Notice

 ability.
TRAC-PF1:
 An Advanced Best-Estimate Computer Program for Pressurized Water Reactor Analysis

FIGURES x1
TABLES xvi
STANDARD NOMENCLATURE xvili
CONVERSION TABLE xx1
ABSTRACT 1
I. COMPUTER PROGRAM OUTLINE 2
A. Program Name 2
B. Computer 2
C. Problem or Function Description 2
D. Solution Method 2
E. Problem Complexity Restrictions 2
F. Typical Running Time 2
G. Unusual Program Features 3
H. Related and Auxiliary Programs 3
I. Status 3
J. References 3
K. Machine Requirements 3
if L. Programming Languages 3
M. Operating System or Monitor 3
N. Other Programming, Operating Information, or Restrictions 3
0. Available Materials 3
II. INTRODUCTION 4
A. TRAC Characteristics 5

1. Variable-Dimensional Fluid Dynamics 5
2. Nonhomogeneous, Nonequilibrium Modeling 5
3. Flow-Regime-Dependent Constitutive Equation Package 5
4. Comprehensive Heat-Transfer Capability 5
5. Consistent Analysis of Entire Accident Sequences 6
6. Component and Functional Modularity 6
B. Physical Phenomena Treated 6
C. Planned Improvements 7
D. Scope of TRAC Manual 8
III. BASIC METHODS 9
A. Hydrodynamics 9
7. Field Equations 9
8. Three-Dimensional Finite-Difference Equations 12
9. One-Dimensional Finite-Difference Methods 22
10. Constitutive Equations 32
a. One-Dimensional Wall Shear and Form Losses 32
(1) Homogeneous Model 33
(2) Annular Flow Model 34
(3) Forms Losses 35
b. Three-Ditaens Lonal Wall Shear Coeffictents 36
c. Interfacial Heat Transfer and Shear 37
d. Interface Sharpener 44
e. Horizontal Stratified Flow 44
f. Subcooled Boiling Model 45
B. Structural Heat Transfer 45
11. Heat-Conduction Models 47
a. Cylindrical Wall Heat Conduction 47
b. Slab Heat Conduction 50
c. Rod Heat Conduction 51
(1) Numerical Model 51
(2) Reflood Algorithm 56
(3) Fuel-Clad Gap Conductance 60
(4) Metal-Water Reaction 63
12. Wall-to-Fluid Heat Transfer 65
a. Wall-to-Fluid HTC Selection Logic 66
b. HTC Correlations 69
(1) Single-Phase Liquid (Heat-Transfer Regimes 1 and "12) 69
(2) Nucleate Boiling HTCs (Heat-Transfer Regime 2) 72
(3) Transition'Boiling HTCs (Heat-Transfer Regime 3) 75
(4) Film Boiling HTCs (Heat-Transfer Regime 4) 76
(5) Single-Phase Vapor HTCs (Heat-Transfer Regime 6) 79
(6) Condensation HTCs (Heat-Transfer-Regime 11) 79
(7) Two-Phase Mixture HTCs (Heat-Transfer Regime 7) 79
c. Critical Heat Flux (CHF) 81
d. Minimum Stable Film Boiling Temperature, $T_{\text {min }}$ 83
e. Steady-State Calculations 84
C. Reactor Kinetics 85
D. Overall Solution Strategy 92
13. Transient Solutions 92
a. Outer Iteration Strategy 92 II
b. Details of the Solution Method 93
14. Steady-State Solutions 96
a. Generalized Steady-State Calculations 97
b. PWR-Initialization Calculation 98
IV. COMPONENT MODELS 106
A. Pipe 106
B. Accumulator 108
C. Break and Fill 110
D. Core 112
E. Pressurizer 112
F. Pump 116
G. Steam Generator 128
H. Tee 131
I. Valve 133
J. Vessel 135
V. USER INFORMATION 143
A. Input Organization ar, Format 143
B. Signal Variables 145
C. Trips 150
D. Controllers 154
E. Dump/Restart Feature 154
F. TRAC-PF1 Input Specifications 155
15. Main Control Data 155
16. Signal-Variable Data 160
17. Trip Data 162
18. Controller Data 170
19. Component Data 170
a. Accumulator Component (ACCUM) 171
b. Break Component (BREAK) 172
c. One-Dimensional Core Component (CORE) 176
d. Fill Component' (FILL) 185
e. Pipe Component (PIPE) 189
f. Pressurizer Component (PRIZER) 192
g. Pump Component (PUMP) 193
h. Steam-Generator Component (STGEN) 200
i. Tee Component:(TEE) 205
j. Valve Component. (VALVE) 209
k. Vessel Component (VESSEL) 213
20. PWR-Initialization Data 226
21. Time-Step Data 227
G. LOAD "Subroutine 228
H. Free Format 229
22. Free-Format Comments, Problem Title Cards, and Hollerith Component Descriptions 231
23. Free-Format Input-Error Handing 232
I. NAMELIST Format 232
J. Output Files 233

CONTENTS (cont.)

VI. PROGRAMMING DETAILS 235
A. Overall Code Organization 235
B. Input Processing 240
C. Component Initialization 250
D. Transient Calculation 251

1. General 251
2. Time-Step Selection and Output Control 256
3. Prepass Calculations 257
4. Outer Iterations 259
5. Postpass Calculations and Backup 261
6. Vessel Data Structure 262
E. Steady-State Calculations 263
F. Output Processing 266
G. Storage Requirements 275
CONTENTS (cont.)
APPENDIX A. THERMODYNAMIC AND TRANSPORT FLULD PROPERTIES 285
I. THERMODYNAMIC PROPERTIES 286
A. Saturation Properties 286
7. Saturation Temperature. 286
8. Internal Energy 286
9. Heat Capacity 287
10. Enthalpy 287
B. Liquid Properties 288
11. Internal Energy 288
12. Density 290
13. Enthalpy 292
C. Vapor Properties 293
14. Superheated Vapor 293
15. Subcooled Vapor 296
16. Noncondensable Gas (Air) 296
II. TRANSPORT PROPERTIES 297
A. Latent Heat of Vaporization 297
B. Constant Pressure Specific Heats 298
C. Fluid Viscosities 298
17. Liquid 298
18. Steam 299
D. Fluid Thermal Conductivities 300
E. Surface Tension 301
III. VERIFICATION 301
APPENDIX B. MATERIAL PROPERTIES 310
I. INTRODUCTION 310
II. NUCLEAR FUEL MIXED-OXIDE PROPERTIES 312
A. Density 312
B. Specific Heat 314
C. Thermal Conductivity 314
D. Spectral Emissivity 315
III. ZIRCALOY CLADDING PROPERTIES 316
A. Density 316
B. Specific Heat 317
C. Thermal Conductivity 317
D. Spectral Emissivity 318
IV. FUEL-CLADDING GAS GAP PROPERTIES 319
V. ELECTRICAL FUEL-ROD INSULATOR (BN) PROPERTIES 321
A. Density 321
B. Specific Heat 321
C. Thermal Conductivity 321
D. Spectral Emissivity 321
VI. ELECTRICAL FUEL-ROD HEATER COIL (CONSTANTAN) PROPERTIES 321
A. Density 322
B. Specific Heat 322
C. Thermal Conductivity 322
D. Spectral Emissivity 322
VII. STRUCTURAL MATERIAL PROPERTIES 322

CONTENTS (cont.)

APPENDIX C. CHOKED-FLOW MODEL 329
I. TWO-PHASE-FLOW CHOKING CRITERION 329
II. SUBCOOLED-FLOW CHORING CRITERION 332
III. TRANSITION REGIME 334
APPENDIX D. SYSTEM CONTROL WITH TRIPS 335
APPENDIX E. SAMPLE PROBLEM 364
I. SEMISCALE MOD-3 SYSTEM DESCRIPTION 364
II. TEST DESCRIPTION 364
III. TRAC ONE-DIMENSIONAL MODEL 366
IV. STEADY-STATE CALCULATION 373
V. INPUT LISTINGS 380
APPENDIX F. TRAC SUBPROGRAMS 446
APPENDIX G. TRAC ERROR MES AGES 463
I. OVERLAY MAIN 463
II. OVERLAY INPUT 466
III. overlay init 480
IV. OVERLAY DUMP 481
V. OVERLAY TWOTIM 481
VI. OVERLAY PWRSS 482
VII. OVERLAY PREP 484
VIII. OVERLAY OUTER 485
IX. OVERLAY POST 486
APPENDIX H. DESCRIPTION OF COMMON BLOCK VARIABLES 487
APPENDIX I. COMPONENT DATA TABLES 514
I. FIXED LENGTH TABLES 514
iI. General pointer tables 515
A. DUALPT 515
B. HYDROPT 518
C. INTPT 520
D. HEATPT 520
III. ACCUMULATOR MODULE 521
A. ACCUM Variable Length Table 521
B. ACCUM Pointer Table 522
IV. BREAK MODULE 522
A. BREAK Variable Length Table 522
B. BREAK Pointer Table 523
V. CORE MODULE 523
A. CORE Variable Length Table 523
B. CORE Pointer Table 529
VI. FILL MODULE 533
A. FILL Variable Length Table 533
B. FILL Pointer Table 534

CONTENTS (cont.)

VII. PIPE MODULE 534
A. PIPE Variable Length Table 534
B. PIPE Pointer Table 536
VIII. PRESSURIZER MODULE 536
A. PRIZER Variable Length Table 536
B. PRIZER Pointer Table 537
IX. PUMP MODULE 538
A. PUMP Variable Length Table 538
B. PUMP Pointer Table 541
X. STEAM-GENERATOR MODULE 542
A. STGEN Variable Length Table 542
B. STGEN Pointer Table 542
XI. TEE MODULE 547
A. TEE Variable Length Table 547
B. TEE Fointer Table 550
XII. VALVE MODULE 550
A. VALVE Variable Length Table 550
B. ValVE Pointer Table 552
XIII. VESSEL MODULE 553
A. VESSEL Variable Length Table 553
B. VESSEL Pointer Table 560
AUTHORS AND ACKNOWLEDGMENTS 572
0
REFERENCES 573

 2
 1. Three-dimensional mesh-cell velocities 14
2. Flow-regime map for three-dimensional hydrodynamics 38
3. Semi-implicit coupling between hydrodynamics and structural heat transfer 46
4. Cylindrical wall geometry 48
5. Rod geometry 52
6. Node located at the interface between two dissimilar materials 56
7. Fine-mesh rezoning 57
8. Insertion of conduction nodes during reflood 58
9. Fuel-rod geometry 61
10. TRAC-PFl boiling curve 66
11. Heat-transfer coefficient correlation selection logic 67
12. TRAC-PFl heat-transfer regimes 69
13. Component network with one three-dimensional vessel 95
14. Primary loop schematic for a'PWR-initialization calculation 100
15. Pipe noding diagram 107
16. Accumulator noding diagram 109
17. Break noding diagram 110
18. FILL ${ }^{\text {moding }}$ diagram 111
19. CORE noding diagram 113
20. Pressurizer noding diagram 114
21. "Pump noding diagram 116
22. Semiscale single-phase homologous head curves 125
23. Semiscale fully degraded honologous head curves 125
24. Semiscale head degradation multiplier curve 125
25. Semiscale single-phase homologous torque curves 125
26. Semiscale torque degradation maltiplier curve 126
27. LOFT single-phase homologous head curves 126
28. LOFT fully degraded homologous head curves 126
29. LOFT head degradation multiplier curve 126
30. LOFT single-phase homologous torque curves 127
31. LOFT torque degradation multiplier curve 127
32. Steam generator noding diagram 128
33. TEE noding diagram 132
34. Valve noding diagram 133
35. Cell noding diagram for a typical PWR vessel 136
"36. Vessel geometry, three-dimensiona! mesh construction with three rings, six angular segments" and seven axial intervals 137
36. Boundaries of a three-dimensional mesh cell 138
37. Flow restrictions and downcomer modeling 139
38. Pipe connections to the vessel 139
39. Core region inside, the vessel $141^{\prime \prime}$
40. TRAC input deck organization 143
41. TRAC input and output files 234
42. TRAC overlay structure 239
43. Relationships between SCM and LCM storage areas 241
44. Signal-variable and trip data 246
45. PWR-initialization data"structure 248
46. Flow diagram for transient calculations 255

FIGURES (cont.)

48. Outer iteration flow diagram 260
49. Flow diagram for steady-state calculation 267
50. Overall graphics file structure 270
51. Structure of graphics file general information section 271
52. Structure of graphics file catalog 272
53. Structure of graphics file time-edit data section 273
54. Graphics file catalog and time-edit data correspondence 274
55. Dump file overall structure 276
56.- Structure of dump file time-edit data section 277
56. Component dump structure 278
57. Blank COMMON dynamic storage area organizatión 280
58. LCM data organization 284
$B-1$. Material properties code organization 311
C-1. Subcooled choking process at the onset of nucleation at the throat 333
(D-1. LOFT steam-generator seconjary-side model 339
D-2. Coincidence trip for controlling the power-reactivity table 342
D-3. Blocking trip for controlling the pump speed, table 342
D-4. The controlling trip is based on the signal subrange 343
D-5. Trips with $0 N$ set status for a specific subrange of the signal 344"
D-6. Blocking trips for specific subranges of a signal 344
D-7. Coincidence trip for controlling the component action 345
$D-8$. Set point factor tables for $t r i p I D=1$ 346
D-9. Coincidence trip for controlling the component action 346
D-10. A trip that avoids spurious signals for $O N$ set status 347
D-11. Trips for defining five subranges to the trip signal. 349
D-12. Coincidence trip which behaves like a trip with five subranges 350
D-13. The five subranges of the trip signal 288
D-14. Steam generator secondary-side feedwater mass flow table. 351
D-15. Trip for controlling the FILL mass flow table 352
D-16. Trip for controlling the pump speed table 353
D-17. Pump speed table. 353
D-18. Rate factor table for the pump speed table's abscissa coordinate. 355
$\mathrm{D}-19$. Set point factor tables for trip $I D=-1$. 356
D-20. Valve flow area adjustment table 357
D-21. Trip for editing the closure limits of a valve. 357
D-22. Trip"for controlling the valve flow area adjustment table 358
D-23. Valve flow area adjustment table 358
D-24. Trip for controlling a regulating valve 3.59
D_{b} 25. Two valve tables for flow area adjustment 360
D-26. Control-rod bank programmed reactivity 361
D-27. Axial power shape table 362
D-28. Trip for controlling programed reactivity and axial power shape 363
E-1. Semiscale Mod-3 system for cold leg break configuration--isometric (Ref. 62) 365
E-2. TRAC model for Semiscale Mod-3 facility 368
E-3. One-dimensional downcomer and vessel noding for Semiscale Mod-3 facility 367
E-4. Three-dimensional VESSEL noding combining all the components shown in Fig. E-3 369
E-5. Upper-plenum pressure 375
E-6. Liquid velocity at the pressurizer outlet 375
E-7. Liquid velocity in the intact-loop hot leg. 376
E-8. Liquid velocity in the intact-loop cold leg 376
E-9. Liquid velocity in the broken-loop hot leg 377
E-10. Liquid velocity in the broken-loop cold leg 377
E-11. Liquid temperature in the intact-loop hot leg 378
E-12. Liquid temperature in the intact-loop cold leg 378
E-13. Liquid temperature in the broken-loop hot leg 379
E-14. Liquid temperature in the broken-loop cold leg 379

TABLES $/$.

I. DELAYED NEUTRON CONSTANTS 87
II. DECAY HEAT CONSTANTS 87
III. REACTIVITY-COEFFICIENT FORMS 89
IV. VARIABLES ©ONSIDERED IN EVALUATING THE APPROACH TO STEADY STATE 99
V. DEFINITIONS OF THE FOUR CURVE SEGMENTS THAT DESCRIBE THE HOMOLOGOUS PUMP HEAD CURVES 119
VI. SIGNAL-VARIABLE PARAMETERS 146
VII. TRIP-SIGNAL-RANGE TYPES 151
VIII. ARITHMETIC-OPERATOR ID NUMBERS 165
IX. IMPORTANT LOW-LEVEL SUBPROGRAMS 236
X. TRAC OVERLAYS 239
XI. FIXED SEGMENT ALLOCATIONS FOR THE BLANK COMMON AREA. 242
XII. COMPONENT INPUT SUBROUTINES 247
XIII. JUNCTION-COMPONENT PAIR ARRAY. 247
XIV. COMPONENT IŃITIALIZATION SUBROUTINES 250
XV. BOUNDARY ARRAY DATA. 252
XVI. ITERATION SUBROUTINES. 259
XVII. STEADY-STATE CALCULATION EFFECTS 264
XVIII. EXAMPLE OF A STEADY-STATE CONVERGENCE EDIT 265
XIX. COMPONENT EDIT SUBROUTINES 268
xx. COMPONENT DUMP SUBROUTINES 275
XXI. TRAC STORAGE ALLOCATIONS 279
XXII. ONE-DIMENSIONAL COMPONENT ARRAY STORAGE REQUIREMENTS 281
XXIII, COMPONENT TABLE LENGTHS 283

TABLES (cont.)

A-I. POLYNOMIAL CONSTANTS FOR THERMO 303
A-II. DERIVED CONSTANTS FOR THERMODYNAMIC PROPERTIES OF WATER AND AIR 305
A-III. BASIC CONSTANTS FOR TRANSPORT PROPERTIES OF WATER AND AIR 306
A-IV. LIQUID VISCOSITY CONSTANTS 307
A-V. VAPOR VISCOSITY CONSTANTS. 308
A-VI. THERMAL CONDUC'TIVITY CONS'TANTS 309
A-VII. SURFACE TENSION CONSTANTS. 309
B-I. SPECIFIC HEAT VS TEMPERATURE 318
B-II. STRUCTURAL MATERIAL PROPERTIES STAINLESS STEEL, TYPE 304. 323
B-III. STRUCTURAL MATERIAL PROPERTIES STAINLESS STEEL, TYPE 316. 324
B-IV. STRUCTURAL MATERIAL PROPERTIES STAINLESS STEEL, TYPE 347 325
B-V. STRUCTURAL MATERIAL PROPERTIES CARBON STEEL, TYPE 508 326
B-VI. STRUCTURAL MATERIAL PROPERTIES İNCONEL, TYPE 718 327
B-VII. STRUCTURAL MATERIAL PROPERTIES INCONEL, TYPE 600 328
E-I:- تُRAC MODEL COMPONENTS 370
E-2. TEST S-SB--P7 INITIAL CONDITIONS 374

STANDARD NOMENCLATURE

Independent Variables

r Radial coordinate in cylindrical geometry.
t Time.
0 Azimuthal coordinate in cylindrical geometry.
$x \quad$ Coordinate for one-dimensional geometry.
$z \quad$ Axial coordinate in cylindrical geometry.

Other Variables

A	Area.		
c	Shear or friction coefficient in two-fluid equations.		\therefore
c_{p}	Specific heat at constant, pressure.		
c_{v}	Specific heat at constant volume.		
D	Diameter.		
e	Specific internal energy.		
FA	Flow area.		
g	Acceleration caused by gravity.		
G	Mass flux ($\rho_{\mathrm{m}} \mathrm{V}_{\mathrm{m}}$).		
h	Specific enthalpy or heat-transfer coefficient.		
$\mathrm{h}_{\text {¢g }}$	Latent heat of vaporization. "		
H	Pump head ($\Delta \mathrm{p} / \rho$).		
k	Thermal conductivity; form-loss coefficient, or pipe	roughness.	$\underline{\square}$
m	Mass .		
Nu	Nusselt number.	*	
p	Pressure.	. ${ }^{\text {- }}$	
q	Heat generation rate.		
$\mathrm{q}^{-\prime}$	Heat flux.	r	
$\mathrm{q}^{-\cdots}$	Volumetric heat-generation rate. ..	;	
Q	Pump volumetric flow.		
R	Radius.		
Re	Reynolds number.		
T ${ }^{\text { }}$	Temperature.		
V	Velocity.		

STANDARD NOMENCLATURE (cont.)

Other Variables

vol	Hydrodynamic cell volume.
We	Weber number.
x	Quality.
α	Vapor volume fraction or absorptivity.
Γ	Net volumetric vapor-production rate caused by phase change.
δ	Mean fuel-surface roughness.
Δ	Increment.
$\boldsymbol{\rho}$	Emissivity.
ρ	Viscosity.
σ	Surface tension or Stefan-Boltzmann constant.
Φ^{2}	Shear stress.
ω	Angular velocity.
Ω	Pump-impeller angular velocity.

Subscripts

a Noncondensable gas component.
b Bubble.
c Cladding.
d Droplet.
f Fuel or friction.
${ }^{4} \mathrm{~g}$ Gas field or vapor.
h Hydraulic.
i Interface (1iquid-vapor) quantity or one-dimensional cell index in heat-transfer equations.
$j \quad$ One-dimensional cell index in hydrodynamics equations.
ℓ Liquid field.
lg Liquid to vapor.
$\mathrm{m} \quad$ Mixture quantities.

STANDARD NOMENCLATURE (cont.)

Subscripts

mw	Metal-water reaction.
qf	Quęnch front.
r	Relative quantities.
$\begin{aligned} & r, \theta, z \\ & r \pm 1 / 2 \end{aligned}$	Cylindrical coordinate directions.
$\theta \pm 1 / 2$	Mesh-cell boundary indices.
$z \pm 1 / 2$	
If	Saturation quantities.
sp in	Single-phase quantities.
ss	Steady
t	Transient quantities. "
tp	Two-phase quantities.
v	Water vapor (steam). ${ }_{\text {a }}$
ω	Wall quantities. .

Superscripts.

```
k Iteration count Index.
n,n+1 Time-step boundary indices.
|
```

TRAC-PFl: AN ADVANCED BEST-ESTIMATE COMPUTER PROGRAM FOR PRESSURIZED WATER REACTOR ANALYSIS

by
Safety Code Development Group Energy Division

Abstract

The Transient Reactor Analysis Code (TRAC) is being developed at the Los Alamos National Laboratory to provide advanced best-estimate predictions of postulated accidents in light water reactors. The TRAC-PFl program provides this capability for pressurized water reactors and for many thermal-hydraulic experimental facilities. The code features either a one-dimensional or a three-dimensional treatment of the pressure vessel and its associated internals; a two-phase, two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field; flow-regime-dependent constitutive equation treatment; optional reflood tracking capability for both bottom flood and falling-film r, quench fronts; and consistent treatment of entire accident sequences including the generation of consistent initial conditions. A new numerical algorithm is used in the one-dimensional hydrodynamics that permits this portion of the fluid dynamics to violate the material Courant condition. This technique permits large time steps and, hence, reduced running time for slow transients.

This report describes the thermal-hydraulic models and the numerical solution methods used in the code. Detailed programining and user information also, are provided. A second Los Alamos report, "TRAC-PFl Developmental Assessment," presents the results of the developmental assessment calculations.

I. COMPUTER PROGRAM OUTLINE

A. Program Name

The program name is TRAC-PF1.
B. Computer

The computer for which the code is designed id the CDC 7600. Efforts have been made to make the programming as machine independent as possible. C. Problem or Function Description

TRAC-PFl performs best-estimate analyses of loss-of-coolant accidents (LOCAs) and other transients in pressurized light water reactors (LWRs) and of thermal-hydraulic experiments in reduced-scale facilities. Models used include reflood," multidimensional two-phase flow, nonequilibrium thermodynamics', generalized heat transfer, and reactor kinetics. Automatic steady-state and dump/restart capabilities also are provided.
D. Solution Method

The partial differential equations that describe the two-phase flow and the heat transfer are solved by finite differences. The heat-transfer equations are treated using ä semi-implicit differencing technique. The fluid-dynamics equations in the one-dimensional components use a multistep procedure that allows the materiai Courant condition to be violated. The three-dimensional vessel option uses semi-implicit differencing. The finite-difference equations for hydrodynamic phenomena form a system of coupled, nonlinear equations that are solved by a Newton-Raphson iteration procedure.
E. Problem Complexity Restrictions

All storage arrays in the code are allocated dynamically so the only limit on the problem size is the amount of core memory. The number of reactor components in the problem and the manner in which they are coupled are arbitrary. Reactor components in TRAC-PFl include accumulators, pipes, pressurizers, pumps, steam generators, tees, valves, and vessels with associated internals.

F. Typical Running Time

Running time is highly problem dependent and is a function of the total number of mesh cells, the maximum allowable time-step size, and whether a three-dimensional vessel model is used. For a purely one-dimensional model, very large time steps can be used for slow transients. If a three-dimensional
vessel is employed, a material Courant limit in the vessel may reduce the maximum time-step size allowed and increase the running time. Typical computer times for a CDC 7600 average $2-3 \mathrm{~ms}$ per time step per mesh cell. G. Unusual Program Features

The highly versatile TRAC-PFl program describes most thermal-hydraulic experiments in addition to the wide variety of LWR system designs. The code's modularity allows better geometric problem descriptions, more detailed models of physical processes, and reduced maintenance costs.
H. Related and Auxiliary Programs

One of the output files written by TRAC contains graphics information that can be used to produce plots and movies. Two auxiliary programs, TRAP and EXCON, are available for this purpose and are documented separately. These programs may require changes to account for differences in graphics software and hardware at various installations. I. Status

The progrăm is in use at the Los Alamos National Laboratory and at many other installations.
J. References

References are provided in the manual.
K. Machine Requirements

A CDC 7600 computer with 60000 words of small-core memory and 220000 words of large-core memory is required.
L. Programming Languages

The programming language is FORTRAN-IV. (Álthough COMPASS matrix inversion subroutines are available, they are not mandatory.)
M. Operating Systen or Monitor

The operating system,or monitor that executes the program is a standard CDC 7600 operating system with FTN FORTRAN compiler and loader.
N. Other Programming or Operating Information or Restrictions None.
O. Available Materials

A source listing, a TRAC-PFl manual, and sample problems are available.

The Transient Reactor Analysis Code (TRAC) is an advanced best-estimate systems code for analyzing LWR accidents. It is being developed at the Los Alamos National Laboratory under the sponsorship of the Reactor Safety Research Division of the US Nuclear Regulatory Commission. A preliminary TRAC version consisting of only one-dimensional components was completed in December 1976. This version was not released publicly nor formally documented. However, it was used in the TRAC-Pl development and formed the basis for the one-dimensional loop-component modules." The first publicly releäsed version was TRAC-P1, completed in December 1977. It is described in the Los Alamos report LA-7279-MS (June 1978).

The TRAC-P1 program was designed primarily for the analvsis-of-Targebreak LOCAs in pressurized water reactors (PWRs). Because of its versatility, however, it can be applied directly to many analyses ranging from blowdowns in simple pipes to incegral LOCA tests in multiloop facilities. A refined version, called TRAC-PlA, was released to the National Energy Software Center (NESC) in March 1979. It is described in the Los Alamos report LA-7777-MS (May 1979). Although it still treats the same class of problems, TRAC-P1A is more efficient than TRAC-Pl and incorporates "improved hydrodynamic and heat-transfer models. J.t also is easier to implement on various computers. TRAC-PD2 contains improvements in reflood, heat-transfer models, and numerical solution methods. Although a large LOCA code, it has been applied successfully to small-break problems and to the Three Mile Island incident.

TRAC-PF1 was designed to improve the ability of TRAC-PD2 to handle small-break LOCAs and other transients. TRAC-PFl has all of the major improvements of TRAC-PD2; in addition, it uses a full two-fluid model with two-step numerics in the one-dimensional components. The two-fluid model, in conjunction with a stratified-flow regime, handles countercurrent. flow better than the drift-flux model previously used. The two-step numerics allow large time steps for slow transients. A one-dimensional core component" permits calculations with reduced dimensionality although the three-dimensional vessel option has been retained. A noncondensable gas field has been added to both the one-dimensional and three-dimensional hydrodynamics. : Significant improvements also have been made to the trip logic and the input. TRAC-PF1 was publicly released in July 1981.
A. TRAC Characteristics

Some distinguishing characteristics of TRAC-PF1 are summarized below. Within restrictions imposed"by computer running times, attempts are being made to incorporate state-of-the-art technology in two-phase thermal hydraulics.

1. Variable-Dimensional Fluid Dynamics. A full three-dimensional (r, θ, z) flow calculation can be used within the reactor vessel; the flow within the loop components is treated one dimensionally. This allows an accurate calculation of the complex multidimensional flow patterns inside the reactor vessel that are important in determining accident behavior. For example, phenomena such as emergency core coolant (ECC) downcomer penetration during ${ }^{\prime}$ blowdown, multidimensional plenum and core flow effects, and upper plenum pool formation and core penetration during reflood can be treated directly. However, a one-dimensional vessel model may be constructed that allows transients to be calculated very quickly because the usual time-step restrictions are removed by the special stabilizing numerical treatment.
2. Nonhomogeneous, Nonequilibrium Modeling. \therefore A full two-fluid (six-equation) hydrodynamics model describes the steam-water flow, thereby allowing important phenomena such as countercurrent flow to be treated explicitly. A stratified-flow regime has been added to the one-dimensional hydrodynamics and a seventh field equation (mass balance) describes a noncondensable gas field.
3. Flow-Regime-Dependent Constitutive Equation Package. The thermal-hydraulic equations describe the transfer of mass, energy, and momentum between the steam-water phases and the interáction of these phases with the system structure. Because these interactions are dependent on the flow topology, a flow-regime-dependent constitutive equation package has been incorporated into the code. Although this package undoubtediy will be improved in future code versions, assessment calculations performed to date indicate that many flow conditions can be handled adequately with the current package.
4. Comprehensive Heat-Transfer Capability. The TRAC-PF1 program incorporates detailed heat-transfer analyses of both the vessel and the loop components. Included is a two-dimensional (r, z) treatment of fuel-rod heat conduction with dynamic fine-mesh rezoning to resolve bottom flood and falling-film quench fronts. The heat transfer from the fuel rods and other system structures is calculated using flow-regime-dependent heat-transfer
coefficients obtained from a generalized boiling curve based on local conditions.
5. Consistent Analysis of Entire Accident Sequences. An important TRAC feature is its ability to address entire accident sequences, including computation of initial conditions, with a consistent and continuous calculation. For example, the code models the blowdown, refill, and reflood phases of "a LOCA. This modeling eliminates the need to perform, calculations using different codes to analyze a given accident. In addition, a steady-state solution capability provides self-consistent initial conditions for subsequent transient calculations. Both a steady-state and a transient calculation can be performed in the same run, if desired.
6. Component and Functional Modularity. The TRAC program is completely modular by component. The components in a calculation are specified through input data; available components allow the user to model virtually any PWR design or experimental configuration. This gives TRAC great versatilit: in the possible range of applications. It also "allows component modules to be improved, modified, or added without disturbing the remainder of the code. TRAC component modules currently include accumulators, pipes, pressurizers, pumps, steam generators, tees, valves, and vessels with associated internals (downcomer, lower plenum, core, upper plenum).

The TRAC program also is modular by function; that is, the major aspects of the calculations are performed in separate modules. For example, the basic one-dimensional hydrodynamics solution algorithm, the wall-temperature field solution algorithm, heat-transfer coefficient selection, and other functio:is are performed in separate sets of routines that are accessed by all component modules. This modularity allows the code to be upgraded readily as improved correlations and experimental information become available. B. Physical Phenomena Treated

Because of the detailed modeling in TRAC, most of the physical phenomena important in large- and small-break LOCA analysis can be treated. Included are:

1. ECC downcomer penetration and bypass, including the effects of countercurrent flow and hot walls;
2. lower plenum refill with entrainment and phase sepaiation effects;
```
    3. bottom flood and falling-film reflood quench fronts;
    4. multidimensional flow patterns in the core and plenum
        regions;
    5. pool formation"and countercurrent flow at the' upper" core
    support plate (UCSP) region;
    6. pool formation in the upper plenum;
    7. steam binding;
    8,
    9. alternate ECC injection systems, including hot-leg and
        upper-head injection;
    10. direct injection of subcooled ECC water, without the
        requirement for artificial mixing zones;
    11. critical flow (choking);
    12. liquid carryover during reflood;
    13. metal-water reaction;
    14. water hammer effects; and
    15. wall friction losses.
C. Planned Improvements
    Although advanced modeling capabilities aze provided in TRAC-PFI, there
are additions and improvements planned for future Los Alamos versions of the
code. Some of the more important are summarized below.
1. Work is in progress on a new version of TRAC, TRAC-PF1/Mod1, which will handle all operational transients. The principal improvements involve adding a preportional-integraldifferential controller, turbine and condenser models, and an extra field to track boron.
2. Some development work is proceeding on a final, detailed version, TRAC-PD3. In addition to the options available in TRAC-PF1/Modl, this version will have another liquid field in the vessel, a detailed gap model for the fuel rods, and a multidimensional neutronics capability.
```

A boiling water reactor (BWR) version is under development at the Idaho National Engineering Laboratory (INEL). . The necessary additional component models (jet pumps, steam separators) are being developed at INEL; the basis for this version is the PWR version and a one-dimensional, two-fluid hydrodynamic package developed at Los Alamos.

One important constraint that must be considered in TRAC applications is the computer running-time requirements. With the release of TRAC-PF1, the user has a great deal of control over the running time of the code. If less detailed, rapid calculations are desired, a full one-dimensional model often will reduce the running time by an order of magnitude over the previous
version, TRAC-PD2. If detail in the vessel is desired, the running time often will be comparab1e to TRAC-PD2.
D. Scope of TRAC Manual

This manual describes TRAC basic methods and models and provides user - - information and programming details. Section III describes the basic hydrodynamics and heat-transfer methods and discusses the overall strategies for transient and steady-state solutions. Section III is supplemented by Appendixes A and B that supply, respectively, the fluid and material properties for the thermal-hydraulic analyses.

A standard nomenclature guide is included. Quantities that are not included in the standard nomenclature list are defined in the text. All units are metric as given in National Bureau of Standards Special Publication 330, "The International System of Units (SI)," unless otherwise specified.

Section IV describes the component models. The user should study these descriptions if questions arise when preparing detailed input specifications for a TRAC problem.

Section V provides input specificátions and other user information. To provide additional guidance to the user in the area of input preparation, input decks for a PWR sample problem are provided in Appendix C. Error messages that might occur during a calculation are explained in Appendix D.

Section VI discusses the overall code organization, input and output processing, storage requirements, and other programming details associated with both transient and steady-state solutions. Appendix E provides a list of TRAC subprograms; Appendix F, a compilation of COMMON arrays; and Appendix G, component data tables.

An important aspect of the TRAC program involves the developmental assessment of the code through comparisons with measurements obtained from test facilities. Developmental assessment calculations already have been performed with TRAC-PFl. A Los Alamos report entitled "TRAC-PF1 Developmental Assessment," which summarizes the key developmental assessment results, has been published (NUREG/CR-3280, LA-9404-M).

III. BASIC METHODS

A. Hydrodynamj.cs

1. Field Equations. Unlike previous TRAC versions, TRAC-PFl uses the same two-phase two-fluid model for fluid flow in both one- and three-dimensional components. In addition, a noncondensable gas component has been included in the vapor field, requiring one extra mass continuity equation. Homogeneity and thermal equilibrium are assumed for the combined gas field.

Seven differential equations describe the three-component, two-fluid mode1. ${ }^{1,2}$

Liquid Mass Equation
$\frac{\partial(1-\alpha) \rho_{\ell}}{\partial t}+\nabla \cdot\left[(1-\alpha) \rho_{\ell} \stackrel{\rightharpoonup}{V}_{\ell}\right]=-\Gamma \quad$.

Combined Vapor Mass Equation

$$
\begin{equation*}
\frac{\partial\left(\alpha \rho_{g}\right)}{\partial t}+\nabla \cdot\left(\alpha \rho_{g} \vec{V}_{g}\right)=\Gamma \quad . \tag{2}
\end{equation*}
$$

Noncondensable Gas Mass Equation

$$
\begin{equation*}
\frac{\partial\left(\alpha \rho_{a}\right)}{\partial t}+\nabla \cdot\left(\alpha \rho_{a} \vec{v}_{g}\right)=0 . \tag{3}
\end{equation*}
$$

Combined Vapor Equation of Motion

$$
\begin{align*}
\frac{\partial \vec{v}_{g}}{\partial t}+\vec{v}_{g} \cdot \nabla \vec{v}_{g}= & -\frac{c_{i}}{\alpha \rho_{g}}\left(\vec{v}_{g}-\vec{v}_{\ell}\right)\left|\vec{v}_{g}-\vec{v}_{\ell}\right|-\frac{1}{\rho_{g}} \nabla p \\
& -\frac{c_{w g}}{\alpha \rho_{g}} \stackrel{\rightharpoonup}{v}_{g}\left|\vec{v}_{g}\right|+\vec{g} \tag{4}
\end{align*}
$$

Liquid Equation of Motion

$$
\begin{aligned}
& -\frac{c_{w \ell}}{(1-\alpha) \rho_{\ell}} \vec{v}_{\ell}\left|\vec{v}_{\ell}\right|+\stackrel{\rightharpoonup}{g} \quad . \\
& \text { 12:- }
\end{aligned}
$$

Combined Vapor Energy Equation

$$
\begin{align*}
\frac{\partial}{\partial t}\left(\alpha \rho_{g} e_{g}\right) & +\nabla \cdot\left(\alpha \rho_{g} e_{g} \vec{v}_{g}\right) \\
& =-p \frac{\partial \alpha}{\partial t}-p \nabla \cdot\left(\alpha \vec{V}_{g}\right)+q_{w g}+q_{i g}+\Gamma h_{s g} \tag{6}
\end{align*}
$$

Total Energy Equation

$$
\begin{gather*}
\frac{\partial\left[(1-\alpha) \rho_{\ell} e_{\ell}+\alpha \rho_{g} e_{g}\right]}{\partial t}+\nabla \cdot\left[(1-\alpha) \rho_{\ell} e_{\ell} \vec{v}_{\ell}+\alpha \rho_{g} e_{g} \vec{v}_{g}\right] \\
=-p \nabla \cdot\left[(1-\alpha) \vec{v}_{\ell}+\alpha \vec{V}_{g}\right]+q_{w \ell}+q_{w g} \tag{7}
\end{gather*}
$$

In these equations the vapor densities and energies are sums of the steam and noncondensable components,
$\rho_{g}=\rho_{s}+\rho_{a}$
and
$\rho_{g}{ }^{e} g=\rho_{s} e_{s}+\rho_{a}{ }^{e}$.

We assume Daltońs law applies; therefore,
$\mathrm{p}=\mathrm{p}_{\mathrm{s}}+\mathrm{p}_{\mathrm{a}}$.

A subscript, a, is used for the noncondensable gas because the internal thermodynamic properties model air. It would be easy to replace these properties with others describing different noncondensable gases.

In addition to the thermodynamic relations that are required for closure, specifications for the interfacial drag coefficients (c_{i}), the interfacial heat transfer $\left(q_{i g}\right)$, the phase-change rate (Γ), the wall shear coefficients ($c_{w g}$ and $c_{w \ell}$), and the wall heat transfers $\left(q_{w g}\right.$ and $q_{w \ell}$) are required. Gamma is evaluated from a simple thermal energy jump relation,

$$
\begin{equation*}
\Gamma=\frac{-q_{i g}-q_{i \ell}}{h_{s g}-} \frac{h_{s \ell}}{} \tag{11}
\end{equation*}
$$

where
$q_{i g}=h_{i g} A_{i} \frac{\left(T_{s s}-T_{g}\right)}{v o l}$
and
$q_{i \ell}=h_{i \ell A_{i}} \frac{\left(T_{s s}-T_{\ell}\right)}{v o l}$.

Here, A_{i} and the h_{i} terms are the interfacial area and heat-transfer coefficients and $T_{s s}$ is the saturation temperature corresponding to the partial steam pressure.

Wall heat-transfer terms assume the form
$q_{w g}=h_{w g} A_{w g} \frac{\left(T_{w}-T_{g}\right)}{v o l}$
and
$q_{W \ell}=h_{w \ell} A_{w \ell} \frac{\left(T_{w}-T_{\ell}\right)}{v o 1}$,
where $A_{w g}$ and $A_{w \ell}$ are the actual heated surface areas of the cell, except during reflood, when the average heat-transfer coefficients (HTCs) reflect the fraction of the heated surface area that is quenched.
2. Three-Dimensional Finite-Difference Equations. The momentum equations are separated into the three coordinate components. Only the vapor equation is discussed with the understanding that the liquid-momentum equation is treated in an analogous manner. There are three components of the vapor-momentum differential equation.

