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.NOISE:.CDNSIDE~TIDN 'IN NUC'LEAR"PUL'SE 'AMPLIFIERS 

'Donald .A.  Landi s 

Lawrence Radiation Laboratory 
University of California 

Ber.keley, California. 

December 20 ,  1961 

This paper considers .  the effects of. cer ta in  pulse-shaping net- 

. w o r k s  o n t h e -  signal-to-noise.  ratio of a nuclear- pulse amplifier.  . The 

.sliapihg'netw&ks discussed a r e :  ( 1) equal RC -integrating,. and RC- 

.differentiating, t ime c.onstant, ( 2 )  sing:le -delay -line clipper.  and RC 

integrator ,  and ( 3 )  double-delay-line c1ipper:and RC integrator .  

. The effects of these  networks .on.the. signal, ,when high c.ount 

ra tes  .and over load .pulses .a re  present ,  a r e  a l so  considered. . Equations 

and curves  are.developed for  .the energy resolution (signal-to-noise 

rat io)  and resolving", t ime (related. to .  the.ability:.to operate: a t  high 

counting r a t e s )  of the networks. 

~ x ~ e ' r i m e ~ t a l  resal ts .  a r e  shown for .the energy. resolution .of the 
i 

.types .of pulse-shaping networks considered. 



This paper reviews the sources of noise.in nuclear pulse ainpli- 

f i e r s  ,. and .considers the. effects of pulse-shaping netw0rk.s .contailiehd .in 
. . 

,the .amplifier ' i n  optimizing the .performance. of counting sys tems.  "In 

s o m e  cases  ,. the ,pulse  - shaping circui ts  in  the amplifier . a r e  selected ' tb  

give a maximum signal-to-noise ratio.  In o thers ,  the shaping. c i rcui ts  

a r e  selected to  compromise between the signal-to-noise rat io: .  a'nd the 

ability of the amplif ier  to handle high input-signal r a t e s .  Both aspec ts  

. a r e  conoidercd.in.this paper .  

The .amplifier i s  one component i n . a  sys tem use.d.to determine . . 

the charac ter i s t ics  of nuclear par t ic les ,  such a s . the  energy of alpha o r  

beta par t ic les  and gamma rays .  F igure  1 ( a )  i s  a block.diagram. 0f .a  

typical sys tem used to  measure  the. energy of. alpha par t ic les .  The .de- 

tector  converts. the absorbed .energy of the .alpha part ic les  into e lec t r ica l  

charge pulses.  The cha rge  is. then. applied to  a :.linear .pulse .amplifier 

. that 'shapes .and. amplifies the signal. The signal f rom the ,amplifier is 

.applied .to:.a pulse -height analyzer that determines the .amplitude: distri,- 

bution .of the pulses.  . Means a r e .  provided . to display the.. distr,ibution,for 

visual '  observation. . Test  pulses. applied to  the. input of the ,amplifier. a r e  

used to calibrate .and .check the performance ,of t h e .  system. ., A typical 

amplitude distribution i s  shown in .. Fig ... -1 (b) . The horizontal. axis 

represents  the pulse .amplitude scale  which., in, most:  sys t ems ,  . i s  l inearly 

related to  the.  energy of the alpha part ic les;  the v e r t i c a l a x i s  represents  

the number of counts o r  pulses received .in the counting , t ime in. a smal l  

predetermined amplitude range; "Peaks corresponding to alpha-particle 

pulses and .the t e s t  pulses .can. be seen..in..the. f igure.  :"The. t e s t  peak. i s  

generally nar rower  than t h e  alpha peak becaus.e..the. t e s t  pulses  a r e  , 

, modulated only by e lec t r ica l  noise. a t  t h e  input of the .amplifier.  The 

additional spread .in the alpha peak i s  cauked .by defects.  in  the detector.  . 
\ 

The capability of the sys tem to resolve two alpha part ic les  of nearly 

equal energy i s  directly related to the amount of spread  of the energy ' " '  

peak,.  and i s  usually expressed a s  t h e  full  width of the peak a t  half of its 
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Fig.  1.  (a) Block diagram of a system for  measuring alpha 
particles. (b) Distribution of pulse amplitudes from the 
pulse-height analyzer. 



maximum .amplitude, here.abb'reviated .as 3"HM. ":"Re so1ution"depends .on 

. : thesignal- to-noise rat io  of the,amplif ier  system. In th is ,paper ,  the 
I. : 

signal i s  defined a s  the peak am.j?lit'ude of the piilse a t  the.'output of the 

amplif ier , .  and the noise i s  defined a s  the'.'RMS (root-mean.- square)  

noise voltage a t  the output. The noise i s  assumed to cause .pulses 

having the same amplitude a t  the input o'f the amplifier to  a l so  have a 

gaussian amplitude distribution. a t  i t s  output. . Figure  2 shows t h e  r e l a -  

t ion between the "RMS and':F.WHM spreads  in amplitude of the. pulses 

f r o m  the amplif ier .  The,:FWH.M spread  .is about 2.35 t imes  :the'. RMS 
1. 

spread  (C), where a i s . a  s tandard deviation of the Gaussian peak. 

Improving the energy resolution by a smal l  amount may be. im-  

portant when energies  a r e  being measured  for alpha groups that have 

peaks very close together in energy. This i s  il1ustrate'd.in.Fig. 3 by 

the three  curves  of alpha peaks f r o m  p u 2  38, which a r e  44 k e v  apar t  with 

FWHM energy resolutions of ( a )  20 kev, (b)  30 kev, and ( c )  40 'kev.  

The 5.496-Mev peak occurs  a t  a ra te  that i s  about 2.5 t imes:  that of the 

5.452 -Mev peak. The 40-kev resolution.curve appears . to  have.only one 

peak, but both peaks a r e  apparent in , the .  30- and 2.0-kev .curves .  This 

shows that the improvement in  energy resolution,.from 40 to 3.0 kev, I ... .I. 

though small ,  was needed to reveal  both peaks.  
: :  : I .  

. In experiments operated a t  high count r a t e s ,  i t  i s  as . impor tant  

to consider resolving, t ime a s  .to consider FWHM energy resolution.due 

.to noise.  Here  the resolving t i m e . i s  defined.as the . t ime. for  the response 

of an. impulse of charge applie'd to  the .amplifier input to decay down to 

some pe rcen.tage of i t s  maximum amplitude. If a pulse f rom:  the. ampli  - 

1ie.r fa l ls  pn.the ta'il of a preceding :pulse, the second.pdlse , is  'dis$lac'eqd 

in amplitude. This displacement ,may ei ther  cause an. asymmetr.ica1 

spread  in the peak of the energy-resolution curve,  o r  cause.false  peak's ..,' 
I 

to appear .  

The types of pulse - shaping circui ts  considered.in:.this paper. a r e  : 

( a )  RC shaping, which consis ts  of an RC integrator and an.RC differen- 

t ia tor  with equal t ime constants in cascade ( see .F ig .  22); (b)  single 

delay-line shaping, whi.ch.consists of a delay.::1ine clipper together with 
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- . Fig:. 2. Plot of FWHM = 2.355 a for a Gaussian distribution, 
, where b is the standard debiation. 
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ariVRC' integrator ' (see Fig.. 2.4); and - (c )  double-delay-line shaping, which 

consis ts  of two delay-line cl ippers  and an RC integrator ,  a l l  in cascade 

( s e e  Fig.  2 7 ) .  

