3 = 58.6 37 414 112.5H FOR : A3,6H CO = .F8.6.	$3X_{,5HC1} =$

Ý

0509	₩P(K)=100.₩C(K)
0510	31 WPC(K,I)=WP(K)
0511	IF (NEL.EQ.NA) GO TO 34
0512	LP(NF1) =10C.
0512	
C015	The set to be the state of the set of the se
0514	33 RELATION OF THE CLUB T
0515	IF IRPIRELJ.LI.U. / BPIRELJ.U.
0516	34 WPC(NEL,II=WP(NEL)
· C517	DC 35 K=1,NEL
C518	35 ATCH(K)=6P(K)/A(K)
6519	DEN=C.
6520	DO 36 K=1.NFL
0521	24 DENDENAATOMIKI
0521	
0522	
0523	AP(R) = 100. VATURI RJ/DER
0524	APC(K,I) = AP(R)
C525	SAP(K)=SAP(K)+AP(K)
0526	SAPSOIKI=SAPSOIKI+APIKI
0527	ShP(K) = SHP(K) + HP(K)
0525	SAP SAFE I = SHP SAFE I + MP (K)
0526	
0525	
0530	18 N 2 - 1 - 1
C531	CBS#NS
C532	IF (NS.GT.1) GO TO 76C
C533	DIV=1.
C534	60 10 765
0535	760 DIV#08540854(085-1.)
	L STATE AND AND AND AND AND AND AND AND AND
	C CALLULATE AVERAGE K-KATINS AND KAS DEVINITIONS
	<u>C</u>
	C
0536	765 DQ 42 K=1 NA
C537	A VR (K) = SR (K) / 08 S+ .00005
0538	42 RDEV(K)=2.+SQRT((08\$+SRSQ(K)-SR(K)+SR(K))/DIV)+.00005
	CALCIN ATE BEAK-TO-BACKCOOLING RATING AND MINIMUM DETECTABLE ITY
	C CALCULATE PERKTIG-BRCKGHOOND RATIOS AND MININGH DETECTATE
	C LINIFS
· .	
	C
C535	IF (TAG.EQ.ABET(26)) GC TO 334
0540	DO 73C K=1.NA
<u> </u>	PFAK(K)=SI(K)/(ALPHA(K)*BKGD(K))
0541	HOSAKIKA BERAKIKA
6296	
0243	LINEI (R) = 2236/348113118775881877
<u>C544</u>	730 CONTINUE
	<u>c</u>
	C CALCULATE AVERAGE CONCENTRATIONS
	٤
654 F	224 DD 43 K=1, NEL
	123 VU 32 MAINEL
0546	A 4 B P (R) = 3 W P (R) / UD 3 + 0 U 3
	AVAPIKI = SAPIKI/UBS+2803
0548	HPDEV(K)=2.+SQRT((0B5+5HPSQ(K)-SWP(K)+SWP(K))/DIV)+.005
C549	<u>43. APDEV(K)=2.*SQRT1(CBS*SAPSQ(K)-SAP(K)*SAP(K))/QIV)+.005</u>
6550	IF (NEL.EQ.NA) GO TO 76
~ ~ ~ ~	

0551			AVWP(NEL)=100.0
C552			AVAP(NEL)=100.0
C553			DO 77 K=1,NA
0554		•	$A \lor B P(NEL) = A \lor B P(NEL) - A \lor B P(K)$
0555		77	AVAP(NEL)=AVAP(NEL)-AVAP(K)
0556			IF (AVWP(NEL).GE.O.) GC TC 76
0550			
0337			
(228			AVATINEL/~U.
	Ç		
	C		THE ALL DATA INCLUDING CONSTANTS CALCULATED
	· C		START OUTPUT OF ALL DATA INCLUDING CONSTANTS CALOULATED
	Č		
	С		
0555		76	PRINT 615, TAG, NPRCB, DATE
0560		615	FORMAT (1H1,//40X,15HPROBLEM NUMBER , A1, 14//68X, 3A4, A3//)
6561			PRINT 29
0542		29	FORMAT (/17X.6HATCPIC.5X.6HATOMIC.5X.11HBACKSCATTER.5X. 10HEXCITAT
LSCZ		~ ~ ,	TON SY I DHARSDRPTION, SX, I INFLUORESCENT/ 5X, THELEMENT, 5X, 6HNUMBER, 5X
			ALLETENT 74. ANEACTCR. AX. SHPOTENTIAL. 6X. 10HJUMP RATIO, 8X, 5HYIELD//
		-	Conne Ign () (A for Act en gay an of en sol en gay and a sol en g
		3	
C563			D0 39 1=1,REL
C564			NZ=Z(I)
C565			AJR(1)=AJR(1)+.005
0566			FYR(1)=FYR(1)+.0005
0567			PRINT 38, EL(I), NZ, A(I), R(I), EC(I), AJR(I), FYR(I)
0565		38	FORMAT (7X, A3, 8X, 13, 5X, F8.3, 7X, F5.3, 10X, F7.3, 8X, F6.2, 11X, F5.3)
0500		20	CONTINUE
0505	· · ·		
1571			EDDWAT (///33X.20HWASS ARSORPTION COEFFICIENTS)
05/1		72	
C572			IF (NA.LE.J) OU (U U)
<u>_C573</u>			PRINI OGGIEGIAJIKINELI (LA LATA AZ AYI)
0574		648	FORMAT (/38, WHRADIATION, 3A, 60 (A3) A210A77
C575			PPINT 660
C576		646	FORMAT (/,4X,8HABSORBER//)
0577			DO 650 J=1, NEL
0578			PRINT 668,EL(J),(AC(I,J),I=1,NA)
0575		668	FORMAT [92, A3, 3X, 8(F8.0, 4X]]
0580		658	CONTINUE
C581			PRINT SLOO, TIME
6692			PRINT 5201, (EL(I), LINE(I), I=1, NA)
0102		5201	FORMAT (/ 41X,11HBACKGROUNDS//1X,14HCONTRIBUTED TO,2X,8(A3,A2,6X))
6604	•	 .	PRINT 5202
0868		6767	FORMAT (/2X-11HBY 1CO % CF//)
05.04			00 5203 J=1.NA
0380		5 30 4	ENGMAT (91,43,31,8(F6,1,4X))
1227		5209	DETENT 5204.51(1).(ABK(J.L).(=1.NA)
0566		2403	TRINE IS IN TO TO TO
C282	• • • • • •		IF (NS.LE.I) 60 00 DATE
6556			PRINT 612,146, NFRC0, UATE
C591			IF (TIME.EQ.1.) 60 10 020
0592			PRINT 617, (EL(1), 1=1, HA)
0593		617	FORMAT (///33X,37HINTENSITIES (LPS & COUNTING INTERVAL//39X4351000
		-	IRECTED FOR DEAD-TIME AND DRIFT//6X,8(A3,10X)//J
(554			GO TO 610
0566		626) PRINT 627,(EL(1),1=1,NA)
6604		627	FORMAT (///43X,17HINTENSITIES (CPS)/35X,33HCORRECTED FOR DEAD-TIME
1275			1 AND DRIFT//6X.8(A3,10X)//)
		610	DC 688 1#1.NS
			DOINT 698.(NXI(J.I).NSI(J.I).J=1.NA)
4558			
1			

