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INTRODUCTION 

The.high temperature chemistry of hydrocarbons i s  an important f i e l d  

of research. due t o  the relevance t o  a number of areas of energy production 

as well as the environmental impact of these energy sources. The complex 
chemistry of hydrocarbons a t  high temperatures i s  of v i ta l  importance t o  com- 

bustion, high temperature pyrolysis, and conversion processes. The formation 
of carbon or par t icu la te  matter in hydrocarbon-rich hi.gh temperature systems 
a lso  appears' t o  be control led by these processes,. While i t  i s  known t h a t  a 

large s u i t e  of aromatic hydrocarbons a r e  farmed d i r ec t ly  from complex fuels  

such as coal, they are  a l so  known to  r e su l t  from gas'phase reactions of much 
simpler fuels  under turbulent combustion conditions. Indeed., there  has been 
much discussion .in the  l i t e r a t u r e  on the ro,les of various organic rad ica ls ,  

polycycl i c aromatic hydrocarbons-, and pol yacetyl enes as probable precursors 

to  soot formation. (See fo r  example References 1-6.) 

Whi-le the importance of the intermediates, reactions,  and products of 
the h,igh-temperature pyrolysis of fue ls  i s  obvious, there  have been re la t ive-  

l y  few studies  of such h i  gh-temperature (>1 2 0 b 0 ~ )  pyrolyses . Additional l y ,  
very few studies  have involved fue ls  more complex than methane7 and acetyl ene8. 

The reasons fo r  the  paucity of data are  related t o  the technical problems i n  

carrying out such pyrolyses a t  high temperature in a meaningful manner, and 

the requirement of universal detection f o r  a variety of unstable and s tab le  
molecules . 

Modulated molecular beam mass spectrometric methods are  uniquely suited 
f o r  such measurements of high temperature vapors. Radicals and other reac- 
t i ve  species can be detected w i t h  as  nearly equal ease as s t ab le  compounds. 
The techniques of low energy electron impact and phase angle spectrometry 
allow one t o  determine the molecular weight of most species in even relat ive-  

l y  complex mixtures. The chemical processes in the reaction ce l l  can be ob- 

served as a function of temperature and/or pressure to  determine f i r s t  order 

and second order r a t e  data. Additionally, many detai ls '  of the reaction 
mechanism can be unravel led usi ig appropriately 1 abel 1 ed isotopic compounds. 

The combination of these techniques provides a p-owerful tool for  the invest i -  
gation of aromatic hydrocarbon chemistry a t  high temperatures. 



EXPERIMENTAL 

Figure 1 gives a schematic i l l u s t r a t i o n  of the  high-temperature furnace- 
modulated molecular beam mass spectrometer used i n  this work. The h i g h -  

temperature furnace i s  capable of heating a Knudsen ce l l  t o  temperatures of 

3000°C. The gas i n l e t  consis ts  of a 0.16 cm I,.D. tube, press f i t  in to  the 
cap of the tungsten Knudsen.cel1 and a Swagelok connection to  the gas i n l e t  

l i n e  ou t s ide , the  high-temperature zone. 

The temperature of the radiatively-heated Knudsen ce l l  i s  monitored us- 
ing thermocouples, optical pyrometry, and a Hall Effect watt transducer. 
The temperature may be s e t  manually or  programmed remotely. Species flowing 

from the  Knudsen ce l l  pass through a se r i e s  of holes in the heating element, 

heat shields ,  and cooling jacket. A pressure of 10" t o  1 0 ' ~  t o r r ,  depend- 
ing upon the pressure in the Knudsen c e l l ,  i s  maintained in ' the high-tempera- 

tu re  furnace region using a turbomolecular pump. The en t i r e  high-temperature 

furnace assembly may be moved i n  a plane perpendicular t o  the molecular beam, 

using a s e t  of micro s l ides ,  t o  allow precise positioning of the furnace rela-  
t i v e  to  the molecular beam skimmer (used f o r  beam collirnation). The molecular 

beam i s  modulated using a rotat ing toothed wheel and passes through a mass 

spectrometer ion source. Modulation of the beam allows the complete elimina- 
t ion of background species from the mass spectra.  

