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'Magnetic excitations above the

-critical temperature
Paul Arthur Swanson

Under the supervision of Saﬁuel H. Liu
From the Department of Physics
fowa State University
‘In this work, a new approach has been developed to obtain an
appfq&imate expression for the'dynamical spiﬁ correlation function.
This involves the expansion of the dynamical cérrelation fﬁnétion in a
Taylor series in powers of the time whose coefficients are equal to
bébgressively higher order static-multiplé sbin correlation functions.
The lowest order coefficfents in this series expansion are ;heh evalua-

ted through the use of a decoupling scheme which explicitly takes into -

"‘account. positional spin correlations above the critical temperature. As.

a consequence of this method, whéq r< q-l'éjl where r is the range of
the excﬁénge'interactioﬁ;.k Is the iwd-spin correlation length, and

q is the wave vector of thé spin fluctuationé,féhé dominant contribution
té these coeff{cients is found to be caused by spih clusters involving

strongly correlated spins. The degree of‘local‘order in this spin

"-system is measured by a time-independent local order pérameter' pij’ 

the static two-spin correlation function. The resulting expressions for

‘the zeorth first, and second order coefficients are incorporated as

leading terms in a resummation that is used to obtain an approximate

,ler a discussion of local order in 6he dimensional magnéticlsystemS'
see F, B, McLean and M. Blume, Phys. Rev. B7, 1149 (1973).




expression for the Fourier transform of the dynamical spin correlation

function, G(a,w) which is proportional to the inelastic neutron magnetic
scattering cross section. When q-] <A distinct peaks appear fn the
line shape of G(a,w) when y is held constant and q is yariéa. These
peaks occur at é =+q where w(qo) ;-w, which i; the frequency of a
spin wave of wave vector 9, The positions of the;e spin wave‘peaks
compare favorably-with the experimental data on Ni (Tc = 631 K) §b;ained

by Mook, et 1.2 in the temperature region between 656 K (TC + 25 K) -

| 706 K the experimental and theoretical FWHM have the same slope how-
ever outside this region pronodnced discrepancies occur which can onfy

be accounted for by a more refined theory.

- 3 i _ | | . .
_ ‘7§7A5 Mook, J. W. Lynn, and R. M. Nicklow, Phys. Rev, Letters 30, 556
3 ¢ : E ' 4 ' . V .




-linear combinations was demonstrated by Slater

G

Correct but also that Van Kranénddnkrhadhgve};éSffmated thé_intefaciidn '

I. INTRODUCTION

In examinfng the low fémperaturé thermodynamic behavior oflferro-
magnété Bfoi::h"2 found that the eigenfunctions corresponding t§ the
excitatioﬁs from the ground state of the exchange Hamiltonian were not
characterized by states involving one!spin'reversal but rather by a
linear éombinétion of these states each cont#infhg a spin feversal focat-
ed at a different magnetic ion s}te. The wave nature of these proper
3 in showing that the
quantum mechanical problem of one spin reversal could.be exactly solved.
Thus physically a Spin wave méy be viewed as a spin revgrsal.propagéting
through the crystal via exchange.fnteraétions be tween neighboring spins.

in Bloch's calculation it was assumed that the number of spin waves

excited at low temperatures was so small that all interactions befween

them could be neglected, and consequently the low-lying excited states

ina ferromagnet could be adequatély apbfoximated by a linear supef—'

position of these sinusoidal spin'waves.

4 .
Early attempts 25 at studying deviations from Bloch's theory due
to spin wave interactions seemed to indicate that the region of validity
for spin wave theory was closely confined to. temperatures near absoiute -

Zero (~0;ITC). .This-rgsult was obtained by Van Kranéndonk6’who'anaiyzed R

© Spin wave interactions within the framewark of a gas_df spin deviétion;

loteractjng via a hard core potential. Dyson,7_’8 on the other hand,

in studying the interaction between two spin waves not only found that

the l?near superposition principle discussed by Bloch was nofﬂquite




between spin waves., He distinguished two types of these interactions.

The first is a consequence of the nonorthogonality of the spin wave
states containing more than one spin wave and is cailed the kinematical
interaction. This is a repulsive interaction whose physical significance
is that no moie than 2S units of spip can be attaéhéd to the same ioﬁ
simultaneously. The other interaction arises from the.fact that the
exchange Hamiltonian is not diagonal in these states. This is called the
dynamical interaction which causes a shift in the spin wave energy due
to the presence of other spin Qaves. Dyson has shown that the kinemati-
cal interaction makes no contribution to the fempefature expansion of

the magnetization toAfinite order. The leading term in this éxpansion.
goes as T3/2 and_is produced by the- linear spin wave theory developed by
.Bloch. . The Iéading term caused_by-dynamical spin wave interactions is

 of order T“ which implies that even the dynamical interaction is smali.
at low T. Eufthermqre, at’ temperatures up fo Q.STc where Tc is thg turie
témperature it was found that the ‘linear, nonin{erécting séin wave
.theory discussed by Bloch was quite adequate in describing the behavior

: bf Helsenberg ferromagnets. lhe physical implications of Dyson's

3 who obtained the Tu

apprbaéh have been diﬁcussed by Keffer and Loudon
.contribution to the'magnetization by assuming tha; whén spin waves are
excite& at low temperatures they are superimposed oﬁto_the insfantgneous
background.of spin wave fiuc;uation already existing in the system.
Dysonis_kesuits hayé been approximately reproduced bf Oguchilo who used

11

the Holstein-Primakoff formalism, ' in which the spin operators are -

written in terms of the creation and annihilation operators of the
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A harmonic oscillator, in order to obtain the Tu contribution.to the
spontaneous magnetization. R T . P
The temperature dependence of the spin wave.fréquency produced
by the léwesf order nonlinear terms in the isotropic Heisenberg exchange
interaction arising from the H-P expansion of the spiﬁ operétors has

been studied by M. Bloch.]2 These lowest terms have the form

e Wl s @) s @R =B - 20®-F1)]
. ex 2 &2 2
i k:k ) S
. a+ a+ a, a N K N | (I.l)

RN

~where a_ and ai are respectively the annihilation and creation operators
k k : : ‘
of a magnon with wave vector k and J(k) is the Fourier transform of the

exchange interaction. These spin wave interactions cause a change

(renormalization) in the spin wave frequency which for nearest-neighbor

interactions is

oM =a li-@uls, gy

i M

wheré z is the numBer'of nearest neighbors, and
= 20z S[7(0) - AC I - . o (1.3)

is the noninteracting spin wave frequency and

| 2o .
-, JO o . :
7(k) =2 § e . (6 = n.n. lattice vector) (1.l

5 : a




which is the magnon thermal occupation number. . Consequently as the

temperature increases the number of excitations increases and the spin
wave frequency deﬁréases. M. Bloch has detérmined that solutions to the
coupled equations (}.2) and (I,S) exist even up to temperaﬂdres witﬁin
a few percent of Curie temperature calculated by the Befhe-Perierls-Weiss

13

method. fhis,nearest neighbor calculation has been extended by Horwitz

and‘Mattiélh to the case of non-nearest neighbor interactions. From all
of these studigs'then, it.is évideht that ﬁagnon;magnon interactions
?eﬁain relatively weak over a broad temperature range; howevér,'all these
attempts indicate‘that the spin wave theﬁry becomes meahingfess ﬁear

and especially above‘TC in_thé paramagnetic phase-whefe no long range
order exists; Therefbre no.spiﬁ wave excitations sﬁould be obéerved in
"this temperature region.' Recent.experjmental observations have iargely
substantiated these theoretical calculatfons, but some significant..
deviations have been found. 4 .' - r.’

.;Th? specific exper}menfs_that will ﬁow be aiscussed in'fhis connec-
tion investigate the behavior of spin.waves via the inelastic scéttering
Of‘neuﬁrons. The reason for this emphasis lies with the fact tha;

_ ﬂﬂgﬂetic.;oupling energ}es between atomsvin'solids are typfcally on

the order of a few milli-electron volts and consequently their effects

are conveniently observable in thermal neutron experiments.
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in their study ef the spin wave excitations.in iron using a-trfble
axis neutron spectrometer, Shirane, Minkiewicz, and-Nathansls found
that the spin Qave modes were well resolved to temperatures very near the
Curie temperature,ATC x ou2%k. (See Figure 1.) .Employing a constant
momentum scan where the wave vector q ~ O.IR-', they observed, however,
no distinct spin weve peaks in the scatterfngidata when the temperature
was raised ebove Tc. |

‘An examination of the spin fluctuations in Ni near the critical

temperature by Minkiewicz, Collins, Nathans and Shirane,1§ revealed that

below T the magnon peaks were resolved but above T they found that

the long wavelength (q = 0.075 R ) excitations could be adequately

described by the spin diffusion process in whlch a unit of spln is

transferred randomly from one point in the lattice.to anotﬁer with a
pfobebility given by the ordinary theory of atomic diffusion. (See
Figure 2.)

'Recently, Mook, Lynn and Nicklow‘7 have looked at the temperature

.debendence‘of short wavelength (q > O.ZQOR-F and E > 12 meV) spin‘waves

in nickel and iron. Using a constant energy scan technique which was

made necessary becauee.of the steepness of the magnon dispersion curves -
for Ni and Fe at high energies, _they observed well resolved excitations
above.TC that had a rcmarkable similarity to spin wave modes below the

critical ;emperature.' (See Figure 3.) This phenomenon is not, however,

limited to metals such as iron and nickel, but has also been observed

in the jnelastic scattering of neutrons from RanF3,l8 (Figure L), a

l‘_mag_n.'.et:ic-insulm:cn' which behaves very much like an idealized Heisenberg
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Amagnet.]9 It is this observation which has motivated us to examine the

magnetic. excitations of the isotropic Hefsenberg model in the paramagnetic

phase.

Although we will be primarily intérested';ﬁ the behavior of spin
fluctuations in three dimensfonal magnets such as metals like Nj ehd Fe
and insulators like RanF3, much worg_has recept]y been done‘in stedying
the spin dynaﬁics of one dimensional magnets. The experimehtal fnvesti-
gatiens have centered on the linear-chain antiferromagnet (CDBju NMnC:,3

’ (

2 ~ . . : . .
0,21 The reason for the interest in 1-d magnetic structures is

(TMMC) .
that the persistence of quasi-spin wave excitations in‘the paramegnetic _
regﬁme is more bronouncedrin'tﬁe case oftsystems ef lower.dimensionality.
Furthermore, fn 1-d systems.there is no finite ordering temperature, i.e.,
iong range ordef exists onfy at T = 0.22 However, experiments on TMMC
heve demenstrated that there is a highly developed short range oraer at
temperatures near absdlUte zero. Tbmita and'Mashiyaﬁa23 have examined
the characterlstlcs of magnon modes in a linear chaun of classncal spuns
usnng the Helsenberg model, and they found falrly good agreement between
theur calculated Inelastic neutron scatterlng cross section and the
experlmental data of TMMC.

Fremlall these experiments, then, it is quite evident that spin
wave theory has a much brqader.region ef applfcabiiity than was predicted
by the early theories. More recently there have beenuseveral attehets

to account for the experimentally observed behavior of spin fluctuations

in three dimensional systems at high temperatures and near Tc' In the

P S




1

next section the most salient features of these theories will be

discussed along with an examination of their shortcomings.
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1. REVIEW OF PREVIOUS THEORIES

The various theories that have been developed which quanti=-
tativély describe sptn'fluctuations in the paramagnetic phase and their
corresponding spectral density fall into two general categories: those

which deal directly with the multiple spin time dependent carrelation

_function and attempt to construct a decoupling scheme for this function

sd;h as
(S5 (0S5 (1), S5 (0085, (0)) = 6(3) +9,)6(, +a)p”"
a9 93 9y | o
X (55 (1), % (0))¢sT (1) 5% (o))
SRR . D A

'(I_'I'..ll)

" and thaose which characterize the spectral shape of the associated -
excitations in terms of its lowest order moments, namely the zeroth,"
Hsecond, and fourth moments, and relates these moments to higher order

static correlation functions.

