Pec. By DTIE APR. 17,1969

X -RAY MASS ABSORPION COEFFICIENTS AND. QUANTITATIVE MICROANALYSIS OF METALLURGICAL SYSTEMS, INCLUDING REFRACTORY METAL-INTERSTITIAL COMPOUNDS

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.
|
February 1969

This technical information document is based on a thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mining, Metallurgy, and Petroleum Engineering in the Graduate College of the University of Illinois, 1969. This research was supported in part by the U. S. Atomic Energy Commission under Contract AT (11-1)-1198.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

X-RAY MASS ABSORPTION COEFFICIENTS AND QUANTITATIVE MICROANALYSIS OF METALLURGICAL SYSTEMS, INCLUDING REFRACTORY METAL-INTERSTITIAL COMPOUNDS

Lawrence John Gray, Ph。D.
Department of Mining, Metallurgy and Petroleum Engineering University of Illinois, 969

A method, based on consideration of atomic potentials, for the estimation of mass absorption coefficients is described. Mass absorption coefficients for wavelengths up to 80 A can be estimated. Numerical values are given for several elements, including the refractory metals, for the characteristic emission lines of carbon, nitrogen, and oxygen. The method of calculation permits the estimation, to better than 5% in most cases, of mass absorption coefficients.

A correction procedure for the conversion of microprobe x-ray intensity data to composition is presented. The method, implemented by a described computer program, was tested in the analysis of eight metallurgical systems containing elements from carbon to gold in various combinations. The data reduction computation has been shown to be generally applicable to this variety of elements. The greatest difficulties were encountered in the analysis of carbon containing samples. Consideration of the principles on which the correction relations rest leads to the definition of a set of analytical conditions which minimize the theoretical errors.

ACKNOWLEDGEMENT

The author wishes to express his appreciation to his advisor，Professor C．A．Wert，who suggested the direction of this work and whose influence and encouragement insured its completion．The author＇s knowledge of many aspects of electron optics was significantly increased by discussion with Mr．F。 Luehrs，presently of the Materials Analysis Company，Palo Alto，California．Several areas of electron probe microanalysis were clarified during conversations with Mr．Luehrs and Mr．J。Colby of the Bell Telephone Laboratories，Allentown，Pennsylvania。 Mr．Colby generously made available his computational scheme，MAGIC I，prior to publication．The author is further indebted to numerous members of the staff of the Materials Research Laboratory， where this work was carried out，who either assisted in obtaining the necessary equipment or offered suggestions during enlightening discussions．

The author wishes，above all，to thank his wife Marjo for her understanding，patience，and encouragement．

It is a pleasure to acknowledge the support in part of the U．S．Naval Undersea Warfare Center，Pasadena，California， through a Naval Fellowship，and the U．S．Atomic Energy Com－ mission through Contract $\operatorname{AT}(11-1) 1198$ 。

TABLE OF CONTEATS
Page
ACKNOWLEDGMENT iii
table of contents iv
LIST OF TABLES vi
LIST OF FIGURES vii
I. INTRODUCTION 1
II. GENERAL CONCEPTS 12
A. Instrument Effects 15
Bi. Sample Effects 16
C. Effects of Electron-Target Interactions 17
III. INSTRUMENTAL EFFECTS 19
A. Pulse Shrinkage and Coincidence Losses 19
B. Detector System 27
C. Pulse Shrinkage Measurement 28
ن. Detector System Deadtime Measurement 29
E. Instrument Drift 36
F. Contamination 38
IV. SAMPLE EFFECTS 44
A. Absorption Correction 44

1. Mass Absorption Coefficients 56
2. Evaluation of Emission Line and Absorption Edge Wavelengths 68
3. Mathematical Fitting of Experimental Mass Absorption Data 78
4. Discussion of Photoeffect Cross Sec- tion Calculations 104
5. Numerical Estimates of Mass Absorp- tion Coefficients 108
B. Background 115
C. Fluorescence Correction 117
V. X-RAY GENERATION EFFECTS 130
A. Ionization Cross Section 134
B. Electron Stopping Power 135
C. Effective Current Factor 136
VI. COMPUTATIONAL METHODS 139
VII. APPLICATIONS 147
A. Copper-Zinc 147
B. Nickel-Iron 150
C. Tin-Zirconium 152
D. Titanium-iviobium 152
E. Silicon-oxygen 156
F. Iron-Sulfur 158
G. Titanium-Carbon 158
H. Gold-Copper 161
VIII. SUMMARY 163
IX. LIST OF REFERENCES 165
X. APPENDIX 175
A. COMPUTER PROGRAM FOR CALCULATION OF detector system deadtime 175
B. COMPUTER PROGRAM FOR NUMERICAL INTE- GRATION OF RELATION FOR ELECTRON STOPPING POWER FACTOR 177
C. COMPUTER PROGRAM FOR REDUCTION OF RAW MICROPROBE DATA TO COMPOSITION 179
D. INITIALIZATION CONSTANTS 200
E. SPECIFICATION FOR INPUT DATA 208
F. TYPICAL OUTPUT FROM REDUCTION OF MICRO- Probe data to composition 216
XI. VITA 224

LIST OF TABLES

TablePage
I. Characteristics of Electron Probe Micro- analyzers and Fluorescent X-ray Spectrog- raphy. 5
II. Experimental Deadtime Determinations. 35
III. Principle Emission Line Wavelengths and Critical Excitation Potentials for K, L, and M Series 69
IV. Chracteristic Absorption Edge Wavelengths 74
V. Values of C and n for $(\mu / \rho)=C \lambda^{n}$ for Various Wavelength Intervals. 109
VI. Mass Absorption Coefficients for Carbon, Nitrogen and Oxygen Ka Emission Lines. 114
VII. Constants for Calculating Fluorescence Yields (ω). 126
VIII. Results of Analyses of Copper-Zinc Sample of Certified Composition 27.10 wt \% Zinc; 72.85 wt \% Copper. 149
IX. Results of Analyses of Nickel-Iron Sample of Reference Composition 43.55 wt \% Iron; 56.55 wt \% Nicke1. 151
X. Analyses of Nominal 1.5 wt $\%$ Tin in Zircaloy-2. 153
XI. Results of Analyses of Titanium-Niobium Sample of Reference Composition 34.97.wt \% Titanium; 65.00 wt \% Niobium. 155
XII. Results of Analyses of SiO_{2} Sample。 157
XIII. Results of Analyses of Three Titanium Carbide Samples. 160
XIV. Results of Analyses of $C_{3} A u$ Samples 162
XV. Summary of Analyses Results 164

LIST OF FIGURES

Figure

1．Interactions of an electron probe with a
specimen。 4
2．Electron microprobe analytical techniques． 7
3．Examples of backscattered electron and X－ray sweeps and line profiles． 9
4．Schematic diagram of the arrangement of the basic components of an electron microprobe analyzer． 14
5．Detector pre－amp output pulses；a）pulses widely separated in time；b）pulse shrinkage effect． 22
6．Pulse height decrease with counting rate for carbon Ka emission line． 31
7．Schematic diagram of detector－counting system。 33
8．Carbon contamination rate for three analysis conditions． 42
9．Relationship between incident electron probe and X－ray emergence angle，θ 。 47
10．Relationship between incident electron probe and electron traverse angle，β 。 50
11．Mass absorption coefficient of zirconium． 62
12．Mass absorption coefficient of titanium． 64
13．Mass absorption coefficient of tantalum。 66
14．Mass absorption coefficient of carbon． 80
15．Mass absorption coefficient of nitrogen． 82
16．Mass absorption coefficient of oxygen． 84
17．Mass absorption coefficient of vanadium． 86
18．Mass absorption coefficient of niobium． 88
19．Calculated values of coefficient，C，for function $(\mu / \rho)=C \lambda^{n}$ for $\lambda<K$ edge． 91
20．Calculated values of exponent，n ，for function （ μ / ρ ）$=C \lambda^{n}$ for $\lambda<K$ edge。 93
21．Calculated values of coefficient，C，for function $(\mu / \rho)=C \lambda^{n}$ for λ between K and L I edges． 95
22．Calculated values of exponent，n ，forfunction $(\mu / \rho)=C \lambda^{n}$ for λ between K andL I edges．97
23. Calculated values of coefficient, C, for function $(\mu / \rho)=C \lambda^{n}$ for λ between L III and M I edges.99
24. Calculated values of exponent, n, for func- tion $(\mu / \rho)=C \lambda^{n}$ for λ between L III and M I edges. 101
25. Typical emission spectrum from compound target. Shaded region represents part of spectrum capable of fluorescing $K \alpha(A)$ line。120
26. Examples of fluorescence effects: a) fluore-scence of the matrix by the continuum generatedin an inclusion containing no elements withcharacteristic lines capable of exciting iron;b) fluorescence due to the continuum and char-acteristic lines from a phase containing ele-ments with characteristic lines capable of ex-citing iron.123

I. INTRODUCTION

The great advance in the analysis of metallurgical samples occasioned by the development of a practical electron probe x-ray microanalyzer* ${ }^{1,2}$ is that elemental characteristic x-ray intensity is used to determine the composition of a very small volume. The uniqueness of this analytical method is easily seen. The volume of material analyzed is of the order of one cubic micrometer $\left(\mu m^{3}\right)$. The analysis is nondestructive. Quantitative information is generally obtained without resorting to a series of compound "standards" for intensity comparison purposes. Point-to-point analysis yields elemental distributions on a micrometer ($\mu \mathrm{m}$) scale. All errors of an instrumental nature, but two, have no influence on the data.

Electron probe x-ray microanalysis dépends on the excitation of the sample to be analyzed by a small ($10^{-8} \mathrm{~cm}^{2}$) electron beam. X-rays generated in the excited volume are emitted by the sample. The same excitation and detection systems are used for both standards and unknowns. Intensity of the same x-ray line is measured from both standards and unknowns. It must be pointed out, however, that the directness of the method is complicated by other pheonmena which occur when an electron beam is incident on a target. These

[^0]"phenomena, some of which must be taken into account in microprobe analysis, are illustrated in Figure 1.

Although, in a very broad sense, there is some similarity between electron probe microanalysis and fluorescent x-ray emission spectrography, it is well to point out some of the significant differences. These are summarized in Table I.

Since the electron microprobe does utilize electron bombardment as the means of excitation of the sample, several methods of analysis, some only qualitative, are possible. These approaches are illustrated in Figure 2.

It becomes clear that characterization of micro-volumes lies well within the realm of microprobe capabilities. Likewise, it is clear that the microprobe will not necessarily yield a highly reliable total composition analysis of a specimen. Rather, variations in composition from one region to another within a specimen are the significant results of electron probe x-ray microanalysis.

Relative variations in composition can be shown rapidly by raw x-ray intensity, backscattered electron intensity or sample current measurements. Figure 3 illustrates the backscattered electron intensity distribution and the elemental characteristic x-ray intensity distributions from the sample shown in the optical photograph. The x-ray intensity distributions also show intensity vs. position traces taken across the middle of the sample. Such qualitative informa-

Figure 1. Interactions of an electron probe with a specimen.

Table I. Characteristics of Electron Probe Microanalyzers and Fluorescent X-ray Emission Spectrography.

	Microprobe	Analytical ${ }^{3}$ Spectrograph
Specimen excitation	Electrons	x-rays
Power input, watts	$(5)\left(10^{-3}\right)$	(2) $\left(10^{3}\right)$
Specimen area, cm^{2}	10^{-4} to 10^{-8}	10^{-2} to 1
X-ray intensity per cm^{2} from specimen, watts	(2) $\left(10^{3}\right)$	(5) (10 ${ }^{-2}$)
X-ray intensity from specimen, watts	(2) $\left(10^{-5}\right)$	(5) $\left(10^{-2}\right)$
X-ray intensity to detector, watts	$(5)\left(10^{-9}\right)$	$(5)\left(10^{-7}\right)$
Counting rate, cps	$(2)\left(10^{4}\right)$	(6) $\left(10^{5}\right)$
Signal peak-tobackground ratio	$\begin{aligned} & 200 \text { to } 1 \\ & \text { (white radiation) } \end{aligned}$	$\begin{aligned} & 10,000 \text { to } 1 \\ & \text { (scattered x-rays) } \end{aligned}$
Detectable mass, grams	10^{-14}	10^{-9}
Minimum detectable concentration, ppm	500	10

Figure 2. Electron microprobe analytical techniques.

Figure 3. Examples of backscattered electron and x-ray sweeps and line profiles.

tion is obtained fairly easily. However, it is in the quantitative determination of absolute concentrations that most problems are encountered. The general foundation for the determination of concentration from characteristic x-ray line intensity was outlined by Castaing. ${ }^{1}$ Additional contributions to the general principles of microanalysis were made by Philibert, ${ }^{4}$ Wittry ${ }^{2}, 5$ and Poole and Thomas. ${ }^{6}$ Many other authors have added to the information required for determination of composition. Some of these authors will be referred to in later sections of this thesis. In fact, it is necessary to do so in the running text simply because of the diversity of terminology and notation. Several reviews and bibliographies are available in the literature. ${ }^{7-11}$ In addition, at least four books on microprobe analysis have appeared. 12-15 Each of these "overviews" has its good points, but of necessity reflects the incompleteness of theory and application which casts its shadow over the field.

One might easily follow the suggestion of Campbell and Brown ${ }^{11}$ in evaluating the advances made in $x-r a y$ microanalysis: divide $x-r a y$ wavelengths into long and short wavelength regions with the division falling roughly at $3 . \AA_{\text {。 }}$ Such a division is motivated by both theoretical and experimental considerations. Simply stated, for analytical wavelengths less than three Angstroms, less precise theory with
many approximations and simplifications will yield relations that provide reasonably accurate concentrations from measured x-ray intensities. For analytical wavelengths greater than about three Angstroms, additional physical phenomena must be carefully considered in order to obtain a relation between measured x-ray intensity and composition. It is the consideration of the extension of the general principles of x-ray microanalysis to light elements, including carbon, that forms the subject of this thesis.

II. GENERAL CONCEPTS

The principle behind quantitative x-ray microanalysis is the irradiation with a finely focused electron beam of a selected point on a specimen surface and the detection and measurement of a characteristic x-ray line emission from a given element in the specimen. Selection of the x-ray line to be measured is made with a curved and ground diffracting crystal spectrometer. A schematic diagram of the electron probe microanalyzer is given in Figure 4. Calibration of the apparatus is accomplished by replacing the specimen by a standard containing a known amount of the element of interest. Since the measurements on the specimen and on the standard are made with x-rays of the same wavelength, there is no need to know the absolute efficiency of the spectrometer and detector. The simplicity of the analytical method appears when the calibration is made with a sample containing the pure element. In essence, this implies that a calibration curve of x-ray intensity versus concentration can be made with only two points, 100% and 0% 。

The absolute nature of electron probe x-ray microanalysis has been emphasized by Castaing. ${ }^{16 \text {. He has shown }}$ that such a calibration curve is to a first approximation linear. For accurate analyses, the non-linearity of such

Figure 4. Schematic diagram of the arrangement of the basic components of an electron microprobe analyzer.

a two point calibration can be calculated, at least in principle。

A. Instrument Effects

The non-proportionality between concentration and detected x-ray intensity arises from several general effects. The intensity (counts per second) registered by the electronic counting circuitry is not equal to the $x-r a y$ intensity emitted by the sample within the solid angle intercepted by the spectrometer.

It is an effect of the measurement procedure which causes the lack of equality between emitted and evaluated intensities. The first complication arises because the detector, usually a proportional counter, has a finite resolving time. Under the heading of "deadtime" many authors have listed two phenomena, coincidence losses and detector output pulse shrinkage.

Coincidence losses occur because x-ray emission statistics are those of radioactive decay, Poisson statistics. Two photons very closely spaced in time generate "electron clouds" in the detector, which "overlap" and then appear as a single output pulse. A count loss by coincidence has occurred. Pulse shrinkage arises because of the finite transit time to the cathode of the ions generated within the detector. At high count rates, before the ion cloud
resulting from one incident photon arrives at the cathode, a second photon enters the detector. The residual ion cloud reduces the net gas gain of the detector and a smaller output pulse is generated.

The second instrument problem has been taken as the summation of instrument drift and contamination effects. "Drift" is usually due to electron gun filament warpage and gun and lens power supply variations. Contamination is generated on the sample surface by the interaction at the sample surface of the electron probe with organic vapors. An x-ray attenuating carbon deposit is thus built up under the probe.

B. Sample Effects

Because the characteristic x-rays are generated some distance below the sample surface, absorption occurs as these x-rays leave the sample on their way to the spectrometer. This absorption is only one of the several phenomena which remove the equality between the probe generated characteristic line intensity and the detected intensity.

The spectrometer, in addition to characteristic line intensity, admits to the detector some background radiation due in general to the x-ray continuum and to secondary characteristic lines from other elements in the sample. Further, intensity at the analytical characteristic line
wavelength other than probe generated intensity arises from indirect excitation. Such secondary fluorescence radiation is generated by the absorption of primary x-rays from other elements in the sample. This necessitates a characteristic fluorescence correction. Secondary fluorescence radiation is also caused by absorption of the continuum, giving rise to a continuum fluorescence correction.

C. Effects of Electron-Target Interactions

The x-ray intensity generated by the electron probe is not strictly proportional to concentration when the sample contains elements greatly different in atomic number. As the electrons from the probe enter the specimen and , cause ionizations, they do not move in straight lines. Rather, the electron motion would seem to be a series of angled paths caused by collisions. In heävy elements, these paths approach random directionality (diffusion) very rapidly. Electrons from the probe could also undergo large angle scattering. These electrons leave the sample surface while still possessing energy greater than that necessary to produce characteristic x-rays. It is this variation of electron scattering and penetration with atomic number which causes the non-proportionality between concentration and generated intensity.

Each of the above-mentioned corrections will be treated
in some detail in the following sections of this thesis. The emphasis then is on the form of the corrections to be used when one of the elements in the specimen is a light element, and on the numerical values of the various constants used in these corrections.

The approach to be used will begin with a consideration of the instrumental effects, including a discussion of certain experimental difficulties. We then consider the nature of the sample effects on the generated intensity. A discussion of the "generation" effect follows. The mathematical relations for correction of the various effects are then applied to several systems of metallurgical interest, and the results are discussed.

III。 INSTRUMENTAL EFFECTS

A. Pulse Shrinkage and Coincidence Losses

The use of an x-ray detection-counting system composed of a proportional counter detector and associated preamplifier, linear amplifier, pulse height analyzer and scalar introduces several limitations into the measurement of the x-ray intensity incident on the detector window. Assuming that the entire energy of a photon is lost only through the ionization of detector gas atoms, the number, N, of ion pairs produced by one photon is equal to the photon energy divided by the ionization energy of the gas. (We assume zero initial kinetic energy of the ejected electron.) As these primary electrons are accelerated toward the anode, they accumulate kinetic energy. Assuming that on their way to the anode these primary electrons also lose energy only through (n) secondary ionization collisions, secondary ion pairs are generated. If the mean number of secondary collisions, \bar{n}, is constant for a given detector voltage, the charge collected at the anode for each incident photon of a given energy, $\bar{N} 2 \bar{n}_{q}$, is proportional to the energy of the incident photons. The positive ions generated by the incident photon and by the avalanche are accelerated toward the cathode. Their influence on the internal field of the detector is not removed until they arrive at the detector wall.

As the x-ray intensity, i.e., photon rate, increases, it is possible for a second photon to enter the detector while the positive ion space charge from a previous photon still exists. This space charge reduces the effective detector voltage and the gas gain ($2^{\bar{n}}$) decreases. The resultant reduction in detector output pulse amplitude causes a non-linearity in the behavior of proportional counters. Detector preamp output pulses are shown in Figure 5a, b. The two pulses in Figure 5a are widely separated in time, and thus their amplitude differences are due only to variations in the energy of the incoming photons. In Figure 5b, the third pulse is reduced in amplitude by at least 20% from the amplitude of the second pulse. This reduction of output amplitude is due to a reduced gas gain caused by the presence of the positive charge cloud from the second photon when the third photon entered the detector.

The dependence of pulse shrinkage on counting rate, detector voltage, incident wavelength, detector geometry and detector gas flow rate has been studied extensively by Bender and Rapperport, ${ }^{17}$ with additional contributions by Burkhalter, Brown and Myklebust, 18 Birks, ${ }^{13}$ Spieiberg; 19 and Heinrich, Vieth and Yakowitz. ${ }^{20}$. It is obvious that detector pulse shrinkage will have an effect on counting rate when a pulse height analyzer with closely set upper

Figure 5. Detector pre-amplifier output pulses; a) pulses widely separated in time; b) pulse shrinkage effect.

and lower level discriminators is used to eliminate noise and high and low energy background.

A separate, but not entirely distinct, problem arises when a second photon enters the detector before the electron avalanche from a preceding photon has been collected by the anode. In this case, there is the possibility that the two electron avalanche "clouds", could overlap in their arrival at the anode. The detector then outputs a single charge pulse of approximately double amplitude and a coincidence loss occurs.

Experimentally, coincidence losses can never be eliminated. In fact, the problem may be aggravated if the pulse pair resolution of the scalar, pulse height analyzer or linear amplifier is worse than the detector-preamplifier combination. For the case of losses controlled by detector response time, Schiff ${ }^{21}$ suggested a correction of the form:

$$
N=N^{\prime} \exp \left(\begin{array}{ll}
N & \tau \tag{1}
\end{array}\right)
$$

where $N=$ true counting rate

$$
\begin{aligned}
& N^{\prime}=\text { observed counting rate } \\
& \tau=\text { deadtime }
\end{aligned}
$$

For the case where coincidence losses are controlled by a large non-extendable deadtime in the electronic pulse circuitry, Ruark and Brummer ${ }^{22}$ derived the relation:

$$
\begin{equation*}
N=N^{\prime} /\left(1-N^{\prime} \tau\right) \tag{2}
\end{equation*}
$$

It will be noted that if Equation (1) is expanded in
a power series:

$$
\begin{equation*}
N=N^{\prime}\left(1+N \tau+N^{2} \tau^{2} / 2!+\ldots\right) \tag{3}
\end{equation*}
$$

If $N \tau \ll 1$, we can terminate the series. Thus:

$$
\begin{equation*}
N=N^{\prime}(1+N \tau), \tag{4}
\end{equation*}
$$

or:

$$
\begin{equation*}
N=N^{\prime} /\left(1-N^{\prime} \tau\right) \tag{5}
\end{equation*}
$$

The limit of the validity of such an approximation, which is of the same form as the relation of Ruark and Brummer, would be established by an experimental deviation from linearity between N and N^{\prime}. Heinrich et al. ${ }^{20}$ have shown that for counting rates up to $3 \times 10^{4} \mathrm{cps}$ and deadtimes up to 3 microseconds the approximation holds for their detection system to within 5%. The point to be made is that since a precise and accurate measurement of intensity is required, deviations from linearity between N^{\prime} and N must be taken into account. If one sets an arbitrary limit upon this deviation, and this limit is exceeded, higher order terms in the expansion (3) must be considered.