The-RC shaping i s  the s implest  type and i s  generally used-because 

i t  i s  the eas ies t  to  optimize with respect  to energy resolution for a given 

sys tem.  It has  been shown that lor  RC shaping there  i s  an optimum t ime . 
constant fo r  a given system, giving the best  signal-to-noise ra t io  o r  

3 
energy r e  solution. In some situations, howevcr , a slight improvement 

in  energy resolution can  be obtained by using single-delay-line shaping. 

In. other situations, single -delay -line shaping improves the r e  solving 

. t ime .  Neither RC nor single-delay-line shaping can be used .a t  very 

high count r a t e s .  Double -delay-line shaping has  pvvrer  energy resolu-  

tion because of noise than.the f i r s t  two methods, but i s  much m o r e  de- 

s i rab le  a t  high counting r a t e s  and when high-ener gy extraneous pulses 

cause  the ampl i f ie r ' to  momentarily overload. This i s  t r u e  because 

double -delay-line shaped pulses a r e  symmetr ica l  about the base l i n e  

and tend to  reduce base-line shift with changes in count ra tes  and over - 
loads.  

Figure 4 shows severa l  .puls.e shapes f rom.  the.  amplifier and their  

cor'responding amplitude. spec t rum qualitatively, obtained with a pulse- 

height analyzer when the sys tem is .opera ted  a t  high.count ra tes .  Fig-ure 

4 ( a )  shows. an .RC - sha.ped pulse followed by.,a second .RC differentiator '. . . '  

with a long t ime constant. The second differentiator cau'ses the pulse 

to have an  undershoot with a long decay. The pulse-amplitude spec t rum 

shows a spread  of the peak on i t s  1ower:amplitude side when the ta i l  of 

one pulse has  not decayed back to the base. l ine before another pulse ;-. ? 

appears .  The dotted l ines on the amplitude spectrum curves  a r e  the 

amplitude spectrums when the sys tem i s  operated at low count r a t e s .  

F igure  4 (b)  shows the effect of an. RC-shaped pulse followed by.two 

m o r e  differentiating circui ts  in cascade.  Note that there  i s  an  under - 
shoot and a n  over shoot on the t a i l  of the pulse f rom the amplif ier .  This 

gives a corresponding spread  in the amplitude spectrum on.both s ides  
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Fig. 4. Shaped pulses from the amplifier, with their amplitude 
spectrum at high count rates: (a) RC shaped prlse plus 
another differentiator;. (b) RC shaped pulse plus two 
differentiators; and (c) double-delay-line shaped pulse 
with a small  reflection. 



of the peak, when the amplifier i s  operated a t  high count r a t e s .  All 

RC-shaped amplif iers  exhibit some over-  and undershoot on the ta i l  of 

the pulses f rom the amplifier .because of the normal  RC coupling between 

s tages,  and therefore cause spreading of the amplitude spectrum a t  

high couilt r a t e s .  ' F o r  this reason,  KC shaping i s  usually not used a t  

high count r a t e s .  F igure  4 ( c )  shows a double -delay-line shaped pulse 

that was followed by a smal l  reflected pulse because it had a long, im-  

properly terminated t 'ransmission line on the output of the amplif ier .  

F a l s e  peaks a r e  produced in the amplitude spectrum when the amplifier 

i s  operated at  high count r a t e s ,  because a few pulses fall on top of the 

reflections f rom preceding pulses.  This can be very undesirable when 

ineasurements  of weak alpha groups a r e  being made, because i t  i s  hard  

to  differentiate the false  peaks f rom the r ea l  peaks.  F o r  this reason  

the t ime i t  takes the pulse to  decay f r o m  1070 to about 0.170 of i t s  peak 

amplitude . i s  m o r e  important than the total  resolving t ime.  



11. NUCLEAR PARTICLE DE.TECTORS 

. 
The.type of par t ic le  detector used to analyze the energy resolu3- 

tion and resolving t ime of the amplifier must  be considered, because 

the detector determines the charac ter i s t ics  of the signal applied to the 

amplifier.  The types of detector generally used to  detect alpha and 

beta par t ic les  a r e  scintillation counters,  ionization chambers ,  and 

semiconductot detectors .  . Scintillation counters  a r e  not usua1l.y used 

when good energy. resolution f rom alpha part ic les  i s  desired,. Ionization . 

.chambers  have been used for .many yea r s ,  and..FWHM energy distributions 
3 

of 2 7  kev have been obtained with them. The semiconductor detector on 

the other hand, has  only been.in use  for  the l a s t  few y e a r s .  Tt promises  

to give much better energy resolution thanionization chambers  do, be- 

cause it produces ten t imes  a s  much signal for a par t icular  absorbed 

particle energy. . In a gas ionization chamber,  2 7  to 35 electron volts 

a r e  required to c rea te  an  ion-electron pa i r ,  depending on.the gas used. 

In a semiconductor detector the corresponding energy . i s  approx.3.4 ev  

for  each hole-electron pa i r .  In addition, these detectors  a r e  quit& 

smal l  i.ii s ize,  and therefore have very shor t  collection t imes .  The 

ionization chamber and the semiconductor detector can be considered 

to  be capacitances that receive some charge in a collection t ime A t ,  

owing to the absorption of energy of the nuclear particle.  

The semiconductor~'detector i s  a silicon p-n junction diode that 

i s  back-biased with a voltage that may range . f rom severa l  volts to ,  

severa l  hundred volts. . A current  noise source .must  be included a c r o s s  

the capacitance in the equivalent c i rcui t  for the semiconductor detector 

because t h e r e . i s  leakage cur rent  in the back-biased junction of the de- 

tec tor .  . Detectors have been produced that reduce surfaceleakage so  that 

t h e  leakage cu r ren t  i s  mainly bulk leakage  .4 T h e  capacitance of the de  - 
tector  i s  usually assumed to be that of a parallel-plate capacitor with i t s  , 

5 
' plates separated by a .d is tance  equal to  the depletion layer  width. F igure  

5 .sihows a simple equivalent c i rcui t  of the semiconductor detector .  The 

charge produced a c r o s s  the capacitor i s  about 1 . 6 ~ 1 0 - l 9  coulombs f o r  
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Fig. 5. (a) Equivalent circuit of the semiconductor detector, 
where R i s  the shunt resistance of the detector bias and 
amplifier input circuits. (b) Voltage produced for an . .  

impulse of charge applied to the detector, where 

'max = Qin/cD, and T = RCD. 



every. 3.5 e v  of energy a b s 0 r b e d . b ~  the detector. More prec ise  equiva- 
6 

lent c i rcui ts . for  the detector have been.suggested, but they will not be  

w e d .  in this analysis.  The 'signal f rom the detector i s  usually a very 

fast  r ising, pulse with a 'long decaying tai'l produced by discharge of the 

capacitor through.the detector biasing,and amplifier input c i rcu i t s .  

