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ABSTRACT

Two computational procedures and one optical experimental procedure
for studying enclosed natural convection are described. The finite-
difference and finite-eleinent numerical methods are developed and
several sample problems are solved. Results obtained from the two
computational approaches are compared. A temperature-visualization
scheme using laser holographic interferometry is described, and

results from this experimental procedure are compared with results
from both numerical methods.
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heat capacity

gravitational constant
th'ermal conductii/ity tensor
outward unit normal
pressure

Heat-ﬂux vector

resid'ual or error
coordinate along boundary I

volumetric heat source

temperature

‘reference temperature

velocity component ‘

coordinate direction

coefficient of volume expansion

boundary

unit tensor

" density

kinematic viscosity
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stress tensor
shape function '
stream function :
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COMPUTATIONAL AND EXPERIMENTAL METHODS FOR
ENCLOSED NATURAL CONVECTION

Introduction

Recent years have seen considerable prbgress in efforts to develop computational procedures
for solving the coupled conservation equations of motion (Navier-Stokes) and energy for an incom-
preséible fluid. A large number of applied problems involving nonisothermal forced and/or free
convection have stlmuldted the development of the numerical methods. Thermocline storage of
solar-heated ﬂu1ds energy extractlon from magma bodies, in-situ coal gas1f1cat10n cooling of
spent -fuel shlppmg casks, reactor core-meltdown accidents, radioactive waste d1sposa1 in the
6cean, and numerous cornbustioh problems are just a few of the many problems of current interest

that need improved understanding.

A la.rge'measure of the neede‘_d .insight for these systems.could be provided by the _numericai
simulai':ion of the éppropriate fluid and thermal processes involved in a particular-problem. Before
engmeermg Judgments can be conﬁdently based on a.numerical simulation, however, some form of
vahdatlon of the numerical method mast be obtained. The complexity of most coupled fluid/thermal
" problems precludes the poss1b111ty of obtammg closed form analytic solutions for verification pur-
poses. Therefore, quantltatlve expemmental methods for investigating these flow fields are neces-

sary to demonstrate the va11d1ty of the solutions to these complex but fundamental problems.

’i‘his report describes'two computationai procedures and one experimental procedure developed
to investigate the problem of therrhally driven enclosed natural convection. The numerical techni-
ques include a finite-difference method (FDM) and-a finite-element méthod (FEM). These methods
are used to solve the coupled conservation equations resulting in determination of the temperature
and velocity fielde for the ;;rloblen'.l_ of interest. -

The exper1menta1 techmque is an opt1ca1 proccdure (laser holographic mterferometry) that "

yields the temperature f1e1d of the thermql convection problem.

Several sample problems are examined to demonstrate the capabilities and limitations of the
numerical methods. Results obtai.nedyﬁfro‘m the finite-difference and finite-element methods are
compared.. In addition; 'experimehtal results a.re compared with results from both computational
procedures. The difficulfies asseciatedwith aecurate ‘control of the boundary conditions during
the experimenf;s using early test sections ﬁrevent a detailed quantitative comparison of the numeri-
cal solutions w1th the experxmental results, Neverthelege, thc overall temperature field agreement

obtamed is remarkable
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Survey of Existing Methods

A large body of existing literature deals with various numerical methods and experimental
techniques for investigating various problems in fluid mechani'cs. Therefore, a comprehensive
review of the literature is neither nec'éssary nor desirable and only a few references of particular
interest will be mentioned here. Several surveys of the field of computational fluid mechanics are
excellent, most notably the monograph by Roache1 and his survey of the more recent literature. 2
A review of the early theoretical and experimental investigations of enclosed natural convection

is given by Elder3 and in an article i)y Ostrach. 4

One of the first successful attempts at a numerical solution of a natural convec.tion problem
wao conducted by Hollums and Churchill. 8 By de{relopi.ng a trangient, explirit finite difference
method, they obtained transient and steady-state solutions to the i)roblem of natural'convection on
an isothermal vertical surfa.ce a problem for which an exact solution exis‘ts Their work also
considered natural convection in a long horizontal cylinder havmg one vertical end heated and the
other cooled. Wilkes and Church111 extended the FDM of.-Hellums and Churchill to investigate

the problem of thermally driven ¢onvection in a rectangular enclosure. In the ensuing 11 years,

numerous mvestlgators used the FDM to study similar internal free-convection problems for

various geometries and parameters ranges. Notable among these is the work of Aziz and Hellums,
who first reported results on three-dimensional convection in a cubical cavity. Davis8 and Rubel
and Landis9 formulated the enclosed rectangular problem in terms of a nonlinear fourth-order
equation for the stream function without the explicit appearance of vort1c1ty Torrance10 compared
several FDMs that had been developed for examining natural convectlon flows and pointed out that
the finite difference forms of the equations used by most previous investigators had not conserved
energy or Vd_rticity. Finally, Newell and Schmidt11 examined the problem §f enclosed, laminar
natural convection over a range of parameters sufficient to determine a power-law correlation of
the Nusselt number as a function of the Grashof number and aspect ratib. Larson and V;skantalz
included the effects of radiation heat transfer on the enclosed c'onvectior; problem.

