Optical imaging diagnostics for fusion plasmas

PDF Version Also Available for Download.

Description

Imaging diagnostics are used for spatially/emdash/and temporally/emdash/resolved quantitative measurements of plasma properties such as the ionization particle source, particle and energy loss, and impurity radiation in magnetically confined fusion plasmas. Diagnostics equipped with multi-element solid-state detectors (often with image intensifiers) are well suited to the environment of large fusion machines with high magnetic field and x-ray and neutron fluxes. We have both conventional (16msframe) and highspeed video cameras to measure neutral deuterium H/sub ..cap alpha../ (6563 /angstrom/) emissions from fusion plasmas. Continuous high-speed measurements are made with video cameras operating at 0.1 to 0.5 msframe; gated cameras provide snapshots of ... continued below

Physical Description

Pages: 12

Creation Information

Allen, S.L. April 1, 1988.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Imaging diagnostics are used for spatially/emdash/and temporally/emdash/resolved quantitative measurements of plasma properties such as the ionization particle source, particle and energy loss, and impurity radiation in magnetically confined fusion plasmas. Diagnostics equipped with multi-element solid-state detectors (often with image intensifiers) are well suited to the environment of large fusion machines with high magnetic field and x-ray and neutron fluxes. We have both conventional (16msframe) and highspeed video cameras to measure neutral deuterium H/sub ..cap alpha../ (6563 /angstrom/) emissions from fusion plasmas. Continuous high-speed measurements are made with video cameras operating at 0.1 to 0.5 msframe; gated cameras provide snapshots of 10 to 100 ..mu..s during each 16-ms video frame. Digital data acquisition and absolute intensity calibrations of the cameras enable detailed quantitative source measurements: these are extremely important in determining the particle balance of the plasma. In a liner confinement device, radial transport can be determined from the total particle balance. In a toroidal confinement device, the details of particle recycling can be determined. Optical imaging in other regions of the spectrum are also important, particularly for the diverter region of large tokamaks. Absolutely calibrated infrared cameras have been used to image to temperature changes in the wall and thereby determine the heat flux. Absolutely calibrated imaging ultraviolet spectrometers measure impurity concentrations; both spatial and spectral imaging instruments are employed. Representative data from each of these diagnostic systems will be presented. 16 refs., 8 figs.

Physical Description

Pages: 12

Notes

NTIS, PC A03/MF A01; 1.

Source

  • Spring meeting of the Materials Research Society, Reno, NV, USA, 4 Apr 1988

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE88008682
  • Report No.: UCRL-97661
  • Report No.: CONF-880408-10
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 5093567
  • Archival Resource Key: ark:/67531/metadc1057659

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 1, 1988

Added to The UNT Digital Library

  • Jan. 22, 2018, 7:23 a.m.

Description Last Updated

  • Jan. 31, 2018, 6:33 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Allen, S.L. Optical imaging diagnostics for fusion plasmas, article, April 1, 1988; California. (digital.library.unt.edu/ark:/67531/metadc1057659/: accessed October 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.