One of the earliest discussions of this problem was given by
Méfshallzn in which he.describedAvery qualitatively the tempeféture'r

dependence of spin waves. In his work it was noted that just above T,

when the momentum transfer of the scattered neutrons is large, short

wavelength sﬁin fluctuations are excited which behave very much like

magnon modes at low temperatures. These excitations were called remnant -

"spin waves. Within this framework some of the experimental observations
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can be readily understood: when neutrons are scattered at large‘wave§
vectors just above Tc where q > x , the inverse correlation length, then
remnant spin waves should be observed. However,‘in the case'of scatter-
ing at‘smaller wave vectors where n < 4 the excitatione span many
clusters of spins that.are cbrrelatec'fn different directions and con-
sequently must behave very differently from spin waves. Although this
picture satisfies the exnerfmental observations in a qualitative way,
the previous theoretical attempts to account for the obseried spectral
shape near the critical point run into difficulties which will be evident
in the followfng ciscussion. | i |
The tirst extensive theoretical |nvest|gat|on of spin fluctuatlons
25-2 8

above the critical temperature was done by ReS|b0|s and De Leener”

who concentrated on an approxnmate evaluation of the spin autocorrelation

function -

DCRECICEJOPN. o

which plays a central role in neutron inelastic scattering measurements.
ln this expression Sz(t) is the Heusenberg representation of the aﬁh
'component of the spin operator located_at the lattice snte a, and ( . . .)
is an average over an equilibrfum canncnical ensemBle.A Using a localized
spin model we can write the autocorrelation function“inAthe fo]lowing
manner |

I®(t) = = (m]s® 1m-><m-|pﬁ(t|b)|m>, C(1.3)

m m'

- A B . ! A b




" m&&m 2R TR s

S Y

4
where )
B(tlb) -iHt SB peq Ht, 3 . R : G
wi;h .
-gH , o _ ' o
eq __e” el : - o (11.5)
Tr(e 77) - . o : .

Here H is the isotrobic Heisenberg exchange Hamiltonian.

As a starting point in their analysis of the autocorrelation func-

tion a formal series solution was obtained for the equétion of motion for

the matrix element of p (t\b) where

i%i(m!oﬁ.(tlb) >3 = M1 TH, P (e [b) Imt). (1.6

The éeparate terms in the series expansion were examined via a diagram—
matlcal technique and ‘since they were |nterested in the long-tlme ‘behavior
of faﬁ(t) an infinite series of diagrams had to be considered. A resum-

mation procedure was subsequently developed which was based physically on

_ the idea that two -interacting spins are not isolated but interact with

the “Bath“ composed of the reméining'spins. Using’this approximation
and taking the Weiss limit (z = ®) where z .is the number of neighbofs
in the range of the exchange interaction,Resibois and De Leener were able

to obtain approximate expressions for the direct and indirect auto-

correlation functions which were valid for both short and long times.

Adeit e a5 Nl A dmi £
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In extending their theory to finite temperatures in the neighborhood of

the critical temperature the following non-Markoffian kinetic equation

" for the autocorrelation function Iai(t) was derived:

N t AN R
. 5;:'—‘ Frq(t)J = Jov Gq(t-t ‘rql)rq(t ydt+, (1.7)

where I;(t) is the space Fourier transform of I:ﬁ(f) and Gq(t|I;) is the

Fourier transform of an infinite series of terms whose form is determined
by a diagrammatical analysis which was discussed in detail. Only the

lowest order ‘‘bubble’ diagrams were kept in order to obtain an approxi-

mate expression for f;(t).

Near the critical point the shape of the frequency spectrum near

Tc’ which is directly connected with the observed neutron scattering

. cross section, is seen in Figure 5, where y is the spectral shape function

7.(@_;1/[(? + (1 4-'c‘€32)23," (11.8)

and {I is a dimensionless frequency
3y=1 g
2 wleg’) QXY
: .with- ¢ and o as fitting parameters,

One of the major short comings of this theory is that the whole
approach is only valid -in the Welss limit where there are an infinite

number of neighbors; however in a realistic situation 2z

= 6 or 8,

I F2 Sl



Figure 5. Dependence of the De Leener and Resibois 'spectral function
on the dimensionless frequency, .

.- PN : Lt i
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and as we shall see the effects of short range order‘oq the observed
neutron cross secfioq become dominanf when'the number_bf neighbors within
the range of the exchange interaction'is finitevand small. |
Another approach to the analysis of time dependent spin correlations
at hlgh temperatures was presented gy Blume and Hubbard.29 The basic
physical idea behind their mathematical calculation is that éatH spin
interacts with a randomly varying effective field which is produced by

the neighboring fluctuating spins. The correlation functions

_Cq = (S Sz(t)> are evaluated indirectly through the use of the relax-

atlon functaon {S ~q’ S:(t)} where by definition:
1A, B(t)} jB MaeMpe)yan. (o)

This function describes the relaxation of the variable B for t >0
when a perturbation which.is proportional to A is switched on adiabati- -

cally between t = - ® and t = 0-and then is suddenly -turned off at't = 0.

Then when T = @

T a2 oZ . .z . |
- {5_q Sq(t) i Is_ o s_q(t)}

z .z z . .Z.
s¢ s%) . S s”
A =q °q : { -q” q}

= Fq(ti, . ':."(11.11)

where ( . . . ) denotes an average over an equilibrium canonical ensemble, -

and thus

cd(t) =

w|—

Ps(s+ L 55LQ~_4“{Jr;;le|J;Jz)._ B
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Kuho's formalism30 is then used to show that
F (t) = —3— ' C(11.13)

where & S:(t) represents the change in S:(t) due to the perturbation
‘ qu. Now in order to find Fq(t) a formal time-order solution is obtained

for the equation of métion for &ESZ(t):

-

. . - - - - o . . .
8 Sq.z = 5 Jq', q") S+_, - 885 (1.1
. q" _ q'! -q'.‘ q" :
where
W@ = 9@ - u@. T (nasy

The. random effectlve magnetic field is then associated with the term
> o+ PP : :

J(q', @) S, _,.. The solution of F (t) consequently involves the

. ql _qll

eva]uatuon of tlme dependent multiple spln correlatlon functions. The

‘ pr!ncupal approxnmatlon made is to neglect the detalled correlations

, between three or more. splns. This approxnmatlon Is not too bad at. high

temperatures where |t leads to errors of O(I/Z) where z is the number of

- magnetic ions lying wuthln the range of the exchange interaction. The

- result of thlS method, valid for general tlmes in the hngh temperature
limit- (T 2 ), is seen in Figure 6. It is evident from these plots

that there is no indication of propagating modes-- only one that is

D ik Bl
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various wave vectors, q, where q is in units of 2n/a.
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strong]onverdamoed when q = ( l/é, 172, 1/2)7 The reason for tﬁ!s
behanor can be readily understood: the princloai approximatfon thch.
ia discussed above can only be applied eéfectively at very high temper-
,acures where thcre is mdch random spin motionﬁ However; it cannot be -
extended down to near the critical temperature where significant short
range order contributions to the frequency'spectrdm of the neutron scaf-

17,18

"tering cross section arc observed experimentally. Here the decoupf-
ing of. the multiple spin corrclations must be treaced differently. This
Will be discussed in detailin Chapter IV. | o

: The phenoﬁenological theories based on the caiculation of moments:
of fhe-speccral density or related functions, e.g. the specfral shape |
function are of partlcular interest since we wull be using a moment type

bmethod in study}ng the exlstence of spln wave exc:tatlons above the
crltucal temperaturey This particular approach w:l} be discussed

' coﬁpIetely in the next aecffop, ho@ever beforaithic fs dode_some previous

theoriesiio‘this.area will‘be'examined.. .

The earliest calculation ofdthié kind was cacrfed out by De GennesB,

who in studylng the inelastic magnetnc scatternng of neutrons calculated

the second and fourth moments of

px((o) gj’dt e'(" 7 - )u RO TR T
“where
W0 = Gy S,0¥iss+n] )

i sl DA
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which is closely related to the spin autocorrelation function faﬁ(t)

u5ed by Resibois and De Leener. Actually & Iaa(t) is equ:valent to .
o .
u,(t) to within a factor S{(S+1).
R
The moments of ou(m) are

rpn(w)u?ndw

2 | |
'(m n>& = "'T;;@;YEE— . - : ‘ ~(11.18)

. The expressions for (mz) and (mh)u are valid only in the high
. p 4 '

temperature limit and for polycrystals. The wave vector dependence of

‘the second and fourth moments indicated that for small wave vectors

(w— 0) the spectral density pn(w) can be approximated by a truncated

Lorentzian. At larger wave vectors where % > 7/b where b is the nearest

.neighbor distance the shape of pu(w) is more closely given by é Gaussién
function. A

'f_A pfeliminary attempt to deferming whefher or not propagating modés
.e*ist in a Heisenberg paramééhet was carried out:by Bennett,32 who '
. calculated the loWestlorder moments of an effective frequercy spectrumu
assumed to have no delta=funclion of frequency terms, §(¢), and to have
,é smootﬁ monotonic behavior. It is noted that the va]idifylof this -
approach depends on the validity of the diffusibn_équétion for the‘
maghétization in the hydrodyn;ﬁic regime33 where q << y, the Iobg wave-
length reglon. Then the multiple spin tume dependent correlatlon

functlons appearlng in the caICUlatlon are decoupled in the follownng

way:
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a4z~ 7.2 + - ‘ o L  ‘ o
(sisjsksa ~ (sisk> (sjs{) s I (11.19)
. and
e oy~ . bomy yoten ooy getomy o
(si‘sjsks‘&) ~ (sisj> (sks&> f‘(sis,) (sksj> . - (11.20)

When this approximation is used to simplify the expressions for the
second and fourth moments Bennett finds that the criferion'for the
_existence of propagating modes when q > g'] where € is the spin

correiatidn leﬁgth is
CR@ = @D D > S (a2

WHen this inequality is satisfied High frequency modes exist; however

when q < g";

R(Q) <1 | - . - (11.22)

and diffuse modes.dominate. The fact that Bennett's cé1culations are
carried out in the hydrodynamic regime4is one of the most prominent

shortcomings of his theory. The reason for this is found in Halperiﬁ

33

Aand:Hohenberg's discussion”” of the éritica] and hydrodynamic regions

where the latter is defined to occur when q << n. However, as will be

17

shown below, the propagating modes observed by Mook et al.

in Ni above

—
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the critical temperature occur when qQ > u, the inverse correlation length.
Conseduently, the decoupling scheme used by Bennett is in question. It

is apparent from His Work~that no attempt was made té consider the’ |
‘possible céntribution of short range order to‘the shape of the freqdency
spéétrum above fc’ !

Qf gfeater interest is the work done by Tomita and Tomita3u in
which‘theorétical line shapes ére obtained for the rélaxatfon ;hape
fﬁnctf;n. These shapes are then compared with the neutron inelastic
magnetié s;attering from RanF3.'8_ The second and fourth moments of the

relaxation function are calculated assuming nearest-neighbor interactions

only. The general forms of these moments are

-, | : ; A il» | |

Why, - LD 550y (st (D™ @), )

Cook otk T L
where

A (k) u;%;efk'a, e - (11.24)
and

o : 'i—{—> . . L ‘
@ =9 g 977, | | | S (11.25)
a e o

E - : SR _ :
in which z is the number of nearest-neighbors, a is the nearest-neighbor

. position vector, J is the nearest-neighbor exchange interaction, and

TR e

ARt ARE ety
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- ' '
x?z(k) is the longitudinal wave vector dependent susceptibility.
at small k | | |
b k2

w, =

oo X {set of L-spin correlatiqn functions}.
ka7 x (k)

(11.26)

Then the high temperature (T = =), finite temperature (T >‘Tc), and low

temperature (T = 0) behavior of these moments is discussed. At finite

temperatures the random phase approximation (R.P.A.) form of the two-spin

correlation function,

o ' | - Nk T
(s%(-q) ¥ (@) = —— B o,
| w100 - 3@

(.27

;-

where y is the paramagnetic susceptibility, is used in finding explicit
C-expressions for (wz}a and (wh)g. Also for T > 7T the calculation of

the:fourth'moment is made tractable by expressing the fodr-san corre-

lation function in terms of a product of two spin correlation functions. .

Bennett has also employed this same type of approximatfon which‘is valid
in the high temperature limit where the number of neighbors z is large .

-.since the error introduced. is of the order of 1/z. In_cdmparing the

temperature dependence of the second moment to that of the fourth moment, -

"Tomita and Tomita find that the fourth moment is more sensitive to

fluctuations in the spin system as the temperature changes than the
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second moment due to the higher order multi-spin correlations contained
L . .
in {w ¥2 .
q - 4 .
In order to obtain their spectral line shapes, Mori's well-known
continued fraction expansion35 is used in evaluating the canonical

correlation function

() = j' dte” 10t —(Ef—tl | o (11.28)
: R(k)o) ’ ' oo

R ‘ ' .
where R(k,t) is the relaxation function. This continued fraction

gxpgnsion36:may be written as

¥R = Mo+ 2@ F@ @D (.29
where

F;b? @b = liw@®/iw+ - - 917, (11.30)
and

2@ =, =R o o L (11.3))

'{(wl’)_»- (w2} |
A (®) = ——k = 7 - (11.32)
T, R
K

[Note that R(E,t) is equfvalent to Blume ahdrHubbard's C_(t) and that
’ k

W(E,g) is just the Laplace transform gf their nbrﬁalized spectral shape 

¥
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‘function ?»(t).] Here f(w;{bz(E)}) is the torque correlation function

in which {bz(ﬁ)} corresponds to the set {ai(ﬁ), ag(E), R N Tﬁen it
- fs assumea that the torque correlation spectrum can be'charactérized by
_;ﬁly ag(ﬁ) and further that the shape of tﬁis spectrum can Ee simply
described by a Gaussian function. The total frequency spectrum obtained
can be seen in Figure 7. Although ther; are peaks in the theoretical

line shape calculated by Tomita and.Tomita, serious discrepancies exist

between their shape function and the observed inelastic neutron scatter-
18

3"

approach: first, the second and fourth moments are evaluated through the

ing data for RbMnF (See Figure 8.) Two problems arise with their
'usgﬁof a decoupling scheme that is valid only at high temperatures.