Axial (2) Component

$$
\begin{align*}
\frac{\partial V_{g z}}{\partial t}= & -\left(V_{g r} \frac{\partial V_{g z}}{\partial r}+\frac{V_{g \theta}}{r} \frac{\partial V_{g z}}{\partial \theta}+V_{g z} \frac{\partial V_{g z}}{\partial z}\right)-\frac{1}{\rho_{g}} \frac{\partial p}{\partial z} \\
& -\frac{c_{1 z}}{\alpha \rho_{g}^{\prime}}\left(V_{g z}-V_{\ell z}\right)\left|\vec{V}_{g}-\stackrel{\rightharpoonup}{V}_{\ell}\right|-\frac{\Gamma}{\alpha \rho_{g}}\left(V_{g z}-V_{i g z}\right)-\frac{c_{w g z}}{\alpha \rho_{g}} V_{g z}\left|\vec{V}_{g}\right|+g \tag{16}
\end{align*}
$$

$$
\begin{align*}
\frac{\partial V_{g r}}{\partial t}= & -\left(V_{g r} \frac{\partial V_{g r}}{\partial r}+\frac{V_{g \theta}}{r} \frac{\partial V_{g r}}{\partial \theta}-\frac{V_{g \theta}^{2}}{r}+V_{g z} \frac{\partial V_{g r}}{\partial z}\right)-\frac{1}{\rho_{g}} \frac{\partial p}{\partial r} \\
& -\frac{c_{i r}}{\alpha \rho_{g}}\left(V_{g r}-V_{\ell r}\right)\left|\vec{V}_{g}-\vec{V}_{\ell}\right|-\frac{\Gamma}{\alpha \rho_{g}}\left(V_{g r}-V_{i g r}\right)-\frac{c_{w g r}}{\alpha \rho_{g}} V_{g r}\left|\vec{V}_{g}\right| . \tag{17}
\end{align*}
$$

Azimuthal (θ) Component

$$
\begin{align*}
\frac{\partial V_{g \theta}}{\partial t}= & -\left(V_{g r} \frac{\partial V_{g \theta}}{\partial r}+\frac{V_{g \theta}}{r} \frac{\partial V_{g \theta}}{\partial \theta}+\frac{V_{g r} V_{g \theta}}{r}+V_{g z} \frac{\partial V_{g \theta}}{\partial z}\right)-\frac{1}{\rho_{g} r} \frac{\partial p}{\partial \theta} \\
& -\frac{c_{i \theta}}{\alpha \rho_{g}}\left(V_{g \theta}-V_{\ell \theta}\right)\left|\vec{V}_{g}-\stackrel{\rightharpoonup}{V}_{\ell}\right|-\frac{\Gamma}{\alpha \rho_{g}}\left(V_{g \theta}-V_{i g \theta}\right)-\frac{c_{w g}{ }^{\theta}}{\alpha \rho_{g}} V_{g \theta}\left|\stackrel{\rightharpoonup}{V}_{g}\right| \tag{18}
\end{align*}
$$

In the TRAC staggered scheme 3,4 the velocities are defined on the mesh-cell surfaces at the locations shown in Fig. 1 , where the subscript a stands for either ℓ or g. However, the volume properties p, α, T, e, and ρ are loçated at the mesh-cell centers. The scalar field equations are written over a given mesh cell, whereas the momentum equations are staggered between mesh cells in the three component directions.

The written difference scheme for each of the momentum equations is lengthy because of the cross-derivative terms. Therefore, only the vapor z-direction finite-difference equations for a typical mesh cell are given to illustrate the procedure used. The time levels are indicated by the superscript n (old time) or $n+1$ (new time). The subscript g (for vapor) is dropped except where it is needed for clarity.

Fig. 1.
Three-dimensional mesh-cell velocities.

Using these conventions, the finite-difference vapor-momentum equation in the z-direction is

$$
\begin{align*}
& V_{z}^{n+1}(r, \theta, z+1 / 2)=v_{z}^{n}(r, \theta, z+1 / 2) \\
&-\Delta t\left\{\frac{v_{r}(r, \theta, z+1 / 2)}{\Delta r}\left[V_{z}(r+1 / 2, \theta, z+1 / 2)-v_{z}(r-1 / 2, \theta, z+1 / 2)\right]^{n}\right. \\
&+\frac{v_{\theta}(r, \theta, z+1 / 2)}{r \Delta \theta}\left[v_{z}(r, \theta+1 / 2, z+1 / 2)-v_{z}(r, \theta-1 / 2, z+1 / 2)\right]^{n} \\
&+\frac{v_{z}(r, \theta, z+1 / 2)}{\Delta z}\left[v_{z}(r, \theta, z+1 / 2)-v_{z}(r, \theta, z-1 / 2)\right]^{n} \\
&-\frac{[p(r, \theta, z+1)-p(r, \theta, z)]^{n+1}}{\rho^{n}(r, \theta, z+1 / 2) \Delta z} \\
&-\frac{c_{i z}^{n}(r, \theta, z+1 / 2)\left[\vec{v}_{g}(r, \theta, z+1 / 2)-\vec{v}_{\ell}(r, \theta, z+1 / 2)\right]^{n+1}}{\alpha^{n}(r, \theta, z+1 / 2) \rho^{n}(r, \theta, z+1 / 2)} \\
& \times\left|v_{g z}(r, \theta, z+1 / 2)-v_{\ell z}(r, \theta, z+1 / 2)\right|^{n} \\
&-\frac{r^{n}(r, \theta, z+1 / 2)\left[v_{z}(r, \theta, z+1 / 2)-v_{i z}(r, \theta, z+1 / 2)\right]^{n+1}}{\alpha^{n}(r, \theta, z+1 / 2) \rho^{n}(r, \theta, z+1 / 2)} \\
&-\frac{c_{w z}^{n}(r, \theta, z+1 / 2) v_{z}^{n+1}(r, \theta, z+1 / 2) v^{n}(r, \theta, z+1 / 2) \mid}{\alpha^{n}(r, \theta, z+1 / 2) \rho^{n}(r, \theta, z+1 / 2)}, \tag{19}
\end{align*}
$$

where Δt is the time-step size.
In any finite-difference scheme, certain quantities are required at locations where they are not defined formally; therefore, additional relations are needed. The volume properties Γ, α, and ρ_{g} are donor celled depending on the direction of $V_{z}(r, \theta, z+1 / 2)$.

For example,
$\alpha(r, \theta, z+1 / 2)=\alpha(r, \theta, z), \quad$ if $V_{z}(r, \theta, z+1 / 2) \geq 0 ;$

$$
\begin{equation*}
\vdots \quad=\alpha(r, \theta, z+1), \quad \text { if } V_{z}(r, \theta, z+1 / 2)<0 \text {. } \tag{20}
\end{equation*}
$$

The radial component of the velocity at the axial locatipn $(z+1 / 2)$ is obtained from
$\begin{aligned} V_{r}(r, \theta, z+1 / 2)= & \frac{1}{4}\left[V_{r}(r+1 / 2, \theta, z)+V_{r}(r-1 / 2, \theta, z)+V_{r}(r+1 / 2, \theta, z+1)\right. \\ & \left.+V_{r}(r-1 / 2, \theta, z+1)\right] ;\end{aligned}$
a similar expression applies to ${ }^{\prime \prime} \mathrm{V}_{\theta}(\mathrm{r}, \theta, \mathrm{z}+1 / 2)$. The spatial differences for V_{z} are, in the r-direction,

$$
\begin{aligned}
& V_{z}(r+1 / 2, \theta, z+1 / 2)-V_{z}(r-1 / 2, \theta, z+1 / 2)=V_{z}(r, \theta, z+1 / 2)-V_{z}(r-1, \theta, z+1 / 2) \\
& \quad \text { if } V_{r}(r, \theta, z+1 / 2) \geq 0, \text { or }
\end{aligned}
$$

$$
V_{z}(r+1 / 2, \theta, z+1 / 2)-V_{z}(r-1 / 2, \theta, z+1 / 2)=V_{z}(r+1, \theta, z+1 / 2)-V_{z}(r, \theta, z+1 / 2)
$$

$$
\begin{equation*}
\text { if } V_{r}(r, \theta, z+1 / 2)<0 \tag{22}
\end{equation*}
$$

In the θ-direction,

$$
\begin{align*}
& V_{z}(r, \theta+1 / 2, z+1 / 2)-V_{z}(r, \theta-1 / 2, z+1 / 2)=V_{z}(r, \theta, z+1 / 2)-V_{z}(r, \theta-1, z+1 / 2) \\
& \quad \text { if } V_{\theta}(r, \theta, z+1 / 2) \geq 0 \text {, or } \\
& V_{z}(r, \theta+1 / 2, z+1 / 2)-V_{z}(r, \theta-1 / 2, z+1 / 2)=V_{z}(r, \theta+1, z+1 / 2)-V_{z}(r, \theta, z+1 / 2) \\
& \quad \text { if } V_{\theta}(r, \theta, z+1 / 2)<0 \text {. } \tag{23}
\end{align*}
$$

In the z-direction,

$$
\begin{align*}
& V_{z}(r, \dot{\theta}, z+1)-V_{z}(r, \theta, z)=V_{z}(r, \theta, z+1 / 2)-V_{z}(r, \theta, z-1 / 2) \\
& \quad \text { if } V_{z}(r, \theta, z+1 / 2) \geq 0 \text { or } \\
& V_{z}(r, \theta, z+1)-V_{z}(r, \theta, z)=V_{z}(r, \theta, z+3 / 2)-V_{z}(r, \theta, z+1 / 2) \\
& \quad \text { if } V_{z}(r, \theta, z+1 / 2)<0 \tag{24}
\end{align*}
$$

The convective terms in the finite-difference relations for the scalar field equations are written in conservative form. The finita-difference form of the overall mixture mass equation is

$$
\begin{align*}
& \rho_{m}^{n+1}=\rho_{m}^{n}+\left[\frac{\Delta t}{v o l}\right]\left(F A_{z-1 / 2}\left\{\left[(1-\alpha) \rho_{\ell}\right]^{n} V_{\ell}^{n+1}+\left(\alpha \rho_{g}\right)^{n} v_{g}^{n+1}\right\}_{z-1 / 2}\right. \\
& -F A_{z+1 / 2}\left\{\left[(1-\alpha) \rho_{\ell}\right]^{n_{V}^{n+1}}+\left(\alpha \rho_{g}\right)^{n_{V}^{n+1}}\right\}_{z+1 / 2} \\
& +F_{r-1 / 2}\left\{\left[(1-\alpha) \rho_{\ell}\right]^{n_{V}^{n+1}}+\left(\alpha \rho_{g}\right)^{n_{V}^{n+1}}{ }_{g}^{n+1 / 2}\right. \\
& -\mathrm{FA}_{\mathrm{r}+1 / 2}\left\{\left[(1-\alpha) \rho_{\ell}\right]^{\mathrm{n}_{\mathrm{V}}^{\mathrm{n}}}{ }_{\ell}+\left(\alpha \rho_{g}\right)^{\mathrm{n}_{V} \mathrm{n}_{\mathrm{g}}+1}\right\}_{\mathrm{r}+1 / 2} \\
& +F_{\theta-1 / 2}\left\{\left[(1-\alpha) \rho_{\ell}\right]^{n_{V}}{ }_{\ell}^{n+1}+\left(\alpha \rho_{g}\right)^{n_{V}^{n}}{ }_{g}^{n+1}\right\}_{\theta-1 / 2} \\
& \left.-\mathrm{FA}_{\theta+1 / 2}\left\{\left[(1-\alpha) \rho_{\ell}\right]^{\mathrm{n}_{\mathrm{V}}}{ }_{\ell}^{\mathrm{n}+1}-\left(\alpha_{\mathrm{g}}\right)^{\mathrm{n}_{\mathrm{V}}^{\mathrm{n}}}{ }_{\mathrm{g}}\right\}_{\theta+1 / 2}\right) \text {, } \tag{25}
\end{align*}
$$

where vol is the hydrodynamic cell volume and FA is the flow area at the meshcell edge. The other scalar equations are differenced similarly.

All of the field equations [Eqs. (1)-(7)] have additional source terms to allow piping to be connected anywhere in the mesh. The source terms appearing in the mass and energy equations are given below. The subscripts p and v refer to pipe and vessel quantities, respectively.

Overall Mass Continuity Source Term

$$
\left\{\alpha \rho_{\mathrm{g}}^{\mathrm{n}} \mathrm{n}_{\mathrm{g}}^{\mathrm{n}+1} \mathrm{FA}+\left[(1-\alpha) \rho_{\ell}\right]^{\mathrm{n}} V_{\ell}^{\mathrm{n}+1} \mathrm{FA}\right\}_{\mathrm{p}}
$$

Vapor Mass Continuity Source Term

$\left[\left(\alpha \rho_{g}\right)^{n} \text { FA } V_{g}^{n+1}\right]_{p}$.

Overall Energy Source Term

$$
\begin{aligned}
& {\left[(1-\alpha) \rho_{\ell} e_{\ell}^{n} F A V_{\ell}^{n+1}\right]_{p}+\left[\left(\alpha \rho_{g} e_{g}\right)^{n} F A V_{g}^{n+1}\right]_{p}} \\
& \quad+p_{v}\left[\alpha^{n} F A V_{g}^{n+1}+(1-\alpha)^{n} F A V_{\ell}^{n+1}\right]_{p}
\end{aligned}
$$

Vapor Energy Source Term

$\left[\left(\alpha \rho_{g} e_{g}\right)^{n} \text { FA } V_{g}^{n+1}\right]_{p}+p_{v}\left(\alpha^{n} \text { FA } V_{g}^{n+1}\right)_{p}^{\prime}$.

The momentum source terms are complicated because of the staggered differencing and the fact that pipes may enter at arbitrary angles. For TRAC-PFl, we have assumed that the pipes enter normal to the vessel mesh-cell face. The basic forms for the liquid- and vapor-momentum source terms are:

Liquid-Momentum Source Term

$\left(\frac{V_{\ell}{ }_{p}{ }_{\ell}{ }_{v}}{\Delta x_{v}}\right)^{n}$.

Vapor-Momentum Source Term

$$
\left(\frac{\left.\mathrm{V}_{\mathrm{g}_{\mathrm{p}}} \mathrm{~V}_{\mathrm{g}_{\mathrm{v}}}\right)^{\mathrm{n}}}{\Delta \mathrm{x}_{\mathrm{v}}}\right.
$$

The existence of the momentum source terms is dependent on the sign of the velocities in the vessel to keep the vessel donor-cell momentum equations consistent. For example, if the nearest vessel liquid velocity indicates that the flow is into the pipe from the vessel, then the source term is set equal to zero.

If structure exists in the mesh cell, the hydrodynamic flow areas (FA) and volumes (vol) are reduced from their geometric mesh-cell values. Thus, FA may be less than or equal to the geometric mesh-cell area and vol may be less than or equal to the geometric mesh-cell volume. Flow areas also may be set equal to zero. If this is the case, all fluxes across that plane are suppressed, as are the individual velocities of each phase. This procedure allows large obstacles such as the downcomer walls to be modeled properly. The user specifies the flow and volume restrictions.

The finite-difference equations thus formed are semi-implicit, because the pressure gradient terms in the vapor- and liquid-momentum equations are treated at the new time. A Courant stability criterion,
$\frac{|V|}{L}=\max \left(\frac{V_{g z}}{\Delta z}, \frac{V_{g \theta}}{r \Delta \theta}, \frac{V_{g r}}{\Delta r}, \frac{V_{\ell z}}{\Delta z}, \frac{V_{\ell \theta}}{r \Delta \theta}, \frac{V_{\ell r}}{\Delta r}\right)$
is necessary, where
$\frac{|V| \Delta t}{L}<1$.

To solve the system of finite-difference equations, a linearization procedure is necessary. All of the scalar equations are reduced to a linear system in $V_{\ell}, V_{g}, T_{\ell}, T_{g}, \alpha$, and p. This is accomplished by using the thermal equations of state,
$\rho_{\ell}=\rho_{\ell}\left(\mathrm{p}, \mathrm{T}_{\ell}\right)$
and
$\rho_{g}=\rho_{g}\left(p, T_{g}\right) ;$
the caloric equations of state,
$e_{\ell}=e_{\ell}\left(p, T_{\ell}\right)$
and
$e_{g}=e_{g}\left(p, T_{g}\right) ;$
and the definitions for ρ_{m} and e_{m}.
A further system reduction is accomplished by observing that the finite-difference vapor- and liquid-momentum equations yield equations of the form,
$\mathrm{v}^{n+i}=\mathrm{V}^{n}+\left(\operatorname{conv}^{n}+\frac{1}{\rho_{\ell}} \nabla p^{n+1}+\right.$ FRIC $) \Delta t$,
where conv designates the explicit convection terms and FRIC includes both the wall and the interfacial shears. Equation (28) indicates that changes in V are linearly dependent (after an explicit pass on the explicit parts of the momentum equations) on changes in pressure. Therefore, the system of variables may "be reduced further to T_{l}, T_{g}, p, and α and can be solved by a Block Gauss-Seidel method. Reference 5 provides a much more detailed description of the basic Newton Block Gauss-Seidel numerical technique.-

An improvement to themethod proposed in Ref. 5 has been implemented to reduce the computing cost. The linear system that results from this method is a block seven-stripe matrix. In performing the Gauss-Seidel operation, if the nonlinear terms are not updated, the matrix coefficients remain constant for the time step. In this case a Gauss elimination technique can be applied once at each time step to the seven-stripe block array that allows its reduction to $a_{i r}$ seven-stripe single-element array. This results in a much faster iteration (after the first iteration) for the pressure. The actual iteration is performed in subroutine ITR1. When the vessel pressures are obtained for a specified convergence criterion, a back-substitution in subroutine "FF3D is performed to unfold T_{ℓ}, T_{g}, α, and the velocities for each phase. A call to

THERMO in FF3D then updates all of the thermodynamic properties and their derivatives in preparation for the next time step.

Two features have been added since version TRAC-P1A to improve mass conservation and to reduce running time. The first is a direct inversion of the pressure solution matrix when the number of vessel cells is sufficiently small (≤ 80). The second feature is a coarse-mesh rebalance method for othér cases where Gauss-Seidel iteration is required. During the iteration the pressure solution is scaled nonuniformly to reduce the overall iteration error. Such scaling can be represented by
$P^{-(i)}=S^{(i)}{ }^{(i)}$,
where $P(i)$ is the pressure solution vector after i iterations and $S^{(i)}$ is its scaling matrix that is diagonal with scalar elements s_{j}., we define a coarse-mesh region as those vessel regions having the same scale factor. The scaled pressure solution vector is then
$P^{-}=s_{1} P_{1}+s_{2} P_{2}+\ldots$,
where P is a vector of pressures belonging to coarse-mesh region i. Using this equationin the vessel pressure equation
r
$A \cdot P=B$
and requiring that the least-squares error in' P^{\prime} be a minimum yield an equation for the scale factors,
$\mathrm{U} \cdot \mathrm{S}=\mathrm{V}$,
where $U_{i j}=\left(P_{i}, A P_{j}\right), V_{i}=\left(P_{i}, B\right)^{*}$, and the notation (X, Y) means the inner product of the vectors X and Y. The matrix size of U is equal to the number of
coarse-mesh regions and normally is small enough to be solved by direct inversion.

The choice of coarse-mesh regions is extremely important. We have selected a scheme that follows the flow path in the vessel so that coarse-mesh regions are coupled in the flow direction. We use the facts that the vessel matrix A is a seven-stripe matrix for a three-dimensional vessel and that coupling occurs only between nearest neighbors (there is no coupling if neighbors are separated by a wall such as a downcomer boundary). Based on these facts we select coarse-mesh regions as follows. All mesh cells on a level in the downcomer form a single coarse-mesh region and all other mesh cells on a level form another coarse-mesh region. Hence, the total number of coarse-mesh regions is equal to the number of downcomer levels plus the total number of vessel levels. Although this choice of coarse-mesh regions is not unique, we have found it to be very effective in reducing the number of vessel iterations (typically a factor of 10).

The three-dimensional hydrodynamics package has a water-packing algorithm that is similar in function to the one-dimensional algorithm but somewhat different in construction. In subroutine TF3DI, after the initial block matrix inversion, the center diagonal δP is calculated. If the resulting predicted pressure is either very low or very high and the mesh cell has a large liquid fraction, then the surrounding region is scanned for additional information. If an adjoining cell has a liquid fraction less than 0.9 , the momentum derivative $\delta V_{\ell} / \delta P_{i}$ (derived from the momentum equation) is multiplied by a large constant wherever it appears in terms within the offending mesh cell. This reduces the liquid inertia and consequently allows the resultant velocity to adjust during the time step to ameliorate the effects of the sudden pressure change. The matrix is then re-evaluated and the calculation continues.
3. One-Dimensional Finite-Difference Methods. Spatial differencing is the same in one-dimensional and three-dimensional components. However, a new approach to time integration has been applied. This stability-enhancing two-step (SETS) method ${ }^{6,7}$ eliminates the material Courant stability limit from all one-dimensional components. This limit applies only in vessels and at junctions between vessels and one-dimensional components.

The stability-enhancing two-step method consists of a basic step (that is almost identical to the standard semi-implicit method used in the vessel) and a stabilizing step. For homogeneous flow, the order of these steps does not matter. However, for two-fluid flow with noticeable relative velocity, it is necessary to do the stabilizing step for the equations of motion before the basic step. When this stabilizing step precedes the basic step, an initial explicit prediction of velocities gives strong coupling through the interfacial drag terms without requiring direct communication between the stabilizing equations for liquid and vapor motion. To provide improved conservation and to minimize machine storage required by TRAC, the stabilizing steps for mass and energy equations are done as the final portion of the calculation.

The spatial mesh used for the finite-difference equations is staggered with thermodynamic properties evaluated at the cell centers and velocities evaluated at the cell edges. For stability, flux terms at cell edges require donor-cell averages of the form,

$$
\begin{align*}
\langle Y V\rangle_{j+1 / 2} & =Y_{j} V_{j+1 / 2}, & & \text { if } V_{j+1 / 2} \geq 0 \\
& =Y_{j+1} V_{j+1 / 2}, & & \text { if } V_{j+1 / 2}<0 \tag{29}
\end{align*}
$$

Here, Y can be any cell-center state variable or a combination of such variables and V may be either liquid or vapor velocity. With this notation the finite-difference divergence operator for one-dimensional calculations is

$$
\begin{equation*}
\nabla_{j} \cdot(Y V)=\frac{\left(A_{j+1 / 2}\langle Y V\rangle_{j+1 / 2}-A_{j-1 / 2}\langle Y V\rangle_{j-1 / 2}\right)}{\operatorname{Vol}_{j}}, \tag{30}
\end{equation*}
$$

where A is the local cross-sectional area and vol j is the volume of the j th cell. For the equations of motion, the donor-cell form of any V • ∇V term is

$$
\begin{align*}
v_{j+1 / 2} \nabla_{j+1 / 2} v & =\frac{v_{j+1 / 2}\left(v_{j+1 / 2}-v_{j-1 / 2}\right)}{\Delta x_{j+1 / 2}}, \text { if } v_{j+1 / 2} \geq 0 \\
& =\frac{v_{j+1 / 2}\left(v_{j+3 / 2}-v_{j+1 / 2}\right)}{\Delta x_{j+1 / 2}}, \text { if } v_{j+1 / 2}<0 \tag{31}
\end{align*}
$$

where $\Delta X_{j+1 / 2}$ is half the sum of ΔX_{j} and ΔX_{j+1}.
The following finite-difference equations (roughly in order of their calculation) currently are used.

Predictors for Equations of Motion

Vapor

$$
\begin{align*}
& \frac{\left(\hat{v}_{g}^{n+1}-v_{g}^{n}\right)}{\Delta t}+V_{g}^{n} \nabla_{j+1 / 2} \tilde{v}_{g}^{n}+\beta\left(\hat{v}_{g}^{n+1}-v_{g}^{n}\right) \nabla_{j+1 / 2} \tilde{v}_{g}^{n} \\
& +\frac{c_{i}^{n}}{\left(\overline{\alpha \rho}_{g}\right)_{j+1 / 2}^{n}}\left[2\left(\hat{V}_{g}^{n+1}-\hat{V}_{\ell}^{n+1}\right)-\left(v_{g}^{n}-v_{\ell}^{n}\right)\right]\left|v_{g}^{n}-v_{\ell}^{n}\right| \\
& +\frac{1}{\left(\overline{\rho_{g}}\right)_{j+1 / 2}^{n}} \frac{\left(p_{j+1}^{n}-p_{j}^{n}\right)}{\Delta X_{j+1 / 2}} \\
& +\frac{c_{w g}}{\left(\overline{\alpha \rho_{g}}\right)_{j+1 / 2}^{n}}\left(2 \hat{v}_{g}^{n+1}-v_{g}^{n}\right)\left|v_{g}^{n}\right|+g \cos \theta=0 \quad, \tag{32}
\end{align*}
$$

where

$$
\begin{aligned}
\beta & =0, \text { if } \nabla_{j+1 / 2} \mathrm{v}^{\mathrm{n}} \leq 0 ; \\
& =1 \text {, if } \nabla_{\mathrm{j}+1 / 2} \mathrm{v}^{\mathrm{n}}>0 \text {. }
\end{aligned}
$$

Liquid

$$
\begin{align*}
& \frac{\left(\hat{v}_{\ell}^{n+1}-v_{\ell}^{n}\right)}{\Delta t}+v_{\ell}^{n} \nabla_{j+1 / 2} \tilde{v}_{\ell}^{n}+\beta\left(\hat{v}_{\ell}^{n+1}-v_{\ell}^{n}\right) \nabla_{j+1 / 2} \tilde{v}_{\ell}^{n} \\
& +\frac{c_{i}^{n}}{\left[\overline{(1-\alpha) \rho_{\ell}}\right]_{j+1 / 2}^{n}}\left[2\left(\hat{v}_{l}^{n+1}-\hat{v}_{g}^{n+1}\right)-\left(v_{\ell}^{n}-v_{g}^{n}\right)\right]\left|v_{g}^{n}-v_{\ell}^{n}\right| \\
& +\frac{1}{\left(\overline{\rho_{\ell}}\right)_{j+1 / 2}^{n}} \frac{\left(p_{j+1}^{n}-p_{j}^{n}\right)}{\Delta x_{j+1 / 2}} \\
& +\frac{c_{w \ell}}{\left[\overline{(1-\alpha) \rho_{\ell}}\right]_{j+1 / 2}^{n}}\left(2 \hat{v}_{\ell}^{n+1}-v_{\ell}^{n}\right)\left|v_{\ell}^{n}\right|+g \cos \theta=0 . \tag{33}
\end{align*}
$$

Stabilizer Equations of Motion

Vapor

$$
\begin{align*}
& \frac{\left(\tilde{v}_{g}^{n+1}-v_{g}^{n}\right)}{\Delta t}+v_{g}^{n} \nabla_{j+1 / 2} \tilde{v}_{g}^{n+1}+B\left(\tilde{v}_{g}^{n+1}-v_{g}^{n}\right) \nabla_{j+1 / 2} \tilde{v}_{g}^{n} \\
& +\frac{c_{i}^{n}}{\left(\overline{\alpha_{g}}\right)_{j+1 / 2}^{n}}\left[2\left(\hat{v}_{g}^{n+1}-\hat{v}_{\ell}^{n+1}\right)-\left(v_{g}^{n}-v_{\ell}^{n}\right)\right]\left|v_{g}^{n}-v_{\ell}^{n}\right| \\
& +\frac{1}{\left(\overline{\rho_{g}}\right)_{j+1 / 2}^{n}} \frac{\left(p_{j+1}^{n}-p_{j}^{n}\right)}{\Delta x_{j+1 / 2}} \\
& +\frac{c_{w g}}{\left.(\overline{\alpha \rho})_{g}^{n}\right)_{j+1 / 2}^{n}}\left(2 \tilde{v}_{g}^{n+1}-v_{g}^{n}\right)\left|v_{g}^{n}\right|+g \cos \theta=0 \quad . \tag{34}
\end{align*}
$$

Liquid

$$
\begin{align*}
\frac{\left(\tilde{v}_{\ell}^{n+1}-v_{l}^{n}\right)}{\Delta t} & +v_{\ell}^{n} \nabla_{j+1 / 2} \tilde{v}_{\ell}^{n+1}+\beta\left(\tilde{v}_{\ell}^{n+1}-v_{\ell}^{n}\right) \nabla_{j+1 / 2} \tilde{v}_{\ell}^{n} \\
& +\frac{c_{i}^{n}}{\left[(1-\alpha) \rho_{\ell}\right]_{j+1 / 2}^{n}}\left[2\left(\hat{v}_{\ell}^{n+1}-\hat{v}_{g}^{n+1}\right)-\left(v_{\ell}^{n}-v_{g}^{n}\right)\right]\left|v_{g}^{n}-v_{\ell}^{n}\right| \\
& +\frac{1}{\left(\overline{\left.\rho_{\ell}\right)_{j+1 / 2}^{n}} \frac{\left(p_{j+1}^{n}-p_{j}^{n}\right)}{\Delta X_{j+1 / 2}}\right.} \\
& +\frac{c_{w \ell}}{\left[(1-\alpha) \rho_{\ell}\right]_{j+1 / 2}^{n}}\left(2 \tilde{v}_{\ell}^{n+1}-v_{\ell}^{n}\right)\left|v_{\ell}^{n}\right|+g \cos \theta=0 \tag{35}
\end{align*}
$$

Basic Equations of Motion

Vapor

$$
\frac{\left(v_{g}^{n+1}-v_{g}^{n}\right)}{\Delta t}+v_{g}^{n} \nabla_{j+1 / 2} \tilde{v}_{g}^{n+1}+\beta\left(v_{g}^{n+1}-v_{g}^{n}\right) \nabla_{j+1 / 2} \tilde{v}_{g}^{n}
$$

$$
+\frac{c_{i}^{n}}{\left(\overline{\alpha_{g}}\right)_{j+1 / 2}^{n}}\left[2\left(v_{g}^{n+1}-v_{\ell}^{n+1}\right)-\left(v_{g}^{n}-v_{\ell}^{n}\right)\right]\left|v_{g}^{n}-v_{\ell}^{n}\right|
$$

$$
+\frac{1}{\left(\overline{\rho_{g}}\right)_{j+1 / 2}^{n}} \frac{\left(\tilde{p}_{j+1}^{n+1}-\tilde{p}_{j}^{n+1}\right)}{\Delta X_{j+1 / 2}}
$$

$$
\begin{equation*}
+\frac{c_{w g}}{(\overline{\alpha \rho})_{j+1 / 2}^{n}}\left(2 v_{g}^{n+1}-v_{g}^{n}\right)\left|v_{g}^{n}\right|+g \cos \theta=0 \tag{36}
\end{equation*}
$$

Liquid

$$
\begin{aligned}
\frac{\left(v_{l}^{n+1}-v_{l}^{n}\right)}{\Delta t} & +v_{l}^{n} \nabla_{j+1 / 2} \tilde{v}_{l}^{n+1}+\beta\left(v_{l}^{n+1}-v_{\ell}^{n}\right) \nabla_{j+1 / 2} \tilde{v}_{l}^{n} \\
& +\frac{c_{i}^{n}}{\left[(1-\alpha) \rho_{\ell}\right]_{j+1 / 2}^{n}}\left[2\left(v_{l}^{n+1}-v_{g}^{n+1}\right)-\left(v_{l}^{n}-v_{g}^{n}\right)\right]\left|v_{l}^{n}-v_{g}^{n}\right| \\
& +\frac{1}{\left(\overline{\rho_{\ell}}\right)_{j+1 / 2}^{n}} \frac{\left(\tilde{p}_{j+1}^{n+1}-\tilde{p}_{j}^{n+1}\right)}{\Delta x_{j+1 / 2}}
\end{aligned}
$$

$$
\begin{equation*}
+\frac{c_{w \ell}}{\left[(1-\alpha) \rho_{\ell}\right]_{j+1 / 2}^{n}}\left(2 v_{\ell}^{n+1}-v_{\ell}^{n}\right)\left|v_{\ell}^{n}\right|+g \cos \theta=0 \tag{37}
\end{equation*}
$$

Basic Mass Equations

Vapor

$$
\begin{align*}
& \frac{\left[\left(\tilde{\alpha} \tilde{\rho}_{g}\right)^{n+1}-\left(\alpha \rho_{g}\right)^{n}\right]}{\Delta t}+\nabla_{j} \cdot\left(\alpha \rho_{g} v_{g}^{n+1}\right)=\tilde{\eta}^{n+1} . \tag{38}\\
& \text { Noncondensab1e Gas }
\end{align*}
$$

Liquid

$$
\begin{align*}
& {\left[\left(1-\tilde{\alpha}^{n+1} \tilde{\rho}_{\ell}^{n+1}-(1-\alpha)^{n} \rho_{\ell}^{n}\right]\right.} \\
& \Delta t \tag{40}
\end{align*} \nabla_{j} \cdot\left[(1-\alpha) \rho_{\ell} v_{\ell}^{n+1}\right]
$$

Basic Energy Equations

Vapor

$$
\begin{aligned}
& \frac{\left[\left(\tilde{\alpha} \tilde{\rho}_{g} \tilde{e}_{g}\right)^{n+1}-\left(\alpha \rho_{g} e_{g}\right)^{n}\right]}{\Delta t}+\nabla_{j} \cdot "\left(\alpha \rho_{g} e_{g} v_{g}^{n+1}\right) \\
& \quad+\tilde{p}^{n+1}\left[\frac{\left(\tilde{\alpha}^{n+1}-\alpha^{n}\right)}{\Delta t}+\nabla_{j} \cdot\left(\alpha^{n} v_{g}^{n+1}\right)\right]
\end{aligned}
$$

$$
\begin{equation*}
=\tilde{\mathrm{q}}_{\mathrm{wg}}^{\mathrm{n}+1}+\tilde{\mathrm{q}}_{\dot{i g}}^{\mathrm{n}+1}+\tilde{\Gamma}^{\mathrm{n}+1} \tilde{\mathrm{~h}}_{\mathrm{sg}}^{\mathrm{n}+1} . \tag{41}
\end{equation*}
$$

Liquid

$$
\begin{align*}
& \frac{\left[\left[\tilde{\alpha}_{g} \tilde{e}_{g}+(1-\tilde{\alpha}) \tilde{\rho}_{\ell} \tilde{e}_{\ell}\right]^{n+1}-\left[\alpha \rho_{g} e_{g}+(1-\alpha) \rho_{\ell} e_{\ell}\right]^{n}\right\}}{\Delta t} \\
& \quad+\quad \nabla_{j} \cdot\left[\left(\alpha \rho_{g} e_{g}\right) v_{g}^{n+1}+(1-\alpha) \rho_{\ell} e_{\ell} v_{\ell}^{n+1}\right] \\
& \quad+\tilde{p}^{n+1} \nabla_{j} \cdot\left[(1-\alpha)^{n} v_{\ell}^{n+1}+\alpha^{n} v_{v}^{n+1}\right]=\tilde{q}_{w g}^{n+1}+\tilde{q}_{w \ell}^{n+1} . \tag{42}
\end{align*}
$$

Stabilizing Mass Equations

Vapor

$$
\begin{equation*}
\frac{\left[\left(\rho_{g}\right)^{n+1}-\left(\alpha \rho_{g}\right)^{n}\right]}{\Delta t}+\nabla_{j} \cdot\left[\left(\alpha_{g}\right)^{n+1} v_{g}^{n+1}\right]=\tilde{\Gamma}^{n+1} . \tag{43}
\end{equation*}
$$

Noncondensable Gas

$$
\begin{equation*}
\frac{\left[\left(\alpha \rho_{a}\right)^{n+1}-\left(\alpha \rho_{a}\right)^{n}\right]}{\Delta t}+\nabla_{j} \cdot\left[\left(\alpha \rho_{a}\right)^{n+1} v_{g}^{n+1}\right]=0 \tag{44}
\end{equation*}
$$

Liquid

$$
\begin{align*}
& \frac{\left[(1-\alpha)^{\mathrm{n}+1} \rho_{\ell}^{\mathrm{n}+1}-(1-\alpha)^{\mathrm{n}} \rho_{\ell}^{\mathrm{n}}\right]}{\Delta \mathrm{t}}+\nabla_{j} \cdot\left[(1-\alpha)^{\mathrm{n}+1} \rho_{\ell}^{\mathrm{n}+1} v_{\ell}^{\mathrm{n}+1}\right] \\
& =-\tilde{\Gamma}^{\mathrm{n}+1} . \tag{45}
\end{align*}
$$

Stabilizing Energy Equations

Vapor

$$
\frac{\left[\left(\alpha \rho g_{g} e^{n+1}-\left(\alpha \rho_{g} e_{g}\right)^{n}\right]\right.}{\Delta t}+\nabla_{j} \cdot\left[\left(\alpha \rho_{g} e_{g}\right)^{n+1} v_{g}^{n+1}\right]
$$

$$
\begin{align*}
& +\tilde{p}^{n+1}\left[\frac{\left(\tilde{\alpha}^{n+1}-\alpha^{n}\right)}{\Delta t}+\nabla_{j} \cdot\left(\alpha^{n} v_{g}^{n+1}\right)\right] \\
& =\tilde{q}_{i g}^{n+1}+\tilde{q}_{w g}^{n+1}+\tilde{\Gamma}^{n+1} \tilde{h}_{s g}^{n+1} . \tag{46}
\end{align*}
$$

Liquid

$$
\begin{align*}
& \frac{\left\{\left[(1-\alpha) \rho_{\ell} e_{\ell}\right]^{n+1}-\left[(1-\alpha) \rho_{\ell} e_{\ell}\right]^{n}\right\}}{\Delta t}+\nabla_{j} \cdot\left\{\left[(1-\alpha) \rho_{\ell} e_{\ell}\right]^{n+1} v_{\ell}^{n+1}\right\} \\
& \quad+\tilde{p}^{n+1}\left\{\frac{\left(\alpha^{n}-\tilde{\alpha}^{n+1}\right)}{\Delta t}+\nabla_{j} \cdot\left[(1-\alpha)^{n} v_{\ell}^{n+1}\right]\right\} \\
& \quad=\tilde{q}_{w \ell}^{n+1}-\tilde{q}_{i g}^{n+1}-\tilde{\Gamma}^{n+1} \tilde{h}_{s g}^{n+1} .
\end{align*}
$$

A caret above velocities denotes explicit predictor values. A tilde above a variable indicates that it is the result of an intermediate step and not a final value for the end of the time step. A horizontal line above a quantity indicates 'that it is obtained with a 50% average between values at adjacent cells., If there are no subscripts denoting cell location, we assume subscript j for mass and energy equations and subscript $j+1 / 2$ for equations of motion. Finally, theta is the angle between a vector from the center of cell f to the center of cell $\mathrm{j}+1$ and a vector directed against gravity.

Time levels were omitted from some flux terms in Eqs. (38)-(42) because these terms contain both old and new time quantities. If X is a combination of state variables without a time superscript, then the correct definition for the divergence term in which it appears is

$$
\begin{align*}
\nabla_{j}\left(X V_{j}^{n+1}\right)= & \left\{A_{j+1 / 2} V_{j+1 / 2}^{n+1}\left[f_{j+1 / 2} x_{j}^{m}+\left(1-f_{j+1 / 2}\right) x_{j+1}^{n}\right]\right. \\
& \left.-A_{j-1 / 2} V_{j-1 / 2}^{n+1}\left[f_{j-1 / 2} X_{j-1}^{n}+\left(1-f_{j-1 / 2}\right) x_{j}^{m}\right]\right\} / v o l_{j}, \tag{48}
\end{align*}
$$

where

$$
\begin{equation*}
x_{j}^{m}=g^{-} x^{n}+\left(1-g^{-}\right) x_{j}^{n+1} \tag{49}
\end{equation*}
$$

The weighting function used to obtain donor-cell averaging [Eq. (29)] is f, and g^{-}is a weighting factor that depends on the rate of phase change, which goes to unity as the phase change disappears and to zero as the phase change approaches the total outflow of the phase created in the cell. For nonzero g^{\prime}, this form of the divergence operator is nonconservative but total conservation is maintained by the stabilizer step.

Equations (32) and (33) do not involve any implicit coupling between cells and can be solved rapidly for each cell. Because Eqs. (34) and (35) do not couple, each one requires only the solution of a tridiagonal linear system. Equations (36)-(42), combined with the necessary thermodynamic and constitutive equations, form a coupled system of nonlinear equations. Equations (36) and (37) are solved directly to obtain V_{g}^{n+1} and V_{l}^{n+1} as dependent variables. After substituting these equations for velocity into Eqs. (38)-(42), the resulting system is solved for the independent variables $\tilde{p}^{n+1}, \tilde{p}_{a}^{n+1}, \tilde{T}_{g}^{n+1}, \tilde{T}_{\ell}^{n+1}$, and $\tilde{\alpha}^{n+1}$ with a standard Newton iteration, including all coupling between ceils. In practice, the linearized equations solved during this iteration can be reduced easily to a tridiagonal system involving only total pressures. The final five stabilizing equations [Eqs. (43)-(47)] also are simple tridiagonal linear systems because V_{g}^{n+1} and V_{l}^{n+1} are known after solving Eqs. (36)-(42).
4. Constitutive Equations. The field equations [Eqs. (1)-(7)] require certain auxiliary or constitutive equations to effect closure. Thermal and caloric equations of state for each phase are required and these are discussed in Appendix A. In addition, the liquid and vapor wall shear, interfacial drag, wall heat transfer, interfacial heat transfer, and the net vaporization rate are necessary.