Various methods for determining detection system deadtime have been suggested by Beers, ${ }^{23}$ Lonsdale, 24 Short; ${ }^{25}$ Heinrich et al. ${ }^{20}$ and Sawatzky and Jones. ${ }^{26}$ In an electron microprobe instrument that has a facility for measuring sample current, it can be assumed that the x-ray photon rate reaching the detector is proportional to the sample current:

$$
\begin{equation*}
N=k i, \tag{6}
\end{equation*}
$$

where (i) is the sample current. Using the linear approximation we obtain:

$$
\begin{equation*}
k i=N^{\prime} /\left(1-N^{\prime} \tau\right) \tag{7}
\end{equation*}
$$

or:

$$
\begin{equation*}
N^{\prime} / i=k-k N^{\prime} \tau \tag{8}
\end{equation*}
$$

Thus, a plot of N^{\prime} / i vs. N^{\prime} should yield a straight line with an intercept on the N ' i axis of (k) and a slope of $(k \tau)$. τ can be determined for the plot by using
$\tau=1 / N^{1}-1 / k_{i}$
after the intercept has been determined.
Some experimenters ${ }^{27}$ have encountered detector systems which yield data suggesting that the deadtime is a function of count rate; that is, that:
$N=N^{\prime} /\left(1-N^{\prime} \tau\left(N^{\prime}\right)\right)$
Consideration of the above model for pulse shrinkage and coincidence losses suggests that an apparent increase in deadtime at high count rates is really a problem generated by a too high Pulse Height Analyzer baseline setting. A baseline set too closely at low count rates would cause an artificial decrease in counting rate at high photon fluxes due to the effect of pulse shrinkage。

An estimate of the quantitative effect of deadtime and pulse shrinkage can be obtained from a consideration of a counting rate of 10,000 counts per second (less than the rate usually obtained on pure iron or copper). If
the detector system has a deadtime of three microseconds, then to ignore the effect of deadtime on count rate would result in an error of 2.9% in the measured count rate. If 10,000 counts per second were the rate from the standard and the unknown produced 1000 counts per second (approximately a 10% alloy), the error in the resulting intensity ratio would be approximately 2.4%. Such an error would also appear in the calculated concentration.

If at 1000 counts per second, the linear amplifier output was centered at 10 volts, with a pulse distribution RMS deviation of 0.5 volts, then, assuming a Gaussian distribution, 95% of the pulses would occur between 9.0 and 11.0 volts. If the Pulse Height Analyzer was set with its upper and lower level discriminators at 8.0 and 12.0 volts respectively, and an increase in count rate to 10,000 cps resulted in a 10% decrease $i n$ pulse amplitude to a distribution centered at 9.0 volts, then approximately 4% of the counts at $10,000 \mathrm{cps}$ would fall below the baseline. This loss of 4% of the standard counts would cause an error of approximately 4.5% in the intensity ratio and in the calculated concentration.

In the present experiments, the upper discriminator setting is chosen at low count rate, less than 100 per second. The lower level discriminator is set at high count rates, of the order of 10,000 counts per second. These criteria are chosen in reference to the discussion in
section III.C. The detection system deadtime is measured, as discussed in section III.D. and the correction is applied to all data.

B. Detector System

The precision of an analysis is directly related to the absolute number of x-ray quanta detected. If long counting time can be tolerated, low counting rates are acceptable. However, since in carbon analysis any significant sample surface carbon contamination will cause analysis errors, short counting times at low probe intensities are desirable. The analysis then requires diffracting crystals of hịh efficiency and detectors also of high quantum counting efficiency.

Rose and Korff ${ }^{28}$ and Rose and Ramsey ${ }^{29}$ investigated the amplification properties of proportional counters, and give specific recommendations for the use of an ArgonMethane gas mixture. Counting efficiencies of proportional counters and scintillation counters were investigated by Taylor and Parrish。 ${ }^{30}$ Their data indicate that no proportional counter can compete with a NaI(Tl) scintillatorphotomultiplier tube detector for quantum counting efficiency and uniformity of spectral response, for wavelengths below $2 \AA$. For the wavelength interval $2 \AA$ to $8 . \AA$, the highest quantum counting efficiency is exhibited by an argon filled
side-window proportional counter with a Be window. The decrease in quantum counting efficiency of an $\left(A-\mathrm{CH}_{4}\right)$ - Be detector for wavengths greater than $6 \AA$ is due to the absorption by the window material. For wavelengths greater than $8 \stackrel{\circ}{ }$, thin organic film windows hold out the most promise for eliminating the absorption problem of Be . For example, Birks ${ }^{31}$ has reported using a 0.25 u nitrocellulose window for long wavelengths. More recently, Henke et al. ${ }^{32}$ have calculated mass absorption coefficients for various organic film window materials.

For the present experiments, an argon-10\%, CH_{4} filled proportional counter with a 0.005 in. Be window was used in the interval $1 \AA$ to $8 \AA$; an aluminized $2500 \AA$ nitrocellulose window flow proportional counter with argon-10\% CH_{4} gas was used for longer wavelengths.

C. Pulse Shrinkage Measurement

The data of Bender and Rapperport ${ }^{17}$ suggest that for a given detector voltage the percent shift in output pulse amplitude decreases with wavelength to a zero shift for the silicon Ka emission line. It would seem likely then that the carbon $K a$ emission line should also exhibit no shift with increasing counting rates. To test this conclusion, the pulse height distribution of the carbon $K \alpha$ emission line from natural diamond was measured as a func-
tion of counting rate. The pulse height spectra were obtained with a multi-channel analyzer. The channel number corresponding to the peak of the pulse height distribution is plotted as a function of counting rate in Figure 6 . While little change in pulse height is observed for count rates greater than 6000 counts per second, a significant change, a reduction in output pulse amplitude with increasing count rate, is observed for lower counting rates. Since for samples containing carbon the expected carbon count rate is between 100 and 5000 counts per second, pulse shrinkage with increasing count rate cannot be ignored.

To include all possible effects of pulse shrinkage in the present analyses, the Pulse Height Analyzer upper level discriminator must be set equivalent to channel 50 in Figure 6. The lower level discriminator must be set equivalent to channel 38. These are approximately the conditions indicated at the end of section III.A.

D. Detector System Deadtime Measurement

The x-ray detection-counting system is shown schematically in Figure 7. Because each component in the system has its own effect on the net pulse pair resolution, the "deadtime" was determined for the entire detection system. This was done for each of the three spectrometers at

Figure 6. Pulse height decrease with counting rate for carbon $K \alpha$ emission line。

Figure 7. Schematic diagram of detector-counting system.

several wavelengths. The data were plotted following the method of section III.A. The values of the deadtime τ were also determined mathematically using the method of least squares. ${ }^{33}$ If there are n observations of sample current I_{j} and count rates $N^{\prime}{ }_{j}$, then the relations:

$$
\begin{equation*}
\sum_{j=1}^{n}\left(N_{j}^{\prime} / I_{j}\right)=n k-n \sum_{j=1}^{n} N_{j}^{\prime} \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{j=1}^{n}\left(N_{j}^{\prime 2} / I_{j}\right)=k \sum_{j=1}^{n} N_{j}^{\prime}-k \sum_{j=1}^{n} N_{j}^{2} \tag{12}
\end{equation*}
$$

are solved for τ. A computer program, written for use in the evaluation of deadtime, is given in Appendix A. This program was written specifically to make use of the automatic readout capability added to the present instrument.

The results of several deadtime determinations are given in Table II. The values of deadtime as determined experimentally for the present instrumentation are slightly lower than that assumed in the estimate of errors made in section III.A. Thus, while the magnitude of the errors that would be encountered if we ignored the deadtime correction are slightly less than the estimates in that section, those errors are nevertheless significant. For an intensity ratio. of $1000 \mathrm{cps} / 10,000 \mathrm{cps}$, the error introduced in this intensity ratio by ignoring the deadtime correction would be of the order of 2%. We thus conclude that in using the present instrumentation, a deadtime correction using

Detector	Wavelength	Number of Determinations	Mean τ ，μ sec．
Sealed Prop． Counter \＃1	Si K ${ }_{\text {人 }}$	2	2.08
	A1 $\mathrm{K} \alpha$	2	2.28
			a $2.18 \mu \mathrm{sec}$ 。
Sealed Prop． Counter \＃2	Sn Lo．	2	2.53
	$\mathrm{Fe} \mathrm{K} \alpha$	3	2.49
	Zn K ${ }_{\text {a }}$	3	1.94
			an 2.32 j sec 。
Flow Prop． Counter	C．K α ．	2	2.85
	$\mathrm{Fe} \mathrm{K} \mathrm{\alpha}$	2	2.07
	Zn K_{α}	1	1.84
			an 2.25 u sec．

Equation (5) with deadtime values from Table II must be made to all measured intensities.

E. Instrument Drift

In order that statistical errors in recorded data be held small, less than the errors in other input parameters, sufficient data must be accumulated. The low fluorescence yield of the light elements (less than 0.01) necessitates long counting times, ten seconds or more. During the counting interval, short term instabilities in the electron gun are encountered. Further, when many data points are taken, long term drift in the electron gun and magnetic lenses result in a changing probe intensity. Some microprobe instruments have been fitted by the manufacturers with a feedback network for stabilizing the probe current. The constancy of probe intensity is achieved by either adjusting the electron gun grid bias voltage or adjusting the condenser lens excitation current. As has been pointed out by Reed, ${ }^{34}$ either method results in a defocusing of the electron probe, the extent of which is dependent on the amount of stabilization required. In addition, changes in condenser lens excitation can shift the position of the probe unless the electron optics column is completely aligned. Since probe intensity drift is usually due to
a shift in position of the filament with respect to the center of the gun grid aperture, the drift itself is a misalignment of the electron optics column. Thus, before implementation, all methods of instrumental compensation for probe instabilities must be critically evaluated since they might only aggravate the problem。

Correction for probe intensity drift is possible. without instrumental adjustments. For example, if the probe current is measured and recorded, rather than stabilized, all x-ray counts can be normalized to constant probe current. The difficulty with this approach is that the x-ray intensity cannot be measured at the same time as the probe intensity. It is possible, however, to measure a "monitor" current, a fraction of the total beam current, which strikes an insulated aperture located above the magnetic objective lens pole piece. The x-ray intensity is then normalized to constant "monitor" current. This method relies on the proportionality between "monitor" current and probe current, which may not hold in the case of a badly misaligned column。

It is well to mention here that the current measured is NOT the sample current, the current collected by the sample and usually fed to ground via a current meter. Because of the change in electron scattering properties with atomic number, a constant probe current can be accom-
panied by a changing sample current. The changing sample current is correlatable in a general way with composition and thus is not a true measure of probe stability.

In the present instrument, much care has been taken to insure that the electron optics column is aligned before any analysis is performed. With an initially aligned column, misalignment caused by filament drift or warpage caused no detectable change in the proportionality between "monitor" current and probe current. Thus, in the present situation, a correction for probe intensity drift was accomplished by digitizing the "monitor" current as the x-ray data were taken. The x-ray data were then normalized to constant "monitor" current.

F. Contamination

The instrumental problems introduced by sample surface contamination have been discussed by $0 \mathrm{ng},{ }^{35}$ Ranzetta and Scott ${ }^{36}$ and Neuhaus. ${ }^{37}$ Consideration of the problem leads to the conclusion that contamination cannot be eliminated. However, the rate of buildup of a contamination layer on the sample surface can be reduced with certain precautionary measures.

Initial studies made in conjunction with the present work indicated that the rate of contamination buildup was independent of the type of sample surface introduced into
the electron microprobe. Likewise, these studies indicated that the generation of a visible contamination spot on the surface of a sample under probe bombardment occurred much more rapidly if the sample was left in the sample chamber overnight than if the sample was freshly introduced into the system. It was concluded that the contamination was due to the interaction at the sample surface, of the electron probe with organic vapors present in the probe enclosure, and the deposition of carbon products on the sample surface.

To reduce the amount of organic vapor in the probe enclosure the diffusion pump oil was changed from the manufacturer supplied 0ctoil to low back-streaming Convolex-10. The probe chamber was supplied only with an inefficient water cooled baffle for trapping back-streaming pump oil. The pumping system was thus modified to include a liquid nitrogen cold trap of the chevron type. This cold trap was separated from the diffusion pump by an air-cooled baffle also of the chevron type. The air-cooled baffle served as thermal insulation between the pump and the trap. It also served as an intermediate trap which reduced the amount of back-stream pump oil frozen on the nitrogen trap. This second function proved to be of considerable import since the nitrogen trap could be kept cooled for many days without too much concern being paid to the possi-
bility of depletion of pump oil from the diffusion pump reservoir. The addition of these baffles produced no significant effect on pumping speed.

To further reduce the possibility of contamination effects, the present instrument was modified to permit an automatic readout of accumulated data by way of a teletypewriter unit. Accumulated data were read out at the rate of 10 characters per second. Several channels of data, each containing six digits, were printed out and simultaneously punched on paper tape. Four channels of data, beam current monitor and three x-ray data channels, were read out in four seconds.

A test for contamination rate was made after the above modifications had been performed. Figure 8 shows the total carbon x-ray counts accumulated in ten second intervals as a function of time under three conditions of probe bombardment of a titanium sample. This obviously is.a more sensitive test for contamination than looking for a visible contamination spot. It will be noted that on the average about seven minutes were required for the carbon count rate to double. At the intended probe intensity of 0.05 microamps, approximately six minutes passed before the carbon count rate due to contamination increased by six counts per second. Analysis of titanium carbide samples

Figure 8! Carbon contamination rate for three analysis conditions.

was expected to yield count rates in excess of 100 counts per second. It was thus concluded that counting times up to 50 seconds could be employed, if necessary, without significant changes in carbon intensity due to contamination. That is, the change in carbon counts due to contamination was less than the expected statistical error in the count data.

IV. SAMPLE EFFECTS

A. Absorption Correction

We turn, now, to the absorption within the sample of the characteristic x-rays generated by the electron probe. Several experimental determinations of the absorption correction for specific alloy systems and analysis conditions have been made. Castaing ${ }^{1}$ and Kirianenko et al。 ${ }^{38}$ tilted the target, thus altering the electron probe angle of incidence and the x-ray emergence angle. Castaing and Descamps 39 and Castaing and Henoc ${ }^{40}$ covered a thin tracer layer of element A by increasing layers of element B, thus changing only the total electron retardation and the total $x-r a y$ attenuation between the sample surface and the layer of the tracer element under study. Green ${ }^{41}$ varied the $x-r a y$ emergence angle. Based on slightly different models, Philibert, ${ }^{4}$ Theisen, ${ }^{14,42}$ and Helgesson ${ }^{43}$ developed analytical methods for calculating the absorption correction in the general case。

We follow, in general, the approach of Castaing and Descamps and Philibert, with several modifications. We assume at this point that all intensity is generated by the electron probe; that is, there are no secondary flurescence effects. Letting the probe be incident normally to the surface of a sample containing element A in mass concentration C_{A}, the x-ray intensity generated in a thin
layer of mass thickness $d(\rho z), \rho=$ density, at a depth (0 p) is:

$$
\begin{equation*}
d I_{A, z}=m_{0} \phi(\rho z) d(\rho z) C_{A}, \tag{13}
\end{equation*}
$$

where $\phi(\rho z)$ gives the distribution in depth of the generated intensity. m_{0} is the number of probe electrons per unit area incident on the specimen. Because of absorption in the specimen, the intensity emitted by the layer is:

$$
\begin{equation*}
d I_{A, z}=m_{0} C_{A} \phi(\rho z) \exp \left[-(\mu / \rho)_{U}^{A} \rho z \csc \theta\right] d(\rho z) \tag{14}
\end{equation*}
$$

where $(\mu / \rho)_{u}^{A}$ is the mass absorption coefficient of the sample for A characteristic radiation, say $K \alpha$ radiation, and θ is the x-ray take-off.angle, as defined in Figure 9.

For the entire sample, the emitted intensity is:

$$
\begin{equation*}
I_{u}^{A}=\rho m_{0}^{\infty} C_{A} \phi(\rho z) \exp \left[-x_{u}^{A} \rho z\right] d(\rho z) \tag{15}
\end{equation*}
$$

where $x_{u}^{A}=(\mu / \rho)_{u}^{A} \csc \theta$. Since the take-off angle, θ, is determined by the instrument, we need to know two quantities, $\phi(\rho z)$, the distribution in depth of the generated intensity, and (μ / ρ), the mass absorption coefficient for A K radiation.

Letting an incident electron have an energy $E_{o}>E>E_{C}$, where E_{0} is the probe accelerating potential and E_{C} is the critical excitation potential for $A K a$ radiation, the number of ionizations per unit path length could be expressed as:

Figure 9. Relationship between incident electron probe and x-ray emergence angle, θ.

$$
\begin{equation*}
d n_{A}=\psi\left(E, E_{c}, n\right) d x, \tag{16}
\end{equation*}
$$

where $\left(n_{A}\right)$ is the number of "ionizable" electrons per $c m^{3}$. If ψ depends only on the element A, and $i f(n)$ is not a function of atomic number (as, for example, the number of K electrons), then:

$$
\begin{equation*}
d n_{A}=\frac{N}{A} \psi_{A}\left(E, E_{c}\right) d x, \tag{17}
\end{equation*}
$$

where N is Avogadro's number and A is the atomic weight of A. ψ_{A} now has the characteristics of a cross section. We now consider the number of ionizations of A atoms per layer $(d z)$ at the depth (z) in a sample containing element A in concentration C_{A}. If an electron traversing ($d z$) makes an angle β_{i} with the normal, then, with β_{i} defined in figure 10 , we have:

$$
\begin{equation*}
d n_{A, z}=C_{A} \frac{\rho N}{A} \psi_{A} \frac{d z}{\cos } B_{i} \tag{18}
\end{equation*}
$$

For all electrons crossing d z:

$$
\begin{equation*}
d I_{A, z}=\sum_{i} d n_{A, z}=C_{A} \frac{\rho N}{A} \cdot \psi_{A} \cdot \sum_{i} \frac{d z}{\cos } B_{i} . \tag{19}
\end{equation*}
$$

The summation must be taken over all electrons crossing (d z), not just those moving downward. If $\left(m_{0}\right)$ is the number of electrons per unit area in the probe at the specimen surface, then at depth (z), this number will be reduced to $\left(m_{z}\right)$. But these are only the downward traveling p be electrons. Since the possibility of backscattering does exist, the net number of electrons crossing (d z) is $\left(r_{z} m_{z}\right)$, with $1 \leq r_{z} \leq 2$. At the depth of complete diffusion,

Figure 10. Relationship between incident electron probe and electron traverse angle, β.

$r_{z}=2$. At the surface, $r_{z}=1$. Thus we write:

Since, for a given set of conditions, the mean scattering angle, or the angle of traverse across (d z), will vary with (z), we set:

$$
\sum_{i=1}^{r_{z}^{m} z} \frac{1}{\cos \beta_{i}}=m_{z} R(\rho z),
$$

and:

$$
\begin{equation*}
d I_{A, z}=C_{A} \frac{N}{A} \psi_{A} m_{z} R(\rho z) \rho d z_{0} \tag{22}
\end{equation*}
$$

Before proceeding, it is well to recall that the only reason for the present manipulations is the desire to obtain some form for the distribution in depth of the generated x-ray intensity. Such a distribution is needed to obtain an estimation for the effect of specimen absorption of the generated intensity. It will be seen later that the distribution in depth can effectively be removed from the consideration of absorption.

Philibert assumed an exponential form for the dependence of R on (ρz) as:

$$
\begin{equation*}
R(\rho z)=R(\infty)-(R(\infty)-R(0)) \exp (-k \rho z) \tag{23}
\end{equation*}
$$

He also assumed that the number of downward traveling eleatrons varies with depth following Lenard's ${ }^{44}$ law:

$$
\begin{equation*}
\left(m_{z} / m_{0}\right)=\exp (-\sigma \rho z) . \tag{24}
\end{equation*}
$$

The first serious problem arises now, since the Lenard (σ)
depends only on E_{o}, and not on E_{c}. Duncumb and Shields 45 noted this problem and Duncumb and Melford ${ }^{46}$ have suggested that the critical excitation potential dependence should be of the form:

$$
\begin{equation*}
\sigma=\frac{\text { const. }}{E_{0}^{1.5}-E_{c}^{1.5}} \tag{25}
\end{equation*}
$$

Substituting for $R(\rho z)$ and $\left(m_{z}\right)$, we obtain:

$$
\begin{equation*}
d I_{A, z}=C_{A} \frac{N}{A} m_{0} \psi_{A} e^{-\sigma \rho z}\left[R(\infty)-(R(\infty)-R(0)) e^{-k \rho z}\right] \tag{26}
\end{equation*}
$$

From Equation (13), we had:

$$
\begin{equation*}
d I_{A, z}=m_{0} C_{A} \phi(\rho z) d(\rho z) \tag{13}
\end{equation*}
$$

Thus we obtain:

$$
\begin{equation*}
\phi(\rho z)=\frac{N}{A} \psi R(\infty) e^{-\sigma \rho z}\left[1-\left(1-\frac{R(0)}{R(\infty)}\right) e^{-k \rho z}\right] . \tag{27}
\end{equation*}
$$

With absorption, we previously had:

$$
\begin{equation*}
d I_{A, z}=m_{o} C_{A} \phi_{u}(\rho . z) \exp \left(-(\mu / \rho)_{u}^{A} \rho z \csc \theta d(\rho z)\right) \tag{14}
\end{equation*}
$$

or:

$$
\begin{equation*}
I_{u}^{A}=m_{0} C_{A} \int_{\rho z=0}^{\infty} \phi_{u}(\rho z) \exp \left(-x_{u}^{A} \quad \rho z\right) d(\rho z), \tag{15}
\end{equation*}
$$

which is just the form of the LaPlace transform of $\phi(\rho z)$. Likewise, for a standard of pure $A:$

$$
\begin{equation*}
I_{S}^{A}=m_{0}^{1} \stackrel{\infty}{\int}_{\rho z=0}^{\infty} \phi_{S}(\rho z) \exp \left(-x_{S}^{A} \rho z\right) d(\rho z), \tag{28}
\end{equation*}
$$

where X_{s}^{A} is the product of csce and the mass absorption coefficient of element A for A radiation. Forming the ratio of intensities:

$$
\begin{equation*}
\frac{I_{u}^{A}}{I_{s}^{A}}=C_{A} \frac{m_{0}}{m_{0}^{\prime}} \frac{L^{\phi_{u}}(\rho z) e^{-x_{u} \rho z} d(\rho \quad z)}{\int_{S}(\rho \quad z) e^{-x_{S} \rho Z} d(\rho z)}, \tag{29}
\end{equation*}
$$

We see that it is absolutely imperative that the probe intensity be the same for the unknown and the standard.