. Another diffiéulty concerns the particular truncation'procedure used which
introdu;es mathematically a two peaked function into the theory. It

would be more meaningful if the derivation of these peaks could be based

 6n the ﬁature'bffthe physigél processeé which govern the behavior of the

spin system aone_the érifical point such as the existence of short range

order. | | ‘ | -
Recently Lovesey and lMeServe37 have employed Mori's continued .

fraction expansion‘of the relaxation spectral shape function in analyzing

the frequéncy spectrum of the‘inelastig neutron scattering cross se;fiph.
Héfe agaiﬁ a‘truncatiqn procedure is‘developéd in order to approximate
the.re]axatfon function, ﬁowever‘thé expansion is carriea to ome order
fafther than Tomita and Tomita's Qork456 that a three pole épproximatidg is
consfrudted;‘ The second ana fourth moments involved in tﬁis galculatioh'

38

are evaluated at infinite temperature”” and at finite temperatures

~




NORMALIZED SPECTRAL FUNCTION y(C;6)

8 A 9'3;:'2/b2
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. Spectral function obtained.by.Tomité and Tomita. At 8, the
_ poles of | become complex and when 8 > 8

discerned.
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T 5 T; where the four spin correlation functiong contained in the expres-
sion fof the fourth_mbment are approximated in terms of two=spin correla-
tion fuﬁctions %n a manner_quite‘similar to the decoupling scheme uséd
by Tomita and Tomita. The agreement between this method and the experi-
mental data]8 obtained for RanF3 is!fairly good. However the same
objections that-were raised there also apply in this discussion:'the
truncation procedurg‘automatjcally determines a function thch has
the &esired'number of poles in it. Théré is no attempt to deter-
mine from the bhysiqs of the system why the particular sprﬁcture in
the~spectrﬁm is observed, i.e. the pogsible effectglof'short range -
order near TéAare again not explicitly conéfdered. Furthermore,
‘a nonphysical ‘peak in the'theoretical.line.shape occurs at' T = o
when ®> (%,%,%).

One of the ﬁosf detailed eXaminatiéns of:thé momen t expansioﬁ

39

method was presented by Reiter in his study of 'spin fluctuations in
Heisenberg paramagneté. Reiter obtains an infinite series expansion of
‘the relaxation function in terms of the moments of the spectral density.

The relaxation of the q-h component of the magnetization in the absence

of any externally applied fields is given by
2= - N o :
£(4,t) = (5°(q,t), 5%(-q,0)) = (s%(-q,0) Is*(q,t)). (11.33)
where -
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which is defined in Eq. (11.10), and where

(AlB) = {A*,‘B}.‘ (11.35)
Thus E(q,t) is the unnormalnzed form of the shape function F (t) whlch

is used by Blume and Hubbard. [See EQ. (Il ll)]

in terms of its moments

£(q,t) = &

‘—ﬂl— X(E,0) ().
n=0

_(Hf-3.6)

Here x(ﬁ,o) is the isothermal response of the magnetization to a magnetic

field of strength (guB)-] and wave vector q, where

(wn> (@0 Is"@)

(11.37)
%(q,0) |
in'which L is the Lionville-'operator of the system:
- 300,11

(11.38)

Diagrammatic expahsions for these moments are deveioped for infinite
temperature and for finite ;emberatures above Tee When T > T the
R -
second moment (w.)q and its fluctuation (th) = ((wz - (wz) )2)

become
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W =g ssenn VED - vE-3912 p@)e@E -3 @)
T C(11.39)
and S | ‘ |

2 2
€9) )q ~.3[5('5-1-1)] N_ Lz

VE-391VE) - vE-3
q» qu A )

' -q)]
V@ +3) - VE-F -FIVED) - vE e @p @)

p@-3 -3 @

(11.40)
where p(q) is.the equilibrium spin pair correlation function 4
p (@) «(Si'szé).‘ When the moment expansion is carried to finite (lowest)
q -a :

order the expression obtained for the relaxation function is valid
for short times only,

Now in order to, account for the'defai]s observed in the spectral

dens:ty assoc:ated with the neutron inelastic scatterung cross sectlon,
Lo
Relter

obtains a set of kinetic equattons for the two spun correlat|on
functions (S~ (ql) S (qz))and (s? (q‘) s? (qz)) These kinetic equations
are thcn used to determine Z(q,t) and‘F(ql,qz,t) which describes the

decay of a fluctuation of wave vector.q = 3] + Eé into two flgqfhat:ons
. of wave vectors a] and aé The ‘expressions for (wz)* and (Qh)* _are thén
: Btalned from the leading terms of éeries exéaﬁsion ?n powers gf =)
for F(ql,qz,z), tﬁe Laplace transfqrm of F(ai,aé;t) and they agree com-

letely with those derived from the diagrammatic expahsuon.of the moments.

However the physical implications of the approxfmations used in obtaining

e e e o A 1 S T
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the kinetic equations are much more apparent than those used in the o

diagram approach. In particular the coupled equations of motions for
—»A . e - 2, - -~ AP d + , >

s (d,), sT(@,)s7(4,), $°(q,) s*(4,) and $7(q,) S°(4,) S'(d;) are closed

z'1 A 2 1 2 1 2 3 ST

by decoupling the four~spin correlation functions in the equation of

‘motion for <S-(31) Sz(aé) S+(ES)) as fbllows:

(5@ $26y) 2@y STE =

(2@y) SPEINSTE) TG, (s
and
CETE) @) STE ST@)
(67 @)) $TEINST @, $TE) +
ST@E) STE@YSTE) STE. (h.m)

As.noted by Reite; this decoupling.method néglécfs'fhose'éorfelétfon$
which are nonvanishing when all the spins in {. . .)are ''close' to
ohe.anophér.' This is Qélid when fhé rahgé of the exchénge interaction

is much larger thaﬁ the ranée'of.the four=-spin cumulant,correlaffdn:
function. - The~error introduced in;O(l/c), Qhere ¢ is the number of

spins within the range of the exchange interaction. It is precisely fhesg
terms which Reitefvneglects whfch willAbe qund to'become.importaﬁt n%ér

T .
C
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The high temperature approximation for F(al,aé,z) which is used

to obtain the overall shape of the spectral density is

[( - p(@,)] |
pq-’-) il }/v(z) (11.43)

-

r@y,a,2) ~ W E2ss+1)
1”72 3 p(q,+q2)

where v(z) is determined in such a manner that the correct forms of (wz)q

and (Qh)q are majntaihed, AThls constant felaxation time aﬁproximatiOn
is the; used to obtain theoret}céllline shépes which are compared with
the neutron inelastic scattering data for RanF..j’.‘8 It igAevident that
Reifer's approach does describe the shépe of the frequency spectrum at
high temperatures very ;dequately, HoweQe} at low tempefatures near Tc
there are discrepancies especially Héar w =0, |

| The shqrtcomings that are inhereﬁt in the theoretical wprk déaiing
with sp}n fiuctuations in three diménsional Heisenberg ferromégnets are
not however pfesent'in the studies of one dimensional (1d) Heisenberg
systems, Fisherul has obtainéd'exact solutions for both the partition’

function and the spin pair'correlation function for a one dimensional

Heisenberg ferromagnet and antiferromagnet in the case where § > = .

- in this limit the classical spin Hamiltonian is obtained i.e.,.the

spin operators in the Hamiltonian commute. . Fisher's results have been

| extended by Tomita and Mashiyama who have rigorously'calculated exact

expressions for the second, fourth and sixth moments of the time-dependent

spiﬁ correlation functions for a Heisenberg 1d chain of classical spins

with nearest-neighbor interactions only. Mori's continued fraction
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expansion was then used to obtain the spectral shape of the Inelastic
scattering cross éection. Their calculated result compares quite
favorably to the inelastic neutron scattering data of THMMC obtained by
Hutchings gg.gl.zo who determined that this system is adequately described
by the classical Heisenberg's 1d antiferromagnet with nearest neighbor
interactions when T 2 l;l . In both the theory and experiment, well-
defined'spin wave modes were observed in the éaramagnetlc region. These
short wavelength spin wave excitations occur because of the existence

of aiﬁighly-developed short range order just above the'crftfcél point
which in the case of a Id ferromagnet is Tc - 0°K. .

- Recently MclLean and Blumel‘2 have studied the spin Jyﬁamics at

‘ ff&ite temperature of 1d Helsenberg magnetic chains involying spins of
arbitrary size, They examined both the long wavelength and the short
WAQelength spin fluctuation in this system.using Blume and. Hubbard's
fechnidue thch has been discussed above. The e#istence of short rénge
order was emplicitly allowed for through the introduction of a local
ordérAﬁarameter A‘where A‘lg taken to be thé'squére root of the near-
‘heighbor correlation. When this parameter was included in their.calcul;
ation it was found that the short wavelength excitations, q >>‘/L¢ y

where Lc is the cérrelgtion length, Qre spln-waye-like:and that the

long waye'lengthfluctu.atibns,-q.z l/&c<are'dlfquIVe in nature and are

associated with variations in the'local ordpr parameter, Again thg'com- a

parisoﬁ.between the experimental data of THMC determined by Hutchings

‘et ],zo-and their theoretical scattering function is quite good.
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The major point of this whole discussion is that none of the exist-
ing theories adequately describes tﬁe structure observed in the inelastic
peutron scattering Aata near Tc at large wave vectors gx;ebt in one
dimension.' In all the 3d'theofies discussed above one of the major short-
comings was the‘way in which the multiple spin correlation functions were
decoupled when T > Tc. The region of validity of this decoupling scheme
and the mofivation for its use wi]l be exaﬁine& shortly in connection
witﬁ a procedure we have deQél§ped'in'Which the positional correlation
of the spins is considered fn detail. From this calculation fhe impor=
tance of short rahge order énd its efféct on the sbeétra} aensify whéh

T2 T; will become quite apparent.

QA
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III; SERIES EXPANSION FOR THE TIME DEPENDENT

SPIN PAIR CORRELATION FUNCTION

Since inelastic neutron scattering has’beenAextensiveiy dsedkto
examine the magnetfc eicitations above:the.critical temperature a method
uili be developed to obtain theoretical‘*line shapes for the frequency
and wave vector spectrum of the neutron inelastic scatterlng cross
section. Of fundamental importance in this d|scu5510n is the fact ‘that
the magnetlc scatternng cross sectuon is related to the time dependent
spln palr correlatlon functuon,43, Consequent]y nf an express:on for
; _ this functlon can be derived it will be possible to generate line shapes
which can be compared with experiment.-

The re]atian between the neutron magnetic scattering cross section
and the spin'pair'correlation function has been.shOWn by VanAHove:L}3

N T I S | .
d Kt f . |
Ao _ki e J‘“‘Ell‘o"; (Sgg - .aa qB)G (q,w)‘ . (111.1)

didot K omc®
‘where

P@Eo) =5 5 [T de ! @TsH0) L)y, )

r = _ . r . : 4

and ﬁa=:h(f-rf') is'the momentum transfer vector in which k and E‘ are
i_reSpectnvely the  incident and scattered wave vectors, f(q) is the -
magnetic form.factor and Goﬁ(q,w) is the space and time Fourier trans~
form of the spin pair correlation function. Consequently it is evident
ffom.Eq; (111.1) that the scattering. is a measure.of the spin correlations

in the system and furthermore that all Information concerning the
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frequency distribution of the neutron scattering cross section is
contained in GGB(a’w).
. In order to simplify the following calculation a system will ‘be

considered in which the spins are localized at the ionic sites of the

lattice, and so

S(r) =TS, 8(F - R.). (11.3)
Then

=I5 , (111.4)

q i - - :

where the sum on i is carried over all N lattice vectors Ei' For this
localized spin system, Goﬁ(a,w) can be written in the following way:
P @0 =5 [° 20 P, (:)> o C @in.5)
_ “® -q -
When this expreséion'is Inﬁegrated over all frequencies we obtain

e (q,w)dw = | = dw»f (s%(0) sP_(t)yeI0tqr

-0 ~®. q -Q

f” s %(0) sP_(t)) 6 (t)dt

e -q

(s sf’_), B | e

" which is just'tﬁe equilibrium spin palr correlation function. For a

‘system with isotropic interactions the neutron scattering cross section,

(111.1), reduces to
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e | | |
-&%f;—E—,ag[l+(qa)2] PG,

where @ = x, y, 2z, .