In TRAC-PF1, the vaporization thrust terms in the momentum equations are neglected. The wall heat transfers, $q_{w g}$ and $q_{w \ell}$, are accounted for in the standard way [see Eqs. (14)-(15)]. The total wall surface area wetted by each phase is represented, whereas $h_{w \ell}$ and $h_{w g}$ are based on heat-transfer correlations from the literature. In many two-phase flow situations the walls are totally wetted by the liquid phase, in which case wall heat transfer to the vapor is zero.
a. One-Dimensional Wall Shear and Form Losses. The total pressure gradient calculated in the momentum equations is expressed as the sum of the frictional dissipation, acceleration head, and potential head terms. Subroutine FWALL calculates coefficients both for the frictional dissipation terms and for losses associated with abrupt area changes. Under single-phase flow conditions, pressure drops associated with frictional losses are correlated as functions of fluid velocity, fluid density, fluid viscosity, channel hydraulic diameter, and surface roughness of the channel wall. When a two-phase mixture is flowing in a channel, a correction to the single-phase frictional loss is necessary to account for added dissipation between phases and interactions with the channel walls. This correction factor is the two-phase flow multiplier.

The wall shear coefficients, $c_{w g}$ and $c_{w \ell}$, are defined as
$c_{w g}=\alpha \rho_{g} \frac{c_{f g}}{2 D_{h}}$
and
$c_{w \ell}=(1-\alpha) \rho_{\ell} \frac{c_{f \ell}}{2 D_{h}}$,
where $c_{f g}$ and $c_{f \ell}$ are the vapor and liquid friction factors. The options available to calculate the wall friction are:

NFF $=0$, constant value (user input);
NFF $=1$, homogeneous model; and
NFF $=2$, annular model;
where NFF is the user-supplied'index. Use of a negative index value results in an automatic calculation of an appropriate form-loss coefficient in addition to the selected two-phase flow friction factor if there are abrupt area changes. This option is not available for the accumulator component, where a constant value for the friction factor is used.
(1) Homogeneous Model. The homogeneous friction-factor model alters the - single-phase value by using a two-phase viscosity ($\bar{\mu}$) defined in terms of the flow quality (x), 8
$\frac{1}{\bar{\mu}}=\frac{x}{\mu_{g}}+\frac{(1-x)}{\mu_{\ell}}$.

The homogeneous friction factor ${ }^{9}$ then is given by i)
$f=0.046(\operatorname{Re})^{-0.2} \quad$ if $\operatorname{Re} \geq 5000 ;$
$f=0.032$, \quad if $\operatorname{Re} \leq 500$;
$f=0.032-5.25 \times 10^{-6}(\operatorname{Re}-500) \quad$, if $500<\operatorname{Re}<5000 ;$
0
where $\operatorname{Re}=G D_{h} / \bar{\mu}$ and $G=\rho_{\mathrm{m}} \mathrm{V}_{\mathrm{m}}$.

Equations (51a)-(51c) represent a constant friction factor for $\operatorname{Re} \leq 500$ and a linear interpolation between $500<\operatorname{Re}<5000$, where the friction factor is given by Eq. (5la).
$\Phi^{2}=\left[1.0+x\left(\frac{\mu_{\ell}}{\mu_{v}}-1.0\right)\right]^{-0.2}$.

The coefficient of friction for the liquid is
$c_{E_{\ell}}=2.0 \mathrm{f}^{2}$,
and, if the void fraction is greater than 0.90 , the vapor coefficient of friction is
$c_{f_{g}}=(10.0 \alpha-9.0)^{2}(21.0-20.0 \alpha) c_{f_{\ell}}$.

The purpose of this function is to ensure a smooth transition from zero vapor wall friction at $\alpha=0.9$ to the single-phase vapor value at $\alpha=1.0$.
(2) Annular Flow Model. The annular-flow friction-factor method from Ref. 10 is adopted with a modification at high vapor fractions. The; single-phase friction factor ($f_{s p}$) from Ref. 11 is"
$\mathrm{f}_{\mathbf{s p}}=a+b \mathrm{Re}^{-\mathrm{c}}$,
where
$a=0.026\left(\frac{k}{D}\right)^{0.225}+0.133\left(\frac{k}{D}\right)$,
$b=22.0\left(\frac{k}{D}\right)^{0.44}$,
$c=1.62\left(\frac{\mathrm{k}}{\mathrm{D}}\right)^{0.134}$,
and k / D is the relative pipe wall roughness. A value of $k=5.0 \times 10^{-6} \mathrm{~m}$, corresponding to drawn tubing, currently is used for the absolute pipe roughness. The annular, flow friction factor is then
$\mathrm{f}=\mathrm{f}_{\mathrm{sp}} \Phi^{2}$,
where
$\Phi^{2}=\frac{\rho_{\ell} V_{\ell}^{2}}{\rho_{\mathrm{m}} V_{\mathrm{m}}^{2}}$.

At vapor fractions above 0.90, the annular-flow friction. factor is merged linearly into the homogeneous model with full transition occurring at $\alpha=0.9995$. As discussed in Sec. III.A.1, the wall friction is partitioned between the 1iquid and vapor phases for a void fraction greater than 0.90 .
(3) Form Losses. The finite-difference equations yield the correct pressure loss for an abrupt expansion. However, this is not true for an abrupt contraction or for an orifice. Form-loss corrections can be included in a TRAC calculation in two ways. The simplest method is to specify a negative value for the input friction option variable NFF (see Sec. V.F) at the location of any abrupt area change. This triggers logic in the code that examines the local pipe geometry, the flow direction, and the implicitness level of the difference equations to determine an appropriate loss correction. An extra term in the Bernoulli equation of the form,
$\Delta p=\frac{k \rho v^{2}}{2}$,
\qquad
where k is a form-loss coefficient, accounts for these corrections. The values used for k are
$k=\left(1-\frac{A_{1}}{A_{2}}\right)^{2}$
for an abrupt expansion or zero-length orifice, and
$k=0.5-0.7\left(\frac{A_{1}}{A_{2}}\right)+0.2\left(\frac{A_{1}}{A_{2}}\right)^{2}$
for an abrupt contraction, where A_{1} and A_{2} are the smaller and larger flow areas, respectively. Equation (63) is a curve that was fitted to the values reported in Ref. 12.

The other way to account for form losses is through the use of the FRIC input array. Losses" computed using this array are added to those specified with the NFF option. The pressure loss that results from FRIC is
!
$\Delta p_{j}=\frac{\left(\Delta x_{j}+\Delta x_{j-1}\right)}{2 D_{h, j}}$ FRIC $_{j} \rho_{m} v_{m}\left|v_{m}\right| \quad$,

* where j is the mesh-cell index.

An input option allows standard k (Refs. 13,14) factors to be input.
b. Three-Dimensional Wall Shear Coefficients. The wall shear coefficients, $c_{w g}$ and $c_{w \ell}$, are defined similarly to the one-dimensional wall friction. The standard homogeneous correlation is used to provide the wall friction factors for two-phase flow. These factors approach the appropriate single-phase values for $\alpha=0$ and $\alpha=1$.

The velocity used by the correlations is determined from the average mesh-cell porosity; therefore, at locations where orifice plates exist and velocities are high, the wall friction is calculated using $V_{\text {avg }}$ determined by
continuity considerations. This prevents excessive losses at major flow restrictions. A total friction factor is calculated from the information above and is ascribed completely to the liquid-momentum equation until a vapor fraction of 0.75 is reached. If $0.75<\alpha<0.95$, the shear is assigned with linear weighting (in α) to both the liquid and vapor. If $\alpha>0.95$, the entire skin friction is assigned to the vapor.

A single friction coefficient is generated from this procedure for both the outer radial and upper axial cell face. However, the hydraulic diameter used in the radial and axial directions, in general, will vary depending on the geometry. If nonzero hydraulic diameters are specified in the problem input, these are used. If the hydraulic diameters are zero in the input, then TF3DE calculates, where $i=(\theta, z, r)$ and the wetted perimeter (P_{i}) normal to direction i. includes the surface area of any rods, wall heat slabs, or flow boundaries. If there is no solid material in a mesh cell, the wall shear is zero. A similar procedure is used to calculate a wall shear in the theta direction. In this case, however, vector velocities and properties on the appropriate theta face (rather than the cell-centered averages) are used to achieve theta symmetry where such symmetry should exist.

The basic finite-difference scheme properly calculates classical Bourda form losses at an expansion but overpredicts the losses at a contraction [see discussion in Sec. III.A.4.a.(3)]. The user can specify an additional constant hydraulic loss factor in any of the coordinate directions to account for geometric details whose scale is smaller than the mesh-cell size.
c. Interfacial Heat Transfer and Shear. The interfacial constitutive equations basically are identical for the one-dimensional and three-dimensional portions of TRAC-PFl. A generic description of these relations will be given and any differences between the one-dimensional and three-dimensional sections will be noted. The interfacial heat transfer during boiling and the interfacial shear are calculated in conjunction with a simple flow-regime map. ${ }^{15}$ This flow-regime map, although originally developed for vertical pipe flow, is the simplest prescription that provides a rational means for defining the constitutive equations. Figure 2 illustrates how the flow map is implemented in the code.

Flow-regime map for three-dimensional hydrodynamics. (Cross-hatched regions are transition zones.)

If the void fraction is less than or equal to 0.3 (or $\alpha \leq 0.5$ if $G \geq 2700 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{~s}$), a bubbly flow is assumed. The interfacial surface area in this regime is calculated in conjunction with a critical bubble Weber number, $W e_{b}$. A value of $W e_{b}=7.5$ is used in TRAC-PF1. This value was chosen based on comparisons between the TRAC predictions and the experimental results for low subcooling (that is, shear-dominated) downcomer tests performed by Creare, Inc. ${ }^{16}$ The expression relating interfacial surface area to We_{b} is

$$
\frac{\rho_{\ell} V_{r}^{2} D_{b}}{\sigma}=W e_{b}
$$

or
$D_{b}=\frac{W e_{b}^{\sigma}}{\rho_{\ell} V_{r}^{2}}$,
where D_{b} is the bubble diameter. The bubble diameter must lie between the mesh-cell hydraulic diameter and $10^{-3} \mathrm{~m}$. For this diameter and assuming a uniform bubble distribution within the mesh-cell vol, the number of bubbles is
$\mathrm{CNB}=\frac{6 \alpha \mathrm{vol}}{\pi D_{b}^{3}}$
and the interfacial area is
$A_{i}=6 \alpha \operatorname{vol} \rho_{\ell} \frac{V_{r}^{2}}{W e_{b} \sigma}$.

If țhe relative velocity is very small, this area can become small enough to allow significant nonequilibrium. Another surface area,
$A=4.83 c^{2 / 3}\left(N_{B}\right)^{1 / 3} \mathrm{vol}$,
based on a minimum number density $\left(N_{B}=10^{10}\right.$ bubbles $/ \mathrm{m}^{3}$), is computed and the actual surface area used is the larger of the two.

The liquid-side interfacial heat-transfer coefficient is the larger of an approximate formulation of the Plesset-Zwick bubble growth model, 17
$N u=\frac{12}{\pi}\left(T_{\ell}-T_{s}\right) \rho_{\ell} \frac{\frac{\partial e_{\ell}}{\partial T_{\ell}}}{\left[\rho_{g}\left(h_{s g}-h_{s \ell}\right)\right]}$,
and a sphere "convection coefficient, ${ }^{18}$
$N u=2.0+0.74 \operatorname{Re}_{b}^{0.5}$,
where
$\operatorname{Re}_{b}=\rho_{\ell} V_{z} \frac{D_{b}}{\mu_{\ell}}$.

The interfacial shear coefficient is provided by a standard set of formulas for a sphere, ${ }^{11}$
$c_{1}=\frac{3 c_{b}^{\alpha \rho_{\ell}}}{4 D_{b}}$,
where
$c_{b}=240$, if $R e_{b}<0.1$;

$$
=\frac{24}{R e_{b}}, \quad \text { if } 0.1 \leq R e_{b} \leq 2
$$

or

$$
=\frac{18.7}{\operatorname{Re}_{\mathrm{b}}^{0.68}} \text {, if } \operatorname{Re}_{\mathrm{b}}>2
$$

If the cell-average mass flux is less than $2000 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{~s}$ and the vapor fraction is between 0.3 and 0.5 , the flow enters the slug regime. At the maximum alpha of $0.5,40 \%$ of the vapor is assumed to exist in the form of trailing bubbles, with the remainder contained in the slug. These bubbles probably contribute to the majority of the interfacial heat transfer and the liquid-side coefficient is calculated from the heat-transfer relations for the entrained bubbles. If the mass flux is greater than $2700 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{~s}$, all of the vapor is assumed to exist in bubbly form. Linear interpolation in mass flux is used in the range of 2000 to $2700 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{~s}$. In the slug regime the bubble diameter is determined by a linear weighting in a between the Weber number criterion and the channel hydraulic diameter such that the value is the

aulic diameter at a void fraction of 0.5 and the Weber number size at an α of 0.3 .

In the vapor-fraction range of 0.75 to 1.0 , an annular or annular-mist regime is assumed. A simple s-shaped entrainment correlation based on the critical Weber number is used. Thus,
$E=1-\exp \left[\left(-V_{g}-V_{E}\right) 0.23\right]$,
where
$V_{E}=2 \cdot 3\left[\frac{\left(\rho_{\ell}-\rho_{g}\right) \sigma W e_{d}}{\rho_{g}^{2}}\right]^{1 / 4}$.

This method appears to provide reasonable results for the FLECHT reflood tests. The remainder of the liquid is in a film or sheet. The interfacial shear and heat transfer are volume averages of the film and droplet relations in the annular-mist regime. The wetted surface area of the mesh cell is determined from the rod or slab heat-transfer area in the cell and the portion of the geometric flow area that is blocked off. If the cell is in a region devoid of any structure, the geometric surface area is used as a scaling factor. This, of course, is artificial; but in a realistic PWR simulation very few, if any, of the mesh cells are completely free of metal structure. The total interfacial surface area is determined by the sum of the areas contained in the wetted film and the droplets. A critical Weber number equal to four for the drops is used with a calculation procedure similar to that for bubbly flow. This value of the Weber number is appropriate for accelerating drops. For those "cases where sensitivity to "We ${ }_{d}$ was tested, the resúlts were not influenced strongly by We ${ }_{d}$ in the range of $2 \leq W_{d} \leq 12$. The 1 iquid-side heat-transfer coefficient is simply
a
$h_{i \ell}=\frac{\mathrm{ck}_{\ell}}{\mathrm{D}_{\mathrm{d}}}$,
where c, a constant, has been adjusted to drive the drops to equilibrium under a variety of flow conditions. In TRAC-PF1, $c=11300$, which implies a thermal boundary layer in the drops that is about a thousandth of the drop diameter. In the film, a correlation,
$\mathrm{Nu}=0.02 \mathrm{Re}$,
is employed to predict $h_{i \ell}$. The Dukler annular-flow model ${ }^{19}$ determines the shear for a wavy film, whereas the same drag correlations used for a bubble are employed if droplets exist. The Dukler model has a gas Reynolds number dependence and is of the form
$\frac{1}{f_{i}}=C_{1} \log \left(\frac{D}{S} \operatorname{Re} g\right)+C_{2}$.

From the graphical data reported in Ref. 18, we obtain

$$
\begin{aligned}
& C_{1}=3.04 \text { and } C_{2}=-16.16 \text { in countercurrent flow and } \\
& C_{1}=6.73 \text { and } C_{2}=-40.61 \text { in cocurrent flow. }
\end{aligned}
$$

To avoid the discontinuity that occurs as Re_{g} becomes small (the correlation is for turbulent flow anyway), smoothing is employed in a transition region. The droplet Reynolds number is defined as

$$
\operatorname{Re}_{d}=\frac{\rho V_{r d} D_{d}}{\mu_{g}}
$$

Because the actual relative velocity calculated is based on a shear that has been averaged between the film and drop correlations, a separate function ${ }^{20}$ is used for $V_{r d}$,
$v_{r d}=2.33\left[\frac{\left(\rho_{\ell}-\rho_{g}\right) \sigma W e_{b}}{\rho_{\ell}^{2}}\right]^{1 / 4}$.

For the regime between droplet and bubbly slug flow, a cubic spline , interpolation in the vapor fraction is made between the conditions that would exist if the vapor fraction were at 0.75 in the annular or annular-mist topology and the conditions that would exist if the flow were in the bubbly slug regine at a void fraction of 0.5. This interpolation assures that the correlation for the interfacial shear, interfacial heat transfer, and surface area is a continuous function of the vapor fraction, the relative velocity, the mass flux, and the various fluid thermodynamic and transport properties.

We now discuss the vapor-side heat-transfer coefficient and the liquid heat-transfer coefficient during condensation. The vapor heat-transfer coefficient is a constant, $h_{i g}=1 \times 10^{4}$. This implies that the rate for boiling or condensation is determined mainly by the liquid-side coefficient with a vapor coefficient designed to drive the vapor toward the saturation temperature. The formulation for the total liquid heat-transfer coefficient during condensation is based on the following model. If a pipe enters a given three-dimensional mesh cell and the liquid flows into that cell, then a jet is assumed with an α-weighted diameter, a surface area for condensation based on a right circular cylinder is provided, and $h_{i \ell}$ is given by Eq. (74) multiplied by ($\left.\Delta X / D_{\text {jet }}\right)^{2}$. If the jet model is not activated, the surface area is a constant times the mesh-cell volume. The $h_{i l}$ again is given by Eq. (74).

If the noncondensable gas is present, the condensation rate is reduced according to the prescription,
$\frac{h_{n c}}{h_{i \ell}}=0.168\left[\frac{\alpha \rho_{s}^{2}}{\rho_{a}(1-\alpha) \rho_{\ell}}\right]^{0.1}$,
where $h_{n c}$ is the liquid interfacial heat-transfer coefficient with noncondensable gas present. Small cutoffs on (1- $)$ and ρ_{a} prevent the denominator from ever becoming so close to zero as to cause difficulties. This
model is based on Russian jet data ${ }^{21}$ and can dramatically reduce condensation when a vapor other than steam is in a region.
d. Interface Sharpener. An interface sharpener is used in the lower plenum and core of the three-dimensional vessel to improve the liquid distribution during reflood. Simple void fraction tests are employed to sense the presence of a sharp mixture density discontinuity. The entrainment model then is used to predict the void fraction to be used for convection out of the mesh cell's positive face. This void fraction will always be greater than or equal to the actual void fraction in the cell. The interfacial shear constitutive relations are calculated based on this void fraction, and the scalar field equations use this new value in the z-direction convective terms. A cubic spline is used to merge the sharpened alpha as the mesh cell fills.
e. Horizontal Stratified Flow. In TRAC-PF1 the one-dimensional components have an additional flow regime if the angle from the horizontal is less than 30°. A stratification criterion based on a modified Froude number analysis developed by Y. Taitel and A. E. Dukler ${ }^{22}$ is used to determine if the flow is stratified.

The critical velocity $U_{\text {crit }}$ is calculated as

$$
\begin{align*}
\mathrm{U}_{\text {crit }} & =\mathrm{C}_{2}\left[\frac{\left(\rho_{\ell}-\rho_{g}\right) \mathrm{g} \cos \beta A_{\mathrm{g}}}{\mathrm{dA}_{\ell}}\right]_{\mathrm{g}}^{1 / 2} \frac{\rho_{\ell}}{\mathrm{dh}_{\ell}} \tag{79}\\
C_{2} & =1-\frac{\mathrm{h}_{\ell}}{\mathrm{D}}, \\
\frac{\mathrm{dA}_{\ell}}{\mathrm{dh}_{\ell}} & =\left[\mathrm{D}^{2}-\left(2 \mathrm{~h}_{\ell}-\mathrm{D}\right)^{2}\right]^{1 / 2}
\end{align*}
$$

where h_{ℓ} is the collapsed liquid height (determined by a standard mensuration formula) and D is the pipe inside diameter. If the absolute value of the vapor velocity is above $\mathrm{U}_{\text {crit }}$, the standard flow map is used. As the vapor velocity goes to zero, the interfacial and wall shear coefficients are calculated by the Blasius relation (but based on a minimum turbulent Reynolds number). A cubic

```
*4
```

spline employing the independent variable abs $\left(V_{g}\right)$ connects the two end points. This form of interpolation is necessary to prevent oscillations in the flow pattern with the large time steps often used by the code.

In addition, the hydraulic approximation for the difference in gravitational head caused by collapsed liquid height variations is added explicitly into the liquid equation of motion. Because this calculation is explicit, horizontal manometer oscillations can occur at larger time-step sizes. To prevent this difficulty, the magnitude of this added term is reduced as the time-step size is increased beyond the basic stability limit. This reduction eliminates the undesired oscillations.
f. Subcooled Boiling Model. If hot metal surfaces are present in a region, then the flashing rate Γ is modified to include the effects of subcooled boiling. If rods or slabs exist and $T_{w}>T_{s}$, the $h_{w \ell}$ is compared to the Dittus-Boelter liquid convective coefficient. If $h_{w l}$ is larger, the difference in wall flux $\left(q_{s b}\right)$ is attributed to subcooled boiling and
$r=\frac{q_{i \ell}+q_{i g}+q_{s b}}{h_{\ell g}}$.

In both the vapor continuity equation and the vapor thermal-energy equiation, the potentials $\left(T_{s}-T_{g}\right)$ and $\left(T_{s}-T_{\ell}\right)$ are evaluated at the new time level, whereas $h_{i g} A_{i}$ and $h_{i \ell} A_{i}$ are evaluated at the old time.

B. Structural Heat Transfer

Three fundamental heat-transfer mechanisms are modeled by the TRAC code. They include the interfacial heat transfer between the vapor and liquid phases, conduction within the reactor's structural components, and the heat transfer between the structures and the fluid. Interfacial heat transfer has been addressed in Sec. III.A.1.c. The remaining two mechanisms are discussed here.

The thermal history of the structural reactor materials is obtained from a solution of the heat-conduction equation. The energy exchange between the structures and the fluid is modeled using Newton's law. The coupling algorithm (Fig. 3) is semi-implicit. For each new time step, the fluid-dynamics equations are solved based on previous values for the wall heat-transfer coefficients (h) and surface wall temperatures (T_{w}); that is,
PROPERTIES $\left(\rho, k, c_{p}, \ldots\right)$ AND HEAT-TRANSFER COEFFICIENTS $\left(h_{\ell}, h_{g}\right)$
SOLVE THE FLUIDDYNAMICS EQUATIONS (α^{n+1}

$\mathrm{r}_{\ell}^{\mathrm{n+1}}, \mathrm{~T}_{\mathrm{g}}^{\mathrm{n+1}}$)

> SOLVE THE CONDUCTION EQUATIONS (T_{w}^{n+1})

PRE PASS

POST PASS

Fig. 3.
Semi-implicit coupling between hydrodynamics and structural heat transfer.
$q_{w}^{n+1}=h^{n}\left(T_{w}^{n}-T_{f}^{n+1}\right)$.

Once the fluid-dynamics equations are solved, the wall temperature distributions are deduced from the conduction equation.

1. Heat-Conduction Models. For simplicity as well as computing efficiency, the conduction models are separated according to their geometric function. They include conduction within cylindrical walls, slabs, and core rods. The first model analyzes heat conduction within the walls of the onedimensional loop components, such as the pipe walls: The latter two are associated with heat transfer within structural components of the vessel. Each of these models will be discussed in detail.
a. Cylindrical Wall Heat Conduction. The temperature distribution within the walls of the one-dimensional components is determined by subroutine CYLHT. A solution is obtained from a finite-difference approximation to the one-dimensional conduction equation,

$$
\begin{equation*}
\rho c_{p} \frac{\partial T}{\partial t}=\frac{1}{r}\left[\frac{\partial}{\partial r}\left(r k \frac{\partial T}{\partial r}\right)\right]+\dot{q} \cdots . \tag{81}
\end{equation*}
$$

The finite-difference equations are derived by applying an integral method ${ }^{23}$ to the elemental volumes shown in Fig. 4. The general form for the $i^{\text {th }}$ volume $(1<i<N)$ is
$\frac{r_{i-1 / 2} k_{i-1 / 2}}{\Delta r_{i-1}} T_{i-1}^{n+1}-\left\{\frac{r_{i-1 / 2} k_{i-1 / 2}}{\Delta r_{i-1}}+\frac{r_{i+1 / 2} k_{i+1 / 2}}{\Delta r_{i}}\right.$
$\left.+\frac{1}{2 \overline{\Delta t}}\left[\left(r_{i} \Delta r_{i-1}-\frac{\Delta r_{i-1}^{2}}{4}\right)\left(\rho c_{p}\right)_{i-1 / 2}+\left(r_{i} \Delta r_{i}+\frac{\Delta r_{i}^{2}}{4}\right)\left(\rho c_{p}\right)_{i+1 / 2}\right]\right\} T_{i}^{n+1}$
$+\frac{r_{i+1 / 2} k_{i+1 / 2}}{\Delta r_{i}} T_{i+1}^{n+1}=-\frac{1}{2}\left\{\left(r_{i} \Delta r_{i}-\frac{\Delta r_{i-1}^{2}}{4}\right)\left[-\frac{\left.\rho c_{p}\right)_{i-1 / 2}}{\Delta t} T_{i}^{n}+\dot{q}^{\cdots}\right]\right.$
$\left.+\left(r_{i} \Delta r_{i}+\frac{\Delta r_{i}^{2}}{4}\right)\left[\frac{\left(\rho c_{p}\right)_{i+1 / 2}}{\Delta t} T_{i}^{n}+\dot{q}^{-\cdots}\right]\right\}$,

$\int \sqrt{1)}$
where
$f_{i}^{n} \equiv f\left(t^{n}, r_{i}\right)$.

The boundary conditions applied to the inner ($i=1$) and outer ($i=N$) surfaces are:
$-\left.k \frac{\partial T}{\partial r}\right|_{i=1, N}= \pm\left[h_{\ell}\left(T_{\ell}-T_{i}\right)+h_{g}\left(T_{g}-T_{i}\right)\right]$.

$=$
;
Fig. 4.
Cylindrical wall geometry.

Application of this boundary condition to the inner surface ($i=1$) yields, for example,

$$
\begin{align*}
&-\left\{\frac{r_{3 / 2} k_{3 / 2}}{\Delta r_{1}}+\frac{1}{2}\left[r_{1} \Delta r_{1}+\frac{\Delta r_{1}^{2}}{4}\right] \frac{\left.\rho c_{p}\right)_{3 / 2}}{\Delta t}+f_{s s^{\prime}} r_{1}\left(h_{\ell}+h_{g}\right)\right\}{ }_{T}^{n}{ }_{1}^{n+1}+\frac{r_{3 / 2} k_{3 / 2}}{\Delta r_{1}} T_{2}^{n+1} \\
&=-\frac{1}{2}\left(r_{1} \Delta r_{1}+\frac{\Delta r_{1}^{2}}{4}\right)\left[\frac{\left(\rho c_{p}\right)_{3 / 2}}{\Delta t} T_{1}^{n}+\dot{q}^{\cdots}\right] \\
&+r_{1}\left[h_{\ell}\left(f_{t} T_{1}^{n}-T_{\ell}^{n+1}\right)+h_{g}\left(f_{t} T_{1}^{n}-T_{g}^{n+1}\right)\right] \tag{84}
\end{align*}
$$

Because of the semi-implicit coupling with the fluid equations, $f_{s s}$ and f_{t} take on the values of 0 and 1 , respectively, for transient calculations. This ensures that both sets of equations use identical surface heat fluxes as boundary conditions for each time step. When a steady-state solution is required, however, large time steps are desirable. For this case, the conduction equation is written in a fully implicit form, and $f_{s s} \stackrel{" 1}{=}$ and $\mathrm{f}_{\mathrm{t}}=0$.

Note that the above formulation "conveniently positions nodal points on material interfaces. Material properties are evaluated between nodes.

The resulting linear equations are solved sequentially in the axial (z) direction. For each axial position a solution is achieved using Gaussian elimination.

A lumped-parameter solution is available to the user if the number of nodes equals 1 . For this option the wall temperature is obtained from the equation,

$$
\begin{align*}
T^{n+1}= & \left\{\frac{1}{2}\left(2 \Delta r+\frac{\Delta r^{2}}{R_{i}}\right)\left(\frac{\rho c_{p}}{\Delta t} T^{n}+\dot{q}-\cdots\right)+h_{\ell_{i}}\left(T_{\ell}^{n+1}-f_{t} T^{n}\right)\right. \\
& \left.+h_{g_{i}}\left(T_{g_{i}}^{n+1}-f_{t} T^{n}\right)-\left(1+\frac{\Delta r}{R_{i}}\right)\left[h_{\ell}\left(f_{t} T^{n}-T_{\ell}^{n+1}\right)+h_{g_{o}}\left(f_{t} q^{n}-T_{g_{o}}^{n+1}\right)\right]\right\} \\
& /\left\{\frac{1}{2}\left(2 \Delta r+\frac{\Delta r^{2}}{R_{i}}\right)\left(\frac{\rho c}{\Delta t}\right)+f_{s s}\left[h_{\ell}+h_{g_{i}}+\left(1+\frac{\Delta r}{R_{i}}\right)\left(h_{\ell}+h_{g_{o}}\right)\right]\right\} \tag{85}
\end{align*}
$$

The subscripts i and o refer to the inner and outer radii, respectively.
b. Slab Heat Conduction. Heat conduction within vessel structures (such as downcomer walls and support plates) is modeled in subroutine SLABHT. Only one slab is allowed in each fluid-dynamic cell. The number of nodes used to determine the temperature distributions is identical for all slabs within the vessel. The model includes the ability to account for the temperature effects in the slab properties (p, c_{p}, k, etc.). The temperature distribution is obtained from the one-dimensional conduction equation,
$\rho c_{p} \frac{\partial T}{\partial t}=\frac{\partial}{\partial x}\left(k \frac{\partial T}{\partial x}\right)+\dot{q} \cdots$.

The appropriate finite-difference equations are derived by applying an integral method to the elemental volumes in a manner similar to that used for the cylindrical wall heat-conduction solution technique (Sec. LII.B.1.a).

At the first surface ($i=1$), a symmetry boundary condition ($\partial \mathrm{T} /\left.\partial \mathrm{x}\right|_{i=1}=0$) is applied. The boundary condition applied to the remaining surface ($i=N$) is

$$
\begin{equation*}
-\left.k \cdot \frac{\partial T}{\partial x}\right|_{i=N}=\left[h_{\ell}\left(T_{\ell}-T_{i}\right)+h_{g}\left(T_{g}-T_{i}\right)\right] \tag{87}
\end{equation*}
$$

Within the vessel slabs, $\dot{q}^{-\prime}$ is assumed to be zero.
An arbitrary number of interfaces between dissimilar materials also can be considered in the slab conduction model. The technique used is identical to the method used in the rod conduction solution [Sec. III.B.1.c.(1)].

Heat slabs of arbitrary thickness and surface areas can be defined in any mesh cell (including core regions) to model the heat capacity of structures within the vessel. One HTC is computed for each slab using the local fluid conditions. For vessel cells $\begin{aligned} & \text { githout structural material, input the slab area }\end{aligned}$ as 0.0 ; the remaining input arrays describing the slab should have values that the code can recognize (filling the arrays with zeros is an error).
c. Rod Heat Conduction. Subroutine RODHT analyzes the conduction of the reactor rods on a rod-by-rod basis. The formulation can model diverse rod geometries. Both nuclear and electrically heated rods can be analyzed. The effects of internal heat generation, gap conduction, metal-water reaction, and variable rod properties are included.

The numerical procedures can model the entire LOCA scenario in a consistent and mechanistic fashion. The model also can resolve large axial (z) gradients characteristic of the reflood phase.

One computational rod is associated with each segment (that is, for each r, θ region) within the core. This "average" rod is coupled to the fluid by Newton's law of cooling. Any number of additional user-specified rods may be included in each segment. The rod power factors (that is, relative to the average rod located within each segment) are also user specified. The supplemental rods allow the user to include hot rods in the reactor vessel. Such rods do not influence the fluid-dynamics calculations.
(1) Numerical Model. The thermal response of the vessel rods is modeled using the two-dimensional (r, z) cylindrical conduction equation. Azimuthal symmetry has been assumed.

$$
\begin{equation*}
\rho c_{p} \frac{\partial T}{\partial t}=\dot{q} \cdots+\frac{1}{r} \frac{\partial}{\partial r}\left(r k \frac{\partial T}{\partial r}\right)+\frac{\partial}{\partial z}\left(k \frac{\partial T}{\partial z}\right) \tag{88}
\end{equation*}
$$

The effects of internal heat generation resulting from nuclear fission, electrical current, or the metal-water reaction may be included.

Appropriate finite-difference equations are obtained by applying an integral method ${ }^{23}$ to appropriate differential volumes. The noding within the rods is staggered with respect to the nodes used in the fluid-dynamics calculations (Fig. 5). This noding scheme is necessary to simplify the algorithm that generates the fine mesh required by the reflood calculations. The staggered mesh gives the further advantage of providing axial numerical smoothing.

Differencing, in the radial (r) direction is implicit. Therefore, large radial power variations do not create any numerical difficulties. Differencing in the axial (z) direction is explicit to simplify the computations and to

Fig. 5.
Rod geometry.
reduce computer costs. The explicit differencing does limit the minimum axial spacing between nodes for a given time increment. However, this spacing is orders of magnitude less than that used by the fluid-dynamics calculations. The resulting finite-difference equations form a tridiagonal matrix for each row (z fixed) within the rod. The temperature distribution is obtained by using Gaussian elimination on each row in a sequential manner.

Consider a general differential volume (that is, the volume labeled 1 in Fig. 5). The finite-difference equation for this volume is

$$
\begin{align*}
& {\left[\left(\rho c_{p}\right)_{i j} \frac{T_{i j}^{n+1}-T_{i j}^{n}}{\Delta t}-\dot{q}_{i j}^{-j}\right] \frac{1}{2}\left[\left(r_{i} \Delta r_{i}+\frac{\Delta r_{i}^{2}}{4}\right)+\left(r_{i} \Delta r_{i}-\frac{\Delta r_{i-1}^{2}}{4}\right)\right] \times\left[\frac{\Delta z_{j}+\Delta z_{j-1}}{2}\right]} \\
& =\left[r_{i+1 / 2} k_{i+1 / 2, j}\left(\frac{T_{i+1, j}^{n+1}-T_{i j}^{n+1}}{\Delta r_{i}}\right)+r_{i-1 / 2} k_{i-1 / 2, j}\left(\frac{T_{i-1, j}^{n+1}-\ldots T_{i j}^{n+1}}{\Delta r_{i-1}}\right)\right] \\
& \times\left(-\frac{\Delta z_{j}+\Delta z_{j-1}}{2}\right)+\left[k_{i, j+1 / 2}\left(\frac{T_{i, j}^{n}+1-T_{i j}^{n}}{\Delta z_{j}}\right)+k_{i, j-1 / 2}\left(\frac{T_{i, j-1}^{n}-T_{i j}^{n}}{\Delta z_{j-1}}\right)\right] \\
& \times \frac{1}{2}\left[\left(r_{i} \Delta r_{i}+\frac{\Delta r_{i}^{2}}{4}\right)+\left(r_{i} \Delta r_{i-1}-\frac{\Delta r_{i}^{2}}{4}\right)\right], \tag{89}
\end{align*}
$$

where
$f_{i j}^{n} \equiv f\left(t^{n}, r_{i}, z_{j}\right)$.

It should be observed that the locations of nodes within the volumes located at the boundaries differ (Fig. 5). This difference should be considered when assigning values for the relative power densities at each node.

The boundary conditions applied to the vessel rods are:

- the top $\left(z=z_{u}\right)$ and bottom $\left(z=z_{1}\right)$ of the rods are assumed to be insulated,
$\left.k \frac{\partial T}{\partial z}\right|_{z=z_{1}, z_{u}}=0 ;$
- the rod center line $(r=0)$ is a line of. symmetry,

$$
\left.\frac{\partial T}{\partial r}\right|_{r=0}=0 \quad ; \text { and }
$$

- heat transfer at the inner and outer gap surfaces ($r=r_{\text {gap }}^{-}, r_{\text {gap }}^{+}$) and at the clad surface ($r=r_{0}$) is specified using Newton's law,
$\left.k \frac{\partial T}{\partial r}\right|_{r=} r_{\text {gap }}^{ \pm}=-h_{g a p}^{ \pm}\left(T_{r_{g a p}^{-}}-T_{r_{\text {gap }}^{+}}^{+}\right)$and
$\left.k \frac{\partial T}{\partial r}\right|_{r=r_{o}}=-h_{f l u i d}\left(T_{r_{o}}-T_{f l u i d}\right)$,
where $h_{\text {gap }}^{+}=h_{\text {gap }}^{-}\left(r_{\text {gap }}^{-} / r_{\text {gap }}^{+}\right)$to conserve energy.

$$
=j^{\prime}
$$

All properties (that is, ρ, c_{p}, and k) required by the difference equations are stored at the node locations. Linear interpolation is used to obtain properties between nodes (that is, at cell surfaces). A node located at the interface between two dissimilar materials requires two sets of properties. Consider the differential volume provided in Fig. 6. Application of an integral technique to this volume results in the differential equation (after dividing through by the volume),
${\left.\overline{\left(\rho c_{p}\right.}\right)}_{i j}\left(\frac{T_{i j}^{n+1}-T_{i j}^{n}}{\Delta t}\right)-\dot{q}_{i j}^{\prime}=\left[r_{i+1 / 2} k_{i+1 / 2, j}\left(\frac{T_{i+1, j}^{n+1}-T_{i j}^{n+1}}{\Delta r_{i}}\right)\right.$
$\left.+r_{i-1 / 2} k_{i-1 / 2, j}\left(\frac{T_{i-1, j}^{n+1}-T_{i j}^{n+1}}{\Delta r_{i-1}}\right)\right]\left[\left(r_{i} \Delta r_{i}+\frac{\Delta r_{i}^{2}}{4}\right)+\left(r_{i} \Delta r_{i-1}+\frac{\Delta r_{i}^{2}}{4}\right)\right]^{-1}$
$+\left[\bar{k}_{i, j+1 / 2}\left(\frac{T_{i, j+1}^{n}-T_{i j}^{n}}{\Delta z_{j}}\right)+\bar{k}_{i, j-1 / 2}\left(\frac{T_{i, j-1}^{n}-T_{i j}^{n}}{\Delta z_{j-1}}\right)\right]\left[\frac{\Delta z_{j}+\Delta z_{j-1}}{2}\right]^{-1}$,
where

and
$\bar{k}_{i, j+1 / 2} \equiv \frac{\left[k_{i}{ }^{+}, j+1 / 22^{+}+k_{i}^{-}, j+1 / 2 R^{-}\right]}{\left(R^{+}+R^{-}\right)}$.

In the above equations,

$$
\begin{equation*}
R^{+} \equiv\left(r_{i^{+}}+\frac{\Delta r_{i}}{4}\right) \frac{\Delta r_{i}}{2} \text { and } R^{-} \equiv\left(r_{i}-\frac{\Delta r_{i-1}}{4}\right) \frac{\Delta r_{i-1}}{2} . \tag{91}
\end{equation*}
$$

The superscript $+(-)$ refers to the material to the right (left) of the interface.
(2) Reflood Algorithm. The reflood phase of a postulated LOCA is characterized by a sequence of heat-transfer and two phase flow regimes advancing rapidly through the vessel core. A correct prediction of the thermal response of the rods during reflood requires a numerical technique that can model the rewetting phenomena associated with the quench-front motion.

The leading edge of the rewetting region is characterized by large variations of temperatures and heat fluxes within small axial distances ($\Delta \mathrm{z} \sim \mathrm{Imm}$). 24 The front advancement is controlled by two heat removal mechanisms, the first being axial conduction from the dry region ahead of the quenched region to the wetted region behind the advancing film. The second is the precursory rod cooling associated with heat transfer to the droplets entrained in the advancing vapor field. The rod conduction model contains the necessary physics to analyze such phenomena. The need remains to define an algorithm capable of resolving the large gradients.

When reflood begins, supplemental rows of conduction nodes (Fig. 7) are inserted in the rod. The number of rows inserted within each fluid level is user specified. The rows are uniformly spaced (that is, z is constant) within

[^0]

Fig. 7.
Fine-mesh rezoning.
each fluid level. The temperature values at the supplemental nodes are determined from a three-point Lagrangian interpolation technique. The interpolation is normalized to conserve the total energy of the rod. The nodes added in this fashion remain during the entire reflood phase.

To model the inherently nonstationary, Lagrangian quench-front motion and to resolve the related thermal gradients, a fine-mesh rezoning technique ${ }^{25}$ is used during the "reflood conduction calculations. The axial gradients encountered within the rewetting region are resolved by the insertion of rows of stationary nodes (Fig. 7). These additional transitory nodes are added whenever the temperature difference between adjacent rod surface nodes exceeds a user-specified value ($T_{\text {max }}$). The temperatures assigned to the nodes are required to conserve energy (Fig. 8),

$$
\begin{equation*}
\sum_{j=j_{0}}^{j_{0}^{+2}} \rho_{i j}^{-} c_{p_{i j}}^{-} T_{i j}^{\prime} v_{i j}^{-}=\sum_{j=j_{0}}^{j_{o}^{+1}} \rho_{i j}^{c}{p_{i j}}^{T_{i j}} v_{i j} ; \quad i=1, \ldots, \text { nodes } \tag{92}
\end{equation*}
$$

The primed quantities denote rod properties after the nodes have been added. The values of $\rho^{-}, c_{p}{ }^{-}$, and T^{\prime} at the original node locations are set equal to their original values. After the quench front has progressed beyond the location of the inserted rows and the surface temperature difference falls below a prescribed value ($\Delta \mathrm{T}_{\mathrm{min}}$), the transitory nodes are eliminated. Temperatures at nodes axially adjacent to those deleted retain their original values. For small $\Delta T_{m i n}$, this results in a negligible effect on the total energy of the rod.

