A Mushy-Zone Model with an Exact Solution

A. D. Solomon
D. G. Wilson
V. Alexiades
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
A MUSHY-ZONE MODEL WITH AN EXACT SOLUTION

A. D. Solomon
D. G. Wilson
V. Alexiades


Date Published - April 1982

COMPUTER SCIENCES DIVISION
at
Oak Ridge National Laboratory
Post Office Box Y
Oak Ridge, Tennessee 37830

Union Carbide Corporation, Nuclear Division
operating the
Oak Ridge Gaseous Diffusion Plant • Paducah Gaseous Diffusion Plant
Oak Ridge Y-12 Plant • Oak Ridge National Laboratory
under Contract No. W-7405-eng-26 for the
Department of Energy
THIS PAGE
WAS INTENTIONALLY
LEFT BLANK
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Illustrations</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>2</td>
</tr>
<tr>
<td>2. The Model and Its Solution</td>
<td>4</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>11</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>12</td>
</tr>
</tbody>
</table>
# ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>$S_t$ as a Function of $\lambda$ for $\theta = 0$</td>
<td>7</td>
</tr>
<tr>
<td>2.</td>
<td>$\Gamma$ as a Function of $\lambda$</td>
<td>8</td>
</tr>
</tbody>
</table>
A MUSHY ZONE MODEL WITH AN EXACT SOLUTION

A. D. Solomon
D. G. Wilson
V. Alexiades

ABSTRACT

In this paper we propose a very simple model of a mushy zone which admits of an explicit solution. To our knowledge, it is the only instance where an actual observation of the mushy zone width and structure is used as a partial basis for the model definition. The model rests upon two unknown parameters. The first determines the relation between the equilibrium temperature gradient and the mushy zone width. The second depends upon the dendritic structure in the mushy zone, and is related to the solid fraction. Both can be estimated from experiments. We will limit ourselves to defining the model, presenting its closed form solution, and giving tables from which the solution can be found explicitly. It is shown that in most cases the predicted mushy zone is of very negligible importance.
1. INTRODUCTION

The term "mushy" zone appears in the literature on metal castings and solidification of other materials [2], [5], [6]. It refers to a zone where solid and liquid coexist and it appears to arise from the complex way in which liquid material solidifies, namely, by locally forming dendrites that leap into the liquid and entrap some of it. The zone of coexistence of liquid and solid may be very long or very short depending on the material and the conditions under which solidification takes place. Assuming that the dendrite comes into being because of some local supercooling and instability, one would believe that the greater the temperature gradient in the material the shorter will the width of the zone be. Indeed, this is one of the key results obtained from microscopic studies of the phase change front by Thomas and Westwater [5]. Roughly speaking, they found that the temperature gradient and the width of the zone obey the relation

\[ \text{width} \times \text{temperature gradient} = 0.031 \text{ degrees}^\circ C \quad (1.1) \]

for N-Octadecane paraffin wax under steady state conditions.

We are aware of very few attempts at modeling mushy zones of this type in phase change processes. A reasonable model was proposed by Tien and Geiger [6], who consider the mushy zone as the region between two isotherms (at the solidus and liquidus temperatures), in which the time rate of change of the solid fraction provides a heat generation effect. At the solidus front, the freezing of the remaining liquid provides the latent heat needed for the movement of the front whereas there is no latent heat effect at the liquidus front. Under a variety of assumptions the model for a semi-infinite body with constant
surface temperature admits a similarity solution. The case of time-dependent surface temperature is treated in [3] by Goodman's heat balance integral method. Cho and Sunderland [4] obtained a similarity solution for the problem with initial temperature not at the liquidus temperature. The same basic mathematical model was generalized to the semilinear heat equation in any number of dimensions with the solid fraction being any function of temperature by Alexiades and Cannon [1] and its well-posedness was established.

In this paper we propose a very simple model of a mushy zone which is based on the observation (1.1) and admits of an explicit solution. The attraction of this model is that it is, to our knowledge, the only instance where an actual observation of the mushy zone width and structure is used as a partial basis for the model definition. The model rests upon two unknown parameters. The first determines the relation between the equilibrium temperature gradient and the mushy zone width, and based on [5] is taken as .031°C for N-Octadecane Paraffin wax. The second depends upon the dendritic structure in the mushy zone, and is related to the solid fraction. Both can be estimated from the kind of experiments described in [5]. We will limit ourselves to defining the model, presenting its closed form solution, and giving tables from which the solution can be found explicitly. As we will see, in most cases the predicted mushy zone is of very negligible importance; it is hoped that the present work can shed some light on the kind of material and experimental setup that can be used to study the mushy zone growth more thoroughly for situations where it might be of importance.
2. THE MODEL AND ITS SOLUTION

Consider a slab of material occupying the region \( x > 0 \). Initially the material is assumed to be in its liquid state at its solidification temperature \( T_{cr} \). Beginning at time \( t = 0 \) a constant temperature \( T_s < T_{cr} \) is imposed at \( x = 0 \). A solidification process ensues, in which three distinct regions can be distinguished.

