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ABSTRACT 

Two computational procedures and one optical experimental procedure 
for studying enclosed natural convection are described. The finite­
rlifferencQ and finite ··eleweut numerical methods are developed and 
several sample problems are solved. Results obtained from the two 
computational approaches are <.:umpared. A temperature-visualization 
scheme using laser holographic interferometry is described, and 
results from this experimental procedure are compared with results 
from both numerical methods. 

This work was partially supported by the LMFBR. Spent Fuel Shipping P rugTam which is funded by 
the Department of Energy Division of Reactor Development and Demonstration. 
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NOMENCLATURE 

c 
p 

heat capacity 

g gravitat_ional constant 

k .. 
lJ 

thermal conductivity tensor 

nj outward uuit normal 

p pressure 

qi heat-flux vector 

R residual or error 

s coordinate along boundary 

s volumetric heat source 

T temperature 

T ref 
·reference teniperature 

u. 
1 

velocity con1ponent 

X. coordinate direction 
1 

{3 coefficient of volume expansion 

r boundary 

6 .. unit tensor 
lJ 

p density 

II kinematic viscosity 

~ visCOSity 

T .. str·ess tensor 
lJ 

4>, 'If, ® shape· function 

1/> stream function 

(J..I vorticity 
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COMPUTATIONAL AND EXPERIMENTAL METHODS FOR 
ENCLOSED NATURAL CONVECTION 

Introduction 

Recent yearshave seen considerable progress in efforts to develop computational procedures 

for solving the coupled conservation equations of motion (Navier-Stokes) and energy for an incom­

pressible fluid. A large number of applied problems involving nonisotherm3.l forced and/ or free . . 
convection have stimulat~d the development of the numerical methods. Thermocline storage of 

solar-hea.ted fluids, energy extraction from m,'lgma bodies, .in-s~tu coal gasification, cooling of 

spent -fuel shipping casks, reactor core-meltdown accidents, radioactive waste disposal iri the 

ocean, and numerous combustio~ problems are just a few of the many problems of current interest 

that need improved understanding. 

A large· m•;lasure of the need~d insight f<;)r these systems ·Could be provided by the .numerical 

simulation of the appropriate fluid and thermal processes involved in a particular· problem. Before 

engirieering judgments can be confi?ently based on a-numerical sim·.1lation, however, somP. form of 

validati~n of the nu.merical ~ethod mu~t be obtained. The complexity of most coupled fluid/thermal 

problems precludes the possibility of obtaining closed~form analytic solutions for verification pur­

poses. Therefore, quantitative experimental method~ for inve$tigating these flow fields are neces­

sary to demonstrate the validity of the solutions to these complex but fundamental problems. 

This report d~scribes two .computational procedures and one experimP.ntal procedure developed 

to investigate the problem of thermally dr~ven enclosed naru.ral convection. The numerical techni­

ques include a finite-difference method (FDM) and·a finite-element m6thod (FEM). These methods 

are used to solve the coupled conservation equations resulting in determination of the temperature 

and velocity fields for the problem. of interest. 

The experimental technique is a,n optical procedure (las~r holographic interferometry) that · 

yields the temperature field of the thermal:-convection problem. 

Several sample problems are examined to demonstrate the capabilities and limitations of the 

numerical methods. Results obtained,from the finit~-difference and finite-element methods are 

compared.- In addition, ·e~erimental results are ,compared with results from both ·computational 

procedures. ·The difficulties !3-Ssociated with accurat~ .'control of the boundary· conditions during 

the experiments using early test sections prevent a detailed q1.,1antitative comparison of. the numeri­

cal solutions with the experimental results, Nevertheless, the overall tempe:ra.ture field agreement 

obtained is remarkable. 

9 
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Survey of Existing Methods 

A large body of existing literature deals with various numerical methods and experimental 

techniques for investigating various problems in fluid mechanfcs. Therefore, a comprehensive 

review of the literature is neither necessary nor desirable and only a few references of particular 

interest will be mentioned here. Several surveys of the field of computational fluid mechanics are 

excellent, most. notably the monograph by Roache 
1 

and his survey of the more recent literature. 
2 

A review of the early theoretical and experimental investigations of enclosed natural convection 

is given by Elder
3 a~d in an article by Ostrach. 4 

One of the first successful attempts at· a numerical solution. of a natural convection problem 

wao conducted by Hallums and Churchill. 
6 

By develop.l.ng a tr<l.nsient, <:>vplirit finHP. rliff;,rP.nr.P. 

method, they obtained transient and steady- state solutions to the problem of natural convection on 

an isoti:J.ermal vertical surface, a problem for which an exact solution exists. Their work also 

considered natural convection in a long horizontal cylinder having on~ vertical end heated and the 

other cooled. Wilkes and Churchill
0 

extended the FDM of-Helluma and Churchill to investigate 

the problem of thermally driven convection in a rectangular encloo;urt:!. In the ensuing 11 years, 

numerous investigators used the FDM to study similar internal free-convection problems for 

variou~ g~ometries and .parameters ranges. Notable among these is the work of Aziz and Hellums, 
7 

who first reported results on three-dimensional convection in a cubical cavity. Davis 
8 

and Rubel 

and Landis
9 

formulated the enclosed rectangular problem in terms of a nonlinear fourth-order 
10 

equation for the stream function without the explicit appearance of vorticity. Torrance compared 

several FDMs that had been developed for examining natura'! convection flows and pointed out that 

the finite difference forms of the equations use~ by most previous investigators had not conserved 

energy or vorticity. Finally, Newell and Schmidt
11 

examined ~he problem .of enclosed, laminar 

natural convection over a range of parameters sufficient to determine a power-law corrt:!latiou of 
. . . . 12 

the Nusselt number .as a function of the Grashof number and aspect ratio. Larson and V1skanta 

included the effects of radiation heat transfer on the enciosed convection problem'. 