6699	698 FORMAT (18.8(17.2H /.17.1X))
0600	AN CONTINUE
0601	1F (TIME.EQ.).) GC TC 619
- 6602	PEINT 620. (NABILI, I=1, NA)
0603	620 FORMAT(//29X,46MSTANDARD BACKGROUNDS (CPS X COUNTING INTERVAL)//5X
	1.8(14.9X)
0604	60 10 621
7405	AIG PHINY 622. (NABIL) . I = 1. NA)
0606	622 FORMAT (//39X.26MSTANDARD BACKGROUNDS (CPS)//5X.8(14,9X))
10401	E21 PRINT 623.(TAUM(11,1=1,NA)
DACP	623 FORMAT (//40X,24HDEAD-TIME (MICROSECONDS)//6X,8(F3.1.10X))
2242	IF (TIME.EG.1.) GC TO 625
6610	PRINT 695, TINE
C611	655 FORMAT (7/36X, 18HCOUNTING INVERVAL, , F6. 1, 8H SECONDS)
0612	625 PRINT 15, TAG, NPROB, DATE
6613	PRINT 694 (EL(1), 1=1, NA)
C614	694 FORMAT (18X, 33HINOIVIDUAL K-RATIOS CORRECTED FOR/17X, 36HDEAD-TIME
	1, DRIFT AND BACKGROUND ONLY//5%, IMN,4%,8(A3,5%))
C615	DO 568 I=1,NS
0616	PRINT 578, LOBP(1), (ROUT(J,1), J=1, NA)
C617	578 FORMAT (3×,13,2×,8(F6.4,2×))
C618	568 CONTINUE
C619	IF (NS.EQ.0) 60 TO 1000
C62C	PRINT 74
C621	PRINT 674, (ELO(K), STD(K, 1), STD(K, 2), K=1, NB)
0622	674 FORMAT (//17X .A3 . 37HOETERFINED RELATIVE TO A STANDARD UF .A4.A1)
C623	6C TO 1000
C624	E37 PRINT 647, (EL(1), LINE(1), I=1, NA)
0625	647 FORMAT (/25X, 9HRADIATICH, 5X, 3(A3, A2, 6X))
Cé2é	PRINT 645
C627	645 FCRMAT (/.26%,0MABSOR0ER//)
C628	00 657 J=1, NEL
0625	PEINT 667.ELJJ).SAG(J.J).ELJNA)
C63C	667 FORMAT (31X,A3,3X,3(F8.0,6X))
C 6 3 1	<u>497 GON J1045</u>
CE32	PRINT SLOO, TIPE
6633	SIGO FORMAT (////36 K. LONG CURTING INTERVAL APRALATE SECONDIST
0634	PRINT SIDI,(ELII),LINE(I),I-LINAT
0635	5101 FCRMAT 1 /41X,11MBACKGRUGHD3//174114mSvmlHABMIKV IM1281215214414414
6636	
C637	5102 PURMAT (7233,11487 100 % UF//)
<u>C638</u>	DU 2103 JULANA
0639	5104 FURNAL (5184835843170-110477)
0640	<u>2143 PM (NL 2149) EXISTING ALLAUN XLKUX XING</u>
0641	IT (N3.LE.I) OU TU 77
C£42	
0643	1) FURNAL LINI (244) JAFREDEER NUMBER THATTA / 2017/2017/2017/2017
	DELLATENEMALAL WHILE VIE DELLATENEMALAL WHILE VIE DELLATENEMALAL WHILE VIE
GE45	FRINT DJJIELIIIIIELINNI
Q646	527 5 00 06 06 06 00 TH 6 AND 02 FT//14X.3(A3.16X)//)
	CREATED FOR DERUTINE AND UNITY AND
G(47	
0648	C43 FRINI 03791ELLIJALINA (CPS)/18X.33HCORRECTED FOR DEAD-TIME
	527, FWRGAL 1/4/4/WALA INAULARA LAR UNER AND SHIPS
	4 A DO ART 1//174731031041///
	COLUMN 407 (NET (L. T), MET (L. T), MET (L. T), MET (MA)
C651	FRIMI 07/j(WALLUT//HULLUT//YUL/UT//HULLUT//

0652	697	FORMAT (2x,3(7x,17,2H /,17))
C € 5 3	687	CONTINUE
C654		IF (TIME.EQ.1.) GC TO 652
0655		PRINT 651, (NAB([], 1=1, NA]
C656	651	FORMAT (//12X,46HSTANDARD BACKGROUNDS TOPS A COUNTING INTERTED
	1	3×,3(14,15×))
C657		GG 10 665
C658	652	PRINT 537, (NAB(I), I=1, NA)
0655	537	FORMAT (//22X,26HSTANDARD BACKGRUUNDS (CPS)//15A,3(14)12A/
0660	665	PRINT 664, (TAUM(I), I=1, NA)
C661	664	FCRMAT (//23X,24HDEAD-TIME (#ICKUSECUNUS///14X,34F3.1414/)
C662		IF (TIME.EQ.1.) GO TO 663
C663		PRINT 662, TIME
C664	662	FCRNAT (//19X,18HCCUATING INTERVAL,,F6.1, BH SECONDAT
C665 .	663	PRINT 15, TAG, NPROB, DATE
C666		PRINT 70,(EL(J), J=L, NA)
0667	70	FORMAT (18X, 33HINDIVIDUAL K-RATIUS CORRECTED FOR/TING SOMELAD THE
	1	, DRIFT AND BACKGROUND ONLY//9X,IMN,/X,3(A3,L3A)/
8668		OC 702 I=1,NS
C665		PRINT 71,LCCP(I),(RCUT(J,I),J=1,NA)
C67C	71	FORMAT (7X,13,5X,3(F6.4,1CX))
C671	702	CONTINUE
C672		IF (NB.EQ.0) GC TO 10C8
C673		PRINT 74
C674	74	FCRMAT (//30X,10H***NCTE***)
0675		PRINT 51, (ELO(K), STO(K, 1), STO(K, 2), K=1, NB)
6676	51	FORMAT (//24X.A3.19HDETERMINED RELATIVE/24X.17HIU A STANDARD OF
and a contract of the second		144,41)
C € 7 7	1008	IF (NS.LE.1) GO TO 73
C678		DC 1270 L=1+2
0675		IF (NA.GT.3) GO TO 1200
C68C		PRINT 15, TAG, NPROB, DATE
C681		GO TO 1110
0682	1200	PRINT 615, TAG, NPRCB, DATE
0683	1110	PRINT B9,NAME,TITLE
C / F 4		PRINT 66, ED, THETA
0685		IF (TAG.EQ.ABET(26)) GO TO 1130
0686		PRINT 67
0687		DC 1130 K-L,NA
9830		PRINT 68,EL(K),MPEAK(K),LIMIT(K)
0689	1130	CONTINUE
C69C		IF (NA.GT.3) GO TO 1240
0651		PRINT 1150
0692	1150	FORMAT (//23X,20HCHEMICAL COMPOSITION/26X,14HWEIGHT PERCENT/26X,14
		IHATOMIC PERCENT/I
C653		IF (NEL.EQ.NA) GO TO 1152
C654		PRINT 1153, EL(NEL)
0695	1153	FORMAT (19X,A3,24HDETERMINED BY DIFFERENCE/)
6656	1152	PRINT 1154, (EL(K), K=1, NEL)
0697	1154	FORMAT (/3X,3HOBS,9X,4(A3,13X)/)
6658		DO 1170 [=1,NS
2223		PRINT 116C, I, (WPC(K, I), K=1, NEL)
0700	1160	FORMAT (/3X,13,5X,4(F8.3,8X))
0701	A A Y Y	PRINT 1165, (APC(K , I), K =1, NEL)
0702	1165	FORMAT (11X,4(F8,3,8X))
0703	1170	CONTINUE
6763	1110	GC 1G 1270
 ^	1240	PRINT 1250
6163	16.40	