Taking the transform:

$$
\begin{equation*}
F(x)=\left(\frac{1}{1+\frac{x}{\sigma}}+\frac{\sigma}{k} \frac{R(0)}{R(\infty)}\right)\left(\frac{1}{1+\frac{\sigma}{k}+\frac{x}{k}}\right) \tag{30}
\end{equation*}
$$

and letting $h=\frac{\sigma}{k}$ we have:

$$
\begin{equation*}
F(x)=\left(\frac{1}{1+\frac{x}{\sigma}}+h \frac{R(0)}{R(\infty)}\right)\left(\frac{1}{1+h\left(1+\frac{x}{\sigma}\right)}\right) \tag{31}
\end{equation*}
$$

If $m_{0}=m_{0}^{\prime}$, the intensity ratio now becomes:
$\frac{I_{u}^{A}}{I_{s}^{A}}=K=C_{A} \cdot \frac{F_{u}(x)}{F_{s}(x)}$.
Since we had to assume some form for the rate of energy loss by the probe electrons, the above relation contains not only the correction for sample absorption, but also the effect of atomic number. It is possible to separate the two effects if we consider that in the absence of absorption ($x=0$):

$$
\begin{equation*}
F(0)=\frac{1+h R(0) / R(\infty)}{1+h} . \tag{33}
\end{equation*}
$$

Then, defining:

$$
\begin{equation*}
f(x)=F(x) / F(0) \tag{34}
\end{equation*}
$$

we can write:

$$
\begin{equation*}
\frac{I}{I_{s}^{A}}=c_{A} \frac{f_{u}\left(x_{u}\right)}{f_{s}\left(x_{s}\right)} \frac{F_{u}(0)}{F_{s}(0)} \tag{35}
\end{equation*}
$$

or:

$$
\begin{equation*}
c_{A}=\frac{I_{u}^{A}}{I_{s}^{A}} \frac{f_{s}\left(x_{s}\right)}{f_{u}}\left(x_{u}\right) g \tag{36}
\end{equation*}
$$

where

$$
\begin{equation*}
f(x)=\frac{1+\frac{h(R)(0)}{\left(1+\frac{x}{\sigma}\right)\left(1+\frac{h}{1+h} \frac{x}{\sigma}\right)} \frac{x}{\sigma}}{(0)+h} \tag{37}
\end{equation*}
$$

and (g) is a function containing the effect of atomic number.
At this point, we are faced with the evaluation of the various factors in $f(x)$. It has been usual to assume that $R(0)=0$ (Philibert ${ }^{4}$). However, from consideration of our model, such an assumption ignores any ionization occurring near the target surface, and would thus tend to overcorrect the intensity ratio. To a first approximation, $R(0)=1+\varepsilon$, where ε would be determined by the backscattered electron intensity. However, all backscattered electrons do not have the same energy. Thus the energy distribution would have to be considered. Such an approach has been suggested by Bishop. ${ }^{47}$ In the present case, we assume that $R(0)=1.1$. If we assume, in Equation (21) that an approximate value for the average of $\cos \beta_{i}$ is $1 / 2$, then we obtain $R(\infty)=4$. Philibert had shown that h can be expressed as a function of
$\left(A / Z^{2}\right)$ where Z is the atomic number. Using values of $R(0)$ and $R(\infty)$ similar to the above, Duncumb and Melford evaluated $h=4.5 \frac{A}{Z^{2}}$. This value will be assumed here. The final evaluation is that of the mass absorption coefficients. As Yakowitz and Heinrich ${ }^{48}$ have shown, it is the accuracy of (μ / ρ) which dominates the accuracy of $f(x)$, and thus the accuracy of the absorption correction, Equations (36) and (37). We deal in some detail with mass absorption coefficients in the next section.

A. 1.. Mass Absorption Coefficients

Since the analytical method of electron probe microanalysis can be applied to any solid sample, the correction for sample absorption of generated x-rays must be able to be applied to any sample. Necessary inputs to that correction are the values of the sample and standard mass absorption coefficients for the x-ray wavelengths used in the analysis. Two of the most recent "generalized" tables of x-ray mass absorption coefficients have been published by Heinrich ${ }^{8}$ and by Frazer. ${ }^{49}$ Several comments are pertinent to both sets of values. Both authors use the approach initially suggested by Siegbahn, ${ }^{50}$ discussed by Allen, 51 Grosskurth, ${ }^{52}$ Laubert, ${ }^{53}$ and formalized by Leroux ${ }^{54}$ to interpolate between measured values of (μ / ρ). Leroux claimed that experimental mass absorption coefficients could be fit to an analytic relation of the form:

$$
\begin{equation*}
(\mu / \rho)=C \lambda^{n} . \tag{38}
\end{equation*}
$$

The exponent was said to be characteristic of the wavelength interval between absorption edges and the coefficient dependent on atomic number. These two authors tested experimental values from various investigators for internal consistency based on a minimum random error from the assumed relation, Equation (38). The data were then weighted accordingly and fit by the method of least squares to obtain values for the coefficient and exponent. Both authors obtained a set of C 's and n 's for several elements
and wavelength intervals．In particular，these authors found that the exponent was not independent of atomic number，as had been suggested by Leroux．Heinrich graphi－ cally fitted the C＇s and n＇s he obtained by a smooth curve． A 1 inear dependence of the exponent on atomic number and a polynomial dependence of the coefficient on atomic number were finally assumed by Frazer．These fittings assumed a smooth variation of the mass absorption coefficients with atomic number and thus permitted a tentative inter－ polation to atomic numbers for which no experimental mass absorption data had been obtained．

Other methods，based on semi－theoretical grounds， have been suggested for estimation of mass absorption coefficients．Victoreen 55,56 dealt primarily with very short wavelengths，generating a semi－empirical relation for mass absorption coefficients below the K－edge．Also obtaining a semi－empirical function，Henke et al。 ${ }^{57}$ cal－ culated mass absorption coefficients of elements up to Gallium．They give values for（ μ / ρ ）for wavelengths between $8.34 \AA$ and $44 . \AA$ ，stopping short of the L III edge．The calculations of Bearden ${ }^{58}$ and Henke et al。，${ }^{32}$ leading directly to photo－effect cross sections，are based on assumed hydrogen－like wave functions for the initial and final states of the electron involved in the photo－ ionization。 Bearden gives calculated and experimental
values of (μ / ρ) for wavelengths less than or just greater than the K edge, for 9 elements. Henke et al。present results of similar calculations for elements to Calcium up to the L III edge, but also give experimental data to $113 \AA$ for carbon and for elements found in the gaseous state.

Since it is impossible to predict the elements that might be involved in any particular microanalysis, including the light elements, some method must be used to obtain at least a reasonable estimate of the numerical value of mass absorption coefficients. Several compilations of mass absorption coefficients, generally containing only experimental values, but not necessarily, have been published by Birks, ${ }^{13}$ Allen, ${ }^{59}$ Liebhafsky et al., ${ }^{60}$ Compton and Allison, 61 Sagel, ${ }^{62}$ and Stainer. ${ }^{63}$ However, in any of these compilations, it is generally not possible to determine which values presented are really experimental and which are values obtained by the author's own method of interpolation. Further, these tables are generally limited to wavelengths less than ten Angstroms.

The interpolated, calculated tables of Heinrich do not contain mass absorption coefficients for wavelengths longer than $11.9 \AA$. Thus, no numerical values, even interpolated ones, are presented for the emission lines of elements lighter than sodium. An additional difficulty arises because certain of the values presented differ by several percent
from recently measured (μ / θ) values. For example, the Heinrich given value for nickel absorbing the tin La line differs from that measured by Hughes and Woodhouse, 64 being low by more than 4%. Likewise, for zirconium as an absorber, the Heinrich values for wavelengths between 5.7 and $8.4 \AA$ are higher than the Hughes and Woodhouse ${ }^{64}$ values by more than 7%.

Although the calculated values of. Frazer include mass absorption coefficients for wavelengths to the fluorine $K a$ line (18.32 A), it is in the cases of long wavelengths (greater than the silicon $K a, 7.125 \AA$) that significant errors appear. For example, when compared to the experimental values of Henke et al., ${ }^{32}$ the Frazer values for (μ / ρ) for a carbon absorber for the emission lines of fluorine $(18.32 \AA)$, magnesium (9.89 \AA) and aluminum ($8.339 \AA$) are in error by $9.8 \%, 16.6 \%$ and 17.5% respectively. For nitrogen as the absorber, the errors are $2.0 \%, 12.7 \%$ and 14.3%.

For oxygen as the absorber, the errors are $1.0 \%, 7.2 \%$ and 10.0%. For fluorine absorbing fluorine $K \alpha$, the difference amounts to 96.5%.

The lack of an apparently trustworthy set of selfconsistent mass absorption coefficients for the refractory metals and for light elements prompted a search for experimental data with these materials as absorbers. Some data
for the refractory metals are available in the literature. 8,52,53,64-71 These data do not necessarily include values of (μ / ρ) for the emission lines of carbon, nitrogen and oxygen. Figure 11 is a log-log plot of experimental mass absorption coefficient data as a function of wavelength for zirconium. The solid line is a fit of that data by the method of least squares to a relation of the form of Equation (38). The data only covers wavelengths less than 9 A. Data taken with titanium as the absorber, to wavelengths greater than $100 \AA$, is shown in Figure 12. Again, the solid line is a least squares fit of the data to Equation (38)。Even allowing that the data of Ershov et al。 69 might be $5-15 \%$ low, a serious deviation from linearity is observed in this plot. Figure 13 shows the mass absorption data for a Group $V B$ metal, Tantalum. Equation (38) seems to fit below the M I edge, although absence of data near that edge precludes any real test.

The coefficients and exponents obtained by our fit of the data availabie at the present time, for these three elements, were sufficiently different from those postulated or obtained by Heinrich or Frazer to warrant a re-evaluation of estimates of mass absorption coefficients for other elements, particularly in light of recently available data. $32,68-79$

This re-evaluation was undertaken. That work required consideration of experimental and theoretical work on both

Figure 11. Mass absorption coefficient of zirconium.

Figure 12. Mass absorption coefficient of titanium.

Figure 13. Mass absorption coefficient of tantalum.

the characteristic energies of emission lines and absorption edges, and mass attenuation coefficients. The work is discussed in the following sections.

A. 2. Evaluation of Emission Line and Absorption Edge Wavelengths.

Since the present interest in mass absorption coefficients includes a desire to estimate values for the rate of attenuation of the carbon, nitrogen and oxygen emission lines, it was necessary to know the wavelengths of the emission lines and the position of the absorption edges of the various elements. Again, in this data, we are particularly concerned with long wavelengths.

Heinrich ${ }^{8}$ included a listing of absorption edges with his calculated and interpolated coefficients and exponents. These values, however, are also limited to wavelengths less than 12. \AA. Further, several errors become apparent. For example, the L I edge of zinc, as given by Heinrich, differs from the value 1 isted by Bearden ${ }^{80}$ by $0.5 \AA$. Several other edges were found to diffër from Bearden's values by several tenths of an Angstrom. The relatively large size of these errors indicated that a critical evaluation of published absorption edge and emission line wavelengths was needed. In addition, as indicated by the fact that Bearden's compilation is incomplete, the L sub-shell edges and M sub-shell edges had not been determined in the case of many elements.

A listing of primary $\left(K \alpha_{1}, L \alpha_{1}, M \alpha_{1}\right)$ emission wavelengths and critical excitation potentials for the principle atomic series is given in Table III.

Table III. Principle Emission Line Wavelengths and Critical Excitation Potentials for K, L and M Series

Table III. Continued

At. Wt.	Ele.	$E_{K}(\mathrm{Kev}$)	$E_{L}(\mathrm{Kev})$	$\mathrm{E}_{\mathrm{M}}(\mathrm{Kev})$	$\lambda_{\mathrm{K} \alpha_{1}}{ }_{1}{ }^{\circ}$	${ }^{\lambda} L_{\alpha}{ }_{1}{ }^{\circ}$	$\lambda_{M_{\alpha}}{ }_{1}{ }^{\circ}$
69.720	GA	10.368	1.117	. 017	1.340	11.292	
72.590	GE	11.104	1.217	. 029	1.254	10.436	
74.922	AS	11.865	1.323	. 041	1.176	9.671	
78.960	SE	12.655	1.434	. 054	1.105	8.990	
79.909	BR	13.470	1.553	. 069	1.040	8.375	
83.800	KR	14.324	1.677	. 089	. 980	7.817	
85.470	RB	15.202	1.807	. 110	. 926	7.318	
87.620	SR	16.107	1.941	. 133	. 875	6.863	
88.905	Y	17.038	2.079	. 157	. 829	6.449	
91.220	ZR	17.999	2.223	. 180	. 786	6.071	
92.906	NB	18.987	2.371	. 205	. 746	5.724	
95.940	MO	20.004	2.523	. 227	. 709	5.407	
99.000	TC	21.047	2.678	. 253	. 675	5.115	
101.070	RU	22.119	2.838	. 279	. 643	4.846	
102.905	RH	23.220	3.002	. 307	.613	4.597	
106.400	PD	24.348	3.173	. 335	. 585	4.368	
107.870	AG	25.517	3.351	. 398	. 559	4.154	
112.400	$C D$	26.716	3.538	. 440	. 535	3.956	
114.82	IN	27.942	3.730	. 443	. 512	3.772	
118.690	SN	29.195	3.929	. 511	.491	3.600	
121.750	SB	30.486	4.132	. 528	. 470	3.439	
12.7.600	TE	31.811	4.342	. 572	. 451	3.289	
126.904	I	33.167	4.559	. 631	. 433	3.149	
131.300	XE	34.590	4.782	. 672	.416	3.017	
132.905	CS	35.987	5.011	. 726	.400	2.892	
137.340	BA	37.452	5.247	. 780	. 385	2.776	
138.910	LA	38.934	5.484	. 832	. 371	2.666	14.88
140.120	CB	40.453	5.723	. 883	. 357	2.562	14.04
140.907	PR	42.002	5.963	. 926	. 344	2.463	13.343
144.240	ND	43.574	6.209	. 973	. 332	2.370	12.68

Table III. Continued

At. Wt.	Ele.	$E_{K}(\mathrm{Kev})$	$E_{L}(\mathrm{Kev})$	$E_{M}(\mathrm{Kev})$	$\lambda_{\mathrm{K}_{\alpha}}{ }_{1}^{\circ}$	$\lambda_{L_{\alpha}}{ }_{1}{ }^{\circ}$	$\lambda_{\mathrm{Ma}_{1}}{ }^{\circ}$
147.	PM	45.198	6.461	1.027	. 320	2.282	12.
. 150.35	SM	46.849	6.717	1.073	. 309	2.200	11.47
151.96	EU	48.519	6.981	1.126	. 298	2.121	10.96
157.250	GD	50.233	7.243	1.185	. 288	2.047	10.46
158.924	TB	52.002	7.515	1.241	. 279	1.977	10.00
162.500	DY	53.793	7.790	1.295	. 270	1.909	9.59
164.93	H0	55.619	8.068	1.351	. 261	1.845	9.20
167.26	ER	57.487	8.358	1.401	. 252	1.784	8.82
168.934	TM	59.380	8.650	1.461	. 244	1.727	8.48
173.04	YB	61.300	8.944	1.528	. 237	1.672	8.149
174.97	LU	63.310	9.249	1.589	. 229	1.620	7.840
178.49	HF	65.310	9.558	1.662	. 222	1.570	7.539
180.948	TA	67.403	9.877	1.743	. 215	1.522	7.252
183.85	W	69.508	10.200	1.814	. 209	1.476	6.983
186.20	RE	71.658	10.531	1.890	. 203	1.433	6.729
190.2	0 S	73.856	-10.868	1.967	. 197	1.391	6.490
192.2	IR	76.101	11.212	2.048	.191	1.351	6.262
195.09	PT	78.381	11.562	2.133	. 186	1.313	6.047
196.967	AU	80.720	11.921	2.220	. 180	1.276	5.840
200.590	HG	83.109	12.286	2.313	. 175	1.241	5.648
204.37	TL	85.533	12.660	2.406	. 170	1.207	5.460
207.19	P. B	88.005	13.041	2.502	. 165	1.175	5.286
208.980	BI	90.534	13.426	2.603	.161	1.144	5.118
210.	PO	93.105	13.814	2.683	. 156	1.114	
210.	AT	95.730	14.214	2.787	. 152	1.085	
222.	RN	98.404	14.619	2.892	. 148	1.057	
223.	FR'	99.999	15.031	3.000	. 144	7.030	
226.	RA	99.999	15.444	3.105	. 140	1.005	
227.	AC	99.999	15.871	3.219	. 136	. 980	
232.038	TH	99.999	16.300	3.325	.133	. 956	4.138

Table III. Continued

At. Wt.	Ele.	$E_{K}(\mathrm{Kev})$	E_{L} (Kev)	$E_{M}(\mathrm{Kev}$)	${ }^{\lambda+}{ }^{\alpha}{ }_{1}{ }^{\circ}$	${ }^{\lambda L^{\alpha}{ }_{1}{ }_{1}{ }^{\circ}}$	${ }^{\lambda M} M_{\alpha_{1}}{ }^{\circ}$
231.	PA	99.999	16.733	3.436	. 129	. 933	4.022
238.030	U	99.999	17.165	3.545	. 126	. 911	3.910
237.	$N P$	99.999	17.610	3.666		. 889	
244.	PU	99.999	18:054	3.778		. 868	
243.	AM	99.999	18.504	3.887		. 848	
247.	CM	99.999	18.930	3.971			
247.	BK	99.999	19.452	4.132			
251.	CF	'99.999	19.930	4.253			
254.	ES	99.999	20.410	4.374			
253	FM	99.999	20.900	4.498			

Table IV lists values for the wavelengths corresponding to the various atomic absorption edges.

Data included in this assembly were derived from several primary sources ${ }^{80-83}$ and secondary sources. $61,84,85$ In the case of discrepancies between optical data, x-ray data and photoelectric data, the x-ray data were selected. In the absence of any experimental data, either mathematical interpolation ${ }^{83}$ or graphical interpolation was used to obtain absorption edge wavelengths.

Having obtained a compilation of emission line and absorption edge wavelengths, it is now possible to discuss mass absorption coefficients in the various wavelength intervals delineated by absorption edges. We thus proceed to a discussion of experimental (μ / ρ) data.

Table IV. Characteristic Absorption Edge Wavelength

Table IV．Continued
ABSORPTION EDGES \AA

E1	K	LI	LII	LIII	MI	MII	MIII	MIV	MV	NI
FE	1.743	14.65	17．202	17．525	133.456	229.594	230.000	999.		
CO	1.608	13.38	15.618	15.915	123.119	202．000	208．371	999。		
NI	1.488	12.3	14．242	14：525	110.895	182.057	188．400	999．		
Cu	1.381	11.27	13.014	13.288	110.600	159．500	166.000	999。		
ZN	1.283	10.06	11.862	12.131	91． 230	137.000	143.900	99．		
$\overline{\mathrm{GA}}$	7.196	9.517	10.828	11.100	78.419	176.087	120.487	712．534	712.534	999.
GE	1.117	8.773	9.924	10．187	68.878	96．936	102．633	431．989	431.989	999。
AS	1.045	8.107	9.125	9.367	60.924	84.686	88.243	300．924	300．924	999．
SE	． 980	7.503	8.407	8.646	53.556	73.710	76.579	218.661	227.800	999
BR	． 920	6.959	7.753	7.984	48.336	65.494	68.309	176.863	179.682	399．000
$\overline{\mathrm{KR}}$	． 866	6.47	7.168	7.392	43.07	55.672	57.989	129.500	139.461	421.000
RB	． 816	6.008	6.644	6.862	38.491	50.114	51.984	110.895	112.403	388.000
SR	． 770	5.592	6.173	6.387	34.680	44.310	46.072	91.838	93.149	317.000
Y	． 728	5.217	5.756	5.962	31.499	39.687	41.286	77.682	78.768	275.600
ZR	． 689	4.879	5.378	5.579	28.475	35.565	36.972	66.137	67.185	240.000
NB	． 653	4.575	5.037	5.230	26.469	32.709	34.154	59.779	60.597	214.100
M0	． 620	4．304	4.719	4.913	24.413	30.084	31.402	53.278	54.201	186.900
TC	． 589	4．058	4.436	4.630	22.5	27.578	28.853	47.508	48.140	162.
RU	． 561	3．835	4.180	4.369	20.945	25.461	26.511	42.660	43.039	145．500
RH	． 534	3.629	3.943	4.130	19.454	23.342	24.492	38.561	39.286	136.800
$\overline{\text { PD }}$	． 509	3.437	3.723	3.907	18.109	27.603	22.699	34.941	35.494	122.600
AG	． 486	3.256	3.516	3.700	16.878	20.119	21.061	30.82	31.14	110.500
$C D$	． 464	3.085	3.326	3.505	15.874	18.603	19.614	28.13	29．50	101.000
IN	． 444	2.926	3.147	3.324	14.764	17.314	18．285	26.718	27.166	91.100
SN	.425	2.777	2.982	3.156	13.867	16.050	17.200	24.28	24.90	85.800
SB	\bigcirc	2.639	2.830	3.000	13.020	15.072	16.014	22.699	23.114	76.600
S	． 309	2.510	2.688	2.856	12	14	5	21.124	21.528	72.000