' 111. ' ' PREAMPLIFIER CONSIDERATION 

The . f i rs t  stage in the amplifier i s  actually a special  low-noise 

preamplifier,  p 1 a c e d . a ~  close to the detector a s  possible. . A  cable i s  

connected.from.the output of the preamplifier to  the r e s t  of the ampli-  

f i e r .  .Severa l  types of preamplifier may 'be used. One . is  the high- 

input-impedance type and another is .  the integrator o r  charge-sensit ive 
. .  . 

type. . Figures  -6 and-  7 shows simple circui ts  of these two types of p re  - 
amplif iers .  ' The output'voltage :V  of the high-iriput-impedance p re -  

0. 
amplifier i s . a  function of the detector capacitance, a n d . t h e r e f 0 r e . i ~  a 

.function of the detector b ias .  The ,detector bias may change over a 

,period.of t ime and cause . the  output. voltage to  change. The s y s t e m  

would  need.to be recalibratedt.with a change .in .bias voltage i f  the high- 

input-impedance preamplifier.  is used. 
. / .  . .... 

. The . integrator '-preamplifier has  a t ransfer  function that i s  

a lmost  independent of the detector capacitance because of the very . la rge  
i ' 

equivalent capici tance .'acres s '  the input of the .preamplif ier .  '( 'Traqsfer 

function.(K) i s  t h e  rat io  of voltage-out to  charge-in,  o r  K = V;/Q,,. ) 
.. . 

'The.optimum energy resolution obtained f rom the integrator preampli:- 

.f ier is poorer  .than. the r.esolution,.for the high-input-impedance preamp-  

l i f ier ,  because of the added.capacitance a c r o s s  the input f rom feedback 

capacitor Cf.. The added.advantage,of being, able to change the detector . . 
bias voltage' without changing the gain of the .preamplifier usually m o r e  

than comfierisates, for the poorer  resolution of .the integrator pr.eampli- 

. f i e r .  There  a re .many  texts that analyze preamplif iers ,  so they a r e  not 
,7 conside red  .in detail in this'  paper.  . . 



rig. h. High-input -impedance preamplifier, with 
G Qin . . . . . 

1+~- - *in vo = - # 

C,, + Gin. P(CD + Gin). 
. . 

whirti G i s  the dpen-loop gain, and P = R ~ / R ~  for 
R:  :>> R1 + R2. . . . . . 
1, 

. . . . . . 



Firr. 7: '~llte@rator amplif ier ,  with 

for : CfG >> CD + Cin . 
. . . . . . 



The main sources  of' noise in the particle energy measuring 

sys tem a r e  the detector and the f i r s t  stage of the preampl'i'fier. 'This 

i s  t rue  i f  the power gain in  the f i r s t  stage i s  sufficient to  make the noise 

of la te r  s tages  insignificant, a s  shown in Eq.  (1) .  8. 

where  

F ' = noise figure 'for total  sys tem,  . . 
t 

F = noise figure for stage a ,  
a 

a = 1, 2 ,  3, e t c . ,  

a11 d 
G = available power gain f rom stage a.. a 

The noise figure of the total  sys tem i s  approximately equal to the noise 

figure of the f i r s t  stage, if the available gain of the f i r s t  stage i s , l a r g e .  

The sources  of noise in ' the detector and the f i r s t  stage a r e :  

( a )  shot noise in the tube, (b)  gr id  cur rent  in the tube, ( c )  leakage 

cur rent  in the detector,  (dl  Johnson noise.from.the r ea l  par t  of the 

source  impedance (b ias  r e s i s to r ,  etc. ), and ( e )  flicker noise in the 

tube. 

A .  Noise -Sourceo~Rcfcr rcd  to  Preamplifier Input 

The noise sources  r e fe r red  to  the input of the preamplifier a r e  

shown in Fig.. 8 ( a ) ,  and these a r e  defined a s  follows: 

Y .:- .- 

= Mean square  shot n o i s e ,  r e fe r red  to  the input of the 

tube = 4 kT 'R. : . df, 
eq. 

( 2 )  

f n  ') = Mean square gr id  cur rent  noise = ' z q ( l l  It 11 I )  df, (3)  
G a v.. . g e g c 

(n ') = Mean square  leakage cur rent  noise = 2q(IL)  df , (4)  
L a v . .  

( V n R I w -  - 
= Mean square  source res i s tance  noise = 4kTR df, ( 5 )  
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,/. ,  .:: . .  . .  . . . . 
. Fig. 8.'(a) The noise sources referred to the input of the 

preamplifier.' (b)   he noise sources divided into 
. . . . two groups - one'affected by the .RC circuit at the 

preamplifier input, and one not. . . 



and 

= Mean square  fl icker noise, r e fe r red  to the input 

= $ d f ,  (6 )  

where  
9 ( a )  Constant A has  becn determined experimentally to be 

-13 
approximately 10 , 

(b)  The equivalent noike resistance. R i s .  about 2 .5/gm, 
eq ' 

( 1  . i s  t h e . e l e c t r o n ~ c  cur rent  tr6lj.&~<ed by the g.rid (usually 
g c 

neglected for grid biases m o r e  negative than one volb, 

(d )  I - i s  photo-electric e lectrons emitted by the grid,. and.can.be 
... 

ge 
approximated by .Eq. 7, 

( e )  kT i s  Boltzmann's constant t imes  the absolute temperature and 

is  about 4 ~ 1 0 - ' '  volt-coulombs a t  2 5 O ~  

and 
( f )  IL i s  the bulk leakage current of  the detector.  

The gr id  cu r rcn t  that i s  produced when soft x rays  generated 

a t  the plate cause photoelectric e lectrons to be emitted by the gr id  can 
10 be approximated by Eq.  (7) .  

W e  then have : 

where 
V = grid-to-plate voltage in  volts, 

gP 

Ik = cathode cur rent  in amperes .  

It has  been suggested that the gr id  cur rent  for  most  smal l  tubes 

should be with-in a factor of 2 of Eq .  [7), provided that 
1.0 

(a)  The gr id  bias  be negative enough to  cause the electroni'c component 

collected by the gr id  to  be negligible, 

(b)  The tube be triode-connected, 

( c )  The control gr id  does not emit  e lectrons thermionically, 

(d)  The tube be not operated a t  grea ter  than 75% of i t s  maximum 
I 

plate dissipation so  that outgassing i s  not significant, 
. . 

and 

( e )  The tube be shielded . f rom external  light. 



The.different sources  of the grid.  cur rent  a r e  uncorrelated, so  when 

there  i s  m o i e  than one cokponeqt  of the g r i d c u r r e n t ,  the mean-squared . .  

noise f rom each component must  b e  added :t,ogeth&kctci. ,get the fata1,:krid 

cur rent  noise. 
,'. 