The application of the finite-element method to the field of fluid mechanics is a fairly recent 

development, but has already produced an impressive body of literature. The recent survey 

article by Gartling
13 

concerning the applicatio~ of the FEM to viscous incompressible flow fields 

provides an overview of this area of current research. The general subject of the .I:<'.I!;!Vl 18 con­

tained in the texts by Zienk1ewicz
14 

and Oden, 
16 

and a general re~lew uf.applleatiuuo; tu variuu::; 

fluid flow problems is discussed in Huebner. 
16 

A sampling of the reported applications of the FEM to fluid mechanics indicates that much 

of the early work was directed primarily toward the problem's of slow, viscous flow (creeping or 

Stokes flow).. Atkinson et a1
17 

and Tong and Funi 
8 

achieved excellent results by employing the 
. . 

· FEM and a fourth-order stream·-function form'.llation to solve a number of channel flow: problems. 

Thompson et a1
19 

formulated the problem iil terms of. primitive v~riables t~ solve creep in~ flows 



I 
both for Newtonian and for non-Newtonian fluids. The extension of the FEM to the more complex 

20 21 . 
flow problems described by the Navier Stokes equations soon followed. Baker, Cheng, · and 

Smith ~d Brebbia 
22 

used a stream-function/vorticity form11lation of the governing equations to 

present successful solutions for isothermal flow problems involving a variety of geometries, 

including channel flows and flows over obstacles. A primitive variable approach was used by Oden 

and Wellford
23 

to solve both transient and steady-state flows at low Reynolds numbers. Gartling 

andBecker
24 

examined the steady-flow solution ofboth·internal and external geometries. The 

addition of the energy equation to the FEM for.determining the temperature field when the velocity 

and temperature fields are weakly coupled (e. g., forced convection) was demonstrated by the work 

of Hsu and Nickell, 
25 

Tay. and Davis, 
26 

and Gartling, 
27 

among others. 

When the flow and temperature fields are strongly coupled, as they are in natural convection, 

the FEM solution procedure necessarily changes. Most of the work reported to date has ~onsidered 
28 

the time-independent forni of the momentum and energy equations. Skiba, Unny, and Weaver . 
' 

presented the first finite element solution to a free-convection problem (flow in a vertical slot). 

Since that time, Bedford apd Liggett, 
29 

Young et al, 
30 

and 9artling
27 

have demonstrated success­

ful finite-element solutions for a variety of free-convection problems. 

Optical methods o,f studying heat and mass transfer have been widely used for many years. 

The three main types of optical systems in com::non use are the shadowgraph, the Schlieren, and · 

the interferometer. The visible indications of density variation for these methods depends, 

respectively, on the second derivative, on the. first derivative, and directly on the index of refrac­

tion. The index of refraction of a gas is related to the density, and the density is related to the 

temperature through an equation of state (often the ideal gas law). ·Descriptions ofthe principles 

of operation· of the above devices can be found in numerous texts (e. g., 31, 32). 

In 1947 the English physicist Dennis Gabor introduced a radically new concept in photographic 

optics for which he later received the Nobel Prize in Physics (1971 ). This process, which can be 

called photography by wave-front reconstruction, is commonly known as holography. Holography 

does not record an image of the object being photographed but rather records the reflected light 

waves and an interfering reference beam. The resulting interference pattern forms a diffraction 

grating which, when illuminated by a similar monochromatic light beam, reproduces a three­

dimensional image of the object. Extensive use of the procedure had to await the development of 

an intense monqchromatic coherent light sourc:, which Leith and Upatneiks33 demonstrated in 

196 3 utilizing the newly developed laser. Following these developments, work in the field virtually 

exploded, resulting in over 800 papers by some 500 a~thors appearing in less than 10 years. 
34 

Holographic interferometry was one of the results of this widespread effort. A brief discussion of 

the basic principles involved can be found in References 35 and 36. Interpreting the data resulting 

from hologram interferometry (holometry) has proved to be reasonably difficult .. Witte and Wuerker
37 

appear to have been· the first to ·de~onstrate holometry .a~ a .~uantitative measurement technique by 

determining (from an interpretation of the fringe pattern) the density profile through th~ gases 

11 
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surrounding a high-speed projectile. Later, Matulka and Collins38 were also successful in inter­

preting resulfs both of axisymmetric and of asymmetric flow fields.· More recent quantitative work 

includes that of Mayinger and Pankin
39 

and Schimmel. 
36 

It appears that, to date; no attempts to take advantage of the combined advances of various 

computational and experimental methods have been reported. This report is an effort to compare 

the resuits obtained from recently developed procedures for the problem of enclosed natural 

convection in several specified test geometr.ies. With such a comparison we are then able to infer 

the validity of the respeCtive t~chniqu~s ·for this class of problem,:;. 