C7C6	1250 FORMAT (//46X,20HCHEMICAL COMPOSITION/49X,14HWEIGHT PERCENT/49X,14
	IHATOMIC PERCENT/)
0707	IF (NEL-EC-NA) GG TG 1252
C7C8	PRINT 1253, EL(NEL)
C709	1253 FORMAT (42X+A3+24HDETERMINED BY DIFFERENCE/)
C71C	1252 PRINT 1254, (EL(K), K=1, NEL)
0711	1254 FORMAT (13X.3HOBS.7X.9(A3.8X)/)
C712	
0713	PRINT 1260-1- LUPCIN TO MED AFTA
0714	1260 FORMAT (/3Y, 13 AV OFFER TOTAL
C715	
6716	1265 CCOMAT LIGY OF A STATE INEL
6717	1203 FURMAT (104,9(F8.3,4X))
0719	
())(
6717	PRINI 15, TAG, NPROB, DATE
0720	PRINT 89, NAME, TITLE
0721	89 FORMAT (5X,13HSUBMITTED BY ,5A4//5X,14HDESCRIPTION - ,6A4, A1//)
C 722	PRINT 49,NS
<u> </u>	49 FORMAT (/18X,33HMEAN CHEMICAL CONPOSITION AND TWO/LAW 214510MA LT
	IMITS BASED ON, 14, 9H ANALYSES, 77/29X, 6HHEICHT, 13V, 20470417 1194
	2EMENT,6X,7HPERCENT,11X,7HPERCENT//)
0724	DC 45 K=1.NA
0725	PRINT 44 FL (K) AVHPLKI, HPDEVLKI AVADINI ADDEVLKI
0726	44 FORMAT (184 A3 24 EF 3 24 FF 3 24 FF 3 24 FF 3 24 FF 1 APPEV (K)
C727	45 CONTINUE
0728	
0729	
6730	A RELINELJ, AVWP(NELJ, WPDEV(NEL), AVAP(NEL), APDEV(NEL)
0150	40 FURMAT (18X+A3,1H#,1X,F8.3,2H -,F6.3,2X,F8.3,2H -,F6.3///21X, 26H*
0721	1 DETERMINED BY DIFFERENCE)
0732	47 PRINI 64
0132	64 FURMAI (//5X,65H
	1///I3X+42HMEAN INTENSITY RATIOS AND THE STEMA LIMI
	215//21X, 7HELEMENT, 12X, 1HK//)
0733	DC. 63 K=1+NA
0134	PRINT 65 EL (K) AVR(K) ROEV(K)
C735	65 FCRMAT (23X, A3, 7X, F6.4, 2H -, F7.4)
0736	<u>63 CONTINUE</u>
0737	PRINT 66,EO,THETA
<u>C738</u>	66 FORMAT (///I3X-20HACCE) FRATING VOLTAGE 12V FE 1 (1) VENILLE
	1RAY EMERGENCE ANGLE 124 ES 1. 94 DECRECT 24172,1,44 KEV//13X, 21HX-
0735	IF (TI-FO-G-) GO TO PA
C74C	
(741	RA FORMAT (1) AV 14 HETIM THTOMSTON TON THE THICKNESS
	C
	CALCULATE DEPTH OF ANALYZED REGION
6343	
0742	<u>23 IF (KHU.EG.O.) GC TC 92</u>
U143	DM=.033+085/(SHSAL+RHC)+SCRT(E0+E0++.005
	<u> </u>
(C
	C. CONTINUE OUTPUTTING OF DATA
(
C744	PRINT 93.RHC.DM
0745	93 FORMAT (/134.7HOENSITY, 24Y E4 2//12Y 2/UDERVIL OF AUTOMAT
	1X+F6.2.8H MICRONS) REGION:9

92 IF (TAG.EQ.ABET(26)) GU TO 69 IF (NA.GT.3) PRINT 15.TAG,NPROB.DATE C746 C747 67 FORMAT (//13X,44HSTANDARD PEAK-YD-BACKGROUND RAYIDS (P/B) AND/17X, 134HMINIMUM DETECTABILITY LIMITS (MDL)//16X,7HELEMENT,6X,3HP/B,13X, 747 PRINT 67 C748 6749 23HMDL//) DC 341 K=1.NA PRINT 68,ELIK), MPEAKTR), LIMIT(K) C75C C751 68 FORMAT (18X, A3, 5X, 15, 2H/1, 8X, F7.4, 5H WT 8//) C752 341 CONTINUE C753 69 CONTINUE C754 C CHECK FOR MORE DATA. IF LAST PROBLEM STORE LAST PROBLEM NUMBER Assigned on punched card for next run input C Č C GO TO (1,80), KCDE 80 PRINT 1002,TAG,NPRCB 10C2 FORMAT (1H1,7/10X,27HLAST PROBLEM NUMBER USED 15,1X,A1,14) NRITE (7,1003)TAG,NPROB 1CC3 FORMAT (A1,14) C С C755 0756 0757 C758 0755 STOP C76C C761 ۱ 1 -----

APPENDIX D

ł

INITIALIZATION CONSTANTS

The constants to be stored internally in the computer for use in the program given in Appendix C are given. These data are inserted as part of the input data, immediately following the main program. The list of the data is as follows:

1.008 H .014		999 999 999
4.003HE .025		499 999 999
6.939LI .055	228.	226.5 999. 999.
9.012BE .111	114.	111. 999. 999.
10.811 B .188 .005	67.6	65.6 999. 999
12.011 C .284 .006	44.7	43.68 999 999
<u>14.007 N .400 .009</u>	31.60	30.99 999 999
19.999 0 .532 .007	23.62	23.32 524. 999.
18.998 F .685 .009	18.32	18.09 398. 999.
22 990NA 1 072 021	14.610	14.302275. 677.
22. 9900A 1.072 .031	11.910	11.569247.3 398.8
26.98241 1 540 073	9.890	9.512197.3 249.3
28-08651 1-860 TU	8.339	7.948142,5 169.49
30.974 P 2.144 122	1.127	6.738105.0 123.
32.064 5 2.470 125	0 • 1 2 / 5 - 2 7 3	5.784 81.0 93.7
35.453CL 2.820 200	2+312 4 729	5.019 64.1 75.2
39.948AR 3.203 245		4.397 52.1 61.8
39.102 K 3.608 .295	3,741	3.871 43.2 50.2
40.080CA 4.038 .346	3,358 36,33	3.43/ 30.4 41.8
44.956SC 4.489 .402 .0	07 3.031 31.35	27622602000
47.900TI 4.965 .455 .(04 2.749 27.42	2.102 20.8 30.6
50.942 V 5.464 .513 .0	02 2.504 24.25	2.269 19 72 22 9
51.996CR 5.989 .575 .(02 2.290 21.64	2.070 17 84 21 24
54.938MN 6.538 .640 .0	03 2.102 19.45	1-896 16 15 19 05
55.847FE 7.111 .707 .(04 1.936 17.59	1.743 14.65 17.202
<u>58.933C0</u> 7.710 .779 .0	03 1.789 15.972	1.608 13.38 15.618
58.710NI 8.332 .854 .0	04 1.658 14.561	1.488 12.3 14.242
<u>63.540CU 8.980 .933 .0</u>	02 1.541 13.336	1.381 11.27 13.014
65.370ZN 9.661 1.022 .0	08 1.435 12.254	1.283 10.06 11.862
	17 1.340 11.292	1.196 9.517 10.828
	29 1.254 10.436	1.117 8.773 9.924
78 96055 12 655 1 636	41 1.176 9.671	1.045 8.107 9.125
79,90988 13 470 1 553 0	54 1.105 8.990	.980 7.503 8.407
83-800KR 14-324 1 677	1.040 8.375	.920 6.959 7.753
85.47088 15.202 1.807 1	07 •700 f•81/ 10 024 7 214	.866 6.47 7.168
87.620SR 16.107 1.941	10 • 728 7 • 518 13 875 6 964	<u>•816 6.008 6.644</u>
88.905 Y 17.038 2.079 .1	57 .829 6 44u	•110 5.592 6.1/3
91.220ZR 17.999 2.223	80 786 6.071	•128 3 •217 5 •756
92.906NB 18.987 2.371 .2	05 .746 5.724	- • • • • • • • • • • • • • • • • • • •
95.940MD 20.004 2.523 .2	27 .709 5.407	<u>620 4 304 4 710</u>
99.000TC 21.047 2.678 .2	53 .675 5.115	- 589 4.058 4.474
101.070RU 22.119 2.838 .2	79 .643 4.846	-561 3.835 4.180
102.905RH 23.220 3.002 .3	07 .613 4.597	.534 3.629 3.943
106.400PD 24.348 3.173 .3	35 .585 4.368	.509 3.437 3.723
107.870AG 25.517 3.351 .3	98 .559 4.154	.486 3.256 3.516
112.400CD 26.716 3.538 .4	40 .535 3.956	•464 3.085 3.326
<u>114.82 IN 27.942 3.730 .4</u>	43 .512 3.772	.444 2.926 3.147
121 75050 20 (0) (125 -	11 .491 3.600	.425 2.777 2.982
127 60015 31 911 4 142 .5	28 .470 3.439	<u>,407 2.639 2.830</u>
126 904 T 33 147 6 550	12 .451 3.289	.309 2.510 2.688
131.300XE 34 500 4 702	<u>433</u> 3.149	.374 2.388 2.554
132,90565 35,987 5 011 7		.358 2.274 2.429
137.340BA 37.452 5.247 7	$\frac{20}{30} + \frac{400}{385} - \frac{2}{774}$.345 2.167 2.314
138.910LA 38.934 5.484	······································	• 331 2.068 2.205
		• 318 1• 978 2.105