. . 
B: . ~ o i s k .  Sources .Divided...into Two Gr.oups 

The-noise.  sources  a r e  divided into two grcoups-one.that i s  

affe.cted by.the:RC circui t  a t  the input of the.preamplif ier  (detector 

and input capacitance and source res.istance), and one* that i s  not. :. These . 

two. sources  a r e  shown in Fig.  8 (b) ,  and may be formulated a s :  

and 3 = $ ~ ) . t R 2 [ & 2 ) ' +  n ') } , ( 9 )  
"o av  R a v  L '  a v :  G ,  av 

The total  mean-squared noise applied to  the. gr id  i s f  
. . . ''n2)av that 

! 
3 '  (10) 

where 

. C ' = 2et:ector capacitance, 
D 

C = tube .input and wiring capacitance, 
in  

.w  = angular frequency, 

R  =..total: shhnt re'si.stance f rom gr id  to  ,ground. 
2  2 2 

For; the. frequency range 0f. interestc.w C R i s  made much 'greater 
. ,  . , . . 

than one; 

therefore :. 

av 



. . 
- '  V. '  EFFECT OF THE FREQUENCY DEPENDENCE"' 

O F  THE SHAPING CIRCUITS ON-SIGNAL .AND NOISE 
- ' ' .-AT "THE"0UTPUT~~OF'"THE"~MPLIFIERS' , . . . . 

It i s  assumed in  this paper that the shaping circui ts  determine 

the band-width of the amplifier,  and consequently determine the noise 

band-width and shape of the output pulse. Figure 9 i s  a block diagram 

relating the ndise source and frequency dependence of the amplifier,  

where  ~ ( ' o )  i s  the amplifier gain 2 s  a function bf f ~ ; e ' ~ u e n c y  (determined 
;. . 

by shaping circuits).  
. . .  

'The mean-  square-n.oise voltage a t  the: arriplifier 

output can be found by integrating the 

voltage at  the amplifier input and tl-ig:squared absolute value of the gain, 

which i s  a function of frequency, over the frequency range f r o m  ze ro  to  

infinity. This output -noise voltage equation i s  

The. input noise . i s  obtaiped by combining, Eqs  . (2)  thr.ough ( 6 ) ,  

, . 

(8), ( 9 ) ,  arid (11),  and then has  the f o r m - .  ,.. 

The signal f r o m  the amplifier i s  the peak amplitude of the out- 

put pulse. The peak amplitude can be found i f  the input, signal i s  assumed 

to be an impulse of charge applied to the input and detector capacitance C. 

This  impulse of charge produces a s tep of voltage a t  the input; equal to 

V = Q. /c. The response of the amplifier to a unit s tep of voltage a t  
in  in 

the input i s  H ( t )  a s  determined by the shaping c i rcu i t s .  The instant i. 

t that the response i s  at  a maximum can.be found by setting the 

derivative of the response with respect  to  t ime equal to  zero,  and 



Fig. 9.. Frequency dependence of the amplifier. 



solving for  t .  By combining:. the maximum response for  a unit s tep 

H (ti)land.V. . ,the peak amplitude of the output pulse V 
... ~ l n  can be 

0 peak 
solved a s  shown in  Eq.  (14);  

If Eq .  (14) i s  squared and equated to  E q  (12),  then the squared e'ffective 

charge that will produce a n  output f rom the amplifier equal to  the mean-  

square  noise f rom the amplifier can be. obtained. This chafge i s  called 

Ueff and' is given by . . 11. 

'.' The effective charge can be related to the effective energy by using the 

conversion. factor .of the detector ( 3  .'h ev of energy producing. about . . 

1 . 6 ~ 1 0 - ~  9 coulombs o f  charge for:,the semiconductor detector)  : 

The effective energy E i s  the RMS fluctuatiol~ of the energy of a 
eff 

single energy peak. This Eeff is related to the FWHM energy resolu-  

t ion by Eq. (17) (descr ibed previvusly ill 3 e ~ . .  I): 

. E ~ ~ ~ ~  
- 2 . 3 5 .  E . 

eff 



VI. SUMMARY OF ANALYSIS OF RESOLUTION AND RESOLVING TIME 

The equations for  the effective energy corresponding, to  RC 

shaping, single -delay -line shaping, and double -delay -line shaping a r e  

solved in..Appendix A, and the resu l t s  a re . l i s t ed  in  Table I .  The resolv-  

int-time equations for  the three  methods of pulse shaping a r e  a l so  

solved in..Appendix.A. .These resul ts  a r e  l is ted in  able .II. Normalized 

curves  of the .mean-square energy equations f rom shot noise a r e  plotted 

in. Fig.  10. The curves  a r e  plotted a s  a function of.:integrator and.dif-  

ferentiator t ime constant in  the case  of  RC shzping, and a s  a function 

of integrator t ime constant in . the c a s e s  of single-and double-delay-line 

shaping. The single - and double -delay-line curves,\are plotted for  .four 

different delay-line t imes  of 0.1 psec,  0.2 psec,  0.5 psec,  and l .0psec .  

The .delay-line t ime i s  twice .the one -way propagation . t ime of the shorted 

delay.l ine.  1n.Fig.  11 a r e  curves  of the effective-ene~gy-squared 

equations caused by leakage and grid cur  rent ,  with identical parameters .  

a s - F i g .  10. The curves a r e  normalized so that the th ree  different 
I 

methods of pulse shaping can be compared.for  the same system,. .If a 

few p a r a m e t e r s . a r e  known,. the expected energy resolution of an. alpha- 

particle energy-measuring sys tem can be determined by using these I 
curves .  The pa ramete r s  a r e :  

(a). C = The detector and input capacitance of the preamplif ier ,  

(b) gm = The transc'onductance of the.  f i r s t  tube in  the preamplif ier ,  

" and 

, ( c )  IT = T h e  bulk leakage of the detector and the gr id  cur rent  of thk 
, 

fir s t  tube. 

The .FWHM energy resolution i s  obtained .as~fol lows : one chooses 

the delay-line t ime and/or t ime cbns tanta t  which the amplifier is to  be I 
operated. Then obtains the amount of effective squared energy f rom ~ 
shot and cur rent  noises and adds these;. then the s,quare root i s  taken a n d .  

multiplied by 2.35. The resu l t  will be the expected FWHM spread  of the 

energy peak. 

The res i s tance  R f rom the input of the preamplifier to ground i s  

made la rge  enough so  that its'contribution to the energy spread  can 



2 a 
Table I. Effzctive e re rgy  squamd equations , ( E ~ ~ ~ ~ J  in  ev . 

RC shapin.3 Single. delay -line Bhapin~ Double-deiav-Lne s h a ~ i n e  - " 

shot 
noise 

! 
Leakage / ! 2 7 
and grid ! 33 (1-exd - ~ T ~ / T ) ]  
cur ren t  I 9 . 6 ~ 1 0 ~ ~  q (iG+i,L) 1 4.8XlO q ( i G t i L ) ( y  (I-exp; - -z-~/:] ) 2  
m i s e  

i i 
2 r  1 

Input resistance[ 1 . 9 ~ ~ 1 0 ~ ~ 1  . 
! 9.6x1033{7 O - ( l - e x p [ - ~ ~ ~ , ' ~ ] )  

noise ! i (I-exp[ - z T ~ / ~ ]  12 

38 42 -1.3-exp - 2 ~ ~ / 7 ] )  (I-exp[ - 2 ~ ~ / 4  

11-exp[ -:r0/7] )L 

(3-exp[ - ~ T ~ / T ]  ) (1-exp[ - ~ T ~ / T :  ) 

( l - e x p [ , - 2 ~ ~ / ~ ]  

I 
39 ~ T C '  4.8X10 - 

a ~ h e  units in this  table a r e  a s  follows: 

kT = 4 ~ 1 0 - ~ '  volt-Coulombs at m o m  t e m p e r a ~ u r e ,  

gm in arnp/volts 

9 = 1 . 6 ~ 1 0 - ~ ~  Coulombs, 

T and r0 in sec ,  and 

C in  farads. 