Computational Methods 

The starting point for any numerical approach to the general problem of free convection is 
. . 

the mathematical description of the fluid motion through use of the basic conservation laws. If the 

fluid .of interest is assumed to be ins:ompressible within the Boussinesq ~pp.roximation, 40 the basic 

field equations may be expressed as 

Mass: 0 . 

Momentum: 
or

1
. 

pg. + pg.{3 (T- T f) + "'XJ ,; 0 
1 1 re o . 

J 

Energy: C~, (IT + ~T Clqi 
P p ot pC u · -o- + ox - s = 0 

P J xj . i 

·The constitutive relations for the ±luid·consist ot· a 1\Jewtonian stress/rate-uf-l:rtralu law, 

and Fourier's law for the heat flux, 

oT 
q. = -k .. "'X 

1. . 1J o· . 
.1 

(1) 

(2) 

(3) 

(4) 

'(5) 

In Eqs. (1) through (5), u·. is the veloCity component in the X. coordinate direction, P is the pres-
1 .· . . 1. . .. 

sure, T is the temperatUre, p is the 'density, T .. is the stress tensor, q. is the heat flux vector, 
. . .. 1J : . . ·1 

S is the volumetric heat source, ·,.,.is the viscosity, C is the heat capacity, k .. is the thermal 
p 1J 



conductivity tensor, and {3 is the coefficient of volume .expansion. Also, T ·f is a reference tern-. re · 
perature for which buoyancy forces are negligible, o .. is the unit tensor, ·and g is the gravitational 

1J 
constant. The above equations are expressed in terms of Cartesian coordinates; an analogous set 

of equations. is available for axisymmetric geometries. 

To complete the formulation of the boundary-value problem for convection, a suitable set of 

boundary and initial conditions is required. The hydrodynamic part of the problem requires that 

either the velocity components or the total surface stress (or traction) be specified on the boundary 

of the fluid domain. The thermal part of the problem requires that a temperature or heat flux be 

specified on the boundary of the energy transfer region. Symbolically, these conditions may be 

expressed by· 

on r u 

(6) 

t. = ·r .. (s)n.(s) on ft 
1 1J J 

for. the flow problem and 

T = g(s) on·rT 

(7) 

q.(s)n. (s) = h(s) on rq 
1 1 . 

for the heat-transfer problem. In Eqs. (6) and (7) the designation s is the coordinate along the 

boundary, n. is the outward unit normal to the boundary, rf = r + rt is the boundary enclosing 
J . . . u 

the fluid, and r h = rT + r is the boundary enclosbg the ·energy-transfer region. For the tran-
q • 

sient problem, a set of initial conditions in the form of initial velocity and temperature distributions 

is also required. 

Equations (1) through (5) along with the boundary conditions in (6) and (7) form a complete 

set for the determination of the velocity, pressure, and temperature fields in the fluid. A wide 

variety of numerical methods, already developed, allows this complex continuum problem to be 

reduced to a more manageable problem through some type of discretization procedure. In the 

following sections, descriptions of two such methods allow an approximate solution to the convection 

problem to be obtained. 

Finite-Element Method 

One of the approxiinate numerical methods being developed to treat .general pr.oblems in con­

vection is the finite-·element method (FEM). Because, as noted, this very. general approximation 

procedure has been thoroughly descrihed by several auth01·s, lt Is outlined only briefly here. A 

detailed description of the application of the method to free convection·.problems may be found in 

Reference 13. 

13 
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The derivation of the finite-element equations begins with the division of the corttinuii:tn region 

of interest into a nu~ber of simply shaped regions called finite elements. Withiil each element, a 

set of nodal points is identified at which the dependent variables (u., P, and T) are evaluated. 
1 

Furthermore, the dependent variables are assumed to be expressable in the following form within 

each element: 

. . T 
P(X., t) = 1¥ (X.) • :p(~) 

1 - 1 ·-
(8) 

. (. T 
TX.,t) = ® (X.) 

1 - 1 
:,[(t) 

hi Eq. (A) thP. r!P.signations ~· ;E; and. ::£ are vedunl of unknown nodal point v:.~.z•iables, and t_, t· 
and_@ are vectors of interpolation or shape functions. The number of functions in a particular 

shape-function vector is equal to the number of nodes in an elernerit at which the particular unknown 

is to be defined. 

The approximations in Eq. (8) may be substituted into the field Eqs. (1) through (5) to yield 

a set of equations of the fo:J;"m 

u., 
~ ....... 

where R. is the residual, or error; resuiting from the use of the approximate forms for i.i.; P, 

(9) 

1 . 1 

and T. A Galerkin procedure
15 

may be tised to reduce the errors, R., to zero in art average sense 
. 1 

over each element by making the residuals orthogonal to the interpolation functions in Eq. 8. 

That is; 

<!!· ~) (R1; ~) (j 
....... ""' 

(f2' w> (R2' !> 0 (1 0) 
...... 

(f3' ~) - (R3; ~) 0 ' 
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where (. , ) denotes the inner product defined by 

(a~ b) = i a • b d v 

with v being the volume of the element. 