1. Liquid, at temperature \( T_{cr} \), occupying the region \( x \geq Y(t) \);
2. Solid, at temperature \( T(x,t) < T_{cr} \), occupying the region \( 0 \leq x < X(t) \) where \( X(t) \leq Y(t) \);
3. "Mushy zone", at temperature \( T(x,t) = T_{cr} \) occupying the region \( x(t) \leq x \leq Y(t) \).

Thus, the mushy zone is taken to be isothermal, and we make the following two assumptions on its structure:

a) the material in the mushy zone contains a fixed fraction \( \theta H(0 < \theta < 1) \) of the total latent heat \( H \);

b) its width is inversely proportional to the temperature gradient, that is,

\[
T_x [X(t),t] [Y(t) - X(t)] = \gamma. \tag{2.1}
\]

The constants \( \theta \) and \( \gamma \) are characteristics of the material. The solid fraction \( \theta \) expresses the degree of "packing" of the mushy zone by crystals. Taking \( \theta = \) constant, as we have done, amounts to assuming "uniform packing" throughout the mushy zone. On the other hand, (2.1) is suggested by the experimentally observed relation (1.1), and for the paraffin wax of [5],

\[
\gamma = .031 °C
\]
Assumptions a), b) are of course simplifications of the actual physical process. In particular, a) is based on the assumption of "uniform" packing throughout the mushy zone, while b) is suggested by the observation (1.1) which was seen for the steady state.

From assumption a) and considerations of energy conservation we are led to the boundary condition

\[ K \frac{\partial X}{\partial x}(X(t),t) = \rho H \left\{ \theta X'(t) + (1-\theta) Y'(t) \right\} \]  

(2.2)

In addition to (2.1), (2.2), the temperature \( T(x,t) \) obeys the conditions

\[ T_t(x,t) = \alpha T_{xx}(x,t), \quad 0 < x < X(t) \]  

(2.3)

\[ T(x,t) \equiv T_{cr}, \quad x \geq X(t) \]  

(2.4)

\[ T(0,t) = T_0, \quad t > 0 \]  

(2.5)

\[ T(x,0) = T_{cr}, \quad 0 < x < \infty \]  

(2.6)

Functions \( X(t), Y(t), T(x,t) \) satisfying (2.1) - (2.6) can easily be found in the form

\[ T(x,t) = T_s + \Delta T \frac{\text{erf}(x/2\sqrt{\alpha t})}{\text{erf} \lambda}, \quad 0 < x < X(t), \]  

(2.7a)

\[ X(t) = 2\lambda \sqrt{\alpha t} \]  

(2.7b)

\[ Y(t) = 2\mu \sqrt{\alpha t} \]  

(2.7c)

with

\[ \mu = \lambda + \left[ \gamma \sqrt{\pi} e^{\lambda^2} \text{erf} \lambda \right]/2\Delta T \]  

(2.7d)

while \( \lambda \) is the unique root of the transcendental equation

\[ \frac{St}{\sqrt{\pi}} = \lambda e^{\lambda^2} \text{erf} \lambda + \frac{\gamma(1-\theta)}{\Delta T} \frac{\sqrt{\pi}}{2} (e^{\lambda^2} \text{erf} \lambda)^2 \]  

(2.7e)

where

\[ \Delta T = T_{cr} - T_s \]

and

\[ St = c\Delta T/H \]

is the Stefan number for the process.
Note that for $\theta = 1$, (2.7e) reduces to the transcendental equation for the ordinary one-phase freezing problem. [2]

If $St = 0$, then (2.7e) implies

$$\lambda = \left[\frac{St}{2(1 + \gamma(1-\theta)/\Delta T)}\right]^{1/2}, \quad (2.8)$$

$$\mu = \lambda(1 + \gamma/\Delta T). \quad (2.9)$$

For each value of the dimensionless parameter

$$\omega = \frac{\gamma(1-\theta)}{\Delta T},$$

equation (2.7e) relates $\lambda$ and the Stefan number $St$. Its graph and some values for various values of $\omega$ when $\theta = 0$ are given in Figure 1 and Table 1 (we have stopped arbitrarily at $St = 25$; in phase change processes involving metals, the Stefan number is generally of the order of 10).