In the paramagnetic phase

(sX(0) s*_ (t)) = <$Z,(0) V(1)) = (S2OSE()) (111.8)
- q -q q -q 9. -q A : .

since there is no overall preferred direction of spin orientation.

"This implies that

6" @,0) = 6"V (@G, 0) = 6"*@{,0) = ¢([{,0). | o (111.9)
Consequently, abng‘TcA'

2. : ‘ : : : .
:a%rz—E-.-“_G(;,w). o o . (1i1.10)
Therefore, since the neut}qn sqattéring cross section is directly pro-
portional t6 G(a:w) in thi$ témperature‘region, a comparison between
G(H,w) and the neutron cross sectionAdetermined from thefmeasuréd scat-
fering infénsity cén be"readi\y'accomp1f5hed; However;'before we’
consider the properties'of this functioq in more'detail, its reiation )

to the spin relaxation function ahd"Spéctraludensity-funétion which

lﬁave been used in priof theoretical work (see Chapter I1) will bé'

examined.
In studying the behavior of spontaneous sﬁin_fluctuations, Marshall

and Lowdehu have examined the properties of the spin relaxation function
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R @0 = (5% (0), (o)}, - Cowany
=q q o -
which describés how a spin system relaxes after a disturbance is removed.

The Fourier transform of Raﬁ(a,t)

‘P @E,0) = -zl;j’” e it R (3, t)dt. | o (111.12)

when T > T", then by definition

(%, (), sB(tn-ﬁdue*” s (0™ ey,
. .-q, -q 9

and

rqﬁﬁ,w) ' J-m dte -iwt J’ﬁdk(}‘H a(o) AH THt B(o) !Ht

e -q
| (111.13)
Therefore, "‘ o
| eilw- (E, -E.)]t
P @, 0) =2L z [Tdte TR
i] =
" ;BE.-A E. -
_ x Jﬁdl 2" .e ! .( J ')
X (.]s (0)|J)<Jls <o>| S )
whg.re,
~sf(i) = e'fit °‘(o) t . o U (11.15)

«a .9




|f) and |j) are eigenstates of the spin Hamiltonian H with energies E,

and Ej respectively;, and Z is the partition function. Then

- 80 :

1
rOB(E,w) = X 5[w - (Ej —Ei)]Z I e !
ij-
<i]s°‘_,(o) |j)<j|sf(o)[i)_|”6e"‘“’dx,
-q q . 0
-8 L : '
- (?"Z ) ZlN IT; ef'wt 7-1 | o o
PR @ iHE B -iHE,
XZ e (ils SO G e S_(0)e- 1y,
iJ -q q
- nl=e ) 2, et (5% o) sPreny, (111.16).
: ~ S | »
R . L : |
coﬁ(q,w') = ?]N—-f&w—) rw(q,w). ' : _ {111.17)
\ -e _ ' ‘ o

In fheuabove caiculation h =.i,énd the factor w/ (1 -e_Bw) takes into
‘account ‘the Aetailed balance betWeén the magnon absorpfion and emissfon
procésseé thatxbccur whenvneﬁtrons are scattered inelastically by the
spin system.

~The relation between GQB(E,m) and the dynamical susceptibility caﬁ
be derived in fhe following wéy. In a §traight forward proof it can be

shown

§% {A,8(2)} = i([A,B(e)]). | | ’A:n | .: (H1.18)
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Consequently,
3 a -
2 /PG, 0 = - (1%, 00), (o)) |
_ g 3 :
;-——22 o@(q,t),' LT (11.19)
g H . . :
where xgﬁ(a;t) is the dyrnamical response funétion which determines the

response of the ath wavevector of the magnetization to an applied field

. . - <
ﬁ(a:t): ; . ' ) . : - o

Ma('q’,'t)-éjdt' XP@E, -t @, ) (111.20)

in the case where the system is translationally invariant and stationary.

Slnce the principle of causality lmposes the follownng restructuon on

the response functlon
xoﬁ(?l’,t), = (11.21)
when t < 0, then we can deflne the generalnzed susceptnblluty to be30

xw@’m):f e";wt ><Qﬁ('5,1:)e'Et C(111.22)
0 S

" where ¢ - 0 The presence of e-€t insures that the response is’

aduabatnc.

Using this definition a_nd Eq.. (111..18) we obtain

N '_»_) - 2 2 <0 - ‘ .
kP @) =T oot 2598, t)dt (111.23)
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K
which when |ntegrated by parts becomes

'22

{A) B} = {B)A})

then’

. R(}B@}t) = RBa('a:-t) = RaB ('.'_(;:t)*

Th|s result along with Eq. (Ill 24) |mpl|es that

Oﬁ(Q,w) °ﬁ<‘-a, -w)”,

Consequently,

.os' o, o ’_’.
X (Q;w) X (q,w) - 48 fw j';e " R(q,t)dt

-JlJL- 2ntim r (q,w)

Now when @ = B, the above equation becomes

o - ‘ : 2 2-
Z‘.__éﬂ.&). =9—#— 2 ,Re[r‘w‘@’,m)],

wl
where x

;\.\xos(a,w) S—H— Roﬁ(q,O) - fw j'“’ e iut Oﬁ(q,t)dt

(i |'|_.24§

Since the canonical correlation functien has the property

(|'||A.2.5) '
(,:'j-.‘.26)

"(|||.'27)

(111.28)

._ A'(m.zs)_ |

" is the lmagnnary component of the generallzed susceptibility .

.Awhlch in thas case governs the dlSSlpatlon of energy caused by the

excitation of spin fluctuations in the‘system. Then uslng Eq. (I]l.|7)
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- we obtain -

oot - Puw | - |
ég.w) (1 ;w ) oa(q,w), | . (111.30)

which is simply a statement of the fluctuation-eissipation theorem.
. Here the ferm on the'le%t hand side is usuelly referred to as the spectral
- density, Thus because of the aone interrelationships between GOB(*,w),
the relaxation function, the spectral densaty, and the generalized
susceptnblltty, lt is desirable to obtain an expllc1t expressuon fos
GaB(Q,w). |

Below'the critical temperature the spin system exhibits long renge.
: order, and as T - 09K the spfns take on thelr maximum allowable quantum
pumber along the axis of quantization, namely S. Consequently, af{
temperatgres near absolute ze}o spin.waee theory mey be used to evaluate

, . :

the spin pair correlation functions, and thus in this temperature region

we find that“g -

*@0) @ g (8l - 0@ + Sl + 0@}, (1i1.31)
where rw(q) is the energy of a noninteracting spin wave mode of wave
: veetqf a:
ho(d) = 2hsu(0) < J@’n.‘ | S T .32)

. Here J(q) is the Four'er transform of the exchange ‘interaction. So at
low temperatures [ (q,w) is expressed in terms of de]ta functuon

singularities which occur at frequencies corresponding.to the absorption




or emission of a spin wave mode excited by the

inelastic scattering of
neutrons

As the temperature increases, spin wave interactions become

important and act to give a finite line width to the peaks in Gxx( SW) .

However at temperatures near the critical temperature an exact form for

(q,w) is |mpossuble to obtain. E

In order to clearly ascertain what - dnfflcultues are |nvolved in the

calculatnon 6 (@,w) near T (T2 T, we will now ~construct a serles

expansion for the dynam;cal spin correlatlon functlon

gm(&,t) (s2(0) s* (1)) = S "'(l'u.33)
o 9. -3 .

and ‘use the resuit to obtain'Gaaka,w), Since

"Go) =5 2 t)e'_“”td'_c. (i11.34)

We begin by expanding 9 (q,t) nnto a Taylor series

(q,t) ~‘z i—L (6 ‘"’>,

in powers of t,

(111.35)
where
@y _ [(— 2" <s (o) g (tm o inae)
As a consequence of the fact that SQL(t) is a'Heiﬁenberg operatbr, i.e,
. . R ,. * -q . . .
Sa_"(t) = it Sa_’(t) o~ iHE,

, ' o S : -'(||'|'.37)‘
-q. q - o -
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when H-is time independent,'and
S, (t) = ﬂHs &H _ o T (1n11.38)

then the coeffucuents in the above series expansaon can be expressed in

: terms of multiple commutators of the Hensenberg spin Hamiltonian

H=5x ¢;§@.=-§J@;g¢‘.“ o (111.39)

So through the use of Eq. (111.38) and cyclic property of the trace it

can be readily shown that

.<G£0)>oa - (53 SQ;), S L (lqr.ho)
T 9= “ o |
‘ <G-E])>aa =: <S(_1, [H) Sa_,:'): . ’ .~ - | | .- (“l.L”)
. q q -y S ‘
s w2y, T

. 9 -9
etc, Sunce eech commutat;onAw1th H brings in another pair of. splns
it is ev:dent that the coefflcaents (G( )§aa in the series’ expansnon_
of the tume-dependent spin correlatloanunctnon are equal to progressrvely
hlgher order static multl-spln correlatlon functlons
"The problem of calculatlng the time- dependent spin correlatnon

functnon now becomes clear when Eq. (III 35) is examined: at temperatures

near T crltlcal spln fluctuatnons beaome very lmportant and consequently

Can: expression for G (*,w) must be obtalned WhICh is valid not only for




short times but also for long time intervals, |n order to do this we

must sum over an infinite number of terms in the moment expansion.
This s clearly an ImpoSSlb]e task especially since the problem is
complicated further by the fact that no small parameter can be found

whlch would allow for an obvious resummation procedure involving a subset

of terms whose contrnbutlon to the series is’ domlnant We must use our

Kadanoff _j, and Halperin and Hohenberg33 who showed that at small

wave .vectors above T

(s 52 Lyt - T Ly

9.3 q-+1/,2 ‘ ' B :
where )\ is the correlatson length whose physical meanlng Is that- spins
lylng within thls distance do not behave lndependently. Thus coherent
spln fluctuatlons may be excited wnthnn this reguon.

From scallng theory,hs A exhlblts the following temperature

dependence

AT - TC)-v. ‘- o _ _A; o e : . ([|j.4§j'




i<

In the random phase approximation v =%, However, in more exact

~

theories v
1

£, within the critical region where kA >> 1 and where
both k- and i are macroscopic lehgtﬁs. However, since We will be
examining the behavior of spin fluctuations outside the critical region
where kA >1, v=3% éan-bg ﬁsed. T

The e*perimenta] détermination of the correlation length follows

directly from the definition of the neutron scattering cross section

where,.fromiEqs.A(III.I),'(Ill;z) ana (111.5),

2. - S
_d% «E'?f" e 1 (s%(0) s¥ (t)ydt S (111.bs5)

o TR

then integrating over all energies of the scattered neutrons we obtain

[ =5 du 5k [ e [oae T (s%0) 7 (1)) « (5P 5Ty,
: S q

(111.46)
Consequently, for sﬁall q
[ =49 4y = : . g C (14y7)

' datdw! qt+ (im)?
Thus A may be obtained by fitting thé expression on the left hand side

of Ed.‘(lll.h7) to the experimentally determined total integrated

scattering intensity.
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iV.  CALCULATION OF THE LOWEST ORDER COEFFICIENTS IN THEASERIES
EXPANSION FOR THE TRANSVERSE AND LONGITUDINAL

CORRELATION FUNCTIONS.