When the procedure outlined above is carried out explicitly f?r the equatiop.s describing 

convection, the result is a set of coupled matrlx equations' of the. form 

NT + D(u)T + L T = G , :::;:::-;- s::::::-- ~- ..... 

where 

VT. (. T · T T) 
~ ~1 ' ~2 ' p 

(11) 

(12) 

The matrix equations in (11) and (12) represent tl'le discrete analogs of the conservation equations 

for an individual finite element. The C and D matrices represent the advection (convection) of . ~ ~ . . . 
momentum and energy, respectively; the !S an.d k matrice.s represent the diffusion of momentum· 

. • 0 - . -

and energy •. The terms ~Y and ~T represent the. temporal acceleration and the heat capacity of 

the fluid;· the ;[ and Q vectors pro:vide the. forcing functions for tj1.e system in terms of volume 

forces (body force, volumetric heating) and surface forces (stress, heat flux). 

The discrete representation of the entire fluid region of interest is obtained through an 

assemblage Of elemFmtS in 'such a Way that .iHterelEnrtent COntinuity Of the apprOXiJp.ate velocity, 

pressure, and temperature is enforced. This continuity requirement is met' through the appro­

priate summation of equations for nodes common to adjacent elements. 

Once the matrix ~quations for the firiite element model h~ve been assembled for the problem 

of interest, the task of solving this large set of strongly coupled, nonlinear equations still remairis. 

In the present repor't only the case Of steady_-state flows will be addressed for the FEM. The 
\' L • • '. 

matrix equations can. therefore! be redu.::.::u tu 

C(u)V + KV = F(T) 
::::::-- ~- -- (13) 

D(u)T + L T = G . 
:::::::::-- ~- - (14) 

15 



The solution algorithm chosen for Eqs (13) and (14) consists of the following alternating procedure:· 

(15) 

"'t<: .• 

where ti;te superscript indicates the iteration number. During observation of the beh~vior of this 

alternating solution scheme, it was apparent that mosi: of the problems exhibited an oscillatory 

convergence. Therefore, an ave~aging scheme was used for the temperature field to speed con­

vergence of the overall algorithm. 

The finite element methodology developed in the previous sections has _been incorporated 

into a Fortran coded computer program called NACHOS. This code is a highly modified/and 

extended version of the fluid mechanics code T.EXFLAP. 
41 

The .N.A C.HOS r.ode is organi.zed in overlay form as shown in Figure f. Communication 

between.overlays is currently through low-speed disc files as noted in the "figure. Input for the 

code, designed with the user in mind, has been kept to a minimum. An isoparametric mesh 

generator allows complex boundaries to be modeled easily and accurately. The present version 

of NACHOS requires approxima~ely 160K words of storage on the S:inrlia. L~boratorles CDC 6600. 

Element 
Data 

2 Element 
Coordinates : 

~tJiE I =Overlay 

@=DiscFile 

8~-'1'----....J 

'k 

Figure 1. Organization of NACHOS Computer Code 



The element library for NACHOS consist's of an eight-node isoparametric quadrilateral and 

a siX-node isoparametric tri?.ngle, as shown in Figure 2. Within each element, the velocity com­

ponents' and the temperature are approximated quadratically; the pressure is approximated linearly. 

The interpolation functions are from the "serendipity" family. proposed by Erqatoudis et al.. 
42 

The 

actual processing of the matriX equations is accomplished thi-ough a modified version of the· frontal 
. b 43 method developed y Irons. 

6 U, V,T 

U,V,P,T 

Figure 2. Isoparametric Finite Elements 

Finite-Difference Method 

The finite-difference method ·(FDM) to solving partial differential equations is to approximate 

the PDEs by suitable difference equations on· a network of grid points, resulting in a set of alge-

. braic equations. This traditional-method is wen N:tablished and doc.nmented in numerous texts. 
44 

The major concerns of the methods are accuracy, stability, convergence, and computational speed. 

The finite-difference methods that have been generally used in fluid mechanics problems are _well 

d~cumented in the treatise by RoachP.. 
1 

In general, the ua:;lc'-difference methods may be convenient­

ly divided into two classes: explicit and implicit. 

The explicit schemes allow for the direct solutio!'). of the variable of interest by generating 

one algebraic equation and one unknown at each nodal poiilt. Therefore, explicit methods are 

usually simpler and computationally faster than the implicit methods for a given step. However, 

explicit schemes usually have stringent grid size and time-step restrictions in order to obtain 

stable solutions. Most implicit schemes are unconditionally stable but computationally more 

complex, requiring the simultaneous solution of a system of equations. Both methods must satisfy 

certain conditions for the solution of the difference equation to also be a solution of the differential 
. 44 45 

equation. ' 

::: 

17 
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Equations (1) through (5) are coupled .nonlinear partial differential equations, and consider­

able care must ·be used in their finite-difference representa~ion if reasonabl;y ac·curate rest1lts are 

to be obtained. For example, in writing Eq. (3), continuity has been used to simplify the equation. 

However, it can readily be shown. that the standard forward, backward, or central difference 

representation of Eq. (3) does not conserve energy over the field.
1 0 

It .is necessary to write the 

advection terms in the nonexpanded form, 

a(u.T) 
pC __ J­

p ox. 
J 

to obtain a conservative difference representation; i.e., to conserve energy o~er the grid. 

It is also very difficult to satisfy the finite-difference .continuity equation when primary vari-

. ables (ui, P) are used. An alternative approach.is to cross-differentiate and combine the x andy 

momentum equations to eliminate the pressure term and to introduce the stream function, 1/J, which 

automatically satisfies continuity. This .procedure replaces the continuity and momentum equations 

(1) and (2) with the vorticity (w) and stL·eam-function equations shown here: 

ow 
at 

o(u.w) 
+ __ l_ 

a xi 

~ = .£JL 
i ox. 