2.4X10 39 !c& 1 
gm7 1-expl-2 

39 kTC2 - 3-ex~i -270/ - l  
2.M10 - 

gm7 
j 

gm7 1-expl -2r0/7]  



a Table 11. ~ e s o l v i n ~ . t i m e  equations It.  )' in p sec. 
P 

R C shaping single-delay-line shaping : Double -del,ay-line shaping 

a W 

. P i a t h e  percentage of the ma&mum.amplitude.to whichthe pulse has de,cayed.in time t .  P ' . I 



Fig 

Time constant T ( p sec 1 

. ' 1 0  Normalized effective-energy-squared e uati ns 
from shot noise. expressed a s  E ~ ~ :  = 9.7 X 1044(C8/gm)N2(ev2)J 
where C is in farads, and gm is amp/'v. The shaping 
curves were developed from the following .formulas: 

N' = 2 / ~ ,  (RC) 

Curves have been plotted for single - and. double -delay-.line 
.times of 0.1 (a), 0.2(b), 0.5(c), and. l.O(d) psec, a s  indicated. 



Time constant r ( p s e c  ) 
M U . l J 4 Y J  

Fig. 11. Normalized effective-energy-squared equations from 
2 current  noise, expressed a s  Eeff = 3.9 X 1013 N21 (ev2), 

where I i s  in amp .  The shaping curves were developed 
from the following formulas: 

- -(3-exp[ -2r0/7] )(l-exp[ -2r0/71 
N' = 27 2 I . (DDL) 

(1 - e x p [ - 2 ~ ~ / 7 ]  

Curves have been plotted for single- and double -delay-line 
t imes of O.l(a), 0.2(b), ,0.5(c) and l.O(d) psec, a s  indicated. 



usually be neglected. If this  resis tance does contribute a significant 

amount of noise, that can  be included with the cu r ren t  noise by adding 

the additional cu r ren t  found f r o m  Eq. ( 18). 

where  k ~ / ~  i s  approximately 0.025 volts a t  25OC. 

F igures  12, 13, and 14 a r e  curves of; the,resulving t ime for  KC 

shaping, oinglo delay-line shaping, and. d ~ i . ~ h l e  -.delay71ine shaping, 

respectively.  The curves a r e  plotted for  the s a m e  t ime constants and 

delay-line t imes  a s  F igs .  10 and 11, and a r e  plotted for percentage 

e r r o r  in amplitude P of 0.1% 170, and 1070 . 



Time constant T ( p s e c )  
? u . ~ l r ~ r  

' . 

Fig. 12. Resolving time for RC shaping, plotted with amplitude 
e r r o r s  (P) of 0.1% (a), 1.070 (b), and 1070 ( c ) .  The curves 
were developed from 

tp ,100 - = exp [+ - 11.  



Integrator time constant T (/.Lsec) 
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Fig. 1 3A. Re solving- t ime for single -delay-line shaping. 
Curves have been plotted for  delay times. ( 2 ~ ~ )  of 
0.1 (a), 0.2 (b), 0.5 (c), and 1.0 (d) psec, a s  indicated, 
with a n  amplitude e r r o r  (P) of 0.170. 

. - 



Integrator time constant T ( ~ S e c )  
IAU-20128 

Fig. 13B. Resolving time for. single -delay-line shaping. 
Curves have been plotted for delay times ( 2rP)  of 
0.1 (a), 0.2 (b), -0.5' ( c ) ,  and 1.0 (d) psec, as'indicated, 
with an amplitude error (P) of 1.0%. 



I n tegra tor  time c ~ n s t o n t  T ( p s e c )  
M U . 2 5 4 1 9  

Fig. 1 3C. Resolving t ime for  single -delay-line shaping. 
Curves have been plotted for delay t imes  ( 2 ~ ~ )  of 
0.1 (a), 0.2 (b), 0.5 (c), and 1.0 (d) psec, as indicated, 
with a n  amplitude e r r o r  (P) of 10%. 



Integrator  time constant T ( p s e C )  

Fig. 14A. Re solving time for double -delay-time shaping 
for delay-line times' ( 2 ~ ~ )  of 0.1 (a).' 0.2 (b), 0.5 (c ) ,  
and 1.0 (d) psec, with an amplitude error (P) of 0.1%. 

' 



Integrator time constant f ( p s e c )  
MU:31431 

Fig. 14B. Re solving t ime for  double -delay-time shaping 
for  delay-line t imes  ( 2 ~ ~ )  of 0.1 (a), 0.2 (b), 0.5 (c), 
and 1.0 (d) psec, with a n  amplitude e r r o r  (P) of 1.0%. 
The restr ict ion that t > 4 70 does not hold for integrator 

P time' constants to the right of the dashed line. 



Integrator . t i m e  constant r , ( p s e c  1 
M U . 2 I I I 2  ' 

Fig. 14C. Resolving time for double -delay-time shaping 
for delay-line times (2 70) of 0.1 (a), 0.2 (b), 0.5 (c),  

a and 1.0 (d) psec, with' an amplitude error (P) of 1070. 
. The restriction that t > 4 r 0  does not hold for integrator 
time constants to the eight ofthe dashed line. . 



VII. EXPERIMENTAL VERIFICATION OF 
" '  '... THE ~ E N . E . R G Y ~ ' R E S L U T 1 0  :AN.A'LYSIS 

A .  An Allernative Method for Measuring Energy Resolution 

In c a s e  a pulse height analyzer i s  not available, 'tKe"'FWRM" 

energy resolution due to  noise f rom the amplifier sys tem may be meas:. . 

u r e d  byas.:i'ng.the equipment shown in F ig .  15. 

The method .of measuring the energy resoluti4li of the amplifier 

sys t em i s  a s  follows (This  method as sumes  that the energy resolution 

i s  determined by the noise of the system. and not by the defects of the 

detector ..): ('1) with the pulse generator  turned off, one measures  the 

RMS noise out of the amplif ier .  This measurement  should be made with 

a power-measuring-type m e t e r  ( squa re  law) with a bandwidth at  least  

a s  la rge  a s  the amplif iers .  A vacuum tube voltmeter such a s  the 

Hewlet t -Packard 400 s e r i e s  can be used for this  measurement ,  provided 

the bandwidth i s  sufficient. l 1  This  type of me te r  reads the half-cycle 

average of the voltage, and i s  cal ibrated to r ead  the RMS voltage of a 

pure  sine wave. The conversion factor f r o m  half-cycle average to RMS 

for  a sine wave i s  1.1 1. The noise i s  assumed to have a gaussian (normal)  

distribution, and the conversion factor f r o m  the..half -cycle average to 

RMS of the noise voltage i s  1.25; therefore the conversion factor  f rom 

the RMS reading on the m e t e r  to  the t rue  RMS of the noise i s  1 . 1 3 .  ( 2 )  

The pulse generator  i s  turned on and applied through capacitor C of ' : . 