Two values for $\Delta T_{\max }$ are specified by the user. The first and smaller value is applied to the part of the rewetting region that is in a nucleate or transitional boiling regime. The" largest wall heat fluxes occur in these heat-transfer regimes. The second $\Delta T_{\text {max }}$ value is applied to all other heattransfer regimes. The $\Delta T_{m i n}$ values are computed internally based on the specified values for $\Delta T_{\max }$.

The above algorithm can analyze multiple quench fronts simultaneously. Both queinching and dryout are modeled automatically.

During the reflood phase, a number of surface conduction nodes are located within each fluid-dynamics cell. Therefore, it is necessary to calculate an effective wall-temperature and heat-transfer coefficient for use in the fluid-dynamics computations. These values are obtained by ensuring the conservation of the total energy transferred to the fluid within each cell. Values applied to the liquid phase that satisfy this criteria are
$\bar{h}_{\ell} \equiv \frac{\sum h_{\ell} A_{j}}{\sum_{j} A_{j}}$
and
$\bar{T}_{w_{\ell}} \equiv \frac{\sum_{j} h_{\ell}{ }_{j} A_{j} T_{j}}{\sum_{j} h_{\ell}{ }_{j}^{A_{j}}}$,
where the sum is taken over all surface nodes in each fluid cell. Similar values are used in the vapor phase.

It already has been pointed out that for a given time step (Δt) a minimum spacing (Δz) between rows of conduction nodes exists because of the explicit axial differencing. For reflood calculations this axial spacing can be violated, resulting in stability problems. To avoid such problems, the time step is limited internally by a diffusion number. The user also can specify minimum spacing ($\Delta z_{\min }$) beyond which supplemental rows of conduction nodes will not be added. This additional advantage can prevent excessively large computer costs.

Computing costs are reduced further by calculating material properties only at those nodes located at the edges of the fluid cells. Linear interpolation is used to obtain the properties at any additional locations required by the reflood calculations. Heat-transfer coefficients, however, are obtained directly from the boiling curve for all rod surface nodes.
(3) Fuel-Clad Gap Conductance. Two options are available in TRAC-PFl for the fuel-clad gap conductance. If the input variable NFCI $=0$, a constant input value for the gap conductance is used throughout the entire calculation. If the input variable $N F C I=1$, the input value for the gap conductance becomes the initial value and a thermal-expansion model is used to calculate the transient gap conductance.

Subroutine GAPHT calculates the gap heat-transfer coefficient ($h_{g a p}$) as a function of three components: gap gas conductance, fuel-clad interfacial contact, and fuel-clad thermal radiation;
$h_{\text {gap }}=h_{\text {gas }}+h_{\text {contact }}+h_{\text {radiation }}$,
where
$h_{\text {gas }}=\frac{k_{\text {gas }}}{\Delta \mathrm{r}_{\text {gap }}+\delta}$,
$h_{\text {radiation }}=\frac{\sigma F\left(T_{f}^{4}-T_{c}^{4}\right)}{\left(T_{f}-T_{c}\right)}$,
and
$F=\frac{1}{\frac{1}{\varepsilon_{f}}+\frac{R_{f}}{R_{c}}\left(\frac{1}{\varepsilon_{c}}-1\right)}$.

Subscripts f and c refer to fuel and clad, respectively, and σ is the Stefan-Boltzmann constant. A value of $4.4 \times 10^{-6} \mathrm{~m}$ is used for δ, which includes the mean fuel surface roughness of the fuel and clad and the temperature jump distances. 26,27 The contact conductance, h contact, is zero in the present code.

The fuel-clad radial gas gap, $\Delta r_{g a p}$, is found by using the uncoupled, quasi-static approximation. ${ }^{28}$. In this approximation the mechanical coupling term in the energy equation and the inertial term in the mechanical force balance are omitted. Neglect of these terms assumes that the influence of the

Fig. 9.
Fuel-rod geometry.
strains in the fuel and clad on the temperature distribution is small and that displacements are instantaneous. Figure 9 shows the fuel-clad gap system modeled in three regions: solid fuel, cracked fuel, and clad. Gap changes are found by calculating the radial displacement of each region caused by thermal expansion.

The calculations for the deformation of a hollow or solid circular cylindrical body of outer radius b., and of height h are given in Ref. "28, for the case of plane strain where the ratio h / b is large compared to unity. Other assumptions are made that the cylindrical surfaces are free of forces and that axial displacement is allowed. Because the uncoupled, quasi-static approximation is used, the temperature distributions are assumed to be: known from the energy balance. The radial displacement uis given by

$$
\begin{equation*}
u(r)=\frac{\alpha}{r(1-v)}\left[(1+v) \int_{a}^{r} T r d r+\frac{(1-3 v) r^{2}+a^{2}(1+v)}{b^{2}-a^{2}} \int_{a}^{b} T r d r\right]^{c} \tag{97}
\end{equation*}
$$

where a is the inner radius of a cylindrical shell, v is Poisson's ratio, and α_{ν} is the linear thermal-expansion coefficient. Equation (97) is used to
calculate the radial displacement of the clad inner radius and solid fuel radius, $r_{n}=$ a and $r=r^{\prime}$, respectively. The results are
$u(a)=\frac{2 \alpha c^{a}}{b^{2}-a^{2}} \int_{a}^{b} T_{c} r d r$
and
$u\left(r^{-}\right)=\frac{2 \alpha_{f}}{r^{\prime}} \int_{0}^{r^{-}} T_{f} r d r \quad$.

The clad inner radius and solid fuel radius after thermal expansion will be

$$
\begin{equation*}
a_{\text {new }}=a+u(a) \tag{100}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{\text {new }}^{-}=r^{\prime}+u\left(r^{\prime}\right) \tag{101}
\end{equation*}
$$

A parabolic radial temperature distribution is assumed across the "fuel " pellet,
$T_{f}=T_{c 1}+\frac{\left(T_{\text {surf }}-T_{c 1}\right) r^{2}}{R^{2}}$,
a
"
where $T_{c 1}$ is the fuel center-line temperature and $T_{\text {surf }}$ is the fuel surface temperature. A linear temperature profile is assumed across the clad,
$T=\frac{\left(T_{c o}-T_{c i}\right)(r-a)}{b-a}+T_{c i}$,
where $T_{c o}$ and $T_{c i}$ are the clad outside and inside temperatures, respectively, $=$ and a and b are the clad inside and outside radii.

The following equation is used for the cracked fuel thickness;
$t=t_{0}\left(1+\frac{\alpha_{f}}{R^{\prime}-r^{\prime}} \int_{r^{\prime}}^{R} T_{f} d r\right)$,
where t_{0} is the initial undeformed radial thickness of the cracked fuel,
$t_{0}=R-r^{-}$

The radial gap width after thermal expansion will be
gap width $=a_{\text {new }}-\left(r_{\text {new }}^{-}+t\right)$,
or
gap width $=\left(a-r^{-}\right)+\frac{2 \alpha_{c} a^{2}}{b^{2}-a^{2}} \int_{a}^{b} T_{c} r d r-\frac{2 \alpha_{f}}{r^{\prime}} \int_{0}^{r^{\prime}} T_{f}^{\prime \prime} r d r$

$$
\begin{equation*}
-t_{0}\left[1-\frac{\alpha_{f}}{R-r^{-}} \int_{r^{-}}^{R} T_{f}^{j>} d r\right] \tag{107}
\end{equation*}
$$

The fuel-clad radial spacing is evaluated in subroutine DELTAR.
$=$
(4) Metal-Water Reaction. When sufficiently high temperatures are reached by Zircaloy in á steamenvironment, an exothermic reaction may occur that will influence the peak cladding temperatures. The zirconium- steam reaction equation is
$\mathrm{Zr}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{ZrO}_{2}+2 \mathrm{H}_{2}+$ heat .

Given sufficient steam, the reaction rate equation ${ }^{29,30}$ is assumed valid:
$\tau \frac{d \tau}{d t}=A \exp \left(-\frac{B}{T}\right)$,
where $T=$ total oxygen consumed $\left(\mathrm{kg} / \mathrm{m}^{2}\right), \quad \mathrm{A}=16.8 \mathrm{~kg}^{2} / \mathrm{m}^{4} \mathrm{~s}$, and $B=2.007 \times 10^{4} \mathrm{~K}$.

The kinetic parameter τ is converted to an effective zirconium-oxide layer thickness according to
$1.5\left(\mathrm{R}_{0}-r\right)=\frac{\tau}{0.26 \rho_{\mathrm{ZrO}_{2}}}$,
where
$r \quad=$ reacting surface radius (m),
$R_{0} \quad=c l a d$ outer radius (m), and
$\rho_{\mathrm{ZrO}_{2}}=$ density of zirconium oxide $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$.

Equation (110) is based on a reacted material volume expansion of 50% in the radial direction. " This assumption leads to $\rho_{\mathrm{ZrO}_{2}}=0.90 \rho_{\mathrm{Zr}}$. Equation (110) allows Eq. (109) to be rewritten as
$\tau \frac{d \tau}{d t}=-\ddot{C}\left(R_{0}-r\right) \frac{d r}{d t}$,
where $C=\left(0.351 \rho_{Z_{r}}\right)^{2}$.
\square
η
Themethod outlined in Ref. 29 is used to calculate the zirconium-oxide penetration depth and associated heat source. The mass per unit length of zirconium ($m_{Z R}^{-}$) consumed by the reaction in one time step is
$m_{Z r}^{-}={ }^{\pi \rho} Z_{r}\left[\left(r^{n}\right)^{2}-\left(r^{n+1}\right)^{2}\right]$.

Equation (109) is used to calculate $\mathrm{r}^{\mathrm{n}+1}$, yielding
$r^{n+1}=R_{0}-\left[\left(R_{0}-r^{n}\right)^{2}+2 \frac{A}{C} \Delta t \exp \left(-\frac{B}{T}\right)\right]^{1 / 2}$.

Assuming a one-region clad, the heat source $\left(\dot{q}_{m w}^{-}\right)$added to the conduction equations is

where R_{i} is the inner clad radius and $6.45 \times 10^{6} \mathrm{~J} / \mathrm{kg}$ corresponds to the energy released per kilogram of oxidized zirconium.
2. Wall-to-Fluid Heat Transfer. The wall-to-fluid HTCs are obtained from a generalized boiling curve constructed within subroutine HTCOR. The ATC, correlations in HTCOR are used by all TRAC components under all conditions. Figure 10 shows a portion of the boiling curve, which is not dependent on the flow regime. The single-phase vapor and condensation regimes are not shown in this figure.

The individual correlations used for each heat-transfer regime and the method of partitioning the energy between the two phases are discussed in this section. We have tried to make the boiling curve continuous between regimes; thus, we also discuss our methods to smooth the boiling curve.

a. Wall-to-Fluid HTC Selection Logic. The HTC selection logic is outlined in the flow chart shown in Fig. 11. The following sequence, corresponding to the numbers on the left side of Fig. ll, is used. If one step is "not satisfied, then the next step is examined.

Step 1. Initialize subroutine HTCOR by calculating absolute values, the slip, and the flow and equilibrium qualities. If the slip is less than or equal to zero in HTCOR, it is set equal to 1.0 .

Step 2. If $T_{W}<T_{\ell}, T_{W}<T_{s}$ and the void fraction is greater than 0.05 , the heat transfer is in the condensation regime. The Chen correlation, ${ }^{31}$ discussed in Sec. III.B.2.b.(2), is used in this regime with the suppression factor S set equal to zero. If the equilibrium quality, $x \equiv x_{e}$, is greater than 0.71 , the 1 imit of Chen's data base, then the Chen correlation is evaluated at $x=0.71$. This gives h_{ℓ}, with $h_{g}=0$. Linear interpolation is, used between these values and the single-phase vapor HTCs ($h_{\ell}=0$).

Step 3. If $x_{e} \geq 1$, a single-phase vapor HTC is calculated.

Fig. 11.
Heat-transfer coefficient correlation selection logic.

Step 4. When the void fraction, α, is greater than 0.98 , linear interpolation is used between the HTCs from the appropriate heat-transfer regime and the single-phase vapor values. The h_{ℓ} is interpolated between $0.98 \leq \alpha \leq 0.999 ;$ the h_{g} is interpolated between $0.98 \leq \alpha \leq 1.0$.

Step 5. When the input variable $I C H F=0$, the boiling curve is not used to determine the liquid and vapor HTCs. These values are obtained from the two-phase mixture equations only (heat-transfer regime 7), as described in Sec. III.B.2.b.(7).

Step 6. The forced convection and nucleate boiling HTCs are calculated by using the Chen correlation. At this point the heat-transfer regime has not been determined.

Step 7. If $\mathrm{T}_{\mathrm{w}}<\mathrm{T}_{\ell}$ or $\mathrm{T}_{\mathrm{W}} \leqslant \mathrm{T}_{\mathrm{S}}$, the heat-transfer regime is single-phase liquid.

Step 8. The input variable ISTDY determines whether a steady-state or a transient calculation is being made. For steady-state conditions, ISTDY = 1; otherwise, ISTDY $=0$. When a steady-state calculation is being made, the only heat-transfer regimes available are single-phase liquid, "nucleate boiling, single-phase vapor; or condensation. Critical heat flux is not allowed during steady state.

Step 9. The critical heat flux (CHF) and the corresponding temperature, $\mathrm{T}_{\text {CHF }}$, are calculated next.

Step 10. If $T_{W}<T_{C H F}$, nucleate boiling exists.
Step 11. The minimum stable film boiling temperature, $T_{m i n}$, is calculated by using the homogeneous nucleation model (ITMIN $=0$) or by using the maximum of the homogeneous nucleation and the Iloeje $T_{\text {min }}$ values (ITMIN $=1$). These correlations are discussed in Sec. III.B.2.d.

Step 12. If $T_{W}<T_{\text {min }}$, transition boiling exists. It previously has been dótermined that T_{w} is greater than the temperature at CHF conditions (Step 10).

Step 13. If $T_{W}>T_{\text {min }}$, film boiling is occurring.
Step 14. The HTCs are restricted to zero or to positive values. (For $\alpha>0.999$, extrapolation occurs and a negative h_{ℓ} could result. See Step 4:) For $\alpha<0.15$, the vapor heat flux is interpolated linearly from its value at $\alpha=0.15$ to a value óflit0 at $\alpha=0.01$. The liquid heat flux is adjusted so that the total heat flux remains unchanged. Then h_{ℓ} and h_{g}, are recalculated
from the adjusted heat fluxes and the known temperature differences. This prevents an extremely small mass of vapor from becoming superheated to an unrealistic value.

Step 15. The HTCs are averaged between the current time step and the previous time step.
b. HTC Correlations. In this section we discuss the HTC correlations used in the construction of the boiling curve. In addition, the correlation used for $I C H F=0$ is discussed. Because TRAC is a nonequilibrium code, HTCs are needed for the liquid and the vapor phases; this partitioning of energy between the phases is discussed also. The heat-transfer regimes available in TRAC are shown in Fig. 12.
(1) Single-Phase Liquid (Heat-Transfer Regimes 1 and 12). Either forced convection (regime 1) or natural convection (regime 12) can occur when single-phase liquid is present. Forced convection correlations are used when the ratio of the Grashof number to the Reynolds number squared is less than or

IDREG (IHTF)	WALL-TO-FLUID HEAT-TRANSFER REGIME
1	FORCED CONVECTİON TO SINGLE-PHASE LIQUID
2	NUCLEATE BOILING
3	TRANSITION BOILING
4	FILM BOILING
6	CONVECTION TO SINGLE-PHASE VAPOR
7	CONVECTION TO TWO-PHASE MIXTURE
11	CONDENSATION
12	LIQUID NATURAL CONVECTION

Fig. 12.
TRAC-PFl heat-transfer regimes.
equal to 1.C. Laminar or turbulent forced convection correlarions are available. These equations are contained in subroutine CHEN because they constitute one part of the Chen correlation. The laminar equation ${ }^{9}$ is
$h_{\ell}=4.0 \frac{\mathrm{k}_{\ell}}{\mathrm{D}_{\mathrm{h}}}$.

The turbulent HTC is found from the Dittus-Boelter equation, ${ }^{26}$
$h_{\ell}=0.023 \frac{k_{\ell}}{D_{h}} \operatorname{Re}_{\ell}^{0.8} \operatorname{Pr}_{\ell}^{0.4}$,
where the liquid Reynolds number is
$\operatorname{Re}=\frac{\rho_{\ell} V_{\ell} D_{h}}{\mu_{\ell}}$,
and the liquid Prandtl number is

$$
\begin{equation*}
\operatorname{Pr}_{\ell}=\left(\frac{\mu c_{p}}{k}\right)_{\ell} \tag{117}
\end{equation*}
$$

Note that all" the properties are evaluated at T_{l}. The maximum of Eqs. (114) and (ll5) is set equal to the single-phase-liquid forced convection heat-transfer coefficient, HFORC. In heat-transfer regime 1 , the Chen F factor is set equal to 1.0 .

In heat-transfer regime 12 , natural convection to single-phase liquid, the maximum of the laminar and turbulent correlations for vertical flat plates and cylinders is used. 32 For laminar flow, the equation is

$\mathrm{Nu}=0.59(\mathrm{GrPr})^{0.25}$;
for turbulent flow,
$N u=0.10(\mathrm{Gr} \operatorname{Pr})^{0.3333}$;
where the Grashof number is
$G r=\frac{g \beta\left|T_{w}-T_{\ell}\right| \rho_{f}^{2} D_{h}^{3}}{\mu^{2}}$,
the Prandtl number is'
$\operatorname{Pr}=\left(\frac{\mu C_{p}}{k}\right)_{\ell}$,
and the Nusselt number is
$N u=\frac{h_{\ell} D_{h}}{k_{\ell}}$.

The maximum of the laminar and turbulent Nusselt numbers is used. To avoid extra calls to the "thermodynamic property subroutine, THERMO, all the properties are evaluated at T_{ℓ} except the density," ρ_{f}, and the "volume coefficient of expansion, β; these are evaluated by using a Taylor series expansion about T_{ℓ},
$\rho_{f}=\rho_{\ell}+\frac{\partial \rho_{\ell}}{\partial T}\left(T_{f}-T_{\ell}\right)$,
$\beta=-\frac{\partial \rho_{\ell}}{\partial T} \frac{1}{\rho_{f}}$,
and
$T_{f}=\frac{1}{2}\left(T_{w}+T_{\ell}\right)$.

Two points should be noted about heat-transfer regimes 1 and 12. First, because only single-phase liquid is assumed present, the vapor heat-transfer coefficient, h_{g}, is set equal to zero. Second, in Eq. (118a) the hydraulic diameter, D_{h}, is used for the characteristic length even though the axial distance would be more appropriate. This was done because the axial length would approach zero near the bottom of a channel. The characteristic length drops out of Eq. (118b) and appears only to the -0.25 power in Eq. (118a). Thus, the choice of the characteristic length has a small effect on the HTC.
(2) Nucleate Boiling HTCs (Heat-Transfer Regime 2). The Chen correlation ${ }^{31}$ "is used in heat-transfer regime 2 , nucleate boiling. In addition, the "ucleate-boiling HTC correlation affects the transition boiling regime through the interpolation between the CHF and the minimum stable film boiling points.

The Chen correlation is composed of two parts, a forced convection term multiplied by the Reynolds F factor and a nucleate boiling term that contains the suppression factior, s; here,
$h_{\ell}=h_{\text {forc }}+\min \left(1, \frac{T_{w}-T_{s}}{T_{w}-T_{\ell}}\right) h_{\text {nucb }}$,
where $h_{\text {forc }}$ (HFORC in the code), with the F factor equal to 1.0 , was discussed in the previous section, and the nucleate boiling term is given by
$h_{\text {nucb }}=$
$0.00122 \frac{k_{l}^{0.79} c_{p l}^{0.45} \rho_{l}^{0.49}}{\sigma^{0.5}} \frac{\mu^{0.29} h_{l \mathrm{~g}}^{0.24}}{\rho_{g}^{0.24}}\left(\mathrm{~T}_{\mathrm{w}}-\mathrm{T}_{\mathrm{s}}\right)^{0.24}\left(\mathrm{p}_{\mathrm{w}}-\mathrm{p}^{0.75} \mathrm{~s}\right.$,
where p_{W} is the saturation pressure corresponding to the wall temperature and F and S are functions that are given in graphical form by Chen. The Reynolds number factor, F, can be expressed ${ }^{33}$ as
$F=1.0$
, for $X_{T T}^{-1} \leq 0.10$;
and
$F=2.35\left(x_{T T}^{-1}+0.213\right)^{0.736}$, for $x_{T T}^{-1}>0.10$;
where $X_{T T}^{-1}$, the Lockhart-Martinelli factor, is

$$
\begin{equation*}
x_{\mathrm{TT}}^{-1}=\left(\frac{\mathrm{x}}{1-\mathrm{x}}\right)^{0.9}\left(\frac{\rho_{l}}{\rho_{\mathrm{g}}}\right)^{0.5}\left(\frac{\mu_{\mathrm{g}}}{\mu_{l}}\right)^{0.1} \tag{129}
\end{equation*}
$$

The value of $X_{T T}^{-1}$ is restricted to a value less than 100.0. The suppression factor, $\mathrm{s},{ }^{33}$ can be expressed as θ
$\mathrm{S}=\left[1+0.12\left(\operatorname{Re}_{\mathrm{tp}}\right)^{1.14}\right]^{-1}, \quad$ for $\operatorname{Re}_{\mathrm{tp}}<32.5$;
or "
$S=\left[1+0.42\left(\operatorname{Re}_{\mathrm{tp}}\right)^{0.78}\right]^{-1}$, for $32.5 \leq \operatorname{Re}_{\mathrm{tp}_{\mathrm{p}}} \leq 70.0$;
where
$\operatorname{Re}_{t p}=\frac{10^{-4}\left|v_{\ell}\right|_{\rho_{\ell}(1-\alpha)}^{\mu_{\ell}}}{\nu_{h}} F^{1.25}$.

The value of $\mathrm{Re}_{\mathrm{tp}}$ is restricted to a value less than 70.0 .
The above correlations for the suppression factor do not approach the correct limit (zero) as the void fraction approaches one. In the above equations, $S+1.0$ as $\alpha \rightarrow 1.0$. The following procedure is used to ensure that S approaches the correct 1 imit. For $\alpha>0.70, S$ is calculated at $\alpha_{s}=0.70$ and at the current value of α and the minimum value, of the two suppression factors, $S_{\text {min }}$, is saved. Linear interpolation is then used between $S_{\text {min }}$ and $S=0$ at $\alpha=\alpha_{c}$,
$s=\frac{S_{\text {min }}\left(\alpha_{c}-\alpha\right)}{\alpha_{c}-\alpha_{s}}$.

In TRAC-PFI, $\alpha_{c}=0.98$ and $\alpha_{s}=0.70$. For $\alpha>\alpha_{c}, S=0.0$.
The properties are evaluated at the liquid and vapor temperatures; x is the equilibrium quality and V_{ℓ} is the liquid velocity parallel to the surface. Because the nucleate boiling contribution to the Chen correlation was developed for saturated conditions, ${ }^{31} h_{\text {nub }}$ is multiplied by a temperature ratio to adjust the HTC to the actual T_{ℓ}," Eq. (1,25). Because TRAC. can calculate superheated liquids, the adjustment factor is restricted to a maximum of 1.0 so that the adjustment is made for subcooled liquid only.

This) vapor HTC goes from zero at $T_{W}=T_{s}$ to the transition boiling value at $\mathrm{T}_{\mathrm{w}}=\mathrm{T}_{\mathrm{CHF}}$ [Sec. III.B.2.b.(3)]; thus,
$h_{g}=\left(\frac{T_{W}-T_{s}}{T_{C H F}-T_{s}}\right)^{2} \max \left(h_{f b b}, h_{n c}, h_{d r}\right)$,

where $\quad h_{f b b}$, $h_{n c}$, "'and $h_{d r}$ are the Bromley; natural convection, and Dougall-Rohsenow HTCs, respectively. The vapor HTC is calculated in subroutine

HVFILM. For a void fraction greater than a cutoff value, α_{c}, linear interpolation is used between the current values of h_{ℓ} and h_{g} and the values that are calculated for single-phase vapor; that is, $h_{\ell}=0$ and h_{g}, calculated as discussed in Sec. III.B.2.b.(5). This linear interpolation ensures that the boiling curve is smooth between heat-transfer regimes.
(3) Transition Boiling HTCs. (Heat-Transfer Regime 3). Transition boiling may be considered as a combination of nucleate and film boiling. A given spot on the wall surface is wet part of the time and dry during the remainder of the time. Therefore, contributions to the liquid and vapor HTCs exist for all conditions.

The total wall-to-fluid heat flux is obtained from a quadratic interpolation between the CHF and the minimum stable film boiling points, 33

$$
\begin{equation*}
q_{\text {trans }}=\delta q_{C H F}^{--}+(1.0-\delta) q_{\min }^{--} \tag{132}
\end{equation*}
$$

where q^{--}is the heat flux at CHF conditions, found from the Biasi correlation (Sec. III.B.2.c), and $q_{m i n}^{\prime \prime}$ is the heat flux at the minimum stable film boiling point; that is, the intersection of the transition and the film boiling points. This point is found from the homogeneous nucleation correlation, as discussed in Sec. III.B.2.d. Delta is a function of the wall temperature and the temperatures corresponding to $\mathrm{q}^{-} \mathrm{CHF}$ and $\mathrm{q}_{\mathrm{min}}$,

The vapor HTC is
These correlations are discussed in the next section.

As in the nucleate boiling heat-transfer regime: linear interpolation is used for $\alpha>{ }^{\prime} \alpha_{c}$. The liquid HTC is
$h_{\ell}=\frac{q_{\text {trans }}-h_{g}\left(T_{w}-T_{g}\right)}{T_{w}}-$
(4) Film Boiling HTCs (Heat-Transfer Regime 4). In the film boiling heat-transfer regime, radiative heat transfer and dispersed-flow heat transfer occur between the surface and the liquid; conveitive heat transfer occurs between the wall and the adjacent vapor. The liquid hTC is given by
$h_{\ell}=h_{r}\left(\frac{T_{w}-T_{s}}{T_{w}-T_{\ell}}\right)+h_{d f}$,
where $h_{d f}$ is the dispersed flow HTC.
The radiative contribution is
$h_{r}=(1-\alpha) \sigma \varepsilon\left(\frac{\mathrm{T}_{\mathrm{w}}^{4}-\mathrm{T}_{\mathrm{s}}^{4}}{\left.\mathrm{~T}_{\mathrm{w}}-\frac{\mathrm{T}_{\mathrm{s}}}{}\right), ~}\right.$
where σ is the Stefan-Boltzmann constant and ε is the wall emissivity. In Eq. (134) the liquid absorptivity is 1.0 .
"The dispersed flow HTC, $h_{d f}$, uses the Forslund and Rohsenow equation, 34 modified by multiplying $(1-\alpha)$ by the fraction of liquid entrained, E; thus,
$h_{d f}=0.2 c_{1}[(1-\alpha) E]^{0.6667} B R A C{ }^{0.25}\left(\frac{T_{W}-T_{s}}{T_{W}}\right)$,
(1)
"where c_{1} is a constant equal" to 1.2760 and

BRAG $=\frac{g \rho_{\ell} \rho_{g} h_{\ell}{ }^{-} k^{3}}{\sqrt{T_{w}}-T_{s} \Gamma_{g}{ }_{g} d \text { drop }}$

The dispersed flow HTC is set equal to zero if (l -a)E>0.05.
Equation (135) is multiplied by the temperature ratio to change the base of the HTC from T_{s} to T_{ℓ}. The droplet diameter, $d_{d r o p}$, is found from a Weber number criterion of 4.0 .
\vdots
$d_{d r o p}=\frac{\text { Wed }}{\rho_{g}\left(V_{g}-V_{\ell}\right)^{2}}$

The droplet diameter is restricted to the range,
$1.0 \times 10^{-4} \leq \mathrm{d}_{\mathrm{drop}} \leq 3 . \mathrm{e}_{\mathrm{y}}^{0} \times 10^{-3}$.

The fraction of liquid entrained is found in the following manner;
$E=0 \quad$, if $\left|V_{g}\right| \leq V_{E}$;
$E=1.0-\exp 0.23\left[-\left(\left|v_{g}\right|-v_{E}\right)\right]$, if $\left|v_{g}\right|>v_{E}$,
4
where the entrainment velocity is
$W_{E}=3.65\left[\frac{\left(\rho_{\ell}-\rho_{g}\right)_{\sigma}}{\rho_{g}^{2}}\right]^{1 / 4}$
口 and E is restricted to values between 0.07 and iso.

The vapor HTC is the maximum of the Bromley, natural convection, and Doughall-Rohsenow values,

$$
\begin{equation*}
h_{g}=\max \left(h_{f b b}, h_{n c}, h_{D R}\right) \tag{136}
\end{equation*}
$$

The Bromley ${ }^{35}$ film boiling HTC is $h_{\text {fbb }}$.
$h_{f b b}=0.62\left[\frac{\rho_{g} k_{g}^{3}\left(\rho_{\ell}-\rho_{g}\right) g h_{\ell}{ }_{g}}{\mu_{g}\left(T_{w}-T_{s}\right) \lambda}\right]^{1 / 4}$,
where the characteristic length, λ, is
$\lambda=2 \pi\left[\frac{\sigma}{g\left(\rho_{\ell}-\rho_{g}\right)}\right]^{1 / 2}$.

The latent heat of vaporization is modified as suggested in Ref. 36 to

$$
h_{\ell g}^{\prime}=h_{\ell g}+0.5\left(c_{p}\right)_{g}\left(T_{w}-T_{s}\right)
$$

The turbulent natural convection equation ${ }^{37}$ used in this heat-transfer regime is

$$
\begin{equation*}
\mathrm{h}_{\mathrm{nc}}=0.13 \mathrm{k}_{\mathrm{g}}\left(\frac{\rho_{\mathrm{g}}^{2} \mathrm{~g}\left|\mathrm{~T}_{\mathrm{W}}-\mathrm{T}_{\mathrm{g}}\right|}{\mu^{2} \mathrm{~T}_{\mathrm{g}}}\right)^{0.333} \mathrm{Pr}_{\mathrm{g}}^{0.333} \tag{138}
\end{equation*}
$$

The forced convection equation is based on Dougall and Rohsenows modification ${ }^{38}$ to the Dittus-Boelter equation:
$h_{f c}=0.023 \frac{k_{g}}{D_{h}}\{\underbrace{\rho_{g}\left[\alpha\left|v_{g}\right|+(1-\alpha)\left|v_{\ell}\right|\right] D_{h}}\}_{g}^{0.8}\left[\frac{\left.\mu_{g}\left(c_{p}\right)_{g}\right]}{k_{g}}\right]^{0.4}$,
f"'
1
where the Reynolds number is modified to reflect the volumetric flow rate of the two-phase mixture. As in the previous heat-transfer regimes, linear interpolation is used for $\alpha>{ }^{\prime} \alpha_{c}$.
(5) Single-Phase Vapor HTCs (Heat-Transfer Regime 6). For the singlephase vapor heat-transfer regime, $h_{\ell}=0$ and h_{g} is the maximum of Eq. (138), of turbulent natural convection, and of the Dittus-Buelter Eq. (115) evaluated by using vapor properties and flow conditions.
(6) Condensation HTCs (Heat-Transfer Regime 11). The Chen cơrrelation 31 is used to calculate the wall-to-liquid HTC when condensation occurs. The suppression factor, S, is set equal to zero. The Chen correlation is based upon data taken up to an equilibrium quality, $x=0.71$. For $x>0.71$, the Chen correlation is evaluated at $x=0.71$; then h_{ℓ} is found by inear interpolation between the value of h_{ℓ} found from the correlation and the single-phase vapor value, $h_{\ell}=0.0$. Similarly, h_{g} is found by interpolation between zero and the single-phase vapor value.
(7) Two-Phase Mixture HTCs (Heat-Transfer Regime 7). This heattransfer regime is unique because it is not part of the boiling curve discussed above. Regime 7 is used only when the input flag ICHF $=0$. When LCHF $=0, h_{\ell}$ and h_{g} are calculated from regime 7 only. Critical heat flux cannot occur in this case.

If the void fraction is less than or equal to the cutoff void fraction, $h_{g}=0$ and h_{ℓ} is the maximum of the laminar and turbulent values,
$h_{\ell}=\max \left(h_{\ell l a m}, h_{\ell t u r b}\right)$,
where

$$
\begin{equation*}
h_{\text {llam }}=\frac{4 k_{\ell}}{D_{h}}, \tag{140}
\end{equation*}
$$

$h_{\text {lLurb }}=\frac{11_{0}^{0.023 k_{\ell}} \operatorname{Re}_{\underline{m}}^{0.8} \operatorname{Pr}_{\ell}^{0.4}}{\mathrm{D}_{\mathrm{h}}}$,
and
$R e_{\mathrm{m}}=\frac{G D_{\mathrm{h}}}{\mu_{\mathrm{m}}}$.

The two-phase viscosity is calculated by using McAdam's equation, ${ }^{37}$
where x_{f} is the flow quality.
If the void fraction is greater than the cutoff void fraction, h_{g} is the maximum of the Dittus-Boelter value for vapor and the turbulent natural convection value,
$h_{g}=\max \left(h_{v n c}, h_{v t u r b}\right)$,
where the natural convection value ${ }^{37}$ is
$h_{\text {vnc }}=0.13 \mathrm{k}_{\mathrm{g}}\left(\frac{\rho_{\mathrm{g}}^{2}\left|\mathrm{~T}_{\mathrm{w}}-\mathrm{T}_{\mathrm{g}}\right|}{\mu_{\mathrm{g} \mathrm{g}}^{2}}\right)^{0.333} \mathrm{Pr}_{\mathrm{g}}^{0.333}: \quad \therefore$,
and the forced convection HTC is given by the Dittus-Boelter equation,
$h_{\text {vturb }}=\frac{0.023 \mathrm{k}_{\mathrm{g}} \operatorname{Re}_{\mathrm{g}}^{0.8} \mathrm{Pr}_{\mathrm{g}}^{0.333}}{\mathrm{D}_{\mathrm{h}}}$.

The Reynolds and Prandtl numbers in Eq. (146) are calculated by using vapor properties evaluated at the vapor temperature.

For $\alpha>\alpha_{c}$, linear interpolation is used between the current values of h_{ℓ} and h_{g} and the single-phase varues.
C. Critical Heat Flux (CHF). The CHF point has two purposes in relation to the TRAC boiling curve. First, the CHF point indicates the change from nucleate boiling (heat-transfer regime 2) to transition boiling (regime 3). Second, the CHF point is used in the quadratic interpolation that gives the transition boiling liquid HTC. If the input variable $I C H F=1$, the Biasi forced flow CHF correlation ${ }^{39}$ is used. For LCHF $=0$ and for steady-state calculations (ISTDY $=1$), no CHF calculation is performed. In the vessel $I C H F=1$ is always used and it also is recommended for other components.

The Biasi correlation has a data base that covers the mass flux range, G, between $100 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{~s}$ and $6000 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{~s}$. For mass flux values between 0 and $200 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{~s}$, the Biasi correlation is evaluated at $200 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{~s}$. For negative values of G, the absolute value of G is used.

The Biasi CHF correlation consists of two equations for $\mathrm{q}_{\mathrm{CHF}}^{-\quad}$ and the maximum CHF value calculated by the two equations is used,
$q_{C H}^{\prime} \bar{H}=\frac{1.883 \times 10^{7}}{D_{h}^{n} G^{I / 6}}\left[\frac{f_{p}}{G^{1 / 6}}-x\right]$
and
$q_{C H F}^{-E}=\frac{3.78 \times 10^{7}}{D_{h}^{n} h_{G}^{0.6}(1-x),}$
where

$$
\begin{aligned}
& n=0.4, \quad \text { for } D_{h} \geq 1 \mathrm{~cm} ; \\
& n=0.6, \quad \text { for } D_{h}<1 \mathrm{~cm} ; \\
& f_{p}=0.7249+0.099 p \exp (-0.032 \mathrm{p}) ; \\
& h_{p}=-1.159+0.149 \mathrm{p} \text { exp }(-0.019 \mathrm{p})+\frac{8.99 \mathrm{p}}{10+\mathrm{p}^{2}} ; \\
& \mathrm{D}_{\mathrm{h}}=\text { hydraulic diameter }(\mathrm{cm}) ; \\
& \left.G=\text { mass flux (g/cm }{ }^{2} \mathrm{~s}\right) ; \\
& \mathrm{p}=\text { pressure (bar); and } \\
& \mathrm{x}=\text { equilibrium quality }
\end{aligned}
$$

Note that the Biasi correlation uses cgs units, but the constants in Eqs. (147) and (148) have been changed so that $q_{C H F}^{-i}$ is in $\mathrm{W} / \mathrm{m}^{2}$.

Predictions made with earlier versions of TRAC show that the Biasi correlation sometimes fails to predict CHF at high void fraction, even though the data indicate that CHF has occurred. To correct this problem, the Biasi correlation is used for a void fraction less than 0.97 and linear interpolation is used between the HTC at this void fraction and the one at 0.98 assuming that the $T_{C H F}$ is one-half degree above. T_{s}. For a void fraction greater than 0.98 , the $T_{C H F}$ is fixed at one-half degree above T_{s}.

Once $\mathrm{q}_{\mathrm{CHF}}^{-\quad \text { is }}$ obtained, the temperature corresponding to the CHF point, $T_{C H F}$, is calculated by using a Newton-Raphson iteration ${ }^{40}$ to determine the intersection of the heat flux found by using the nucleate boiling HTC and the CHF. An iteration is required because $T_{w}=T_{C H F}$ must be known to evaluate the Chen correlation; and, in turn, the Chen HTC.must be known to calculate the wall temperature,
$q_{C H F}^{-}=h\left(T_{W}-T_{s}\right)$.

The equation for $T_{\text {CHF }}$ is
$T_{C H F}^{n+1}=T_{C H F}^{n}-\frac{\left(T_{C H F}^{n}-T_{s}-\frac{q_{C H F}^{--}}{h}\right)}{\left[1+\left(\frac{q_{C H F}}{h^{2}} \frac{d h}{d T_{w}}\right)\right]}$,
where $T_{C H F}^{n}$ is the CHF temperature for the $n^{\text {th }}$ iteration, h is the HTC evaluated by using the Chen correlation, and $\mathrm{dh} / \mathrm{dT}_{\mathrm{w}}$ is the derivative of the HTC with respect to the wall temperature.

Convergence occurs if $\left|T_{\mathrm{CHF}}^{\mathrm{n}+1}-\mathrm{T}_{\mathrm{CHF}}^{\mathrm{n}}\right|<1.0$. A maximum of ten iterations is allowed; if convergence does not occur, a message is printed and a fatal error occurs.

The CHF temperature is restricted to the range, $\mathrm{T}_{\mathrm{s}}+0.5 \leq \mathrm{T}_{\mathrm{CHF}} \leq \mathrm{T}_{\mathrm{s}}+100$. The CHF calcuiations are done in subroutines CHF and CHF1.
d. Minimum Stable Film Boiling Temperature, $T_{m i n}$. The minimum stable film boiling point is the intersection point between the transition and film boiling heat-transfer regimes (Fig. 10). In addition, this point is one of the points used in the interpolation scheme for the calculation of the transition boiling heat flux.

The homogeneous nucleation minimum stable film boiling temperature correlation ${ }^{41}$ is
$T_{\text {min }}=T_{n h}+\left(T_{n h}-T_{\ell}\right) R^{0.5}$,
where
$R=\frac{(k \rho c)_{\ell}}{(k \rho c)_{w}}$,
and T_{nh} is the homogeneous nucleation temperature. In Eq. (152) tive subscript ℓ indicates liquid properties and the subscript w indicates wall properties.

The homogeneous nucleation temperature is given by Fauske and a curve fit to these results, from the COBRA-TF code,* is used in TRAC-PFI.

$$
\begin{aligned}
\mathrm{T}_{\mathrm{nh}}= & 705.44-\left(4.722 \times 10^{-2}\right) \mathrm{DP} \\
& +\left(2.3907 \times 10^{-5}\right) \mathrm{DP}^{2} \\
& -\left(5.8193 \times 10^{-9}\right) \mathrm{DP}^{3}
\end{aligned}
$$

where $D P=3203.6$ - P. The pressure P is in psia units and $T_{n h}$ is in degrees Fahrenheit. In TRAC-PFl, P is converted to a temporary variable in British units and $T_{n h}$ is converted to degrees Kelvin after the equation is evaluated.