The application of the finite-element method to the field of fluid mechanics is a fairly recent
development, but has already produced an impressive body of literaturé. The recent survey
article by Gartling13 concerning the application of the FEM to viscous incompressible flow fields
provides an overview of this area of current research. The general subject of the FKM 15 cohi-
tained in the texts by Z.ienk1ewiczl4 and Uden, 16 and a general review of applleations tu various

fluid flow probiems is discussed in Huebner. 16

A sampling of the reported applications of the FEM to fluid mechanics indicates that much

of the early work was directed primarily toward the problems of slow, viscous flow (creeping or

. 1 . 1
Stokes flow).. Atkinson et al 7 and Tong and Fung 8 achieved excellent results by employing the

"FEM and a fourth-order stream-function formulation to solve a npm‘der of channel flow problems.

1 . . : R
Thompson et al- 9 formulated the problem in terms of primitive variables to solve creeping flows



both for Newtonian and for non-Newtonian fluids. The extension of the FEM to the more complex
flow problems described by the Na\}ier Stokes equations soon followed, Baker,20 Cheng,2 "~ and
Smith aﬁd Brebbia22 used a stream-function/vorticity formulation of the governing equations to
present successful solutions for isothermal flow problems involving a variety of geometries,
including channel flows and 'ﬂows over obstacles. A primitive variable approach was used by Oden
and Wellford23 to solve both transient and steady-state flows at low Reynolds numbers. Gartli‘ng
and.Becker24 examined the steady-flow solution of both .internal and external geometries. The
addition of the energy equation to the FEM for determining the temperature field when the velocity
and temperature fields are weakly coupled (e.g., forced convection) was demonstrated by the work

of Hsu and Nickell, 25 Téy, and Davis, 26 and Gartling, 27 among others.

When the flow and temperature fields are strongly coupled, as they are in natural convection,
the FEM solution procedure necessarily changes. Most of the work reported to date has eonsidefed
the time-independent form of the momentum and energy equations. Skiba, Unny, and Weaver2,8
presented the first finite element sbiution to a free-convection problem (flow in a vertical slo't)l.

‘ Siﬁce that .fcifne, Bedford and Liggett, 29 Young et al, 30 and Gartling27 have demonstrated success-

ful finite-element solutions for a variety of free-convection problems.

Optical methods of studying heat and mass transfer have been widely used for many years.
The three main types of opfical systems in common use are the shadowgraph, the Schlieren, and -
the interferometer. The visible indications of density variation for these methods depends,
respectively, on the second derivative, on the first derivative, and directly on the index of refrac-
tion. The index of refraction of a gas is related to the density, and the density is related to the
temperature through an equation of state (often the'ideal gas lew). "Descriptions of the principles

of operation of the above devices can be found in numerous texts (e.g., 31, 32).

In 1947 the Engliéh physicist Dennis Gabor introduced a radically new concept in photographic
optics for which he later received the Nobel Prize in Physics (1971). This process, which can be
called photography by waye—front reconstruction, is commonly known as holography. Holography
does not record an image of the objeet being photographed but rather records the reflected light
wavesra.nd.an interfering reference beam. The resulting interference pattern forms a diffraction
grating which, when illuminated by a similar monochromatic light beam, reproduces a three-
dimensional image of the object. Exiensnive usc of the procedure had to await the developmént of
an intense monochromatic coherent light source, which Leith and Upatneiks‘33 dermnonstrated in
1963 utilizing the newly developed laser. Following these developments, work in the field virtualiy
exploded, resulting in over 800 papers by some 500 authors appearing in less than 10 years. 34
Holographic interferometry was one of the results of this widespread effort. A brief discussion of

the basic principles involved can be found in References 35 and 36. Interpreting the data resulting

from hologram interferometry (holometry) has proved to be reasonably difficult. Witte and Wuerker37

appear to have been the first to demonstrate holometry '_as‘ a quantitative measurement technique by

determining (from an 'mterpretation: of the fringe pattern‘)'thebdcnsity profile through the gases

11
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surrounding a high-speed projectile. Later, Matulka and Collins38 were also successful in inter-
preting results both of axisymmetric and of asymmetric flow fields.” More recent quantitative work

includes that of Mayinger and'Pankin39 and Schimmel. 36

it appears that, to date, no attempts to take advantage of the combined advances of various
computational and experimental methods have been reported. This report is an effort to combare
the resuij:s obtained from recently developed procedures for the problem of enclosed nafural
convection in several specified test geometries. With such a comparison we are then able to infer

the va11d1ty of the respective techniques for this class of problems.