Table IV. Continued
ABSORPTION EDGES \AA

Ele.	K	LI	LII	LIII	MI	MII	MI I I	MIV	MV	NI
I	. 374	2.388	2.554	2.720	11.575	13.345	14.193	19.660	20.050	66.900
XE	. 358	2.274	2.429	2.593	10.8	12.410	13.232	17.8	18.441	60.1
CS	. 345	2.167	2.314	2.474	10.186	11.641	12.428	16.766	17.089	53.718
BA	. 331	2.068	2.205	2.363	9.590	10.907	11.672	15.560	15.890	49.004
LA	. 318	1.978	2.105	2.261	9.108	10.294	11.036	14.612	14.907	45.851
CE	. 30	1.893	2.012	2.166	8.642	9.741	10.459	13.756	14.036	42.817
PR	. 295	1.814	1.926	2.079	8.205	9.270	9.975	13.122	13.394	40.716
ND	. 285	1.739	1.844	1.997	7.870	8.838	9.556	12.459	12.737	39.334
PM	. 274	1.667	1.768	1.919	7.55	8.426	9.137	11.791	12.073	37.6
SM	. 265	1.600	1. 695	1.846	7.196	8.047	8.732	11.288	11.552	35.864
$\overline{E U}$. 256	T. 5378	1.627	1.776	6.888	7.682	8.374	10.711	11.013	34.420
GD	. 247	1.478	1.563	1.712	6.592	7.344	8.030	10.186	10.461	32.991
TB	. 238	1.422	1.502	1.650	6.301	7.014	7.694	9.724	9.989	31.159
DY	. 230	1.369	1.445	1.592	6.057	6.732	7.399	9.304	9.574	29.782
H0	- 223	1.319	1.391	1.537	5.825	6.448	7.120	8.910	9.174	28.456
$\overline{\mathrm{F}}$. 216	1.271	T.339	1.484	5.619	6.781	6.843	8.601	8.847	27.606
TM	. 209	1.225	1.289	1.433	5.374	5.933	6.579	8.186	8.487	26.284
YB	. 202	1.182	1.243	1.386	5.170	5.706	6.359	7.865	8.115	25.448
LU	. 196	1.140	1.1 .99	1.341	4.977	5.477	6.127	7:562	7.805	24.492
HF	. 190	1.100	1.155	1.297	4.767	5.241	5.882	7.223	7.461	23.040
TA	. 184	1.061	1.174	1.255	4.585	5.020	5.650	6.870	7.110	21.924
W	. 178	1.025	1.075	1.216	4.407	4.815	5.435	6.590	6.830	20.837
RE	. 173	. 989	1.037	1.177	4.236	4.620	5.234	6.330	6. 560	19.837
0 S	. 168	. 956	1.001	1.141	4.071	4.433	5.043	6.073	6.300	18.949
IR	.163	. 924	. 967	1.106	3.915	4.260	4.861	5.830	6.050	17.966
PT	. 158	. 893	-934	1.072	3.762	$4.09 \overline{3}$	4.686	5.590	5.810	17.172
AU	. 154	. 864	. 903	1.040	3.616	3.936	4.518	5.374	5.584	16.339
HG	. 149	. 835	. 872	1.009	3.478	3.783	4.355	5.157	5.360	15.492
TL	.145	. 808	. 843	. 979	3.346	3.634	4. 198	4.952	5. 153	14.664
PB	.141	. 782	. 815	. 951	3.217	3.492	4.047	4.757	4.955	13.874

Table:IV. Continued
ABSORPTION EDGES A

Ele.	K	LI	LII	LIII	MI	MII	MI I I	MIV	MV	NI
BI	. 137	. 757	. 789	- 923	3.094	3.359	3.904	4.572	4.764	13.215
P0	.133	. 732	. 763	. 898	2.988	3.217	3.755	4.431	4.621	12:457
AT	. 129	. 709	. 739	. 872	2.872	3.093	3.619	4.262	4.449	11.898
RN	. 126	. 687	. 715	. 848	2.766	2.981	3. 504	4.103	4.286	11.301
FR	. 123	. 665	. 692	. 825	2.665	2. 865	3.385	3.952	4.133	10.753
$\overline{\mathrm{R}} \mathrm{A}$	$\bigcirc 179$. 645	. 671	. 803	2.571	2.762	3.270	3.817	3.993	10.260
AC	.116	. 625	. 650	. 781	2.479	2.663	3.172	3.679	3.852	9.770
TH	.115	. 606	. 630	. 761	2. 392	2.567	3.068	3.557	3.729	9.325
PA	. 110	. 587	. 610	.741	2.310	2.479	2.970	3.433	3.602	8.938
\cup	.107	. 570	- 592	. 722	2.235	2.392	2.884	3. 333	3.497	8.605
NP	$\bigcirc 104$. 553	. 574	.704	2.166	2.310	2.796	3.220	3.382	8.262
PU	.102	. 537	. 557	. 687	2.090	2.237	2.721	3.121	3.282	7.955
AM	. 099	. 521	. 540	. 670	2.026	2.171	2.656	3. 030	3.190	7.667
CM	. 097	. 507	. 521	. 655	1.972	2. 103	2.584	2.933	3.122	7.546
BK	. 091			. 637	1.891	2.017	2.491	2.840	3.000	7.064
$\overline{\text { CF }}$.091	. 475	.491	. 622	7.836	1.950	2.427	2.757	2.915	6.892
ES	. 089	.461	. 476	. 607	1.777	1.886	2. 361	2.678	2.834	6.637
FM	. 087	. 448	. 462	. 593	1.721	1.825	2.297	2.601	2.756	6.401

A. 3... Mathematical Fitting of Experimental Mass

Absorption Data:
Experimental mass absorption coefficient results obtained for more than 70 elements in various wavelength intervals by several authors $8,32,52,53,58,64-79,86-99$ were obtained from the literature. These data were plotted versus wavelength on a log-log scale. The experimental points for several elements are given in Figures 11 to 13 and Figures 14 to 18 .

We now assume that for any element, between two absorption edges, the mass absorption coefficient can be represented as a function of wavelength by:

$$
\begin{equation*}
(\mu / \rho)_{Z}=C_{Z} \cdot \lambda^{n_{Z}} \tag{39}
\end{equation*}
$$

The experimental data were fitted by the method of least squares to Equation (39). The exponent for each element in each wavelength interval was determined first. The data of each investigator were not treated separately. Rather, all data were taken together. The coefficients were evaluated using the determined value of the exponent. The curves resulting from this mathematical fitting of experimental data are represented by the solid lines in Figures 10 to 18 . These curves are typical in their closeness of fit.

Before proceeding, we must make several observations. The first point to be mentioned is that we have no a priori reason to expect that the experimental data will fit exactly

Figure 14. Mass absorption coefficient of carbon.

Figure 15. Mass absorption coefficient of nitrogen.

Figure 16. Mass absorption coefficient of oxygen.

Figure 17. Mass absorption coefficient of vanadium.

Figure 18. Mass absorption coefficient of niobium.

to Equation (39). Rather, Equation (39) is simply a semiempirical relation that reasonably approximates the change in photoattenuation with wavelength between absorption edges. However, we can make certain observations about the relation between the data and the fitted curves, and about the relation between various curves.

Let us consider the data for zirconium and titanium, Figures 11 and 12. The most obvious deviation from linearity between $\log (\mu / \rho)$ and $\log \lambda$ is found near the L I-edge of titanium. Lesser deviations from linearity are seen at the K-edges of both elements. In each case, the data near the absorption edge suffer a depression from the mathematical fit. The data below the K-edges exhibit a steeper slope than the data between the K-edges and the L I-edges. The latter data show a steeper slope than that of the data above the L III-edges. Between the same absorption edges, the data for titanium exhibit a lower slope than that for zirconium. However, the data for titanium below the K-edge show approximately the same slope as the data for zirconium between the K and L I-edges. A similar relation is observed between the data for titanium between the K and $L I-e d g e s$ and the data for zirconium above the L III-edge.

The fitted values of the coefficient, C, and the exponent, n, are plotted, for wavelengths below the K-edge, between the K- and L I-edges and between the L III- and M I-edges, in Figures 19 to 24.

Figure 19. Calculated values of coefficient, C, for function $(\mu / \rho)=C \lambda^{n}$ for $\lambda<K$ edge.

Figure 20. Calculated values of exponent, n, for function $(\mu / \rho)=C \lambda^{n}$ for $\lambda<K$ edge。

Figure 21. Calculated values of coefficient, C, for function (μ / ρ) $=C \lambda^{n}$ for λ between K and L I edges.

Figure 22. Calculated values of exponent, n, for function $(\mu / \rho)=C \lambda^{n}$ for λ between K and L I edges.

Figure 23. Calculated values of coefficient C, for function $(\mu / \rho)=C \lambda^{n}$ for λ between L III and M I edges.

Figure 24. Calculated values of exponent, n, for function $(\mu / \rho)=C \lambda^{n}$ for λ between L III and M I edges.

The surprising feature of these plots is the relative smoothness of the dependence of the coefficients, C, on atomic number. No such smooth variation is seen in the distribution of the exponents, n 。 It will be noticed, however, that if attention is directed to the variation of the exponent with atomic number, relatively sharp minima in n occur at the noble gases and at the noble metals. We conclude that the filling of atomic electronic shells and sub-shells has a distinct effect on the change of photoionization with energy. In particular, we suggest, at this point, that the filled outer electronic shells and sub-shells act as a type of barrier which must be overcome by an inner electron being ejected from an atom by a photoionization event.

In view of the above discussion, we will show in succeeding sections that there is some theoretical justification for concluding that a non-smooth variation in the exponent of Equation (39) with atomic number is physically meaningful. Further, it will be shown that based on atomic potential calculations, a physically sound foundation can be established for an interpolation of mass absorption coefficients. The conclusion to be reached is that while the fitting function assumed is not the best over the entire wavelength range from 1 to $80 \AA$, it is nevertheless possible to explain the variations in the atomic number dependence of the exponent and coefficient. The result will be that the large differ-
ences between experimental mass absorption coefficients and interpolated or mathematically estimated values can generally be eliminated.

A. 4. Discussion of Photoeffect Cross Section

Calculations

At usual x-ray wavelengths, $0.5-5 \AA$, almost all atomic species exhibit the familiar hydrogen-like behavior of mass absorption coefficient or photoionization cross section. (While it is reasonable to consider Compton scattering and pair production as photo-attenuation processes at higher energies than considered here, we assume here that photo-attenuation and photoionization are equivalent processes.) This usual behavior is characterized by sharp increases in photo-attenuation at absorption edges, followed by a smooth decrease with increasing energy. Recent experiments ${ }^{71,73-79}$ have suggested that at wavelengths longer thań $5 \AA$, involving photoionization of intermediate and outer electron shells, this behavior is by means universal. In particular, these experiments indicate that maxima in the photoionization occur as much as 30 ev higher than the supposed absorption edge.

Theoretical calculations of atomic photoeffect cross sections have been based on a variety of models. The mentioned work of Bearden ${ }^{58}$ and Henke et al。 ${ }^{32}$ result in photoeffect cross sections based on modified Coulomb or hydrogenlike wave functions. These results are close to experimental values of (μ / ρ) for light elements where the K shell is primarily involved in the photoionization. Likewise, reasonable
values are calculated for elements in which the L shell plays the most prominent part with only a small effect from K shell screening of the nucleus. Bearden presents theoretical and experimental values for nine elements, dealing with the wavelength interval 0:3-14.5 \AA. Henke et al。present theoretical values from $2.0-200 \AA$ and experimental values from 8.34-113 A. Both authors refrain from giving theoretical values near absorption edges. Schmickley and Pratt ${ }^{100}$ report numerical results from computations designed to study the effects of some inner electron screening. They deal with photon energies between 10 kev and 3 Mev , generally much higher than of interest here.

Cooper ${ }^{101,102}$ and Manson and Cooper 103 report calculations of photoionization cross sections, dealing primarily with energies in the vicinity of absorption edges up to approximately 100 ev above an edge. These authors obtain their results using a one-electron model with a modified central potential. 104 The results presented are significantly different from the gross spectral shape of photoionization cross sections predicted by the hydrogenlike model. Particularly, these calculations do indicate accurately the general spectral distribution of photoattenuation near thresholds, that is, near absorption edges corresponding to electron levels located some distance from the nucleus.

Rau and Fano ${ }^{105}$ have recently considered the variation with atomic number of the potential assumed by Cooper ${ }^{102}$ and Manson and Cooper. 103 Rau and Fano consider the mean potential energy of a test electron as a function of its distance from the nucleus within an atom of atomic number Z. The potential energy as calculated by those authors exhibits large variations, of the order of 20%. These variations are attributed to changes in inner and outer electron screening, which may be related to the average number of electrons inside and outside a sphere of radius r. The variations of potential energy should have an increased effect on atomic properties when the influence of electronic centrifugal potential energy is also considered. The combined effect of the electrostatic and centrifugal potentials results in the occurrence of a potential barrier separating two potential wells, for various combinations of Z and ℓ, the orbital angular momentum quantum number. The maximum barrier heights occur for copper, silver or palladium and gold with lesser heights at the noble gases.

The existence of the potential barrier and extremum values of that barrier should exhibit themselves as extremum values of the exponent in Equation (39). Maxima in the barrier would cause a greatest depression in the rate of change of an atomic photoionization cross section with wavelength between two thresholds, when compared to nearby atomic
species. Likewise, the barrier would exhibit itself through the shifting of the maximum of the mass absorption coefficient from the threshold to some wavelength shorter than the threshold (absorption edge).

Indeed, as can be seen in Figures 20, 22, and 24, a minima of the exponent does occur in various wavelength intervals at the noble metals, with other minima at the noble gases. We attribute these depressions in the rate of change of the mass absorption coefficient with wavelength to the outer screening generated by the filling of outer electron sub-shells.

We do not say that variations in the exponent with atomic number are significant in every detail. Such a statement would imply a greater confidence in published mass absorption coefficient data than is had by this writer. Rather, our contention is that an attempt to fit some smooth analytical form to the atomic number dependence of the coefficients and exponents in Equation (39) ignores certain periodicities in these data.
A. 5. Numerical Estimates of Mass Absorption Coefficients

Since our goal is to obtain a reasonable estimation of mass absorption coefficients for use in microprobe analysis, we direct ourselves to that task. Based on the preceeding discussion, and on the general applicability of. Equation (39) as expressing the wavelength dependence of the mass absorption coefficient on wavelength in the interval 1 to $80 \AA$ A, an interpolation between fitted exponents and coefficients was performed. The large number of fitted points, as shown in Figures 19 to 24, permitted graphical interpolation without too much difficulty. The results of that interpolation are given in tabular form in Table V. This tabulation permits the use of Equation (39) in the simple calculation leading to an estimation of mass absorption coefficients.

Serious consideration of the experimental difficulties encountered in the measurements of mass absorption coefficients has led the present author to question the introduction of the term accuracy at any point in the discussion of experimental values of (μ / ρ). The discussion should perhaps be limited to consideration of precision and absence of systematic errors.

If, however, we assume that experimental values are "true" values with a precision of such and such percent, then the limits on the accuracy of the present fitted and calculated values of (μ / ρ) can be estimated。

Table V. Values of C and n for $(\mu / \rho)=C \lambda^{n}$ for Various Wavelength Intervals

\bar{Z}	${ }^{n} \mathrm{~K}$	${ }^{\text {n }}$ KL	${ }^{n}$ LM	${ }^{n} \mathrm{MN}$	${ }^{\mathrm{n}_{\mathrm{N}}}$	C_{K}	${ }^{\text {c }} \mathrm{KL}$	${ }^{\text {c }}$ LM	$\mathrm{C}_{\text {MN }}$	\bar{C}_{N}
T	2.335					000.144				
2	2.786					. 084				
3	2.65					.250				
4	2.852					. 404				
5	2.661					889				
6	2.921	2.365				1.350	.295			
7	2.889	2.370				2.311	.471			
8	2.850	2.346				3.529	. 818			
9	2.813	2.390				4.943	. 904			
10	2.803	2.452				7.322	1.098			
11	2.784	2.59				9.322	- 80			
12	2.851	2.870				11.601	. 700			
13	2.780	2.770	1.309			14.87	1.110	7.338		
14	2.780	2.68	1.34			18.122	1.88	8.5		
15	2.773	2.61	1.38			22.020	2.6	10.0		
16	2.748	2.592	1.42			27.626	3.330	11.2		
17	2.847	2.652	1.46			27.864	3.548	12.5		
18	2.796	2.581	1.520			35.312	4.567	13.715		
19	2.802	2.54	1.522			42.038	5.8	15.		
20	2.810	2.52	1.524			48.678	7.3	16.8		
21	2.795	2.495	1.526			54.052	8.8	18.1		
22	2.821	2.478	1.529			60.083	10.927	19.593		
23	2.847	2.308	2.453			64.977	12.056	. 742		
24	2.847	2.389	1.926			77.899	12.661	6.095		
25	2.864	2.660	1.94			83.305	10.979	6.4		
26	2.836	2.644	1.965			97.144	12.734	6.8		
27	2.841	2.688	1.98			108.210	14.322	7.2		
28	2.734	2.693	1.991			117.098	15.520	7.839		
29	2.734	2.749	1.820			123.080	15.783	18.830		
30	2.771	2.656	1.85			146.550	19.124	18.2		

Table V. Continued

Z	n_{K}	${ }^{\mathrm{n}} \mathrm{KL}$	${ }^{\text {LM }}$	${ }^{\mathrm{n}} \mathrm{MN}$	${ }^{\mathrm{n}} \mathrm{N}$	C_{K}	${ }^{\text {C KL }}$	$\mathrm{C}_{\text {LM }}$	${ }^{\text {C MN }}$	${ }^{\text {C }}$ N
31	2.560	2.636	T.88			142.035	20.238	17.0		
32	2.769	2.471	1.915			169.094	24.425	16.246		
33	2.589	2.650	1.97			156.083	24.434	14.6		
34	2.782	2.672	2.05			188.918	26.852	13.5		
35	2.771	2.647	2. 14			207.363	29.204	12.0		
36	2.626	2.633	2.242			209.178	32.008	10.150		
37.	2.593	2.606	2.34			217.375	35.425	9.2		
38	2.668	2.791	2.44			238.313	34.296	8.6		
39	2.578	2.594	2.53			261.398	42.122	7.8		
40	2.752	2.728	2.583	. 40		277.847	41.921	7.356	6.	
41	2.661	2.734	1.923	- 48		291.277	44.976	22.304	8.	
42	2.751	2.712	1.99	. 70		325.568	49.133	20.0	14.	
43	2.70	2.675	2.19	1.2		332.	53.	18.4	18.	
44	2.613	2.657	2.46	1.46		338.246	57.048	15.0	28.	
45	2.426	2.682	2.55	1.56		266.121	60.395	13.0	66.	
46	2.674	2.701	2.604	1.59		380.209	62.906	11.593	155.	
47	2.427	2.700	2.393	. 385		278.270	66.473	18.157	1478.19	
48	2.469	2.703	2.574	1.60		325.561	70.806	14.947	108.	
49	2.396	2.701	2.55	1.60		291.804	75.185	16.8	44.	
50	2.656	2.702	2.500	1.593		429.243	79.510	20.595	34.465	
51	2.475	2.618	2.37	1.48		360.505	87.573	30.1	57.8	
52	2.526	2.644	2.16	1.26		428.535	90.994	57.0	86.	
53	2.453	2.648	1.94	. 92		391.501	94.983	74.0	156.	
54	2.44	2.616	1,880	. 757		393.	102. 108	83.443	403.675	
55	2.435	2.609	1.92	. 83		396.	107.580	76.	340.	
56	2.415	2.657	1.96	. 90		400.642	108.976	64.	259.	
57	2.375	2.606	2.04	1.24		406.	117.488	52.	210.	
58	2.326	2.615	2.13	1.44		415.658	128.292	42.	155.	
59		2.617	2.28	1.72			133.322	36.	120.	
60		2.611	2.43	1.95			138.475	31.8	81.	

Table V. Continued

Z	n_{K}	${ }^{\text {n }}$ KL	${ }^{\text {LM }}$	${ }^{\mathrm{MN}}$	${ }^{n} \mathrm{~N}$	C_{K}	C_{KL}	$\mathrm{C}_{\text {LM }}$	$\mathrm{C}_{\text {MN }}$	${ }^{\text {C }}$ N
61		2.61	2.58	2.12			143.5	30.8	57.	
62		2.623	2.722	2.26			150.262	30.254	34.	
63		2.674	2.746	2.36			164.053	31.414	19.5	
64		2.711	2.755	2.4			171.439	32.195	9.0	
65		2.740	2.685	2.39			182.478	35.891	5.0	
66		2:755	2.664	2.38			191.747	37.859	4.0	
67		2.760	2.632	2.37			203.031	40.695	6.0	
68		2.768	2.601	2.36			210.729	42.976	8.8	
69		2.769	2.600	2.35			222.047	45.248	9.9	
70		2.763	2. 568	2. 34			227.861	47.589	11.8	
71		2.764	2.558	2.32			239.732	50.412	14.5	
72		2.744	2.533	2.31	.018		247.226	53.018	16.2	19900.
73	2.517	2.613	2.589	2.30	.018	785.744	221.796	53.096	18.4	19011.799
74	2.043	2.668	2.541	2.28	.018	344.007	244.065	55.507	21.0	18100.
75		2.725	2.51	2.25	.017		271.	60.5	23.0	17300.
76		2.762	2.492	2.22	.017		290.700	63.573	25.5	16500.
77		2.703	2.468	2.17	.016		291.982	67.423	27.6	15700.
78		2.653	2.520	2.06	. 016		277.059	66.215	27.8	14935.4
79		2.511	2.528	2.068	. 043		241.237	70.331	27.626	10444.5
80		2.595	2. 474	2.12	. 058		290.	75.655	24.6	9100.
81		2.699	2.333	2.19	. 073		342.330	85.413	21.0	7800 。
82		2.601	2.456	2.280	. 088		311.716	81.287	20.128	6500.
83	2.228	2.587	2.527	2.313	. 106	631.182	325.828	82.053	20.591	5216.8
84		2.60	2.36	2.24			348.	82.	23.0	
85		2.62	2.18	2.09			371.	96.	27.5	

Table V. Continued

Z	${ }^{n} \mathrm{~K}$	${ }^{n_{K L}}$	${ }^{\text {L }}$ LM	${ }^{\mathrm{n}} \mathrm{MN}$	${ }^{\mathrm{n}} \mathrm{N}$	C_{K}	${ }^{\text {CKL }}$	${ }^{\text {L }}$ L	$\mathrm{C}_{\text {MN }}$	${ }^{\text {C }}$ N
86		2.653	2.147	1.92			394.339	112.607	36.0	
87		2.685	2.15	1.82			420 。	117.	47.0	
88		2.727	2.154	1.76			440.969	121.092	57.0	
89		2.715	2.28	1.73			441.	114.	62.0	
90		2.689	2.647	1.74			441.914	108.024	58.0	
9.1			2.66	1.81				108.	51.0	
92		3.147	2.676	1.888			649.224	108.019	46.169	
93			2.74	1.95				122.	47.0	
94			2.819	2.03				144.388	48.	
95			2.82	2.08				155.	51.	
96			2.83	2.13				164.	56.	
97			2.84	2.17				166.	63.	
98			2.85	2.22				169.5	67.	
99			2. 86	2.25				173.	74.	
100			2.87	2.27				175.	80	

Consideration of the precision of the experiments that provided the data for the present computations indicates that conservative estimates of the accuracy of the calculated values of the mass absorption coefficients limit that accuracy, at the extremes of error, to 5% below ten Angstroms and 15% above that wavelength.