J 

11 = . j 

au. 
w=_.l_ ox. 

. l 

au. 
1 

a:x. 
J 

+ g/3 aT 
a.x. 

l 

In difference form, it is frequently. easier to· solve Eqs. "(3), (5), (1 G), and (1 7) than Eqs. (1) 

through (5); however, when these are properly formulated, the solutions will be identical. 

(16) 

(17) 

(18a) 

(18b) 

. (19) 

\ 
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For convective- and buoyancy-dominated situations, "upwind" differencing has been shown to 

enhance stability 
1 0 

and improve accuracy. 
46 

Accuracy is also imp~oved. for ra;idl; changing 

flow-field problems by allowing for an iterative procedure for the nonlinear (advection~ terms, 

since during any one time step the terms are necessarily considered to be linear. Computational 

speed is frequently improved by solving for the temperature or the velocity field less frequently 

'than for the· other, depending upon the. nature of the problem. For example, if the temperature 

field is changing rapidiy while the flow field is changing relatively slowly, the flow field can be 

updated (solved) less frequently than the tempe.rature field (energy equation) for a corresponding 

savings in computational time. 

The solution procedure for the equations follows directly from the difference procedure used. 

An explicit formulation allows for the determination of the variable of interest at. every point in 

t~rms of known quantities at the previous time step. A fully implicit formulation requires the 

simultaneous solution of the entire field. The resulting equation·s lead to a fully nonsymmetric 

matrix system with a bandwidth that depends on the geometry of the problem. The nonlinear terms 

and allowance of variable properties require the formation and inversion (or reduction)· of the full 

matrix for every time step. This procedure is nearly always the most stable of the alternatives; 

however, it requires the largest amount of computer storage and is very involved computationally. 

Several meUwds are available for solving this full matrix system of equations. 

The alte:r;-nating-direction implicit (ADI) formulation requires two iterative sweeps for each 

time step, but the resulting system of equations leads (at least for regular geometries) to a tri­

diagonal matrix system that requires little storage and is compu'tationally very efficient. 

The finite difference codes of this study use a stream function/vorticity formulation to solve 

for the coupled time-dependent velocity and temperature fields for a viscous, incompressible fluid 

flow. The codes.are limited to the analysis of plane rectangular geometries or right cylinders of 

circular cross section. Equations (3), (16), and (17) can be written in nondimensional form by 

defin~g the following·set of dimensionle·ss va.ri::lh).es: 

u. = u./u R = T/TH 
1 1 0 

X. = x./L w= ~/u :L 
1 1 .o 

T tu /L 0 = wL/u 
0 0 

2 
g/3b.TL, Q = S/qref u 

0 

and by introducing the dimensionless parameters 

. . 3 2 
Grashof nu~ber,' Gr = g/3b.TL /v 

Prandtl number, Pr ::: I) ICY. , 
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where the variables are the same as those described previously and q f is a ·reference volumetric 
re 

heating; THis a reference (boundary) temperature, and for an internally generating medium 
2 ·. 

TH = q f L /k .. ; v is kinematic viscosity; o: is thermal diffusivity; and L is a characteristic " ~ . . 
dimension. 

Using the above definitions, we obtain the set of equations for the Cartesian geometry 

·referred to as the dimensionless energy equation: 

ae o(U.n) 
+ 1 

07' ax.----
1 

i 

Pr~Gr 

the dimensionless vorticity transport equation 

the dimensionless stream function equation . 

+ .2-.i. 2 ~ 2 • 
ax. 

J 

and the dimensionless velocity equations 

u .. .£jt_ .u. " 
.i ax. ' J 

J 

- Q = 0 (20) 

(21) 

(22) 

(2~) 

The temperature boundary conditions arJ the same as those discussed previously, Eq. (7), expressed 

in dimen·sionless form. The stream-function boundary conditions are .a zero (or constant) condition 

and a zero normal gradient condition at the wall. The initial velocity, temperature,. vorticity, and 

stream-function conditions must also be prescribed; usually they are initialized in natural. cunveetion 

problems as a zero condition. The boundary condition on vorticity is obtained indirectly during the 

problem solution. Using a Taylor series expansion of the· stream function in the vicinity of the wall 

and noting from the "stream-function equation (22) with its boundary conditions that (}0 = 0 
2 w/aX2

, 

. we obtain a second-order approximation f~ wall vor.ticity from the interior function, 

(24) 

where· subscripts 1 and 2 represent values removed. one and two grid points from the wall and f!.X is 

the grid spacing. 



The codes use an ADI solution scheme with conserv~tive upstream differencing. The rect-
. . . . 

angular geometry also allows for finite-thickness heat-conducting walls and radiative transfer 

within the· enclosu~e. 12 
The solution scheme consists of advancing the temperature through a 

time step by solving Eq. (20). The vorticity transport ·equation (21) is then solved for all interior 

(nonboundary) nodal points. Next, the stream-function equation (22) is solved by ponverting it to 

a time-dependent (parabolic) equation and using an ADI scheme until the time-dependent term is 

equal to zero. From the solution of the stream-function equation, the wall (boundary) vorticities 

are then updated by using Eq. (24), and. the velocity field, Eq. (23), at the end of the time step is 

determined. 

