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Abstract

Both gas pressure in bubbles and lateral stress have been suggested

as primary causes of blistering. An analysis of both mechanisms

is presented, and the conditions for blistering are examined. To

realistically predict the gas pressure in bubbles, a recently derived

high-density equation of state for helium is utilized.

It is shown that the formation of overpressurized gas bubbles leads

to a state of stress in the surface layer which is a superposition of a

tensile microstress surrounding the bubbles and a lateral compressive

macrostress across the bombarded layer. When the microstress reaches a

value of 0.003 u for fee metals or 0.009 u for bec metals, interbubble

fracture occurs. These critical values are reached for an implanted

helium concentration between 20 to 40%. The exact value depends to some

degree on the bubble density, the temperature, and the helium to vacancy

ratio.

The lateral stress is shown to saturate prior to the onset of blistering,

but it remains the driving force for blister dome formation once a sufficiently

large area of the bombarded layer is detached.



I. Introduction

Several mechanisms have been proposed to explain the occurrence of

blistering when inert gases are implanted into solids. A review of these

mechanisms and of the experimental observations has been given by Das and

Kaminsky [1] and more recently by Scherzer et al. [2].

Three fundamentally different causes have been suggested for blistering:

formation of an interconnected network of inert gas atoms within the host

crystal; failure of the material surrounding overpressurized gas bubbles;

and buckling of the bombarded layer under large lateral stresses produced

by swelling.

At temperatures where point defects are mobile which have been produced

by the concomitant radiation damage, the inert gas atoms are also believed

to migrate. It has been shown [3] by computer simulation studies that

helium atoms forming half of a mixed interstitial dumbbell are highly mobile

even at moderate temperatures. In any case, numerous studies have confirmed

the existence of small bubbles* so that the percolation model of an inter-

connected network of gas atoms, as advanced by Wilson et al. [4], is no

longer considered as the ultimate cause of blistering.

However, the other two mechanisms, the gas-driven and the stress-driven,

are still viewed as competing explanations. It is the purpose of this paper

to analyse both mechanisms in more quantitative terms, and thereby elucidate

the role of both overpressurized gas bubbles and lateral stresses. The

outcome of the present analysis is that the pressurized gas bubbles are

responsible for the decohesion of the bombarded layer from the underlying

material, whereas the lateral stresses are the driving force for the appear-

ance of dome-shaped blisters.



In the gas-driven model, as particularly championed by Evans [5], the

gas pressure in bubbles is thought to exceed not only the surface tension,

but the fracture s trength of the surroundi ng materia 1 between bubbles.

However, Evajns"bases' his analysis on a very large value of the fracture

stress, about 0.Q6 u (where u is the shear modulus), and an empirical

gas law extrapolated way beyond its data-supported density range.

The quantitative results.and hence the viability of the gas-driven

model, depend to a large degree on a reliable high-density equation of

state. Accordingly, we have recently derived an equation of state for

helium based on its interatomic potential and the very successful liquid

state theories developed over the last decade. Although the details of

this derivation are reported elsewhere [6], the pertinent results are

summarized in Section II. This new equation of state for helium is applied

in Section III to the interbubble fracture model.

In the stress-driven model, suggested by Behrisch et al. [7] and by

EerNisse and Picraux [8], blister formation is seen as a buckling phenomenon

of the bombarded layer in response to large lateral stresses. These

comprassive stresses are caused by swelling and the Uteral restraint

imposed by the underlying material. The implicit assumption in this model

is that the lateral stresses build up steadily until a maximum value is

reached at which point the layer buckles, thereby relaxing the lateral

stresses. However, relaxation of the lateral stresses must occur contin-

uously, and certainly long before the onset of blistering. The reason for

this is simply that only small amounts of swelling, of the order of perhaps

0.2%, can be accommodated by an elastic compression. Yet very large amounts

of swelling have been measured recently [9,10] prior to the onset of

blistering. It must therefore be concluded that plastic deformation or



irradiation creep accompanies swelling. As shown by Wolfer and Garner [11],

and discussed further in Section IV, this leads to an early saturation of the

lateral stress prior to the onset of:blistering. The combined role of

stresses produced by overpressurized bubbles and swelling is finally analysed

in Section V.