		C1 L' 7	3 663	14 04	306	1-893	2.012
140.120CE 40.453 5.723	.883		2.502			1.814	.926
140.907PR 42.002 5.963	•926		2.405	10 68	285	1.739	1.844
144.240ND 43.574 6.209	.973	.332	2.0010	12.00		1.667	768
147PM-45-198-6-461-1	.027	. 320	2.202	12.	265	1.600	1.695
150.35 SM 46.849 6.717 1	.073	. 309	2.200	11+4/	• 2 0 J	1-578	1.777
151.96 EU 48.519 6.981 1	.126		2.121	10.90	• 200 247	1 479	1 563
157.250GD 50.233 7.243 1	•185	.288	2.047	10.46	• 2 4 7	1.470	1 502
	•241	.279	1.977	10.00	• 2 2 8	1 740	1 445
162.5000Y 53.793 7.790 1	295	.270	1.909	9.59	• 2 3()	1.507	1-301
164-93 HIT 55.619 8.068 1	-35I		1.845	9.20	.223	1.017	1 220
167.26 ER 57.487 8.358 1	.401	.252	1.784	8.82	.215	1.211	1-505
168-934TM-59-380-8-650-1	•461	.744	1.727	8.48	.209	1.222	1 262
173.04 YB 61.300 8.944 1	.528	.237	1.672	8.149	.202	1.182	1.245
		.229	1.620	7.840	.196	1.140	1.166
178.49 HE 65.310 9.558 1	1.662	.2.22	1.570	7.539	.190	1.100	1.100
180-948TA 67 403 9.877 1	.743	-215	1.522	7.252	.184	1.001	1.14
183_85 W 69.50810.200	1.814	.209	1.476	6.983	.178	1.025	1.072
	1.890		1.433	-6-729	.173	.989	1.037
190 2 05 73.85610.868	1.967	.197	1.391	6.490	.168	•956	1.001
	2.048	.191	1.351	<u>5.262</u>	.163	.924	• 907
105 09 01 78.38111.562	2.133	.186	1.313	6.047	.158	.893	• 9.54
195.07 NIL 80.72011.921	2.220	.IRO	1.276	- 5.840	.154	.864	.903
200 590HG 83,10912,286	2.313	.175	1.241	5.648	•149	.835	•812
	2.405		-1-207	-5.460	.145	.808	.843
207 19 PB 88-00513-041	2.502	.165	1.175	5.286	•141	. 782	.815
	2.603	.151	1.144	5.118	137	. 151	• 189
210 80.93.10513.814	2.683	.156	1.114		.133	.732	.103
AT 45 73014.214	2.787	.152	-1.085		.129	.709	• 139
210. AT 77.1501.0011	2.892	.148	1.057		.126	.687	. (15
	3.000	.144	1.030		.123	.665	.692
	3,105	.140	1.005		.119	.645	.671
	3.219	.136	.980		•116	.625	•650
	3.325	.133	.956	4.138	.115	.606	.630
232.005 H 99.99910.000	3.436	129	.933	4.022	.110	•587	.610
	3.545	.126	.911	3.910	.107	•570	.592
238.030 0 99.99917.102 	3.666		.889		.104	•553	.574
	3.778		.868		.102	.537	.557
	3.887		.848		• 099	•521	• 54()
245 10^{-97} 37^{-77} 10^{-97}	3,971				.097	.507	•251
	4,132	··· ··-			.091		, <u>-</u>
	4.253				.091	.475	•491
	4.374				.089	•461	.476
	4,498				.087	.448	•462
203. FM 99.99920. MO					2.335		
					2.7×6		
	.	. . ·			2.652		
					2.852		
					2.661		
999•					2.9212.3	うわり	
999.			· • · ·		2.8892.	370	
999.					2.8502.3	346	
999.	···· · •				2.8132.	390	
999.					2.8032.4	452	· ·
6//.491999.			••••••		2.7842.	59	
405. 999.					2.8512.0	k70	
250.700999.					2.7802.	7701.309	į
170.490999.					2.7802.	68 1.34	
124.960999.					un sut de la l		

94.000999.	2.7732.61 1.38
75.800999.	2.7482.5921.42
61,990708,462999,	2.8472.6521.46
50.563490.043999.846999.846	2.7962.5811.520
42.278365.572696.522696.522999.	2.8022.54 1.522
35.491283.709488.114488.114999.	2.8102.52 1.524
30.826230.447383.842383.842999.	2.7952.4951.526
27.290205.606358.326358.326999.	2.8212.4781.529
24.172186.437327.992327.992999.	2.8472.3082.453
71.581167.315291.720291.720999.	2.8472.3891.926
19.380147.772255.104255.104999.	2.8642.6601.94
17.525133.456229.594230.000999.	2.8362.6441.965
15,915123,119202,000208,371999,	2.8412.6881.98
14.525110.895182.057188.400999.	2.7342.6931.991
13.288110.600159.500166.000999.	2.7342.7491.820
12.131 91.230137.000143.900999.	2.7712.6561.85
11.100 78.419116.087120.487712.534712.534999.	2.5602.6361.88
T0.187 68.878 96.936102.633431.989431.989999.	2.7692.4711.915
9.367 60.924 84.686 88.243300.924300.924999.	2.5892.6501.97
8.646 53.556 73.710 76.579218.661227.800999.	2.7822.6722.05
7.984 48.336 65.494 68.309176.863179.682399.00	002.7712.6472.14
7.392 43.07 55.672 57.989129.500139.461421.00	02.6262.6332.242
6.862 38.491 50.114 51.984110.895112.403388.00	02.5932.6062.34
6.387 34.680 44.310 46.072 91.838 93.149317.00	02.6682.7912.44
5.962 31.499 39.687 41.286 77.682 78.768275.60	02.5782.5942.53
5.579 28.475 35.565 36.972 66.137 67.185240.00	102.7522.7282.583 .40
5.230 26.469 32.709 34.154 59.779 60.597214.10	02.6612.7341.923.48
4.913 24.413 30.084 31.402 53.278 54.201186.90	02.7512.7121.99 .70
4.630 22.5 27.578 28.853 47.508 48.140162.	2.70 2.6752.19 1.2
4.369 20.945 25.461 26.511 42.660 43.039145.50	02.6132.6572.46 1.46
4.130 19.454 23.342 24.492 38.561 39.286136.80	002.4262.6822.55 1.56
3.907 18.109 21.603 22.699 34.941 35.494122.60	002.6742.7012.6041.59
3.700 16.878 20.119 21.061 30.82 31.14 110.50	02.4272.7002.393.385
3.505 15.874 18.603 19.614 28.13 29.50 101.00	
3.324 14.764 17.314 18.285 26.718 27.166 91.10	02.3962.7012.55 1.60
3.156 13.867 16.050 17.200 24.28 24.90 85.80	
3.000 13.020 15.072 16.014 22.699 23.114 76.60	102.4752.6182.57 1.40
2.856 12.275 14.186 15.080 21.124 21.528 72.00	
2.720 11.575 13.345 14.193 19.660 20.050 66.90	<u>107.4552.46481.94 92</u>
2.593 10.8 12.410 13.232 17.8 18.441 60.1	$2 \cdot 44 \cdot 2 \cdot 0101 \cdot 000 \cdot 121$
2.474 10.186 11.641 12.428 16.766 17.089 53.71	
	1920419200911090 090 19 2759 6069 06 1 96
$\frac{2.261}{2.261} 9.108 10.294 11.036 14.612 14.907 45.62$	$\frac{512 \cdot 5752 \cdot 6062 \cdot 071 \cdot 27}{112 \cdot 3262 \cdot 6152 \cdot 13 \cdot 1 \cdot 44}$
2.165 8.642 9.741 10.439 15.756 14.056 42.65	$12 \cdot 5202 \cdot 0152 \cdot 15 \cdot 1 \cdot $
	24 2 6112 43 1 95
$\frac{1}{1000} = \frac{1}{1000} = 1$	
1.917 1.00 9.042 9.101 11.0171 12.010 31.00 11 552 25.04	54 - 2.6232.7222.26
1.040 /.190 0.04/ 0./22 11.000 11.022 22.00 1.774 4.000 7.403 0.274 10 711 11 012 24 43	20 2.6742.7462.36
1712 6 592 7 344 8 030 10 186 10 461 32 90	91 2.7112.7552.4
1 450 4 201 7 014 7 404 0.724 0.084 21:14	59. 2.7402.6852.39
1 502 6 057 6 732 7 300 9 304 9 574 29 74	82 2.7552.6642.38
1 537 5 825 6 448 7 120 8 910 9 174 28 4	56 2.7602.6322.37
1 484 5.619 6.181 6.843 8.601 8.847 27.60	06 2.7682.6012.36
1.433 5.374 5.933 6.579 8.186 8.487 26.28	84 2.7692.6002.35
1.386 5.170 5.706 6.359 7.865 8.115 25.44	48 2.7632.5682.34
1.341 4.977 5.477 6.127 7.562 7.805 24.49	92 2,7642,5582,32