The two finite difference codes (rectangular and cylindrical) are time efficient, and typical 

run times for small problems are less than 300 seconds on a CDC 6600 computer for a full tran­

sient solution of an enclosed natural convection problem. The efficiency of the code, however, 

also extracts a penalty in generality. The· geometry limitat_ions with regular mesh spacing appears 

to be the most restrictive condition for solving many problems of interest. 

Experimental Method 

For the purpose of this paper, holography can be considered a technique for reproducing in 

its entirety a visual image of ·an objeCt or of a region in space. This image preserves all the 

optical features of the object or space including its three dimensionality. It is primarily a method 

of reconstructing a virtual image by recording the radiated coherent light reflecting from an opaque 

object or the transmitted light that passes through a transparent medium. This coherent radiation 

which contains· important phase and amplitude information, is referred to as the object beam 

(Figure 3). At the hologram, which is usually a high~resolution photographic plate, the object 

beam .is combined with the off-axis coherent r:::tdiation referred to in the figure as the "reference 

beam.'" The photographic emulsion records the complex interference pattern, formed as a result 

of the coherent superposition of the two wavefronts. In this regard, holography is similar to 

classical interferometry except that, because. of the spatial coherence of the laser, the two beam 

lengths need not be exactly equal. After the hologram is photographically processed, it will, when 

viewed with incoherent light,. bear no resemblance to the original objects. It will contain a high­

frequency (microscopic) interference pattern that can be considered a generalized diffraction 

grating. When this grating is reilluminated with the reference beam (or any other expanded beam 

produced by the same type of laser), it will refract the light in a systematic manner that recon­

structs all the phase and amplitude information of the original object beam. This reconstructed 

wavefront can then be ~r·ocessed by an image-forming system, such as a camera, to make a per­

manent record of the virtual image .. 
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Figure 3. Laser Holometric Setup, Schematic 

Holometry, or hologram interferometry, is a simple extension of the reconstruction process 

described above. Because the hologram·permits reconstruction of an object wavefront at some 

later time, it is possible to have the reconstructed wavefront interfere with another real-object 

wavefront. In this process, known as "real-time"·holometry, fringes .will form ~henever the 

instantaneous object beam deviates in phase from its originar' state by an appropi'"iate amount. 

Original state, of course, refers to the condition under whh:h lh~ hulug~·am wa.!l il'litio.lly cxpoocd. 

One point that should be made about this technique is that the hologram must be very carefully 

repositioned after photographic processing; otherwise, displacement fringes will result. Attempts 
' 

to prevent faulty positioning have led to a host of hologram holders, including some that process 

"in sit.u" to avoid moving the plate. Actually, because the photographic emulsion can· shift with 

respect to the plate, some of these devices use a fluid gate to precondition the emulsion. 

Alternatively, it is possible to record the object twice during d1tferent states and to reeou­

struct the two object wavefronts simultaneously at a later time. Agalu, all lJ,at is required for 

viewing the interference pattern is that the beam be produced by the same type of laser. This is 

the so-called double-exposure method, because the hologram is exposed twice before processing. 

A direct analog exists in classical interferometry, provided that the instrument is adjusted for the 

"infinite-fringe, " or uniformly bright screen. One of the disadvantages of this double-exposure 

method is that fringes correspond to quantum shifts in index of refraction and are therefore widely 

spaced. It would be better to have a pattern of tightly spaced fringes so that the density gradients 

could be deduced from fringe gradients. This can be accomplished in real-time holometry by 
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deliberately introducing a series of displacement fringes in such a way that they form the desired 

tightly spaced pattern. No such capability exists in the double-exposure method. 

The components of the present holometric system are shown in schematic form in Figure 3. 

The entire arrangement is isolated from building vibrations by a Modern Optics V-12 stable-table 

system with viscous mechanical dampening. Dimensions of the table top are 122 x 213 em, and 

flatness is certified to ±0. 04 mm overall. Resonant frequency of the air-mount system is less 

than 1. 25Hz . Illumination of the system is provided by a Spectra-Physics Model125-A helium/ 

neon laser with RF excitation. The laser is claimed to be a 50-mW TEMoc at 632.8 nm, but care­

ful alignment of the cavity has resulted in an output of approximately 80-90 mW at the exit mirror. 

A typical mirror mount consists of a magnetic stand, mirror, and positioning holder. The 

mirrors are all >../10 at 632.8 nm with spectral reflectances of 95 percent or better (45° incidence). 

The variable beam splitter is a Jodon Model VBA-200, capable of continuously varying the trans­

mitted beam from 0. 7 to 90 percent and the reflected beam from 8. 5 to 85 percent. Expansion of 

the object and reference beams is accomplished by a pair of Trope! Model 280-100A laser beam 

collimators with 1 00-mm exit optics and 1. 5-mm entrance apertures. The collimator holders 

were assembled from standard optical table hardware. 

The electronic shutter system is a Jodon Model ES-1 00, used in the integrating exposure 

mode with the power density detector located behind the hologram plate (Figure 3). Because 

Agfa- Gaevert 1 OE7 5 4 x 5 glass plates were the only plates used in this preliminary work, the 

shutter system was calibrated to permit an exposure of approximately 50 ergs/ em 
2

. In the double­

exposure runs, each exposure was one-half this amount. The camera used to record the resulting 

interferograms is a Rolleiflex SL-66, 6 x 6 em single-lens reflex, usually used with a 150-mm 

f4. 0 lens. Except for preliminary work, all photographs were taken with Polaroid Type 105 black 

and white P-N film. The negatives were then analyzed on a Gaertner toolmaker's microscope 

with substage illumination. Translation of the negative in the x and y directions (fringe spacing) 

can be measured to about 2. 5 p.m. 