A. lImportance of Short Range Order above the Critical Temperature

, For the present study the isotropic Heisenberg model will be
examined:
HesZ ;55,5 =-59@ 3,5, (iv.1)
1J q g =9 ' -
where _
J@) =r Jd.. e b S (v.2)
: il , ‘ o
J , . S )
“and
L -|q R S S ' . "h ' S -
y Y ()

Here Jij giVes the exchange'interaction between the i#h and jth spins

J..
'3 . ,
to be phenomenological constants whose values are determined by fitting

this model to the’ exper1menta] data. '

The motlvatlon for our con5|derat|on of thss partlcular system .

comes from the fact that it is |nherently much S|mpler to treat than the

|t|nerant electron theory of ferromagnetlsm and from the fact that one

observes magnon-ltke excitatnons above the crutncal temperature in

= J(R’i - E}). In practice these exchange.parameters are considered




kg

neutron scattering experiments not only in metals such as nicke'l‘7
18

30

From Eq. (!II,IO) it is evident that in order to determine the

and iron46 but also in magnetic insuiators like RbMnF

shape of the inelastic neutron scatterung‘cross sect:on due to spin

o fluctuations above the critical point the function G (E;w) must be
calculated. This calculatlon will. now be.accomplushed through the use of
the series expansion of the dynamlca] spin correlatnon function in
powers of t, Eq. (111.35). The_usefulness of this approach lles in the

(

fact that the coefficients, (GEP))GQ, in this power series can be related

to staticAmultiple spin correl:tion functions. We can readily evaluete
'the lowest order coefficients by employung a physical approxnmatnon
“which is developed in this section. Because of the resulting simple
expressions for the coefficients of the zeroth through second power of
‘ t,,we Qili incerporate them as leading terms in a resummat ion

which:is used to detetmine an approximate'expressfon for'the'dyhamical
spin correlation functton, Eq. (III.33), from which G (Q,@).can be -

found by Fourner transformation.

‘We now proceed w1th a calculat|on of G (q,w) above the crutlcal

temperature. . In Chapter 11l we define
o oo ejot . e
@) = [T g (@ t)e . dt, S (1V.4)
. - -cn . . . .-

"where @ = x, y, z and

s ("t) (s%(0) s° (t)) )
§ -9 -

il

o e e AT FaMes e daeiT S0 C




50

Then using the expansion of gaa(a,t) in powers of t, we obtain

@) = [ dt eTiot [0y CelDy
) ‘ | 3 ! a
- §%<G£?)>Qat2 + —-i—'(IG(B))OD‘t.3 + .. ‘]

€6 . R -(|v.é)
3t o .

-
The multiple commutator expressions for the lowest order coefficients

in the above series are given by Eqs. (I11.40) - (114.42) and -

RO

%, HIMH, 4, 5711, O any)
9 3 -q | ‘ -

' whgre H is the HeisenBerg exchange.Hémiltohian. it Qill be véry
apparent f?om‘the comple£é calculation of (G£3))Oa'(A§pendix A) that
an explicit‘dérivafion of any of.the higher grdér coefffcients would
be extremely tedidus, aﬁd consequently we will carry out detailed cal-
culations for only {Gip)) throuéh (GS?)).A

Our calculation of these coeffi

_,tHe following observation, When T 2 TC, and the neutron scattering wave

vector satisfies.the inequality q4> A-F where )\ is the spfn'pair cor-

transformations the dominant contribution to the spatial sum in the

‘equation for the Fourier transform of the dynamical spin correlation

function,

cients can be simplified by making - -

relation length discussed in Chapter 111, then from the theory of Fourier -



51

oY —~ . (07 Q- ’ . 'ia'ﬁ.. .
g (q,t) =¢s2(0) s_(6)) =2 (s5(0) s¥(t)y e 4, (1v.8)
q =q J . : -

where ‘

- -> - {

Rij =Ry = Ry (1v.9)
comes frpé those.terms in which

> l - ) o .

Ryl <d <a )

so that the spins at sites i and j lie inside a distance ) from each
other. (It should be noted that our interest in this wave vector

region is generatgd by the fact that the neutron scattering experiments

17

" on Ni done by Mook et al. ’/ are carried out in this region.). Proceeding
fufther, if we assume the range of the exchange interaction r to be
~ -finite and

By

<2, - - (IV.11)

then. to a good approximation the dominant contribution to the lowest
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/

order coefficients in the serijes expansion of the spin correlation

functfon,
o 0)yoo (1) o | P
"9 (q,t) =’.3»(<Gij ) - '<Gij )t o (1v.12)
~iq-R, .
- é <G(?)>Qa t2 © e 'J.’
where
@Y < 1d 2y (59 OB (va13)

introduces a multipfe commutator of ‘the Heisenbergsﬁamiltoniah H with
the.ﬁpinopera;or. anch cbmmutation.of.H Qith S? brings in the
apbroprfate components of'a set of spins at sites 4 which ére coupled

" to §? yia the exchange interaction Jj&' Consequen;ly, when f‘< q-~l <,
311 of the spins at sites 4 |ic Within a correlated spin cluster. Thus
when the above inequality,.ﬁq. (iv,11) holds, the major contribution to’
fﬁe dyﬁamical spin correlation function gaa(a;t) above the critical
.températhre~is due.to cluster§ of cbrrelated Spins. Hence it.is-evident
that positiﬁnal spin correlétions are very impoftant near thevcritical
temperature and must be explicitly accounted fér. In 6rder to do thié

we must introduce a Jocal order Parameter which is 4 measure of the
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L2

degree of spin order within a ;orrelated cluster. McLean and Blume
first intréduced the concept pf a local order parameter so that they
could account for thé exlstence of short range order in one dimensional
Heiséhberg magnets. This parameter was oriented in the direction of the
local magnetization. The underlying'assumgtion éf their theory is that
the spatial and temporal variations of the parameter occur slowly near
T = 0 so that in the firsf approximation the local order parameter is
constant with respect to the propagation of short wavelength (d >> x'l)
spin waves: - | ' |

This definition'will be followed rather closely here. However, in
order to s;mplify”our calculations; we wi]l ponsfruct a time‘indepéndent
locél order parameter. Since the normalized correlation function
(§i333)/5(54gl) givéé the probabflity that spins on sites i and j are
cofrelated;wjth each other and thus. is a measﬁre of the spin alignmenf;
we.will take this to be our local order pafametef; This parameter also
has a dfrectibn which is thaf 6f-the local magnetization associated with
.the sﬁin cluster, We define. this to be the direction of the local z
axis. . | | |

Consequently, in discussing.thé contributions to the lowest order
-.'Coefficients in the power series eXpansibn of the dyﬁamicalfspin
'céfrelation function, we explicitl? account for the existgqce of short
range order above the critical temperature by approximating the system
as a collection of éorrelated.spin clusters whose oriéntations are
'distributéd randohly and whose degree of spin aligﬁment is given by

the local order parameter.’




when the system is approximated in this way, the t1me dependent

spin pair correlation function (S (0) S (t)) can be written in the f

follow1ng way
(s7(0) s5()) = 31T (0) $T() + 3O 8] (0)) +

T stonl, v

s =% & sy, o o . (Iv.15)
. J J J . - . . A R . s

Here these spin operators are defined with respect to:-the local z axis
of the'spin clustet'whfch is the axis of quantization; 'The factor of %
takes lnto account the fact that the local z axns is randomly oriented
in the spin system under consuderatlon.,

As a consequencc of Eq. (IV.4), we can write

oot > 2z . T

6 (q,w) =36 (qd,w) + ra Gl (_’,w) + G (Q,w)], : (. 1e)
where we can define

g (",w)—%‘[G (q, )+G (,&)].‘.-‘ o R (.IVA_.17)
"Then Eq. (IV 17) has the same form as that derived by MclLean and Blume
It should be noted however that it is valid only for T > T when the
E system is- approxnmated in the above dnscussed manner, Thus one of the
most sngnlflcant features of the nnc]u510n of local orde.'above the

rltucal‘ponnt is that ;nstead of a single correlation function both
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the transverse.and longitudinal correlations with respect to the axis
of'quanfization, the local z a*i#, must be considered;

In Section B we will calcu]ate the firsf and second ordér Eoéff
ficienis of the powers of t in the series expansidn for the transverse

dynamicaf spin correlation function gT(a,t)'where '
g (4,t) =3[g" (@¢t) +9" (@Et)]. - (Va8

An approximéte expression for gT(a,t) will then be obtained by a
resummation and GT(a,w) obtained by Fourier transformation. In Section

C an equation for G-~ (q,w) will be determined.

B; Determination of GT(E,Q)’

Since G+-(3,¢) aﬁd G-+(3,m) may be calculate&-fﬁ a parallel manner,
we will concentrate on the evaluation of G+-(a,w)}. From this discussion
thenexpressioﬁ for G-+(E,w) will followAdirectly.; |

As'discugsed in.Chépter'lll, Eq.. (111.35), the dyhémical spin

correlation function can be expanded in a Taylor series in powers of t.

Thu§ '
. ‘. @ -1 n_ - -__' .' . ‘ '. o .
) gf(cb t) =L '(_ng)_ <G_£n)>+ P : S (Iva19) o
and so

- q q
- }ll. <G-(.2).)t2 = .‘]' IO . .'.(IV,'ZO)

e Bl

P R
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From Eqs. (111,40 ana 111.42) we have the result that

o '<G_£0))+- =t sy, - o (1v.21)
a 4. =q ' o -
<G_E')$+' = (si [H,S--_,]). | o - ,' X A(IV.ZZ)V
q T -q - | :
and
@O - ashumsT Iy, (v

9 a9 =
4Now in order to determine exactly how the presence of positional
correlatlons of the spins above T affect< the calculation of the !owest

-order coefflcnents, the spatial Fourner transform of the flrst order

coefficient will be examined:

: (s_f.').>+' =5 @{y+ ‘elq'R';i , - (‘I\I'.Zl&)"
q J il o , :
’ whérea
(é(">*‘ = (st M S'i> R ‘('lv.'ééi
S A R I IR o ‘

Here Eqs. (IV 1-1v. 3) have been used in. the derlvatlon of these '
express:ons.

Usnng Eq..(lV.l)-and the following commutator relations -

Lz 4 + . - e ’
[s5, s} =, s, o vae

- (1v.27)

.'z' .
,["F]GS'J
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and

5., S (1y.28)
j ) iJ
; we can expand Eq. (1V,25) and get
i ~ (1) +- - . : o= 2y ot =2 | V.2
{6 iJ.) z.f J.R {«s; S, sJ.) (s} sJ. sL>} . A ( 9)
" Thus
@y -.2 ¢ J [<s S, s )
. q jb -
- - . =iq°R.. ‘
. - + - z ‘ IJ ) : R . L |V-30 )
= Lsh 57 S )le | . S : (._ )

Then, as dnscussed in Sectuon A, when the wave vector q satnsfles

the |nequa1|ty r<gq -1 < A, the domnnant contribution to‘(G( )) comes
from thuse teims in the sums over ] and 4 In Eq. (IV 28) |nqwh|ch all
‘the spins at s;tes i, 4 and j lie w:thln a strongly correlated sp:n
.cluster where the degree of span order in these c]usters is determlned
by the local order parameter. In order to quantitatively determine
this contrnbutlon, we define P to be the probability’ that the 'spins at
S|tes |, J, and 4 all lie within a cell whose size.is meaSured by Ao
Consequently, Q1 -P) is JUSt the probabillty that ‘the spins on sites

i, lt and £ are not all contalned within this cell. Thus we can write
(6 (Dy+= 4 the f;,nc_,w;r;g way :

g ey
~iq-R

(s‘”) =~' (AT (1)+a (l))e oo (v
. q J ) '
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| |

; where

SR I S 183
a?;(l) = <S;[H’SE]>(‘;'P) o _’ o . ‘5  '  (1v.33)

in which the signiffcance of ( . .. >sw is described direétfy below.

“An expression for P may be determined in the following way. Since we

have asSumed that the range of the exchange interaction is much less

than thé two spfn cdffelation length A, then if the spiﬁs at sftes i : L J
and j are within a'distance » of éach othér, all the spins afisite§
i,Aj; and £ will lie within thfsAregion. So the probability P may : o o %
ﬂgimb1y be equated to the normalized two-spln corrélation function ‘ o - é
.3y . g
TR 2 L 1%

When theAsﬁips onigites i and j-are aligned, pij = 1; and when they
-are statistically independeht, pij = 0; Thﬁs P is Fhe magnitudg,of
the local order paramgtér'ih the spatial region near the'ﬁair of ﬁpins
i and j.. | L

In evaluating A (l), we note that all the splns contalned in the
multi-spin correlatlon functlons comprnsung A (1) fallwuthlncorrelated
spin'clusters.. Therefpfé,'these correlation functlons wl]l be approxi=
mate& through‘the use of spin waveAtheory %or én infinite crystal,

. which {s symbolized by ( . .. )sw' This is done by letting

? «.VZS a., ; o ' | .. o » y .!if'_," ﬁ!vf35);_ o
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s; ~ V25 a, (1v.36)
and
2 - -
Si = - S +a; a;, (1v.37)
where p
ai =‘-\-/-.—§a_’e P ' . S : ' (IV.38)
. -Tznﬁ’. "_ ‘ .
sp=Fee Lo w3
Nk k ' ' R ’ ’
..T_

in which a_ and a_ are the magnon creation and annihilation operators
k :

Y. The above expressions are just the Holstein-Primakoff

d

-

respective
spin operator expansions]] in which only the lowest order terms

retained, Then

(l\).,uo)

e 2y e t
EESHEN sJ.) S (25) (a; a,),
and A7Z(1) has the form
ATT(I) = - 2§ T J. .{25[(a.af) - (a.aT)]}p 4 - (Lb)
LE o 4 i ij? . o
where
(a.a)y =15 (14¢ay)e 1t L vk
] L N - —> J ) . \
- “k k e
. t + . . :
Since [a»,a» ] = 8,, and n, =a a which is the magnon number operator.
KKk kK ko Kk - s
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it should be noted that by using this approximation we assume that the

spins within the spin cluster tend to be aligned along the local z

axis of the cluster.