Once $T_{m i n}$ is evaluated, the corresponding heat flux, $q_{m i n}$, which is used in the transition boiling HTC interpolation, can be calculated,
$q_{\min }^{-}=h_{\ell \min }\left(T_{\min }-T_{\ell}\right)+h_{\operatorname{gmin}}\left(T_{\min }-T_{g}\right)$,
where $h_{\ell m i n}$ and $h_{g m i n}$ are the liquid and vapor HTCs, respectively, evaluated at the minimum stable film boiling temperature. Thus,
$h_{\text {lmin }}=h_{r}\left(\frac{T_{\text {min }}-T_{s}}{T_{\min }-T_{\ell}}\right)+h_{d f}$
and
$h_{\min }=\max \left(h_{f b b}, h_{n c}, h_{D R}\right)$

If $\alpha>\alpha_{c}$, linear interpolation again is used between the values of the HTCs at alpha and the single-phase vapor values.
$i=\quad i$
e. Steady-State Calculations. The steady-state (ISTDY $=1$) and transient (ISTDY $=0$) wall-to-fluid HTC code logics differ. The entire boiling curve is not available during steady state; only that part of the heat transfer before CHF is calculated (Sec. III.B.2.a).

C. Reactor Kinetics

Subroutine RKIN evaluates power generation in the reactor core by one of two methods. In the first method the user specifies power to be a constant or defined by a signal-variable-dependent power table supplied as input. Values between entries in the table are determined by linear interpolation. Power can be trip-controlled by evaluating the power table when the power trip is $O N$ and by holding the power constant when the power trip is OFF. In the second method the user determines power from the solution of the point-reactor-kinetics equations. These equations specify the time behavior of the core power level with total reactivity (R), the sum of programmed ($\mathrm{R}_{\mathrm{prog}}$) and feedback ($\mathrm{R}_{\mathrm{fdbk}}$) reactivities, the controlling parameter. The user defines programmed reactivity with the same forms that define power in the first method. Subroutine RFDBK evaluates feedback reactivity based on changes in the core-averaged fuel temperature, coolant temperature, and coolant vapor fraction.

The point-reactor kinetics equations define the combined power from prompt fission and decay of fission products. These equations are
$\frac{d P}{d t}=\frac{(R-\beta)}{\Lambda} P+\sum_{i=1}^{I} \lambda_{i} C_{i}$,
$\frac{d C_{i}}{d t}=-\lambda_{i} C+\frac{\beta_{i}}{\Lambda} P \quad . \quad(i=1,2, \ldots, I)$,
and
$\frac{d H_{j}}{d t}=-\lambda_{j}^{H} H_{j}+E_{j} P \quad(j=1,2, \ldots, j)$,

[^1]where
$\mathrm{P}=$ instantaneous total power (W),
$t=$ problem time (s),
$R=$ total reactivity $=R_{\text {prog }}+R_{\text {fdbk }}=k-1$.
$R_{\text {prog }}=$ programmed reactivity,
$R_{\text {fdbk }}=$ feedback reactivity,
$k_{6}=$ reactor multiplication constant,
$\beta=$ total effective delayed neutron fraction $\left(\sum_{i=1} \beta_{i}\right)$,
$I=$ number of delayed neutron groups,
$\beta_{i}=$ effective delayed neutron fraction of delayed neutron group 1 ,
$\Lambda=$ prompt neutron generation time (s),
$\lambda_{i}=$ decay constant of delayed neutron group $1\left(s^{-1}\right)$,
$C_{i}=$ decay power of delayed neutron group $i(W)$,
$H_{j}=$ decay energy of decay heat group $j(W \bullet s)$,
$\lambda_{j}^{H}=$ decay constant of decay heat group $j\left(s^{-1}\right)$,
$E_{j}=$ effective energy fraction of decay heat group j, and
$J=$ number of decay heat groups.

The solution of these three coupled first-order differential equations is used to evaluate the effective energy generation rate ($\mathrm{P}_{\mathrm{eff}}$) in the reactor core; that is, the power being deposited in the core at the current time,

$$
\begin{equation*}
P_{\text {eff }}=\left(1-\sum_{j=1}^{J} E_{j}\right) P+\sum_{j=1}^{J} \lambda_{j}^{H_{j}} . \tag{156}
\end{equation*}
$$

The" right-hand expression sums the power released from the fuel by prompt fission and fission product decay.

The user inputs the number of delayed neutron groups, I; the delayed neutron parameters, λ_{i} and β_{i}; the delayed neutron group initial decay powers, $C_{i}(0)$; the number of decay heat groups, J; the decay heat parameters, λ_{j}^{H} and E_{j}; and the decay heat group initial decay energies, $H_{j}(0)$. If $I \leq 0$ is input, TRAC sets I to 6 and defines λ_{i} and β_{i} with the values in Table I. If $J \leq 0$ is input, TRAC sets J to 11 and defines λ_{j}^{H} and E_{j} with the values in Table II. The RELAP ${ }^{42}$ and RETRAN ${ }^{43}$ computer programs set these default values internally. The power decay that these parameters evaluate closely approximates the

TABLE I
DELAYED NEUTRON CONSTANTS

Group i	Decay Constant λ_{i} $\left(\mathbf{s}^{-1}\right)$	Neutron Fraction β_{1}
	0.0127	0.000247
2	0.0317	0.00138
3	0.115	0.00122
4	0.311	0.00264
5	1.40	0.000832
6	3.87	0.000169

TABLE II

DECAY HEAT CONSTANTS

Group $j \quad \begin{gathered}\text { Decay Energy } \lambda_{j}^{H} \\ \left(s^{-1}\right)\end{gathered} \quad$ Energy Fraction E ${ }_{j}$
1.772
0.5774
0.06743
0.006214
4.739×10^{-4}
4.810×10^{-5}
5.344×10^{-6}
5.726×10^{-7}
1.036×10^{-7}
2.959×10^{-8}
7.585×10^{-10}
0.00299^{9}
0.00825
0.01550
0.01935
0.01165
0.00645
0.00231
0.00164
0.00085
0.00043
0.00057
standard American Nuclear Society (ANS) decay heat curve. ${ }^{43}$ If $I \leq 0$ or $C_{i}(0) \leq 0$ is input and/or if $J \leq 0$ or $H_{j}(0) \leq 0$ is input, an initial steady-state condition is assumed to exist in order to initialize $C_{i}(0)$ and/or $H_{j}(0)$ in TRAC. This requires the initial power $P(0)$ that is specified as input. Setting $\mathrm{dC}_{\mathrm{i}} / \mathrm{dt}$ and $\mathrm{dH}_{\mathrm{j}} / \mathrm{dt}$ to zero at the initial time in Eqs. (154) and (155) gives

$$
\begin{equation*}
C_{i}(0)=\frac{B_{i}}{\lambda_{i} \Lambda} P(0) \quad(i=1,2, \ldots, I) \tag{157}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{j}(0)=\frac{E_{j}}{\lambda_{j}^{H}} P(0) \quad(j=1,2, \ldots, J) \quad . \tag{158}
\end{equation*}
$$

Subroutine RFDBK evaluates feedback reactivity. The reactivity feedback model is based on the assumption that only changes in the core-averaged fuel temperature (T_{f}), coolant temperature (T_{c}), and coolant vapor fraction (α) affect the neutron multiplication reactivity of the reactor. TRAC determines core-averaged values by applying mass and power weighting factors to the temperatures and a power weighting factor to the vapor fraction. These factors approximate the product of the adjoint flux, neutron flux, and volume. Perturbation theory uses this product to weight spatially the change in reaction-rate cross sections for estimating reactivity-change.

The user defines a reactivity coefficient for each of the independent variables, $x=T_{f}, T_{c}$, or α, by choosing one of the forms from Table III. We assume that the reactivity-coefficient form for each independent variable has second-order polynomial dependence in x without dependence on the other two independent variables. The user specifies through input the form number and the polynomial coefficients, A_{x}, B_{x}, and C_{x}, for each independent variable x. The polynomial coefficients can be obtained by performing a second-order-polynomial least-squares fit to the reactivity coefficient vs temperature or vapor fraction data in a reactor-safety analysis report or from a detailed neutronics calculation. The coolant-temperature reactivity

REACTIVI'TY-COEFFICIENT FORMS

Form Number	Reactivity Coefficient Form
0	$\frac{\partial k}{\partial x}$
2	$\frac{1}{k} \frac{\partial k}{\partial x}$
2	$x \frac{\partial k}{\partial x}$
2	
2	

coefficient needs to include the reactivity effect from temperature changes in soluble boron and burnable poison because the coolant temperature closely approximates their temperatures. Based on these assumptions," feedback reactivity during the time step from time t_{0} to time t_{n} is defined by

$$
\begin{equation*}
\Delta R_{f d b k_{n}}=R_{f d b k_{n}}-R_{f d b k_{0}}=k\left(T_{f_{n}}, T_{c_{n}}, a_{n}\right)-k\left(T_{f_{0}}, T_{c_{0}}, \alpha_{0_{0}}\right) \tag{159}
\end{equation*}
$$

$$
=\exp \left(\sum \left[A_{x}\left\{\begin{array}{c}
x_{n}-x_{0} \\
\ln x_{n} / x_{0}
\end{array}\right\}+B_{x}\left\{\begin{array}{c}
\frac{1}{2}\left(x_{n}^{2}-x_{0}^{2}\right) \\
x_{n}-x_{0}
\end{array}\right\}\right.\right.
$$

$$
\left.\left.+C_{x^{\prime}}\left[\frac{1}{3}\left(x_{n}^{3}-x_{n}^{3}-x_{0}^{2}\right)\right]\right]\right) *\left(k\left(T_{\mathrm{F}_{0}}, T_{c_{0}}, \alpha_{0}\right)\right.
$$

$$
+\sum_{\neq}\left[A_{x}\left\{\begin{array}{c}
x_{n}-x_{0} \\
\ln x_{n} / x_{0}
\end{array}\right\}+B_{x}\left\{\begin{array}{c}
\frac{1}{2}\left(x_{n}^{2}-x_{0}^{2}\right) \\
x_{n}-x_{0}
\end{array}\right\}\right.
$$

$$
\left.+C_{x}\left[\frac{1}{3}\left(x_{n}^{3}-x_{0}^{3}\right)\right]\right]-k\left(T_{f_{0}}^{2}, T_{c_{0}}^{2}, \alpha_{0}\right)
$$

where - $=$ summation over x variables with reactivity coefficient forms $\left\{\begin{array}{l}1 \\ 3\end{array}\right\}$; $\neq=$ summation over x variables with reactivity coefficient forms $\left\{\begin{array}{l}0 \\ 2\end{array}\right\}$; $\mathrm{x}=\mathrm{T}_{\mathrm{f}}, \mathrm{T}_{\mathrm{c}}$, or α; and $0=n-1$.

One needs to know the end-of-time-step values for $T_{f_{n_{i}}}, T_{c_{n}}$, and α_{n} to evaluate $\Delta R_{f_{d b k}}$ using Eq. (159). To evaluate. that reactor state, one needs to know the average effective energy generation rate,
$P_{\text {eff }}=\frac{1}{2}\left(P_{\text {eff }}+P_{\text {eff }}\right)$,
during time step $\Delta t_{n}=t_{n}-t_{0}$. The value of $P_{e f f}$ is known only after solving the point-reactor-kinetics equations knowing the average reactivity during the time step,
$R=\frac{1}{2}\left(R_{0}+R_{n}\right)=\frac{1}{2}\left(R_{p r o g_{0}}+R_{\operatorname{prog}_{n}}\right)+R_{f d b k_{0}}+\frac{1}{2} \Delta R_{f d b k_{n}}$.

Before performing the time-step solution to evaluate $\Delta \mathrm{R}_{\mathrm{fd} d \mathrm{ck}_{\mathrm{n}}}$ by Eq. (159), TRAC estimates $\Delta R_{f d b k_{n}}$ for Eq. (161) by assuming the feedback reactivity rate is the same as in the previous time step, Δt_{0}.

$$
\begin{equation*}
\Delta R_{f d b k_{n}}^{e s t}=\Delta R_{f d b k_{0}} *\left(\frac{\Delta t_{n}}{\Delta t_{0}}\right) \tag{162}
\end{equation*}
$$

After evaluating the time-step solution, TRAC compares the feedback reactivity $\left(\Delta R_{f d b k_{n}}\right)$ from Eq. (159) and the estimated feedback reactivity ($\Delta R_{f d b k_{n}}^{e s t}$) from Eq. (162). Any discrepancy is corrected by applying the difference,
$\Delta R_{f d b k_{n}}^{\text {cor }}=\left(\Delta R_{f d b k_{n}}-\Delta R_{f d b k_{n}}^{e s t}\right) * \min \left(\frac{\Delta t_{n}}{\Delta t_{n+1}}, 2\right)$
during the next time step, Δt_{n+1}. To prevent a significant reactivity correction from being applied when $\Delta t_{n} \gg \Delta t_{n+1}$, the reactivity correction in Eq. (163) is limited to twice its amount during time step Δt_{n}. A similar estimate and correction procedure is applied to power in the first method and programmed reactivity in the second method because the signal variable for interpolating the power table is defined by the end-of-time-step state.

The point-reactor-kinetics equations [Eqs. (153)-(155)] are solved by numerical integration using a fourth-order accurate Runge-Kutta technique 44 including Gill's modifications. ${ }^{45}$ This technique is fast, accurate, "and has exsellent round-off, error-limiting characteristics. However, because this technique is explicit, the stability condition
$\Delta t_{\max }=\frac{0.8 \Lambda}{\max \left(\beta f, \beta^{f}\right)}$,
where $f=1-R / \beta$, limits the maximum numerical integration time-step size, $\Delta t_{\max }$. To ensure that $\Delta t_{\text {max }}$ does not limit the problem time-step size, Δt_{n}, when $\Delta t_{\max }<\Delta t_{n}$, the kinetics equations are integrated over ℓ equal time-step subintervals Δt_{ℓ} during each problem time step, where
$\ell=\operatorname{INT}\left(\frac{\Delta t_{\mathrm{n}}}{\Delta \mathrm{t}_{\text {max }}}\right)+1$
and ${ }^{\prime \prime}$;
$\Delta t_{\ell}=\frac{\Delta t_{n}}{\ell}$.

Only one time-step subinterval of Δt_{n} is evaluated where $\Delta t_{\text {max }}$ exceeds Δt_{n}. D. Overall Solution Strategy

Overall solution strategies for both transient and steady-state calculations are described in this section. Each time step in the transient calculation consists of several sweeps through all the components in the system". The purpose of these sweeps is to converge to the solution of the nonlinear finite-difference equations. Two types of steady-state calculations are available in TRAC. The first type has general, applicability, whereas the second type is used to obtain initial steady-state conditions for a PWR. Both steady-state calculations utilize the transient fluid-dynamics and heat-transfer routines.

1. Transient Solutions.
a. Outer Iteration Strategy. The solution of the thermal-hydraulic flow equations for all components is controlled by subroutines TRANS, PREP, OUTER, and POST. Subroutine TRANS controls the overall strategy, whereas the others call each component in turn.

At, least six passes are made through each component. Subroutine PREP makes two passes through all components. During the first pass, HTCs are evaluated by calls to subroutine $H T C O R$ and the matrices for the stabilizer motion equations are obtained and reduced by subroutine FEMOM. The second pass in overlay PREP is for a back-substitution on the motion equation done in routine BKSMOM. The next two or more passes call the basic hydrodynamic routines until a solution is found within the convergence criterion or the maximum number of iterations is exceeded. This stage of the calculation is done by a call to subroutine OUTER, which performs both a forward elimination
and a backward substitution pass. The recomended convergence criterion (EPSO) is 10^{-4} "and the maximum outer iteration count (OUTMAX) generally should range between 6 and 10. The order in which subroutine OUTER calls the given components is determined by the IORDER array that is set after input by subroutine SRTLP.

If the OUTER iteration process converges, a final pair of passes is made by subroutine POST. The first of these sets up and reduces the stabilizer equations for mass and energy using subroutine STBME. The second calls BKSSTB to compile the solution of these equations, updates the wall, slab, or rod heat conduction, and generates the information required to begin the next time step. If the OUTER iteration fails to converge, the time-step size is halved (subject to the constraint that Δt must be greater than or equal to the minimum time-step size indicated in the input); then, another attempt to converge the OUTER iteration cycle begins. After six unsuccessful attempts, the code produces a dump, an edit, and then shuts down.

Programming details of the iteration procedure for transient solutions are given in Sec. VI.D. A flow schematic for the TRANS routine is given in that section.
b. Details of the Solution Method. Solution of the fluid flow difference equations is broken into phases. First the stabilizing motion equations are solved, then the basic equation set is solved, and finally the stabilizing mass and energy equations are solved.

Solution of the stabilizing motion equations is a relatively simple process because they are linear equations in \tilde{V}_{g} and \tilde{V}_{ℓ}, with no coupling between the $\tilde{\mathrm{V}}_{\mathrm{g}}$ and $\tilde{\mathrm{V}}_{\ell}$ terms. First, the motion equations interior to all components are solved to obtain the interior velocities as linear functions of the junction velocities (done in subroutine FEMOM) in the form,
$\tilde{V}_{j}=a_{j}+b_{j} \tilde{V}_{L}+C_{j} \tilde{V}_{R}+d_{j} \tilde{V}_{T}$,
where the subscripts L, R, and T indicate the cell faces at the left, right, and tee (where applicable) component junctions. Next, the motion equations at component junctions are applied and Eq. (167) is substituted into them where necessary to obtain a closed set of equations in the velocities at component
junctions. This linear system is solved directly, using lower-upper (LU) decomposition. Finally, a back-substitution through all components is done using the known junction velocities and Eq. (167) to obtain values for the interior velocities (subroutine BKSMOM).

To solve the basic equation set (Secs. III.A. 3 and III.A.4), a special junction variable and equation are defined,
$\Delta \mathrm{P}=\delta \mathrm{p}_{+}-\delta \mathrm{p}_{-}$,
where δp_{f} is the linearized variation in pressure on one side of the junction and δp_{-}the variation on the other. When the basic equation set is linearized within each one-dimensional component, Eq. (168) is substituted inco the pressure gradient term of the motion equations at the component junctions. This linearized set of equations is solved in subroutine TFIDS to obtain the variations of independent variables ($\delta p, \delta p_{a}, \delta T_{e}, \delta T_{g}$, and $\delta \alpha$) as linear functions of the ΔP junction terms. For example,
$\delta p_{j}=a_{j}^{\prime}+b_{j}^{\prime} \Delta P_{L}+C_{j}^{\prime} \Delta P_{R}+d_{j}^{\prime} \Delta P_{T} \quad$.

After this has been done, Eq. (169) is substituted whenever applicable into the defining Eq. (168) at all junctions and the solution proceeds with the stabilizing velocities.

When one or more three-dimensional components are present, the situation is slightly more complicated. Fu: the wetwork illustrated in Fig. 13, a linear set of equations in ΔP_{i} results arter all possible substitutions are made. The equations have the form,

$$
\left[\begin{array}{llllll}
\mathrm{X} & \mathrm{X} & 0 & 0 & 0 & 0 \tag{170}\\
\mathrm{X} & \mathrm{X} & \mathrm{X} & 0 & \mathrm{X} & 0 \\
0 & \mathrm{X} & \mathrm{X} & \mathrm{X} & \mathrm{X} & 0 \\
0 & 0 & \mathrm{X} & \mathrm{X} & 0 & 0 \\
0 & \mathrm{X} & \mathrm{X} & 0 & \mathrm{X} & \mathrm{X} \\
0 & 0 & 0 & 0 & \mathrm{X} & \mathrm{X}
\end{array}\right]\left[\begin{array}{l}
\Delta \mathrm{P}_{1} \\
\Delta \mathrm{P}_{2} \\
\Delta \mathrm{P}_{3} \\
\Delta \mathrm{P}_{4} \\
\Delta \mathrm{P}_{5} \\
\Delta \mathrm{P}_{6}
\end{array}\right]=\left[\begin{array}{l}
\mathrm{X} \\
\mathrm{X} \\
\mathrm{X} \\
\mathrm{X} \\
\mathrm{X} \\
\mathrm{X}
\end{array}\right]+\left[\begin{array}{l}
\mathrm{X} \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \delta \mathrm{P}_{\mathrm{vl}}+\left[\begin{array}{l}
0 \\
0 \\
0 \\
\mathrm{X} \\
0 \\
0
\end{array}\right] \delta \mathrm{P}_{\mathrm{v}},
$$

where x indicates nonzero matrix and vector elements, and $p_{v 1}$ and $p_{v 4}$ are the linear pressure variations in the vessel cells adjacent to junctions 1 and 4, respectively. This system is solved directly to obtain,
$\Delta P_{i}=A_{i}+B_{i} \delta p_{v l}+C_{i} \delta p_{v 4}$.

The combination of these equations with the remaining linearized ones in the three-dimensional vessel region provides a closed set of linear equations that is solved in one of two ways. If the input variable IITMAX is set to zero, then the system is solved directly using calls to subroutines STDIR, SOLVE, and BACIT. If this variable is greater than zero, an iterative solution procedure is used. This iteration is a combination of a Gauss-Seidel and a coarse-mesh rebalanced as described in Sec. III.A.2. The recommended convergence criterion 3 for this iteration (EPSI) is 10^{-5}, and the maximum allowed number of iterations (IITMAX) is 30-50. Back-substitution through the one-dimensional components again completes the solution of the full linear system.

A single, complete pass through this solution procedure provides the solution for the linearized finite-difference equations. Subsequent passes

Fig. 13.
Component network with one three-dimensional vessel.
through the procedure for the same time step produce a Newton iteration on the nonlinear difference equations, with quadratic convergence.

Solution of the stabilizing mass and energy equations is quite similar to that for the stabilizing motion equations. Because the unknown quantiti.es are all cell centered, it is necessary to define the junction variables as those in a cell adjacent to the junction that occurs first in the calculational sequence. Special logic is provided to avoid conflicts when this criterion is applied to one cell components.
2. Steady-State Solutions. The TRAC steady-state capability provides time-independent solutions that may be of interest in their own right or as initial conditions for transient calculations. Two distinct calculations are available within the steady-state capability: the generalized steady-state calculation and the PWR-initialization calculation. The first finds the time-independent conditions of a system for arbitrary, but fixed, geometry and parameters. The second adjusts certain loop parameters to match a set of user-specified flow conditions, but only for the fixed geometry typical of current PWR systems.

Both calculations use the transient fluid-dynamics and heat-transfer routines to search for time-independent conditions. The search is terminated when the normalized rates of change for the fluid and thermal variables are reduced below a user-specified criterion throughout the system.

Although the same subroutines are used in the transient and the steady-state calculations, there are important ways in which their behaviors differ between the two calculations. The most crucial differences are:

- The time-step size used by the heat-transfer and fluid-flow calculations are not required to be equal during a steady-state calculation. The ratio of these time-step sizes is fixed through user-specified input. This permits compensation for the difference between the natural time scales of the two processes. (Caution should be taken not to exceed the diffusion limit in axial rod conduction by using too large a time-step ratio.)
- The occurrence of critical heat flux (CHF) is inhibited during the steady-state calculation. This results in an HTC that cannot undergo a rapid reduction caused by burnout.
- Pressurizers are modeled as pressure boundary conditions during steady-state calculations. Therefore, each pressurizer's energy and mass inventory, as well as
pressure, remain constant regardless of the flow rate between it and the remainder of the system.
- Trips are inhibited during steady-state calculations. Thus, even though conditions may exist that would cause a trip during a transient, the trip will not be activated during the steady-state calculation.
- The reactor power is set to zero for a period at the beginning of the steady-state calculation. It is increased to its nominal value once the fluid velocity has approached its equilibrium value.
- During the steady-state calculation, the pump momentum source is averaged to prevent oscillations.
- The reactor-kinetics calculation is not performed.
a. Seneralized Steady-State Calculation. The generalized steadystate calculation consists of a simple normalized rate of change based on the numerical first derivative of the void fraction, pressure, liquid and vapor temperatures, and velocities. The rate of change of variable x for time step $(n+1)$ at cell 1 is given by

Thus, δx_{i}^{n+1} is the fractional rate of change for the variable x_{i}^{n+1} in 1 s. This rate of change is checked every 50 time steps during the steady-state run. When the maximum absolute value of δx_{i}^{n} for all cells in the system is less than a user-specified convergence criterion for all variables, the steady-state calculation is ended. An edit, including the maximum rates of change and the component and cell number where it occurs for each variable, is printed every 50 time steps and at évery long edit, dump,or time domain change. Logic is included to limit change rate checking only to those cells where the variable being checked is important. For example, liquid temperature change rates are not calculated in cells where the void fraction is above 0.9999 because the liquid temperature in this cell is not a meaningful value.

The variables that are considered in evaluating the approach to steady state are listed in Table IV.
b. PWR-Initialization Calculation. The PWR-initialization calculation provides a convenient way for the user to match important PWR operating conditions by adjusting certain operating parameters. The conditions that this calculation attempts to match are reactor power, pressurizer pressure, primary loop flow rates, and vessel inlet temperatures. This matching is accomplished by adjusting the pump speed and steam generator fouling factor in each loop of the reactor system. This idea was first developed by Sharp, ${ }^{46}$ although the implementation method in TRAC is somewhat different.

As implied by its name, the PWR-initialization calculation is limited to systems whose geometry is characteristic of a PWR. The system must have one and only one VESSEL component. Although the number of primary coolant flow loops is arbitrary, each loop must satisfy the following criteria.

- There must be a single STGEN component in each loop. This component must be located between the VESSEL hot-leg junction for that loop and the loop pump or pumps.
- There must be either one or two pumps in each loop. These must be located between the STGEN and the VESSEL cold-leg junctions. If there are two pumps, they must operate in parallel and both must be connected to the VESSEL through a distinct junction.
- The secondary side of the steam generator must be connected to a BREAK on one side and to a FILL on the other. Only pipes may be located between the STGEN and the FILL or BREAK.
- The primary coolant flow loops must not connect directly to one another, but they are connected to the VESSEL.

The values of the operating parameters are determined by an iterative process that begins with the execution of a sequence of transient time steps. These should bring the system close to a steady state for the current value of the operating parameters. The VESSEL inlet temperatures and loop flow rates are compared to their desired values for each primary loop. Once these agree within a user-specified criterion, the calculation is complete. If the

VARIABLES CONSIDERED IN EVALUATING THE APPROACH TO STEADY STATE
One-Dimensional Fluid-Flow Variables

Dependent Variable	Generalized Forces
Mixture velocity	Wall friction
	Pressure gradients
Mixture mass	Gravity
	Momentum fluxes
Mixture energy	Sources
	Mass fluxes
Vapor mass	Sources
	Energy fluxes
	Sources
Vapor energy	Phase exchange
	Mass fluxes
	Sources
	Phase exchange
	Energy fluxes

Three-Dimensional Fluid-Flow Variables
Dependent Variable Generalized Forces
Vapor velocity Wall friction Interphase friction Pressure gradients Gravity
Momentum fluxes
Liquid velocity
Wall friction Interphase friction Pressure gradients Gravity Momentum fluxes
Mixture mass
Sources
Mass $f 1 u x e s$
Mixture energy
Vapor mass

Vapor energy
Sources
Energy fluxes
Sources
Phase exchange
Mass' fluxes
Sources
Phase exchange Mass fluxes "

Heat-Transfer Variables
Dependent Variable " Generalized Forces
Temperature
Energy sources
Heat fluxes
calculation is incomplete, the state of the system at the conclusion of this sequence is used to evaluate new values of the operating parameters.

In the evaluation of operating parameters, each primary coolant flow loop is treated independently. The coupling between loops is treated implicitly by the method used to evaluate VESSEL characteristics for each loop. Because the transient routines force the PRIZER pressure and the VESSEL power to their prescribed values, only variations in the loop flow rates and VESSEL inlet temperatures must be considered. The TRAC program uses only information from the current state of the system (as derived from the transient calculation) in evaluating a new set of operating parameters; no information is stored from previous iterations. The new loop parameters are relaxed by the input relaxation factor (RELX) before the calculation is resumed.

Neglecting components not in the primary coolant flow path (such as pressurizers and accumulators), each loop can be depicted schematically as shown in Fig. 14. Loops with only one pump are treated similarly. The evaluation of new operating parameters for this primary coolant flow loop is based on the solution of the pressure and energy balance equations written

Fig. 14. Primary loop schematic for a PWR-initialization calculation.
around this loop. Mass balance is satisfied automatically as a result of the transient calculation.

The steady-state pressure and energy balance equations may be written i
$\Delta \mathrm{p}_{\mathrm{vl}}+\Delta \mathrm{p}_{\mathrm{s}}=\Delta \mathrm{p}_{\mathrm{pl}}$,
$\Delta p_{v 2}+\Delta p_{s}=\Delta p_{p 2}$,
and

$$
\begin{equation*}
\Delta \mathrm{H}_{/ / \mathrm{s}}+\Delta \mathrm{H}_{\mathrm{pl}}+\Delta \mathrm{H}_{\mathrm{p} 2}=\Delta \mathrm{H}_{\mathrm{v} 1}+\mathrm{H}_{\mathrm{v} 2}, \tag{175}
\end{equation*}
$$

where the subscripts s, p, and v refer to the steam generator, pumps, and vessel, respectively; Δp stands for a pressura difference; and ΔH stands for a change in the flow rate of enthalpy. Referring to Fig. 14, the pressure and enthalpy flow-rate differences may be written ||

$$
\begin{aligned}
\Delta p_{v 1} & =p(C)-p(A) \\
\Delta p_{v 2} & =p(D)-p(A), \\
\therefore \Delta p_{s} & =p(A)-p(B), \\
\Delta p_{p 1} & =p(C)-p(B), \\
\Delta p_{p 2} & =p(D)-p(B),
\end{aligned}
$$

$$
\Delta H_{v 1}=\left(\frac{W_{1}}{W}\right) H(A)-H(C)
$$

$$
\Delta H_{v 2}=\left(\frac{N_{2}}{W}\right) H(A)-H(D)
$$

$$
\Delta H_{S}=H(A)-H(B)
$$

$$
\Delta H_{p l}=\left(\frac{W_{1}}{W}\right) H(B)-H(C)
$$

and
$\Delta H_{p 2}=\left(\frac{W_{2}}{W}\right) H(B)-H(D)$,
where the W terms are mass flows, as indicated in Fig. 14.
To solve these equations for nes pump speeds and steam generator fouling factors, these variables must be related to the pressure and enthalpy flow-rate differences and to the desired flow rates and the vessel inlet temperatures. This is accomplished by assuming specific forms for the pressure rise across.: each pump, the enthalpy difference across each pump, and the enthalpy loss across the steam generator. The pressure rise across each pump is composed of two components: a pump head (PH), which depends on the pump speed, fluid density, and mass flow; and a'flow resistance (R) pressure loss, which is proportional to the square of the mass flow. This results in the expressions
$\Delta p_{p l}=P H_{1}-W_{1}^{2} R_{p l}$,
and
$\Delta p_{p 2}=P H_{2}-W_{2}^{2} R_{p 2}$.

Similarly, the enthalpy difference across the pump is composed of two components; the first, caused by the pump head, and the second, which is proportional to the mass flow, result in the expressions
$\Delta H_{p 1}=W_{1} \delta h_{p 1}-\frac{P H_{1}}{\rho_{p 1}}$,
and
$\Delta H_{p 2}=W_{2} \delta h_{p 2}-\frac{\mathrm{PH}_{2}}{\rho_{\mathrm{p} 2}}$.

The enthalpy change across the steam generator is expressed in terms of the overall heat-transfer coefficient; U; the mean temperature difference, $\overline{\Delta T}$; the heat-transfer area, $A ; p l u s$ a residual loss term caused by the flow rate,
$\Delta H_{s}=W \delta h_{s}+W A U \overline{\Delta T}$.

Using the definitions of Eq. (176) and the state of the system at the conclusion of the transient calculation, Eqs. (177)-(179) are solved for the flow resistances, $R_{p 1}$ and $R_{p 2}$; the specific enthalpy differentials, $\delta h_{p 1}$, $\delta l_{p 2}$, and δh_{s}; and the overall heat-transfer coefficient, U. These characteristics are assumed to be independent of the loop operating parameters, which will be adjusted.

To characterize fully the response of the loop to changes in the operating para.ieters, we must be able to evaluate the remaining terms in Eqs. (173)-(175). These may be written in terms of the steam generator flow resistance,

$$
\begin{equation*}
\Delta p_{g}=W^{2} R_{s} \tag{180}
\end{equation*}
$$

and the vessel flow resistances and specific enthalpy differentials,
$\Delta p_{v 1}=W_{1}^{2} R_{v 1}$,
$\Delta \mathrm{P}_{\mathrm{v} 2}=\mathrm{W}_{2}^{2}{ }^{\prime \prime}{ }_{\mathrm{v} 2}$,
$\Delta H_{v 1}=W_{1} \delta h_{\mathrm{v}_{1}}$,
and
$\Delta \mathrm{H}_{\mathrm{v} 2}=\mathrm{W}_{2} \delta \mathrm{~h}_{\mathrm{v} 2} \quad$ it

The steam generator flow resistance may be evaluated by using Eq. (180) directly; however, the vessel characteristics are defined somewhat differently
to account for the effects of other loops and for the possibility of nonequilibrium thermal conditions in that component. Therefore, we use the definitions
$R_{v 1}=W R^{2} \frac{p(C)-p(A)}{W_{1}^{2}}$,
$R_{v 2}=W R^{2} \frac{p(D)-p(A)}{W_{2}^{2}}$,
$\delta h_{v 1}=\left(\frac{Q R}{W R}\right)\left[\frac{H(A)}{W}-\frac{H(C)}{W_{1}}\right]$,
and
$\delta h_{v 2}=\left(\frac{Q R}{W R}\right)\left[\frac{H(A)}{W}-\frac{H(D)}{W_{1}}\right]$,
where $W R$ is the ratio of the desired total mass flow through the vessel to the current total mass flow, and $Q R$ is the ratio of the desired total energy transfer rate in the vessel to the current total energy transfer rate in the vessel. Note that as the problem converges to the desired solution, Eqs. (182)-(185) reduce to the solutions of Eq. (181) because both QR and WR approach unity.

Given the flow resistance values as calculated above, we immediately solve Eqs. (173) and" (174) for the new pump heads in the loop under consideration. Using the pump curves, the fluid densities in the pumps, and the desired flow rates, we can determine iteratively new pump speeds that should produce the desired pump heads. Once the pump heads have been determined; we can use Eq. (175) to estimate a new value of the steam generator area. All terms of Eq. (175) are known except the steam generator area and the mean temperature difference between the steam generator primary and secondary sides, $\overline{\Delta T}$. We attempt to match the desired vessel inlet temperature by modifying: ΔT by the difference between the desired and current values of the
vessel inlet temperature. Solution of the resulting equation for the steam generator area drives the ensuing steady state to the desired condition.

The pump speeds and steam generator areas calculated in this manner may be relaxed by supplying RELX on the time-step input cards. The values actually used for the next iteration are then
$\omega_{\text {new }}=\omega_{\text {old }}+\mathrm{E}_{\mathrm{oLLX}}\left(\omega-\omega_{\text {old }}\right)$
and
$A_{\text {new }}=A_{\text {old }}+\operatorname{RELX}\left(A-A_{\text {old }}\right) \quad$.
IV. COMPONENT MODELS

Descriptions of the various component models that are included in TRAC-PFl are given in this section. A physical description of each component is presented, along with a typical TRAC noding diagram showing the conventions used to model the component. Mathematical models, including finite-difference approximations, are given only for those aspects of the component that are not covered in the basic hydrodynamics and heat-transfer descriptions (Sec. III). User options, restrictions on the use of the component, subroutines used by the component, and input/output information also are given. Detailed input specifications for each component are given in Sec. V.
A. Pipe

The $\mathrm{P}^{2} I P E$ component models the flow in a one-dimensional duct or pipe. A PIPE can be used alone in a problem or it can be used as a connector between components to model a reactor system. The capability is provided to model area changes, wall heat sources, and heat transfer across the inner and outer wall surfaces. A wide selection of pipe materials is available to represent the wall material in the wall conduction calculation.

Figure 15 shows a typical noding diagram for a PIPE containing a venturi tube and an abrupt area change. The numbers within the PIPE indicate cell numbers and those above indicate cell boundary numbers. The geometry is specified by providing a volume and length for each cell and a flow area and hydraulic diameter at each cell boundary. The junction variables, JUN1 and JUN2, provide reference numbers for connecting a pipe to other components. The numerical methods used to treat the thermal hydraulics in a PIPE are described In Sec. III.A. 3.

Input options are available to allow for wall heat transfer and to select correlations for CHF and wall friction factors. Wall heat transfer can be omitted by setting the number of heat-transfer nodes (NODES) to zero. The CHF calculation can be bypassed by setting the input parameter ICHF to zero. Wall friction and losses caused by abrupt area changes are chosen by setting values of the input arrays, NFF and FRIC, at each cell interface. The choices for these arrays are described in the input specifications in Sec. V.D.S.e.

By setting NPOWTB to a nonzero number and NODES to zero, heat can be provided to a PIPE by a table of power vs time. The table provides total power, which is evenly distributed among all of the cells.

Fig. 15.
Pipe noding diagram.

By setting parameter LACC to 1 or 2 (see PLPE input, Sec. V.F.5.e), a PIPE can be used to model an accumulator (ACCUM) component, discussed in Sec. IV.B. Although a PIPE can be connected to any other component, including another PIPE, the user should keep the number of components to a minimum.

Detailed input for a PIPE module is processed by subroutines RPIPE and REPIPE. Subroutine RPIPE reads input data from the card input file. Subroutine REPIPE reads the corresponding data from the restart file. Initialization of the remaining variables is performed with subroutine IPIPE. This subroutine establishes the noding for wall heat transfer, sets the remaining fluid properties by calls to THERMO and FPROP, and initializes the boundary data by a call to J1D.

During problem execution, the solution procedure is controlled by routines PIPE1, PIPE2, and PIPE3. At the beginning of each time step, PIPE1 calls PREPER that in turn calls FWALL for wall friction and orifice loss coefficients, MPROP for wall metal properties, HTPIPE for wall HTCs, and FEMOM to set up the stabilizer motion equations. Routine PIPE1 also calls BKMOM for a final back-substitution on the motion equations. During the iterations for a time step, PIPE2 calls TF1D for the numerical hydrodynamics solution (see Sec. III.A.3) and JID to update boundary arrays. After a time step is
completed successfully, PIPE3 calls CONSTB to set up the stabilizer mass and energy equations. Routine PLPE3 also calls POSTER that updates the wall temperatures with a call to CYLHT, computes new fluid properties (viscosity, heat capacity, and surface tension) with a call to FPROP, performs back-substitution on the stabilizer mass and energy equations, and resets the boundary arrays with a call to J1D. If the time step fails to converge, THERMO is called to restore variables to their old values.

Output for a PIPE is managed by subroutine WPIPE. This subroutine prints the component number, junction numbers, iteration count, pressures, vapor fractions, saturation temperatures, liquid and vapor temperatures, liquid and vapor densities, liquid and vapor velocities, and wall friction factors. If wall heat transfer is included (NODES $\neq 0$), then information on the heat-transfer regime, liquid and vapor wall HTCs, interfacial HTC, heat-transfer rate from the wall, wall temperature for critical heat flux, and wall temperature profiles also are provided.
B. Accumulator

An accumulator is a pressure vessel filled with ECC water and pressurized with nitrogen gas. During normal operation each accumulator is isolated from the reactor primary coolant system by a check valve. If the reactor-coolant-system pressure falls below the accumulator pressure, the check valves open and ECC water is forced into the reactor coolant system.

An accumulator component may be simulated by an ACCUM module in TRAC. This module can be connected only at one junction to other TRAC components. This connection is at the highest numbered cell. It is assumed that cell 1 is closed, as shown in the typical noding diagram in Fig. 16, and that the accumulator is not connected to a nitrogen pressure source. Therefore, the nitrogen pressure results from the expansion of the initial gas volume.

The procedures for data input, for initialization of arrays, for advancement of time-dependent variables, and for editing are similar to those given for a PIPE component (see Sec. IV.A). A sharp liquid-vapor interface is maintained by neglecting interfacial shear. In an accumulator, the vapor-phase properties are those for nitrogen gas; so interphase mass transfer cannot occur. The vapor-phase temperature minimum is not limited. Additionally, there is a phase separator at the accumulator discharge to ensure that pure liquid is discharged. The accumulator walls are assumed to be adiabatic.

The output edit is similar to that for a PIPE one-dimensional component with the addition of three variables specific to an accumulator. These are: (1) the discharge volumetric flow rate, (2) the total liquid volume discharge, and (3) the collapsed liquid level.

An accumulator also may be modeled with a PIPE component by setting the air partial pressures to the desired values. Thus, wall heat transfer can be included by setting NODES to a nonzero value. The air-steam vapor-phase temperature minimum is 1 imited to 280 K by routine THERMO. An input switch activates the interface sharpener, phase separator (optional) at the discharge and the additional edit as described above for the ACCUM component. The edit logic assumes that the component is vertical with the lowest numbered cell at the top.