9 

known capacitance. The capacitor C should be smal l  compared to  the 
a 

total  capacitance of the detector and preamplif ier  input capacitance C , 

and is usually in the range of 2 to  5 pf .(3) The peak amplitude of the 

shaped pulse f r o m  the amplifier i s  measured  using the oscil loscope. 

The FWHM energy resolution f r o m  noise i s  calculated f r o m  Eq.  (19) :  
' -12 

V~~~ 1.13 G 10 V 3 . 5 x P . 3 5  
a in 



; . . 

. . .Fig. . . 15. Block diagram of e,guipment for  measuring the 
FWHM energy resolution of the amplifier system. The 
pulse- generator  is a s tep  o r  t a i l  pulse type with a long 

. . decay. The power m e t e r  i s  a square- law o r  average-  
reading voltmeter.  The capacitance C = C D  + Ciq is 

, .  . . .  A the detector and input capacitance; . . 

. . 4 Osci l loscope 

CD 
I 

~ ~ r e a r n ~ l i f i e r  Amplifier . 

I 

~ e t e c t i ' ~  . f ,* . . ' , . . . --, Power meter 

Pulse 
generator  

. . 
M U - 2 5 4 3 3  



and 
. . . .  v . . . . ..v . C 

= 5;8X1'0 7" RMS in a 
. E ~ ~ ~ ~  7 r ~ e v )  

v 
0 peak 

where :  

V~~~ 
= Reading on average reading VTVM calibrated for  RMS 

of sine wave (volts),  

V = Peak  amplitude f rom step-function generator . (volts),  
in 

C - Capacil;&iicc of s t r i t  s capacitor in pf, 
a 

-= Peak  amplitude of pulse out of the amplifier (vol ts) .  
V~ peak  

-B .  The Svstem, Used to Measure the.Enerev Resolution 

The experimental measurem.ents of the FWHM energy resolutions 

were  obtained by the method described in Sec. VII-A, using a capacitor 

to  simulate the detector capacitance. The preamplifier was an integrator 

type with a Western Elec t r ic  W E  417-A tube in the f i r s t  stage. The post- 

amplifier was a t rans is tor ized  model with plug-in shaping circui ts .  A 

circui t  of the preamplifier and a block diagram of the post-amplifier 

a r e  shown respectively in Figs.  16 and 17. The pa ramete r s  of the 

-WE 417-A tube used in the preamplifier were :  

P la te  voltage = 90 volts 

P la te  cur  rent  = 10 m a  

Transconductance . = 16 ma/volt 

Input capacit.ance (tube and..w$i.i;ig)= 2 2 pf 

The grid cu r ren t  has  at.:Ieast two components and each component 

must  be determined. It was assumed that a n  order-of-magnitude idea of 
I 

the collected electronic component of gr id currerlt could be obtained by 

measuring the grid 'current with the plate voltage removed from. the tube. 

The grid current ,  measured  with the plate voltage applied, was assumed .': . '. 

to  be the sum of the collected and emitted electronic components. The 

f i r  s t  assumption seemed to give an order  of magnitude of the electronic 



Fig. 16. . Circuit , of the preamplifier. 



Fig. 17. Block diagram of the amplifier. 
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component collected. by the grid,  since the measured electronic corn- ' .  ' I  - ' '  
. , . .  . 

. ponent ,of the . . curyent,  with no plate voltage, was about f0u.r t,imes a s  
. .. 

, ,high a s  the apparent,collected electronic-component , . .  of . the . current  with 

the plate voltage applied, a s  illu,strated.fr.om.fhe . . measured  . , energy 

resolution curves.  The gr id cur rent  was measured  .wifh:t'Ke '.WE 417-A 

tube in a t e s t  jig operating a t  the same plaFe voltage and cur rent  a s  the 

preamplif ier .  The gr id cu r ren t s  measured  were  : 
-8 ( a )  Plate  voltage not applied ( I  ) = -2.7X10 amp.; 

g 
- 8 

(b)  P la te .  voltage applied ( I  ) -"= t0.13X.10 amp. 
g 

It was assumed that there  w e i e  a t  leas t  two component'& of gr id 

cur rent ,  and 'that t he .  sum of their  absolute values could be .found f rom 

the measured  energy resolution curves of Fig.  18. The curve used to 

determine this gr id  .current  was the lowest capacitance curve for.RC 

shaping. at  the long-time constant points, where noise i s .  a lmost  com- 

pletely a function of gr id  cur rent  and source . res i s tance .  The source 

resis tance (detector bias and input-tube bias resis tance)  was 6.6 megohms. 

The equivalent cur rent  caused by, the resistance.rioise, .  a s  calculated 
-8 

f rom-Eq .  ( 18), was 0.75X10 amp.,  . After this equivakentl;: cur.rent wa,a 

accounted for ,  the actual  total  gr id  cu r ren t , .  as . indicated b y t h e  curve,  
.. . - 8 a p p e a r e d t o b e  1.5X10 amp.  This.indicatedthatthe.actua1 components 

of the gr id cu r ren t  in  the preamplifier were :  

( c )  Actual component collected by gr id = - 0 . 6 8 ~ 1 0 - ~  amp; 

- 8 
(d) Actual component emitted by the gr id , = t0.82X10 . amp .  

'The emitted component of gr id cur rent .  a s  calculated:byv:Eq. (7)  was 

mp,  apparently about 10 t imes  l e s s .  than. the .actual.  emitted 

cu i r en t  , and may.be ,explained by; t h e  fact that th6 gr id mi; h a v e  emitted 

electrons thermionically.  

F igures '  18, 19, and 20 show the measured  and calculated curves  
L 

. . 
of F'WHM energy resolution with respect  to t ime constant for RC shaping, 

sfngle -delay-line shaping, and double -delay -line shaping, respectively . 
The curves a r e  plotted for three  different total  input capacititnces; of 

22, 75, and 255 pf. These capacitances were  used to. simulate different 



detector capacitances. . The'dilay-line t ime is 0.2 5 psec for both cases  

of delay-line shaping. The curves a r e  plotted for t ime constants f rom 

0.05 psec to  5 psec. The calculated curves used the parameters  stated 
-8 - above, and the g r id  current  used was -  1.5X10 + 0 . 7 5 ~ 1 0 - ~ ,  o r  ' 

2 . 2 5 ~ 1 0 - ~  amp. 



. . .  . . . . .  C,.~. '~CO~CL:USION,S, . . 
i 

. 
1t" i s  apparent f rom- Fig .  3.8 that there  i s  an optimum.time con- 

stant with respect  to  energy resolution.for amplifier sys tems using . , .  

. . RC shaping.  he optimum t ime constant for '  the best  energy r e  solution 
- .  

depends upon the: . . 

(a) '  chr rent  . . (gr id  .and leakage) and gr id resis tance,  
. . . . ? .  . . 

(b)  transconductance of the. tube,. and 

( c )  the input (detector ,  tube and wiring) capacitance. 

As  capaci tance. increases  and, transconductance dec reases ,  the shot . - 

noise and the ,optimum t ime constant both increase .  . As the detector 

.leakage o r  gr id cu r ren t  inc reases  and the input res i s tance  decreases ,  

cu r ren t  noise goes up and the optimum t ime constant gets  sma l l e r .  

