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A MUSHY ZONE MODEL WITH AN EXACT SOLUTION 

A. D. Solomon 
D. G. Wi 1 son 
V. Alexiades 

ABSTRACT 

In this paper we propose a very simple model of a mushy zone 

which admits of an explicit solution. To our knowledge, it is the 

only instance where an actual observation of the mushy zone width and 

structure is used as a partial basis for the model definition. The 

model rests upon two unknown parameters. The first determines the 

relation between the equilibrium tem.perature gradient and the mushy 

zone width. The second depends upon the dendritic structure in the 

mushy zone, and is related to the solid fraction. Both can be 

estimated from experiments .. We will limit ourselves to defining the 

model, presenting its closed form solution, and giving tables from 

which the solution can be fdund expl~citly. It is ·shown that in most 

cases the predicted mushy zo·ne ·is of very negligible importance. 

1 
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1. INTRODUCTION 

The term 11 mushy11 zone appears in the 1 iterature on metal castings 

and solidification of other materials [2], [5], [6]. It refers to a 

zone where solid and liquid coexist and it appears to arise from the 

complex way in which liquid material solidifies, namely, by locally 

forming dendrites that leap into the liquid and entrap some of it. 

The zone of coexistence of liquid and solid.may be very long or very 

short depending on the material and the conditions under which solidi

fication takes place. Assuming that the dendrite comes into being be

cause of some local supercooling and instability, one would believe 

that the greater the temperature gradient in the material the shorter 

will the width of the zone be. Indeed, this is one of the key results 

obtained from microscopic studies of the phase change front by Thomas 

and Westwater [5]. Roughly speaking, they found that the tempe~~ture 

gradient and the width of the· zone obey the relation 

width X temperature gradient = .031 degreesoC (1.1) 

for N-Octadecane paraffin wax under steady state conditions. 

We are aware of very· few attempts at modeling mushy zones of this 

type in phase change processes. A reasonable model was proposed by 

Tien and Geiger [6], who consider the mushy zone as the region between 

two isotherms (at the solidus and liquidus temperatures), in which the 

time rate of change of the solid fraction provides a heat generation 

effect. At the solidus front, the freezing of the remaining liquid 

provides the latent heat needed for the movement of the front whereas 

there is no latent heat effect at the liquidus front. Under a variety 

of assumptions the model for a semi-infinite body with constant 



3 

surface temperature admits a similarity solution. The case of time

dependent surface temperature is treated in [3] by Goodman's heat bal

ance integral method. Cho and Sunderland [4] obtained a similarity 

solution for the problem with initial temperature not at the liquidus 

temperature. The same basic mathematical model was generalized to the 

semilinear heat equation in any number of dimensions with the solid 

fraction being any function of temperature by Alexiades and Cannon [1] 

and its well-posedness was established. 

In this paper we propose a very simple model of a mushy zone 

which is based on the observation (1.1) and admits of an explicit so

lution. The attraction of this model is that it is, to our knowledge, 

the only instance where an actual observation of the mushy zone width 

and structure is used as a. partial basis for the model definition. 

The model rests upon two unknown parameters. The first determines the 

relation between the equilibrium temperature gradient and the mushy 

zone width, and based on [5] is taken as .031°C for N-Octadecane Para

ffin wax. The second depends upon the dendritic structure in the 

mushy zone, and is related to the solid fraction. Both can be estima

ted from the kind of experiments described in [5]. We will limit our

~elves to defining the model, presenting its closed form solution, and 

giving tables from which the solution can be found explicitly. As we 

will see, in most cases the predicted mushy zone is of very negligible 

importance; it is hoped that the present work can shed some light on 

the kind of material and experimental setup that can be used to study 

the mushy zone growth more thoroughly for situations where it might be 

of importance. 
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2. THE MODEL AND ITS SOLUTION 

Consider a slab of material occupying the region x > 0. Initial

ly the material is assumed to be in its liquid state at its solidifi-

cation temperature Tcr· Beginning at timet= 0 a constant 

temperature Ts < Tcr is imposed at x = 0. A solidification process 

ensues, in which three distinct regions can be distinguished. 

1. 

2. 

3. 

Liquid, at temperature Tc , occupying the region x > Y(t); r -

Solid, at temperature T(x,t) < Tcr' occupying the region 

0 ~ x < X(t) where X(t) ~ Y(t); 

11 Mushy zone 11
, at temperature T(x,t) - Tcr occupying the 

region x(t) ~ x < Y(t). 