II. The Hiqh-Densitv Equation of State for Helium

Empirical equations of state for gaseous helium are restricted to

pressures below 100 MPa [12]. Any extrapolation to pressures an order of

magnitude higher, as required for small gas bubbles in solids, is suspect.

Accordingly, an equation of state for helium in the gas phase was recently

derived [6], utilizing the interatomic potential for helium as found by

Beck [13], and the highly accurate liquid state theory as developed by

Barker and Henderson [14], Anderson, Chandler, and Weeks [15], and further

refined by Verlet and Weis [16]. This theory is also applicable to dense

gases. It is based on h perturbation method, starting with a hard-sphere

gas as a zero-order approximation. The effective hard-sphere diameter, d,

of the atoms is selected such that the higher-order approximations are of

lesser importance. It has been shown [14,15,16] that this approach leads

to excellent results for the equation of state. The effective hard-sphere

diameter, d, becomes a functionof the temperature and density, because the

actual interatomic potential is in fact soft.

Using this perturbation theory to first order, the equation of state

of helium, expressed in terms of



was obtained [6] as shown in Fig. 1. Here, p is the gas pressure, k the

Boltzmann constant, T the absolute temperature, and

p = m/n = number of gas atoms/number of vacancies in one bubble, (2)

is the gas density. For our application, p is also expressed in terms of

helium atoms per vacancy.

The equation of state is plotted as a function of various density

measures used in the literature: the hard-sphere packing fraction

where d = 0.2637 nm is the distance where the interatomic potential iso

zero; the reduced density p = p d|:; and the fraction of the liquid state

density,

where Rm = 0.2969 nm is the equilibrium interatomic dis^nce.

Our theoretical equation of state is in good agreement with experimental
*

data, i.e., for p < 0.3 and z < 1.4.

Due to the softness of the repulsive part of the interatomic potential,

the effective hard-sphere diameter; d, and hence z, decrease with increasing

temperature for a constant density p. Furthermore, z and the pressure p

remain finite as the density approaches either the liquid density or a

complete hexagonally closed-packed arrargement at rPax = 0.7405. In con-

trast, a simple van der Waals gas law with a fixed atomic diameter would

result in a temperature independent z and an infinite pressure for the

maximum packing fraction n^x. It is interesting to note that the helium

density at n ™ x is equal to 6.06 x 1022cm"3, i.e., 89.5% of the metal atom
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density for nickel. At the onset of blistering, the helium/metal atom ratio

is about 0.3. Therefore, inside the bubbles the.helium density approaches

the metal atom density, and may in fact exceed the value for n0 •

III. Stresses Produced by Overpressurized Gas Bubbles

An equilibrium bubble of radius r produces no elastic deformation

in the surrounding material, as the gas pressure p inside is exactly

balanced by the surface tension, Zy/r. Here, y is the surface energy.

For a non-equilibrium bubble, however, stresses are induced in the sur-

rounding material such that

^ c r r (5)

where crr is the stress normal to the bubble surface. Furthermore, y is

now the surface stress, rather than the surface energy. Although this

distinction is important from a conceptual point of view, for practical -

purposes both are numerically of the same order. Experimental evidence

seems to indicate D 7 ] that the surface stress is less than the surface

energy. It will be seen that our conclusions with regard to blistering

are insensitive to the exact choice of the surface stress y, and a typical

value of 1 J/m will suffice. Equation (5) serves as a boundary condition

if the detailed stress distribution in the material is to be computed

around each bubble. Needless to say, we are only interested in average

values of the stresses between bubbles. They can be obtained in a simple

manner by referring to Fig. 2.