Computational Methods

The starting point for any numerical approach to the general problem of free convection is
the mathematical descripfion of the fluid motion through use of the basic conservation laws. If the
fluid of mterest is assumed to be mcompressxble within the Boussinesq approxnnatlon 40 the basic

field equations may be expressed as

~‘au.1 ' . : : : _

Mass: -a—}—(— =0 . ) . . (1)

i

aui a"i.. : ) ‘B‘ri_. ) ) .
Momentum: p 5 F puj g}-(—J * pg; *+ pgiﬁ (T - Tref) + -—-iaxj =0 . - (2)

. aq. .

.. aT 2T i o . . .

Energy: p(,p 3t ‘+ pCp u, S}—(J— + aXi -8=0 . | ' (3)

" The constitutive relations for the fluid consist of a NeWwtonian stress/rate-of-strain law,

Al au

- SR e S . .
Tij_ Poij_+"‘ axj +.axi s . : . , @

and Fourier's law for the heat flux,

aT L ' ' S .
q; = _li aX L ' o ' . (5)

In Egs. (1) through (5), u is the ve1001ty component in the X coordmate d1rect1on P is the pres-
sure, T is the temperature, p is the dens1ty, 'j 1s the stress tensor, q; is the heat flux vector,

S is the volumetric heat source, p, is the v1scosxty, o is the heat capacity, kij is the thermal



conductivity tensor, and g8 is the coefficient of volume expansion. Also, T f is a reference tem-
' perature'for which buoyancy forces are negligible, 6.. is the unit tensor, and g is the grav1tatlona1
constant. The above equatlons are expressed in terms of Cartesian coordinates; an analogous set

of equatlons is available for amsymmetrlc geometries.

. To complete the formulatioﬁ of the boundary-value problem for convection, a suitable set of
boundary and initial conditions is required.. The hydrodynamic part of the problem requires that
either the velocity components or the tot;al surface stress (or traction) be specified on the boundary
of the fluid domain. The thermal part of the problem requires that a temperature or heat flux be
specified on the boundary of the energy transfer region. Symoolically, these conditions may be

expressed by-

o “(8)
t; = rij(s)nj(s) on T,

for the flow problem and

T = g(s) on' T

. (7)
qi(s)ni(s)~= h(s) on I‘q

for the heat-transfer probiem. In Eqs. (6) and (7) the designation s is the coordinate‘ along the
boundary, nJ is the outward unit normal to the boundary, 1" I‘ + I‘ is the boundary enclosing
the fluid, and 1" I‘ + I" is the boundary encliosing the energy transfer region. For the tran-
sient problem, a set of m1t1a1 conditions in the form of initial ve10c1ty and temperature dlstrlbutlons
is also required. '

Eqﬁations (1) throu‘gh (5) along with the boundary conditions in (6) and (7) form a completc
set for tl_le determination of the velocity, pressure, and temperature fields in the fluid. A wide
va'riety'of numerieal methods, already developed, allows this complei continuum problem to be
reduced to a more rhanageable problem through some type of discretization procedure. In the
following sections, descriptions of two such methods allow an aloproximate _solufion 1;0 the convectiorl

problem to be obtained..

Finite-Element Method

One of the approximate numerical methods being developed to treat general problems in con-
vection is the finite-element method (FEM). Because, as noted, this very general approximation
procedure has been thoroughly descrihed by several authors, v it 1s outlined only briefly here. A .
detailed descrlptlon of the apphcanon of the method to free convectxon problems may be found in

Reference 13. .

13
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The derivation of the finite-element ecjuations begins with the division of the (:ontiriuu'-‘m region
of interest into a nugn‘ber of simply shaped regions called finite elements. Within éach element, a
set of nodal points is identified at which the dependent variables (ui, P, and T) are evaluated.
Furthermore, the dependent variables are assumed to be expressable in the folléwing form within

each element: .
I
BEp = 2T - ue)
. . T
P(X,t) = ¥ (X)) - B(t) . A (8)
T(K, 1) = 8T (X) + L) .

In Fq. (R) the designations U, P, and T are veclurs of unknown nodal point vuriablés, and 2 T
and @ are vectors of interpolation or shape functions. The number of functions in & particular
shape-function vector is equal to the number of nodes in an elemerit al which the particular unknown

is to be defined.

The approximations in Eq. (8) may be substituted into the field Eqs. (1) through (5) to yield

a set of equations of the form

£,(®, ¥ @ u. B, T) = R,
(e, E_i) =Ry _ A (9)
f.@ & T, lli,) =R; ,

where Ri is the residual, or error; resulting from the use of the ‘apprOxﬁhate forms for iii,- P,

. .1 . .
and T. A Galerkin procedure 5 may be iised to reduce the errors, Ri' to zero in an average sense
over each element by making the residials orthogonal to the interpolation functions in Eq: 8.

That is;

1]
(=)

Gy @) = (Bys #)

(10)

|
(=]

(fzt \Z> = <R20 g) =



where ( , ) denotes the inner product defined by

(aL',b)=/a-bdv' ,
v _

with v being the volume of the element.