We wull now evaluate the multiple spin correlatlon functions in
Bi}(l)° Since ‘the spins in this term lie outside the spin clusters the ‘
multiple spin correlation functions may be approximated through the use
of the cumulant expansion method employed by Reiter;

et o 2y N N o | .
S. S, S.) ~(S. S , . (1v.h3)

(7 8y 5P = (8] 5P G .

where (. . .) is an average over an equilibrium canonical ensemble,
o .
However, (S.) = 0 when T > T sunce there is no perferred direction for

splns lylng outsnde the spin clusters. Consequently,
e‘;;(l")=o. - . T (v

The above argument can be extended to include all odd ordered coef-

“~

ficients so that-
B'j(2n4-|) =0; n=0,1,2, ,... , (1v.45)

This is a result of the fact that the multi-spln correlation functnons N
tomprnsung B. (2n4-l) must be rotationally |nvar|ant because the'
collection of spins lying outside the spin clusters have this symmetry
APrnpeFty. But the corieiation functions in ..(2n+—l) contaln odd

" numbers of spins, and thus the requrrement of rotational invariance
fntces these equilibrium ensemble averages to be identically enual to’

-2ro.
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- q ‘
the spin cluster contribution, A?j(l). We can obtain an explicit

As a consequence of this result (G IS determined solely by

expression for the first order coefficient by taking the Fourier trans-

form of A?;(l){ Since

VL TER I o
p;i =y Zp@ e b A : . . (1IV.46)
J N2 .
q : "
where
s (8] 'Sj)-é<si.$j)—%S(S-F‘])pi.j, | | (|v.l+7A)

then for T2 T and r < q-l < A

<G‘”>"' =L p W@, Y+ 10pGE -3, (.
T q'- q' A :
with
<n21'") ?W_‘T ', . - (w.hg)
-and

0@ =25[4(0) - J@]I. - (1v.50)
The calculation of the second order coeffucuent (G( )) is done
L : ' q
in an-analogous manner. Since
_ _ -iq.R, . o o
<t=~(z)>+ sE e, | (.5
J ' ‘

then when r < q < A the dominant contribution comes from those terms

O ety

[RCELIP Y

a3
P
3

., Wj e
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in the sum on j in which all the spins lie within a correlated-sﬁln

cluster, A quantitative determination of this contribution can be made

by approximatlng (G(Z))

(c‘”)*‘ A% (‘z)+s’i'} @, " i;lv.;sg)
where

A @) = (Gl(j)) biyr S N - s
and |

._'B’;;.'(z)-=_<f-_i(§)5+'_' (= pp- | ~ | . .';V(.!V.'Slf)

-“Spin'wave.theory Is used in evaluating A?}(Z) and the result is

+= - %
A (2) mz:‘. Jin ij {(zs')[(gnam>

-(a a>-<a a)+<a a)]}pu, : | --(lv.'ss)

.whefeiéé Iong_as r‘<{ A, pij'is thé probability that'the sp}ﬁs on siteé'
l,'j,-h; m all.lle w!thlﬁ a coirelated spin cluster, | |
Again since the spins in 8?}(2) lie outside the spin clusters,
1~Reiteri§ decéuplfng scheme’ can be uséd to apbroximafe the foﬁr-sﬁin
correlation functions In terms of proddcts of equllibridm spin pair

correlation functions:

_(S{ SRR sJT><s; s2), - o _' (1v.56)
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which implies that the spin pair at sites i and j is statistically

independent of the spin pair at m and n. Thus

4= . + - z
B::(2) =4 T Jin‘ Jim [(s,, S-Y¢s5 s;’:)

o mn

+ o=\ yZ Z + - z
s} Sm><sn SRR ICH )

+

(s} snss>u1-mﬁ o wsp

Upon taking the Fourier transform of Ai;(z) and B?}(Z) we obtain
. <

(G_E”)*' = gﬁgg [w@)1? [‘<n_, >+ 11p(@ - 3*)
93 q' ; q'

+

§&§6+ln%guﬁw-JG-Ewﬁﬂ?mﬁ+aw

= @D - 9@ + 31 @p@E +30p@ - I3
q Q" . .

(1v.58)

1

The flrst term in the above equatlon is the Fourier transform of A, .(2){
and thus it gives the spin cluster contribution to (G(z)) i.e. it is
due to the local order above the critical point. Bot:,the'second andA
third terms on the righf hand side of Eq. (IV.58) come from B?}(Z). lf
‘should be noted that the second term is quite-similar to the expreSSien
ﬁeiter39 has derived for the second moment of the spectral density

except for the factor p(*) which appears in the denominator of his

equatlon. The thlrd term plays a very important role at temperatures

- near T because as T 2 T c? p(q) becomes strongly peaked at q '0 for
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a ferromagnet. The width of this peak is measured by l-'. Conse-
quently since we are considering only those wave vectors which satisfy

q va-] the third term tends to cancel the second. This behavior

~

will be discussed'in detail through the use of a specific model in
Appendlx B Therefore, when T >'T the short range order contribution

domlnates near the critical temperature, and

(2)y#= ~ 28
(G YU o=5

W@ Y + e@ -3, (w.59)
q ‘ - q! ‘ :

z
_q’l

‘In like manner it can be readily shown (Appendix A) thet the

domunant contribution to (G(O)) is also due to correlated spin clusters:
- q ‘ ) '
L (0)\#- 25 P S
- (G_’ ) =-N—§l [(n_’l) + 1]p(q - q'). . .. .« . (w.60)
' q q o -

q
Now by examining the results we obtalned for the first three

coeffucnents Eqs. (1v.60), (1v.48) and (IV 59), in the series expansnon

‘ of g (q,t) we observe that they have a very simple form whuch Teads. us

to postulate that when T > T and r < q =1 <A,

6 {My* :‘ZN—_,[w(q 1™ e >+'11p<,3-3') v
q , : : q' ' S :

for n > 2; However, we are not able toAgive a‘geheral proof for thie
expression because as the order of the poetfjeient increases more and
more spins are contaihed withfn a cjuster_of size ), and therefore the
criverion, Eq. (Iv.11), which determines the validity of our decoupling

- procedure will break down eventually, but the discrepancies that do




65

seur shbuld come ‘in the higher order coefficients which affect only the
behavior of the wings of the line shape. Consequently, a good result |
_for the central line shape méy still be expected. When Eq. (IV.61) is
éubgtftuted into Eq. (1V.20), then |

@G0 =2 zgﬂrdt;M“ﬁ%Q*wﬁan
o gt o

X Kn, )+ 11p(@@ - 9"). o | i ] (1v.62)

Upon completing the integration we obtain
‘= > 2S >y ‘ - -, -
6" (q,0) =T Z 8lw - w(@)]{n, ) + 1}p(@ - q'). (1v.63)
: q' ' q' . o

In a similar fashion we can determine G-f(a,w). The only difference
is that the factor (n, ) + 1 in Eq. (IV.63) is replaced by {n,), and
. q q
- 1 . -
(w -~ w(q')) = 8(w + w(q')). Thus from Eq. (1v.17, GT(q,w), the

time Fourier transform of the transverse dynamical spin correlation

 function, . becomes

@) =S5 Kn,) s - w@))
: q' q -
s ¥+ 0@NpE -3, e
. q' _ : S g

It .should be noted that the above expressfon contains only the one-
magnon contribution to the transverse correlation function.. in order to
determine the first order nonlinear contribution to GT(a,w), we must

include the next order term in the Holstein-Primakoff spin opérafdf




66

sxpansions for S+ and S-

, So that
kR, .
S+ = V%§_§ e ! a,
! K K
: - -i(®-R -R) R, S
- r o, e a ,a a , (1v,65)
8NS k,k', k" kK k' kK" ) A
and
. =ik*R.:
- ¢ 428 KRt
IR e
k. .
o GEeR TR, .
- ;Jr'_'Aﬁ.E. L, e a,a, a . ('1v.66)
8NS k,k', ] k k! Kk . : -

Then using the same procedure as outllned above we can obtain not only

the one magnon contrlbutuon but also the lowest order nonllnear con-
tribution to,GA(q,w):

G@m)-ﬁs'%Eﬁ»NEUW >+nuw-qu
. .qll qll ql q
+(n, ¥0ln + 0@) 1@ - §).
. q : 4

"'(lv.67)

The characteristics of the line shape generated by G'(E,Q) wuf] be dis~
cussed in Section D.
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' -
C. Determination of Gzz(q,w)

As in the above discussion for GT(E,w), an approximate expression

for Gzz(a,w) will be obtained by another Taylor series exbansion in

powers of t. The lowest order coefficients in this series will be cal-

.

culated and used to infer an approximate sefies expression for the

longitudinal spin correlation function. Upon Fourier transformation of

this result Gzz(a,w) is obtained.

The Iéngitudinal spin correlation function is given by

0?2 (@,1t) = (52(0) SZ_ (1)),
-, 9 - -q

whose Taylor series in powers of t is

gzz(a,t) -z (;%%12 (Gin))Zz’
q
where

6N = G 2" S0 SN,
q : . q | -9 o

.~ The first three coefficients in this series are

'(GEP))ZZ - (Si Sz*>;x_

q q -9 - : . . R

&My - (s2[H, 'sﬂn, |
q q -q

.nd

" (1v.68)

| - (1v.69)

(1v.70)

qv.71)
T,

(1v.72)
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@hZ s, 2y, S ey
q ' q’ A -9 : o '

The calculation of these coefficients closely pérallels the cal-

| ;hlation carried but for gT(a;t). Consequently, we will only discuss

‘the most salient parts. For example, the spatial Fourier transform of

<G£l))zz is given by : o
9 Lo - o . ;

' <G£l)>zz - Z(é

e i T (v
] ‘ - '

where

‘(éi(}))zz = (silH, 71y
PR J (<s ST S0y - (st s sT) ()
: m’ ; o L ‘

whlch has been derlved through the use of Eqgs. (IV 26) - (lV 28).

From our discussion in Secttons A and B8, the.domunant,;ontrnbution

to (G(')) comes from clusters of strongly correlated spfns.‘ We can
g ) o
thus make the same approximations in order to determine the three-spin

- static correlation functions. The’result_we'obtain is .
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S el s (@) - 0@, Y,y + 1)

q ~2N® q'q" . q q
- + [w(q" ) - w(ﬂ”)](n Y(n, )+ 1)} |
qn ql
X 0@ -3 + ). o v

in a s:mllar manner the dominant contribution to (G(O))z§ and - (G(Z)>zz

q q
can be found. The results for these coefflcnents are obtalned in

Appendix C. Then by taking

6 My2z '-‘7*29 lin@) - o@"0 » <n DI
q . ZM qlqll . A qll
Flo@) - w@)I™0 + () n, Y1p@ + 31 - 3
| (1v.77)

" to be the general form for the coefficients of the powers of t in the

' series expansion for the Iong{tudihal dynamical spin correlation

N fuhction, we finally obtain, upon Fourier'transformatioh, the following

approximate gxpressioﬁ for Gzz(a,w):

2ridsime Pwp Sy = T P EY PR T T D N AR T I A S RS
2RI RV e e Ty T N T e R R SRR S L

R e

iST

ey

T e

RGP T SE %
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@) = s - %_z; (n, 3% p@5 )
_ : qQ' q' .
el 5 (Bt @) - o @ D@+ o >)<n
ZN q q“ 'qu
+ 5w + w@") - w(ﬁ'))(l + (n M<n, b}
@ q

‘ ~> - -
" X p(q-q'+q).

equal to the sum of G . (q,w) and G
‘to gann a quantltatlve understanding of the line shape characternstncs
and their physncal sngnuficance we w:ll cons:der these functlons

_separately

where the first term in the above expressuon is due to the Holsteln-

Prlmakoff spin operator expansion for S The physucal |mpl|cat|ons of

q
this result will be dnscussed in the next section.