We imagine an intersection cut of the material and the bubbles at any

desired location. If the intersection plane is parallel to the surface,

then the overall balance of forces along the cut requires that
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A(p . 2)L) • (i - A)an • (6)

This equation was given previously by Evans [5].

Here, A is fraction of the area intersected by bubbles, and c"n is an

average value for the'microstress field between bubbles.

If we place the intersection perpendicular to the surface, as indicated

by the dotted line in Fig. 2, we must include the lateral stress a^ in

the balance equation, so that

a L + A (p - ̂ r) = (1 - A) an . (7)

Note that the lateral stress c. is obtained by treating the bombarded

layer as an effective continuum subject to swelling and plastic deformation,

a, is therefore a macro-stress, and it will be dealt with in Section IV.

Since the injected helium concentration depends on the depth and time,

all parameters in Eqs. (6) and (7), with the exception of y, are functions

of depth and time.

The area fraction A of intersected bubbles can be related to the bubble

density, Nv, and to the swelling, S, if we make certain assumptions about the

spacial arrangement of the bubbles. We consider two extreme cases.

First, suppose the bubbles form a cubic lattice, as occasionally observed,

and that the intersection plane coincides with a bubble lattice plane. Then,

the aerial density of bubbles, N., is related to the volumetric density by

N V = n\
n . (8)

As the second case, we consider a random arrangement of the bubbles,

in which case [18]

NA - Nvr (9)



provided a l l intersected bubbles have about equal radius. The area fraction

A = irr

and the swell ing

A = irr-NA (10)

S = ^ L r 3 f ! v (11)

can now be related with the use of Eqs. (8) and (9) . For a bubble la t t ice ,

one finds

A = (3/ iF/4)2 / 3 S 2 / 3 = 1.209 S 2 / 3 , (12)

and for the random bubble arrangement, one obtains simply

A = | S . (13)

Next, we relate the gas pressure in the bubbles to the helium

concentration and the bubble density. This is accomplished by multiplying

the gas law

p ^ - r 3 = mkT z(p,T) (14)

with Ny and by introducing the helium/metal atom ratio

where G is the atomic volume of the metal atoms. In the following, it will

be assumed that only a negligible fraction of the helium atoms is not in

bubbles. f H e is then equal to the implanted helium concentration expressed

in parts per metal atom. Equation (14) can then be written as

pS = fHe z(P»T)kT/« . (16)

From the balance equation (6), we can then finally obtain the micro-

stress as given by
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T = {fHe z § " T

where

* 1.209

F(S) =
S1 /3 - 1.209S

for random bubbles

1 for a bubble lat t ice .
4/3 - S

(18)

Equation (17) has been written as much as possible in terms of dimensionless

parameters, such as the lattice strain <?n/u» the helium/metal atom ratio

fHe, and y/u- The advantage for doing this is that y/u and Tm/u are roughly

equal for all metals; here T_ is the meltinq temperature. Therefore, the

results given below are applicable to most metals including nickel which has

been used as a typical representative.

In order to evaluate Eq. (17), we use Eqs. (11) and (15), and relate

swelling to the implanted helium concentration, i.e.,

S - fHe/p (19)

where p is the helium density in the bubbles. St-Jacques et a l . , [10]

have recently measured the swelling during helium implantation into Nb and

found that

S = (1.1 + 0.1)fHe .

This implies that the helium density in bubbles remains constant during the

implantation at a ratio of about one helium atom per vacancy.

In general, however, p may change during the bombardment, so we have

chosen a few values of p around one, and computed the lattice strain 5 /u as

a function of fHg. Typical results are shown in Figs. 3 and 4 for the

case of nickel at T = 500 K and with a bubble density of 1017cm"3. It is
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seen that the lattice strain in between bubbles steadily increases with

the concentration of implanted helium, and rupture of the material becomes

imminent.