1-297	4.767	5.241	5.882	7.223	7.461	23.040	2.7442.5332.31
	4.585	5.020	5.650	6.870	7.110	21.9242	.5172.6132.5892.30
1.216	4.407	4.815	5.435	6.590	6.830	20.837.2	.0432.6682.5412.28
		-4.620	-5.234	6.330	6.560	19.837	2.7252.51 2.25
1 141	4.071	4 433	5.043	6.073	6.300	18.949	2.7622.4922.22
1 • 1 • 1 			-4.861-	5.830	6.050	17.966	2.7032.4682.17
1 072	2 762	4 093	4.686	5.590	5-810	17.172	2.6532.5202.06
1.072	3.102		- <u>6 518</u>	-5-374	5.584	16.339	2.5112.5282.068
1.040	3,010	2 702	4 355	5.157	5.360	15.492	2.5952.4742.12
1.009					-5-153-	T4.664	2.6992.3332.19
.979	2,240	2 402	4 047	4.757	4.955	13.874	2.6012.4562.280
.951	3.211	3.472				T3-2157	7282.5872.5272.313
.923	3.094	3.37%	3.704	4. 12	4 621	12.457	2.69 2.36 2.24
.898	2.988	3.217	5.100	4.431 		TT RUR	7.87 7.18 2.09
.872	2.812	3.093	3.019	4.202	4 796	11 301	2.6532.1471.92
. 848	2.766	2.981	3.504	4.105	4.200 	11.501	
.825	2.665	2.865	3.385	3.955	4.133	10.755	2 7272 1541 76
•803	2.571	2.762	3.270	3.81/	3.773	10.200	
781	2.479	2.663	3.172	3.679	3.852	9.770	2 + 1 1 7 + 20 1 + 1 3 5 4 4 6 5 4 4 7 1 7 4
.761	2.392	2.567	3.068	3.557	3.729	9.325	2.0072.04/1.1.4
.741	2.310	2.479	2.970	3.433	3.602	8.938	2.00 1.00 2.1/72 2721 000
.722	2.235	2.392	2.884	3.333	3.497	8.605	3.14/2.0/01.000
	2.166	2.310	2.796	3.220	3.382	8.262	2.74 1.90
.687	2.090	2.237	2.721	3.121	3.282	7.955	2.8192.03
	2.026	2.171	2.656	3,030	3.190	7.667	2.82 2.08
.655	1.972	2.103	2.584	2.933	3.122	7.546	2.83 2.13
	1.891	2.017	2.491	2.840	3.000	7.064	2.84 2.17
622	1.836	1.950	2.427	2.757	2.915	6.892	2.85 2.22
6022			2.361	2.678	2.834	6.637	2.86 2.25
•001 593	1.721	1.825	2.297	2.601	2.756	6.401	2.87 2.27
	.084						•10059716E+01
	250						•10085924E+01
	• 2						.10119003E+01
							.10153530E+01
	1 3 5 0	295					.10194915E+01
	1.500	• 2 7 7					•10240062E+01
	2.511	• 4/ L 0 1 0					-10284504E+01
<u>,</u>	3.529						.10335616E+01
	4.943	+904					10390856E+01
	1.31.2	1.095					-10442539F+01
	9.322	.80					10499690F+01
1	1.601	• 100					10555707E+01
1	4.87	1.110	1.558				10614998E+01
1	8.122	1.88	8.5				10669828E+01
2	2.020	2.6 1	0.0				107209186401
2	7.626	3.330 1	1.2				107060746+01
2	27.864	3.548 1	2.5				■ LUIGJOITLYUL 104421616+01
3	35.312	4.567 1	3.715				100050255401
2	+2.038	5.8 1	5.				• TOAODADDEADT
۷	+8.678	7.3 1	6.8				•10957055E+01
	54.052	8.8 1	8.1				• 11017037E+01
e	50.083 1	0.927 1	9.593				•110/1056E+01
	54.977 1	2.056	.742				•11122901E+01
-	77.899 1	2.661	6.095				•11173825E+01
	33.305	0.979	6.4				11228172E+01
((144	2.734	6.8				•11276960E+01
1/		4.322	7.2				•11322652E+01
10	17 AOQ 1	15.520	7.839				-11371081E+01
	1 . 1 . 1 7 0						

123.080 15.783 18.830	.11413858E+01
	11459289F+01
142.035.20.238.17.0	-11499011E+01
TEB HAX 34 476 TE 948	115363165+01
1070074 240427 100240 154 003 24 424 14 4	118737386401
1000000 270707 1700	11979792+01
188.918 20.822 13.2	•11014022CTV1
201.303 29.204 12.0	•11047002E+01
209.178 32.008 10.150	•J168114JE+01
217.375 35.425 9.2	•11709942E+01
238.313 34.296 8.6	•11741591E+01
261.398 42.122 7.8	•11770344E+01
277.847 41.921 7.356 6.	•11796616E+01
291.277 44.976 22.304 8.	11822350E+01
325.588 49.133 20.0 14.	•11845544E+01
332. 53. 18.4 18.	11865519E+01
338.246 57.048 15.0 28.	•11891662E+01
266.121 60.395 13.0 66.	.11910259E+01
380,209 62,906 11,593155.	•11927648E+01
278,270 66,473 18,1571478,19	.11947537E+01
375-561 70-806 14-947108-	-11963426E+01
291,804 75,185 16,8 44.	-11979680F+01
	11993455F+01
360 505 87, 573 30 1 51 8	-12009454F+01
	120187236401
420.000 700794 J100 800	120332436101
	120434916401
204 107 ENG 74 240	120404016401
	120572555401
400°042108°10 88° 238°	120724475401
400_{0} 11/6400 260 2100	120134472401
410.000120.292 92. 100	120020155401
	120905305101
100 000 200 000	+12077220C+01 101060902E+01
	121127466+01
190°202 90°294 94°	121204705+01
	• 121272425+01
	• 12127201E±01
	121245075+01
	• 12130145E±01
	• 121371020TV1
	+12170UTUETU1 10180026E201
	• 121 TO 020ETV1
221.501 41.357 11.00 200 700 50 (10 11 5	• 1 2 1 7 5 7 4 7 C T V 1 1 7 1 5 4 6 6 7 C + O 1
	• 12100400C+01
•01N 24/•220 53•018 10•2 19900•	■12124020E+U1 121507215:01
.018785.744221.796 53.096 18.4 19011.799	•12109731E+01
· Cate 344 · 007244 · 065 55 · 507 21 · 0 18100 ·	-12160668E+01
• D4 771• 60•5 23•0 17300•	•121629426+01
•017 290•700 63•573 25•5 16500•	•12154937E+01
016 291.982 67.423 27.6 15700.	•12164491F+01
.016 277.059 66.215 27.8 14935.4	• 12166268±+01
<u>,043</u> <u>241,237</u> 70.331 27.626 10444.5	.121655465+01
.058 290. 75.655 24.6 9100.	•12168429E+01
<u>.073</u> <u>342.330</u> 85.413 21.0 7800.	•12163/13E+01
.0H8 311.716 81.287 20.128 6500.	•12165291E+01
<u>106631.182325.828</u> 82.053 20.591 5216.8	.12163066E+01
348. 82. 23.0	.12162152E+01
371, 96, 27,5	<u>.12159503</u> E+01