When the procedure outlined above is carried out explicitly for the equations describing.

convection, the result is a set of coupled matrix equations of the form

MY + WY + KV = E(D) . (11)
NT+DWI+LT=G, ‘ : S ¢ €3

where

- The matrix equations in (11) and (12) represent the discrete analogs of the conservation equations
for an individual finite elem.ent The C and D matrices represent the advection (eonvection)'of
momentum and energy, respectlvely, the K and L matrices represent the diffusion of momentum
and energy, The terrns MV and NT represent the temporal acceleration and the heat capdcity of
the ﬂuid;k‘th_e F and G vectors proylde the forcing functions for the system in terms of volume

forces (body force, volumetric heating) and surface forces (stress, heat flux),

The discrete representation of the entire fluid region of interest is obtained through an
assemblage of elements in’'such a way.that hlter;el'ement continuity of the approximate velocity,
pressure, and temperature is enforced. This contmul’ry requlrement is met through the appro-
priate summation of equations for nodes common to ad_]acent elements )

Once the matrix eelliations for the firlite élement medel have been aséembled for the problem
of interest, the task of solving fhis large set ef strongly coupled nonlinear equations still remains.
In the present report only the case of steady-state flows w111 be addressed for the FEM. The

matrix equations can, fhPraforo be reduced o

20
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The solution algorithm chosen for Eqs (13) and (14) consists of the following alternating procedure:"

n+1 n+1

DT " +LT " =G
cwhy™ ! + x v = pr™) n as
2( n+1)T +2 + % In-l-2 -G

where the superscript indicates the iteration number. During observation of the behavior of this
alternating solution scheme, it was apparent that most of the problems exhibited an oscillatory .
convergence. Theretfore, an ave}aging scheme was used for the temperature field to speed con-

vergence of the overall algorithm.

The finite element methodology developed in the previous sections has _been.incorporated
into a Fortran coded computer program called NACHOS. This code is a highly modified, and

extended version of the fluid mechanics code TEXFLAP. 41

The NACHOS code is organized In overlay form as shown in Figure 1. _Communigation
between overlays is currently through low-speed disc files és noted in the figure. Input for the 4
code designed with the user in mind, has been kept to a minimum. An isoparametric mesh
generator allows complex boundaries to be modeled easﬂy and accurately. The present version

of NACIIOS requires approximately 160K words of storage on the Sandia Laboratories CDC 6600.

-

= Overlay

’ . |N&)('6§05| ® = pisc File

‘NAME
(1))

t

EFEAM

CRMIFEE i

~ ’ Element
ik Data
UYE |
Element o
\Data Nicknames”™
Element .
Coordinates -

Figure 1. Organization of NACHOS Computer Code



 The element library for NACHOS consists of an eight-node isoparametric quadrilateral and
a six-node isbparametrie triangle, as shown in Figure 2. Within each element, the velocity com-
ponen'ts'and the temperaturé are approximated quadratically; the pressure is approximated linearly. ‘
The interpolation functions are from the ''serendipity' family proposed by Erqatoudis et :5.1.'42 The

actual processing of the matrix equations is accomplished through a modified version of the frontal

method developed by Irons. 43

Figure 2. Isoparametric Finite Elements

Finite-Difference Method

The finite-difference method (FDM) to solving partial differential equations is to approximate

the PDEs by suitable difference equations on a network of grid points, resulting in a set of alge-
. braic equations. This traditional method is well established and documented in numerous texts. 44
The major concerns of the methods are accuracy, stability, convergence, and computational speed,
The finite-difference methods that have been generally used in fluid mechanics problems are well
documented in the treatise by Roachﬂ,1 In genoral, the Laslc-difference methods may be convenient-

ly divided into two classes: explicit and implicit,

The explicit schemes allow for fhe direct solution of the variable of interest by generating
one algebraic equation and one unknown at each nodal point. Therefore, explkicit methods are
usually simpler and computationally faster than the implicit I‘nethqu for a given step. However,
explicit schemes usually have stringent grid size and time-step restrictions in order to obtain l
stable solutions. Most implicit schem_es are unconditionally stable but computationally more
complex, requiring the simultaneous solution of a system of equations. vBoih methods must satisfy
certain conditions for the solution of the difference equation to also be a solution of the differential
equation. 44, 45 . A

N
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Equations (1) through (5) are coupled .nonlinear partial differential equations, and consider-
able care must be use.d in their finite-difference representation if reasonably accurate results are
to be obtained. For example, in writing Eq. (3), continuity has been used to simplify the equation, -
However, it can readily be sﬁown‘that the standard forward, backward, or central difference
representation of Eq. (3) does not conserve energy over the field.A10 It is necessary to write the

advection terms in the nonexpanded form,

T
a(uJ )

PC, 5%,

)

to obtain a conservative difference representation; i.e., to conserve energy over the grid.’