The various test sections used in this preliminary study were mounted on an interferometri­

cally stable laboratory jack. To monitor surface and ambient temperatures, we read a series of 

chromel/ alumel thermocouples on an Ohmega Model 415 digital temperature indicator. The device 

uses an internal cold junction, and a temperature resolution of the order of 0. 1 K is claimed by 

the manufacturer. A photograph of the <.:umplete holometric setup is presented in Figure 4. 
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Figure 4. Laser Holometric Setup, Photograph 

Results and Comparisons 

A large number of problems have been examined by means of the FDM and FEM codes, and 

only a small sampling of the problems is included here. The example problems have been chosen 

either to demonstrate a unique analysis capability (e. g., computation of combined radiation and 

convection} or to provide a focal point for the comparison of the different techniques. The first 

two examples illustrate results -from the numerical analysis; the latter two show results from both 

the experimental work and the numerical procedures. 

Free Convection Due to a Local Heat Source 

As :=!. firRt example, the finite-difference code was used to examine the transient thermal 

response of a rectangular enclosure to a local hot spot centered on the bottom. Figure 5 shows 

the development of the isotherms, including radiative heat transfer, at four dimensionless times 

for a Grashof number ot 1 u6
. '!'he alternate light and dark flel<.h; repre~euL 1 O~pen:tmL .i.Ul:n::menLs 

of temperature from emin to 9max' where 9max = 1 at the hot spot. The external surfaces of the 

horizontal walls are assumed to be insulated, and the vertical walls are assumed to have convective 

transfer to ambient air. Figure 6 shows the same problem but with radiative heat transfer neglected. 

For this problem, the effect of radiation is very pronounced (as seen also in Figure 7, which shows 

the temperature profile at enclosure midheight for the two conditions at near steady-state condi­

tions}. 
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Figure 5. Transient Isotherms for Local Hot Spot 
on Floor, Gr = 1 06 FDM 
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Figure 7. Temperature Profile at Enclosure Midheight 
(y/H = 0. 5) for Local Hot Spot on Floor, 
7" = 20, Gr = 106, FDM 

Free Convection Due to Volumetric Heating 

To obtain a quantitative comparison between the two numerical methods, we considered the 

conceptually simple problem of a volumetrically heated fluid in a vertical cylindrical enclosure. 

The cylindrical container wa$ assumed to be insulated along the top and bottom surfaces; the 

vertical surface was maintained at a constant temperature. The enclosed fluid was assumed to be· 
5 2 6 

producing heat volumetrically· so that the modified Grashof number (Gr* = gfjSL /I.( k) was 1 x 10 . 

The Prandtl number was 0. 71 .. 

The finite-difference code used a uniformly spaced 21 X 21 grid and followed the transient 

behavior of the fluid until a steady state was reached. The finite-element code, which employed 

a nonuniform 10 x 10 element grid,· solved for the steady state directly.. The results of these 

compu~ations· are shown in Figures 8.tht'ou.gh 1.1. 

F.i.gnres 8 and 0 illust!-ale the streamlines and isotherms computed by the two methods. The 

qualitative' agreement is seen to be excellent (the maximum differ:ence between the codes for any 

·variable was le!3S than 5 percent). This ·quantitative agreement can ·be easily seen in Figures 10 

and 11, where vertical velocity and temperature are plotted .versus enclosure radius at a inidheight 

position in the cylinder. The finite-difference code used 192 seconds of CPU computer time, and 

the finite.-element code used 430 seconds. 

27 



Centerline 

-o 

.a. FDM 

Centerline~ 

1;1, FEM 

Figure 8.· Streamlines in a Volumetrically Heated Vertical Cylinder 
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Figure 9 .. Isotherms in a Volumetrically Heated Vertical Cylinder 
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Figure 10. Predicted Velocity Profile ·at Enclosure Midheight 
in a Volumetrically Heated Vertical Cylinder 
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Figure 11. Predicted Temperature Profile at Enclosure Midheight 
1n a Volumetrically Heated Vertical Cylinder 
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Free Convection in Rectangular Enclosures 

This section presents the results for two geometric configurations that were analyzed both 

experimentally and numerically. 

The first configuration examined was a heated horizontal right circular cylinder in an 

isothermal rectangular cross-section box, as shown in Figure 12. A transparent glass plate 

covered the entrance end of the box (with respect to the laser beam) and a ground-glass plate 

formed the exit-end boundary. Note that the 2. a-em-diameter cylinder is affixed to a phenolic 

stand, which provides stability to the cylinder and acts as a thermal insulator between the cylinder 

and box. Thermocouples were mounted on the inside of the cylinder next to the electrical heating 

coil and on the outer surface between the cylinder and the stand. The heater and thermocouple 

leads were routed to the rear of the cylinder as shown in the figure. The surrounding box was 

constructed of 1. 9-cm-thick aluminum plate. Cross hairs on the entrace and exit planes helped 

in the alignment process. The opening in the box was 6. 4 x 8. 9 em, and the inside was painted 

flat black to minimize reflection. A second configuration, in which the right circular cylinder 

was replaced by a heated hexagonal cross-section cylinder, was also examined. The components 

for this test section are shown in Figure 13. 