The modulated beam i s  analyzed using one of two interchangeable Extra- 

nuclear quadrupole mass spectrometers. For highest s ens i t iv i ty ,  the ax ia l ly  
mounted mass spectrometer may be positioned w i t h i n  1.5 cm of the  chamber di-  
vider (or  approximately 7 cm from the Knudsen c e l l ) .  This mass spectrometer 
may a lso  be moved back approximately 15 cm t o  allow the application of phase 

angle spectrometry (Figure 1 ) . In phase angle spectrometry, the  phase s h i f t s  
resul t ing  from the mass-dependent f l  ight  times of molecular species between 
the chopper and ionizer allow one t o  determine the molecular weight (often 

to  25%) a f t e r  cal i bration w i t h  known species. A1 ternat ively,  the  molecular 

beam may be analyzed using a second mass spectrometer operated i n  the crossed- 
bean mode (Figure 1 ) ; this has the advantage of a great ly  reduced noise level 

a t  high temperatures. Additional de ta i l s  of the experimental arrangement 

have been pub1 l shed. 



ANALYSIS OF MASS SPECTROMETRIC DATA 

To ident i fy and determine the r e l a t ive  concentrations of the various 
hydrocarbon species i s  a complex task requir ing a combination of mass spec- 
trometric techniques. The primary problem which has to  be overcome in  ob- 

taining concentration profi les  i s  distinguishing parent ions of the various 
pyrolysis products from ions formed by fragmentation of la rger  species,  par- 
t icul .ar ly  those fragment ions of the molecular ion. Mass spectra of the 

products of hydrocarbon pyrol ysi  s a r e  typical 1 y recorded a t  several di f f e ren t  
electron energies (e.g., 10, 12, 14, 15, 17, and 25 eV) a t  small pressure 

inc'rements, and a t  small temperature increments while slowly heating the re- 
action ce l l  f o r  both the tungsten and quartz c e l l s .  An example of the raw 

data obtained f o r  pyrolysis of benzene a t  t o r r  i n  a 3 mm o r i f i c e  Knudsen 
ce l l  using 15 eV electrons i s  i l l  ustrated i n  Figure 2. A t  1 200°C, C 6 H 6  ac- 

counts for  nearly 98% of the to ta l  phase sens i t ive  signal (from the lock-in 
amplif ier) .  Over a period of about 40 min, the temperature was ramped t o  

1900°C. Above 1200°C pyrolysis of the benzene molecule becomes important and 
C,H2 and C 2 H 2  neutral products a r e  detected readi ly as  t h e i r  molecular ions O I 

(Figure 2) .  One should note tha t  the raw data given i n  Figure 2 i s  normalized 

and excludes the correction f o r  a background of benzene which becomes sub- 
s t an t i a l  in the furnace chamber resul t ing i n  a small modulated component even 
a t  temperatures where the benzene i s  essent ia l ly  t o t a l l y  pyrolyzed in the c e l l  
(>1840°C). A correction fo r  t h i s  background signal i s  simple, and a t  low elec- 
tron energies, i s  necessary only f o r  the molecular ion. 

The addition o'f computer control of the mass spectrometer and computer- 
ized data acquisit ion and hand1 i ng has great ly  enhanced practical capabi 1 i t i e s  

of the apparatus while great ly  reducing analysis time. For example, data 

s imilar  to  tha t  presented i n  Figure 2 can be generated f o r  a l l  products of 
benzene pyrolysis. The to t a l  experiment time i s  l e s s  than l . hour .  Similar 

reductions in analysis time are  noted in the cal i bration experiments, appear- 

ance potential measurements, and treatment of the data t o  ex t rac t  kinet ic  in- 

formation. 