In order to determine the critical helium concentration for rupture and

blistering, we must define the fracture condition. Evans [5] has selected

the ultimate theoretical strength of solids as the fracture criterion. We

believe that this is much too high because failure of materials even at

cryogenic temperatures occurs at a lower stress. According to the recent

review on fracture mechanisms by Ashby and co-workers [19,20], the ultimate

tensile strength determines both the ductile transgranular fracture of fee

metals, and the transgranular cleavage fracture of bec and hep metals.

Therefore, the ultimate lattice strain for fee materials is typically

5n/\x = 0.003 [19], and for bec materials three times larger [20]. Since

bubble lattices are predominantly found in the bec refractory metals, we

select a failure stress of c?n = 0.009 u for the bubble lattice, and an = 0.003 v

for random bubble arrangement.

Critical helium concentrations at the onset of blistering, obtained in this

manner, are shown in Figs. 5 and 6 as a function of the helium per vacancy

ratio, and for bubble densities varying over two orders of magnitude. It is

seen that the predicted critical helium concentration for p = 1 is around 20%

to 40% of the metal atom density, in agreement with the experimental findings.

In addition, however, the critical helium concentration is not strongly

dependent on either the bubble density or the helium density in the bubbles

as long as it is below the ratio of one helium atom per vacancy. The insensitivity

to the bubble density implies that the surface tension plays a minor role in
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opposing the gas pressure. The weak dependence on the helium/vacancy ratio

for values smaller than one can be explained as follows. As p decreases,

the gas pressure is reduced, but at the same time, the load-carrying area

(1-A) is also decreasing because the bubble volume goes up. As a result,

5n/u remains roughly constant.

This conclusion would had been different if we had used a gas law with a

fixed atomic diameter for helium. Then, the critical concentration would have

been between 4035 and 4% as p is increased from 1/4 to 1. It is therefore

crucial to use an equation of state which accounts for the soft interatomic

repulsion between helium. In other words, it is important to recognize that

helium gas can be readily compressed at high temperature to liquid densities.

IV. Lateral Stresses Produced by Swelling

The swelling produced by the implanted gas is restrained in the lateral

direction, i.e. parallel to the surface, because the thickness of the layer

implanted is very small compared to the thickness of the entire sample. We

may therefore approximate the real situation by a semi-infinite medium.

The sum of all the strains, elastic, swelling, plus plastic, must then

always remain zero in the lateral directions. For an isotropic material,

the lateral stress components in two orthogonal directions are equal.

Hooke's law for the elastic lateral strain in any given direction can be

written as

EeL = (l-y)aL (20)

where £ is Young's modulus and v is Poisson's ratio. The inelastic strain

rate in the lateral direction is the sum of the swelling rate, S, and the

plastic deformation rate tya./3. From the condition
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-0 i t (21)

follows with equation (20) that

aL + -^JJ [S + !{oL] = 0 . (22)

Assuming that S and TJ; are independent of time and stress,

aL(t) = -(S/\j;)[l - exp(- | f e j y ) 3 . (23)

For a short time, o, (t) can be approximated by

rrSt (24)

and the stress builds up in proportion to the swelling. However, the increasing

compressive stress eventually activates plastic deformation processes, and

a saturation level is reached,given by

<*L(-) - -S/4» . (25)

This analysis is strictly valid only for irradiation creep, as i t is linear

in the stress. Thermally activated creep and plastic flow are highly nonlinear

in their stress dependencies. Nevertheless, the above result remains qualitatively

valid even for other deformation processes; namely, the stress rise is

initially linear with swelling or helium fluence with a slope equal to

E/[3(l~v)], and later on follows a declining rate of increase. If plastic

flow is the mechanism for stress relief, the stress versus swelling or helium

fluence will look like a stress-strain curve in a compression experiment under

constant strain rate. In this case, the maximum lateral stress is expected

to be equal to the ultimate stress for compression.
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If the irradiation creep rate were the controlling stress relief mechanism,

then the maximum lateral stress would be given by Eq. (25). An estimate of

its value for austenitic stainless steels can be obtained as follows.