As can be seen from Figures 11 to 18 , the difference between experimental values of the mass absorption coefficient at any given wavelength below ten Angstroms and the fitted curve generally is less than 2%. The large error limits are, however, approached in some cases near absorption edges, particularly where one would expect the effect of outer electron screening to be the greatest. The error limits for wavelengths greater than ten Angstroms simply reflects the precision of experiments in this wavelength range。 Generally, the calculated values as given by the solid curves in Figures 11 to 18 differ from the experimental values by less than 5%.

In consideration of the fact that some investigators would prefer numerical values of the mass absorption coefficients, Table VI lists a set of mass absorption coefficients for the emission lines of carbon, nitrogen, and oxygen.

Table VI. Mass Absorption Coefficients for Carbon, Nitrogen and Oxygen K_{α} Emission Lines

Absorber	44.6 A	31.68 A	23.57 A ${ }^{\text {A }}$
C	2280	25400	12200
N	3820	1730	17200
0	6000	2550	12620
F	8700	3700	1700
Ne	13600	5600	2600
A 1	33000	15900	(7800)
S	47500	25400	13000
Ar	45000	29000	15900
Ti	6300	3900	(10000)
\checkmark	8400	3500	(25000)
Cr	11500	6000	2300
Ni	-	6900	4500
Ge	23100	(13000)	(8000)
Kr	31400	21500	12300
Ag	6340	5680	18800
Xe	7130	6200	4250
Ta	20440	20400	19600
Pt	15920	15800	-
Au	13000	12730	9700
Bi	7800	7550	(7100)

B. Background

The x-ray intensity measured in an electron probe instrument includes, of necessity, some background radiation. In the most general case, this background consists of continuum radiation, cosmic rays, spurious pulses in the counting electronics and secondary line radiation from other elements in the sample than that of interest. If the measurement time on the element standard is the same as that on the unknown, all background contributions can be grouped together, and measured together. This intensity is then subtracted from the peak intensities measured.

For instruments with scanning x-ray spectrometers, the usual method for measuring background is to detune the spectrometer to a wavelength both above and below the peak wavelength. The subtracted background is then taken as the average of these two readings. Obviously, this method necessitates an increase in the number of spectrometer settings by a factor of three. To be completely precise, then, the background should be measured on the standard and at each observation point on the unknown.

Two alternatives have also been used for the determination of background. Based on the concept that the amount of detuning of the spectrometer must be chosen arbitrarily, the continum generated at the peak wavelength, but in elements adjacent in the periodic table to the element of in-
terest, could be measured. The continuum background would then be the average of these two readings. This intensity would then be subtracted from all intensity measurements, whether on the standard or on the unknown, 106 This method has two inherent difficulties. The biggest problem would occur when the concentration of the element of interest is less than approximately 30% in the unknown. Subtraction of the background as determined above is equivalent to subtraction of the standard background, generally 100% of that element, from intensities corresponding to much lower concentrations. The result is a serious overestimation of the unknown background. The determined unknown concentrations would then be artificially low, the error reaching in some cases 60%. The second difficulty with this method is that while the measurement taken on the element of atomic number $(Z+1)$ may be free from interference by secondary emission lines, the measurement on the sample (Z - l) will almost always encounter interference from subsidiary lines in the emission spectrum of element (Z \quad) 。 This will again result in an overestimation of the standard background with an even more serious overestimation of the unknown background. This fact was determined in the determination of the $t i n$ concentration. (1.5% nominal) in five samples of Zircaloy-2. Following the above method, the probe determined concentration was 0.6% tin.

The third method for the determination of background is that used in the present analyses. Its greatest advantage occurs when many observations must be taken. Using the scanning ability of the x-ray spectrometers, an intensity vs. wavelength recording was made for each analytical line, both on the standards and on the unknowns. The full width at half maximum of the analytical line was measured, along with the position of the line peak. If no significant shift, greater than 3%, was found $i n$ the position of the analytical line, and no obvious changes in the line symmetry were observed, the background on the standard was measured at 5/2 FWHM off the peak both above and below the line peak. The magnitude of the background subtracted from each peak intensity measurement, whether on the standard or on the unknown, was taken as proportional to the concentration of the element in the sample measured. This approach necessitates some iteration and such a procedure was employed.

C. Fluorescence Correction

The incidence of the electron probe on a target sample is followed by loss of energy of the probe electrons as electron-atom collisions occur. The lost energy is exhibited by the characteristic emission spectra of the elements present in the target and by the continuum spectrum. The characteristic emission spectra are usually called primary fluorescent radiation. Secondary fluorescent radiation is
generated when the characteristic emission line wavelength, say of element B, falls below the absorption edge corresponding to another characteristic line, of element A. That is, in addition to electron excited A emission, some A emission is caused by photoionization of A atoms by B radiation. The x-ray continum will also fluoresce the characteristic A line, since part of the continuum radiation falls below the absorption edge corresponding to A radiation. Both possibilities are indicated in Figure 25. The shaded portion of the emission spectrum is capable of causing secondary fluorescence of A radiation. The measured line intensity of the A line would be enhanced by these effects and must be corrected to obtain the true probe generated intensity.

Figure 26a illustrates how iron may be reported erroneousty in the analysis of a small iron free inclusion present in an iron base matrix. The continuilm emitted from the inclusion can excite the iron in the matrix, yielding an apparent iron content of the inclusion. Effects such as these can be large when the inclusion approaches, within a factor of three, the probe diameter. It is possible to minimize such errors by using an excitation potential as low as possible for the inclusion and by reducing the probe size. These operations will reduce the electron penetration volume and increase the minimum wavelength of the continuum.

Figure 25. Typical emission spectrum from compound target. Shaded region represents part of spectrum capable of fluorescing $K \alpha(A)$ line.

Figure 26b illustrates an analysis made near the boundary of two phases containing different amounts of iron. Fluorescence of the iron rich region by characteristic lines and/or the continuum from the iron poor region will result in an overestimation of the iron content of the iron poor phase. Obviously this is a most difficult error to correct, and can be done only if the geometrical nature of the phase boundary is known.

Casting ${ }^{1}$ derived an expression for K line fluorescence by K lines. Other expressions have been obtained by Witty, ${ }^{2,5}$ Reed and Long, 107 Burks, 108 and Reed. 109 Duncumb and Shields ${ }^{110}$ and Colby ${ }^{111}$ have considered the various formelations proposed, and have attempted to show the range of validity and accuracy of these postulated relationships. From comparative studies by Colby, the method of Reed appears to be the most generally applicable. In particular, Reed's formulation overcomes the objections to the other formulations, by including a dependence on accelerating potential and allowing for $K-K, K-L$ and $L-K$ types of fluorescence. Without reviewing the details of the formulation, we make use of the results of the previously mentioned studies.

If $I_{A, u}$ is the directly excited intensity of the analystcal line and I_{f} is the intensity contributed to the analytical line due to fluorescence by a shorter wavelength charac-

Figure 26. Examples of fluorescence effects: a) fluorescence of the matrix by the continum generated in an inclusion containing no elements with characteristic lines capable of exciting iron; b) fluorescence due to the continuum and characteristic lines from a phase containing elements with characteristic lines capable of exciting iron.

meristic line from element B, then:

$$
\begin{align*}
\frac{I_{f}}{I_{A, u}}= & k_{f A}=0.5 P_{i j} C_{B} \frac{r_{A}-1}{r_{A}} \omega_{B} \frac{A}{B}\left(\frac{U_{B}-1}{U_{A}-1}\right)^{1.67} \\
& \frac{(\mu / \rho)_{A}^{B}}{(\mu / \rho)^{B}}\left[\frac{\ln (1+y)}{y}+\frac{\ln (1+v)}{v}\right] \tag{40}
\end{align*}
$$

where:

$$
\begin{aligned}
& C_{B}= \text { weight fraction of element } B, \\
& r_{A}= \text { ratio of mass absorption coefficients on } \\
& \text { either side of the absorption edge for } \\
& \text { element } A \text { (absorption jump ratio), } \\
& \omega_{B}= \text { fluorescence yield for element } B, \\
& A= \text { Atomic weight of element } A, \\
& B= \text { atomic weight of element } B, \\
& U_{B}= \frac{E_{0}}{E_{C}} \text { for element } B, \\
&(\mu / \rho)_{A}^{B}= \text { mass absorption coefficient of element } A \\
&(\mu / \rho)^{B}= \sum_{i}^{\left(\frac{\mu}{\rho}\right)_{i}} C_{i} \text { Cor mass absorption coefficient for } \\
& B \text { radiation by the specimen, } \\
& y= \frac{(\mu / \rho)^{A}}{(\mu / \rho)^{B}} \text { cosec } \theta, \\
& V= \frac{\sigma}{(\mu / \rho)^{B}} \text { where } \sigma \text { is defined in Equation (25). }
\end{aligned}
$$

$$
\begin{aligned}
P_{i j}= & \text { a constant which takes different values for } \\
& \text { different fluorescence types: } P_{K K}=1 ; P_{L L}=1 ; \\
& P_{K L}=2.4 \text { and } P_{L K}=0.42 .
\end{aligned}
$$ follows that:

$$
\begin{equation*}
I_{m A}=I_{A, u}+I_{f} \tag{41}
\end{equation*}
$$

Since

$$
\begin{align*}
\frac{I_{f}}{I_{A, u}} & =K_{f A} \tag{42}\\
I_{m A} & =I_{A, u}+I_{A, u} K_{f A}=I_{A, u}\left(1+K_{f A}\right) \tag{43}
\end{align*}
$$

Therefore:

$$
\begin{equation*}
I_{A, u}=\frac{I_{m A}}{\left(1+K_{f A}\right)} \tag{44}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{I_{A, u}}{I_{A, s}}=C_{A}=k \frac{1}{1+K_{f A}} \tag{45}
\end{equation*}
$$

Numerical values of the absorption jump ratios are obtained from the calculated mass absorption coefficients described in section IV. A. 3. The fluorescence yields of various elements have been reviewed by fink et al. 112 In lieu of working with a possibly ambiguous set of tables of fluorescence yields, it is possible to fit the experimental data given by Fink et al。 to the semi-empirical relation due to Burhop: ${ }^{113}$

$$
\begin{equation*}
\left(\frac{\omega}{1-\omega}\right)^{1 / 4}=A+B Z+C Z^{3} \tag{46}
\end{equation*}
$$

The constants in Equation (46) have been evaluated by several authors, 113-115 most recently by colby, ${ }^{106}$ using the complete compilations of Fink et al. and by Bailey and Swedlund, 116 using their new data and the data of Fink et al. The constants used for K, L, and M fluorescence yield, in the present case are given in Table VII.

Table VII. Constants for Calculating Fluorescence Yields (ω)

$$
\begin{array}{llll}
& \frac{K}{\text { A }} & -0.03795 & \frac{L}{-0.11107} \\
\text { B } & 0.03426 & 0.01368 & \\
\text { C } & -0.11634 \times 10^{-5} & 0.21772 \times 10^{-6} & 0.00036 \\
0.00386
\end{array}
$$

Castaing and Descamps ${ }^{39}$ and Kirianenko et al. 38
showed that the contribution, by continum fluorescence, to the total x-ray line intensity was generally small. This fluorescence radiation is generated deeper in the specimen than the primary radiation, resulting in greater absorption of the former. Theoretical considerations are difficult since fluorescence by the continum is produced by a whole spectrum of wavelengths.

Castaing and Descamps, ${ }^{39}$ Green and Cosslett, ${ }^{117}$ and Henoc ${ }^{118}$ give correction procedures for pure elements and binary compounds. The expression derived by Henoc is very
complex, but is also considered to be the most accurate (Henoc et al. 119). Henoc followed the same approach as Castaing ${ }^{1}$ for the fluorescence by characteristic lines, but he integrated over all the continum from the short wavelength limit to the absorption edge of the particular analytical line。

Corrections for secondary fluorescence by the continuum are seldom made. Henoc's relation is very lengthy and is not used in the present work.

V. X-RAY GENERATION EFFECTS

In section IV. A., we began the analysis of the effect of sample absorption on the probe generated x-ray intensity with a discussion of the distribution in depth of the generated intensity. This distribution was shown to depend heavily on the atomic properties of the sample components. It was finally shown that this dependence on atomic number could effectively be removed from the absorption considerations (Equation 36). We now return to a specific consideration of the effect of atomic number on the generation of x-rays by the incident electron probe.

Electrons incident on a sample are in general subjected to interactions that can be broadly divided into two classes. The first class of scattering involves a negligible loss of energy but a significant change of direction, an elastic scattering event. The second type of scattering, inelastic scattering, involves a significant energy loss by the incident electron. Elastic scattering determines, primarily, the spatial distribution of the incident electrons within the sample. Inelastic scattering determines the rate of energy loss by the incident electrons. Ionization of an inner shell electron, K or L shell, is one form of an inelastic scattering event. Such an event is, in a certain fraction of the occasions, followed by the emission of a K or L characteristic x-ray photon. Inelastic interactions with the outer electrons
probably form the biggest contribution to the stopping of incident electrons. The model thus formed is one in which the incident electrons are more or less continuously slowed down by ionization losses, undergoing slight changes in direction by multiple scattering while still being able to experience large changes of direction by Rutherford scattering events, some electrons coming to rest inside the sample, others completely leaving the sample. Such processes have been discussed recently by several authors. 120-126

In view of the realization that electron stopping is really not a continuous process, several attempts have been made to simulate electron trajectories within a target by a series of step-like paths. Worthington and Tomlin 127 had assumed for their calculation a simple straight line path. Archard ${ }^{121,128}$ proposed a model based on an assumption of two types of paths, one straight into the sample, the other involving 90° scatterings. Green ${ }^{129}$ proposed the use of Monte Carlo techniques to simulate the increasing complexity of the electron paths as they lose energy by inelastic collisions. Similar calculations of a more sophisticated nature have been undertaken by Bishop. 130,131

In spite of the fact that these authors have considered step-like paths, they nevertheless assumed a continuous energy loss function. Thus, they did achieve a distribution for the incident electrons after they had lost all their energy, and they do give a distribution in depth of ionization. However,
while these calculations might be of interest for themselves, it would not be practical to attempt such a calculation every time a microprobe analysis was performed. Thus, we shall sidestep the step-like path approach and confine ourselves to the continuous energy loss approximation.

We had previously shown that the number of ionizations of A atoms per unit path length of the incident electron could be expressed as:

$$
\begin{equation*}
d n_{K}=\frac{\rho N C_{A}}{A} \psi\left(E, E_{C}\right) d x \tag{17}
\end{equation*}
$$

where C_{A} is the mass concentration of element A in the target, ρ is the material density in grams/cc, N is Avogadro's number, and A is the atomic weight of the sample. ψ has the characteristics of a cross section. This can now be put in a form explicitly dependent on the energy of the incident electron, as:

$$
\begin{equation*}
d n_{K}=\frac{\rho N C_{A}}{A} \frac{Q_{A}}{d E / d x} d E, \tag{47}
\end{equation*}
$$

with Q_{A} being the ionization cross section and the incremental ($d E$) is the mean energy change in traveling the path length (dx). Assuming that all incident electrons remained in the sample, the total number of ionizations produced by an incident electron as it decelerates from its initial energy E_{0} to the critical excitation potential of the A atomic K-shell, E_{c}, would be:

$$
\begin{equation*}
n_{K}=\frac{N C_{A}}{A} \int_{C} E_{0} \quad \frac{Q_{A}}{\frac{1}{\rho} \frac{d E}{d} x} d E_{0} \tag{48}
\end{equation*}
$$

We have here assumed that the energy loss process is a continuous one, rather than a step-like phenomenon.

Following the suggestion of Poole and Thomas, ${ }^{6}$ we define a stopping power, S, which describes the ability of a given material to decelerate incident electrons, as:

$$
\begin{equation*}
S=-\frac{1}{\rho} \frac{d E}{d x}\left(\frac{K e v}{c m}\right) \tag{49}
\end{equation*}
$$

Defined this way, S should be approximately constant for each atomic species regardless of its chemical state. Thus:

$$
\begin{equation*}
n_{K}=\frac{N C_{A}}{A} \int_{E_{C}}^{E_{0}} \frac{Q_{A}}{S_{A}} d E_{0} \tag{50}
\end{equation*}
$$

We now remove the assumption that all the incident electrons remain in the sample, by introducing a factor R < 1 。 Following several authors, $6,117,132$ we define R as the fraction of the ionization remaining when the losses due to backscattered electrons are removed. Backscattered electrons are those which undergo large angle scattering such that they leave the sample surface with an energy greater than E_{c} 。 R will depend on the accelerating voltage and on the atomic number of the target.

Thus, the total number of ionizations per incident electron becomes:

$$
\begin{equation*}
n_{K}=\frac{N C_{A}}{A} R_{A} \int_{E_{C}}^{E_{0}} \frac{Q_{A}}{S_{A}} d E_{0} \tag{51}
\end{equation*}
$$

A similar expression would hold for the standard A. If u is an alloy unknown, and s is the pure element standard, then the intensity ratio, K, can be written as:

$$
\begin{equation*}
\frac{I_{u}}{I_{s}}=K=\frac{m_{0}}{m_{0}^{T}} C_{A} \frac{R_{u}}{R_{s}} \frac{\int_{c}^{E_{0}} \frac{Q_{A}}{S_{0}} d E}{\int_{E_{c}} \frac{Q_{A}}{S_{S}} d E} \tag{52}
\end{equation*}
$$

The writing of the above relation assumes that the intensity ratio is experimental data corrected for instrumental effects and for any absorption and fluorescence effects in the sample. We assume that suitable expressions can be found for R, S, and Q, not only for the pure elements but also for alloys. We discuss each of these three quantities separately.

A. Ionization Cross Section

Bethe ${ }^{133}$ derived a non-relativistic expression for the total ionization cross section of an atom as a function of the energy of an incident electron. Two adjustable constants in this relation were evaluated by Mott and Massey。134 'Worthington and Tomlin, 127 however, indicate that this formulation holds for large values of $U=E / E_{C}$ only, and modify that relation to apply to all low energy electrons, based on the silver data of Webster, Hansen and Duveneck. 135

Recently Moiseiwitsch and Smith ${ }^{136}$ have performed a complete reanalysis of cross sections. However, they deal primarily with cross sections of particular atomic levels. Glupe and Mehlhorn ${ }^{137}$ have measured the total cross sections of four light elements and indicate that their data can be fit best to a semi-empirical relation due to Drawin。 ${ }^{138}$ The difference between the relation of Worthington and Tomin and Drawin is a factor (1-1/U). Since this factor would have significance only for heavy elements at low overvoltages, the relation of Worthington and Tomlin is used here:

$$
\begin{equation*}
Q E_{C}^{2}=\text { constant } \frac{l}{U} \ln U \tag{53}
\end{equation*}
$$

with E_{c} expressed in kev.

B. Electron Stopping Power

The rate of energy loss for non-relativistic electrons has been described by Bethe 133 and written by Mott and Massey ${ }^{134}$ as:

$$
\begin{equation*}
S=\operatorname{constant}\left(\frac{Z}{A}\right) \frac{1}{E} \ln \frac{E \sqrt{e / 2}}{J} \tag{54}
\end{equation*}
$$

Since the Bethe relation was obtained for hydrogen as the target, the extension to heavier target atoms required the introduction and evaluation of the mean ionization potential, J. (A recent formulation of the stopping power by Bishop 47 is in error since his expression excludes a dependence on atomic number。) Bloch ${ }^{739}$ calculated J / Z concluding that the
ratio should be constant with a value of 13.5 ev. Jensen 140 derived a J/Z dependence of:

$$
J / Z=k\left(1+k Z^{-2 / 3}\right)
$$

with the two constants to be evaluated experimentally. Wilson ${ }^{141}$ experimentally obtained a J / Z value of 11.5 ev for aluminum. Recent experiments by Duncumb and DaCasa 142 have shown that J / Z is only approximately constant, with significant deviations from either of the above constant values for atomic numbers less than 40 . These authors have fitted their data to a relation of some complexity:

$$
\begin{equation*}
\frac{J}{Z}=14.0\left(1.0-e^{-0.1 \bar{Z}}\right)+\frac{75.5}{\bar{Z} \bar{Z} 17.5}-\frac{\bar{Z}}{100+\bar{Z}} \tag{55}
\end{equation*}
$$

Since this relation was obtained from experimental data taken on a farly wide range of sample compositions with varying atomic number, and with electron accelerating potentials similar to those used in microprobe analysis, we choose to use this form for the mean ionization potential.

C. Effective Current Factor

Some experimental work has been done toward the determination of the energy distribution of backscattered electrons. 143-147 Generally, the agreement between investigators is only fair. Defining $W=E / E_{0}(W \leq 1)$, Bishop ${ }^{146}$ has shown that the energy distribution of backscattered electrons given as $d n / d W$, rather than in terms of the actual energy as d.n/d.E, retains essentially the same shape as
E_{0} is varied. Bishop has also shown that the electron backscatter coefficient, n, which is the fraction of incident electrons backscattered, is essentially a smoothly varying function of atomic number. The electron backscatter coefficient is also almost entirely independent of E_{0}. Similar results have been obtained by Weinryb and Philibert. 147

It is recognized that if all electrons backscattered were backscattered with energy: E_{0}, the factor R would be given by

$$
\begin{equation*}
R=1-n \text {. } \tag{56}
\end{equation*}
$$

However, there is a distribution in the energy of the backscattered electrons. Several methods have been proposed for calculating the effective current factor R. 132,148,149 Webster et al. 132 have shown that R may be calculated from the energy distribution of the backscattered electrons, $d n / d W$, if the form of the ionization cross section and the electron stopping power are known. Duncumb and Shields 150 have performed the numerical integration of:

$$
\begin{equation*}
R=1-\frac{\int_{C} \frac{d n}{d W} \int_{E_{C}}^{W_{O}} \frac{Q}{S} d E d W}{E_{E_{C}} \frac{Q}{S} d E} \tag{57}
\end{equation*}
$$

using the experimental data of Kulenkampff and Spyra. 143 In this form, the effective current factor is given as the ratio of the ionization that would be caused by the electrons that were backscattered, had they remained in the target, to the ionization generated had all electrons remained in the target.

More recently Bishop ${ }^{47}$ used an alternative form to calculate the effective current factor:

$$
\begin{equation*}
R=1-\frac{\int_{C} n(W) \frac{Q}{S} d W}{\int_{E_{c}} \frac{Q}{S} d E} \tag{58}
\end{equation*}
$$

His results are given in graphical form as a function of atomic number and overvoltage ratio, U.

VI. COMPUTATIONAL METHODS

Thus far we have discussed the various concepts involved in the reduction of x-ray intensity ratios to composition. In the present section, we begin to describe the application of the relations obtained to the determination of concentration. We start by considering various approximations involved in the computational methods to be used.