Since many of the products of hydrocarbon pyrolysis coincide with frag- 

ment ions o f t h e  molecular ion, a methodology had to  be developed to  d i s t in -  

guish parent and fragment ions. The fragmentation pattern fo r  most hydro- 



carbons, in contrast t o  the assumption commonly employed in high-temperature 

mass spectrometry, was found to be highly temperature dependent. For example, 
for toluene a t  room temperature, the only detectable fragment ion a t  17  eV i s  

C7H7+. However, a t  1200°C, C 3 H 3 + ,  C 4 H 4 + ,  C 5 H 5 + ,  and C7Hs+ fragment ions are 
also observed in abundances comparable to ions resulting from the correspond- 
ing neutral species. 

To resolve th is  problem, i t  i s  necessary to work a t  sufficiently low 

electron energies to avoid contributions by fragmentation to a given m/e ra t io ,  
while maintaining an electron energy sufficiently h i g h  to obtain the desired 

sensitivity. The most useful tool in th is  regard i s  phase angle spectrometry, 

which a1 lowed an unambiguous determination of the molecular weight ( t o  25%) 

of the neutral precursor of a given ion (in the effusive flow range). For 
cases where the resolution of phase angle spectrometry i s  insufficient t o  re- 
solve parent and fragment ions (e.g., C 4 H 3 +  from C 4 H 3  or C 4 H 4 ,  or C 7 H 7 +  from 

C7H7 or C7H8 for toluene), i t  i s  necessary to rely on the behavior of the 
relative ion intensit ies as a function of electron energy. 

The measurement of appearance potential s (A.  P. Is) for various species in 
the high temperature spectra also aids interpretation. These measurements, 
however, must be used with care since different methods of data analysis 
(e. g . ,  the extrapolated voltage difference, 1 inear or semi1 ogari thmic methods, 
etc. ) may give different results.  These differences may result from a combin- 
ation of factors which include the convolution of A . P .  curves from both par- 
ent and fragment ions, the possibility of unsuspected radicals and isomeric 
structures a t  high temperatures, and the increased size of the A.P.  curve's 
thermal "foot" near threshold a t  increased temperatures. A typical s e t  of re- 

sul ts  for A.P.  measurements as a function of temperature using the linear ex- 

trapolation method are given in Figure 3. This figure gives the A . P .  ' s  for 
C7H7+ and C7H8' in to1 uene. The results  for the C 7 H 8 +  molecular ion remain 

re1 iable whereas the results for  the C 7 H 7 +  species reflect  the various contri- 

butions discussed above. These results,  however, do provide clear support 
for the existence of a C 7 H 7  radical a t  temperatures above 900°C in toluene. 
Good agreement ( t o  20.5 eV) with 1 i terature values i s  usually obtained in the 

absence of these problems. 

The relative concentrations obtained as described above must then be 
corrected for ionization, transmission, and detection efficiency a t  the ap- 



propriate temperature, pressure, and electron energy. Direct ca l ibra t ion  i s  

possible in some cases; however, one must ultimately resor t  to  empirical 
methods or estimated values fo r  these corrections in the case of most radi- 

cal s .  In these cases, cal i bration has ut i  1 ized compounds having a (hopeful 1 y )  

s imilar  s t ruc ture  (or  a t  l e a s t  molecular weights) and ionization cross sec- 
t ions.  For example, C 6 H 6  was used fo r  C 6 H 5 ,  and C 3 H 4  f o r  C 3 H 3  cal ibrat ion.  
Ionization and transmission efficiency of the high-temperature species and 

the cal ibrat ion compound a re  typical ly  measured, under s imilar  conditions i f  

possible, a t  2 o r  3 eV above the measured appearance potent ial .  In this man- 

ner i t  i s  believed tha t  the  r e l a t ive  concentration of species in the high 

temperature region can be determined w i t h  an uncertainty of l e s s  than 230%. 

Relative concentrations as a function of temperature a re  be.1 ieved to  be good 
to  be t t e r  than +lo%, since these data a re  derived d i r ec t ly  from re l a t ive  ion 
currents.  