It is also very difficult to satisfy the finite-difference continuity equation when primary vari-

. ables (ui, P) are used. An alternative approach.is to-cross-differentiate and combine the x and y

momentum equations to eliminate the pressure term and to introduce the stream function, §, which
automatically satisfies continuity. This procedure replaces the continuity and momentum equations

(1) and (2) with the vorticity (w) and streani—function equations shown here:

a_w'+ B(uiw) ., aZw . aZw . 3T 6
at axi a‘x'z ax.2 axi
1 -]
'az 2 ,
we (b 2w a7
2 2 ’
dX. X
1 J
whare
u, = ' ) . (i 8a)
i ox.
j .
u, = -B_‘lb_ s ' » ) ‘ (18b)
i) 9xX,
i
and
du, aui - . ' ' ’
:_-.——l - —_—— . . ‘ N 1
w axi a.xj (19)

In difference form, ‘it is frequently' easier to solve Egs. (3), (5), (16), and (17) than Eqs. (1)

through (5); however, when these are properly formulatéd, the solutions will be identical. )



For convective- and buoyancy-dominated situations, "upwind" differeﬁci.ng has been éhown to
enhance stability10 and improve accuracy.“l:6 Accuracy is also impfoved.for rap.idly. changing
flow-field problems by allowing for :;m iterative procedure for the nonlinegr (advection) terms,
sinc‘e durin'g any one time step the terms are necessarily considered to be linear. Computational
speed is frequently improved by solving for the temperature or the velocity field'less frequently
‘than for the othér, depending upon the nature of the problem. For example, if the terﬁpérature
field is changing rapidly while the flow field is changing relatively slowly, the flow field can be
updated (solved) less frequently than the temperature field (energy equation) for a corresponding

savings in computational time.

The s-olution procedure for the equations follows directly from the difference procedure used.
An explicit formulation allows for the determination of the variable of interest at.every point in
terms of known quantities at the previpus time stép. A fuljly implicit formulation requires the
simultéhequs solution of the entire field. The resulting equations lead to a fully nonsymmetric
matrix system with a bandwidth that depends on the geometry of the problel;n. The nonlinear terms
and allowance of variable properties require the formation and inversion (or reduction) of the full
matrix for every time step. This procedure is nearly always .the most stable of the alternatives;
however, it requires the largest amount of computer storage and is very involvéd computationally.

Scveral methods are available for solving this full matrix systelh of equations.

The alternating-direction implicit (ADI) formulation reqliires two iterative sweeps for each
~ time step, but the resulting systein of equations leads (at least for regular geometries) to a tri-

diagonal matrix system that requires little storage and is computationally very efficient.

The finite difference codes of this study use a stream function/vorticity formulation to solve

for the coupled time-dependent velocity and temperature fields for a viscous, incompressible fluid

flow. The codes are limited to the analysis of plane rectanguiar geometries or right cylinders of -

circular cross section. Eqﬁations (3), (16), and (17) can be written in nondimensional form by

" defining the following ‘set of dimensionless variahles:

U, = ui/uo g = T/TH
X, = x/L ¥=y/u L
T =‘tuo/L Q= o.)L/u0
2. gaaT, - s/

Ua d Q=5/9,p

and by introducing the dimensionless parameters

Grashof number,’ Gr = gﬁATL:?'/v2

Prandtl number, Pr = v/a ,

19
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where the variables are the same as those described previously and Qe is a reference volumetric

heating; T_. is a reference (boundary) temperature, and for an internally generating medium

H
TH il L /kij; v is kinematic viscosity; a is thermal diffusivity; and L is a characteristic

dimension.

Using the above definitions, we obtain the set of equations for the Cartesian geometry

-referred to as the dimensionless energy equation:

’ 3(U.Q) : 2 2 ,
38 Yl 38 378 -
= + 5] - Q=0 , (20)

= +
or X, PryGr aXi2 oX,

the dimg:-nsioriless vorticity transport equation

) 2 2
a0, 20 1 (3%a d%) e (21)
. >
T X, JGr axi?‘ asz A%
the dimensionless stream function ec{uation .
2 2 .
Q= - 3 ¥ L, 3 ¥ , (22)
x 2 X 2
A%y e} i
and the dimensionless velocity equations
= EP_ u. o H\I{ N . | : . ‘ l. 23
Uitk YT oex, . , (23)

The temperature boundary conditions aré the same as those discussed previously, ' Eq. (7), expressed
in dimen‘sionleés form. The stream-function boundary conditions are a zero (or éonstént) condition
and a zero normal gradient condition at the wall. The initial velocity, temperature,. vorticity, and
stream-function conditions must aiso be prescribed; usually they are initialized in natural convection
probiems as a zero condition. The boundary condition oﬁ vort:lcity is obtained indirectly during the
problem solution. Using a Taylor series expansion of the stream function in the vicinity of the wall

. . . 2 2
and noting from the stream-function equation (22) with its boundary conditions that o= 3 ¥WaX ,

. we obtain a second-order approximation for-the wall vorticity from the interior function,

Qo= - (BE, - ¥,)./ 2(0X)% ‘ e

where subscripts 1 and 2 represent values removed one and two grid points from the wall and Ax is

the grid spacing.