The general relation connecting the measured intensity ratio, K, with composition can be written:
$K=C \times(a b s o r p t i o n ~ c o r r e c t i o n) ~ x$ (fluorescence correction) x (atomic Number correction)

The various correction factors are written on the right side of Equation (59) since they themselves are functions of composition. The assumption made here is that all precautions necessary for the elimination of the effects of pulse shrinkage and of contamination have been taken. It is further assumed that the raw intensities have been corrected for deadtime losses. (In the accumulation of data, drift may be encountered, and it is assumed that this also is allowed for. The computer program to be discussed has provision for correction of both long and short time instabilities. Given a numerical deadtime input, the program also corrects the raw data for this effect.)

The absorption correction is applied following the method discussed in section IV. A.:

$$
\begin{array}{r}
\frac{I_{u}^{A}}{I_{s}^{A}}=K_{A}=C_{A}\left[\frac{f_{u}\left(x_{u}\right)}{f_{s}\left(x_{s}\right)}\right]
\end{array}
$$

The value of $f(x)$ is determined from Equation (37), with $R(0)=1.1$ and $R(\infty)=4$. In the parameter $x=(\mu / \rho) \csc \theta$; the proper value of the mass absorption coefficient must be used. For the case of the standard, assuming a pure element, the (μ / ρ) value is obvious. For the unknown, however, the other elements must also be accounted for. Thus, we use:

$$
\begin{equation*}
\left(\frac{\mu}{\rho}\right)_{u}^{A}=\sum_{i}^{\Sigma}\left(\frac{\mu}{\rho}\right)_{i}^{A} C_{i} \tag{60}
\end{equation*}
$$

where: C_{j} is the weight fraction of the $i^{\text {th }}$ element in the unknown, and (μ / ρ) is the absorption coefficient of the $i^{\text {th }}$ element for A radiation. The numerical value of (μ / ρ) is obtained from section IV, A. 5.

There remain in $f(x)$ two factors to be determined.
Since o depends only on E_{0} and E_{C}, this value is the same for both standard and unknown:

$$
\begin{equation*}
\sigma=\frac{(2.54)\left(10^{5}\right)}{E_{0}^{1.5}-E_{c}^{1.5}} \tag{61}
\end{equation*}
$$

The factor (h) contains the residue of the influence of atomic number on the absorbtion correction. Thus, we must use for the pure element standard:

$$
\begin{equation*}
h=4.5 \frac{A_{A}}{Z_{A}{ }^{2}} \tag{62}
\end{equation*}
$$

and for the unknown:

$$
\begin{equation*}
h=4.5{ }_{i}^{\Sigma} c_{i}\left(\frac{A_{i}}{Z_{i}{ }^{2}}\right) \tag{63}
\end{equation*}
$$

Had we limited ourselves to the simplified form of $f(x)$:

$$
f(x)=\frac{1+h}{\left(1+\frac{x}{\sigma}\right)\left[1+h\left(1+\frac{x}{\sigma}\right)\right]}
$$

then different values of h and o would be necessary.
These are given by Duncumb and Shields 150 as:

$$
\begin{align*}
& h=1.2 \frac{\bar{A}}{Z^{2}} \\
& \sigma=\frac{4.5 \times 10^{5}}{E_{0}^{1.67}-E_{c}^{1.67}}
\end{align*}
$$

In these relations. \bar{A} and \bar{Z} are the mean atomic weight and mean atomic number of the target. E_{0} is the probe accelerating voltage and E_{c} is the critical excitation potential of the emission line used for analysis.

At this point we must consider the limitations of the model used. In their work, Duncumb and Melford ${ }^{46}$ obtained the values of (h) and (σ) for the full $f(x)$ by comparison to the work of Castaing' and Green. ${ }^{41}$ They then calculated carbon intensity ratios to be expected from Sic. When compared to their experimental data, the change of predicted intensity ratio with increasing (μ / ρ) (or correspondingly, increasing accelerating voltage and thus depth of penetration) was less than that found experimentally.

We would expect, then, at low kilovoltages for a light element, an over correction for absorption, and at high kilovoltages, an undercorrection for absorption. Since h and (σ)
were evaluated at 10 KV , we expect the proper magnitude correction in the range 8 to 12 kV . The errors found for elements heavier than aluminum were in the same direction, but significantly less in magnitude. Thus, for the metal components of a metal-light element system, we would expect approximately the proper correction for absorption at various KV, with possibly a slight undercorrection at high KV.

The fluorescence correction applied is of the form of Equations (40) and (45). Thus:

$$
\begin{equation*}
K_{A}=C_{A}\left[\frac{f_{u}\left(x_{u}\right)}{f_{s}\left(x_{s}\right)}\right]\left(1+K_{f A}\right) \times(\text { Atomic Number Correction) } \tag{64}
\end{equation*}
$$

The fluorescence yields of the light elements are low, less than 0.01. The expected fluorescence correction for, say, carbon and titanium would be small. less than 1.005. However, for other systems, for example, iron and nickel, the fluorescence effect could account for up to 10% of the total emitted intensity.

The general form of the atomic number (generation) correction is given by Equation (52). The relation between the intensity ratio and concentration now becomes:

$$
K_{A}=C_{A}\left[\frac{f_{u}\left(x_{u}\right)}{f_{s}\left(x_{s}\right)}\right]\left(1+K_{f A}\right)\left[\begin{array}{lll}
E_{0} & Q_{A} & d E \tag{52'}\\
\frac{R_{u}}{R_{s}} & \frac{E_{c}}{S_{u}} & d \\
\int_{0} & Q_{A} \\
& E_{c} & \frac{S_{s}}{s} d E
\end{array}\right]
$$

with the R's evaluated by Equation (57). Numerical integrat
tions of Equation (52) have been performed. (Appendix B gives a computer program used in that evaluation of Equation (52).) For the pure element standard, Q and S can be evaluated from Equations (53), (54), and (55). For the unknown, Q is the same as for the standard. However, from the definition of the stopping power:

$$
\begin{equation*}
S=-\frac{1}{\rho} \frac{d E}{d x} \tag{49}
\end{equation*}
$$

it is obvious that S is not the same for the standard and the unknown. Since, from Equation (49) we see the elemental dependence of S, the additive nature of electron retardation energy losses would lead to:

$$
\begin{equation*}
S_{u}=\sum_{1} C_{i} S_{i} \tag{65}
\end{equation*}
$$

Bishop ${ }^{47}$ has shown that using an integration performed by Worthington and Tomin 127 and an approximation of Poole and Thomas ${ }^{6}$ the ratio of integrals in Equation (52') can be simplified after substitution of Q and S to:

$$
\begin{equation*}
\frac{\left(\frac{Z}{A}\right)_{A} \ell n\left(1.166 \bar{E} / J_{A}\right)}{\sum_{i} C_{i}\left(\frac{Z}{A}\right)_{i} \ell n\left(1.166 E / J_{i}\right)} \tag{66}
\end{equation*}
$$

where:

$$
\bar{E}=\frac{E_{0}+E_{c}}{2}
$$

Bishop has also shown that to a very good approximation:

$$
\begin{equation*}
R_{u}=\sum_{i} C_{i} R_{i} \tag{67}
\end{equation*}
$$

Thus, the relation between the intensity ratio and concen-
tration can now be written:

$$
\left.\begin{array}{rl}
K_{A}= & c_{A}\left[\frac{f_{u}\left(x_{u}\right)}{f_{s}\left(x_{s}\right)}\right]\left(1+K_{f A}\right) \\
& {\left[\frac{\sum_{i} C_{i} R_{i}\left(\frac{Z}{A}\right)_{A} \ell n\left(1.166 \bar{E} / J_{A}\right)}{R_{s}} \frac{\sum_{i} C_{i}\left(\frac{Z}{A}\right)_{i}}{} \ell n\left(1.166 E / J_{i}\right)\right.} \tag{68}
\end{array}\right] .
$$

The error in this relation, compared to the full integration of Equation (52') is less than 1% for $E_{o}>2 E_{c}$.

The problem arising at, lower overvoltages is dual. As pointed out in the discussion of the ionization cross section, a more accurate mathematical form for the ionization cross section would yield a faster decrease in the ionization cross section with overvoltage, at low overvoltages, $1<U<3$. For the light elements, the backscatter factor is small, and the effective current factor, R, is approximately unity. The error in the backscatter factor, n, at low overvoltages increases with increasing atomic number. The second difficulty arises from the assumption that the mean ionization potential, J, is independent of E. In fact, the data of Duncumb and DaCasa ${ }^{142}$ seems to indicate that J decreases with decreasing E. The net result of these errors would show up most in the analysis of a light element in combination with a heavy element at low kilovoltages.

The consideration of errors can be summarized as follows. In the atomic number interval 15 to 70 , the approximations
appear to be applicable as long as the overvoltage for the analytical x-ray lines is 2 or greater. The biggest problem in this area would arise in the analysis of low concentrations. In the analysis of very heavy elements, e.g., uranium, the errors inherent in the effective current factor correction would limit the accuracy of the analysis. From consideration of the work of Duncumb and DaCasa ${ }^{142}$ these errors could approach 5%.

For the analysis of light elements, the biggest problem arises when that element is in a matrix characterized by a high mass absorption coefficient for the light element's emission line, and when the atomic numbers differ by a factor of 3 or more. In such a case, it is not reasonable to expect high accuracy at low kilovoltages because of the errors in the atomic number correction and in the absorption correction. At high kilovoltages, the magnitude of the absorption would essentially limit any light element analysis. Nevertheless, reasonable results could be expected at intermediate kilovoltages, 8 to 12 KV , where mass absorption coefficients less than $10,000 \mathrm{~cm}^{2} / \mathrm{g}$ are encountered.

A computer program which permits the reduction of raw microprobe data to concentration, and which uses the relations just described is given in Appendix C. The only input requirements are problem identification, kilovoltage used,
deadtimes, elements and lines used in the analysis and microprobe output. All constants are either stored internally in the computer or calculated at the time of a computer run. The data stored internally are given in Appendix D. A detailed description of input requirements is given in Appendix E. Appendix F gives a typical output.

VII。 APPLICATIONS

We shall now discuss the application of the various corrections to eight metallurgical samples. Each type of analysis results points up particular characteristics of the correction procedure. The data was corrected by use of the computer program, given in Appendix C. Corrections were applied for detector system deadtime, instrument drift, background, absorption, characteristic line fluorescence and atomic number effect.

Of the various constants used in the calculation, the following were stored internally: Atomic Number. Atomic Weight, Absorption Edge Wavelengths, Critical Excitation Potentials, Primary Emission Line Wavelengths, and constants for calculation of Absorption Coefficients. Data for the correction that was calculated included: Overvoltage Ratio, Effective Current Factor, Mass Absorption Coefficients, Absorption Jump Ratios, and Fluorescence Yields.
A. Copper-Zinc

A sample of National Bureau of Standards brass C-1102 was analyzed under three different analysis conditions. A total of 30 analyses were performed. The analyses were performed at 25 KV with two Lif crystals and two detectors, a sealed proportional counter and a flow proportional counter. For one-third of the analyses, pure element standards were used. For the rest of the analyses, standards supplied by the
probe manufacturer were used. The analyses using the probe manufacturer supplied standards always resulted in high concentrations. The cause was finally determined to result from the purity of these standards, approximately 98% of the element. The pure element standards contained at least 99.6% of the element. The results of the analyses using the pure element standards are given in Table VIII. The results are quite good when compared to the NBS certified composition:

$$
\begin{array}{ll}
\text { Zinc: } & 27.10 \text { wt } \% \\
\text { Copper: } & 72.85 \text { wt } \%
\end{array}
$$

The significance of this analysis lies in the fact that the magnitude of the corrections should be small for this system containing adjacent elements. There is only a slightly greater correction for the absorption of the copper radiation than for the zinc radiation. The only fluorescence correction would be necessitated by the zinc $K \quad \beta_{1}$ fluorescence of the copper line. The mass absorption coefficients calculated, for example, for the copper, agree well with the values measured by Hughes, Woodhouse and Bucklow. 68

$$
\text { Line } \quad(\mu / \rho) \text { calc. } \quad(\mu / \rho) \exp { }^{68}
$$

Zinc K
43.
42.7

Copper Ka
52.
52.2

Likewise, the Absorption Jump Ratio measured by Hopkins 93 for copper as 8.1 compares favorably with the calculated value of 7.77.

$\begin{array}{ll}\text { Table Vill. Results of Anelyses of Copper-Zinc Sample of } \\ & \text { Certified Composition } 27.10 \text { w zinc. } 72.85 \mathrm{wt} \%\end{array}$
B. Nickel-Iron

This system should exhibit two effects, a fluorescence of the iron by the nickel and an effect of atomic number. Fifty analyses were performed on this sample. Intensity ratios were formed with respect to the pure elements (greater than 99.7%) after correction for deadtime, drift and background. In all cases the iron concentration was within 0.5% of the vendor* supplied chemical analysis of 43.55\% Likewise, all results for the nickel were high by about 1.0% when compared to the stated composition of 56.55%. A typical set of results is given in Table IX.

The effect of the fluorescence correction is seen in the comparison of the measured intensity ratio for iron: 0.4864 , with the resultant composition: 43.38 wt \% .

Since the action of the atomic number effect is to reduce the apparent concentration of the heavier element and to increase the apparent concentration of the lighter element, the fluorescence effect and the atomic number effect act in a direction opposite to the absorption effect for iron. However, for nickel, the atomic number effect and the absorption effect act in the same direction. Thus, errors in these corrections re-enforce each other, and a 1% error in concentration results.
*International Nickel Co., Inc.

23 MARCH 1967

```
SUBMITIEC_BY-L&-d__GAAY
DESCRLPTICM - QUG EEANI CAN SICS SAC
```

MEAK CHEMICAR CCERCSIIIDA ANO IMO SIGMA LIMITS BASECCA IC ANALYSES

MEAM TMENSİV RATIOS ARO TMC SIGMA LIMITS		
EEEMENY		

ACCELERATINE YCLTACE 25.C KEV
X-RAY EMERGENCE AMGLE 52.5 DEGREES

STAMCARC REAK-IO-RACKGRCIAND BATIOS LRARLANO MINIMUM CETECTABILITY LIMITS IMOLI
ELEMENT
P/B
MDL

Table Ix. Results of Analyses of Mickel-Iron Sample of Reference Composition 43.55 wt $\%$ Iron. 56.55 wt \& Nickel.

C. Tin-Zirconium

Zircaloy-2 contains nominally 1.5% tin in a zirconium matrix. The attempt in this case was to test the theoretical correction procedure in the determination of this low concentration. The analyses of five samples* yielded the tin results given in Table X. These results are particularly important because they show that the method for calculating background based on composition, as described in section IV. B., yields reasonable results. As pointed out in that section, use of the standard background in all cases resulted in a probe concentration of 0.6% tin $i n$ Zircaloy-2. The intensity ratios formed with respect to pure zirconium and pure tin were corrected for absorption, fluorescence and atomic number effects. Table X shows the more meaningful results obtained with the present background correction.
D. Titanium-Niobium

The alloy system of titanium and niobium forms an interesting challenge。 It is necessary to use the niobium La line for the analysis. Thus, there is a fluorescence of the niobium by the titanium, and this effect acts opposite to the effect of atomic number and absorption for niobium. This situation is in contrast to that in the

[^1]Table X. Analyses of Nominal 1.5 wt $\%$ Tin in Zircaloy-2

Sample	Number of Analyses	Mean Tin Concentration	RMS Deviation
$Y-1$	40	1.473%	0.017
$Y-5$	60	1.494%	0.071
$Y-6$	29	1.423%	0.024
$Y-8$	25	1.440%	0.049
$Y-9$	39	1.396%	0.208

nickel-iron system. The standards used in this analysis were again the pure elements. After correcting the data for deadtime, drift and background, the other corrections were applied with the results for analysis at 20 KV given in Table XI。 Other analyses were performed at 25 KV and 30 KV . Those results exhibit an enhancement of the trends given in Table XI.

The results of chemical analysis by several laboratories* were averaged to yield reference compositions of:

Titanium: $\quad 34.97 \%$
Niobium: $\quad 65.00 \%$
In Table XI we again see a too high concentration for the heavy element, similar to the effect in the nickel-iron anaíysis. Since in the iron-nickel system, the fluorescence correction for iron yielded good results, we expect that the same would hold here. If that is so, then the error observed in the heavy element in both cases must be due to the atomic number correction over-correcting the intensity ratio. An additional complication enters in this system because of the ease of oxidation of any sample surface. Although the standards were polished to $1 / 4$ micron diamond within 10 minutes of being put into the probe chamber, the definite possibility of a surface oxide layer still existed.

[^2]

SUBMITIED BY.L. Ne GRAY
CESCRIPIICN - WhPLG II-AR

MEA CHEFICAL CCPPCSITION ANC THC
SIGMA LIPITS BASEC CA 10 ANALYSES
\qquad

HE IGHT PERCENT

ATOFIC
PFRCENT

11 - $12.435-0.252 \ldots 4.474-0.238$
NB 68.530-C.18E $51.536=0.243$

MEAR INTENSITY RATIOS ARC THC SIGPA LIAITS

element

K
$\frac{11}{N B}-\frac{C .3122}{C . E \in 25}-\frac{0.0026}{C . C O 19}$
ACCELERATING VCLYACE
20.C KEV
S-RAY ENERGENCE AAGLE
STANCARC FEAK-IC-EACKCRCUAD RATICS (PIB) AND
ELEMEAT F/EMCML
TI 7311
NB $25 / 1 \quad 0.7268 \times 1 \%$

Table XI. Results of Analyses of Titanium-Mioblum Sample of Reference Composition 34.97 wt \mathcal{W} Tritenium; $65 \mathrm{wt} \mathcal{X}$ Niobium.

In spite of this possible face-saving problem, we still have an indication of difficulty in the atomic number correction.

Certain non-metallics occur as troublesome inclusions in steels. Two such materials were subjected to probe analysis. In each case, the light element of the binary compound was determined by difference since either no standard was available or the light element intensity was too low to obtain sufficient counts.

E. Silicon-0xygen

An inclusion thought to be quartz from fluorescence data was tested in the probe. Pure silicon was the single standard. No oxygen data were taken because the oxygen intensity was of the order of the background intensity. In this work, care was taken to insure that peak intensities were measured on both the standard and the unknown. The reason for this lies in the fact that the silicon $K \alpha$ line shifted in position between the pure element and the oxide. The analyses results are given in Table XII.

In this difficult system, where the magnitude of the corrections approaches 10% absolute, or 20% relative, the results are a little surprising. The silicon concentration is within 0.5% of the theoretical value for SiO_{2} 。

frCBLEM NUNEER A12E2

SLEMIIECE

NEAA CHENICAL CCNFCSITICA ANC THC
SIGMA LIMITS EASEECA II AAALYSES

CETERMINE BY CIFFEFACE

MEAA IATEASITY RAJICS AAC ThE SIEAALIMITS
ELEMEAT
K
$\leqslant 1$
C.2964-C.cc56

ACCELERATING VCLTACE 25.C KEV

SIACAFC FEAK-TC-QACKGRCUNE RATICS (F/E) ANC pinimy detectaeility limits (mel)

ELENEAT
P/E
NCL
¢

Table XII. Results of Analyses of SiO 2 Sample.

F. Iron-Sulfur

A specimen thought to be FeS_{2} was analyzed in the microprobe. FeS_{2} has a theoretical composition of $46.54 \mathrm{wt} \%$ Fe; 53.46 wt \% S. The phase, however, is apparently not stoichiometric. ${ }^{151}$ with sulfur to be determined by difference, the iron intensity ratio was formed with respect to pure iron. The resultant corrections yielded:

Iron $\quad 43.30 \pm 0.532 \mathrm{wt} \%$
Sulfur $56.70 \pm 0.532 \mathrm{wt} \%$
These results are reasonable in view of the uncertainty of the phase diagram.

G. Titanium-Carbon

Previous attempts to perform quantitative microanalysis of metal carbides generally dealt with stoichiometric compositions. 36,46 We have analyzed four samples of defect titanium carbide. The samples were single crystals grown by the Verneuil technique.* The microanalysis was performed using standards of pure (99.97\%) titanium and natural diamond. The data were first corrected for detector system deadtime, instrument drift and background. Intensity ratios were formed and corrected in two ways. The first method used the full absorption relations, Equations (37), (61), (62)
*The TiC samples were kindly provided by Professor W. Williams, University of Illinois, Materials Research Laboratory.
and（63）．The second method used the simplified form for the absorption correction，as described in section VI， with Equations（37＇），（63＇），and（61＇）。

In section VI，we considered the models on which these corrections are based．This review led to an expectation， in this type of metallurgical system involving carbon，of high concentrations for both titanium and carbon at low kilovoltages，less than 9 KV ，and low concentrations for carbon at accelerating potentials greater than 12 KV 。

One of the four samples contained a large number of graphite inclusions，and yielded a total composition in the two phase region between TiC and graphite．The other samples appeared quite homogeneous to the electron probe。

The results obtained from more than fifty analyses on each samples are given in Table XIII：The titanium intensity ratios exhibited a maximum at an excitation potential between 10 KV and 15 KV ．The carbon intensity ratio continually decreases with increasing kilovoltage．With the full f（x）， the carbon concentration is higher by about 1．7\％absolute than with the simplified $f(x)$ ．For titanium，the differ－ ence is approximately 0.2% 。

For 6 and 8 KV the calculated carbon concentration is too high in all cases．For 10 KV ，the results are within 1.0% of the result obtained by other methods，when the full absorption correction is used．A similar result is obtained for the titanium．At 15 KV ，the effect of undercorrection

Sample 1251-59, reported composition: 17.9 wt\% carbon, estimated

8

10
$\begin{array}{ll}\text { Ti } & K \alpha \\ C & K \alpha\end{array}$
.692
79.2
79.3
23.3
21.8

Ti K α. 755
.207
Ti K $\alpha \quad .814$
.134
Ti Ka . 779
C Ka
.105
83.9
83.9
22.7
20.8
85.2
85.3
16.9
15.3

15
81.6
81.7
16.2
14.5

for absorption appears.
The overcorrection for absorption at low KV is explained by the fact that the Philibert model does not adequately account for surface ionization. The undercorrection for titanium at low $K V$ is attributed to the fact that the model used for the atomic number correction does not consider the change in ionization cross section with decreasing kilovoltage and ignores the variation of the mean ionization potential with kilovoltage and with composition.

Nevertheless, in spite of the limits of the theoretical correction procedures used, it is possible to obtain estimates of the carbon concentration in refractory metal carbides by choosing analysis conditions so as to limit the theoretical errors. Such conditions exist for the titanium-carbon system when using beam accelerating potentials of approximately 10 KV 。

H. Gold-Copper

The analysis of a binary containing an intermediate weight element and a heavy element would complete the variety of elements analyzed. The copper-gold system contains the phase $C u_{3} A u$, and this system was analyzed in the microprobe. The results are given in Table XIV. The magnitude of the corrections approaches 7% absolute for both elements. However, in spite of this size of correction, the results are within 0.3% of the theoretical composition.