Comparison of r e su l t s  fo r  tungsten and quartz Knudsen c e l l s  with 2 mm 
diameter o r i f i ces  have shown only very minor differences in the observed con- 
centrations.  C,H, did seem to  be produced from toluene i n  greater  concentra- 

t ions in the tungsten ce l l  (by a fac tor  of about 1.5);  however, the minor d i f -  
ferences appear not to  suggest contributions due t o  heterogeneous ca ta lys is .  
Measurements of the unimolecular r a t e  constants in both c e l l s  show no d i f f e r -  
ences outside of experimental s c a t t e r .  Additionally, there  i s  l i t t l e  evidence 

of darkening or  surface deposits in the c e l l s  even a f t e r  many hours of opera- 
t ion a t  high temperatures and pressures of I c - ~  t o r r  fo r  most compounds. Also, 

the formation of a surface depos'it by pyrolysis (of benzene or  isopropyl 
iodide) did not a f f ec t  product d is t r ibut ions  or  reaction ra tes .  (The forma- 

t ion of a black "sooty" film was observed on and around the beam skimmer for  
a l l  high-temperature experiments, suggesting the polymerization of react ive 

species on the cool surfaces.)  Col lec t ive ly ,  these observations suggest tha t  
the nature of the surface i s  not important in the high-temperature pyrolysis 

of aromatic hydrocarbons. Other workers have suggested tha t  ca ta lys is  i s  
rarely important under the conditions of high temperatures and 1 ow pressure. ' 



RESULTS AND DISCUSSION 

The concentrations of the major products (excluding H2 and H in the py- 

ro lys is  of tol.uene) as a function of temperature a t  approximately t o r r  
total  pressure a re  given in Figure 4. Figures 5 and 6 give the concentra- 
t ions of several of the major pyrolysis products as a function of pressure a t  
q280°C. In these f igures ,  the a rb i t r a ry  pressure scale  ranges from, and i s  

proportional t o ,  approximately lo-' to .  lo-' t o r r  a t  the low pressure to  ap- 
proximately t o  lo-' t o r r  a t  the high pressure. A t  low pressures the 

1 
residence time in. t h i s  ce l l  i s  calculated to  be 3 x sec,  where M 

.and T a re  'the molecular weight and temperature. 

The pyrolysis of toluene can be used as  an example to  i l l u s t r a t e  the po- 

t en t i a l  of the present approach f o r  the study of high-temperature hydrocarbon 
chemistry. The mechanism f o r  the high temperature pyrolysis of toluene a t  
low pressures deduced from the present work may be summarized as follows: 

A t  higher pressures we have also found evidence (from experiments 

using isotopical ly  labelled compounds) suggesting the following reactions: 

where (3H) re fers  to  3H or  H Z  + H. 

~eactichn 1 i s  the only unirnolecular reaction of toluene observed in 

t h i s  work. HI; a l t e rna te  decomposition pathway suggesled by number of 



workers a t  one time o r  another i s  unimportant in our experiments a t  tempera- 

tures  below 1400°C. 

The concentration of C ~ H S  a t  low pressures indicates t h a t  the r a t e  of reac- 

t ion 1 i s  a t  l e a s t  200 times greater  than reaction 11, in s p i t e  of the simi- 

l a r  act ivat ion energies predicted f o r  these reactions.  

These and s imilar  experiments a r e  providing the f i r s t  r e l i ab le  d i r ec t  

analysis of the products of hydrocarbon pyrolysis a t  high temperatures. I t  
should be noted t h a t  the la rge  majority of previous work was car r ied  out 

under quite d i f f e ren t  conditions, a t  higher pressures and lower temperatures 

than  described in t h i s  work, aGd some differences a re  to  be expected. While 
qui te  d i f fe rent  mechanisms may function a t  higher temperatures, t h i s  i s  prob- 
ably unusual since we ha.ve ye t  to  f ind c l ea r  evidence of t h i s  on the basis of 
comparison t o  previous s tudies .  The few previous mass spectrometric s tudies  
of such systems" .I2, have suffered from the absence of beam modulation tech- 

' niques i n  addition t o  numerous other d i f f i c u l t i e s .  