204 220112 607 36-0	. 12157646E+01
	•12154985E+01
4200 1110 7100 440 060121 002 57.0	-12152714E+01
	.12147656E+01
441 014108 024 58-0	.12144476E+01
	.12141881E+01
649-224108-019-46-169	.12136381E+01
177. 47.0	.12132737E+01
144.388 48.	.12129561E+01
155. 51.	.12121884E+01
164. 56.	.12120564E+01
166. 63.	.12119586E+01
169.5 67.	-12116752E+01
173. 74.	• 12112/05E+01
175. 80.	.121113402+01
51088316E-02 .11210435E-0211886647E-0	3 .087832422+00+.108140932+06
72186773E-02 .14225237E-0214111194E-0	5 .00914554E-V21198V/21E-V8
10267103E-01 .19859984E-0219498321E-0	3 .91990000000000000000000000000000000000
14245915E-01 .28139927E-0228115056E-0	3 +1343/014E-04-+242300//E-00
	2 22763519F=04= 43147057F=06
23691260E-01 .48299260E-024910/019E-0	2
2943/536E-01 .6133691/E-0205536010E-0	3 374747586-04-1684855996-06
50199040E-UI . 14U29119E-UZ 10121901E-0	1-46210926E-0484851560E-06
41804000E-U1 .07023334E-U273720730E-0 40114474E-01 .10703641F-0111347223F-0	2 .56245418E-0410379369E-05
+7110014E-01 .10103041E-01 .13096993E-0	2 .65021871E-0412007774E-05
	2 .75701781E-0414020896E-05
	2 .86106469E-0415973207E-05
79481274E-01 .17990243E-0119476971E-0	2 .97735780E-0418172649E-05
87160478E-01 .19826558E-0121511784E-0	2 .10805634E-0320101768E-05
95653455E-01 .21945888E-0123934259E-0	2 .12061385E-0322485051E-05
10350848E+00 .23847385E-0126056661E-0	2 .13142934E-0324513122E-05
11171634E+00 .25877884E-0128357954E-0	2 .14327977E-0326751226E-05
12063543E+00 .28167495E-0131023590E-0	2 .157267378-03294280231-05
12824497E+00 .30004786E-0133062601E-0	1010104t-033133/012t-05
13696853E+00 .32247548E-0135671998E-0	103243005-03- 343243285-05 103243005-03- 343243285-05
14503823E+00 .34273003E-013/984821E-0	2 17524500E-05-50250550E-05
	12 0204701702-03-0054449002-03
100/203/E+00 .302100/30-01- +2+030090-0	2 22969026E-03-43166779E-05
	2 .24135446E-0345383465E-05
	2 .25228900E-0347453615E-05
- 19162687E+00 - 46154730E-01-51685157E-(2 .26454822E-0349799279E-05
	02 .27519705E-0351818324E-05
20602707E+00 .49873145E-0156000292E-0	2 .28708913E-0354095794E-05
21274769E+00 .51595238E-0157985500E-0	02 .29740763E-0356055462E-05
21919369E+00 .53240969E-0159875816E-0	2 .30720443E-0357912005E-05
22566990E+00 .54918897E-0161823635E-0	02 .31737469E-0359849446E-05
23259096E+00 .56772842E-0164027040E-	02 .32906669E-0362101742E-05
23852883E+00 .58300778E-0165788492E-	02 .33821274E-0363836742E-05
24456601E+00 .59884886E-0167641096E-	02 .34793033E-0365693493E-05
25004521E+00 .61292189E-0169259326E-	02 .356314791-03672814881-05
25585394E+00 .62832701E-0171071974E-	02 . 36585//8E-0369109125E-05
26131735E+00 .64271190E-0172754737E-	02 .3746/9212-03707933382-03
26647808E+00 .65619559E-0174320953E-	02 • 58284490E-03-• 72036414E-05
27157351E+00 .66965836E-0175897928E-	UL • JYL11JJUE-UJ*• / JYZJ414E-UJ 02 - 20045120E-02- 75255920E-05
27634956E+00 -68213686E-0177345390E-	06 340021342-03-, 123200644C-02

A1129

•

28073135E+00 .69337986E-0178629577E-02 .41410562E-0378306480E-05
29001167E+00 .71814000E-0187741686E-02 .42675539E-0380694276E-05
29833832E+00 .74010390E-01 .85231436E-02 .43972127E-0383155561E-05
30597373E+00 .76011294E 0187447947E-02 .45118255E-0385319524E-05
31323346ET00 .TR646785E-0189414513E-02 .46124204E-03872021942 05
- 3101089712400 .79586642E-0190510780E-02 .46695028E-058029707E-05
- 32530877E+00 .80987026E-0192051589E-02 .47460851E-0390930449E-05
- 33145460E+00 .82601088E-0193905135E-02 .48415194E -0392153709E-05
- 33701012E+00 .84027757E-0195508880E-02 .44569756E-0393604821E-05
34185234E+00 .85223639E-0196005480E-02 .50187197E-0394713033E-05
34684918E+00 .864833/1E-01- 98127445E-02 .50850526E-0395918031E-05
35074655E+00 .87572350E-01 49672026E-02 .512264ITE-0396535270E-05
35301387E+00 .87452134E 0110022944E-01 .51492216E-0397003808E-05
35518044E+00 .88437037813E-0110085205E-01 .51795940E-0397549508E 05
35/4/8312+00 .8963265E-0110123148E-01 .51957029E-0397802330E-05
359279295E-0398100 .4990913AE-0110172039E-01 .52182953E-0398100700
24307709F+00 .90307205F-0110209906E-01 .52343926E-03904117E-05
- 36629296E+00 .90982954E-0110269137E-01 .52570012E-0398855786E-05
- 36944046E+00 .91638452E-0110325525E-01 .52891343E-0399177449E-05
37103485E+00 .91975714E-0110355106E-01 .52916608E-0399150840E-05
37232571E+00 .92206793E-0110369839E 01 .53009035E-0399261452E-05
37385404E+00 .92521425E-0110396121E
37506964E+00 .92727292F-0110407205E-01 .53130967E-0399352238E-05
37668731E+00 $.93074957E-0110453582E-01$ $.52983961E-0398970312E-05$
37738192E+00 .930981172-01-10444441E-01 .53043021E-0399009704E-05
37879579E+00 .93375409F-0110441243E-01 .52960782E-0398758739E-05
37972521E+00 .95471251E -0110444841E-01 .52918176E-0398588848E-05
38078480E+00 .93700760E-0110435839E-01 .52801171E-0398265157E-05
38159626E+00 .93781724E-0110428664E-01 .52693158E-0397562349E-05
38245141E+00 .93812360E-0110414347E-01 .52542786E-0397160336E-05
- 38422579E+00 .93736706E-0110366139E-01 .52125108E 0395955598E-05
38518653E+00 .93618256E-0110310387E-01 .51286035E-0394524679E-05
38523503E+00 .93400300E-0110259642E-01 .50944720E-0393724564E-05
38541494E+00 .93224969E-01102145031E-01 .50577736E-0392868621E-05
38554613E+00 .93025955E-01-10082920E-01 .50016376E-0391610925E-05
38503845E+00 .9239007E-01-10029531E-01 .49619830E-0390686893E-03
38515389E+00 .92511711E-0199686511E-02 .49175586E-0389659814E-05
38516918E+00 .9211352E-0198877062E-02 .48610989E-0388382291E-05
38481991E+00 .91188823E-0197887816E-02 .47936677E-0386813630E-03
38416494E+00 .711100122E 04 0002285-02 .47269105E+0385370969E-05
38363713E+00 .90693381E-0190920228E-02 .4120725E
KALAMA

APPENDIX E

SPECIFICATION FOR INPUT OF DATA

Specifications for input data for reduction of probe intensity ratios to composition are given. A minimum of four cards in addition to the data are used. The formats of the various cards are given below.

First Card

Column Format Al, I4; if blank, 1-5 Problem Number, or blank assigned by computer 2 X 6-7 Blank 15A1 (3A4,A3) 8-22 Date of Analysis 2 X 23-24 Blank Name of Person Submitting Problem 5A4 25-44 45-46 Blank 2 X 25A1 (6A4,A1) 47-71 Description of Sample
Second Card

Accelerating Voltage (Kev) F4.1 1 - 4 5-6 Blank 2 X I2 (Number is right 7-8 Number of Compound Standards (If blank, elemental standards assumed) justified) 9-10 Blank 2 X Counting Interval (seconds) 11-15 F5.1 (If blank, 1.0 sec. assumed) 16-17 Blank 2 X 18-22 Density of Sample (g/cc)F5.2 (May be left blank) 23-24 2 X Blank F5.2 (May be left 25-29 Film Thickness in Micrometers, If Analysis of Thin Film blank) 30-31 Blank 2 X F4.1 (If blank, 32-35 X-ray Emergence Angle (degrees) 52.5° assumed) 36-37 Blank ·2 X 38-40 Deadtime for Element #1 F3.1 (If blank, 1.0 microsec. assumed) (Microsec.) н F3.1 11 41-43 Deadtime for Element #2 (Microsec.)