VIII. SUMMARY

A method, based on physical principles, for the estimation of mass absorption coefficients has been described. Mass absorption coefficients of several elements for the characteristic emission lines of carbon, nitrogen, and oxygen have been given.

A correction procedure for the conversion of microprobe x-ray intensity data to composition has been presented. This method was tested in the analysis of eight binary systems of metallurgical interest, containing elements from carbon to gold in various combinations. This method of data reduction has been shown to be generally applicable to this variety of elements. The analyses results are summarized in Table XV. The biggest difficulties were encountered in the analysis of carbon. Consideration of the principles of the corrections led to the definition of a set of analysis conditions which minimized the theoretical errors.

The method of estimation of mass absorption coefficients to within 5% in most cases will now permit modifications to be made to the theoretical correction relations. Particular work should be centered on the distribution in depth of the sample ionization, and on the change in ionization cross section and mean ionization potential with electron energy. Such modifications will increase the range of analysis conditions under which reasonable estimates of light element concentrations can be made by microprobe techniques.

Table XV. Summary of Analyses Results

System	Chemical Analysis	Microprobe Intensity Ratios	Microprobe Composition
Cu	72.85 wt\%	. 7279	72.87 wt\%
Zn	27.10 wt\%	. 2731	27.43.wt \%
Ni	56.55 wt\%	. 5320	57.58 wt\%
Fe	$43.55 \mathrm{wt} \%$. 4864	$43.38 \mathrm{wt} \%$
Ti	34.97 wt\%	. 3122	33.44 wt\%
Nb	65.00 wt\%	. 6625	68.94 wt\%
Si	$\begin{aligned} & 33.33 \text { at\% } \\ & (\text { theo.) } \end{aligned}$. 3964	$\begin{aligned} & 48.21 \mathrm{wt} \% \\ & 34.66 \mathrm{at} \mathrm{\%} \end{aligned}$
0	66.67 at\%	diff.	51.79 wt\%
	(theo.)		65.34 at\%
Fe	46.54 wt\%	.3808	43.30 wt\%
	(theo.)		
S	53.46 wt\%	diff.	56.70 wt\%
	(theo.)		
Ti	82.7 wt\%	. 816	85.3 wt\%
C	17.3 wt\%	.135	16.9 wt\%
Cu	75.00 at\%	. 5545	48.18 wt\%
	(theo.)		74.62 at\%
Au	25.00 at\%	. 4473	50.81 wt\%
	(theo.)		25.39 at\%

LIST OF REFERENCES

1．Castaing，R．，Ph。D．thesis，University of Paris， 1951；Office Nationale d＇Etudes et Recharches Aeronautique，Publication No．55，Paris， 1951. Translated by P．Duwez and D．B．Wittry，Interim Technical Report No．3，under Contract DA－04－ 495－0rd－463，1955；ASTIA Document No．Ad－135428．

2．Wittry，D．B．，Ph．D．Thesis，California Institute of Technology，1957；Interim Technical Report No．5， under Contract DA－04－495－0rd－463，1957；ASTIA Document No．AD－135429．

3．Zemany，P．D．，in＂Symposium on X－ray and Electron Probe Analysis，＂Atlantic City，New Jersey，June， 1963，American Society for Testing and Materials， Philadelphia，Pennsylvania，1964，p． 1.

4．Philibert，J．，in＂X－ray Optics and X－ray Microanalysis＂ （H．H．Pattee，V．E．Cosslett，and A．Engstrom，Eds．）， Academic Press，New York， 1963 ，p． 379.

5．Wittry，D．B．，University of Southern California Engineer－ ing Center Report 84－204，July， 1962.

6．Poole，D．M．and Thomas，P．M．，J．Inst．Metals 90 ， 1962，p． 228.

7．Campbell，W．J．，Brown，J．D．，and Thatcher，J．W．， Anal．Chem。 38，1966，p．416R．

8．Heinrich，K．F．J．，in＂The Electron Microprobe＂ （T．D．McKinley，K。F。J．Heinrich，and D．B． Wittry，Eds．），John Wiley and Sons，New York，1966， p． 841 。

9．Keil，K。，Fortschr．Min。 44，1967，p．4．
10．Cescas，Mo，Tyner，E．，and Gray，L。Jo，in＂Advances in Agronomy，＂20，Academic Press，New York．To be published．

11．Campbell，W。Jo and Brown，J．D．，Anal．Chem．40， 1968，p．346R．

12：Elion，H．A：，＂Instrument and Chemical Analysis Aspects of Electron Microanalysis and Macroanalysis，＂ Pergamon Press，New York， 1966.

13．Birks，L．S．，＂Electron Probe Microanalysis，＂ Interscience Publishers，New York， 1963.

14．Theisen，R．，＂Quantative Electron Microprobe Analysis，＂ Springer－Verlag Publishers，New York， 1965.

15．Malissa，H．，＂Elektronenstrahl－Mikroanalyse，Handbuch der Mikrochemischen Methoden，＂4，Springer－Verlag Pub．，New York， 1966.

16．Castaing，Re，in＂Advances in Electronics and Electron Physics，＂XIII（L．Marton，Ed．），Academic Press， New York，1960，p．317．

17．Bender，S．L．，and Rapperport，E．J。，in＂The Electron Microprobe＂（T，D．McKinley，K。F：J．Heinrich and D．B．Wittry，Eds．），John Wiley and Sons，New York，1966，p． 405.

18．Burkhalter，P。G．，Brown，J．D．，and Myklebust，R．L．， Rev．Sci．Inst。 37，1966，p． 1267 ．

19．Spielberg，N．，Rev．Sci。Inst．37，1966，p． 1268.
20．Heinrich，K，F．Jo，Vieth，D．，and Yakowitz，H．，in ＂Advances in X－ray Analysis＂（G．R．Mallett，M。 Fay and W．M．Mueller，Eds．），${ }^{\text {g }}$ ，Plenum Press，New York， 1965，p．208．

21．Schiff，L．I．，Phys．Rev．50，1936，p．88。
22．Ruark，A．E．and Brammer，F．E．，Phys．Rev．52， 1937, p． 322 。

23．Beers，Y．，Rev．Sci．Inst．13，1942，p．72．
24．Lonsdale，K．，Acta．Cryst．I，1948，p． 12.
25．Short，M。A。，Rev．Sci．Inst．3l，1960，p．618．
26．Sawatzky，A．and Jones，S．，J。Appl。Phys．38，1967， p．4758。

27．Borelie，F．and Short，M．A．，Proc．Third Nat：Conf． Electron Probe Microanalysis，Chicago，1968，paper 38．

28．Rose，M．E．and Korff，S．A．，Phys．Rev．59，1941，p．850．
29．Rose，M．E．and Ramsey，W。E．，Phys．Rev。61，1942，p．504．

30．Taylor，J．and Parrish，W。，Rev。 Sci。 Inst。 26， 1955，p． 367 ．

31．Birks，L．S．，Rev．Sci。Inst．22，1951，p．891．
32．Henke，Bo Lo，Elgin，RoLo，Lent，R．E。，and Ledingham，R．B．，Air Force Office of Aerospace Research，Report AFOSR 67－1254，Pomona College， Claremont，California， 1967.

33．Beckett，R．and Hurt，T．，＂Numerical Calculations and Algorithms，＂McGraw Hill Book Co．，New York，1967， p． 268 ．

34．Reed，S．J．B．，J．Sci。Inst．Ser．2，I，1968，p． 136 ．
35．Ong，P．S．，in＂X－ray Optics and Microanalysis＂ （R．Castaing，P。Deschamps and J。 Philibert，Eds。）， Hermann，Paris，1966，p． 181.

36．Ranzetta，G．V．T．and Scott，V．D．，in＂X－ray Optics and Microanalysis＂（R．Castaing，P．Deschamps and J．Philibert，Eds．），Hermann，Paris，1966，p． 254.

37．Neuhaus，H．，in Proc of the Third Nat．Conf．on Elec－ tron Probe Microanalysis，Chicago，1968，paper 19.

38．Kirianenko，A。，Maurice，Fo，Calais，D．，and Adda，Y， in＂X－ray Optics and Microanalysis＂（H．H．Pattee， V．E．Cosslett and A．Engstrom，Eds．），Academic Press，New York，1963，p．559．

39．Castaing，Re and Descamps，J．，J．Phys．Radium 16， 1955，p．304．

40．Castaing，Re and Henoc，J．，in＂X－ray Optics and Micro－ analysis＂（R．Castaing，P．Deschamps and J。Philibert， Eds．），Hermann，Paris，1966，p． 120.

41．Green，Mo，in＂X－ray Optics and Microanalysis＂（H．H． Pattee，V．E．Cosslett and A．Engstrom，Eds。）， Academic Press，New York，1963，p．36！．

42．Theisen，Ro，in＂X－ray Optics and Microanalysis＂ （R．Castaing，P。Deschamps and J．Philibert，Eds．）， Hermann，Paris，1966，p． 224.

43．Helgesson，C：I。，in＂X－ray Optics and Microanalysis＂ （R．Castaing，P。Deschamps and J。Philibert，Eds．）， Hermann，Paris，1966，p．284．

44．Lenard，P．and Becker，A．，in＂Handbuch der Experi－ mentalphysik，＂XIV，Akad．Verlagages．，Leipzig， 1927，p． 178.

45．Duncumb，P。 and Shields，P．K．，in＂The Electron Microprobe＂（T．D．McKinley，K。 F。J。Heinrich and D．B．Wittry，Eds．），John Wiley and Sons，New York， 1966，p．284．

46．Duncumb，P．and Melford，D．A．，in＂X－ray Optics and Microanalysis＂（R．Castaing，P．Deschamps and J．Philibert，Eds．），Hermann，Paris，1966，p． 240.

47．Bishop，H．E．，Brit．J．Appl。Phys．Ser．2，I， 1968，p．673．

48．Yakowitz，H．and Heinrich，K。F。J．，Mikrochimica Acta。，I，1968，p． 182.

49．Frazer，J．Z．，S．I．O．Report Reference No．67－29， University of California，LaJolla，California， 1967.

50．，Siegbahn，M。，Zeits。Physik。15，1914，p。753．
51．Allen，S．J．Mo，Phys．Rev。28，1926，p． 907.
52．Grosskurth，K。，Ann．Physik。20，1934，p． 197.
53．Laubert，S．，Ann．Physik．40，1941，553．
54．Leroux，J．，in＂Advances in X－ray Analysis＂ （W。M．Mueller，Ed．），${ }^{5}$ ，Plenum Press，New York， 1962，p． 153.

55．Victoreen，J．A．，J．Appl．Phys．14，1943，p．95．
56．Victoreen，J。A。，J．Appl。Phys．20，1949，p． 1141.
57．Henke，B．Lo，White，R．，and Lundberg，B。，J。App1． Phys．28，1957，p．98．

58．Bearden，A．J．，J．App1．Phys．37，1966，p． 1681.
59．Allen，S．J．Mo，Mass Absorption Coefficients for X and Gamma Rays，＂Handbook of Chemistry and Physics，＂The Chemical Rubber Publishing Co．， Cleveland，Ohio．

60．Liebhafsky，H．A。，Pfeiffer，H．Go，Winslow，E．H．， and Zemany，P．D．，＂X－ray Absorption and Emission in Analytical Chemistry，＂John Wiley and Sons，Inc． New York， 1960.

61．Compton，A．R．and Alisson，S．K．，＂X－rays in Theory and Experiment；＂${ }^{\text {D．Van Nostrand Co．，New York，} 1957 .}$

62．Sagel，K．，＂Tables for X－ray Emission and Absorption Analysis，＂Springer－Verlag，Heidelberg， 1959.

63．Stainer，H．Mo，U．So Department of the Interior， Bureau of Mines，Information Circular 8186， 1963.

64．Hughes，G．D．and Woodhouse，J．B．，in＂X－ray Optics and Microanalysis，＂（R．Castaing，P．Deschamps and J。 Philibert，Eds。），Hermann，Paris，1966，p． 202.

65．Deslattes，R．D．，Air Force Office of Scientific Research Report AFOSR TN－58－784，1958，76．p． ASTIA Doc．202－009．

66．Sweeney，W．Ro，Seal，Ro，and Birks，Lo，Spectrochimica Acta．17，1961，p． 365 ．
67．Wredei；Wo，Ann．Phys．36，Ser．5，1939，p．681．
68．Hughes，G．D．，Woodhouse，J．Bo，and Bucklow，I．A．， Brit．J．Appl。Phys．Ser．2，1，1968，p．695．

69．Ershov，0．A．，Brytov，I．A．，and Lukirskii，A．P．， Optics and Spect．（U．S．A．）22，1967，p．66．

70．Lukirskii，A。Po，Savinov，E．Po，Ershov，O。A。，and Shepelev，Y．F．，Optics and Spect．（U．S．A．）16． 1964，p． 168.

71．Jaegle，Po，Combet Farnoux，F，Dhez，Po，Cremonese，Mo， and Onori，Go，Phys．Letters 26A，1968，p． 364.
72．Singer，S．，J。Appl。Phys．38，1967，p． 2897.
73．Jaegle，P．，Missoni，Go，and Dhez，Po．Phys。Revo Let．18， 1967，p． 887.

74．Jaegle，P．，and Missoni，G。，Comp。 Rend．Acad．Sci．， Paris 262B，1966，p．71．

75．Haensel，Ro，Kunz，C．，and Sonntag，Bo，Physo Let．25A， 1967，p． 205.

76．Haensel，Re，Kunz，C．，Sasaki，To，and Sonntag，B．， Appl．Optics I，1968，p．301．

77．Fomichev，V．A．and Lukirskii，A．P．，Optics and Spect．（U．S．A．）22，1967，p．432．

78．Lukirskii，A。P。 and Zimkina，T。M。，Bull．Acad。Sci。， U．S．S．R．，Phys．Ser．27，1963，p．808．

79．Ederer．D．L．，Phys．Rev．Let．13，1964，p．760．
80．Bearden，J．A．，Rev．Mod。Phys．39，1967，p．78．
81．Bearden，J．A．，＂X－ray Wavelengths，＂N．Y．0．10586， Fed．Sci．and Tech．Inf．Center，U．S．Department of Commerce，Springfield，Virginia， 1963.

82．Bearden，J．A．and Burr，A．F．，Rev．Mod．Phys．39， 1967，p．125．

83．Dewey，R．D．，＂Computed X－ray Wavelengths＂and Dewey， R．D．，Mapes，R．S．and Reynolds，T．Wo，＂Wavelength Tables，＂report under Research Project Code 36 XMB－ 220，Reynolds Metals Co．，Richmond，Virginia， 1966.

84．Kemp，J．W．，＂X－ray Wavelength Tables，＂Applied Research Laboratories，Inc．，Glendale，California， 1963.

85．Moore，Charlotte E．，＂Atomic Energy Levels＂NBS Circ． No． 467 ，I，1949，II，1952，III，1958，U．S．Govern－ ment Printing Office．

86．Biermann，H．H．，Ann．Physik 26，1936，po Z40．
87．Dersheim，E．and Schein，Mo，Phys。Rev．37，1931，p． 1238.
88．Tomboulian，D．H．，Bedo，D．E，and Neupert，W．Mo， J．Phys．Chem．Sol．3，1957，p． 282.

89．Lukirskii，A．P．，Zimkina，T．Mo and Brytove．I．A。， 0pt．and Spect．（U．S．A．）16，1964，p．372．

90．Lukirskii，A。 P。，Savinov，E，P。 and Shepelev，Y．F．， Opt．and Spect．（U．S．A．）15，1963，p． 290.

91．Bezdenezhnykh，G。Vo，Zapysov，A。L。，Israilev，I．M。 and Saprykin，V．N．，Opt，and Spect．（U．S．A．）23， 1967．p．553．

92．Fomichev，V．A．and Zhukova，I．I．，Opt．and Spect． （U．S．A．）24，1968，p． 147.

93．Hopkins，J．I．，J．Appl．Phys．30，1959，p． 185.
94．Ogier，W．T．，Lucas，Go Jo and Park，B。J．，Appl。 Phys．Let．5．，1964，p． 146 ．

95．Cooke，B．A．and Stewardson，E．A．，Brit．J．Appl． Phys．15，1964，p．1315．

96．Tomboulian，D．H．and Pell，E．Mo，Phys。Rev。83， 1951，p．J196．

97．McCrary，J．H．，Plassmann，E。H。，Puckett，J。Mo， Conner，A．Lo and Zimmermann，G。W。，Phys．Revo 153，1967，p．307．

98．Andrews，C．L．，Phys．Rev．54，1938，p．994．
99．Woernle，B．，Ann．Physik $\underline{5}, 1930$ ，p． 475.
100．Schmickley，R．D．and Pratt，R．Ho，Phys．Revo 164， 1967，p．104．

101．Cooper，J．W．，Phys．Rev．128，1962，p．681．
102．Cooper，J．W．，Phys．Rev．Let．13，1964，p． 762.
103．Manson，S．T．and Cooper，J。W。，Phys。Rev．165，1968， p． 126 。

104．Herman，F．and Skillman，S．，＂Atomic Structure Calculations，＂Prentice－Hall Inc．，Englewood Cliffs，New Jersey，1963．

105．Rau，A．R。P。 and Fano，U。，Phys．Rev．167，1968， p． 7 。

106．Colby，J．W．，in＂Advances in X－ray Analysis，＂ （G。R。Mallett，M。Fay and W。M．Mueller，Eds．）， XII．To be published in 1968.

107．Reed，S．J．Bo and Long，J．Vo Po，in＂X－ray Optics and X－ray Microanalysis，＂（H．H．Pattee，V．E． Cosslett and A．Engstrom，Eds：），Academic Press， New York，1963，p．317．

108．Birks，L．S．，J．App1。．Phys．29，1961，por 387．
109．Reed，S．J．B．，Brit．J．App1。Phys。16，196，5，p． 913.

110．Duncumb，P．and Shields，P。K。，in＂X－ray Optics and X－ray Microanalysis，＂（H．H．Pattee，V。E． Cosslett and A．Engstrom，Eds．），Academic Press， New York，1963，p． 329.

111．Colby，J．W．，Report NLCO－969，National Lead Co． of Ohio，Cincinnati，Ohio， 1964.

112．Fink，R．Wo，Jopson，Ro Co，Mark，H．，and Swift， C．D．，Rev．Mod．Phys．38，1966，p． 513.

113．Burhop，E．H．S．，J．Phys．Raḍium 16，1955，p． 625.
114．Laberrigue，J．and Radvanyi，P。，J．Phys．Radium 17，1956，p． 944.

115．Hagedoorn，H．L．and Wapstra，A．H．，Nucl．Phys．15， 1960 ，p． 146.

116．Bailey，L。E\＆and Swedlund，J．Bo，Phys．Rev．158， 1967，p．6。

117．Green，M．and Cosslett，V．E．，Proc．Phys．Soc．78， 1961， 1206.

118．Henoc，J．，Thesis，University of Paris．Publication CNET Etude No． 655 PCM， 1963.

119．Henoc，Jo，Maurice，F．，and Kirianenko，A．，Rapport CEA－R 2421， 1964.

120．Everhart，T。E。，J．Appl。Phys．31，1960，p． 1483.
121．Archard，G。D．，J．App1。Phys．32，1961，p． 1505.
122．Nakhodkin，N。G。，Ostroukhov，A。 A。，and Romanovskii， V．A．，Soviet Physics，Solid State Physics 4，1962， p． 1112 。

123．Cosslett，V．E．and Thomas，R．N．，Brit。J．Appl． Phys．15，1964，p．235．

124．Cosslett，V．E．and Thomas，R．N．，Brit。J．Appl． Phys．15，1964，p．883．

125．Cosslett，V．E．and Thomas，R．No，Brit。J．Appl． Phys．15，1964，p．1283．

126．Cosslett，V．E．and Thomas，R．N。，Brit．J．Appl． Phys．16，1965，p．779．
127. Worthington, C. Re and Tomlin, S. G., Proc. Phys. Soc. A69, 1956, p. 401.
128. Archard, G. D., in "X-ray Optics and Microanalysis," (A. Engstrom, V. Cosslett and H. Pattee, Eds.), Elsevier, Amsterdam, 1960, p. 331.
129. Green, M., Proc. Phys. Soc. 82, 1963, p. 204.
130. Bishop, H. E., Proc. Phys. Soc. 85, 1965, p. 855.
131. Bishop, H. E., Brit. J. Appl. Phys. 18, 1967, p. 703.
132. Webster, D. L., Clark, H., and Hansen, W. W., Phys. Rev. 37, 1931, p. 115.
133. Bethe, H. A., Ann. Phys., Lpz. 5, 1930, p. 325.
134. Mott, N. F. and Massey, H. S. W., "The Theory of Atomic Collisions," Clarendon Press, Oxford University, 1949.
135. Webster, D. L., Hansen, W. W., and Duveneck, F. B., Phys. Rev. 44, 1933, p. 258.
136. Moiseiwitsch, B, L. and Smith, So.J., Rev. Mod. Phys. 40, 1968, p. 238.
137. Glupe, G. and Mehlhorn, W., Phys. Letters 25A, 1967, p. 274.
138. Drawin, H. Wo, Zeit. fur Phys. 164, 1961, p. 512.
139. Bloch, F., Zeit. fur Phys. 81, 1933, p. 363.
140. Jensen, Ho, Zeit. fur Phys. 106, 1937, p. 620.
141. Wilson, R. Ro, Phys. Rev. 60, 1941, p. 749.
142. Duncumb, P. and DaCasa, C., Proc. Second Nat. Conf. on Electron Probe Microanalysis, Boston, Massachusetts, June, 1967.
143. Kulenkampff, H. and Spyra, W., Zeit. fur Phys. 137, 1954, p. 416.
144. Sternglass, E.J., Phys. Rev. 95, 1954, p. 345.
145. Kanter, H., Ann. Phys., Lpz. 20, 1957, p. 144.

146．Bishop，H．E．，in＂X－ray Optics and Microanalysis，＂ （R．Castaing，P．Deschamps and J．Philibert，Eds．） Hermann，Paris，1966，p． 153.

147．Weinryb，E．and Philibert，J．，Comp．Rend．258， 1964，p．4535．

148．Thomas，P．M．，U．K．Atomic Energy Research Establish－ ment Report A．E．R．E．No．4593，Harwell，Berks．， England， 1964.

149．Tomlin，S．G．，Australian J。of Phys．17，1964，p． 452.
150．Duncumb，P．and Shields，P．，Brit。J．Appl。Phys．14， 1963，p． 617.