The bulk of previous work on hydrocarbon pyrolyses using conventional 

flow reaction techniques roughly corresponds to  our s tudies  a t  higher pressures. 

The product d is t r ibut ions  observed a t  higher pressures a re  somewhat d i f fe rent  
from previous r e su l t s  due t o  the d i r ec t  mass spectrometric sampling technique. 

In the present study, radicals  and unstable molecular species a re  detected 
with nearly equal ease. For example, in ear ly work on the pyrolysis of 

to1 uene Szwarc reported bi benzyl ( C I 4 H 1 4 )  a s  the only higher molecular weight 
product. l 3  Later workers have reported additional products, most of which 

correspond t o  s tab le  species observed in our studies fo r  toluene. The com- 
pounds which appear t o  have no corresponding product in our study (ethyl ben- 
zene, methyl biphenyl, s t i lbene ,  benzyl toluene, dimethyl diphenyl, and methy- 

chrysene) a re  most l i ke ly  manifestations of the much higher pressures used i n  

previous s tudies .  The higher pressures allow rapid s tab i l iza t ion  of reaction 
products in th i rd  order processes which might otherwise dissociate  o r  el imin- 
a t e  one or two hydrogen molecules a t  low pressures used in the present work. 

The radicals  observed in the present work would react fur ther ,  ultimately 
producing stab1 e mol ecul es and perhaps contributing to the coll  ection of un-  
analyzed hi yti ~ ~ ~ o l e c u l d r  wei y h t  products ( t a r )  frequently reported in conven- 

. tional flow reaction studies.  

- 7 - 



The concentration profi les  as a function of temperature (e.g. ,  see Fig- 

ure 4)  provide considerable. insight into the nature of hydrocarbon s tab i l  i -  

t i e s  a t  high temperatures. For toluene, the maximum concentration fo r  a l l  

products of higher mol ecular weight than to1 uene a r e  observed between 1 300°C 
and 1400°C. Apparently, a t  temperatures higher than 1400°C, most la rger  
species, or  the radicals  necessary fo r  t h e i r  formation, a re  increasingly un-  
s table .  A t  temperatures above 1700°C, no species heavier than C 6 H 6  are  ob- 

served a t  any pressure. 

A t  the higher temperatures, another interest ing phenomenon becomes evi- 
dent. Above 1500°C and a t  higher pressures, we find tha t  the products become 

dominated by species containing even numbers of carbon atoms (C2 t o  C 1 2 ) .  

Even the CH3 concentration decreases, apparently due to  reaction w i t h  other 
species containing odd numbers of carbon atoms. I t  should be noted tha t  re- 
action of two C H 3  molecules i s  suf f ic ien t ly  exothermic tha t  the products 

C 2 H 2  + 2H2 are thermodynamically allowed. 

Most mechanisms postulated for  the formation of soot in combustion 
processes involve e i the r  hydrocarbon radical s , polyacetyl enes (CzXH2), o r  

polycyclic aromatic hydrocarbons. The present r e su l t s  a re  of in t e re s t  i n  

t h i s  regard: each of these a re  formed readily and rapidly i n  the .pyro lys is  
of the simple aromatic hydrocarbons examined. As shown i n  the f igures ,  a 

number of react ive radicals  a re  formed in the high temperature pyrolysis of 
toluene. In addition t o  the s tab le  hydrocarbon products observed in t h i s  

work (and observed previously by other workers), we have a'lso observed poly- 
acetylenes. Polyacetylenes are major species i n  acetylene and benzene 

are  formed in lesser  amounts in the thermal decomposition of 

acetylenee, and have been postulated t o  be important species i n  carbon forma- 
t ion in flames.'-" 