44--- Above Deadtime Repeated for Each Element Analyzed

Third Card

l- 2 Chemica	First Element Analyzed, I Symbol	A2
3	Blank	1 X
4- <u>5</u> (KA, LA	First Element Analytical Line A, MA)	A2
6 7	Blank	2 X
8- 9 Chemica	Second Element Analyzed, 1 Symbol	A2
10	Blank	1 X
11-12	Second Element Analytical Line	A 2
13 - 14	Blank	2 X
15	Repetition of Above Cycle for All	Elements

If one more element present than is analyzed, and that element is to be determined by difference, its chemical symbol is listed last without an analytical line.

Chemical symbols are right justified, in their field. Analytical lines are KA, LA or MA. A typical sequence follows: NB-LA--ZR-LA---N-KA---O

Fourth Card(s) if Required

1- 2 Number of Element in List on Third I2 (Right justified) Card to Which Compound Standard Applies

3-7 Standard Name

5A1 (A4,A1)

8-13 Weight Percent of Element in Binary F6.4 Compound Standard

14-15 Chemical Symbol of Other Element A2 (Right justified) in Compound Standard

A separate card is required for each element for which a binary compound standard is used, the total number of cards being equal to "Number of compound standards" on second card.

Standards Data

Column

Format

First Card

1-2 Number of Observations on Standard I2

Other Cards

]	6	Beam Current	F6.0
7 -	8	Blank	2 X
9-1	4	Standard Counts	F6.0

The above cycle is repeated for each element on the third card, in the order of elements listed on that card.

The total number of sets of standard data must be equal to the total number of elements analyzed.

Background Data

Column

Format

Background Data from First Standard

First Card

1-2 Number of Background Observation I2 (Right justified) Taken on First Standard

Other Cards

1- 6 Beam Current F6.0 Blank 2 X 7-8 Background Taken on First Standard F6.0 9-14 Contributed to First Analytical Line 15-16 Blank 2 X 17-22 Background Taken on First Standard F6.0 Contributed to Second Analytical Line 23-24 Blank 2 X 25-30 Background Taken on First Standard F6.0 Contributed to Third Analytical Line 31-32 Blank 2 X The Above Cycle Is Repeated for 33---Contribution of First Standard to Other Analytical Lines

The number of these cards must equal the number of observations for background on first standard.

Background Data from Second Standard

First Card

I- 2 Number of Background Observations Taken on Second Standard	fied)
Other Cards	
1- 6 Beam Current	F6.0
7-8 Blank	2 X
9-14 Background Taken on Second Standard Contributed to First Analytical Line	F6.0
15-16 Blank	2 X
17-22 Background Taken on Second Standard Contributed to Second Analytical Line	F6.0
23-24 Blank	2 X
25-30 Background on Second Standard Contributed to Third Analytical Line	F6.0
31-32 Blank	2 X
33 The Above Cycle Is Repeated for Contribution of Second Standard to Other Analytical Lines	

The number of these cards must equal the number of observations for background on second standard.

The above sequence is repeated for data taken on each standard for contribution to other analytical lines.

The total number of sets of background data must be equal to the total number of elements analyzed.

Sample Data

1-	6	Beam Current	F6.0
7 -	8	Blank	2 X
9-1	4	Counts for First Element	F6.0
15-1	6	Blank	2 X
17-2	22	Counts for Second Element	F6.0
23-2	24	Blank	2 X
25-3	30	Counts for Third Element	F6.0
31-3	32	Blank	2 X

33--- Counts, Blank, Blank Repeated for All Elements Measured

This card is repeated for each observation. A maximum of 300 observations permitted.

Trailer Card

After the last analysis in a problem, a trailer card with routing information is required. Column Format

1- 6 999998 Is Inserted if More Data F6.0 for New Problem Follows

9999999 Is Inserted if Most Recent Data Is last Data

APPENDIX F

TYPICAL OUTPUT FROM REDUCTION OF MICROPROBE DATA TO COMPOSITION

A typical output from the MAGIC II program is given. These output sheets are the summaries of the calculation. In addition, the numerical results for several variables are printed out at the end of the calculation for each observation. The typical summary sheets are as follows:

	······································	•	PRC	BLEM N	UMBER A11	22			/
	· • • • • • • • • • • • • • • • • • • •						JULY	17, 19	68
				· ·	 .				
ELEMENT AT	<u>. NC</u> . A1	i, WT,	PF	EDG	Ę		AVE	¥	R
<u>SN</u> NI	5 <u>C</u> 118 28 51	.69C	678.617 362.046	3.1	56 <u>3</u> ,9 88 8.3	29 3 32 1	.65A	3.82 1.80	0.7412
· · · ·		• •							
	······································	·· •	ASS ABSOR	TION	OEFFICIE	NTS			
	RA	IAT ION	SN L	N	NI KA		·		
	A	SCRBER							
		SN	506		312				
·		NI	485	.	61	•		*** - *********	
	E	VA	L	GPA	HS	<u>UŞ</u>		FŞ	FACT
<u>SN 0,421</u> NI 0.476	<u> </u>	9,3 9.5	C85 547 177 781	2.30	0.0570	1,116	6 0 8 0	.9899	0.56157
ESP = 0.5865	707(F C4				·				
				••••					
FLUORESCENCE	FACTOR FOR	NI FL	UOPESCING	SN IS	4.49486	9			
<u>ş</u>	TANCARE INTE	NSITIE	S CORRECTE	D FOR	DEADTIME	AND DRI	FT		
REAM CURRENT	SN	NI							
18187.4	53235.44	63393	. 8 8						
									, .
			COUNTING						
				- LAIER	VAL, IU	.U SECUN		•••• • •••••••••••••••••••••••••••••••	
	CONTR IBUT	FC 10	SN IA		NT KA				
	BY 10	0 % DF							
<u> </u>		SN	1(58.4	· · ·	856 . 1				
		NI	\$46.8		649.6				

PRCBLEM NUMBER A1122

				6¥6 17 47 16 1	ABSORPTION
ELEMENT	ATCPIC	ATOPIC WEIGHT	FACTOR	POTENTIAL	JUMP RATIO

SN	5 C	118.69C	0.741 C.914	3.929 8.332	3.45 7.67	0.082 0.392
NT	28	58.710	0.714			

,	MASS	S ABSORPTION	COEFFICIENTS
	RACIATION	SN LA	NI KA
	ACSCRPER		
	SN	506.	312.
	NI	489.	- 61.

· -- -

10.0 SECOND(S) COUNTING INTERVAL,

and the second		BACKER	CUNCS
CCNT	RIBLTED TO	SN LA	NI KA
	BY 1CO \$ OF	·	
an a	SN	1058.4	856.1
and the second	NI	546.8	649.6

80

FLUOR ESCENT YTELD

	PRCOLEP NUMBER AT	122
		JULY 17, 1968

	- 	
INTENSITI	ES ICPS X CCUNTIN	G INTERVAL)
CORRECT	EC FOR DEAD-TIME	ANU URIFI
Chi	NI	en e
22343 /53335	23631 /63353	
33050 /52235	23760 /63393	
32931 /9335	23844 /63393	
30871 (53325	22949 /05373	
30868 /53335	21131 701373	
71412 / 1222	22695 /63353	
32230 /33335	22837 /63353	مرور المروري المروري المروري (Company) و المروري (Company) و المروري (Company)
11755 /53335	23027 /63353	•
32126 /53335	22805 /63393	a da anti-
22040 /52335	22905 /63353	
32378 / 53335	22958 /63393	n an
32277 /53335	22938 /03373 22986 /43363	
22873 /52335		
32151 /53335	27089 /63353	مرهم منظر وراهد هديد البراني ال
22384 / 73332	22902 /63393	
52320 /53332 93600 /833325	23152 /62393	
32503 /93335	22632 /63393	
72448 /52335	22790 /63393	ومحالية ويستعرب والمسر مستعرب والمناسبة والمراجع والمستعان والمستقول والمستقوم والمستعان والمستعر والمستعرب
32558 /52335	22725 /63393	
32511 /52325	22999 /63353	
32150 /53335	228C/ /03333 99461 /47363	-
22367 /5233	23877 /63353	
32298 /53337	23135 /62353	مىلىنى بىلىن مىلىكى كەركىنىڭ كەركىنىڭ بىلىكى ، بىلىكە ، بىلىكە ، بىلىكە ، يېچىلىكىنىڭ بىلىرىنىڭ بىلىكىنىڭ بىلى
22516 /52225	22896 /63393	
32647 /52235	22984 /63353	میں ہو کہ کہ ایک میں دور اور کہ کہ کہ جو کام کی ہوری کہ رہے ہے وہ ہے ہے اور دور دور دور اور اور اور اور اور او
32111 /52335	22882 /63393	
21843 /52335	22697 /63393	منط بالمصموم مصافر المنافع منصار الماري المراجع المتعارف المراجع المراجع المراجع المراجع المراجع المراجع المراجع
32351 /53335	22751 /63353	
32665 /53335	22780 /05555	
STANCARC BA	CKGRCUNDS (CPS X	COUNTING INTERVAL)
1058	€5C	
	DEAD-TIME (MICRCS	ECONDSI
	2.3	and the second secon

COUNTING INTERVAL, 10.0 SECONDS

Ł

219

.