A The codes use an ADI solution scheme with conservative upstream differencing. The rect-
angular geomethy also allows for finite-thickness heat-conducting walls and radiative transfer
within the enclosure. 12 The solution scheme consists of advancing the temperature through a
time step by solving Eq. (20). The vorticify transport equation (21) is then solved for all interior
(nonboundary) nodal points. Next, the stream-function equation (22) is solved by converting it to
a time-dependent (parabolic) equation and using an ADI scheme until the time-dependent term is
equal to zero. From the solution of the stream-function equation, the wall (boundary) vorticities
are then updated by using Eq. (24), and.the velocity field, Eq. (23), at the end of the time step is

determined.

The two finite difference codes (rectangular and cylindrical) are time. efficient, and typical
run times for small problems are less than 300 seconds on a CDC 6600 computer for a full tran-
sient solution of an enclosed natural convection problem. The efflclency of the code, however,
also extracts a penalty in generality. The geometry limitations with regular mesh spacing appears

to be the most restrictive condition for solving many problems of interest.

Experimental Method

For the purpose of this paper, holography can be considered a technique for reproducing in
its ehtirety a visual image of an object or of a region in space. This image preserves all the
optical features of the object or space mcludmg its three dimensionality. It is primarily a method
of reconstructmg a v1rtua1 1mage by recordmg the radiated coherent light reflecting from an opaque
object or the transmitted light that passes through a transparent medium. This coherent radiation
which contains’important phase and amplitude informatic’m, is referred to as the object beam
(Figure 3). At the hologram, which is usually a high:resolution photographic plate., the object

"reference

beam is combined with the off-axis coherent radiation referred to in the figure as the
beam." The photographic emulsion records the complex interference pattern, formed as a result
of the coherent superposition of the two wavefronts. In this regard, holography is similar to
classical interferometry except that, because.of the spatial coherence of the laser, 'the two beam
lengths need not be exactly equal. After the hologram is photographically processed, it will, when
viewed with incoherent light,' bear no resemblance to the original objects. It will contain a high-
frequency (microscopic) interference pattern that can be considered a generalized diffraction .
grating. When this grating is reilluminated with the reference beam (or any other expanded beam
produced by the same type of laser), it \}vill refract the light in a systematic manner that recon-
structs all the phase and amplitude mformatlon of the or1gmal obJect beam. This reconstructed

wavefront can then be processed by an image-forming system, such as a camera, to make a per-

manent record of the virtual image.
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Figure 3. Laser Holometric Setup, Schematic

Holometry, or hologram interferometry, is a simple extension of the reconstruction process
described above. Because the hologram ‘permits reconstruction of an object wavefront at some
later time, it is possible to have the reconstructed wavefront interfere with another real-object

"real-time'" holometry, fringes will form wl;enever the

wavefront. In this process, known as

instantaneous object beam deviates in phase from its original state by an appropriate amount.

Original state, of course, refers to the condition under which lhe hulugrain was initially cxpoocd.

One point that should be made about this technique is that the hologram must be very carefully

repositioned after photographic processing, otherwise, displacement fringes will result Attempts

to prevent faulty positioning have led to a host of hologram holders, including some that process
'in situ" to av01d moving the plate. Actually, because the photographic emulsion can’shift with

respect to the plate, some of these devices use a fluid gate to precondition the emulsion.

Alternatively, it is possible to record the object twice during ditféerent states and to recons=
struct the two object wavefronts simultaneously at a later time. Again, zll (Lhal is required tor
viewing the interference pattex;n is that the beam be produced by the same type of laser. This is
the so-called double-exposure method, because 'the hologram is exposed twice before processing.
A direct analog exists in classical interferomeiry, provided that the instrument is adjusted for the
"infinite-fringe, " or uniformly bright screen. One of the disadvantages of this double-exposure
method is that fringes correspond to .quantum shifts in index of refraction and are therefore widely
spaced. It would be better to have a pattern of tightly spaced fringes so that the density gradients

could be deduced from fringe gradients. This can be accomplished in real-time holometry by



deliberately introducing a series of displacement fringes in such a way that they form the desired

tightly spaced pattern. No such capability exists in the double-exposure method.

The components of the present holometric system are shown in schematic form in Figure 3.
The entire arrangement is isolated from building vibrations by a Modern Optics V-12 stable-table
system with viscous mechanical dampening. Dimensions of the table top are 122 x 213 cm, and
flatness is certified to +0. 04 mm overall. Resonant frequency of the air-mount system is less
than 1.25 Hz. Illumination of the system is provided by a Spectra-Physics Model 125-A helium/
neon laser with RF excitation. The laser is claimed to be a 50-mW TEMDC at 632.8 nm, but care-

ful alignment of the cavity has resulted in an output of approximately 80-90 mW at the exit mirror.