The BREAK and FLLL modules are used to impose boundary conditions at the terminal junction of any one-dimensional component. Consequently, these modules differ from the others in that they do not model any system component per se and they do not perform any hydrodynamic or heat-transfer calculations. However, they are treated the same as any other component for input, initialization, and identification procedures.

The BREAK module imposes a pressure boundary condition one cell away from its adjacent component, as shown in Fig. 17. The pressure boundary condition, as well as the fluid properties associated with the BREAK, may be specified as functions of time by using the optional BREAK table cards. This module commonly is used to model the containment system in LOCA calculations.

A FILL module imposes a velocity boundary condition at the junction with its adjacent component, as shown in Fig. i8. For example, the ECC injection may be modeled with a FILL.

The velocity boundary condition and the fluid properties associated with a FILL are specified in one of three basic ways according to the control option selected. For the first type of FILL, only the honogeneous fluid velocity and

BREAK COMPONENT

Fig. 17.
Break noding diagram.

FILL COMPONENT

Fig. 18.
FILL noding diagram.
fluid properties are specified; for the second type, the mass flow and homogeneous fluid properties are specified; and for the third type, nonhomogeneous fluid velocities and fluid properties are specified. For each type of FILL, the relevant parameters may be constant, interpolated from a table, or constant until a trip and then interpolated from a table. The independent variable for the tables may depend on almost any system parameter (signal variable) as discussed in Sec. V.B. If use of the table is not trip initiated, the independent variable is always the absolute value of the signal variable. If use of the table is trip initiated, the independent variable may be either the absolute value of the signal variable or the difference between the signal-variable value and its value at trip initiation. This latter option requires a rate-factor table as discussed in Sec. V.C. When the signal variable varies rapidly or is strongly coupled to the FILL velocity, direct use of the tabulated values for the velocities or mass flow may. lead to hydrodynamic instabilities. This situation may be avoided by using a weighted average of the previous and current tabular values (see Sec. V.F.5.b).

The parameters needed to specify a FLLL or a BREAK are described in Secs. V.F.5.b and V.F.5.d. It is suggested that the cell volume and length in a BREAK be identical to those for the neighboring cell of the adjacent component. The pressure, void fraction, fluid temperatures, and air partial pressure specified in FİL and BREAK determine the properties of fluid convected into the adjacent component if an inflow condition should occur. (By convention, inflow corresponds to a positive FILL velocity and a negative BREAK velocity.) These components"may not be connected directly to the VESSEL component.
D. Core

A CORE component is available in TRAC to analyze the reactor core in situations that do not demand a three-dimensional fluid-dynamics characterization. It has several advantages. First, this one-dimensional treatment can significantly reduce computer running time for a wide range of problems. Second, the CORE component is a hybrid that incorparates the coding characteristic to the PIPE and VESSEL components.

The fluid-dynamics and exterior-wall conduction models are identical to those used by a PIPE component. Both are one dimensional. In addition, any number of fuel rods may be introduced into the CORE component. The rod heat-transfer model is identical to that used by the VESSEL component.

A typical noding diagram for a CORE component is shown in Fig. 19. Presently, connections can be made only "at the first and last cells. Therefore, it has been necessary to model the upper and lower plenums using a TEE component. The vessel downcomer has been modeled by attaching a "PIPE to the CORE component. Therefore, bypass effects are difficult to model with this component. Detailed input specifications for a CORE component are provided in Sec. V.F.5.c. Input and output information is similar to that for the PIPE and VESSEL components.
E. Pressurizer

A PWR pressurizer is a large fluid reservoir that maintains the pressure within the reactor primary-coolant system and compensates for changes in the coolant volume caused by system transients. During normal operation this reservoir contains the hottest fluid in the primary system. It is usually maintained $\sim 50-60 \%$ full of saturated liquid that is pressurized by the saturated steam above it. The pressurizer pressure is the controlling source

Fig. 19.
CORE noding diagram.
of the primary-coolant-loop pressure and is transmitted by a long surge line connected to one of the hot legs. (For steady-state calculations, the PRIZER module is replaced by a break equivalent.)

The PRIZER module simulates the pressurizer component. This module normally models the pressurizer itself with the surge line represented by a PIPE component. Figure 20, a typical noding diagram, shows that a PRIZER component may be connected at both junctions to other components. To calculate the collapsed liquid level, we assume that cell 1 is at the upper end, which may be closed by connecting it to a zero-velocity FILL.

Fig. 20.
Pressurizer noding diagram.

5

The procedures for data input, initialization of arrays, advancement of time-dependent variables, and for editing are similar to those given for a PIPE component (see Sec. IV.A).

In the PRIZER component the walls are assumed to be adiabatic, but energy transfer from a heater/sprayer can be simulated. The primary purpose of this heater/sprayer logic is to serve as a system pressure controller, not to account for the added energy. The user specifies a desired pressure set point, PSET, and the pressure deviation, DPMAX, at which the heater sprayers add or remove a maximum power of QHEAT. The power that is input to the pressurizer fluid is directly proportional to the difference between PSET and $P(1)$, the pressure in cell 1; that is,
$Q_{\text {input }}=$ QHEAT $\left[\frac{\text { PSET }-P(1)}{\text { DPMAX }}\right]$,
with the maximum value limited to \pm QHEAT. This power is distributed over all fluid cells in the pressurizer and the fraction of power input to each cell is equal to the fraction of total liquid mass in that cell. Power is not added if the collapsed liquid level is less than the input parameter ZHTR. (The collapsed liquid level is calculated assuming a cylindrical geometry with a cross-sectional area equal to the minimum of the flow areas input for the two faces of cell 1.) If pressure control is not desired, then QHEAT is set to zero.

Wall friction coefficients are calculated in routine FWALL by specifying a friction correlation option, NFF, along with the additive friction factors, FRIC, for each cell edge. The homogeneous flow friction correlation option (NFF $=1$) is suggested for a pressurizer.

The output edit for a PRIZER component is similar to a PIPE component with the addition of four variables specific to the pressurizer. They are: (1) the discharge volumetric flow rate, (2) total liquid volume discharged, (3) collapsed liquid ${ }_{x p}$ level, and (4) heater/sprayer power input to the pressurizer fluid.

Pump
The PUMP module describes the interaction of the system fluid with a centrifugal pump. The model calculates the pressure differential across the pump and its angular velocity as a function of the fluid flow rate and properties. The model can treat any centrifugal pump and allows for the inclusion of two-phase effects.

The pump model is represented by a one-dimensional component with \mathbb{N} cells (N > 1). Figure 21 shows a typical noding diagram for the pump component. The pump momentum is modeled as a source between cells 1 and 2 . The source is positive for normal operation , so that a pressure rise occurs from cell lo cell 2. Therefore, it is necessary to construct the cell noding such that the cell number increases in the normalf flow direction.

The following considerations were important in creating the PUMP module: 4

1. compatibility with adjacent components should be maximized,
2. choking at the pump inlet or outlet should be predicted automatically, and
3. the calculated pressure rise across the pump should agree with that measured at steady-state conditions.

The first two criteria precluded the use of a lumped-parameter model. The PUMP module, therefore, combines the PIPE module with pump correlations.

NORMAL FLOW DIRECTION

Fig. 21.
Pump noding diagram.

The pump model is identical to the one-dimensional pipe model except that the momentum equations between celis 1 and 2 are rewritten as:

$$
\begin{equation*}
\frac{v_{\ell}^{n+1}-v_{\ell}^{n}}{\Delta t}=\frac{\left[p_{1}^{n+1}-p_{2}^{n+1}+\Delta P^{n}+\left(\frac{\partial \Delta p}{\partial V}\right)^{n}\left(v_{\ell}^{n+1}-v_{\ell}^{n}\right)\right]}{\left(\left\langle_{\rho_{m}}\right\rangle \overline{\Delta x}\right)}-g \cos \theta \tag{186}
\end{equation*}
$$

and
$\mathrm{V}_{\mathrm{g}}=\mathrm{V}_{\ell}$,
where ΔP is the pressure rise through the pump evaluated from the pump correlation. The steady-state solution of Eq. (186) is
$\Delta \mathrm{P}=\mathrm{P}_{2}-\mathrm{P}_{1}+\mathrm{g} \cos \theta$,
which is the desired result. Friction does not enter explicitly into the" pump motion equation. Therefore, additive friction is not allowed between ceils 1 and 2 [FRIC (2) $=0.0]$.

It is necessary to evaluate ΔP and íts derivative with respect to velocity for a pump cell only once each time step. The source is needed only in routines FEMOM and TFIDSI. This evaluation is performed by subroutine PUMPSR.

The pump correlation curves describe the pump head and torque response as a function of fluid volumetric flow rate and pump speed. Homologous curves (one curve segment represents a family of curves) are used for this description because of their simplicity. These curves describe, in a compact manner, all operating states of the pump obtained by combining positive or negative impeller velocities with positive or negative flow rates.

The following definitions are used in the subsequent development:
$H=$ the pump head $=\frac{\Delta P}{\rho}$,
$Q=$ the pump volumetric flow rate, and
$\Omega=$ the pump impeller angular velocity,
where ΔP is the pump differential pressure and ρ is the pump upstream mixture density. To allow one set of curves to be used for a variety of pumps, the following normalized quantities are used:
$h \equiv \frac{\mathrm{H}}{\mathrm{H}_{\mathrm{R}}} \quad$,
$q \equiv \frac{Q}{Q_{R}} \quad$, and
$\omega \equiv \frac{\Omega}{\Omega_{R}}$,

4
where H_{R} is the rated head (RHEAD) for the pump, Q_{R} is the rated volumetric flow (RFLOW), and Ω_{R} is the rated pump speed (ROMEGA). The pump similarity relations ${ }^{47}$ show that
$\frac{\mathrm{h}}{\omega^{2}}=f\left(\frac{q}{\omega}\right) \quad$.
"For lower case ω 'this correlation is not satisfactory and the following combination of variables is used;
$\frac{\dot{h}}{q^{2}}=f\left(\frac{\omega}{q}\right)$

Correlation (183) is used in the range $0 \leq|q / \omega| \leq 1$ and results in two separate curves, one for $\omega>0$ and one for $\omega<0$. Correlation (184) is used in the range $0 \leq|\omega / q|<1$ and yields two separate curves, one for $q>0$ and one for $q<0$. The four resulting curve segments, as well as the curve selection logic used in TRAC, are shown in Table V.

To account for two-phase effects on pump performance, the pump curves are divided into two separate regimes. Data indicate that two-phase pump performance, in the vapor-fraction range of $20-80 \%$ is degraded significantly in comparison to its performance at vapor fractions outside this range. One set of curves describes"the pump performance for single-phase fluid (0 or 100% vapor fraction) and another set describes the two-phase, fully degraded performance at some void fraction between 0 , and 100%. For single-phase conditions the curve segments for correlation (183) are input as HSP1 for $\omega>0$ and HSP4 for $\omega<0$, and correlation (184) curve segments are input as HSP2 for $q>0$ and HSP3 for $q<0$. The fully degraded version of correlation (183) is input as curve HTPI for $\omega>0$ and HTP4 for $\omega<0$. The fully degraded version of correlation (184) is input as HTP2 for $q>0$ and HTP3 for $q<0$.

TABLE V

DEFINITIONS OF THE FOUR CURVE SEGMENTS THAT DESCRIBE THE HOMOLOGOUS PUMP HEAD CURVES

Curve Segment	$\left\|\frac{q}{w}\right\|$	$\underline{\omega}$	q	$\begin{aligned} & \text { Correlation } \end{aligned}$
$\begin{aligned} & 1 \\ & 4 \end{aligned}$	≤ 1	>0		$\left[\frac{\mathrm{h}}{\omega^{2}}=\mathrm{f}\left(\frac{\mathrm{q}}{\omega}\right)\right]$
2	>1		>0	
3	>1		<0	$\left[\frac{h}{q^{2}}=\mathrm{f}\left(\frac{w}{q}\right)\right]$

[^2]The pump head at any vapor fraction is calculated from the relationship,

$$
\begin{equation*}
H=H_{1}-M(\alpha)\left(H_{1}-H_{2}\right), \tag{190}
\end{equation*}
$$

where
$\mathrm{H}=$ the total pump head,
$H_{1}=h_{1} H_{R}=$ the single-phase pump head (h_{1} is the nondimensional head from the single-phase homologous head curves), $H_{2}=h_{2} H_{R}$. the fully degraded pump head (h_{2} is the nondimensional head from the fully degraded homologous head curves),
$M=$ the pump degradation multiplier (input as HDM), and
$\alpha=$ the vapor fraction.

To this point, no knowledge of density is required to calculate H from the homologous head curves. The upstream mixture density is always used to convert the total pump head H to ΔP, the pressure rise through the pump.

The development of homologous torque curves parallels the previous development for homologous head curves. The dinensionless hydraulic torque is defined by
$\beta \equiv \frac{\mathrm{T}_{\mathrm{hy}}}{\mathrm{T}_{\mathrm{R}}}$,
where $T_{h y}$ is the hydraulic torque and T_{R} is the rated torque (RTORK). The convention used is that a positive $T_{\text {hy }}$ works to retard positive pump angular velocity. The dimensionless torque β is correlated as either β / ω or β / q, just as the dimensionless head was correlated. For single-phase conditions the correlations yield the corresponding four curve segments TSP1, TSP2, TSP3, and TSP4. The fully degraded correlations produce four corresponding curves TTP1, TTP2, TTP3, and TTP4. The homologous torque curve segments are correlated in the same manner as the head curve segments shown in Table V (replace h with β). For the special case of $\omega=q=0.0$, the code sets $\beta_{1}=\beta_{2}=0.0$.

Abstract

The single-phase torque T_{1} is dependent upon the fluid density and is calculated from $T_{1}=\beta_{1} T_{R}\left(\frac{\rho}{\rho_{R}}\right)$,

where β_{1} is the dimensionless hydraulic torque from the single-phase homologous torque curves, ρ is the pump upstream mixture density, and ρ_{R} is the rated density (RRHO). The density ratio is needed to correct for the density difference between the pumped fluid and the rated condition. Similarly, the fully degraded torque T_{2} is obtained from
$T_{2}=\beta_{2} T_{R}\left(\frac{\rho}{\rho_{R}}\right)$,
where β_{2} is the dimensionless hydraulic torque from the fully degraded homologous torque curves. For two-phase conditions the impeller torque is calculated from
$T=T_{1}-N(\alpha)\left(T_{1}-T_{2}\right)$,
where T is the total impeller torque and $N(\alpha)$ is the torque degradation multiplier (input as TDM).

In addition to the homologous head and torque curves, the head and torque degradation multipliers defined in Eqs. (190) and (192) are required. These functions of void fraction are nonzero only in the vapor-fraction range where the pump head and torque are either partially or fully degraded.

The pump module treats the pump angular velocity as a constant (input) while the motor is energized. After a drive motor trip, the time rate of change for the pump angular velocity Ω is proportional to the sum of the moments acting on it and is calculated from the equation,
$I \frac{d \Omega}{d t}=-\sum_{i} T_{i}=-\left(T+T_{f}+T_{b}\right)$,
where I is the combined impeller, shaft, and motor assembly moment of inertia (EFFMI); T_{f} is the torque caused by friction; and T_{b} is the bearing and windage torque. We assume that T_{f} and T_{b} are
$T_{f}=C_{1} \frac{\Omega|\Omega|}{\Omega_{R}^{2}}$
and
$\mathrm{T}_{\mathrm{b}}=\mathrm{C}_{2} \cdot \frac{\Omega|\Omega|}{\Omega_{\mathrm{R}}^{2}}$,
where C_{1} and C_{2} are input constants (TFR1 and TFR2, respectively). The hydraulic torque T is evaluated using the homologous torque curves and Eq. (192); it is a function of the volumetric flow, the upstream void fraction, the upstream density, and the pump angular velocity. For time step (n+l), Eq. (193) is evaluated explicitly,
$\Omega^{n+1}=\Omega^{n}-\frac{\Delta t}{I}\left[T(Q, \alpha, \rho, \Omega)+\left(C_{1}+c_{2}\right) \frac{\Omega^{n}\left|\Omega^{n}\right|}{\Omega_{R}^{2}}\right]$.

The wall heat transfer, wall friction, and CHF calculation opticus, are the same for the PUMP module as for the PIPE module. In addition, the following options are specififed: pump type (IPMPTY), motor action (IPMPTR), reverse speed option (IRP), degradation option (IPM), and pump curve option (OPTION). The input variables IPMPTR and NPMPTX specify, respectively, the trip identifier for the pump trip initiation and the number of pairs of points in the pump-speed table (array SPTBL). If $I P M P T R=0$, no pump trip action occurs and the pump runs for the entire calculation ac the constant speed (OMEGAN) specified in the input.

If the pump motor is energized (trip IPMPTR set OFF), the angular velocity is assumed to be the constant value (OMEGAN). Otherwise (trip IPMPTR set $O N$), the pump speed is allowed to vary.

Two types of pumps are available. For pump type 1 (IPMPTY $=1$), the pump-speed variation is specified by the input rable. The pump is energized initially at a constant speed specified by input (OMEGAN). Trip IPMPTR may Initiate a pump trip, after which the pump speed is taken from a pump-speed table (array SPTBL). The independent variable for the pump-speed table may be the time elapsed after trip initiation or any other signal variable, as discussed in Sec. V.B. For pump type 1 the torque calculation is not used. Pump type 2 (IPMPTY = 2) is similar to option lexcept that a speed table is not inserted. Instead, the pump speed is calculated from Eq. (196) after a trip has occurred.

If the reverse speed option is specified $[($ IRP $)=1$], the pump is allowed to rotate both forward and in reverse. Otherwise (IRP $=0$), the pump will rotate in the forward direction only. For this case, if negative rotation is calculated (after trip with pump type 2), the speed will be set to zero. The variable IRP is checked only for IPMPTY $=2$.

If the degradation option is turned on (IPM $=1$), the degraded pump head and torque are calculated from Eqs. (190) and (192). Otherwise (IPM $=0$), only the single-phase head and torque homologous curves are used [equivalent to setting $M(\alpha)$ and $N(\alpha)$ to zero in Eqs. (190) and (192)].

The user may specify pump homologous curves in the input (OPTION $=0$) or alternatively may use the built-in pump curves (OPTION = 1 or 2). The first set (OPTION = 1) of built-in pump curves is based on the Semiscale Mod-1 system pump. ${ }^{42,48-50 ~ T h e ~ S e m i s c a l e ~ p u m p ~ c u r v e s ~ f o r ~ s i n g l e-p h a s e ~ h o m o l o g o u s ~ h e a d ~}$
(HSP), fully degraded two-phase homologous head (HTP), head degradation multiplier (HDM), single-phase homologous torque (TSP), and torque degradation multiplier (TDM) are provided in Figs. 22-26, respectively. The second set (OPTION $=2$) of built-in pump curves is based on the Loss-of-Fluid Test (LOFT) system pump. ${ }^{51}$ The LOFT pump curves for HSP, HTP, HDM, TSP, and TDM are shown in Figs. 27-31, respectively, For lack of data, the fully degraded two-phase homologous torque curves (TTP) for both Semiscale and LOFT are zero.' Where applicable, the curve numbers correspond to the conditions provided in Table V.

Because these homologous curves are dimensionless, they can describe a variety of pumps by specifying the desired rated density, head, torque, volumetric flow, and angular velocity as input. We recommend that for full-scale PWR analyses, plant-specific pump curves be inserted; however, if such data are unavailable, the LOFT pump curves (OPTION $=2$) generally should be used.

There are several restrictions and limitations in the current version of the PUMP module. Because there is no model portraying pump motor torque vs speed, the pump speed is the assumed input if the motor is energized. Pump noding is restricted such that the cell numbers increase in the direction of normal flow (NCELLS 2 2), the pump momentum source is located between cells 1 and 2 of the pump model, and the additive friction (loss coefficient) between cells 1 and 2 is $0.0[F R I C(2)=0.0]$. A flow area change should not be modeled between cells 1 and 2. Finally, the head degradation multiplier $M(\alpha)$ and the torque degradation multiplier $N(\alpha)$ are assumed to apply to all operating states of the pump.

Fig. 22.
Semiscale single-phase homologous head curves.

Fig. 24.
Semiscale head degradation multiplier curve.

Fig. 23.
Semiscale fully degraded homologous head curves.

Fig. 25.
Semiscale single-phase homologous torque curves.

Fig. 26.
Semiscale torque degradation multiplier curve.

Fig. 28.
LOFT fully degraded homologous head curves.

Fig. 27.
LOFT single-phase homologous head curves.

Fig. 29.
LOFT head degradation multiplier curve.

The PUMP module input consists of the same geometric and hydrodynamic data and initial conditions that are required for the PIPE module. In addition, information specific, to the PUMP is required, as described in the input specifications (Sec. V.F.5). The speed table (SPTBL) and the homologous pump curve arrays must be inserted in the following order:

$$
0
$$

$x(1), y(1), x(2), y(2), \ldots, x(n), y(n) \quad$.

Here, x is the independent variable and y is the dependent variable. Furthermore, the independent variables must increase monotonically on input; that is,
$x(1)<x(2)<\ldots<x(n-1)<x(n) \quad$.

Linear interpolation is used within the arrays.

In a PWR the steam generators transfer energy from the primary to the secondary coolant loop to produce steam. The STGEN module can model either "U-tube" or "once-through", steam generators. The user specifies the type of generator through the input variable KIND (l $=\mathrm{U}$-tube and $2=$ once-through). Although there are two different steam generator types, the basic operation is similar. That is, primary coolant enters an inlet plenum, flows through a tube bank in which the primary coolant exchanges heat with a secondary coolant that flows over the exterior of the tube bank, and finally discharges into an outlet plenum. Figure 32 provides typical noding diagrams for the STGEN components and illustrates that there is an inlet plenum (cell l) and an outlet plenum (last cell) on the primary side; these two cells are assumed adiabatic. The tube bank, however, is represented by a single "effective" tube that has heat-transfer characteristics such that it is representative of the entire tube bank.

Fig. 32.
Steam generator noding diagram.

In the STGEN module the primary- and the secondary-side hydrodynamics are treated separately. Coupling between the two sides is achieved through wall heat transfer, which is modeled semi-implicitly. The hydrodynamics are solved by calling the one-dimensional, two-fluid routine TRIDS.

The procedures for reading input, for initialization of arrays, for advancement of the time step, and for editing are similar to those described for the PIPE module (see Sec. IV.A). The calculational sequence for the STGEN module is identical to that for PIPE (or TEE) except that the sequence of calls is performed twice, once for the primary side and once for the secondary side.

Although the procedure for reading input data is similar to that for a PIPE module, there are some differences. The most obvious difference is the specification of four junction numbers (Fig. 32), two for the primary-side and two for the sedondary-side connections. Although it is possible to connect the secondary-side junctions to any TRAC component, the most common arrangement is to connect the inlet to a FILL, specifying the secondary-side fluid inlet conditions and the flow rate, and to a BREAK at the discharge, specifying the steam-genéztor-secondary discharge pressure. Because there is no provision for modeling the downcomer on the steam generator secondary, the fluid conditions for this FILL should be those for the water entering the tube bank and not those for the feedwater. $/$?

The number of fluid mesh cells on the primary side is specified by NCELLI and that on the secondary side by NCELL2. There are some constraints imposed on the possible values for (NCELL1, NCELL2) combinations. For a once-through type (KIND $=2$), it is required that NCELL2 $=$ NCELL1-2. For a U-tube type (KIND $=1$), it is assumed that there is a one-to-one correspondence between two active primary cells and one active secondary cell (see Fig. 32). Thus, for the fluid cells on the secondary side to reach the U-tube bundle top, it is required that NCELL2 \geq (NCELLI-2)/2. The secondary-side cells that are greater than (NCELL1-2)/2 are treated adiabatically and are used to model possible area changes and volumes above the tube bank. In Fig. 32, these are cells 6-8 on the secondary side.

The STGEN module also includes a TEE-modeling option whe ee side tubing can be added to main pipe, as in the TEE module. This feature is available on both the secondary and primary pipes. It may be used to model either a separate feedwater inlet or a tube-rupture break, or it may be used for other
purposes. When this option is exercised, the steam generator input,", calculational sequences, and thermal-hydraulic modeling are similar to that for the TEE module except that the side tubing can only be adiabatic with no heat-transfer capability. The input parameters that invoke the, TEE-modeling option are JCELL3 and JCELL4, the TEE junction cell (see the TEE module description, Sec. IV.H) for the secondary side and primary sides, respectively. The TEE junction cell may be any of the primary and secondary cells. To model a separate feedwater, inlet, use only the TEE option on the secondary side. To model a tube-rupture break, use the TEE option on both the secondary and primary sides. The end junctions of both tees may be connected directly to each other to model the break flow between the primary and secondary sides. If only the primary TEE option is used, the secondary TEE still must be specified. It may be connected to a zero mass flow or a zero-velocity FILL.

At least one wall temperature nodes (NODES) must be specified. Three nodes are suggested, one at each tube surface and one at the tube wall center. The tube material is specified by the variable MAT. Available material options are given in the input specifications (Sec. V.F.5). Two flags, ICHF1 and ICHF2, determine if a CHF calculation is to be performed on the primary and secondary sides, respectively. If CHF calculations are desired, these flags are set equal to one; otherwise, they are set equal to zero. It should be noted that, if a CHF calculation is not performed, boiling heat-transfer calculations are precluded. Thus, stagnant fluid on the secondary side would have a low HTC, which is typical of natural convection. Therefore, we suggest that the combination ICHF1 $=0$ and ICHF2 $=1$ be used.

Geometrical input data for the tubes must be determined cautiously. As stated earlier, it is necessary to model the heat-transfer characteristics of the entire tube bundle with a single effective tube. This can.best be achieved as follows: the inner tube radius, RADIN, and tube wall thickness, $T H$, should be those of a single tube in the bundle. The user specifies the heat-transfer surface area in each cell for both the primary and secondary sides. These two sets of areas are checked against RADIN and TH for consistency. If these numbers are inconsistent, the secondary areas are adjusted. The steam generator can be made adiabatic by specifying zero heat-transfer areas.

Specification of the heat-transfer area for the once-through type is straightforward; it is the total heat-transfer area for the steam generator multiplied by the fraction of the total tube length in each mesh cell. For the U-tube type, however, caution must be used. On the primary side, the heat-transfer area is the interior area for all the tubes in each mesh cell. The total heat transfer to a secondary-side fluid cell is the sum of the heat transfer from the up and the down tubes in the cell. In the TRAC calculation, the heat-transfer areas for the up and the down tubes are assumed equal. Therefore, the user should insert an area that is equal to one-half the surface area on the tube exteriors of both the up and the down tubes in that fluid cell.

The volumes and the, flow areas on the primary side are determined by considering all the tubes in the bank. However, the hydraulic diameter is that of a single tube. The volumes and the flow areas on the secondary side are the actual geometric values for each mesh cell. The secondary hydraulic diameter is determined by standard methods used in heat transfer over tube bundles.

Tube wall initial temperatures also must be specified; the required number is the product of NCELLI and NODES. Thus, even though cell 1 and cell NCELLI are adiabatic, tube wall temperatures must be given for both cells to simplify indexing. The numbering convention is that temperatures begin with cell 1 and" are specified from interior (primary side) to exterior (secondary side) for each mesh cell.

Friction-factor correlation options (NFF) and additive friction losses (FRIC) are input separately for the two sides. The possible options for NFF are described in Sec. III.A.4.1. The homogeneous option (NFF=1) is suggested for both the primary and the secondary sides.

The output edit for a steam generator component is similar to that given for a PIPE component, with the primary-side variables input first and then the secondary-side variables. Heat-transfer variables always are provided. Tube wall temperatures are printed for each active mesh cell on a nodal basis.
H. Tee

The TEE module models the thermal hydraulics of three piping ibranches, two of which lie along a common line and the third enters at some angle β from the main axis of the other two (Fig. 33). In TRÁT-PFl, the tee is treated as two PIPEs, as indicated in Fig. 33. Beta is defined as the angle from the

Fig. 33.
TEE noding diagram.
low-numbered end of PIPE 1 to PIPE 2. The low-numbered end of PLPE 2 always connects to PIPE 1. The first PIPE extends from cell 1 to cell NCELLI and connects to PIPE 2 at cell JCELL. The second PIPE begins at cell 1 and ends at cell NCELL2.

The connection is effected through mass, momentum, and energy source terms in PIPE 1. PIPE 2 sees the connection as boundary conditions from cell JCELL in PIPE 1. Liquid may be prevented from entering the TEE secondary by setting the value of FRIC at that junction to l.E30. However, no generalized separation model has been implemented.

Because the TEE is modeled essentially as two interconnected PIPEs, the PIPE model description in Sec. IV.A should be referenced for additional information on the calculational sequence. Naturally, the sequence for a TEE includes separate calculations of the primary and secondary sides.

Detailed input specifications for a TEE component are given in Sec. V.F.5.i. Input and output information is very similar to that for a PIPE component except that two PIPEs are involved in a TEE component.
I. Valve

The VALVE module is used to model various types of valves associated with light water reactors. The valve action is modeled by controlling the flow area and the hydraulic diameter at one cell face of a one-dimensional component as shown in Fig. 34. The valve action may not be located at a valve component junction unless that junction is connected to a BREAK.

Two methods are provided for specifying the valve flow area. The flow area can be computed directly from a flow area fraction (FAVLVE) according to
flow area $=$ FAVLVE \times AVLVE,
where $A V L V E$ is the input value for the fully open valve flow area. Alternatively, the flow area may be computed from the relative position (XPOS) of the valve stem assuming a guillotine-type cut of circular cross section. The relative position of the valve stem, $X P O S=1$, corresponds to a fully open valve with flow area AVLVE. In either case, the corresponding hydraulic diameter HD is computed from
hydraulic diameter $=\frac{4 \text { AVLVE }}{P}$ HVLVE

Fig. 34.
Valve noding diagram.
where P is the flow perimeter and HVLVE is the input value for the fully open valve hydraulic diameter.

The flow area fractions or valve stem positions are inserted as tables. Use of a table may be trip initlated according to the control option selected. To increase the flexibility to model various types of valves, two valve tables may be inserted for trip-controlled valves. The second table is used when the trip set status is in the $\mathrm{ON}_{\text {reverse }}$ position (see Sec. V.C). The independent variable for the tables may be a signal variable that is dependent upon almost any system parameter, as discussed in Sec. V.B.

Many different types of valves can be modeled because of the flexibility to choose both the independent variable for the valve action tables and the signal variable and associated set points that initiate trips and the possible use of a rate factor table, as discussed in Sec." V.C.

Simple valves that either open or close on a trip may be modeled using an OFF-ON or ON-OFF type trip and a table that has elapsed time as the independent Variable to obtain the desired rate of opening or closing. (See Sec. V.C for a discussion of the rate-factor table input needed to flag the use of elapsed time rather than problem time for the independent variable.) Valve leakage can be simulated by restricting the minimum table value for flow area fraction or valve stem position to a value greater than zero. Simple valves can be used to model pipe breaks or the opening of rupture disks.

A simple check valve can be modeled by using a valve table with the appropriate pressure gradient as the independent variable. Alternatively, a check valve can be modeled as a trip-controlled valve with pressure gradients used as the trip set points and the valve table used to control the rate of action, as described previously in this section.

A steam flow control valve (or power-operated relief valve) can be modeled using an $0 N_{\text {reverse }} \mathrm{OFF-ON}_{\text {forward }}$ trip (see Sec. V.C) with the beginning closing pressure, ending closing pressure, ending opening pressure, and beginning opening pressure as the respective trip set points. The rate of opening (Onforward state) can be determined by the first table and the rate of closing ($O_{r e v e r s e}$ state) by the second table.

A relief valve can be modeled by using a table with pressure as the independent variable and a step-like function for the flow area fraction or valve stem position. In this case, it is important that the step function not
be too steep or the valve flow area may oscillate because of the coupling between the flow through the valve and the pressure variable. A bank of relief valves can be modeled with a single valve component in a similar manner by using a multistep function to simulate the multiple set points corresponding to the various valves. The input parameters for the VALVE module are defined in Sec. V.F.5.j.
J._- Vessel

The VESSEL module models a PWR vessel and its associated internals. The component is three dimensional and uses a six-equation, two-fluid model to evaluate the flow through and around all internals of a PWR vessel including the downcomer, core, and upper and lower plenums. Models incorporated into the VESSEL module are designed mainly for LOCA analysis, but the VESSEL module can be applied to other transient analyses as well. A mechanistic reflood model that can model quenching or dryout for an arbitrary number of quench fronts is included. The reactor power is modeled using point-reactor kinetics or by providing a power table in the problem input. Most of the detailed discussion of the fluid-dynamics, heat-transfer, and point-reactor kinetics equations and solution methods for the three-dimensional VESSEL module can be found in Sec. III. In this section, we discuss the VESSEL geometry and other important considerations.

A three-dimensional, two-fluid, thermal-hydraulic model in cylindrical coordinates describes the VESSEL flow. A regular cylindrical mesh, with variable mesh spacings in all three directions, encompasses the downcomer, core, and upper and lower plenums of the VESSEL, as shown in Fig. 35. The user describes the mesh by specifying the radial, angular, and axial coordinates of the mesh-cell boundaries:

```
rim
\mp@subsup{0}{j}{}}\mathbf{j}=1,\ldots,NTSX 
and
zk
```


Where NRSX is the number of rings, NTSX is the number of angular segments, and NASX is the number of axial levels. The point (r_{i}, θ_{j}, z_{k}) is a vertex in the

Fig. 36.
Vessel geometry, three-dimensional mesh construction with three rings, six angular segments, and seven axial intervals.
coordinate mesh. Figure 36 illustrates the mesh construction. Mesh cells are formed as shown in Fig. 37 and identified by an axial level number and a cell number. For each axial level, the cell number is determined by counting the cells radially outward starting with the first angular segment and the innermost ring of cells, as shown in Fig. 36. "Figure 37 'also" shows' the relative face-numbering convention that is used in connecting other components to the vessel. Note that only three faces per mesh cell must be identified because the other faces will be defined by neighboring cells:

Fig. 37.
Boundaries of a three-dimensional mesh cell. The-face numbering convention also is shown. Faces 1, 2, and 3 are in the θ, z, and directions, respectively.

All fluid flow areas (on cell faces) and all fluid volumes are dimensioned so that the internal structure within the vessel can be modeled. Flow areas and fluid volumes are computed based on the geometric mesh spacings and are scaled according to factors supplied as input. The scaled volumes and flow areas then are used in the fluid-dynamics and heat-transfer calculations.

Flow restrictions and the volume occupied by the structure within each mesh cell are modeled through the use of these scale factors. For example, the downcomer walls are modeled by setting the appropriate flow area scale factors to zero. A feature is provided to do this automatically in the code if the upper, lower, and radial downcomer position parameters (IDCU, IDCL, and IDCR) are specified as described in the input section (Sec. V.D.3.k). Flow restrictions such as the top and bottom core support plates require scale factors between zero and one. Figure 38 shows the cell faces that are scaled to model the downcomer and core support plate flow restrictions.

Plumbing connections from other components to the VESSEL are made on the faces of the mesh cells. Only one connection per VESSEL cell is allowed, and all mesh cells in the VESSEL can have a component connected to it. Four input parameters are used to describe a connection: ISRL, ISRC, ISRF, and JUNS. The parameter ISRL defines the axial level in which the connection is made; ISRC is

Fig. 38.
Fig. 39.
Flow restrictions and downcomer modeling. Pipe connections to the vessel.
the mesh-cell number, as defined above; and ISRF is the face number, as defined in Fig. 37. If ISRF is positive, the connection is made on the face shown in the figure with the direction of positive flow inward into the cell. If ISRF is negative, the connection is made on the opposite face shown in the figure with the direction of positive flow also inward into the cell. (Face 1 is the aximuthal face at θ, and face -1 is the azimuthal face at θ_{j-1}. Face 2 is the axial face at z_{k}, and face -2 is the axial face at z_{k-1}. Face 3 is the radial face at r_{i}, and face -3 is the radial face at r_{i-1}.) The parameter JUNS is the system junction number used to identify this junction. Figure 39 shows two VESSEL pipe connections. Note that internal as well as external connections
are allowed. The user is cautioned against connecting to the VESSEL any component with a flow area that differs greatly from the flow area of the mesh-cell face to which it is connected because this can cause anomalous pressure gradients. Such a situation can be avoided by proper adjustment of the VESSEL geometry coordinate spacings.

A VESSEL option models the Babcock \& Wilcox vent valves that are located in the wall between the upper plenum and downcomer. These vent valves permit flow directly from the upper plenum to the downcomer and out the cold leg for a cold-leg break. They are modeled as fixed areas in the outer radial surface of a vessel cell with a variable FRIC term to model opening and closing.

The user specifies the cells that have vent valves by giving the axial level, cell number, and total area of vent valves for each cell with vent valves in the outer radial surface. The user also specifies for each cell with vent valves: (1) the pressure drop for the valves to be closed, DPCVN; (2) the pressure drop for the valves to be open, DPOVN; (3) the FRIC value when the valves are closed to model leakage, FRCVN; and (4) the FRIC value when the valves are open, FROVN. The pressure drop is defined as the pressure of the inner radial cell minus the pressure of the outer radial cell. The code uses FRCVN when the pressure drop is less than DPCVN, uses FROVN when the pressure drop is greater than DPOVN, and interpolates for pressure drops between DPCVN and DPOVN.

The reactor core region in the VESSEL is specified by the upper, lower, and radial core positional parameters (ICRU, ICRL, and ICRR). These parameters define, respectively, the upper, lower, and radial boundaries of the cylindrical core region. The example provided in Fig. 40 shows a possible configuration in which $\operatorname{ICRU}=4, \operatorname{ICRL}=2$, and $I C R R=2$. Each mesh cell in the core region can contain an arbitrary number of fuel rods. One average rod represents the average of the ensemble of rods in each mesh cell, and its thermal calculation couples directly to the fluid dynamics. The thermal analysis of any supplemental rods does not feed back or couple directly to the fluid-dynamics analysis. However, the local fluid conditions in the mesh cell are used to obtain rod temperature history for the additional rods. A fuel-clad interaction treatment and a reflood treatment are available for these calculations and are described in Sec. III.B.

Fig. 40.
Core region inside the vessel.

Heat slabs of arbitrary thicknesses and surface areas carl be defined in any mesh cell (including core regions) to model the heat capacity of structures within the vessel. An HTC is computed for each slab using the local fluid conditions. The temperature distribution is calculated based on a one-dimensional conduction model (refer to Sec. III. B.1.b). The thermal response of the slab properties is included. Furthermore, the code can account for an arbitrary number of interfaces between dissimilar materials.

The total power level in the core may be specified in terms of either power or reactivity with optional reactivity feedback. The solution of the point-reactor kinetics equations used in the latter case is described in Sec. III.C. The power or reactivity can be constant, determined from a table, or constant until a trip and then determined from a table. The table independent variable may be any signal-variable form as described in Sec. V.B.

For trip-initiated table use, the table independent variable can be modified by a rate factor that is a tabular function of the departure of the trip signal from the set point that turns off the trip. Consequently, override control of the core power level can be simulated. The flexibility that is available for the selection of the trip signal, trip set points, and delay times, as well as for the choice of the power or reactivity table independent variable and associated rate factor, permits accurate modeling of a large class of transient conditions.

The spatial power distribution in the core is specified by separate axial- and horizontal-plane power shapes, plus a radial power distribution across the fuel rods. These spatial distributions are specified in relative units when inserted and are held constant throughout a problem except for the axial power shape. Through input, one or more axial power shapes may be employed with any signal variable used to interpolate among them.

The power density in fuel rod node in cell j on core level k is given by the expression,
$P(i, j, k)=S \cdot P_{\text {tot }} \cdot \operatorname{RDPWR}(i) \cdot \operatorname{CPOWR}(j) \cdot \operatorname{ZPOWR}(k)$,
where S is the scale factor that normalizes the three input relative power distributions, $P_{\text {tot }}$ is the total core power level, RDPWR(i) is the relative power in fuel node i, $\operatorname{CPOWR}(j)$ is the relative power in cell j, and $\operatorname{ZPOWR}(k)$ is the relative power at core elevation k. The scale factor S is given by the expression,"

where AREA(i) is the cross-sectional area of fuel rod node i, $\operatorname{NRDX}(j)$ is the number of fuel rods in cell j, and $z(k)$ is the height of core axial level k. For the analyses of user-specified supplemental rods, the power density in Eq. (198) is multiplied by an input power factor RPKF(j) to obtain the power density for each additional fuel rod.

V. USER INFORMATION

This chapter describes how to set up a problem input data deck, how to obtain restart dumps, how to restart problems from those dumps, and how to produce printer and graphics output files. Detailed descriptions of the signal-variable, trip, and controller features are presented.
A. Input Organization and Format

The input deck is divided into seven major sections: control, signal-variable, trip, controller, component, PWR-initialization, and,time-step data. These data blocks are contained in a file named TRACIN and are read in the order shown in Fig. 41. The control data block contains general control parameters including title cards for problem identification, restart and dump control information, transient and steady-state control information, problem size information, and problem convergence criteria. This data block must be present in TRACIN.