PRCBLEM NUMBER A1122

JULY 17, 1968

INCIVICUAL K-RATICS CORRECTED FOR DEAD-TIME, DRIFT AND BACKGROUND ONLY

N	SN	NI
3	0.5989	0.3668
3	0.6125	0.3688
3	0.6102	0.3702
3	0.5708	0.3555
3	0.5707	C.3551
3	0.5812	C.3581
3	0.5568	C.3515
3	0.5923	C.3541
3	0.5877	C.3581
3	C.5948	0.3536
3	0.5932	0.3552
3	0.5996	C.3561
3	0.5577	C.3561
3	0.6051	C.3544
3	0.5953	C.3561
3	0.5557	C.3581
3	0.5587	C.3552
3	0.6036	C.3591
3	0.6020	C.3505
3	0.6010	C.3534
3	0.6021	C.3523
.3	0.6022	C.3567
3	C.5953	0.3546
3	0.5994	G.3544
. 3	0.5981	C.354C
3	0.5967	C.358S
3	0.6022	C.3551
3	C.60CS	0.3565
3.	. 0.5945	C.354E
3	0.5854	C.3515
3, ,	0.5991	0.3528
3	0.6051	C.3522

.....

9

...........

PRCBLEM NUMBER A1122

JULY 17, 1968

SUBMITTED BY MC CANIEL

DESCRIPTION - NI-SN FRCM SA+4 CL BATH

and the second s

.

÷ .

		ACCELERATING VCLIAGE	15	15.C KEV		
		X-RAY EMERGENCE ANGLE	52	. 5	CEGREES	

STANDARC FEAK-TO-BACKGRCUND RATICS (P/B) AND PINIMUM DETECTABILITY LIMITS (MDL)

 ELEMENT	P/E	MDL
 SN	49/1	C.2C47 WT \$
		, · ·
NI	56/1	C.1336 WT ¥

.

CHEMICAL COMPOSITION BEIGHT PERCENT ATOMIC PERCENT

···· ·		
085	SN	NI
1	62.125 46.861	34.847 53.135
2	63.265 47.287	24.8EE 52.713
3	63.C5E 47.103	35.025 52.897
، محمد المحمد ا	59.8C8 46.394	24.183 53.606
5	59.766 46.171	34.466 53.829
6	60.685 46.693	34.27C 53.307
۲	62.103 47.785	23.562 52.211
8	61.650 47.442	33.8C6 52.558
	61.248	24.202 53.028

Ŧ

10	61.912 47.583 /	33.736 52.417
	<u>61.753</u> 47.403	22.892 52.597
12	62.301 47.616	23.9C2 52.384
12	62.135 47.537	33.92C 52.463
14	63.136 48.125	33.663 51.075
15	<u>61.926</u> 47.432	33.945 52.568
16	62.288 47,475	34.0E2 52.571
	62.228 47.638	33.834 52.362
18	62.615 47.574	24.131 52.426
<u>)</u> 9	62.565 48.C77	23.422 51.923
20	62.447 47,858	23.655 52.142
21	62.64C 48.02C	23.54C 51.98C
22	62.514 47,68C	23.931 52.320
23	61,941 47.535	23.817 52.465
24	62.303 47.727	33.752 52.273
25	<u>62.192</u> 47.692	<u>33.740</u> 52.308
26	62.C21 47.3C1	24.175 52.695
27	62.54C 47.795	33.79C 52.205
28	62.411 47.643	33.925 52 .3 57
29	61.075 47.485	33.848 52.515
30	61.464 47.474	33.635 52.526
31	62.294 47.824	23.618 52.176
32	£2.806 48.043	23.595 51.958

r		
		JULY 17, 196
TTED BY MC CANI	EL -	
IPTION - NI-SN F	ROM SN+4 CL	EATH
<u> </u>	, <u>his Malanian an Malanianan a</u> n Saite - 198	
MEAN CHE Sigma Li	MICAL COMPCS	TTION AND THO N 32 ANALYSES
	WEIGHT	ATOMIC
ELEMENT	PERCENT	PERCENT
	62.C65 - C.28	5 47.482 - 0.167
NI	23.568 - 0.14	5 52.528 - 0.167
MEAN INTENSI	TY RATIOS AND	TWG SIGPA LIMITS
MEAN INTENSIT	TY RATIOS AND	TWG SIGMA LIMITS K
MEAN INTENSIT	TY RATIOS AND Ent C.6CC	TWG SIGMA LIMITS K 6 - 0.0033
MEAN INTENSIT ELEME SN NI	TY RATIOS AND ENT C,6CC 0.354	TWG SIGMA LIMITS K 6 - 0.0033 4 - C.CC16
MEAN INTENSIT ELEME SN NI	TY RATIOS AND ENT C.6CC 0.354	TWG SIGMA LIMITS K 6 - 0.0033 4 - C.CC16
MEAN INTENSIT ELEME SN NI ACCELERATING X-RAY EMERCE	TY RATIOS AND ENT C.6CC 0.354 VOLTAGE	TWG SIGMA LIMITS K 6 - 0.0033 4 - C.CO16 15.0 KEV 52.5 DEGREES
MEAN INTENSI ELEME SN NI ACCELERATING X-RAY EMERGEN	TY RATIOS AND ENT C.6CC 0.354 VOLTAGE NCE ANGLE	TWG SIGMA LIMITS K 6 - 0.0033 4 - C.CC16 15.0 KEV 52.5 DEGREES
MEAN INTENSI ELEME SN NI ACCELERATING X-RAY EMERGEN STANCARE PEAN MINIMUM (TY RATIOS AND ENT C,6CC 0.354 VOLTAGE NCE ANGLE K-TO-BACKGRCU DETECTABILITY	TWG SIGPA LIMITS K E - 0.0033 4 - C.C016 15.0 KEV 52.5 DEGREES ND RATIOS (P/B) AND LIMITS (MOL)
MEAN INTENSIN ELEME SN NI ACCELERATING X-RAY EMERGEN STANCARC PEAN MINIMUM C ELEMENT	TY RATIOS AND ENT C.6CC 0.354 VOLTAGE NCE ANGLE K-TO-BACKGRCU DETECTABILITY P/B	TWG SIGMA LIMITS K 6 - 0.0033 4 - C.CO16 15.0 KEV 52.5 DEGREES ND RATIOS (P/B) AND LIMITS (MDL) MDL
MEAN INTENSI ELEMO SN NI ACCELERATING X-RAY EMERGEN STANCARC PEAN MINIMUM O ELEMENT SN	TY RATIOS AND ENT C.6CC 0.354 VOLTAGE NCE ANGLE K-TO-BACKGRCU DETECTABILITY P/B 49/1	TWG SIGMA LIMITS K E = 0.0033 4 - C.CO16 15.0 KEV 52.5 DEGREES ND RATIOS (P/B) AND LIMITS (MDL) MDL C.2047 WT %
MEAN INTENSIN ELEMI ACCELERATING X-RAY EMERGEN STANCARE PEAN MINIMUM I ELEMENT SN	TY RATIOS AND ENT C.6CC 0.354 VOLTAGE NCE ANGLE K-TO-BACKGRCU DETECTABILITY P/B 49/1	TWG SIGMA LIMITS K 6 - 0.0033 4 - C.CO16 15.0 KEV 52.5 DEGREES ND RATIOS (P/B) AND LIMITS (MDL) MDL C.2047 WT %