While we have observed polyacetylenes up to  C e H 2 ,  these species are  pres- 
ent in re la t ive ly  low abundances, and .if react ive,  form species other than 

higher polyacetylenes. The maximum concentrations of polyacetylenes in t h i s  

work were observed a t  1350°C. A t  higher pressures, the C 6 H 2  and C 4 H 2  concen- 
t r a t ions  continued to increase (possibly due to  contributions from pyrolysis 

of C 6 H 4  and C 4 H 4 ) ,  while C e H 2  decreased, suggesting t h i s  species i s  qui te  

reactive.  



The formation of polycycl i c  aromatic hydrocarbons (PAH's) and t h e i r  cor- 

responding radicals  ( in  many cases) occurs readi ly,  requiring only a few gas- 

.gas eol l  is ions.  The possible role  of these species in carbon formation. dur- 

ing combustion has been postulated by many workers. The PAH's a r e  of in t e re s t  

in themselves since most a re  known t o  be combustion products and many are  
mutagenic. The f a c t  tha t  species a r e  readily formed under low pressures and / 

a re  s tab le  a t  high' temperatures i s  consis tent  with t h e , f a c t  tha t  they a re  known 

combustion products for  nearly a l l  fuel rich or  turbulent systems. 
L 

Very l i t t l e  i s  known about the st.ructure.and reac t iv i ty  of many o f , t h e  
radical s observed a t  higher temperatures. The simp1 e r  ' radicals,  C H 3 ,  C 3 H 3 ,  

and- C 4 H 3 ,  a r e  observed i n  C 2 H 2  comb~s t ion . ' -~  - Other species observed in acetyl-  
ene flames, such as C 2 H  and C H 2 ,  were not detected i n  this work. The s t ructures  

of other radicals  such as C s H 3  and C 7 H 5  a re  cer ta in ly  open to  question. For 

heavier radicals  (such as  C e H 7 ,  C 9 H 7 ,  C l l H 7 ,  C l l H 9 ,  C 1 2 H 9 ,  e t c . )  many isomeric 
s t ructures .can be postulated and probably e x i s t  f o r  these high temperature 
processes. 

These experiments a re  presently being extended to  include a wider range of 

aromatic compounds and t o  examine the species condensing and polymerizing on 
cool surfaces outside the reaction c e l l .  
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FIGURE CAPTIONS 

Fig. 1 

/ 

Fig. 2 

Fig. 3 

Fig. ' 4  

Fig. 5 

Fig. 6 

Schematic i l l u s t r a t i o n  of the high-temperature Knudsen ce l l -  
modulated molecular beam mass spectrometer constructed for  these 
s tudies .  For precise a1 ignment, the en t i r e  furnace assembly may 
be mo.ved. about the plane perpendicular to  the mol ecul a r  beam. 

Normal ired phase-sensitive signal in t ens i t i e s  ( to t a l  signal = 
100%) fo r  the  major species in the pyrolrs is  of benzene f o r  
15 eV electron impact ionization and 10- t o r r  pressure ( a t  
1200°C) in a tungsten Knudsen ce l l  having a 3 mrn or i f i ce .  

Apparent appearance potent ials  measured using the l inea r  extra- 
polation technique f o r  m/z 91 and m/z 9.2 in toluene .as  a func- 
t ion of temperature. 

Concentration as a function of temperature f o r  the  major products 
of toluene pyrolysis a t  a pressure of approximately t o r r .  

Concentrations of C 7 H 8 ,  G a H 7 ,  C2H.2, and CHJ  in a quartz Knudsen 
ce l l  a t  1280°C, as  a function of pressure. 

Concentrations of C 7 H 6 ,  C 7 H 5 ,  C6HP,  C d H 5 ,  C 4 H 2 ,  C 3 H 3 ,  C Z H b y  and 
CH3 i n  a quartz Knudsen ce l l  a t  1280°C, as  a function of 
pressure. 
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