TRAC input deck organization.

Signal-variable data define signal parameters for trips and controllers and the independent variable for tables defining component actions. This data block is specified only if the control block parameter NTSV >0. Part or all of the signal-variable data can come from the restart dump file TRCRST.

Trip control information is provided in the third data block. This data block is present only if NTRP >0 in the control data block. Part or all of these trip input data also can come from the restart dump file.

Controller data are provided in the fourth data block. Controllers differ from the ON-OFF switch control of trips in that they directly convert a signal-variable input signal to an output signal for controlling a defined action. This data block is present only if the control block parameter NTCN >0. Part or all of these input data can come from the restart dump file. This feature is not operational at present.

The main body of the input deck is contained in the component data block. This block contains a detailed description of every component in the problem unless the problem is reinitiated from a restart dump. For restart problems, only those components that are added or modified are included in the component block. The rest of the component data is obtained from the restart file. There is a component data block in the TRACIN file unless all the component data are obtained from the restart file.

A PWR-initialization data block is required only if STDYST $=2$ or 3 has been specified in the control block data. This block contains several user-specified steady -state operating conditions that the code tries to match by adjusting certain operating parameters.

The time-step data block must be present in TRACIN. It specifies maximum and minimum time-step sizes, edit frequencies, and the end of the problem. All numeric input data are read into the code with either an E14.6 or I14 format statement, by the LOAD subroutine, or as NAMELIST data. Standard FORTRAN statements are used for formatted and NAMELIST reads. The LOAD subroutine provides additional flexibility to input array data.

The user is given the choice either to prepare his TRACIN input deck in strict accordance with the input specifications described in Sec. V.F (formatted input) or to prepare the deck in free format. If the user chooses formatted input, care must be taken to enter all data and array loading operations in the card columns specified in Sec. V.F. If free format is
chosen, the input cards and the data on each cardmust adhere to the order specified in Sec. V.F, but the data need not be entered in the specified columns. Besides the obvious convenience of not counting columns, free format gives the user greater flexibility in using comments to document his input deck and provides better diagnostics for input errors. The free format option is described in detail in Sec. V.H.

The following sections describe the signal-variable, trip, and controller capabilities; the dump/restart feature; the input data in detail; the LOAD subroutine read formats; the free-format option; the NAMELIST format; and the TRAC output files. A sample input deck is provided in Appendix C. Part of this deck, modified to illustrate various free-format possibilities, also is shown in Appendix C.
B. Signal Variables

Signal variables are parameters in the simulation model whose values provide input signals that control various actions within the system. Their values determine trip status, controller output signals, and component actions defined by tabular input. Signal variables are evaluated at the beginning of each time step where they undergo a step change in value. Their new value is assumed constant over the time step and defines the action during the time step.

Table VI lists 40 system parameters that define signal variables. The signal-variable parameter number ISVN defines the signal-variable parameter. Parameters with $1 \leq I S V N \leq 15$ come from the control panel vector, $\operatorname{CPV}(J)$, which the code evaluates and edits to simulate signals that are instrumented in the operator control room. Control actions initiated automatically or by the operator often are based on these signals. Their evaluation is not operational at present. Parameters with ISVN $=16$ or 17 are specially defined parameters that the user may program into the PREP evaluation stage of TRAC. They are stored in "and obtained from array $\operatorname{DSV}(I), 1 \leq I=I S V N-15 \leq 2$, in common block SIGNAL where $\operatorname{CPV}(\mathrm{J})$ also is stored. Parameters with $20 \leq$ ISVN ≤ 39 are location-dependent; that is, both the component number and the mesh cell number(s) where the parameter is defined must be input for the component. Whereas all of the control-panel-vector parameters are location-dependent as well, their locations will be defined elsewhere in input when this feature

SIGNAL-VARIABLE PARAMETERS

Signal- Variable Parameter \qquad Number	Parameter Description	Additional Location Data
0	Problem time (s)	
1	Primary pressure (Pa)	
2	```Pressurizer-relief-tank pressure (Pa)```	
3	Containment pressure (Pa)	
4	Containment temperature (K)	
5	Pressurizer water level (m)	
6	```Refueling-storage-tank water level (m)```	
7	Hot-leg temperature (K)	Coolant loop number
8	Cold-leg temperature (K)	Coolant loop number
9	```Primary-coolant mass flow (kg/s)```	Coolant loop number
10	```Emergency-core-coolant (ECC) mass fluw (kg/s)```	Coolant loop number
11	```Letdown-coolant mass flow (kg/s)```	Coolant loop number
12	Steam-generator pressure (Pa)	Coolant loop number
13	Steam-generator-primary coolant flow (kg/s)	Coolant loop number
14	$\begin{aligned} & \text { Steam-generator-secondary } \\ & \text { coolant flow (kg/s) } \end{aligned}$	Coolant loop number
15	Steam-generator-secondary liquid level (m)	Coolant loop number
16	Dummy storage variable number 1	
17	Dummy storage variable number 2	
18	Reactor power (W)	Component number
19	Reactor period (s)	Component number

```
    Signal-
Variable
Parameter
    Number
    Parameter Description
```

20
21 22 23 24

```
Liquid water level (m)
Cell pressure (Pa)
Cell vapor temperature ( \(K\) )
Cell liquid temperature (K)
Cell slab outer-surface temperature (K) temperature (K)
Cell fuel-rod centerline temperature (K)
Cell vapor volume fraction
\(\theta\)-interface vapor mass flow ( \(\mathrm{kg} / \mathrm{s}\) )
z-interface vapor mass flow (kg/s)
r-interface vapor mass flow (kg/s)
\(\theta\)-interface liquid mass flow : (kg/s)
z-interface liquid mass flow (kg/s)
r-interface liquid mass flow (kg/s)
\(\theta\)-interface vapor velocity (m/s)
z-interface vapor velocity (m/s)
r-interface vapor velocity (m/s)
\(\theta\)-interface liquid velocity (m/s)
z-interface liquid velocity (m/s)
r-interface liquid velocity (m/s)
```

Additional Location

 Data
 Cell, fuel-rod outer-surface Component, cel1 1 , and cell 1_{2} numbers
Component, cell 1 , and $c e l 1_{2}$ numbers
Component, cell 1 , and $c e l 1_{2}^{2}$ numbers
Component, cell 1 , and cell 2 numbers
Component, cell 1 , and $c e l l_{2}$ numbers
Component, cell , and $c e l l_{2}$ numbers

Component, cell 1 , and cell_{2} numbers
Component, cell_{1}, and cell_{2} numbers
Component, cell 1 , and $c e l l_{2}$ numbers
Component, cell 1 , and $c e l l_{2}$ numbers
Component, cell 1 , and $c e l l_{2}$ numbers
Component, cell 1 , and cell 1_{2} numbers
Component, cell 1 , and cell 1_{2} numbers
Component, cell1 , and cell ${ }_{2}$ numbers
Component, cell 1_{1}, and cell_{2} numbers
Component, cell 1_{1}, and $c e l l_{2}$ numbers
Component, cell 1 , and cell 1_{2} numbers
Component, cell l_{1}, and cell_{2} numbers
Component, cell 1 , and cell 2 numbers
Component, cell 1 , and cell 1_{2} numbers
becomes operational. These parameters are included in Table VI for the user's convenience. Their use is more efficient because they are evaluated at each time step. Parameters with ISVN $=18,19,25$, or 26 apply only to the CORE and VESSEL components when fuel rods are present.

The 1 iquid water level, $\operatorname{ISVN}=20$, is the height of the liquid above the bottom interface of mesh cell, $\left|c e l 1_{1}\right|$, and is defined by

$$
\sum_{i=\left|\operatorname{cell} l_{1}\right|}^{I \pm 1} \Delta x_{i}+f \Delta x_{I},
$$

where Δx_{i} is the height of mesh cell i and the liquid-vapor interface is at a distance $f \Delta x_{I}$ above the lower interface of mesh cell I. The values of f and I are defined by requiring that the volume of liquid between mesh cells $\left|c e l 1_{1}\right|$ and $\left|c e l 1_{2}\right|$ fill the fluid volume of mesh cells $\left|c e l 1_{1}\right|$ to $I \pm 1$ below mesh cell I and the fraction f of the volume of mesh cell I,
$\sum_{i=\left|\operatorname{cel1_{1}}\right|}^{\left|\operatorname{cell}_{2}\right|}\left(1-\alpha_{i}\right) V_{i} \equiv \sum_{i=\mid \operatorname{cel1} 1}^{I \pm 1} \mid V_{i}+f V_{I}$,
where α_{i} is the volume fraction of the vapor fluid in mesh cell i and v_{i} is the volume of fluid in mesh cell i. If either cell ${ }_{1}$ or cell ${ }_{2}$ is zero, TRAC internally redefines cell 1 equal to 1 and $c e l 1_{2}$ equal to the total number of mesh cells in the component.

The "signal variables for the location-dependent parameters, $21 \leq|I V S N| \leq 39$, take one of five different forms. The signal-variable value is:

1. the parameter value in mesh cell \mid cell ${ }_{1} \mid$ or \mid cell $1_{2} \mid$ of the component number when $\mathrm{cell}_{2}=0$ or $\mathrm{cell}_{1}=0$, respectively;
2. the maximum value of the parameter between mesh cells $\left|c e l 1_{1}\right|$ and $\left|c e l l_{2}\right|$ in the component when cell_{1} and cell_{2} are both positive;
3. the minimum value of the parameter between mesh cells $\left|c e l l_{1}\right|$ and \mid cell $1_{2} \mid$ in the component when cell 1 and cell 2 are both negative;
4. the volume-averaged value of the parameter between mesh"cells |cell \mid and $\left|c e 11_{2}\right|$ in the component number when cell 1_{1} and cell l_{2} are of opposite signs; and
5. the difference between the parameter values in mesh cells $|c e l 1|$ and $\left|c e 11_{2}\right|$ when ISVN is negative (the signal-variable value equals the parameter value in \mid cell 1_{1} ! minus the parameter value in $\left|c e l 1_{2}\right|$ when $-39 \leq$ ISVN ≤-21).

For the three-dimensional VESSEL component, cell 1_{1} and cell 1_{2} are defined as composites of the relative cell number in the horizontal plane and the axial level number.

$$
\binom{\operatorname{cell}_{1}}{\operatorname{cell}}=(h o r i z o n t a l \text { plane relative cell number) } * 1000+(a x i a l \text { level number) }
$$

When 20 STSUN ≤ 39, the summation over vessel mesh cells includes all cells between the minimum and maximum relative cell numbers (defined by cell l_{1} and cell 2_{2}) for all axial levels between the minimum and maximum axial level numbers (also defined by cell1 and cell 1_{2}).

The $\operatorname{cell} l_{1}$ and cell 1_{2} numbers for the $28 \leq|I S V N| \leq 39$ mass flow and velocity signal-variable parameters are associated with the mesh-cell interface(s). In the three-dimension VESSEL, the second aximuthal interface, the outer radial interface, and the upper axial interface of mesh cell are associated with the mesh-cell number. In one-dimensional components, the $I^{\text {th }}$ mesh-cell interface lies between mesh-cells I-1 and I. Specification of the r-interface or θ-interface for one-dimensional components prompts a default to the z-interface definition.

For mesh cells on the secondary side of TEE and STGEN components, cell l_{1} and cell_{2} are defined as composites of the total number of mesh cells on the primary side, NCELL1, and the secondary mesh-cell number, N2.

$$
\binom{\operatorname{cel} 1_{1}}{\operatorname{cell} 1_{2}}=\operatorname{NCELL1}+1+N 2
$$

Similar considerations apply when STGEN components have TEEs on the primary or secondary sides. When cell_{1} or cell_{2} is in the secondary-side TEE then...

$$
\binom{\operatorname{cell}_{1}}{\operatorname{cel1} 1_{2}}=N C E L L 1+N C E L L 2+2+N 2 T
$$

where NCELL2 is the number of cells in the steam-generator secondary and N2T is the cell number in the secondary TEE-side leg.

If one of the cells is in a primary TEE-side leg, then

where NCELLS is the number of cells in the steam-generator secondary TEE-side leg and N1T is the cell number in the primary TEE-side leg. Signal-variable value forms 2, 3 , or 4 , spanning cell l_{1} to cell_{2}, should not be used when cell 1 and cell 2 are located on the primary and secondary sides. In spanning across cell number NCELL1 +1 , which is a dummy buffer cell between the primary and secondary mesh cells in storage, a nonphysical parameter cell would be incorporated in determining the maximum, minimum, or volume-averaged parameter value.
C. \quad Trips

Trips are used to simulate operator and plant protective system response to transient or abnormal conditions. An ON-OFF switch type of control initiates and terminates action. Trip control can be applied to the following actions: the fluid condition in a FILL component; the pump rotational speed in a PUMP component; the opening and closing of the flow area in a VALVE component; and the variation of the reactor power or reactivity, the axial power shape, and the reflood fine axial mesh in the fuel rods of CORE and VESSEL components. Trips also can be used to implement special time-step data, to generate restart dumps, and to terminate problem execution.

The decision to switch the set status of a trip to ON or OFF and, thus, to initiate or terminate trip-controlled action, respectively, is based on a signal value defined to the trip. Trip-signal set points are defined over the trip-signal value range to delimit subranges with an ON "or OFF set status for the trip. Thus, the set status of the subrange wherein the trip signal value lies defines the set status for the trip. Table VII shows the five trip-signal-range types defined by the trip-signal-range type number. For IPOS $=1$ or 2 , there are two subranges delimited by set points S_{1} and S_{2}. In going from the left to the right subrange, the trip-signal value increases and must equal or exceed set point S_{2} to change the"trip-set-status condition. However, in going from the right to the left subrange, the trip-signal value must equal or be less than set point S_{1} to change the trip-set-status

Trip-Signal-Range
Type Number

1

2

3

4

5

Trip-Signal-Range
Type Number

1

2

3

4

5

TRIP-SIGNAL-RANGE TYPES

Trip-Signal-Range Diagram With Subrange Trip Set Status

Description of How the Trip-Set Status Is Changed

Trip to be set to $O N$ when the trip signal $\leq S_{1}$
Trip to be set to OFF when the trip signal $2 S_{2}$
Trip to be set to $O N$ when the trip signal $\geq S_{2}$ Trip to be set to OFF when the trip signal $\leq \mathrm{S}_{1}$

Trip to be set to $\mathrm{ON}_{\text {reverse }}$ when the trip signal $\leq \mathrm{S}_{1}$ Trip to be set to OFF when the trip signal $2 S_{2}$ or $\leq S_{3}$
Trip to be set to $\mathrm{ON}_{\text {forward }}$ when the trip signal $\geq \mathrm{S}_{4}$
Trip to be set to $0_{\text {forward }}$ when the trip signal $\leq S_{1}$
Trip to be set to OFF when the trip signal $\geq S_{2}$ or $\leq_{S} S_{3}$
Trip to be set to $O N_{r e v e r s e ~}$ when the trip signal $\geq \mathrm{S}_{4}$.
Trip to be set to $O N$ when the trip signal $\geq S_{2}$ or $\leq S_{3}$ Trip to be set to OFF When the trip signal $\leq S_{1}$ or $\geq{ }^{3} S_{4}$
condition. To ensure that the criterion for changing subranges is unique, S_{1} must be less than S_{2}. For IPOS $=3,4$, or 5 , there are three subranges with four set points. Again, the trip-signal value increases to the right and $S_{1}<S_{2}<S_{3}<S_{4}$. In cases where $I P O S=3$ or 4 , set status ON is either $\mathrm{ON}_{\text {forward }}$ or $\mathrm{ON}_{\text {reverse }}$. In $\mathrm{ON}_{\text {reverse, }}$ the action occurs in the opposite direction from $0 N_{\text {forward }}$ when the trip-controlled component action table has as its independent variable the signal-variable value difference form. For the signal-variable value form, however, the same action will be interpolated from the table for both $\mathrm{ON}_{\text {forward }}$ and $\mathrm{ON}_{\text {reverse }}$. For IPOS $=5$, there are two subranges. with an $O F F$ set status. Action occurs only in the $0 N$ set-status subrange.

Each trip-signal set point can be specified as a constant or as a tabular function of a signal variable. In the latter situation, the tabular form is interpolated each time step (based on the value of its signal variable) and applied as a factor to the set-point value. The criteria that $S_{1}<S_{2}$ for IPOS $=1$ or 2 and $S_{1}<S_{2}<S_{3}<S_{4}$ for IPOS $=3,4$, or 5 must be satisfied after the factors are applied.

Each trip-signal set point has a defined delay time. After a set-point criterion is satisfied by the trip-signal value, its delay time must pass before the set status of the trip is changed. The delay time simulates the time necessary to process the signal and initiate trip action in the actual system hardware or by the control room operator. Delay times are nonnegative. A negative delay time is replaced by zero.

There are three forms for defining the trip signal: a signal variable, a signal expression that combines signal-variable values with arithmetic operations, or a trip-controlled trip signal that sums the set status value of other trips. A signal expression consists of 1 to 10 subexpressions, each having an arithmetic operator and 2 argument values. The arithmetic operators are addition, subtraction, multipllcation, division, exponentiation, the maximum value, the minimum value, and the absolute value. Argument values are defined by signal-variable values, by input constants, or by an earlier evaluated subexpression in the list of subexpressions. The value of the last subexpression in the list defines the signal-expression value. Any signal variable that defines a subexpression argument can be flagged for evaluation either initially or at the end of each time step when the trip using this
signal expression is set to 0 N . This allows the argument values in a signal expression to be defined at different times. Also, signal parameters located in different components of the modeled system define the trip signal because the signal variables are combined through arithmetic operations in a signal expression.

The signal value for a trip-controlled trip is the sum of the set status values of two or more trips. The values for the different trip set status are: -1 for $O N$ reverse, O for $O F F$, and 1 for $O N$ and $O N$ forward All the trips defining the signal must occur earlier in the list of trips if their set-status value is to be for the current rather than previous time step. Note that trips obtained from the restart file will follow the list the trips that are specified. The logic operators AND or OR are implemented through the set-point values of trip-controlled trips and through the use of multiple trip-controlled trips. Set-point values specify how many trips assigned to the trip-controlled trip signal need to be set $O N$ before the trip-controlled set-point criterion is met and its set status is changed. Multiple trip-controlled trips are used to evaluate an expression signal having logical subexpressions.

Component actions that vary and are trip controlled are specified through tabular input. A signal variable defines the component-action-table independent variable. It can have either of two forms: the absolute signal-variable value or the difference between the current signal-variable value and its value when the controlling trip was set $O N$. The signal-variable difference form is used when a separate rate-factor table is required; otherwise, the absolute signal-variable value form is used.

The rate-factor table for a trip-controlled component-action table is defined as a function of the difference between the current trip-signal value and the set-point value that turns the trip off. As stated above, when a rate-factor table is defined, the component-action-table independent variable defaults to the signal-variable difference form. The rate factor is applied as a factor to that difference. By including unit rate factors, the table only serves to flag the signal-variable difference form for the component-action-table independent variable. By including nonunit rate factors, the component action table is made dependent not only on the change in its signal variable but also on the departure of the current trip-signal value from the set-point value that turns the trip off. This allows modeling with
rate factors the override control on component actions by the control room hardware or operator. A rate factor can be used to supplement component action control with direct feedback from the controlling trip. Component action can be accelerated when the departure of the trip signal becomes too large or it can be decelerated to approach a preset limit more closely.

Rate factors are applied at the beginning of each time step to the incremental change in the signal variable of the component action table. The Sum of these weighted incremental changes from trip initiation determines the integral value of the signal-variable difference used to interpolate in the component action table. For programming convenience, the values of the component-action-table independent variable are shifted each time step after interpolation so that the interpolation point has a zero abscissa coordinate. Consequently, the abscissa value for interpolation is the product of the rate factor and the change in the signal-variable value during each time step. D. Controllers

This feature is not operational.
E. Dump/Restart Feature

TRAC automatically generates a dump/restart data file named TRCDMP, which contains snapshots of the state of the system at various times during problem execution. Any one of these snapshots, called dumps, may be used to initialize all or part of the system for subsequent calculations. The times when dumps are generated are determined by several criteria. The user may specify a dump interval on the time-step cards, and a dump will be created after this interval. These dumps are added sequentially to the end of the TRCDMP file. A dump with one or more trips also may be initiated by the user. When the set status of any of those trips is set $O N$, a dump is added to the end of the TRCDMP file. This permits the restart of a problem when particular events of interest occur.

In addition to these user-specified dumps, TRAC automatically will generate dumps at various times. A dump is generated at the end of the initialization stage. Another dump is generated at the end of the steady-state or transient calculation and at intermediate points in the calculation based upon the central processor unit (CPU) time utilized by the job.

To use a dump file to initialize a subsequent calculation, the name of the file must be changed from TRCDMP to TRCRST. The time-step number of the particular dump desired must be specified on Main Control Card 1. (A message containing this dump time-step number is sent to the print file TRCOUT whenever a dump is written.) If the time-step number has been specified as a negative value, TRAC will use the dump with the largest time-step number and overwrite the initial time (specified on Main Control Card 1) with the time taken from that dump.

Data retrieved from the selected dump depend on the information that already has been found in the TRACIN file. Any component not defined by the input deck (as determined from the component numbers listed in the IORDER array), is initialized from the restart dump. Also, any signal variable, trip, and controller found in the dump that has not been defined by input will be initialized at the state found on the dump.
F.- TRAC-PF1 Input Specifications

The TRAC input data may be classified into seven general data types:

1. main control,
2. signal variable,
3. trip,
4. controller,
5. component,
6. PWR initialization, and
7. time step.
8. Main Control Data. The main control parameters are listed below in the order of entry. This data block must be supplied at the start of the input deck.

Card Number 1. (Free Format) The first card of a TRACIN deck serves as the free format ON-OFF switch, indicating whether the following cards are in free format or TRAC format. It must be present, containing either the string FREE (free format), TRAC (TRAC format), or both strings (FREE overrides TRAC). This card is in free format. Up to 80 columns may be used. The control string(s) and any other documentation may appear anywhere on the card.

Card Number 2. (Format 3I14) NUMTCR, IEOS, INOPT

Columns		Variable	Description
1-14	'	NUMTCR	Number of title cards to be read. Note: At least one title card must be supplied.
15-28		IEOS	Air-water option. $0=$ gas phase treated as steam-air mixture throughout system; $1=$ gas phase treated as air throughout system. Evaporation and condensation are inhibited.
29-42		INOPT	Specification for including or excluding NAMELIST group INOPTS data after the title cards. $0=$ NAMELIST group INOPTS data omitted after the title cards or $1=$ NAMELIST group INOPTS data inserted after the title cards.

Title Card(s). (Format 20A4) NUMTCR Cards

Columns \quad Variable	Description
$1-80$	Problem title information.
NAMELIST Data Cards for Group INOPTS. (NAMELIST format)	

This section is included only if the variable INOPT $=1$. In this case one or more of the special input optionsidescribed below may be specified. The format of this data is not checked during preprocessing and, therefore, should be entered carefully to avoid fatal input errors. The data are entered in columns 2-80 on one or more cards, beginning with "\$INOPTS" in column 2 and are terminated with "\$." A more detailed discussion of the format for NAMELIST input data is included in Sec. V.I (also see local FORTRAN manual). The following variables are included in the NAMELIST group INOPTS, and one or more of them can be included in the NAMELIST data to select desired options. Variables omitted from the data retain their default status.

Variable	Description
IELV	Switch that determines whether gravity (GRAV) terms or
	cell-centered elevations (ELEV)., in meters, are to be
	input in the component data. When this option is selected,
	ELEV (dimensioned NCELLS) or cell-centered elevations
	should be input for GRAV array data cards in all components.
	In addition, a break elevation BELV (see BREAK component data,

Variable	Description
! VL	Default value for initial liquid velocities. Used when ISTOPT is nonzero. (Real format.)
VV	Default value for initial vapor velocities. Used when ISTOPT is nonzero. (Real format.)
TL	Default value for initial liquid temperatures. Used when ISTOPT is nonzero. (Real format.)
TV	Defait value for initial vapor temperatures. Used when ISTOPT is nonzero. (Real format.)
TW	Default value for initial wall temperatures. Used when ISTOPT is nonzero. (Real format.)
P	Default value for initial pressures. Used when ISTOPT is nonzero. (Real format.)
PA	Default value for initial air partial pressures. Used when ISTOPT is nonzero. (Real format.)
QPPP	Default value for volumetric heat sources in pipe wall in one-dimensional components. Used when ISTOPT is nonzero. (Real format.)
HSTN	```Default value for heat-slab temperatures in three-dimensional components. Used when ISTOPT is nonzero. (Real format.)```
Main Control Card 1. (Format I14,E14.6) DSTEP, TIMET	
Columns	Variable Description "
1-14	```DSTEP Time-step number of dump to be used for restart. If DSTEP is less than zero, the last dump found will be used for restart.```
15-28	TIMET Problem start time. If DSTEP or TIMET is less than zero, the initial time will be overridden by the time specified for the retrieved "dump.
Main Con	d 2. (Format 5I14) STDYST, TRANSI, NCOMP, NJUN, IPAK
Columns	Variable Description
1-14	STDYST $\left.\begin{array}{l}\text { Steady-state calculation indicator. } \\ 0_{0}=\text { no steady-state calculation; } \\ \\ 1\end{array}\right)=$ generalized steady-state calcuiation; 2 $=$ PWR-initialization calculation; $3=$ PWR-initialization calculation with initial

Main Control Card 5. (Format 3I14) NTSV, NTRP, NTCN

Columns	Variable	Description
1-14	NTSV	The number of signal variables from input and the restart file ($0 \leq N T S V$).
15-28	NTRP	The number of trips from input and the restart file ($0 \leq N T R P$).
29-42	NTCN	The number of controllers from input and the restart file. (The controller is not operational at this time; input $N T C N=0$.)
$\begin{aligned} & \text { Component List Card(s). (Format } 5(3 X, I l l)) \text { IORDER(} 1), 1=(1, N C O M P), \\ & \text { read by routine LOAD. } \end{aligned}$		
Columns	Variable	Description
4-14	IORDER(1)	First component number.
18-28*	IORDER(2)	Second component number.
29-42	IORDER(3)	Etc.

2. Signal-Variable Data. Signal-variable data are defined when NTSV > 0 (word 1 on Main Control Card 5). Signal variables define the signal parameters for trips and controllers and the independent variable for tabular input that define component action. Either NTSV or fewer signal variables are input. When fewer than NTSV are input, conclude the data with a card having a negative integer in columns 1-14. The remaining signal variables (for a total of NTSV) are obtained from the restart file. They are the signal variables on the restart file whose IDSV identification numbers differ from those defined when inserted. Each signal variable is defined by the following card:

Columns	Variable	Description	
15-28	ISVN	The signal-variable parameter number	
		(-39 \leq ISVN ≤-21 or $0 \leq$ ISVN $\leq 39)$. See	
		Table VI for a list of the signal-variable	
		parameter numbers vs their parameter descrip-	
		tions. The sign of ISVN (for \|ISVN	>20)
		specifies how the parameter is defined. When $0 \leq$ ISVN ≤ 39, the signal variable is the	
		parameter value; when $-39 \leq$ ISVN ≤-21, the	
		signal variable is the difference between the	
	"	parameter values at two locations. The control-	
		panel vector parameters (1 $\leq I S V N \leq 15$) are not to be used at this time because their evaluation	
		is not operational.	
29-42	ILCN	The coolant loop number ($7 \leq$ ISVN $\leq 15)$ or the	
		component number ($18 \leq\|I S V N\| \leq 39)$ where the	
		signal variable parameter is defined. The	
		variable ILCN is not used when \|ISVN	< 7 or
		ISVN = 16 or 17.	
43-56	ICN1	The cell number of the first location in	
		component ILCN where the signal-variable	
		parameter is defined. Input ICNl when	
		$\mid \text { ISVN\| }>19 .$	
57-70	ICN2	The cell number of the second location in	
		component ILCN where the signal-variable	
		parameter is defined. Input ICN2 when	
		$\|I S V N\|>19$.	

For the VESSEL component, |ICN1| and |ICN2| are defined as composites of the relative cell number in the horizontal plane and the axial level number.
$\binom{|I C N 1|}{\mid I C N 2 \dagger}=$ (horizontal plane relative cell number) $* 1000+$ (axial level number).

Further information is provided by the signs of ICN1 and ICN2 for defining the signal-variable value. For $21 \leq$ ISVN ≤ 39, the signal variable is:

1. the parameter value in cell |ICN1| when $\operatorname{ICN} 2=0$ or in cell. |ICN2| when ICN1 $=0$;
2. the maximum parameter value between cells |ICN1| and |ICN2| when ICN1 > 0 and ICN2 >0;
3. the minimum parameter value between cells |ICN1| and |ICN2| when ICN1 < 0 and ICN2 < 0 ; and
4. the volume-averaged parameter value between cells |ICN1| and |ICN2| when ICN1 and ICN2 are of opposite sign.

For. $-39 \leq$ ISVN ≤-21, the signal variable is the difference between the parameter values in cells |ICN1| and |LCN2|.
3. Trip Data. Trip data are defined when NTRP > 0 (word 2 on Main Control Card 5). There are seven categories of trip input data. The first category, Trip-Dimension Variables Card, is always input when NTRP >0. The five variables on this card and NTRP define the varlable storage required for the renaining six data categories. In each of these categories, none, part, or all of the data can be input. Any data that are not input are obtained from the restart file.

Trip-Dimension Variables Card. (Format 5Il4) NTSE, NTCT, NTSF, NTDP, NTSD

Trip-Defining Variables Cards. Input from 0 to NTRP (word 2 on Main Control Card 5) of the following card set. If fewer than NTRP card sets are input, conclude these data with a card having a -1 in columns 13 and 14 . The remaining trips, having trip IDTP identification numbers different from those input will be obtained from the restart file.

0

Card Number 1. (Format 5I14) IDTP, IPOS, ISET, ITYP, IDSG
Columns Variable Description
1-14 IDTP
15-28 IPOS

29-42 ISET

43-56 ITYP

57-70 IDSG
The trip ID number ($-9999 \leq$ IDTP < -2 or $1 \leq$ IDTP $\leq 9999)$.

The trip-signal-range type number. Over the trip-signal value range, the trip-signalrange type number IPOS defines either two (IPOS $=1$ or 2) or three (IPOS $=3,4$, or 5) subranges with different set status (ON OFF, ON or ON (, ON, or forward. See Table VII for a description of these subranges and their delimiting set-point values for the five values of IPOS (1 \leq IPOS ≤ 5).

The initial trip set-status number (only used for steady state).
$\begin{aligned}-1 & =0 N \\ 0 & =0 F F, \text { orerse },\end{aligned}$
$1=0 N$ or $\mathrm{ON}_{\text {forward }}$.
The trip-signal type number.
$1=s^{\prime} i g n a l-v a r i a b l e ~ t r i p$, $2=$ signal-expression trip, or $3=$ trip-controlled trip.

The ID number for the trip signal variable (for ITYP $=1$, IDSG corresponds to IDSV in the signal-variable data), the trip signal expression (for ITYP $=2$, IDSG corresponds to IDSE in the trip-signal-expression data), or the trip-controlled trip signal (for ITYP $=3$, IDSG corresponds to IDTN in the trip-controlled-trip data).

Card Number 2. (Format 4E14.6) $\operatorname{SETP}(I), I=(1, N S P)$

Columns	Variable	Description
1-14	SETP(I)	The $I^{\text {th }}$ trip-signal set-point value shown as
through		S\# (where \# = I) in the Table VII definition of
43-56		IPOS (word 2 on Trip-Defining Variables Card 1).
		For IPOS $=1$ or 2 , NSP $=2$; for IPOS $=3,4$,
		or 5 , NSP $=4$. The set-point values must
		satisfy $\operatorname{SETP}(1)<\operatorname{SETP}(2)$ when $\mathrm{IPOS}=1$ or 2
		or $\operatorname{SETP}(1)<\operatorname{SETP}(2)<\operatorname{SETP}(3)<\operatorname{SETP}(4)$
		when IPOS $=3,4$, or 5 .

Columns	Variable	Description
15-28	$\operatorname{ISE}(2, J)$	The first argument ID number of the $J^{t h}$ arithmetic subexpression.
29-42	$\operatorname{ISE}(3, \mathrm{~J})$	The second argument ID number of the $\mathrm{J}^{\text {th }}$ arithmetic subexpression.

The first and second argument ID numbers define values that, when operated on by the arithmetic operator, give a value to their $\mathrm{J}^{\text {th }}$ arithmetic subexpression. There are four forms for the value of the first and second argument ID numbers. Their value is:

1. a signal-variable value evaluated each time step when their ID number is a signal-variable ID number IDSV (word 1 of Signal-Variable Data) [0 < IDSV < 400];

TABLE VIII

ARITHMETIC-OPERATOR ID NUMBERS

Arithmetic- Arithmetic Operator ID Number Operator

Addition (First argument ID number value)

Subtraction

Multiplication

Division

Exponentiation

Maximum value

Minimum value e

Absolute value

Arithmetic Subexpression

1

2

3

4

5

6

7

8
4 + (Second argument ID number value)
(First argument ID number valué) - (Second argument ID number value)
(First argument ID number value) * (Second argument ID number value)
(First argument ID number value)
/ (Second argument ID number value)
(First argument ID number value) ** (Second argument ID number value)

MAX[(First..argument ID number value) (Second argument ID number value)]

MIN[(First argument ID number value)
(Second argument ID number value)]
ABS(First argument ID number value)
2. a signal-variable value evaluated initially and at time steps when the trip controlled by this signal expression is set to $O N_{\text {reverse }}$, $O N$, or $O N_{\text {forward }}$ when their ID number is a signal-variable ID number IDSV plus $450^{2}(400<$ IDSV $+400<800)$;
3. a constant input on Card Number 3 that follows when their ID number is the $I^{\text {th }}$ subscript of $\operatorname{SCN}(I)$ plus $800(800<I+800<806)$; or
4. the value of an earlier subexpression $j(0<j<J \leq I N S E)$ when their ID number is j plus $900(900<j+900<910)$.

For example, the signal expression,
$\max \left[\sqrt{(\operatorname{IDSV}=-5)+(\operatorname{IDSV}=33)}, 1.0 \times 10^{-10}\right] \quad$,
wouid be input as is

12345678901234567890123456789012345678901234567															

1	5	33
5	901	801
6	902	802

where $\operatorname{SCN}(1)=0.5, \operatorname{SCN}(2)=1.0 \times 10^{-10}, \operatorname{INCN}=2$, and INSE $=3$.
Skip Card Number 3 if INCN $=0$.
Card Number 3. (Format 5E14.6) $\operatorname{SCN}(\mathrm{I}), \mathrm{I}=(1, I N C N)$

Trip-Initiated Time-Step Data Cards. Input from 0 to NTSD of the following card set. If fewer than NTSD sets are input, conclude these data with a card having a negative integer in columís 1-14.

Card Number 1. (Format 2I14) NDID, NTID

| Columns | Variable | Description
 $1-14$$\quad$ NDID |
| :--- | :--- | :--- |\quad| The ID number for the following set of trip- |
| :--- |
| initiated time-step data. |

Card Number 2. (Format 5Il4) $\operatorname{ITID}(\mathrm{I}), \mathrm{I}=(1, N T I D)$

Columns	Variable	Description
$1-14$	ITID(I)	
through		The Ith trip ID number that initiates the
$57-70$		use of these time-step data on Cards 3 and 4
		that follow when the trip is set to

Card Number 3". (Format 4E14.6) DTMIN, DTMAX, DTEND, DTSOF

Columns	Variable	Description	
1-14	DTMIN	The minimumtime-step size (s).	
15-28*	DTMAX	The maximum time-step size (s).	
29-42	DTEND	The problem time interval (s) during which these time-step data are used.	
43-56	DTSOF	The new time step (s) (DTSOF >0) or the factor \|DTSOF	to be applied to the existing time step (DTSOF < 0).

Card Number 4. (Format 4E14.6) EDINT, GFINT, DMPIT, SEDINT

Columns	Variable		Description
$1-14$	EDINT		Print edit interval (s).
$15-28$	GFINT		Graphics edit interval (s).
$29-42$	DMPIT	Restart dump edit interval (s).	
$43-56$	SEDINT	Short print edit interval (s).	

Time-step data on cards 3 and 4 replace the time-step data defined later ir Sec. V.F. 7 for a time interval DTEND (word 3 on Card Number 3) after any one of its trips is set to $\mathrm{ON}_{\text {reverse }} \mathrm{ON}$, or $\mathrm{ON}_{\text {forward }}$.
4. Controller Data. The controller fogature is not operational in TRAC at this time. By setting NTCN $=0$ (word 3 on Main Control Card 5), no controller data are read.
5. Component Data. Either NCOMP or fewer sets of component cards are input. The sets may be input in any order. If less than NCOMP sets are input, the end of the component data is marked by a single card containing the characters END in columns l-3. In this case the remaining components are initialized from the TRCRST file. The format of each set depends on the component type. The following is the input format for the components. All velocities are positive in the direction of ascending cell number. Most of the subscripted component data variables are processed by the LOAD subrourine described in Sec. V.G. Additional information on preparing component input data can be found in Sec. IV, where the component models are described. All tables that are entered as pairs of numbers (x, y) must be supplied in ascending order of the independent variable x.

Each component requires a junction number, JUN, for each of its connecting points. \dot{A} junction is the connection point between two components. A pipe requires two junction numbers, one for each end. A unique junction number must be assigned to each connecting point and referenced by both components to be connected. For example, if two pipes are; joined, then the junction numbers" of the connecting end of each pipe must be the same. No component may "wrap around" and connect to itself and no junction may have only one component connected to it. Any of the single-ended components (BREAK, FILL, or ACCUM) may be used to complete a junction.

In the following input descriptions, the asterisk (*) indicates units of the signal variable and the hyphen (-) indicates dimensionless quantities. a. Accumulator Component (ACCUM).

```
Card Number 1. (Format Al0,4X,2I14,A30) TYPE, NUM, ID, CTITLE
```

Columns	Variable	Description
1-5	TYPE	Component type (ACCUM left justified).
15-28	NUM	Component ID number (must be unique for each component, $1 \leq N U M \leq 99$).
29-42	ID	User ID number (arbitrary).
43-72	CTITLE	Hollerith component description.
Card Number 2.	(Format 2I14)	NCELLS, JUN2
Columns	Variable	Description
1-14	NCELLS	Number of fluid cells.
15-28	JUN2	Junction number for junction adjacent to cell NCELLS. This must be the accumulator discharge.

ACCUM Array Cards. Fourteen sets of cards, one set for each of the following variables. Use LOAD format.

Variable		Dimension	Description	
DX	b	NCELLS	Cell lengths (m).	$凶$
VOL		NCELLS	Cell volumes (m3).	"
FA		NCELLS +1	Cell-edge flow areas (m2).	
FRIC		NCELLS +1	Additive loss coefficients.	
GRAV ${ }^{\prime \prime}$		NCELLS +1	Gravity terms. (See PIPE,	V.F.5.e.)
HD		NCELLS+1	Hydraulic diameters (m).	

(Format 1E14.6) PAIN, BELV		
Columns	Variable	Description
1-14	PAIN	Air partial pressure (Pa) at break.
15-28	BELV	Break elevation (m). Used to compute GRAV array only when IELV $=1$.
BREAK-Table Scale Factors and BREAK-Table Input. Input the table scale factor		
only if associated BREAK table is required bascd on input values for $I B R O P$ and ISAT.		
Pressure Scale Factor. (Format E14.6) PSCL		
Columns	Variable	Description
1-14	PSCL	Pressure scale factor. The dependent variable in the pressure table PTB is multiplied by this factor to obtain absolute pressure. Input PSCL only if table PTB is input.
Pressure Table. LOAD format (input only if NBTB >0 and IBROP ≥ 1).		
Table	Dimension	Description
PTB	$2 *$ NBTB	Pressure vs time table; input [time (s), pressure (Pa)] pairs.
Liquid-Temperature Scale Factor. (Format E14.6) TLSCL		
Columns	Variable	Description
1-14	TLSCL	Liquid-temperature scale factor. The dependent variable in the liquid-temperature table TLTB is multiplied by this factor to obtain the absolute liquid temperature (K). Input TLSCL only if table TLTB is input.
\cdots		
Liquid-Temperature Table. LOAD format (input only if NBTB >0 and IBROP ≥ 2).		
Table	Dimension	Description
TLTB	2*NBTB	Liquid-temperature vs time table; input [time (s), temperature (K)] pairs. For ISAT $=2$, this table is used for vapor temperature.