D. Transverse and. Longitudinal Con@ribqtioné
| | | to the Line Shape o
:Using th? equations thatrhéve‘been derived for'GT(a,m) and Gzz(a,w)
we’wfli dgterﬁine_the fréqbency distribution and wave vector distribution
of the neutronlmagnetfc s;atterfng cross section.
The rele;ant funcfion which contains all the inf&rmation con;e}ning
fs

these distributions is G(a,w) which, as can be seen from Eq. (1v.16)

(a,w) in our.model Thus in order

In Eq. (lv 67) for G (q,w), we first vary o keeping q fuxed which.

corresponds to a constant momentum scan. When this is done it is
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evident that two peaks will be present in the line shape, The broaden-
ing of these peaks is determined not only by the Bose;Eidsteio distri-
butlon function (n ) but also by p(q -q'). The contributfon of
p(a - q ') to this broadening is partlcularly interesting because we have
chosen P i as our local order parameter and SO p(q - q ) is a measure
of the spatnal fluctuations of the correlated Spln clusters Thus
these fluctuations of the local order regions contribute dlrectly to the
line broaden|ng. Since the width of p(q - q') is on the order of 1A,
the when 1/) <« d, p becomes strongly peaked about q' = 3. Consequently,
~distinct peaks will be obteined at ¢ = + w(q) which correspond to the
. emission and absorption'of magnons, When 3 is varied while @ is fixed
rﬁo peaks:are found at 13| = = IESI (when 1/A << q),'where w(EQ) =
which are also broadened by (n*) and p(a -q').

The factor multiplying

" the sums over 3! in G (3,0),

s - 3; (n_ Y, “(V.79)
Qg .

also has physical significance because from elementary spin wave theory
we know that

g'kﬁ* >'¢ AN = M- M(T)..

(1v.80)
.q" q" N

where Mo is theymagnetization for the completely ordered state which in

our model would occur at T = Te- ~Therefore

A~S(:‘-_’ % {(n ) o:M(T)

(1v.81)
qll qll '

e ge s T T
A AT Ry i it G BT A S i

e
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aqd éo the gizé of GT(H,m)'}s ﬁédified by a ;erm4which is proportional
to the temperature dependent magnetization.

h The.chéracteristics of the line shape contribution from Gzz(a,w) can
be diséerhgd directly from Eq.(]V.78).A~ The first term in this ekpré%-
gfoﬁ.is a central.pgak which is.a delta function of:the frequency at

W =‘0{‘in our approach. In the limit as T —» Tc’ p(a) - 6(3) and the
ffrsy term gives the eléstig Braég scattering contribution to the Cros$

section. ‘Consequently, when T > Tc it is apparent that our central peak

is the remnant‘of the elastic Bragg peak which is diffused Spatially due

to the f!uctuatioﬁs in the local order parameter as measured by p(a)f

Tﬁe m&dél‘that'we,have #onstrﬁcted gives a central peak that has a zero
freqqéncy width, 4Thﬁs impiies that the decay time of the local_oréer

* parameter is inffnfté;hz which is to be exbected because oﬁr local order'
parameter is time independent. it fs alsQ eQident upon examination'of
thguexpression for Gzz(a,w) that there are two;magnon terms contained in

it whfch are also broadened by convolution with p(a).

E. Comparfsoﬁ‘with Previous‘Thgories
Although we have not actually determined the moments of the spectral
i_shape.fUnctidn in Sections B and C, we can still compafe'our.calcu]ation
with:mément ekpaﬁsion theories sincévéaa(a,w) is closely relatgd to the

shape function, Raa(a,w):




7B

: : o~ S oo
oo - G (q,w) C_ 6 (q,w)
R (q)(D) = ? - o ; .
o ,~»
,r:m 6 (q,w)dw (s, s)

q9 -q
Thus we can relate the lowest order coefficients of the powers of t in
the Taylor series expansion for the dynamical spin correlation function

: -
to the moments of Raa(q,w). From Eqs. (111.36) and (111.40) -

(111.42), we find that the second moment is given by

'«;ﬁz’S‘“ |
<w§>“’»= oK L (1v.83)
| -y
e-md'that_.the fo.urt}A\ moment is simply
. <G£h)>oa _ o . o
“;)a%?é_‘"’?‘ﬁ L - o _(l_y,fim')“

q
In Reiter's derivation of the second and fourth moments of the spectral
density above the criticalltemperature,h0 the fluctuation of the second.
moment, defined by,
L hom , hoo . 20002
¢ ™ = (WP,

Q) =
q q

(N.ss)

satisfies the following relation



e

T4

2 .3, T vase
(W2y™)?2
q ' N

when q >> X-] . However, in our calculation through the use of the

results from Sections B and C along with Eqgs. (lV.83) and (1v,84) we

obtéin
<w§>°°‘:. [m(&n{ - SR L v
dEieat, e

Aq

wﬁen T<q<< X"'aﬁd T2T.. Here w(q) is the Spin.wave fféquency
deffned by Eq. (1v.50), Cdnsequently, | : |

h® .o, . (.8
-9 : ' : :
Then from Marshall and Lowde's discussion of moment theory we'see‘thaf in
6ur céléufétion when' the temperature approach‘es.Tc and r < q-'I < \ the
spectrai shape function will4have well-reéolved beaks corresponding té
the exc;tatlon and absorptnon of spnn waves, In Reuter s calculatlon,

however, no spin wave peaks are found in the theoretucal line shape
-1

‘-whenvq.>_.x and T >.Tc. His result is contradicted by the experimental

observation of quasi-spin wave peaks in the neutron scattering cross
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18
3°

ficulty in Reiter's approach can be traced to the method he used to

17 and RbMnF

section of Ni The most important reason for this dif-
decouple the multiple-spin correlation functions.

'As was stated in Section B, Reiter decoupled the four-spin cor-
relation functions in the following way:

<s:s s s) (s s><s S), ~ (1v.90)

of sprns. This particular decoupling scheme, that all spin clusters are
’statistically independent from every other pair, is valid at high temper-
'athres where there is much spin. disorder. In this temperature region
the spin correlatlon length A, which is a measure of the size of a
correlated spin cluster, is quite small, . Therefore, when q << x-] where
q is‘the spin-flpctuation wave vector, these fluctuations span many spin.
clusters oriented randomly and thus they must behave quite differently
from spin waves,

| Reiter's decouplnng scheme is quute4analogous to one which was
developed in order to treat phonon phonon interactions and wh|ch has.b-
.been quite successful in describing the phenomenon of acoustic atten=
vation. In studying the attenuation of long wavelength souhd Qaves ind
‘Helium 11, Kawasak|h§ -48 found that when q << k-], where q is the wave

.vector of the sound wave, and x-]_is the inverse correlation length

of theAparticle'fluctuations,‘the correlation functions containing

multiple phonon creation and annihllation operators found in the expres-
sion for the attenuation constant can be approximated by products of

pair correlation functions.




76

A Although this particular decoupling procedure was found to be quite
useful in -the acoustic attenuation problem, its application to the

problem of spin'fluctuationﬁ leads to difficulties because it does not

adequately account for the positional spin correlations that are impor-

tant when T 2 Tc and q-l << ) which as we have seen must be taken into
consideration in the determination of theAaynamical spin correlation

function.

-
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V. DISCUSSION OF RESULTS

\; We now proceed with the evaluation of the expressions we obtained
for.the Fourier transforms of the transverse and longitudinai dynamical
§pin'correlation functions. In order to éccomplisﬁ this the sums over
. the wévé vectors q' and q'" in Egs. (IV.675 and (1V.78) must be carried
out. Since these wave vectors can take on a continuous set of valués
the sums can be éénvertea to infegrals which can be simplifiéd through

the use of the following approximations: the spin wave dispersion curve

. is approximated by a pérabola so that : : - T
J(0) - @) = oq” , | | N (A )
and -

where @ and D aré fiftlng pérémeters and D is often referred to'sg the
‘spin w#ve stiffness, - |
_As in other theories dealing with spin-spin interactions above
Tes ouf theory requires that we have.an explicit expfession for the
statié spin péif correlation function, Consequently we have used a .
.Géussian function of the form b(a) e e_quZ where \ = (ZD/kB(T-Tc))%.
These appfoximathns allow us fo evaluate the integral expression

for GT(a}w) analytically, however Gzz(a,w) must -be evaluated through

" the use of numerical integration techniques. Before we can determine
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the numerical values for these functions, the values of A, the two-spin

correlation length, and D, the spin wave stiffness, mustgbe obtained

from experimental data."The spin wave stiffness constant we use is D=
280 meV - Az. In the case of Ni, neutron inelastic scattering experiments
“have indicated that at T, +50 K (T_ = 631 K), A~ =_Q.IIX-‘. The value |
at anylother temperature can then be calculated with the help of the
temperature scaling law for the inverse correlation length, Eq. (Ill.hhj.
(As an interestlng aside it should be noted that thls temperature

dependence yields A -1 _ 0. 15A -1 at 711 K (T + 80 K) ThIS result nndacates

that the high temperature spin wave dlsperS|on curve: reported by Mook
.Lynn, and Nncklow 17 lies in the short wavelength reglon q” A ‘).
The functlon G(*,w) can now be evaluated numerically In Figure 9 a
typlcal set of llne shapes is shown for the case where w is held constant

and q |s varued (A constant energy scan. ) The most saluent character-.
istic of these line shapes is that they contann dlstunct peaks ‘which are
iocated at q = :h q,s Where hw(q ) ﬂw is the energy of a spm wave
whose wave vector is qg |

Although these line shapes have the same qualltatuve appearance as
- those obtained experumentally in the inelastlc scattering of neutrons
from Ni, .a more'detailed comparison reveals definite discrepancies'
‘between our S|mple theory and the Ni data, ln'Figure 10 we compare our
numerlcal results for the full-wndth-at half-maxlmum (FWHM) for the peak
in G(q,w) at various. temperatures with the experlmental curve for Ni for

tan energy transfer AE fw = 12,4 meV, where the instrumental resolutlon
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——— T=656K
. . =0—0—0—0- T=681 K
— T=706K
cememee T=T31K

o
|

"E=z 46 meV. o
D= 273 meV-A®

INTENSITY (ARBITRARY UNITS)
G
)

Figure 9. Temperature dependence of the. theoretical line shape.
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.. —— EXPERIMENT
b ----=- THEORY

Figure 10. fomparlson;between the experimenfal and theoretical line
widths in'q as a function of temperature for nickel at.an
energy transfer of AE = 12.4 meV. ‘




81

as been subtracted out. In the region from 656°K(I.O3T ) to 706K
.27, ) the slope of the curve produced by our theory compares favorabiy
«4ith the experimental curve. However, below these temperatures the line
width of the theoretical peak approaches zero as T - Tc. ‘This is not
surprising because in applying spin wave theory to evaluate the spin
correlation functions involving spins within a correiated cluster, we

wave included only the lowest order linear and nonlinear terms in the

Holstein-Primakoff spin operator expansicns. By doing this we have con- -

structed a theory in which the spins within a cluster are strongiv
correlated and thus they tend to be'aligned in one particuiar direction
dofined to be the local z axis of the cluster. COnsequently, at T = Tc
the spin ailgnment in our model corresponds to that which actuaily
‘exists"near,T =A0°K. This observation |mpl|es that our theory ‘should
nork better in the case.of one dimensional magnetic.systems where.'-
-lc = OOK.. |

The other devnat:on from the expernmental reSults is observed above
706°K. In this high temperature reglon the theoretical curve has the
same slope as it did when T < 706° K»because the linewidths of the
theoreticai peaks COntinue to increase at the same rate. 'However;'the
txDerlmental curve bends over, because the experumentai linewidths are
jobserved to remain almost constant up to the highest temperature used
._izTc). A possible reason for this duscrepancy lies in our choice of a
Static Spin'correlation function for.the ‘measurement of the probability
that the spins nithin a spin cluster are correlated, bonsequently, in

i
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Aour'slmple theory, line broadening is only affected by one‘parameter, the
spin correlation length k- As the temperature increases, )\ decreases,
and thus tends to broaden the line because the clusters become smaller,
The peaks will continue to’ broaden'as the temperature increases. How-
ever, in 8 more refnned calculation a tnme dependent spin correlation
functlon must be used to specify the probablllty because above T spin
diffusion causes the spin clusters to decay with time. AThus as the |
temperature lncreases the‘tendency for the llne to broaden due to a
decrease in the correlation length is balanced by the increase in spun
dlfqulOn Wthh effectlvely allows only the large clusters to sustain a
spnn wave excitation while in the small clusters this cannot occur.