The dimensionless relative mushy zone width

$$\Gamma = \frac{\Delta T}{\gamma} \frac{\mu - \lambda}{\lambda} = \frac{\sqrt{\pi}}{2} \frac{\lambda^2 \operatorname{erf}\lambda}{\lambda} \quad (2.10)$$

versus $\lambda$ is pictured in Figure 2.

Thus, for a given material and imposed temperature $T_s$ (i.e. for given $\omega$ and $St$), equation (2.7e) determines $\lambda$ from which the temperature, interfaces and zone width can be found via (2.7) and (2.9).

Example. For freezing N-Octadecane Paraffin wax in a thermal storage process we would anticipate $St$ to be about .25, while with $\Delta T = 20^\circ C$, $\gamma/\Delta T = .0015$. Hence for all intents and purposes we will estimate $\lambda$ to be approximately .1 (from table 1) and so, from Figure 2,
Figure 1. St as a Function of $\lambda$ for $\Delta = 0$. 

$\gamma/\Delta T = 10$ 

$\gamma/\Delta T = 1$ 

$\gamma/\Delta T = 0.1$ 

$\gamma/\Delta T = 0$
\[
\frac{\Delta T}{Y} \left( \frac{\mu - \lambda}{\lambda} \right) = 1
\]

and

\[
\frac{\mu - \lambda}{\lambda} = .0015
\]

which provides an estimate of the mushy zone width,

\[
Y(t) - X(t) = .0015 \; X(t).
\]
<table>
<thead>
<tr>
<th>$\frac{\gamma}{\Delta T}$</th>
<th>$\lambda$</th>
<th>0</th>
<th>.1</th>
<th>1.0</th>
<th>10.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>.1</td>
<td></td>
<td>.020</td>
<td>.022</td>
<td>.040</td>
<td>.223</td>
</tr>
<tr>
<td>.2</td>
<td></td>
<td>.082</td>
<td>.091</td>
<td>.167</td>
<td>.926</td>
</tr>
<tr>
<td>.3</td>
<td></td>
<td>.191</td>
<td>.212</td>
<td>.394</td>
<td>2.222</td>
</tr>
<tr>
<td>.4</td>
<td></td>
<td>.356</td>
<td>.396</td>
<td>.753</td>
<td>4.326</td>
</tr>
<tr>
<td>.5</td>
<td></td>
<td>.592</td>
<td>.662</td>
<td>1.294</td>
<td>7.609</td>
</tr>
<tr>
<td>.6</td>
<td></td>
<td>.920</td>
<td>1.038</td>
<td>2.097</td>
<td>12.688</td>
</tr>
<tr>
<td>.7</td>
<td></td>
<td>1.373</td>
<td>1.565</td>
<td>3.296</td>
<td>20.601</td>
</tr>
<tr>
<td>.8</td>
<td></td>
<td>1.996</td>
<td>2.307</td>
<td>5.107</td>
<td>*</td>
</tr>
<tr>
<td>.9</td>
<td></td>
<td>2.858</td>
<td>3.362</td>
<td>7.898</td>
<td>*</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td>4.060</td>
<td>4.884</td>
<td>12.303</td>
<td>*</td>
</tr>
<tr>
<td>1.1</td>
<td></td>
<td>5.755</td>
<td>7.124</td>
<td>19.441</td>
<td>*</td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td>8.172</td>
<td>10.491</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>1.3</td>
<td></td>
<td>11.663</td>
<td>15.688</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>1.4</td>
<td></td>
<td>16.776</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td>24.370</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
## Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>specific heat</td>
<td>(KJ/Kg\textdegree{C})</td>
</tr>
<tr>
<td>H</td>
<td>latent heat</td>
<td>(KJ/Kg)</td>
</tr>
<tr>
<td>K</td>
<td>thermal conductivity</td>
<td>(KJ/m\cdot s\textdegree{C})</td>
</tr>
<tr>
<td>t</td>
<td>time</td>
<td>(s)</td>
</tr>
<tr>
<td>T</td>
<td>temperature</td>
<td>(\textdegree{C})</td>
</tr>
<tr>
<td>T_{cr}</td>
<td>solidification temperature</td>
<td>(\textdegree{C})</td>
</tr>
<tr>
<td>T_s</td>
<td>imposed surface temperature</td>
<td>(\textdegree{C})</td>
</tr>
<tr>
<td>x</td>
<td>position variable</td>
<td>(m)</td>
</tr>
<tr>
<td>X</td>
<td>&quot;solidus&quot; front</td>
<td>(m)</td>
</tr>
<tr>
<td>Y</td>
<td>&quot;liquidus&quot; front</td>
<td>(m)</td>
</tr>
</tbody>
</table>