A typical mirror mount consists of a magnetic stand, mirror, and positioning holder. The
mirrors are all \/10 at 632. 8 nm with spectral reflectances of 95 percent or better (45° incidence).
The variable beam splitter is a Jodon Model VBA-200, capable of continuously varying the trans-
mitted beam from 0.7 to 90 percent and the reflected beam from 8.5 to 85 percent. Expansion of
the object and reference beams is accomplished by a pair of Tropel Model 280-100A laser beam
collimators with 100-mm exit optics and 1. 5-mm entrance apertures. The collimator holders

were assembled from standard optical table hardware.

The electronic shutter system is a Jodon Model ES-100, used in the integrating exposure
mode with the power density detector located behind the hologram plate (Figure 3). Because
Agfa-Gaevert 10E75 4 x 5 glass plates were the only plates used in this preliminary work, the
shutter system was calibrated to permit an exposure of approximately 50 ergs/cmz. In the double-
exposure runs, each exposure was one-half this amount. The camera used to record the resulting
interferograms is a Rolleiflex SL.-66, 6 x 6 cm single-lens reflex, usually used with a 150-mm
f4.0 lens. Except for preliminary work, all photographs were taken with Polaroid Type 105 black
and white P-N film. The negatives were then analyzed on a Gaertner toolmaker's microscope
with substage illumination. Translation of the negative in the x and y directions (fringe spacing)

can be measured to about 2.5 ym.

The various test sections used in this preliminary study were mounted on an interferometri-
cally stable laboratory jack. To monitor surface and ambient temperatures, we read a series of
chromel/alumel thermocouples on an Ohmega Model 415 digital temperature indicator. The device
uses an internal cold junction, and a temperature resolution of the order of 0.1 K is claimed by

the manufacturer. A photograph of the complete holometric setup is presented in Figure 4.
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Figure 4. Laser Holometric Setup, Photograph

Results and Comparisons

A large number of problems have been examined by means of the FDM and FEM codes, and
only a small sampling of the problems is included here. The example problems have been chosen
either to demonstrate a unique analysis capability (e.g., computation of combined radiation and
convection) or to provide a focal point for the comparison of the different techniques. The first
two examples illustrate results-from the numerical analysis; the latter two show results from both

the experimental work and the numerical procedures.

Free Convection Due to a Local Heat Source

As a first example, the finite-difference code was used to examine the transient thermal
response of a rectangular enclosure to a local hot spot centered on the bottom. Figure 5 shows
the development of the isotherms, including radiative heat transter, at four dimensionless times
for a Grashof number ot 106. ‘I'ne alternate light and dark flelds represeunl 10-perceul ucrements
of temperature from emin to ema.x’ where emax = 1 at the hot spot. The external surfaces of the
horizontal walls are assumed to be insulated, and the vertical walls are assumed to have convective
transfer to ambient air. Figure 6 shows the same problem but with radiative heat transfer neglected.
For this problem, the effect of radiation is very pronounced (as seen also in Figure 7, which shows

the temperature profile at enclosure midheight for the two conditions at near steady-state condi-

tions).
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Figure 7. Temperature Profile at Enclosure Midheight

(y/H = 0.5) for Local Hot Spot on Floor,
r =20, Gr =106, ¥FDM .

Free Convection Due to Volumetric Heating

To obtain a quantitative comparison between the two numerical. methods, we considered the
conceptually simple problem of a volumetrically heated ﬂuid in a vertical cylindrical enclosure.
The cylindrical container was assumed to be insulated along the top and bott'omA surfaces; the
vertical surface was main'éained at a’ constant temperature. The enclosed fluid was assumed to be
producing heat volumetrically so that the modified Grashof number (Gr* = gBSL5/1_/2k) was 1 x 106.

The Prandt]l number was 0.71.

The finite-differér_xc_:e code used a uniformly spaced 21 x 21 grid and followed the transient
hehavior of the fluid until a steady state was reached. The finite-element code, which employed
a nonuniform 10 x 10 element grid,: solved for the steady state directly. The results of these

computations- are shown in Figures 8 through 11.

Figures 8 o.nd 0 iilustz-a'te the streamlines and isotherms computed by the two methods. The
qualitative agreement is seen to be excellent (the maximum difference between the codes for any
‘variable was less than 5 percent). This quantitative agreement can be easily seen in Figures 10
and 11, where vertical velocity and temperature are ﬁlotted,versué enclosure radius at a midheight
position in the cylinder. The finite-difference code used 192 seconds of CPU computer time, and

the finite-element code used 430 seconds.
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Figure 8. Streamlines in a Volumetrically Heatéd Vertical Cylinder
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Figure 9. .Isotherms in a Volumetrically Heated Vertical Cylinder
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Free Convection in Rectangular Enclosures

This section presents the results for two geometric configurations that were analyzed both

experimentally and numerically.