The curves  tend to be .  lower than  the calculated curves .  at  the 
' smal le r  t ime constants; this  i s  partly because the r i s e  t ime of the 

preamplifier was about 0.07 psec,  and therefore the sma l l e r  t ime con- 

stants a r e  not a s  smal l  a s  indicated on the measured  curves .  

T h e r e . i s  , a l so  an optimum t ime.  constant for.  a sys tem.  using 

single-delay-line shaping, a s  shown in .F ig .  19, but the optimum i s  

much broader  than. in  the RC case .  . Single -delay -line shaping .may 

give a slight improvement in  energy resolution over the RC case  when 

. the.leakage o r  gr id  cu r ren t  i s  high, but because , i t  i s  m o r e  complex to  

use , .  a s  compared with sRC shaping, it probably should not be used . 

unless  the slight improvement in  resolution ! is  needed. 

- Figure 2 0 shows '.the curves:  of energy resolution for  'double - 
delay-line shaping. ' When the integrator t ime corist'ant is shor t  com- 

pared  to  the delay-line t ime,  and when the noi5e i s  mainly shdt noise, 

the resolution for  double-delay-line shaping i s  about'"l.4 t imes  poorer  '; ... .;. 

than for singledelay .line shaping, and i t  fluctuates around this  figure 

a s  the integrator  t ime  constant and gr id cu r ren t  a r e  increased.  . 'Dauble- 

delay-line shaping i s  usually not operated with integrator  t ime constants 

that a r e  long compared with the delay-line t ime,  since , this  would cause 



the resolving t ime to  increase ,  and thus reduce the advantage of delay- 

line shaping ( i t s  ability to operate a t  high count r a t e s  and with overload 

pulses) .  

F igure  2 1  i s  t raced  f r o m  photographs of the three  types of shaped 

pulses  coming f r o m  the amplifier.  The RC-shaped pulse has  a 1.0-psec 

integrator and differentiator t ime constant, the single -and double -delay- 

line shaped pulses have integrator t ime constants of 0.1 psec and delay- 

l ine-time of 0.25 psec.  



lntegrato; and differentiator time constant T ( p SeC ) 
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Fig. 18. .Calculated and measured resolution curves for RC 
. . .. . shaping. parameters are (a) IG = 2 . 2 5 ~ 1 0 - 8  amp, and 

(b) g, = 16 ma/v. The curves are calculated values, 
and the symbols are measured values. 



Fig. 19. Calculated and measured resolution curves for 
single-delay-line shaping. Parameters are 
(a) IG = 2 . 2 5 ~ 1 0 - 8  amp, (b) gm = 16 ma/v, and 
(c) delay-line time = 0.25 psec. The curves are 
calculated values, and the symbols are measured values. 
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Integrator  time constant r ( p sec 1 

Fig. 20. Calculated and measured resolution curves for 
double -dela.y-line shaping. Parameters are 
(a) IG = 2 . 2 5 ~ 1 0 - 8  amp, (b) gm = 16 ma/v, and 

' (c) delay-line time = 0.25 psec. The curves are 
calculated values, and the symbols are measured values. 

* ,  



Fig. 21. Three drawings f rom photographs of shaped pulses 
f rom the amplifier: (a) RC shaped, T = 1 psec, scope at 
1 p3ec/crn; (b) single-delay-line shaped, T = 0.1 psec, 
2 70 = 0.25 psec, scope a t  0.20 psec/cm; and (c) double- 
delay-line shaped, T = 0.1 psec, 2 TO = 0.. 25 ,psec, scope 
a t  0.20 psec/cm. 



1 With great pleasure the author wishes to acknowledge the 

technical direction of Fred S. Goulding,in thi-s work,, and also the 

.valuable.contributions of Sven Bjornholm in the experimental phase of 

the'-work: . '  ' ' 



A. ~ n . ~ l ~ s i s . o f  EnergyResolutions. and Resolving Times 

1. Analysis of Energy Resolution for Equal Integrating ,and Differ- 

entiating Time - Constant (R  C) Shaping 

. . 
Equation .(12) gives the output noise from the amplifier: 

The frequency dependence of the amplifier G(w) i s  determined by the 

differentiating and integrating circuits.  Thus we have 

, 
where G i s  .the voltage gain.of the amplifier k i th  the differentiating 0 
and integrating circuits removed. The noise .voltage at the amplifier 

input i s  found f rom Eq. (13): 

A 4kl'  2q(IG+IL) 
+ ~ + & 7 5 ? +  1 df. (13)  

av - 
c 2 w 2  

The output-noiac voltagc from thc arnplificr, ao givcn in Eq. (21), i o  

obtained by using Eqs. (1 2), (1 3) ,  and (20) : 

The effective charge applied to the input of the amplifier that will 

produce an output equal to the root mean-square-noise voltage out of 

the amplifier i s  Qeff and i s  given by Eq. (15): 



where H(t) is. the response of the circuit in.:Fig. 22 to a unit step of 

voltage. appliedto the input,, and the time t i s  the time when t h e  
/ 

re,spons e 'is,. at maximum (maximum pulse amplitude out). 

The time t i s  found by taking the derivative of Eq. (22) with respect 

to t ,  and equating -to zero: 

The solution to Eq. (23) i s  t = 7 ,  and the absolute value of H(ti)  i s  

- .  The. solution of Eq. (15) i s :  

The .effective- and full-width.at half-maximum energy,spread may. be 

obtained from Eqst , . (16)' . .  and' (17): 

and 

Where charge i s  in,.coulombs and.energy i s  in .ev. 



. . . . 

Fig. 22. ' Equivalent noise circuit of the amplifier for RC 
shaping. C denotes the detector and tube -input capacitances, 
and R i s  the resistance from grid to ground.. 

' . , 



. 2. Resolving Time ,for RC Shaping for a Step Input of Voltage Applied 

to the h p l i f i e r  Input 

The .response .of the amplifier to a unit step function .is given by 

Eq. (22). 

t 
H(t) = GO exp[ -t/?] . (22) 

A plot of this response with respect. to time i s  shown in .Fig,. 23.  

The time t . . i s  the.time it  takes. the response to decay down to 
. P  

,P percentage of i ts  maximum response. . Thu.s we have 

, Rearranging, we obtain the resolving time equation .for . R C 

shaping : 

3. Analysis of. Energy Resolution.for Single -Delay- T.ime Shaping. 

The -input impedance for a lossless .transmission line shorted 
12 

.at the load end is  
Z s in .7  o 

. Z  = j  0 0 
in ' cos 7' a 

0 

where Z i s  .the characteristic impedance of the transmission line 
0 

and i s  the one-way propagation t ime  of the delay line. . o  
The gain.of the amplifier as a function..of frequency G(w) i s  given 

. ' .in Eq.' . (29). . . 

j G sin w 
. G(w) = 0 0 1 

(cos 7 w t j  s in7  w) (v) ' 
0 0 

where .T .=  R C The. absolute value squared of G(,w) i s :  
1 1' -. -. 

L L 

2 Go sin 7 . 0  

. l . G ( g l  = 
0 

2 
1 + w  r 2  



Fig. 23. Response of the RC shaped amplifier ,to a unit step 
. . of 'voltage. 