## Greek letters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>\alpha</td>
<td>K/cp thermal diffusivity</td>
<td>(m^2/s)</td>
</tr>
<tr>
<td>\rho</td>
<td>density</td>
<td>(KG/m^2)</td>
</tr>
<tr>
<td>\theta</td>
<td>&quot;packing&quot; constant</td>
<td></td>
</tr>
<tr>
<td>\gamma</td>
<td>zone width vs gradient constant</td>
<td>(\textdegree{C})</td>
</tr>
</tbody>
</table>
REFERENCES


### INTERNAL DISTRIBUTION

1. Central Research Library  
2. Patent Office  
3. Y-12 Technical Library  
   Document Reference Section  
4. Laboratory Records Department - RC  
5-7. Laboratory Records Department  
8. J. Barhen  
9. K. O. Bowman  
10. H. P. Carter/CSO X-10 Library  
11. D. A. Gardiner  
12. G. E. Giles  
13. L. J. Gray  
14. Y. Grossman  
15. M. T. Heath  
16. H. W. Hoffman  
17. V. E. Kane  
18. B. J. Kedl  
19. C. A. Serbin  
20. K. E. Shultz  
21-25. A. D. Solomon  
26. J. R. Tallackson  
27. R. C. Ward  
28-32. D. G. Wilson  

### EXTERNAL DISTRIBUTION

33-37. Professor Vasilios Alexiades, Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37910  
38. Professor Gunnar Aronsson, Upsala University, Department of Mathematics, Thunbergsuagen 3, S-75238 Upsala, SWEDEN  
39. Dr. Donald M. Austin, Division of Engineering, Mathematical and Geosciences, Office of Basic Energy Sciences, Germantown Building, Rm. J-311, Department of Energy, Washington, DC 20545  
40. Dr. Miriam Bareket, Department of Mathematics, Tel Aviv University, Tel Aviv, ISRAEL  
41. Professor Shlomo Breuer, Department of Mathematics, Tel Aviv University, Ramat Aviv, Tel Aviv, ISRAEL  
42. Professor John C. Bruch, University of California, Department of Mechanical and Environmental Engineering, Santa Barbara, CA 93106  
43. Dr. T. D. Butler, T-3, Hydrodynamics, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545  
44. Dr. Bill L. Buzbee, C-3, Applications Support & Research, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545  
45. Professor Baruch Cahlon, Department of Mathematics, Oakland University, Rochester, Michigan 48063
46. Professor John Cannon, Department of Mathematics, Washington State University, Pullman, Washington 99164

47. Professor Alfredo Bermudez De Castro, Universidad De Santiago, Dep. De Ecuaciones Funcionales, Facultad De Matematicas, Santiago De Compostela, SPAIN

48. Dr. Jagdish Chandra, Director, Mathematics Division, U.S. Army Research Office, P.O. Box 12211, Research Triangle Park, NC 27709

49. Dr. T. C. Chawla, Building 208, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439

50. Dr. L. Lynn Cleland, Engineering Research Division, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550

51. Dr. James S. Coleman, Division of Engineering, Mathematical and Geosciences, Office of Basic Energy Sciences, Department of Energy, ER-17, MC G-256, Germantown, Washington, DC 20545

52. Dr. Sam Coriell, U.S. National Bureau of Standards, Mathematical Analysis Section, IBS, Washington, DC 20234

53. Dr. James Corones, Ames Laboratory, Iowa State University, Ames, Iowa 50011

54. Professor John Crank, School of Mathematical Studies, Brunel University, Kingstone Lane, Uxbridge, UB8 3PH, Middlesex, ENGLAND

55. Professor Ralph Deal, Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan 49001

56. Dr. Marvin D. Erickson, Computer Technology, Systems Department, Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352

57. Professor Antonio Fasano, Instituto Matematico U. Dini, V. Le Morgagni 67/A, 50134 Firenze, ITALY

58. Professor Avner Friedman, Department of Mathematics, Northwestern University, Evanston, Illinois 60201

59. Professor Roland Glowinski, IRIA-LABORIA, Domaine de Voluceau, Rocquencourt, B.P. 105, 78150 Le Chesnay, FRANCE

60. Professor Max Goldstein, Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012

61. Dr. Jeff Gordon, Institute for Desert Research, Sde Boker, ISRAEL

63. Professor Erik B. Hansen, Technical University of Denmark, Lab of Applied Math Physics, Building 303, DK 2800, Lyngby, DENMARK