' ' ~ .. 
\ Of;~~. l{ ~ 

.. JJi ';;*' v 

. " ,.,,. ; " ..... _ .t.• * i. 

Figure 12. Test Section 1, Heated Horizontal Cylinder in an 
Isothermal Rectangular Box 
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Figure 13. Test Section 2, Heated Hexagonal Cylinder in an 
Isothermal Rectangular Box 

The two experimental configurations were also analyzed by mean of the finite-element code; 

furthermore the finite-difference code was employed on the hexagonal cross-section cylinder 

geometry. Typical computational meshes for_both geometries are shown in Figures 14 and 15. 

The configuration of the heated circular cylinder in the isothermal rectangular cross-section 

box produced the double-exposure holometrogram (holometric interferogram) presented in Figure 

16. The cylinder surface temperature was determined to be 351.5 K, and the box temperature 

was 294. 3 K. Use of the data-reduction technique outlined in Reference 36 indicates that there 

should be six fringes. The photograph clearly confirms this prediction. Temperatures corre­

sponding to the fringes are as follows: 

€ T (K) T- T
1 

(K) 

Cold ::iurtucc 2tH.3 0 
1 302.4 8.1 
2 311.0 16.7 
3 320.0 25. 7 · 
4 329.G 35 . 3 
5 339 . 8 45.5 
6 350.7 56.4 

Hot Surface 351.5 57.2 

Because of the preliminary nature of this study, no attempt was made to deduce heat - transfer 

coefficients for this configuration. 
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Figure 14. Finite Element Mesh for ·::::onfiguration 
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Figure 16. Holometrogr am of T e st 
Section 1 

The results of the finite-element computation for this configuration are shown in Figures 17 

and 18, where the computed streamlines and isotherms are plotted. The v a lues for the plotted 

isotherms have been chosen to correspond to the values for the expe rimentally determined fringes 

so that a direct comparison of ,Figures 16 and 1 8 can be made; the qualitative ~ompariRnn hetwe en 

experiment and computation is fairly good. 

The final test case run in the present study w a s the heated hexagonal cross-section cylinder 

in the isothermal box. Aside from providing an C~,dditional check on the measurement capability 

of the laboratory, this model provides a check case for the finite-difference computer ~odeR hP.ing 

developed. Figure 19 is the holometrogram for the case of the cylinder at 358.1 K and the box at 

292 . 0 K. Fringe and temperature data from the photo are given below: 

E T (K) T - T
1 

(K) 

Cold Surface 292.0 0 
1 297.4 5.4 
2 303.1 11. 1 
3 308.9 16 . !::1 
4 315 . 1 23 . 1 
5 321.4 29.4 
6 328.0 36.0 
7 334 . 9 42.9 
8 342 . 1 50.1 
9 349.6 57.6 

1 0 357.4 65.4 
Hot Surface 358.1 66.1 
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F i gure 18 . Predicted Isot hern1.s for 
T e st Section 1 , FEM 

Figure 17. Predicted Streamlines for 
Test Section 1 , FEM 
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Figure 19. Holometrogram of Test 
Section 2 

The numerical solutic;ms to this problem, in the form of streamline and isotherm plots, are 

shown in Figures 20 through 23. Both the finite-element and finite-difference results show good 

qualitative agreement with the experimental results (Figure 19). A plot of the measured a11d pre­

dicted temperature along the ce_ntP.rline of the plume (from the top of the hexagon to the top of the 

enclosut·e) 1s shown in Figure 24. In general, the agreement is within 10 percent. Some of the 

discrepancy near the two boundaries is due to the parallax effect of the photograph (made from the 

illuminated hologram) from which the measured data are taken. Another sourr.P. nf Prror is that 

in these simple test sections the boundary temperatures were not truly isothermal. as was ass11mPrl 

m the finite-element and the finite-difference models; however, the temperature was not monitored 

in euuug'h positions to warrant applying a nonisothermal boundary to the models. Further disparities 

result from the use of constant properties in the models and from variations between the FEM ftnrl 

the FDM grids. 

More sophisticated test cells are currently being designed and assembled so that the boundary 

conditions can be carefully controlled and monitored. This will allow a more detailed quantitative 

comparison of the measured and predicted temperat11rP. rlistribution (and rcoulting heat-transfe1· 

coefficient distribution) on the heated element and surrounding enclosure. In addition, a laser/ 

Doppler velocimeter is being developed for measuring the velocity field to compare it with the 

computational results. 
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Figure 20. Predicted Streamlines for 
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Figure 23. Predicted Isotherms for 
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Figure 22. Predicted Isotherms for 
Test Section. 2, FEM. 

2'i"-----· 

T = 19"C 

I 

67° 



Figure 24. Measured and Predicted Temperature 
Profile in Test Section 2 

Conclusions 

'l'he two computational methods for the gerieral class of ,P;roblems. of enclosed thermally 

driven convection yield similar qualitative and quantitative results. Results from ·both methods 

-compare favorably with the measurements of the temperature field made with a laser holographic 

interferometer. This optical measurement technique is shown to be a very·powerful tool; yielding 

simultaneous temper(lture information over the entire flow field. 

The finite-difference method is computationally more efficient than the finite-element method; 

nevertheless, the latter is capable- of handling completely arbitrary two-dimensional geometries. 

The favorable comparisons shown herein lend. confidence to the ability of the ·computational methods 

to produce physically realistic results for various configurations where experimental data are not 

available. 
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