The first configuration examined was a heated horizontal right circular cylinder in an
isothermal rectangular cross-section box, as shown in Figure 12. A transparent glass plate
covered the entrance end of the box (with respect to the laser beam) and a ground-glass plate

formed the exit-end boundary. Note that the 2.8-cm-diameter cylinder is affixed to a phenolic

stand, which provides stability to the cylinder and acts as a thermal insulator between the cylinder

and box. Thermocouples were mounted on the inside of the cylinder next to the electrical heating
coil and on the outer surface between the cylinder and the stand. The heater and thermocouple
leads were routed to the rear of the cylinder as shown in the figure. The surrounding box was
constructed of 1.9-cm-thick aluminum plate. Cross hairs on the entrace and exit planes helped
in the alignment process. The opening in the box was 6.4 x 8.9 cm, and the inside was painted
flat black to minimize reflection. A second configuration, in which the right circular cylinder
was replaced by a heated hexagonal cross-section cylinder, was also examined. The components

for this test section are shown in Figure 13.

Figure 12. Test Section 1, Heated Horizontal Cylinder in an
Isothermal Rectangular Box
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Figure 13. Test Section 2, Heated Hexagonal Cylinder in an
Isothermal Rectangular Box

The two experimental configurations were also analyzed by mean of the finite-element code;
furthermore the finite-difference code was employed on the hexagonal cross-section cylinder

geometry. Typical computational meshes for both geometries are shown in Figures 14 and 15.

The configuration of the heated circular cylinder in the isothermal rcctangular cross-section
box produced the double-exposure holometrogram (holometric interferogram) presented in Figure
16. The cylinder surface temperature was determined to be 351.5 K, and the box temperature
was 294.3 K. Use of the data-reduction technique outlined in Reference 36 indicates that there
should be six fringes. The photograph clearly confirms this prediction. Temperatures corre-

sponding to the fringes are as follows:

¢ T (K) T Ty )

Cold Surtacc 204.3

302.4

311.0 1

320.0 2

329.6 3

339.8 4
5
5

DUl W N

350.7
Hot Surface 351 .5

Because of the preliminary nature of this study, no attempt was made to deduce heat-transfer

coefficients for this configuration.
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Figure 16. Holometrogram of Test
Section 1

The results of the finite-element computation for this configuration are shown in Figures 17
and 18, where the computed streamlines and isotherms are plotted. The values for the plotted
isotherms have been chosen to correspond to the values for the experimentally determined fringes
so that a direct comparison of Figures 16 and 18 can be made; the qualitative comparison hetween

experiment and computation is fairly good.

The final test case run in the present study was the heated hexagonal cross-section cylinder
in the isothermal box. Aside from providing an additional check on the measurement capability
of the laboratory, this model provides a check case for the finite-difference computer codes heing
developed. Figure 19 is the holometrogram for the case of the cylinder at 358.1 K and the box at

292.0 K. Fringe and temperature data from the photo are given below:

¢ T (K) 2= Ty
Cold Surface 292.0 0
1 297.4 5.4
2 303.1 111
3 308.9 16.9
4 3151 23.1
5 321.4 29.4
6 328.0 36.0
7 334.9 42.9
8 342.1 50.1
9 349.6 57.6
10 357.4 65.4
Hot Surface 358.1 66.1
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Figure 19. Holometrogram of Test
Scction 2

The numerical solutions to this problem, in the form of streamline and isotherm plots, are
shown in Figures 20 through 23. Both the finite-element and finite-difference results show good
qualitative agreement with the experimental results (Figure 19). A plot of the measured and pre-
dicted temperature along the centerline of the plume (from the top of the hexagon to the top of the
enclosure) 1s shown in Figure 24. In general, the agreement is within 10 percent. Some of the
discrepancy near the two boundaries is due to the parallax effect of the photograph (made from the
illuminated hologram) from which the measured data are taken. Another source of error is that
in these simple test sections the boundary temperaturcs were not truly isothermal, as was assumed
in the finite-element and the finite-difference models; however, the temperature was not monitored
in enough positions to warrant applying a nonisothermal boundary to the models. Further disparities
result from the use of constant properties in the models and from variations between the FEM and

the FDM grids.

More sophisticated test cells are currently being designed and assembled so that the boundary
conditions can be carefully controlled and monitored. This will allow a more detailed quantitative
comparison of the measured and predicted temperature distribution (and rcoulting heat-transfer
coefficient distribution) on the heated element and surrounding enclosure. In addition, a laser/
Doppler velocimeter is being developed for measuring the velocity field to compare it with the

computational results.
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Conclusions

The two computational methods for the general class of problerns of enclosed thermally
driven convection yield similar qualitative anquuantitative results. Results from both methods
“compare favdraBly with the measurements of the temperature field made with a laser holographic
interferometer. This optical measurement 'technique is' shown to be a very -powerful tool, yielding

simultaneous temperature information over f.he entire flow field.

The finite-difference metﬁod is computationally more éfficient than the finite-element method;
nevertheless, the latter is capable of ha.ndlingr completely arbitrary two-dimensional geometries.
The favorable comparisons shown herein leﬁd. confidence to the ability of the‘combutational methods
to produce physically realistic results for various configurations where experimental data are nofc

available.
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