64. Dr. Robert E. Huddleston, Applied Mathematics Division, 8332, Sandia Laboratories, Livermore, California 94550

65. Professor Al Inselberg, Department of Mathematics, Ben Gurion University, Beersheva, ISRAEL

66. Professor Eugene Isaacson, New York University, Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New York 10012

67. Dr. Malvin Kalos, New York University, Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New York 10012

68. Professor Shoshana Kamin, Department of Mathematics, Tel Aviv University, Ramat Aviv, Tel Aviv, ISRAEL

69. Professor Hideo Kawarada, The University of Tokyo, Department of Applied Physics, Faculty of Engineering, Hunkyo-Ku, Tokyo 113, JAPAN

70. Dr. Robert J. Kee, Applied Mathematics Division, 8331, Sandia Laboratories, Livermore, California 94550

71. Professor Peter D. Lax, Director, Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012

72. Ms. Judith A. Mahaffey, Statistics, Systems Department, Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352

73. Dr. Paul C. Messina, Applied Mathematics Division, Argonne National Laboratory, Argonne, Illinois 60439

74. Dr. George Michael, Computation Department, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550

75. Professor Willard Miranker, IBM Research Center, P.O. Box 218, Yorktown Heights, New York 10598

76. Professor Arun Mujumdar, Department of Chemical Engineering, McGill University, 3480 University St., Montreal, Que. H3A 2A7, CANADA

77. Dr. Allan Michaels, Building 362, Argonne National Laboratory, Argonne, Illinois 60439
78. Dr. Basil Nichols, T-7, Mathematical Modeling and Analysis, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545

79. Professor Aharon Nir, c/o Dr. Chin Fu Tsang, Earth Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720

80. Professor John Ockendon, Oxford University Computing Laboratory, 19 Parks Road, Oxford, ENGLAND

81. Professor Ben Oliver, Department of Metallurgical Engineering, University of Tennessee – Knoxville, Knoxville, Tennessee 37919

82. Dr. Ronald Peierls, Applied Mathematics Department, Brookhaven National Laboratory, Upton, New York 11973

83. Dr. Carl Quong, Computer Science and Applied Mathematics Department, Lawrence Berkeley Laboratory, Berkeley, California 94720

84. Professor Henning Rasmussen, Department of Applied Mathematics, University of Western Ontario, London, Ontario, N6A 5B9, CANADA

85. Dr. Milton E. Rose, Director, ICASE, Mail Stop 132C, NASA Langley Research Center, Hampton, Virginia 23665

86. Professor Aharon Roy, Chemical Engineering Department, Ben Gurion University of the Negev, Beersheva, ISRAEL

87. Professor Lev Rubinstein, School of Applied Science and Technology, The Hebrew University of Jerusalem, Jerusalem, ISRAEL

88. Professor Christian Saguez, INRIA, Domaine de Voluceau, B.P. 105, 78150 Le Chesnay, FRANCE

89. Professor S. Saxena, Department of Chemical Engineering, Indian Institute of Technology, New Delhi 110 029, INDIA

90. Dr. Lawrence F. Shampine, Numerical Mathematics Division, 5642, Sandia Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87115

91. Professor Bernard Sherman, Department of Mathematics, New Mexico Tech, Socorro, New Mexico 87801

92. Dr. Robert Siegel, Head, Analytical Fluid Mechanics Section, NASA Lewis Research Center, Cleveland, Ohio 44135

93. Professor E. M. Sparrow, Department of Mechanical Engineering, University of Minnesota, 111 Church Street, S.E., Minneapolis, Minnesota, 55455
94. Professor Jacob Steinberg, Department of Mathematics, The Technion, Haifa, ISRAEL

95. Dr. C. J. Swet, Route 4, Box 258, Mount Airy, Maryland 21771

96. Professor R. Viskanta, School of Mechanical Engineering, Purdue University, Lafayette, Indiana 47907

97. Professor Eitan Wacholder, Department of Nuclear Engineering, The Technion, Israel Institute of Technology, Haifa, ISRAEL

98. Dr. Ray A. Waller, S-1, Statistics, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545

99. Professor Mary Fanet Wheeler, Department of Mathematics, Rice University, Houston, Texas 77001

100. Professor Gideon Zwas, Department of Mathematics, Tel Aviv University, Ramat Aviv, Tel Aviv, ISRAEL


102-288. Given Distribution as shown in TIC-4500 under Mathematics and Computers Category.
Do NOT
MICROFILM