Hence the line should not broaden very much as the temperature increases,




83

Vi. CONCLUSION

The single most important result obtained from the foregoing cal-

L < A IS

culation is that above the critical temperature when r < q
satisfied, positional correlations between spins must be considered

because these.corrélations directly effect the shape of the neutron

scattering cross section. Within this wave vector region we have found:.

that when the localized spin system is approximated by.clusters4;f édr;
related spins whose degree of order is measured by a time-indeﬁendent
order parameter,Afhe two spin correlation function p(a), thén the Fourier
traﬁsform, G(a,w), of the dynamical spin correlation func;ion: obtained
throﬁgh the use of this apprbximation, exhibited distinct spin wave like
péaks. The full-width-at-half—maximum of these peéks énd fheir position

-compare:qpalitatiQely with the experimental results obtainedfby Mook,

Lynn, and Nicklow.'7 A more detailed comparison reveals that we can only -

achieve a quantitative agreement betwccn experimenl and theory by re-
ffﬁing the appfoximétlons that have béen used, These include the
following. | | |

| l. Magnoﬁ-magnon interactiong.have been negjected. Thi§ causes
our line-widths to approach éero as T-e»TC.i

:2.‘ fhe highe} order éoefficienté‘in thq'time Ferier éeries expan-
sion of the dynémical~spin ;ofrelation function énvolve progressively
Iargér numbers of spins within the cluster.' Hence our épproximation

.ihat r < A must breakdown at some order., . .-

SRR SRRt
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3. fhe temperature within a cluster has been assumed to.be the same
as that of the whole crystal. This approxlmation is vaiidvas long as -
Athere are no strong temperature fluctuatlons over small reguons in the
system and the clusters are large. |
| 'h. The local order parameter used in this theory was the statuc
spin-pair correlation function. This approximation is one of the major
causes for the continued. increase in the theoretical line-widths as the
‘temperature increases. As we po}nted out in Chapter V this approximation‘
can. be refined through the use of a spin diffusion correlat:on function,

| It is also |mportant to note that the theory developed here is

Iapplncable to simple Heisenberg ferromagnets. Consequently, it is not
surprising that only quantitative‘agreehent with the inelastic neutron
scattering data is obtained with Ni because although nickel does\exhibit
characteristics of'localized spin systems;'it is_welf known that the
magneticAmoment per atom in Ni is not‘an-integral numher of Bohr magnetons
-which implies the»d-electrons are itinerant. Furthermore, neutronvscat-
tering -experiments on Ni have found a sharp cutoff in spin wave inten-
" sities above a certain energy which is predicted by the Stoner model of
intinerant ferromagnetISm in which a sharp decrease in intensity occurs
uhen the spun wave dusperS|on curve |ntersects a continuum band of
Stoner exc;tatlons. Our model in its present form can not predict such
a sharp cutoff. fhese findings indicate that a complete theory dealing.
"with spin fluctuations in ﬁetals must explicit]y consﬁder the ftinerant

nature of the conduction electrons.




'anally, because ef the simplicity of the theory we have developed
we should be- aEle to readily mbdify it so'th.at We can ;tudy the magnetic
excitafions of systems in which the crystal flefd only ground state is'a
sidglet. In these sYsteme it has been foundug;si that the ex}stenee_

of a magnetic phase transitioh is dependent upo;‘the magnifude of the

ratno of the exchange |nteract|on to the crystal field interaction which

-are usually of comparable size., When the exchange interaction is small
this fatio is less than a certain tﬁreshoid valueS‘ and no magnetic
ordering occurs, however when the ratlo exceeds thlS value a magnetlc
phase tran5|t|on |s expected where the ordering is due to a polarnzatloe

(induced moment) instability in the ground state wave function. In the
-fheoriessz-ss that have been proposed this phase fransitien is driven by ’
' the.softening of tﬁet haghetfe exciten mode whose ane vector a cer-
responds to the wave vector of the.ordered sfructure; eTHis soft-mode
behavfor has, however, not been observed experimental1\_/.?56—'58 It ie
vimportant to note that ie-tﬁeee inelasffc neufronrscattering experiments
the scattering wave vector ueed was q > O.SR-l, and thus;enly short
wavelength magnetic exciton modes Qere being'exeited. >Consequently it
would be quite |nterest|ng to examine the effect of pos:tlonal correl-
atlons between the induced moments on the lune shape of the neutron .

scatterung cross section through.the use of our theory.
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IX. APPENDIX A: CALCULATION OF (Gﬁo))+' AND <C£3))*"
N . .. - B . q ) - i N q .
: from Eq. (111.40) we know that B
(Gﬁo)) = (st s'»); ' o o (A1)

q q.-q

We can approximate this expansion coefficient in-the manner discussed

in Chapter IV by taking the positional correlations of the spins
explicitly into consideration: O

- -iq-R..

O s @ sl L, @)

a . J
where

at7(0) = ¢st s

ij i j>swpij j (A.3)
~‘and
,a?j(o) - (;? s;} a - pij),:- - »1 o o (A_q)'

in which pij is defined by Eq. (IV.46) in Chapter iv. The correla;ion'
- function (S? S}) in A?;(O) can be evaluated. through the use of spin
‘wave theory since the spins at,sfteﬁ i aﬁd-j lie witﬁin a correlated
clgster. In B?;(O) thé spin corrélatfon'function s evsluated in terﬁs
" of an equilibrium spfn'pair cérrelat?on function, Eq. (IV.47). When
4the~Holsteiﬁ-Primakoffspin operator expansion, Eds. (1v.65) and (iV.66)

are employed we obtain




) TR AR
A0 =Bz e e Jea aty
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. __1__ E el—k’ ‘R’i e" (k] +k2 k3) Rj
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Sz i)y iR
2N? TE,E]
P
Ky K,
B + +_ . :
(a_, a_> a—> a—+>}pij ¢ (A'S) .
K, K, K, K _

1 "2 73

.. Thus when the sum in j in Eq. (A.1) is carried out the following

expression .for (Gi

0)>+-
q -

results:’

@O a2 - m )z (L + 10pE - 3

q .9 94 G a
__+[%@3nuum~§§prMa-$n (A.6)

which contains those terms which make a non-zero contribution to the
series éxpaBsion of the time depéndént correlation function. The last .
term in the above expression, as discussed in Appendix B, approaches

zero as T - T_, so when T 2T andq > k-‘ the first term dominates.
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~.‘The.exbansion-coefficfent_(GiB)}+- can also be approximated in:the
: a q ‘ S
' same manner, i.e, .
h - L A _ia°ﬁfj L .
SN A ORI N
O ] ‘ Lo
. where : = ' T
ATG) = (lst, KL IGSTIN o (A8
<l i L el , R
andA: )

A ,
by symmefry. The reason why B?}(B) is zero is discussed .in detail in

Chapter 1V, Since H is the Heisenberg Hamiltonian, then after some B : ;

'manipuJation; spin operator commutator algebra yields

-, e ‘ 42 ;AA+A Z\ =2 ; -2\ o2
A (3) = (8 4,§r Yie Yin Yjr ((s&si ST Sy (§rsj 55,5, )
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Then using the spin operator expansions given by Eqs. (1V.37), (iV.65),

(1v.66) and completing the sums on j, 4, p, and r, we obtain

@B o2 s L e p@E)?
-9 : o 9
| 19
Xy + 1)@ - 30 )
.. 9 . : ,

" -which again contains those terms which make @ finite contribution to
the Taylor series expansion of the dynamical spin correlation function.
1t is quite evident that an explicit calculation of the higher order

‘expansion coefficients becomes extremely tedious due to the number

of terms contained in the multiple commutator expressions.
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:x- APPENDIX B: TEMPERATURE DEPENDENCE OF THE BACKGROUND TERMS IN (G(O) +e
. o o . q -
q
| . (0) +-
_In the expression Eq. (A.6) we obtained for (G ') the term

q A
that was neglected when we determined the Taylor.series expansion of ' -

the dynamical spin cbrrelation function has the form
2554 @ - L g @) p@ - 3]
3207 ela N g 0f97) pld = 9T

F
' Tﬁis jg the same, except for & multipicative constant, as the term
~that was neglected in'(Gip))zz. The reason for this comes from the

) q , . .
fact. that above Tc’ when the spins lie outside the correlated cluster,

the correlation between pairs of spins éatisfies tne following eduality: ”
Yy o ycZcZ S
(S g% ) = (S S ) = <Sisj>' ‘ . s

_In.order to exaniné-the size of.Eq. (8.1) and its temperature
depgndence.a specific model wi!! be used, ;or simplicity we take
p(a)‘td have @ Gaussian.form so p(H) e« e-k 9 where A is the two-spin'
correlatnon length Then the integral that results when the summation
on q is converted to an lntegratnon ‘can be solved analytlcally. The
dominant term [see Eq. (A.6)] can also be evaluated using this model;

however the value for this term must be determined through the use of

numerital integration techniques., When these calculations are carried -
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out we find that at Tc +.25l((656‘K) the ratio of the background term
to the term we have retained is en the order of 0.01. However, the
‘~=baehground is very temperature sensitive because at T_ + LOK (671 K)
“this ratio is 0.15,.and as the temperature increases to T_ +100K the
bachground‘term is no longer negligible; In general as long as

qr» 4.0 and x!] < 0.10 this term makes only a small contribution which

-can be neglected.
(2) +=

q
also be examined through the use of the above method. The integrations

The temperature dependence of the background term in (G can

that_atise'in this analysis are again greatly simplified by the use of
‘a Gaussian spin correlation tunctibn and the approximation,~J(0) - J(a) =
(;qZ.A When this is done the value of the background term can be |
determlned via numer:cal integration, and the ratlo of this term to the -

dominant contrnbutlon to (G(z)) is found to be 0.02 at T. + 25K. Thus

q
.at temperatures near T the contrlbutlon of the background term is
small and may be neglected however it should be noted that thlS term
" is also very strongly temperature dependent, and as the temperature

increases the background contribution becomes significant., At T+ Lo K

the background term is on the order of the term we have retained in the
(2) g+,

q
the expansuon coeffncnents in the Taylor serles expansion of the

expressuon for (e Consequently, the expressnons we have used for

“dynamlcal spin correlation function are. very good approximations only

~at temperatures near the critical temperature.-
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zZ zz

X1. APPENDIX C: CALCULATION OF (s(°)> AND. (G(Z))
. q q

_ The zeroth order coefficient in the time Taylor series expansion

~.

of the longltudnnal dynamlcal spin correlation functlon is approxlmated

in the usual way:

*

. . . _'..-—b.—Rb.. ' - ] A .
Do A : .
where ' E (
RO =S ey ey
and ) V
:sij(o) = <.5;“$J-_>(‘“ '-..pij).’ T (03)

- 'Spin wave theory is again used to evaluate the spin correlation
* function in A?;(O) andAB?j(O) is evaluated in terms of an equfljbrium
correlation fuﬁction Eqs. (IV;#6) and (1v.47). Thus when the

Holstein-Primakoff spln operator expansuon for S |§ employed we

- obtaln
A?;(O)» {Sz - %%'g (n)y + 15* z.<n )(n*l>
k Kk N .K,i' k k
~T(K-%')-R.,
+ %%- Z e T+ (n»'))
N ﬁ,ﬁl _.k

X '<ni>}pij. A- -,.~ N .f ‘ | (c.?)
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When this is substitdted into Eq. (C.1) and the sum on j is carried

out we find that

' q . .4 q
+ B n () + D@+ - G
N'.a’l'q”n q q '
“ + 135S 0@ -y Ze@EI@E - 3 G
- q' N -

where the last term in this equation makes only a small contribution
“ when T > TC and q x-'.‘ (See Appendix B.)
in like manner we can write

T o>
-ig-°R..

6PH*F =gl v 8 @le . (ce)
- o J J - A - .

K - R
where

K@) "f“szi’j’..ﬂ] [H"S;])swpij - | | A )
and

2z, . ' ' . .

B3 @) = <[§§,H1[H,sj]><1 - 9ij) . S :gc.s)
Since -

GO Jin(s‘;s: - stsT) D @)

n
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Athen

; A‘U.(z)‘~ nﬁ<J‘" ij{<sisnsmsj) o B -
- bty Hom dom\ gt o " : .
o+ <§n§isjsm> - <sisnsjsm> - <5n535m5j>}' o (c.jo)

‘where thé'Holstein-Prihakoff oﬁerator expansiéns for S: and S;,
EQs. (1v.35) and (IV.36), are ﬁow useé to rewrite thé above four-spin
cofrelation f@nctﬁons. in qr&er to simplify e?}(z) we uSe the cuﬁulant
exbansion-methoduo'so‘fﬁat above T_ the féur spin correlation %unctions
‘can. be written in‘térmé of pairs of 2-s§iﬁ eduilibrium'correlation -
functions, Eq. (I1V.56). Whén ‘this is done and the sums on j; n, and m
“are éarrfed out'we.obtéin | - |
} <G£2)>zz =_]i_ }3

.9 N a’l"u
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X (1 + N Y@+ 3 -Gy
e seen? EE LED - 9@ In?
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where the last two terms tend to cancel each other as T —» Tc; and

. .-.].
g >,