. The .output noise. from the .amplifier a s  obtained from Eq. .(12), 

neglecting flicker noise,. i s  given..in. Eq. ./31) (see Appendix.B for the 

. solution of integrala used) : 

The response of the circuit in Fig?. 24 to a unit.voltage- step i s H(t), 

where 

The response,.  as  can .be seen from Fig. 25, i s  a inaximum at 

time t l  = 27 
' 

The..absolute value of the maximum, response becomes: 0 ' 

and.th.e effective ,charge,, as  solved.from Eq. (15),,  i s :  

The effective energy and. full-width .at half-maximum energy 

spread.can.be foun.d.from Eqs. (16). and (17), where Q i s  in coulomb 

and .E in .ev: 



Fig. 24. The equivalent noise circuit of the 'amplifier for 
single -delay-Iine shaping. C denote's the detector and 
tube-input capacitances, R the grid resistance, and 
7 = K C  
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Fig. 25. A typical response of the circuit in Fig. 24 to a 
unit step of voltage input. 
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, 4. Resolving Time for Single-Delay- Line Shaping for a Unit Step 

lnput - 
. . 

The response of single-delay-line shaping to a unit step input 
i 

i s  given hy, l3q. (32) and ia,shown in Fig.,  26. The response i s  an 

exponential r iselfrom 0 < t < 2 r and-an exponential d&ay from 
0 ' 

2r0 < t < - . In the figure, the time t i s  the time i t takes the response 
P 

to decay down to P percentage of (H(27 ), and this response-at time 0 
t i s  given by 
P 

We then insert  Eq. (33) into Eq. (35) and equate the results to 

Eq. (32) ,, to obtain (36), the resolving time equation: 

When Eq. (36) i s  solved for t Eq. ,(37) i s  obtained: 
P' 



Fig. 26. Responses of single -delay-line shaping to a unit step 
. : .  - .  'of voltage input. 



5. Analysis of Energy Resolution-for Double-Delay- Line Shaping 

The absolute value squared of G ( w )  i s  given by Eq. (38). This 

equation was derived in the same manner a s  Eq. (30): , 

Theoutput noise voltage (v; 2, (neglecting flicker noise) i s  found 

f rom Eqs. (12), .(13) and (38): 0 av 

in which the solution to the integrals used l  is in Appendix B. 

'l'he response of the circuit  in.h'ig. 27 to a unit s tep is given by 

Eq. (40): 

Fig.. 28 i s  a sketch.of Eq. (40) for a typical ratio of- = 1 . The 
. . 7 .  

response H(t) has. a maximum at 'XI = 2r0 and this maximum is given 

by Eq. (41). 



. , ' I ,  . - ,  . .  . . 
: : ' : '  . . . . . .  

Fig. 27. '   he .&uivalint noise circuit of the amplifier for 
..double-delay-line shaping. C denotes the detector and 
tube-input capacitances, and. R i s  the resistance from 
grid to ground. 

. . 



Fig. 28. A typical response to the circuit in Fig. 27 for a unit 
step of voltage, a sketch of Eq. (40) for a typical ratio of 
2 T0/7,' 1. 



The effective =barge, a s  solved from Eq. (1 5), , i s  given ,by 

The effective ene rgy and.  full- width a t  half -maximum energy, spread 

canbe.found from Eqs. (16) and (17), where . Q 'is in.coulombs .and .E 

in .ev. .? . 

6. Resolving Time for Double-Delav- Line Shaping for a Unit Step 

The response of double-delay-line shaping for a unit step input 

i s  given by Eq. (40). The time t i s  the time it  takes the response to 
P 

decay to P percentage of i t s  maximum value. The resolving time 

equation i s  found from Eqs. (35), (40) and (41); for t b47 The 
0 ' 

negative sign on the left hand side of Eq. (43) indicates the decay is 

from the negative peak of the response isee Fig. .28). 



Solving Eq. ( 43 )  for t gives us  
p . . ... 

. . .  . , .  , . . .  
. L 

5.  Solution of Integrals ~ s e d ' . i n  the ~ n a l v s i s .  

These integrals  were adapted f rom the Mathematical Tables 

- (1Dth edition), and the integral  tables of D. Bierens de Hann. l'' l 4  
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. , T h i s  ' r e p o r t  was  p r e p a r e d  a s  a n  a c c o u n t  o f  G o v e r n m e n t  
: s p o n s o r e d  w o r k .  N e i t h e r  t h o  U n i t e d  S t a t e s ,  n o r  t h e  Com- 

m i s s i o n ;  n o r  a n y  p e r s o n  a c t . i n g  nn b c h a l  f o f  t h e  C o m m i s s i o n :  

A .  Makes a n y  w a r r a n t y  o r  r e p r e s e n t a t i o n ;  e x p r e s s e d  o r  
imp1 i e d ,  wi ' th . r e s p e c t  t o  t h e  a c c u r a c y ,  compl k t e n e s s ' ,  
o r  u s e f u l ~ i e s ' s  o f  t h e  i n f o r m a , t i o n  c o n t a i n e d  i n  t h i s  

. . .  r e p o r t ,  o r  t h a t  t h e  u s e  o f  a n y  i n f o r m a t i o n ,  a p p a -  
r a t u s ,  m e t h o d ,  o r  p r o c e s s  d i s c l o s e d  i n  t h i s  r e p o r t  
may no. t  i n f r i n g e  . p r ' i v a t e l y '  owned r i g h t s ;  o r  

. .  . . . 
. . . . 

P. ~ s s . ~ m e . s  a n y  l i ? b i l i t i e s  w i t h  r e s p e c t  t o  t h e  u s e  o f ,  

. . .  . o r  ' f o r  d a m a g e s  r e s u l  t i n p  f r o m  t h e  u s e  o f  a n y  i n f o r -  
m a t i o n , . a p p a r a t u s ,  m e t h o d ,  o r .  p r o c e s s  d i s c l o s e d  i n  

. . t h i 3  , r e p o r t .  
. . . . . . 

. . 

. .' A s  u s e d  i n  t h e  a b o v e ,  " p e . r s o n  a c t i n g  o n  b e h a l f  o f  t h e  
' C o m m i s s i o n "  i n c l u d e s  a n y  e m p l o y e e  o r  c o n t r a c t o r  o f  t h e  Com- 

. . m i s s i o n ,  o r  emp.loyee o f  q u c h  c o n t r a c t o r ,  t o  t h e  e x t e n t  t h a t  
' such . -  ' e m p l o y e e  o r  c o n t r a c t o r  o f  t h e  C o m m i s s i o n ,  o r  e m p l o y e e  
' o f  s .uch c o n t r a c t o r  p r e p a r e s ,  d i s s e m i n a t e s ,  o r .  p r o v i d e s  a c c e s s  

t o ,  %any  i n f o r m a t i o n  p u r s u a n t  t o  h i s  e m p l o y m e n t  . o r  c o n t r a c t  
, :  w i t h  t h e  Cornmi ,ss ion,  o r  h i s  e m p l o y m e n t  w i t h  s u c h  c o n t r a c t o r .  

. . 
. . . . 