The radiation damage accumulated at the onset of blistering is of the

order of a 100 dpa. The irradiation creep strain rate over this dose range

is estimated to be [21]

e s (26)

for stainless steel irradiated at T < 700 K. Taking a value of 30% for

swelling at the onset of blistering, we find according to Eq. (25) a maximum

lateral stress of

c L = - 0.025 u (27)

which is about an order of magnitude higher than both the yield stress

or the ultimate stress.

Irradiation creep is therefore not a significant stress relief mechanism,

unless it is at least an order of magnitude larger for helium bombardment

than for neutron bombardment. In any case, however, the lateral stress is

expected to reach.values of the order of the ultimate stress prior to the

onset of blistering.

V. The Combined Role of the Stresses

As shown in the previous sections, gas bubble swelling generates both

the microstress an in between bubbles as well as the lateral macrostress

aL> Whereas the direction of the latter is everywhere parallel to the surface,

the former encircles the bubbles, so that the two superimpose as indicated

in Fig. 2. On parallel intersection planes, the two stresses are orthogonal

to each other and combine to give a maximum shear stress. Since failure is
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due to plastic shear of the material in between bubbles, the lateral stress

can contribute to the onset of blistering.

On the o-her hand, on perpendicular intersection planes, the two stresses

are parallel, and oppose each other. The magnitude of the net stress depends

on the rate of stress relief for a, . At low temperatures where plastic

flow or irradiation creep are the dominant deformation processes, a^ is of

the same order as an, and the two stresses nearly cancel each other.

At high temperatures, thermal creep provides an effective relief of

the lateral stress, and a, is expected to be small. Contrary, an is not -

relaxed by thermal creep. Although it promotes bubble swelling and thereby

reduces the gas pressure, it reduces at the same time the load-carrying

cross-section (1-A) of the material in between bubbles. Therefore, as

mentioned earlier, oV remains nearly unchanged. At high temperatures,

interbubble fracture can then also occur on perpendicular intersection

planes. In this case, gas can be released to the surface without blistering.

This may be a factor for the lack of blister formation at high temperatures.

The blisters that form at lower temperatures often assume the shape

of spherical caps, and it is found that the diameter D of the blister base

and its thickness tb are related by

D - (28)

where m has been reported to be equal to 1.5 [22,23] or ranging from 0.85

to 1.25 depending on the metal [24]. The relationship (28) with m = 1.5

has been considered as strong evidence [8,22,23] that blistering is caused

by the lateral stress, or rather by its integrated value, the compressive
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load per unit length. As we have seen, the lateral stress reaches a saturation

value prior to the onset of blistering. Therefore, the critical helium dose

is clearly determined by the microstress a .

The blister formation must then be considered as a two-stage process:

decohesion of the bombarded layer starts at the depth, tu, of maximum 5 .

Once initiated, the penny-shaped crack that forms spreads until a diameter

0 is reached where the buckling condition [23]

(29)

is satisfied for the already existing lateral load

*b
P = - J a d t . (30)

o "- u

Some refinement of this simple buckling model may be desirable to

include a gradient of a. , i.e., a bending moment, as well as connecting

ligaments between the otherwise detached layer and the underlying material.

It is expected that these refinements will give values of m somewhat

different from the classical value of 1.5.

In summary, our analysis of the role of gas pressure and lateral stress

essentially confirms the major conclusion reached by Evans [5], namely that

the gas pressure in bubbles is the prime initiator of blistering. However,

in contrast to Evans, we assign the lateral stress a significant role in the

formation of the blister domes. Furthermore, the lateral stress is also the

driving force for the extrusion of the swelling layer in the direction per-

pendicular to the specimen surface.
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