Thus, the mushy zone is taken to be isothermal, and we make the 

following two assumptions on its structure: 

a) the material in the mushy zone contains a fixed fraction 

aH(O<a<1) of the total latent heat H; 

b) its width is inversely proportional to the temperature gradi-

ent, that is, 

TxlX(t),t) [Y(t) - X(t)] ~ y, (2.1) 

The constants a andy are characteristics of the material. The 

solid fraction a expresses the degree of 11 packing .. of the mushy zone 

by crystals. Taking a = constant, as we have done, amounts to assum-

ing 11 uniform packing .. throughout the mushy zone. On the other hand, 

(2.1) is suggested by the experimentally observed relation (1.1), and 

for the paraffin wax of [5], 

y = .031oC 
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Assumptions a), b) are of course simplifications of the actual physi

cal process. In particular, a) is based on the assumption of "uni-

form" packing throughout the mushy zone, while b) is suggested by the 

observation (1~1) which wa~ seen for the ~teady state. 

From assumption a) and considerations of energy conservation we 

are led to the boundary condition 

KTxlX(t),t)= pH{9X'(t) + (1-9) Y'(t)} (2.2) 

In addition to (2.1), (2.2), the temperature T(x,t) obeys the condi-

tions 

Tt(x,t) = aTxx(x,t), 0 < X < X(t) (2.3) 

T(x,t) - Tcr' X ~ X(t) (2.4) 

T(O,t) = To' t > 0 (2.5) 

T(x,O) = T cr' 0 < X < co (2.6) 

Functions X(t), Y(t), T(x,t) satisfying (2.1) - (2.6) can easily be 

found in the form 

with 

T(x,t) 

X( t) = 

Y(t) = 

= T + ~T erf(x/21at}/erf A, 0 < x < X(t), s 
2Aiat 

).2 
~ = ). + [yin e erfA]/2~T 

while A is the unique root of the transcendental equation 

where 

and 

St ).eA2erfA + y(1-9) In (eA2 erfA)2 
In - ~T 2 

~T = T - Ts cr 

St = c~T/H 

is the Stefan number for the process. 

(2.7a) 

(2.7b) 

(2.7c) 

(2.7d) 

(2.7e) 
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Note that for e = 1, (2.7e} reduces to the transcendental equa

tion for the ordinary one-phase freezing problem. [2] 

If St ~ 0, then (2.7e} implies 

A ~ [St/2(1 + y(1-8}/6T)] 1 12
, 

~ "' A(1 + y/t.T}. 

For each value of the dimensionless parameter 

w = y(l-e) 
6T 

(2.8) 

(2.9) 

equation (2.7e) relates A and the Stefan number St. Its graph and 

some val~es for various values of w when e = 0 are given in Figure 1 

and Table 1 (we have stopped arbitrarily at St "' 25; in phase change 

processes involving metals, the Stefan number is generally of the 

order of 10) . 

The dimensionless relative mushy zone width 

A2 

r = 6 T ~-A = In e erfA 
y ""A """"7 

versus A is pictured in Figure 2. 

(2.10) 

Thus, for a given material and imposed temperature T (i.e. for s 
given wand St), equation (2.7e) determines A from which the tempera-

ture, interfaces and zone width can be found via (2.7} and (2.9). 

Example. For freezing N-Octadecane Paraffin wax in a 

thermal storage process we would anticipate St to be 

about .25, while with 6T = 20°C, y/6T ~ .0015. Hence 

for all intents and purposes we will estimate A to be 

approximately .1 (from table 1) and so, from Figure 2, 
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and 

ll~A "' .0015 · 

which provides an estimate of the mushy zone width, 

Y ( t) - X ( t) .. . 0015 X ( t) . 



Tab 1 e 1 ' 

St for a = 0 

0 .. 1 1.0 10.0 

0 0 0 0 0 

.1 .020 .022 .040 .223 

.2 .082 .091 .167 .926 

.3 .191 .212 .394 2.222 

.4 .356 .396 .753 4.326 

.5 .592 .662 1.294 7.609 

.6 .920 1.038 2.097 12.688 

.7 1.373 1.565 3.296 20.601 

.8 1.996 2.307 5.107 * 

.9 2.858 3.362 7.898 . * 
1.0 4.060 4.884 12.303 * 
1.1 5.755 7.124 19.441 * 
1.2 8.172 10.491 * * 
1.3 11.663 15.688 * * 
1.4 16.776 'II: * * 
1.5 24.370 * * * 
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Nomenclature 

c specific heat .. (KJ/Kg-°C) 

H 1 a tent heat (KJ/Kg) 

K thermal conductivity (KJ/m-S-°C) 

t time. ( s) 

T temperature (oC) 

T cr solidification temperature (oC) 

T imposed surface temperature (oC) 
s 

X position variable (m) 

X 11 Solidus11 front (m) 

y 11 liquidus 11 front (m) 

Greek letters 

a K/cp thermal diffusivity (m2 Is) 

p density (KG/m2
) 

6 11 packing 11 constant 

y zone width vs gradient constant (oC) 
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