151．Hansen，M．，＂Constitution of Binary Alloys，＂2nd Edition，McGraw－Hill Book Co．，Inc．，1958，p．704．

152．Brown，J．D．，in＂The Electron Microprobe，＂（T．D． McKinley，K．F．J．Heinrich and D．B．Wittry， Eds．）John Wiley and Sons，New York，p． 189.

153．Frazer，J．，in Proc．of the First Nat．Conf，on Electron Probe Microanalysis，College Park，Maryland

154．Frazer，J．Z．，Fitzgerald，B．W．，and Reid，A．M．， University of California，LaJolla，California， Report SIO 66，June， 1966.

155．Hobby，M．G．and Wood，G．C．，Acta．Met．75，1967， p． 143.

156．Lifsthin，E．and Hanneman，R．E。，General Electric Report No．66－C－250，Part II，General Electric Co．，Schnectady，New York，September， 1966.

157．Beaman，D．R．，Proc．Sec．Nat．Confo on Electron Probe Microanalysis，Boston，Massachusetts， June， 1967.

APPENDIX A

COMPUTER PROGRAM FOR CALCULATION
 OF DETECTOR SYSTEM DEADTIME

A computer program for the computation of a detector system deadtime is given. The program language is

FORTRAN II. The listing is as follows:

```
            DIMENSION XN(100),XMA(100),TITLE(8),R(100)
    1000 READ 1, TITLE
        l FORMAT (8A4)
        DO 43 J=1,100
        READ 40, XMA(J), XN(J)
    40 FORMAT (F6.5,2X,F6.1)
        IF (XMA(J))99,42,43
    4 3 \text { CONTINUE}
    42. M=J=1
        SXN=0.0
        SR=0.0
        S XNR=0.0
        SXN2=0.0
        DO 30 I =1,M
        SXN=SXN+XN(I)
        R(I)=XN(I)/XMM(I)
        SXNR =SXNR +XN(I)*R(I)
        SXN2=SXN2+XN(I)*XN(I)
    30 SR=SR+R(1)
        C=M
        B=(SXN2*SR-SXNR*SXN)/(C*SXN2-SXN*SXN)
        A= (SXNR-B*SXN)/SXXN
        TAU=A/B
        PRTNTT-2O;--TYTLE
    20 FORMAT (1H1, 10X, 13HDEADTIME FOR, 8A4///11X, 51HNO. COUNTS/SEC.
    MICROARPS COUNTSTMICROAMP SEC. IT
    DO 26 I=1,M
```



```
    26 PRINT 21%I, XN(I), XMAII), R(I)
        PRINT 22, B, TAU
    22 FORMAT //// 18X,1HA,14X,1HB,10X,8HUEADTIME// 12X,3(E12.5,3X))
        PRINT 23
    23 FORMAT (1H1)
    9-CONTINUE
        GO TO 1000
        END
```


APPENDIX B

COMPUTER PROGRAM FOR NUMERICAL INTEGRATION OF RELATION FOR STOPPING POWER FACTOR

A computer program in FORTRAN II is given for the calculation of numerical values of the Stopping Power factor. The program integrates by numerical methods the relation:

$$
K=C \frac{R_{u}}{R_{s}} \frac{\int_{E_{c}}^{E_{0}} \frac{Q}{S} d E}{\int_{E_{c}} \frac{Q}{S}{ }_{s} d E}
$$

The listing is as follows:

```
    CCMMON AA,AZ,EO,EC
    CINENSICN TITLE (10)
    F VCLT ,PW17
            RIT7,5, TITLE
        1001 RIT7, 2,2,2AV
            RIT7,2, A, AaV
            RIT7,2,EO,EC
            RITT, 2, RA,RAB
            RIT7,2, C
2 FCRMAT (2F10.C)
    5 FCRMAT (10A6)
        AL=Z
        AA=A
        CAI=QUAL(VOLT, PWLT)
        AL=2AV
        AA=AAV
        CA2=QUAI(VOLT,PWIT)
        CA=C*RA*CA1/(RAB*CA2)
        WGTG,6,TITLE
        WCT 6,3,2,ZAV,A,AAV,ED,EC,RA,RAB,C
    6 FCRMAT (3GHI MTOMIC NUMEER CORRECTION FOR .1OAGT
```



```
    WCT6,4,CA1,CA2,CA
    4 FCRMAT(3TH゙ CAI
        GC TO 10C1
    ENC
```

FUNCTION VOLT(E)
CCMMON AA, AZ,EO, EC
$E R=E O / E$
VOLT
$1 *$ © C .163 -ELOG12.C*(ER $+(E O-E R)=E) /(11.5 * A Z)))$
RETURN
ENC

APPENDIX C

COMPUTER PROGRAM FOR REDUCTION OF RAW MICROPROBE DATA to COMPOSITION

The complexity of the correction procedures and the necessity for performing the calculations in an iterative manner suggest the use of a digital computer for reduction of raw microprobe data to composition. Several computer programs are available in the literature. 106, 152-157 However, each method either has an extensive input requirement or is limited in application. Brown's ${ }^{152}$ program necessitates much looking up of constants in tables, uses a questionable atomic number correction, and by virtue of containing many subroutines, lets the user choose the correction procedure to give him the answer desired. Frazer's program ${ }^{153,154}$ and the program of Hobby and Wood ${ }^{155}$ do not contain an atomic number correction. Lifshin and Hanneman's program ${ }^{156}$ requires much input and is primarily useful only for binary systems. Colby's program, ${ }^{106}$ similar in some respects to the present one, uses an inadequate background correction and does not provide for output in the case of an inhomogeneous sample, such as a diffusion couple. Beaman's program ${ }^{157}$ is relatively difficult to use, lets the user choose the correction procedure and is applicable particularly to intermediate weight elements.

The goal in writing the present program was to generate a computational method that was most general in character, simple to use and easily adaptable to a time-sharing system when coupled to the now available automatic readout systems for electron microprobes. A minimum of input data is required. All constants necessary for the various calculations are either stored internally or calculated in the program.

In the listing of the program that follows, comment statements can be used to follow the course of the calculation. The constants stored internally are given in Appendix D. The input requirements are outlined in detail in Appendix E and a typical output is given in Appendix F. The program is written in the FORTRAN IV language。

C599	
8606	
C6O1	IF (11敬.EQ.b.) ©C TC 619
C60 2	
0603	
	1,717.6M1
cect	$60 \quad 10 \quad 621$
cecs	6IG PRINT 622, TWAETII,I=I,NA
CEOE	
COCl^{-6}	
OECE	
Cecs	IF Trime
celc	PRIMI 695. TIAE
C611	
0612	E25 PRIAT 15, TAS PMPROB,OATE
CE13	
C614	694 FCRMAT 118A, 33 HIMOIVIDUAL K-RATIOS CORRECTEO FOR/I7X, 36HDEAD-TIME
C615	$005001=1, N 5$
0616	
cel 17	578 FOQMAT 138.13,2X.81F6.4,2X11
0618	368 CONTITUE
C619	IF 1me.EQPo! 60.10 1000
CE2C	
6621	
0622	
C623	6c 101090
0624	
0625	
C62t	PAImt 648
CE27	
ce 28	De 651 J=1.mil
0×25	
ce 3 C	
Ct31	CS7.Snallut
CE32	
ct 11	
$\begin{aligned} & c \in 34 \\ & 0.39 \end{aligned}$	
	111
Cts	Palal 5193
C637	E102 FORMMT (/23x,11MEV 100 \% OF//)
CAIS	OD 5103 deldex
0439	EIC4 FCRMAT (31X,A3, 3x, 3:F6.1,6X)
-064C	
Cetl	IF IMS.LE.11 6C 1073
CEt2	
0643	
0644	
ce45	PRIMT655, IECIII,I=I,NA)
Qest	
C64 1	6C 10 602
$0 \in 48$ C64s	643 PRINT 654, (ELII),I=1,NAI
	1 AND ORIF ///14X, 3(A3,16X)//)
...c65C	$642.00681 . L \pm 4 \mathrm{MS}$
0651	PRINI 697, $\mathrm{CNI}(\mathrm{J}, I I, N S I(J, 1), J=1 / N A)$

\qquad
\qquad
\qquad
\qquad
\qquad

APPENDIX D

INITIALIZATION CONSTANTS

The constants to be stored internally in the computer for use in the program given in Appendix C are given. These data are inserted as part of the input data, immediately following the main program. The list of the data is as follows:

$-.28073135 \mathrm{E}+00.69337986 \mathrm{E}-01-.78629577 \mathrm{E}-02.40525732 \mathrm{E}-03-.76600255 \mathrm{E}-05$
=. $28582501 E+00.707 Z 8039 E-01-.80292836 E-02$
$-.29001167 E+00$
$=-29403445 E+00$
-. $29833832 E+00$
$.29833832 E+00$
$=.30214063 E$
$.30214063 E+00$
$-.30597373 E+00$
-. $30948495 \mathrm{~F}+00$
$-.31323346 E+00$
$=-31516897 E+00^{-}$
$-.31969356 \mathrm{E}+00$
---. $=.32269303 E+00^{-}$
$-.32530877 E+00$
-.32900290EFOU
$-.33145460 E+00$
-.33412TITE゙+00
$-.33701012 \mathrm{E}+00$
$=-33954821 E+00^{\circ}$
$-.34185234 E+00$
$-.34432934 E+00$
$-.34684018 E+00$
$-.34684918 \mathrm{E}+00$
-.3497954 O
$.34919346 E+00$
$-.35074655 E+00$
$\begin{array}{r}-. . \\ -.35301387 E+00 \\ \hline-.35\end{array}$

$=.35747831 E+00$. $89032813 E-01-.10045205 E-01$
$-.35927929 E+00-89432565 E-01-.10123148 \mathrm{E}-01$

- =-. $36129636 E+00$. 9990913 AE-01-. $10172039 E-01$
$-.36307709 E+00.90307205 \mathrm{~F}-01-.10209906 \mathrm{E}-01$
$\therefore 36426614 E+00.90505057 E-01=10220125 E-01$
$-.36629296 E+00.90942954 E-01-.10269137 E-01$
$-.36780074 E+00$
$-.36944046 E+00 \quad .91634452 E-01-.10325525 E-01$
$=37103485 \mathrm{E}+00$. $91975714 \mathrm{E}-01=10355106 \mathrm{E}-01$
$-.37232571 E+00 \quad .92206793 E-01-.10369838 E-01$
$-97385404 \mathrm{E}+000.92571425 \mathrm{~F}-01-.10396121 \mathrm{E}-01$
$-.92727292 \mathrm{~F}-01-.104072 \mathrm{E}-01$
$-.37506964 E+00.927272927 E-01-.10434065 E-01$
$=.37738192 E+00.93098117 E-01-.10423582 t-01$
- - $37879579 E+00.933754097-01-.10444441 \mathrm{E}-01$

$-.38159628 E+00.93771724 t-01-.10428664 E-01$
$-.38317627 E+00.93812360 E-01-.10414347 \mathrm{E}-01$
$=38389147 E+00.93841810 \mathrm{~F}-01=10399708 \mathrm{E}-01$
$=.38422579 E+00.9373670 A E-01-.10366139 E-01$
$=.38470337 E+00.93676237 E-01-.10338166 E-01$
$-.38518553 E+00.93618256 E-01-.10310387 E-01$
$-.38523503 E+00.93400300 E-01-.10259642 E-01$
$=.38541494 \mathrm{E}+00.93224964 \mathrm{E}-01=.10214321 \mathrm{E}-01$
$=.38554613 \mathrm{E}+00.93025953 \mathrm{E}-01-.10165031 \mathrm{E}-01$
$=.38503845 \mathrm{E}+00.92596007 \mathrm{E}-01 \mathrm{O}=100 \mathrm{E} 2920 \mathrm{E}-01$
$-.38515389 E+00.92377917 E-01-.10024531 E-0$
$\frac{-.38516918 E+00.92113527 E-01-.99686511 E-02}{-.38481991 E+00.91711352 E-01-.98877062 E-02}$ $-.38363713 E+00.906933$ R1E-01-. $96920228 E-02.47269105 E-03-.85370969 E-05$
-KALAMA
 A1129

APPENDIX E

SPECIFICATION FOR INPUT OF DATA

Specifications for input data for reduction of probe intensity ratios to composition are given. A minimum of four cards in addition to the data are used. The formats of the various cards are given below.

First Card

Column		Format
1-5	Problem Number, or blank	Al, I4; if blank, assigned by computer
6-7	Blank	2 X
8-22	Date of Analysis	15A1 (3A4, A3)
23-24	Blank	2 X
25-44	Name of Person Submitting Problem	5A4
45-46	Blank	2 X
47-71	Description of Sample	25A1 (6A4, A1)

Second Card

1-4 Accelerating Voltage (Kev)	F4. 1
5-6 Blank	2 X
7- 8 Number of Compound Standards (If blank, elemental standards assumed)	I2 (Number is right justified)
9-10 Blank	2 X
11-15 Counting Interval (seconds)	$\begin{aligned} & \text { F5.1 (If blank, } 1.0 \\ & \text { sec. assumed) } \end{aligned}$
16-17 Blank	2 X
18-22 Density of Sample (g/cc)	$\begin{aligned} & \text { F5.2 (May be left } \\ & \text { blank) } \end{aligned}$
23-24 Blank	2X
25-29 Film Thickness in Micrometers, If Analysis of Thin Film	$\begin{aligned} & \text { F5.2 (May be left } \\ & \text { blank) } \end{aligned}$
30-31 Blank	2 x
32-35 X-ray Emergence Angle (degrees)	$\begin{aligned} & \text { F4.1 (If blank, } \\ & 52.5^{\circ} \text { as sumed) } \end{aligned}$
36-37 Blank	2 X
38-40 Deadtime for Element \#1 (Microsec.)	F3.1 (If blank, 1.0 microsec. assumed)
41-43 Deadtime for Element \#2 (Microsec.)	F3.1
44-- Above Deadtime Repeated for Each Element Analyzed	

Third Card
1-2 First Element Analyzed, A2 Chemical Symbol
3 Blank $1 \times$
4- 5 First Element Analytical Line A2(KA, LA, MA)
6-. 7 Blank $2 X$
8- 9 Second Element Analyzed, A2Chemical Symbol
10 Blank $1 \times$
11-12 Second Element Analytical Line A2
13-14 B1ank $2 x$
15-- Repetition of Above Cycle for All ElementsIf one more element present than is analyzed, and thatelement is to be determined by difference, its chemicalsymbol is listed last without an analytical line。Chemical symbols are right justified, in their field.Analytical lines are $K A, L A$ or $M A$. A typical sequencefollows: $N B=L A=-Z R=L A=-i N-K A--0$

Fourth Card(s) if Required
1-2 Number of Element in List on Third 12 (Right justified) Card to Which Compound Standard Applies

3-7 Standard Name 5A1 (A4,A1)
8-13 Weight Percent of Element in Binary F6.4 Compound Standard

14-15 Chemical Symbol of Other Element A2 (Right justified) in Compound Standard

A separate card is required for each element for which a binary compound standard is used, the total number of cards being equal to "Number of compound standards" on second card.
Column Format
First Card
1-2 Number of Observations on Standard I2
Other Cards1-6 Beam CurrentF6. 0
7-8 Blank $2 \times$
9-14 Standard Counts F6. 0 card, in the order of elements listed on that card.
The total number of sets of standard data must be
equal to the total number of elements analyzed.

Background Data

ColumnFormatBackground Data from First Standard
First Card
1-2 Number of Background Observation I2 (Right justified)Taken on First Standard
Other Cards
1- 6 Beam Current F6. 0
7-8 Blank $2 \times$
9-14 Background Taken on First Standard F6. 0Contributed to First Analytical Line
15-16 Blank 2 X
17-22 Background Taken on First Standard F6. 0Contributed to Second Analytical Line
23-24 Blank $2 \times$
25-30 Background Taken on First Standard F6. 0Contributed to Third Analytical Line
31-32 Blank $2 x$33--- The Above Cycle Is Repeated forContribution of First Standard to OtherAnalytical Lines
The number of these cards must equal the number of observations for background on first standard.

First Card
1- 2. Number of Background Observations I2 (Right justiTaken on Second Standard fied)

Other Cards

$$
\begin{array}{ll}
1-6 \text { Beam Current } & \text { F6.0 } \\
7-8 \text { Blank } & 2 X
\end{array}
$$

9-14. Background Taken on Second Standard F6.0 Contributed to First Analytical Line 15-16. Blank 2X 17-22 Background Taken on Second Standard F6.0 Contributed to Second Analytical Line

23-24 Blank
$2 X$

25-30 Background on Second Standard F6.0 Contributed to Third Analytical Line

31-32 Blank 2X
33--- The Above Cycle Is Repeated for Contribution of Second Standard to Other Analytical Lines

The number of these cards must equal the number of observations for background on second standard.

The above sequence is repeated for data taken on each standard for contribution to other analytical lines.

The total number of sets of background data must be equal to the total number of elements analyzed.

Sample Data

1- 6 Beam Current F6. 0
7-8 Blank $2 X$
9-14 Counts for First Element F6. 0
15-16 Blank 2 X
17-22 Counts for Second Element F6. 0
23-24 Blank $2 \times$
25-30 Counts for Third Element F6.0
31-32 Blank $2 X$
33--- Counts, Blank, BTank Repeated forAll Elements MeasuredThis card is repeated for each observation. A maximumof 300 observations permitted.
Trailer Card
After the last analysis in a problem, a trailer cardwith routing information is required.

Column
1-6 999998 Is Inserted if More Data
Format for New Problem Follows

999999 Is Inserted if Most Recent Data Is last Data

F6. 0

APPENDIX F

typical output from reduction of microprobe data
 to COMPOSITION

A typical output from the MAGIC II program is given. These output sheets are the summaries of the calculation. In addition, the numerical results for several variables are printed out at the end of the calculation for each observation: The typical summary sheets are as follows:

ESP $=$ O $5865707 C E$

FLUORESCENCE FACTCR FOR NI FLUCRESCING SN IS 4.494869

STANCARC INTENSITIES CCRAECTED FOR DEAOTIME ANO ORIFI
REAM CURRENI NI
18187.4 52325.44 63393.8e
\qquad

PRCBLEP ALMBER A1122

JULY 17, 1968

INTENSITIES ICPS X CCUNTING INIERVALI CORRECIEC.FCR DEAD-TIME. AND DRIFT

2343 SN $/ 53335$

AI
23631 /633 3 3
33050 152235 $22760 / 63393$
32931 / $58335 \quad 22844 / 62343$
30871-153335 22949163343
3C86日 /E3335 22151/62353
21915_ $153335 \ldots \ldots . .$.
22230/59235 $22695 / 63393$
$21995 / 53335 \quad 22837 / 63353$
$\begin{array}{lll}31755 / 53335 & 22087 & 63353 \\ 22126 / 53335 & 228 C 5 / 63363\end{array}$
22040 - $5233 \mathrm{E} \quad 229 \mathrm{C} 5162353$

$-\frac{2}{2} 2378$	
2	1277

22873 (5233E 22055 163193
$32151 / 53335$ 22961 163193
22384 / 53335 …..........2089 163353
22328 /62339 22902163393
22502 fEx 335
$\begin{array}{ll}22503 / 53335 & 22632 / 63343 \\ 22790 / 63393\end{array}$
$\begin{array}{ll}22448 / E 233 E & 22790 / 63393 \\ 32558 / 5333 E & 22725 / 63393\end{array}$
22511-152225
$22150 / 53335$ 22e67 /t3343

2229 / $53335 \quad 22822 / 63393$
$22227 / 53335 \quad 23135 \quad 16 ? 353$
22516 /E3325 $22896 / 63353$
22447 152225 $\quad 22984 / 63353$
$32111 / 52335 \quad 22882 / 63393$

$\begin{array}{ll}32351 & 153335 \\ 22605 & 152335\end{array} \quad 22751163353$
STANCARC BACKCRCUÃO ICPS XOUNTING INTERVALI
1С5日 E E
DEAC-TIPE (PICRCSECONCSI
2.1
2.3

PRCELEN NLMBFR A1122

JULY 17, 1968

INCIVICUAL K-RATICS CCRRECTEC FOR CEAD-IIME, DRIFT ANC EACKGRCUAD CALY

\wedge	SN	NI
3	0.5989	C. 3 ter
3	0.6125	C. $3 \in \boldsymbol{R} \boldsymbol{E}$
3	0.616	C. 2702
3	C.57ce	C. 3 E55
3	$0.57 C 7$	C.3E51
3	0.5812	C. 3 E81
3	0.55 ef	C. 3515
3	0.5923	C.3541
3	0.5877	C.2efl
3	C.5948	C. 2 E et
3	C. 5932	C. 2552
3	0.5 cse	C. 3 E Cl_{1}
3	0.5577	C. 3 E 61
3	$0.6 C S 1$	r. 3 ¢ 44
3	0.595.	C. 3 E61
2	0.5957	C. 3 EP1
3	0.59E7	c. $3: 52$
2	C.EC3t	C. 3 ES 1
2	0.EC2C	C. 3 ¢C¢
3	0.t016	C. 3634
3	0.6031	C. 2 E23
3	0.602%	C. 2.67
3	C.595?	C. 2546
3	0.5954	c. 3 E44
3	$0.5 ¢ 81$	C. 3 E4C
3	$0.5 ¢ 67$	C. 3585
3	c.602\%	C.3E51
3	C.tocs	c. 3 Et 5
3	0.5545	C. 3 E4E
2	0.5954	C. 3 E19
3	0.5591	0.2528
3	$0.6 C 51$	C.35?2

PRCBLEM NLMBER A1122

SUEMITIED BY MC CANIEL
DESCRIPIICN - NI-SN ERCM SN +4 CL RAIH

MEAN GHEMICAL CONPCSITION ANC THO
SIGMA LIMITS BASED CA 32 ANALYSES

WEIGTI
ATOMIC PERCENT PERCENT
$S N \quad$ GE.CES - C.225 $47.482=0.167$
$N 1-22.568-145 \ldots 2528-0.167$

MEAN INTENSITY RATIOS ANC TGG SIGMA LIMITS

ELEMENT
 K

NI $-\ldots-\ldots$.

ACCELERATING VOLTAGE 15.0 KEV
X-RĀ EMERENCE ANGLE
52.5 DEGREES

STANCARC PEAK-TO-BACKGRCUND RATIOS (P/B) AND MINIMLM DETECTABILITY LIMITS (MDL)

[^0]: *Also called: electron microprobe; electron probe X-ray microanalyzer; microprobe; probe; electron probe; microanalyzer a sonde electronque; Elektronenmikrosonde.

[^1]: *The Zircaloy-2 samples were provided by Dr. K。 Tangri, Department of Mechanical Engineering, University of Manitoba.

[^2]: *Wet chemical analyses performed by the laboratories of various members of the Midwest Probe Users Group were averaged to obtain the results given here.