Vapor-Temperature Scale Factor. (Format E14.6) TVSCL

0
C. One-Dimensidnal Core Component (CORE).

Card Number 1. (Format A10,4X,2I14, A30) TYPE, NUM, ID, CTITLE

Columns	Variable	Description
1-14	TYPE	Component type (CORE, 1eft justified).
15-28	NUM	Component ID number (must be unique for each component, $1 \leq N U M \leq 99)$.
29-42	ID	User ID number (arbitrary).
43-72	CTITLE	Hollerith component description.
Card Number 2.	(Format	NCELLS, JUN1, JUN2, MAT; ICHF
Columns	Variable	Description
1-14	NCELLS	Number of fluid cells.
15-28	JUN1	Junction number for junction adjacent to cell 1 (assumed to be at the bottom of the component).
29-42	JUN2*	Junction number for junction adjacent to cell NCELLS (assumed to be at the top of the component).
43-56	MAT	Material ID of core wall. (See PIPE input description, Sec. V.F.5.e.)
57-70	ICHF	$\begin{aligned} & \text { CHF calculation flag. } \\ & 0=\text { no; } \\ & 1=\text { yes. } \end{aligned}$
Card Numberer 3.	(Format	IHYDRO, NDGX, NDHX, NRTS, IRPSV
Columns	Variable	Description
1-14	IHYDRO	Variable not used.
15-28	NDGX	The number of delayed-neutron groups (NDGX ≤ 0 defaults to six delayed-neutron groups with the delayed-neutron constants, defined internally in TRAC).
29-42	NDHX	The number of decay heat groups (NDHX ≤ 0 defaults to 11 decay heat groups with the decay heat constants defined internally in TRAC).

Card Number 5. (Format 5I14) NPSZ, IPSTR, IPSSV, NPSRF, NRPRF

Columns	Variable	Description
1-14	NPSZ	The number of axial power shapes defined in the axial-power-shape table (NPSZ \geq 1).
15-28	IPSTR	The axial-power-shape trip ID number. (Currently not used.)
29-42	IPSSV	The signal-variable ID number that defines the independent variable in the axial-power-shape table.
43-56	NPSRF	The number of rate-factor table pairs where the rate factor is dependent on the axial-powershape trip signal difference from its trip OFF set point. The rate factor is to be applied to changes in the axial-power-shape-table independent variable defined by IPSSV. (Currently not used.)
57-70	NRPRF	The number of rate-factor table pairs where the rate factor is dependent on the power-reactivity trip signal difference from its trip OFF set point. The rate factor is to be applied to changes in the reactor power-reactivity table independent variable defined by IRPSV.

Card Number 6. (Format 5I14) NRFDT, NMWRX, NFCI, NFCIL, NZMAX

Columns	Variable	Description
1-14	NRFDT	```Reflood rod fine-mesh calculation trip ID number (no fine-mesh calculation is performed if NRFDT = 0).```
15-28	NMWRX	Metal-water reaction option. $\begin{aligned} & 0=o f f ; \\ & 1=o n . \end{aligned}$
29-42	NFCI	```Fuel-clad interaction (FCI) option. Option 1 performs the dynamic gap conductance calculation. 0 = off;```
$\#$		1 = on.
43-56	NFCIL	Limit on FCI calculations per time step (set NFCIL $=1$) .
57-70	NZMAX	Maximum number of rows of nodes used in the fuel-rod conduction calculation.

Card Number 7. (Format 5I14) NRODS, NSLBS, NODES, NDRDS, NDSLB

Card Number 10. (Format 2E14.6) TOUTV, POWSCL

Columns	Variable	Description
$1-14$	TOUTV	Vapor temperature (K) outside core wall.
$15-28$	POWSCL	Power-reactivity-table (variable PWTB) scale factor. The dependent variable in PWTB is multiplied by POWSCL to obtain its absolute value.

Card Number 11. (FORMAT 5E14.6) DTXHT(1), DTXHT(2), DZNHT, HGAPO, TNEUT

Columns	Variable	Description
1-14	DTXHT (1)	Maximum $\Delta T(K)$ above which rows of nodes are inserted in the fuel-rod conduction calculation during reflcod for the nucleate and transition boiling regimes (suggested value $=3.0$).
15-28	DTXHT (2)	Maximum ΔT (K) above which rows of nodes are inserted in the fuel-rod conduction calculation during reflood for all boiling regimes except nucleate and transition (suggested value $=10.0$).
29-42	DZNHT	Minimum $\Delta Z(m)$ below which no additional rows are inserted in the fuel-rod conduction calculation during the reflood calculation (this value comes from the diffusion number).
43-56	HGAPO	Fuel-rod gap conductance coefficient (constant for NFCI = 0 on Card Number 6; initial value otherwise) ($\mathrm{W} / \mathrm{m}^{2} / \mathrm{K}$).
57-70	TNEUT	The prompt neutron lifetime (s) (TNEUT' ≤ 0.0 defaults to the value $1.625 \times 10^{-5} \mathrm{~s}$ set internally in TRAC).

(If IRPOP < 11 on Card Number 4, skip Card Number 112.)
Card Number 12. (Format 4E14.6) RCFORM(I), RCA(I), RCB(I), RCC(I), $I=(1,3)$
Columns

15-28

Variable
RCFORM(I) ;

RCA(I)

Description

The form number for the reactivity coefficient type $[0.0=\delta k / \delta x, 1.0=(1 / k)(\delta k / \delta x)$, $2.0=x(\delta k / \delta x), 3.0=(x / k)(\delta k / \delta x)$ for independent variables $x=T_{\text {fuel }}$ for $I=1, T_{\text {coolant }}$ for $I=2$, and $\alpha_{\text {coolant }}$ for $I=3$].

The coefficient for the zeroth power polynomial term defining the $I^{\text {th }}$ independent-variable reactivity coefficient.

Variable	Dimension	Description
PA	NCELLS	Initial air partial pressures (Pa).
QPPP	NCELLS	Volumetric heat sources ($\mathrm{W} / \mathrm{m}^{3}$) in pipe wall. (Eliminate this card set if NODES = O.)
TW	NODES*NCELLS ${ }^{\prime \prime}$	Initial wall temperatures (K). (Eliminate this card set if NODES $=0$.)
$\frac{\text { CORE COMM }}{0}$	Rod Array Cards.	set of cards for each of the following iables. Use LOAD format.
Variable	Dimension	Description
Z	NCELLS	Cumulative flow length (m) to the end of the ce11.
RDPWR	NDRDS	Relative radial power density at the node positions.
CPOWR	1	Relative power density for the average rod.
RPKF	NRODS-1	Rod power peaking factors (relative to the cell average rod) for the additional rods.
ZPOWR	(ICRU-ICRL+2)*NPSZ	Axial-power-shape table; input [signal variable form defined by IPSSV and NPSRF on Card Number 5, axial-power-shape densities (ICRU-ICRL+l values)] pairs. The relative: axial power densities defining the axial power shape are specified at the axial segment level interfaces from one end of the fuel rod to the other. There are NPSZ axial power shapes, each having (ICRU-ICRL+1) values.
PSRF	NPSRF*2	Rate factor table for the trip-controlled axial-power-shape table independent variable defined by IPSSV on Card Number 5; input (trip signal minus the set point that turns the trip OFF, rate factor to be applied to the axial-power-shape table independent variable) pairs.
NRDX	1	Number of fuel rods in the core.
RADRD	NDRDS	Rod node radii (m) (cold).

Only one MATRD may have the value 3 and MATRD(1) and MATRD(NDRDS - 1) cannot be 3 .

(Omit the next three variables if NDHX ≤ 0 is input; the default ll group decay heat constants are defined internally in TRAC.)

CORE Rod Array Cards. Two sets of cards, one for each of the following variables for each rod including the average rod and each additional rod.

'Variable	Dimension	Description
BURN	ICRU-ICRL+1	Fuel burnup, MND/MTU.
RFTN	NDRDS*(ICRU-ICRL+1)	Initial rod node temperatures (K).

 d. Fill Component (FLLL).
 Card Number 1. (Format A10,4X,2I14,A30) TYPE, NUM, ID, CTITLE

Columns	Variable	Description
43-56	IFTR	Trip ID number for FILL-type options IFTY $=7,8$, or 9 .
57-70	NFTX	Number of FILL table pairs for FILL-type options IFTY $=4$ to 9 .
Card Number 3. (Format I $14, \mathrm{El4.6)}$ NERF, TWTOLD		
Columns	Variable	Description
1-14	NFRF	The number of rate-factor-table pairs where the rate factor is dependent on the trip signal difference from its trip OFF set point. The rate factor is to be applied to changes in the FILL-table independent variable defined by IFSV for FILL-type options LFTY $=7,8$, or 9 .
15-28	TWTOLD	The fraction of the previous FILL fluid-dynamic state that is averaged with the FILL-table-defined state to define the FILL fluiddynamic state for this time step ($0.0 \leq$ TWTOLD < 1.0). (A value of 0.9 is recommended to avoid hydrodynamic instabilities when the FILL-table signal variable depends on a parameter, such as adjacent component pressure, that may couple strongly to the FILL velocity or a parameter that varies rapidly with time.)

Card Number 4. (Format 5E14.6) DXIN, VOLIN, ALPIN, VLIN, TLIN

Columns	Variable		Description
1-14	DXIN		Cell length (m), generally the same as its neighboring cell in the adjacent component. Currently not, used.
15-28	VOLIN		Cell volume (m^{3}) (generally the same as that of its neighboring cell in the adjacent component). Currently not used.
29-42	ALPIN		Fluid void fraction (-) for positive flow (out of the FILL).
43-56	VLIN	\%	Liquid velocity (m/s); a positive value indicates flow into the adjacent component; a negative value indicates flow from the adjacent component.
57-70	TLIN		Liquid temperatures (K) for positive flow.

Card Number 5. (Format 5E14.6) PIN, PAIN, FLOWIN, VVIN, TVIN

Columns	Variable	Description
1-14	PIN	Fill pressure (Pa).
15-28	PAIN	Fill air partial pressure (Pa).
29-42	FLOWIN	Initial mass flow (kg / s); a positive value indicates flow into the adjacent component; negative value indicates flow from the adjacent component (only used for FILL-type options IFTY $=2$ or 8).
43-56	VVIN	Vapor velocity (m/s); a positive value indicates flow into the adjacent component; a negative value indicates flow from the adjacent component (only used for FILL-type options IFTY $=3$ or 9).
57-70	TVIN	Vapor temperature (K) for positive flow (only used for FILL-type options IFTY $=3$ or 9).
FILL Liquid-Velocity or Mass-Flow Table Scale Factor. (Format E14.6) VMSCL		
Columns	Variable	Description
$1-14$	VMSCL	The dependent variable in table VMTB is multiplied by this variable to obtain the absolute liquid velocity or absolute mass flow. - Input only if table VMTB is input.
FILL-Table Cards. LOAD format (omit if IFTY < 4). .		
Variable	Dimension	Description
VMTB	NFTX*2	FILL liquid velocity or mass flow table; input (signal-variable form defined by IFSV on Card Number 2, velocity or mass flow) pairs (*,m/s) or (*,kg/s). Velocity is input for generalized state options, IFTY $=6$ or 9 .

Include the following scale factors and six tables only if IFTY $=6$ or 9 . The five scale factors should appear on a single card before table VVTB.

Remaining FILL-Table Scale Factors. (Format 5E14.6) VVSCL, TLSCL, TVSCL, PSCL, PASCL

Rate-Factor-Table Cards. LOAD format (omit if NFRF $=0$ on Card Number 3).

Card Number 3. (Format 4I14, E14.6) ICHF, IHYDRO, NPOWTB, IACC, POWSCL

Card Number 4. (Format 5E14.6) RADIN;, TH, HOUTL,, HOUTV, TOUTL

Card Number 5. (Format E14.5) TOIN, TDPOW

Columns	Variable	Description
1-14	TOUTV	Vapor temperature (K) outside pipe.
$15-28$	TDPOW	
		Time delay (s) for gipe power table.
		(The time abscissa coordinate in the table
		is the transient time minus TDPOW.)

Note: The four paraneters, HOUTL, HOUTV, TOUTL, and TOUTV, allow flexibility in calculating possible heat losses from the outside of pipes. Typically, such heat losses are not important for fast transients or large breaks and HOUTL and HOUTV are set equal to zero. When heat losses are significant, they often can be described by a single HTC and a single external temperature (K).

PIPE Array Cards. Seventeen sets of cards, one set for each of the following variables. Use LOAD format.

Variable	Dimension	Description
POW	NPOWTB*2	Power vs time table; input [time (s), power (W)] pairs. Power is input directly to the fluid in the pipe and distributed evenly among the cells. The variable NODES must be zero.
f.	Pressurize	(PRIZER).

Card Number 1. (Format A10, 4X,2I14, A30) TYPE, NUM, ID, CTITLE

Columns	Variable	Description
$1-6$	TYPE	Component type (PRIZER left justified). $15-28$
NUM	Component ID number (must be unique for each component, $1 \leq N U M \leq 99)$.	
$43-42$	ID	User ID number (arbitrary).
43	CTITLE	Hollerith component description.

Card Number 2. (Format 2 I14) NCELLS, JUN1, JUN2

Columns	Variable	Description
1-14	NCELLS	Number of fluid cells in pressurizer component.
15-28	JUN1	Junction number for junction adjacent to cell 1.
29-42	JUN2	Number of the junction adjacent to cell NCELL. This must be the pressurizer discharge.
Card Number 3. (Format 4E14.6) QHEAT, PSET, DPMAX, ZHTR		
Columns	Variable	Description
1-14	QHEAT	Total heater power (W).
15-28	PSET	Pressure set point (Pa) for heater/sprayer controller.
29-42	DPMAX	Pressure differential (Pa) at which heater/ sprayer has maximum power.
43-56	ZHTR	Water level (m) for heater cutoff.

PRIZER Array Cards. Fourteen sets of cards, one set for each of the following variables. Use LOAD format.

Card Number 2. (Format 5I14) NCELLS, NODES, JUN1, JUN2, MAT

Columns	Variable	Description
1-14	NCELLS	Number of fluid cells in pump component (must be at least two).
15-28	NODES	Number of radial heat-transfer nodes in..wall. (Zero implies no wall, heat transfer.)
29-42	JUN1	Junction number for junction adjacent to cell 1.
43-56	JUN2	Junction number for junction adjacent to cell NCELLS.
$57-70$	MAT	Material ID of wall. See PIPE input description, Sec. V.F.5.e.
Card Num	(Format 5I14) ICHF, IHYDR0, IPMPTY, IRP, IPM	
Columns	Variable	Description
1-14	ICHF	```CHF calculation flag. 0 = no; l = yes.```
15-28	IHYDRO	Variable not used.
29-42	IPMPTY	Pump type. 1 = pump rotational speed when trip set ON specified by table SPTBL; $2=$ pump rotational speed when trip set ON calculated from Eq. (196).
43-56.	IRP	Reverse speed option. $0=$ reverse rotation not allowed; $1=$ reverse rotation allowed. (Checked only for IPMPTY = 2.)
	IPM	Degradation option. $0=$ use single-phase homologous curves or 1 = use combined single-phase and fully degraded two-phase homologous curves.
Card Number 4. (Format 4Il4) IPMPSV, IPMPTR, NPMPTX, NPMPRF		
Columns	Variable	Description
1-14	IPMPSV	The signal-variable ID number that defines the independent variable in the IPMPTY $=1$ pump-speed table.

Card Number 8. (Format 5El4.6) EFFMI, TFR1, TFR2, OMEGAN, OMGSCL

Card Number 9. (Format I14) OPTION

Columns	Variable	Description
l-14	OPTION	Pump curve option number.
		$0=$ user-specified pump, input following;
		$1=$ use built-in Semiscale pump; or
		$2=$ use built-in LOFT pump.

Card; Set 10 and pump curve cards are needed only if OPTION $=0$. If OPTION $=1$ or ' 2 , skip to the pump array cards. The user is referred to the pump model description in Sec. IV.F for definitions of the terms used below. Each homologous curve is divided into four curve segments. Each curve ifseginent is denoted by the number appended to the curve name. The segments are defined by Table V in Sec. IV.F.

Under certain conditions for OPTION $=0$, some curves do not need to be entered. However, to avoid confusion, we recommend that, all curves be entered when $O P T I O N=0$. For $\operatorname{IPMPTY}=1$ and $I P M=0$, curves HSPI through HSP4 are required, and the remaining curves can be dummies. For IPMPTY = 1 and $I P M=1$, curves HSP1 through HSP4, HTP1 through HTP4, and HDM are required, and the remaining curves can be dummies. For IPMPTY $=2$ and $I P M=0$, curves HSP1 through HSP4 and TSP1 through TSP4 are required, and the remaining curves can be dummies. For IPMPTY $=2$ and $I P M=1$, all curves are required, The foregoing indication of potential dummy curves does not imply that curve I may be left out by specifying NDATA(I) $=0$ in Card Set 10 . Future code changes may
restrict those curves that can be represented by dummy curves under various conditions.

Card Set 10. (Format 5114) NDATA(I) ($I=1,16$), NHDM, NTDM
First Card.

Columns	Variab1e
$1-14$	NDATA(1)
$15-28$	NDATA(2)
$29-42$	NDATA(3)
$43-56$	NDATA(4)
$57-70$	NDATA(5)

Description

Number of pairs of points on thè HSPl curve. Number of pairs of points on the HSP2 curve. Number of pairs of points on the HSP3 curve. Number of pairs of points on the HSP4 curve. Number of pairs of points on the HTPl curve.

Second Card.

Columns	Variable
1-14	NDATA (6)
15-28	NDATA(7)
29-42	NDATA(8)
43-56	NDATA(9)
57-70	NDATA(10)

Description

Number of pairs of points on the HTP2 curve. Number of pairs of points on the HTP3 curve. Number of pairs of points on the HTP4 curve. Number of pairs of points on the TSPl curve. Number of pairs of points on the TSP2 curve. Third Card.

Columns	Variable
$1-14$	NDATA(11)
$15-28$	NDATA(12)
$29-42$	NDATA(13)
$43-56$	NDATA(14)
$57-70$	NDATA(15)

Description

Number of pairs of points on the TSP3 curve.
Number of pairs of points on the TSP4 curve.
Number of pairs of points on the TTPI curve.
Number of pairs of points on the TTPZ curve.
Number of pairs of points on the TTP3 curve.

Fourth Card.

Columns	Variable
1-14	$\operatorname{NDATA}(16)$

Description

Number of pairs of points on the TTP4 curve.

Variable	Dimension	Description	"
HSP1	2*NDATA(1)	HSP1 curve	
HSP2	2*NDATA(2)	HSP2 curve	
			single-phase homologous head curves.
HSP3	2*NDATA(3)	H'SP3 curve	
HSP4	2*NDATA(4)	HSP4 curve	
HTP1	2*NDATA(5)	HTP1 curve	
HTP2	2*NDATA(6)	HTP2 curve	
			fully degraded homologous head curves.
HTP3	2*NDATA(7)	HTP3 curve	
		\bigcirc	
HTP4	2*NDATA(8)	HTP4 curve	
TSP1	2*NDATA(9)	TSP1 curve	
TSP2	2*NDATA(10)	TSP2 curve	
4	仡		single-phase homologous torque curves.
TSP3	2*NDATA(11)	TSP3 curve	
TSP4	2*NDATA(12)	TSP4 curve	

Variable	Dimension	Description
VV	NCELLS+1	Initial vapor velocities (m/s).
TL	NCELLS	Initial liquid temperatures (K).
TV	NCELLS	Initial vapor temperatures (K).
P	NCELLS	Initial pressures (Pa).
PA	NCELLS	Initial air pressures (Pa).
QPPP	NCELLS	Volumetric heat sources ($\mathrm{W} / \mathrm{m}^{3}$) in pump wall. (E1iminate this card set if NODES $=0$.)
TW	NODES*NCELLS	Initial wall temperatures (K). (Eliminate this card set if NODES $=0$.)
Steam-Generator Component (STGEN).		
Card Numb	(Format Al0, 4X, 2I14, A30) TYPE, NUM, ID, CTITLE	
Columns	Variable	Description
1-14	TYPE	Component type (STGEN 1eft justified).
15-28	NUM	Component ID number (must be unique for each component, $1 \leq N U M \leq 99$).
29-42		User ID number (arbitrary).
43-72	CTITLE	Hollerith component description.
Card Number 2. (Format 5I14) NCELL1, NODES, JUN11, JUN12, MAT		
Columns	Variable	Description
1-14	NCELL1	Number of fluid cells on primary side.
15-28	NODES	Number of radial heat-transfer nodes in wall (must be greater than or equal to 1).
29-42	JUN1 1	Junction number for junction adjacent to cell 1 on primary side.
43-56	JUN1 2	Junction number adjacent to cell NCELL1 on primary side.
57-70	MAT	Material ID number of tube. (See PIPE input description, Sec. V.F.5.e.)

Card Number 3. (Format 4I14) KIND, IHYDRO, ICHF1, ICHF2

Card Number 4. (Format 2E14.6) RADIN, TH

Columns	Variable	Description
1-14	RADIN	Inner radius of tube wall.
$15-28$	TH	Tube wall thickness (m).

Card Number 5. (Format 5I14) NCELL2, JUN21, JUN22, JCELLS, JCELLP ©
Columns Variable Description
1-14 NCELL2 Number of fluid cells on secondary side.
15-28 JUN21 Junction number for junction adjacent to cell 1 on secondary side.

29-42 JUN22 Junction number for junction adjacent to cell NCELL2 on secondary side.

43-56 JCELLS "Junction cell for secondary tee (optional).
57-70 JCELLP Junction cell for primary tee (optional; if JCELLP >0, then JCELLS >0).

Card Number 6. (Format 3 I14, E14.6) IHYD3, NCELL3, JUN3, COSTS
(Card 6 is read only if JCELLS >0 on Card Number 5.)
Columns Variable Description
1-14 IHYD3 Variable not used.
15-28 NCELL3

Variable	Dimension	Description
FRIC	NCELL4+1	Tee-tube additive loss coefficients.
GRAV	NCELL4+1	Tee-tube gravity teris. (See PIPE, Sec. V.F.5.e.)
HD	NCELL4+1	Tee-tube hydraulic diameters (m).
NFF	NCELL4+1	```Friction-factor correlation options for primary tee tube. (See ACCUM imput description (Sec. V.D.a.)```
ALP	NCELL4 ${ }^{\text {- }}$	Tee-tube initial void fractions (-).
VL	NCELL4+1	Tee-tube initial liquid velocities (m/s).
VV	NCELL4+1	Tee-tube initial vapor velocities (m/s).
TL	NCELL4+1	Tee-tube initial liquid temperatures (K).
TV	NCELL4	Tee-tube initial vapor temperatures (K).
P	NCELL4	Tee-tube initial pressures (Pa).
PA	NCELL 4	Tee-tube initial air partial pressures (Pa).
1.	e Component	

Card Number 1. (Format A10,4X,2114, A30) TYPE, NUM, ID, CTITLE

Columns	Variable	Description
1-14	TYPE	Component type (TEE left justified).
15-28	NUM	Component ID number (must be unique for each component, $1 \leq$ NUM ≤ 99).
29-42	ID	User ID number (arbitrary).
43-72	CTITLE	Hollerith component description.
Card Number 2.	(Format 3I14,	E14.6, I14) JCELL, NODES, MATID, COST, ICHF
1-14	JCELL	Junction cell number.
15-28	NODES	Number of radial heat-transfer nodes in the tee wall. (Zero implies no wall heat transfer.)
29-42	MATID	Material ID number of tee wall. (See PIPE input description, Sec. V.F.5.e.)

Columns	Variable	Description
43-56	COST	Cosine of the angle from the low-numbered side of the primary tube to the secondary tube.
57-70	ICHF	CHF calculation flag. $\begin{aligned} & 0=\text { no } ; \\ & 1=\text { yes } . \end{aligned}$
Card Num	(Format 5	IHYD1, NCELL1, JUN1, JUN2
Columns	Variable	Description
1-14	IHYD1	Variable not used.
15-28	NCELLI	Number of fluid cells in the primary tee tube.
29-42	JUN1	Junction number for the junction adjacent to cell 1.
43-56	JUN2	Junction number for the junction adjacent to cell NCELL1.
Card Num	(Format	RADIN1, TH1, HOUTL1, HOUTV1, TOUTL1
Columns	Variable	Description
1-14	RADIN1	Inner radius (m) of the primary tube wall.
15-28	TH1	Wall thickness (m) of the primary tube.
29-42	HOUTLI	HTC ($\mathrm{W} / \mathrm{m}^{2}!\mathrm{K}$) between outer boundary of the primary tube wall and liquid outside the primary tube wall.
43-56	HOUTV 1	HTC (W/m2 . K) between outer boundary of the primary tube wall and vapor outside the primary tube wall.
57-70	TOUTL1	Liquid temperature (K) outside the primary tube wall.
Card Num	(Format E	TOUTV1
1-14	TouTV1	Vapor temperature (K) outside the primary tube wall.
(See PIPE module description, Sec. IV.A, for further comments on these heát-transfer parameters.)		

Variable	Dimension	Description
GRAV	NCELL1+1	Primary-tube gravity terms (see PIPE input description, Sec. V.F.5.e.)
HD	NCELL1+1	Primary-tube hydraulic diameters (m).
NFF	NCELL1+1	```Friction-factor correlation options for primary tube. (See ACCUM input description, Sec. V.F.5.a.)```
ALP	NCELL 1	Primary-tube initial void fractions (-).
VL	NCELL1+1	Primary-tube initial liquid velocities (m/s).
VV	NCELL1+1	Primary-tube initial vapor velocities (m/s).
TL	NCELL1	Primary-tube initial liquid temperatures (K).
TV	NCELL1	Primary-tube initial vapor temperatures (K).
P	NCELL 1	Primary-tube initial pressures (Pa).
PA	NCELL1	Primary-tube initial air partial pressures (Pa).
QPFP	NCELL1	```Voliumetric heat sources (W/m}\mp@subsup{)}{}{3})\mathrm{ in tee wall for primary tube. (Eliminate this card set if NODES = 0.)```
TW	NODES*NCELL 1	Primary-tube initial wall temperatures (K). (Eliminate this card set if NODES = O.)
DX	NCELL2	Secondary-tube cell lengths (m).
VOL	NCELL2	Secondary-tube cell volumes (m^{3}).
FA	NCELL2+1	Secondary-tube cell-edge flow areas (m2).
FRIC	NCELL2+1	Secondary-tube additive loss coefficients.
GRAV	NCELL2+1	Secondary-tube gravity terms (see PIPE input description, Sec. V.F.5.e.)
HD	NCELL2+1	Secondary-tube hydraulic diameters (m).
NFF	NCELL2+1	```Friction-factor correlation options for secondary tube. (See ACCUM input description, Sec. V.F.5.a.)```
ALP	. NCELL2	Secondary-tube initial void fractions (-).
VL	NCELL2+1	Secondary-tube initial liquid velocities (m/s).

flow-area cross section. Otherwise, a consistent value of FAVLVE is evaluated in TRAC based on $0.0 \leq X P O S \leq 1.0$ that $i_{i s}$ input.
(See PIPE module description, Sec. IV.A, for further comments on the heat-transfer parameters, HOUTL, HOUTV, TOUTL, and TOUTV.)

VALVE Array Cards. Nineteen sets of cards, one set for each of the following variables. Use LOAD format.

Variable	Dimension	Description
DX	NCELLS	Cell lengths (m).
VOL	NCELLS	Cell volumes (m^{3}).
FA	NCELLS+1	Cell-edge flow areas (m).
FRIC	NCELLS+1//	Additive loss coefficients.
GRAV	NCELLS+1	Gravity terms. (See PIPE, Sec. V.F.5.e.)
HD	NCELLS+1	Hydraulic diameters (m).
NFF	NCELLS+1	Friction-factor correlation options. (See ACCUM input description, Sec. V.F.5.a.)
ALP	NCELLS	Initial void fractions (-).
VL	NCELLS +1	Initial liquid velocities (m/s).
VL	NCELLS+1	Initial vapor velocities (m/s).
TL	NCELLS	Initial liquid temperatures (K).
TV	NCELLS	Initial vapor temperatures (K).
P	NCELLS	Initial pressures (Pa). है।
PA	NCELLS	Initial air partial pressures (Pa).:
QPPP	NCELLS	Volumetric heat sources ($\mathrm{W} / \mathrm{m}^{3}$) in valve wall. (Eliminate this card set if NODES = O.)
TW	NODES*NCELLS	Initial wall temperatures (K). (Eliminate this card set if NODES = O.)
VLOTB	NVOTB*2 :	First valve table; input pairs (signal-variable form defined by IVSV on Card Number 3 and NVRF on Card Number 4, flow-area fraction or valvestem fraction): When IVTY $=1$ to 4, VLOTB is defined.

Card Number 3. (Format 5I14) IDCU, IDCL, IDCR, ICRU, ICRL

Columns	Variable	Description
1-14	IDCU	Axial segment level at which the upper elevation is the downcomer upper boundary elevation.
15-28	IDCL	Axial segment level at which the upper elevation is the downcomer lower boundary elevation.
29-42	IDCR	Radial segment ring at which the outer radius forms the downcomer inner radial boundary.
43-56	ICRU	Axial segment level at which the upper elevation is the core upper boundary elevation.
57-70	ICRL	Axial segment level at which the upper elevation is the core lower boundary elevation.
Card Number 4.	(Format 4I14)	ICRR, ILCSP, IUCSP, IUHP
Columns	Variable	Description
1-14	ICRR	Radial segment ring at which the outer radius forms the core outer radial boundary.
15-28	ILCSP	Axial segment level at which the upper elevation is the lower core-support-plate elevation as used for graphics output. (Defaults to ICRL: on Card Number 3) if ILCSP = 0.)
29-42	IUCSP	Axial segment level at which the upper elevation is the upper core-support-plate elevation as used for graphics output. (Defaults to ICRU on Card Number 3 if IUCSP $=0$.)
43-56	IUHP	Axial segment level at which the upper elevation is the upper head-support-plate elevation as used for graphics output. (Defaults to IDCU on Card Number 3 if IUHP = 0.)
Card Number 5. Columns	(Format 5I14) Variable	NFFA, NFFR, NFFT, NRODS, NVENT Description
1-14	NFFA	Axial friction-factor correlation option. (Set $\mathrm{NFFA}=0$.)
15-28	NFFR	Radial friction-factor correlation option. (Set NFFR $=0$.)
29-42	NFFT	Azimuthal friction-factor correlation option. (Set $\mathrm{NFFT}=0$.)

Columns	Variable	Description
43-56	NRODS	Total number of computational rods within the vessel (greater than or equal to the number of core mesh cells in the horizontal plane, ICRR*NTSX) .
57-70	NVENT	Number of vent valves in the VESSEL component. There is one vent valve per connection between cells, so lump actual ones for each cell.
Card Num	(Format	DTXHT(1), DTXHT(2), DZNHT
Columns	Variable	Description
1-14	DTXHT(1)	Maximum $\Delta T(K)$ above which rows of nodes are inserted in the fuel-rod conduction calculation during reflood for the nucleate and transitional boiling regimes (suggested value $=3.0$) .
15-28	DTXHT(2)	Maximum $\Delta T(K)$ above which rows of nodes are inserted in the fuel-rod conduction calculation during reflood for all boiling regimes except nucleate and transitional (suggested value $=10.0$) .
29-42	DZNHT	Minimum ΔZ (m) below which no additional rows are inserted in the fuel-rod conduction calculation during the reflood calculation (this value comes from the diffusion number).
Card Num	(Format 3	HGAPO, PDRAT, FUCRAC, SHELV
Columns	Variable	Description
1-14	HGAPO	Fuel-rod gap conducjtance coefficient ($\mathrm{W} / \mathrm{m}^{2} / \mathrm{K}$) (constant for NFCI = 0 on Card Number 10; otherwise, initial value).
15-28	PDRAT	Fuel-rod pitch-to-diameter ratio.
29-42	FUCRAC	Fraction of fuel not cracked. Use only if NFCI $=1$ on Card Number 10.
43-56	SHELV	The shift added to the cell-centered axial elevations (m) based on the vessel z-input (see VESSEL Geometry Cards) when computing GRAV for one-dimensional components (used when IELV $=1$).

Card Number 8. (Format 5I14) NODES, NPWX, IRPOP, IRPTR, NODHS

Columns	Variable	Description
1-14	NODES	Number of fuel-rod radial heat-transfer nodes must be greater than or equal to four if a core region is specified).
15-28	NPWX	Number of pairs in reactor power-reactivity table (signal-variable form, power, or reactivity).
29-42	IRPOP	Reactor kinetics option (input parameters required for each option are shown in parentheses). Add 10 to the option value of IRPOP if a reactivity feedback evaluation is to be performed.
'	IRPOP	Option
	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Constant power (RPOWRI) Reactor kinetics with constant programmed reactivit.y (RPOWRI, REACT)
	3	Reactor kinetics with table lookup of programmed reactivity (RPOWRI, NPWX, PWTB)
	4	Reactor kinetics with trip-initiated constant programmed reactivity insertion (RPOWRI, IRPTR, REACT)
	5	Reactor kinetics with trip-initiated table lookup of programmed reactivity (RPOWRI, IRPTR, NPWX, PWTB)
	7	Table lockup of power (NPWX, PWTB) Constant initial power with trip-initiated table lookup of power (RPOWRI, IRPTR, NPWX,
	"	, PWTB)
43-56	IRPTR	Power or reactor-kinetics trip ID number.
57-70	NODHS	The number of heat-transfer nodes used in all of the vessel slabs. A value of 1 defaults to the lumped-parameter model.

Card Number 9. (Format 5I14) INHSMX, NPSZ, IPSTR, IPSSV, NPSRF

Columns	Variable	Description
1-14	INHSMX	The maximum number of interfaces between dissimilar materials. An internal check is made and an error message results for inconsistent values (INHSMX ≥ 1).
15-28	NPSZ	The number of arial power shapes in the axlal-power-shape table (NPSZ ≥ 1 when NRODS 21 ; otherwise, $N P S Z=0$).
29-42	IPSTR	The axial-power-shape trip ID number. (Currently not used.)
43-56	IPSSV	The signal-variable ID number that defines the independent variable in the axial-power-shape table.
57-70	NPSRF	The number of the rate-factor table pairs where the rate factor is dependent on the axial-powershape trip signal difference from its trip OFF set point. The rate factor is to be applied to changes in the axial-power-shape-table independent variable defined by IPSSV. (Currently not used.)

Card Number 10. (Format 5I14) NRFDT, NMWRX, NFCI, NFCIL, NZMAX

Columns	Variable	Description
1-14	NRFDT	Reflood rod fine-mesh calculation trip ID number (if zero, no fine-mesh calculation is performed if $\mathrm{NRFDT}=0$).
15-28	NMWRX	```Metal-water reaction option. 0=off; 1 = on.```
29-42	NFCI	FCI option. Option 1 performs the dynamic gap conductance calculation. $\begin{aligned} & 0=\text { of } f ; \\ & 1=\text { on } . \end{aligned}$
43-56	NFCIL	Limit on FCI calculations per time step (set NFCIL = 1).
57-70	NZMAX	Maximum number of rows of nodes used in the fuel-rod conduction calculation.

Card Number 11. (Format 5I14) NDGX, NDHX, NRTS, IRPSV, NRPRF

Columns	Variable	Description
1-14	NDGX	The number of delayed-neutron groups (NDGX ≤ 0 defaults to six delayed-neutron groups with the delayed-neutron constants defined internally in TRAC).
15-28	NDHX	The number of decay heat groups (NDHX ≤ 0 defaults to 11 decay heat groups with the decay heat constants defined internally in TRAC).
29-42	NRTS	The number of time steps the reactivity feedback changes are summed over for printout (NRTS ≤ 0 defaults to 10).
43-56	IRPSV	The signal-variable ID number that defines the independent variable in the reactor powerreactivity table.
57-70	NRPRF	The number of rate-factor table pairs where the rate factor is dependent on the powerreactivity trip-signal difference from its trip OFF terminating set point. The rate factor is to be applied to changes in the reactor power-reactivity table independent variable defined by IRPSV.
Card Num	(Format 5E	RPOWRI, REACT, PLDR, TNEUT, POWSCL
Columns	Variable	Description
1-14	RPOWRI	Initial reactor power (W).
15-28	REACT	Initial programmed reáctivity (IRPOP options 2 and 4 only).
29-42	PLDR	Pellet dish radius (m). (No calculation of pellet dishing is performed if $\mathrm{PLDR}=0.0$.)
43-56	TNEUT	The prompt neutron lifetime (s) [TNEUT ≤ 0.0 defaults to the value $1.625 \times 10^{-5} \mathrm{~s}$ set internally in TRAC].
57-70	POWSCL	Power-reactivity-table (variable PWTB) scale factor. The dependent variable in PWTB is multiplied by POWSCL to obtain its absolute value.

(If IRPOP < 11 on Card Number 8, skip Card Number 13.)

Columns	Variable	Description
1-14	RCFORM (I)	The form number for the reactivity coefficient type $[0.0=\delta k / \delta x, 1.0=(1 / k)(\delta k / \delta x)$, $2.0=x(\delta k / \delta x), 3.0=(x / k)(\delta k / \delta x)$ for independent variables $x=T_{\text {fuel }}$ for $I=1$, $T_{\text {coolant }}$ for $I=2$, and $\alpha_{\text {coolant }}$ for $I=3$].
15-28	RCA(I)	The coefficient for the zeroth power polynomial term defining the $I^{\text {th }}$ independent-variable reactivity coefficient.
29-42	$\mathrm{RCB}(\mathrm{I})$	The coefficient for the first power polynomial term defining the $I^{\text {th }}$ independent-variable reactivity coefficient.
43-56	RCC(I)	```The coefficient for the second power polynomial term defining the ith independent-variable reactivity coefficient.```
(The above card consists of three records, one for each of the independent variables $x=T_{\text {fuel }}, T_{\text {coolant }}$, and $\alpha_{\text {coolant }}$.		
VESSEL Geometry Cards. Three sets of cards, one set for each of the following variables. Use LOAD format.		
Variable	Dimension	Description
Z	NASX	Upper elevations (m) of axial segment levels. (Referenced to zero elevation at the bottom interface of the first axial segment level in the vessel.)
RAD	NRSX	Outer radii (m) of radial segment rings.
TH	NTSX	Theta angles (rad) at azimuthal segment ends. For NTSX $=1$, the VESSEL component is twodimensional and $x-y$ slab geometry applies.
If NVENT $=0$ on Card Number 5, skip the next two card types.		
VESSEL Vent-Valve Location and Area Cards. (Format 2I14, E14.6) IZV, KV, AVENT		
Oin card per cell with the vent valves on the outer radial surface.		
Columns	Variable	Description
1-14	IZV	Axial segment level in the vessel.
15-28	KV	Horizontal plane relative cell number.
29-42	AVENT	Total area (m^{2}) of vent valves in outer radial wall of cell.

VESSEL Vent-Valve Pressure Drop and Friction-Loss Cards. (Format 4E14.6))
DPCVN, DPOVN, FRCVN, FROVN
One card per cell with the vent valves on the outer radial surface.

Columns	Variable	Description
1-14	DPCVN	Maximum pressure drop (Pa) between the inner and outer radial cells for vent valve to be closed.
15-28	DPOVN	Minimum pressure drop (Pa) between the inner and outer radial cells for vent valve to be opened.
29-42	FRCUN	Additive friction loss coefficient for vent valve in closed position.
43-55	FROVN	Additive friction loss coefficient for vent valve in open position.
VESSEL Source Cards. (Format 4114) LISRL, LISRC, LISRF, LJUNS		
One card per component connection source. See vessel description,Sec. IV.I.		
Columns	Variable	Description
1-14	LISRL	Axial segment level number associated with the source.
15-28	LISRC	Horizontal plane relative cell number associated with the source. (See Sec. IV.I.)
29-42	LISRF	Face number associated with the source. 1 = azimuthal direction; $2=$ axial direction; 3 = radial direction. A positive number indicates a connection into the top, outer radius, or second azimuthal face of the cell whereas a negative number indicates a connection into the bottom, inner radius, or first azimuthal face of the cell.
43-56	LJUNS	Junction number associated with the component source.

VESSEL Core Cards. Twenty-six sets of cards, one for each of the following variables. Omit these cards if there is no core. Use LOAD format.

Note: See Sec. IV.I for precise definitions of the following parameters and the ordering conventions used for reading in the data. Many parameters are read in with dimension (ICRR*NTSX). These paraneters are supplied for each (r, θ) mesh cell in the horizontal plane core region. Each such cell constitutes one of the axial channels in the core formed by a stack of mesh cells with the same (r, θ) mesh boundaries. Each (r, θ) mesh cell encloses a number of fuel rods and their associated coolant channels.

Variable	Dimension	Description
RDPWR	NODES	Relative radial power density at the node positions.
CPOWR	ICRR*NTSX	Average fuel-rod relative power density in each (r, θ) mesh cell.
IDROD	NRODS-ICRR*NTSX	Definition of the cells in which the additional fuel rods are placed.
RPKF	NRODS-ICRR*NTSX	Fuel-rod power peaking factors (relative to the average fuel rod) in the additional rods.
2POWR	" (ICRU-ICRL+2)*NPSZ	Axial-power-shape table; input [signalvariable form defined by IPSSV and NPSRF on Card Number 9, relative axial-power-shape densities (ICRU-ICRL+1 values)] pairs. The relative axial-power-shape densities defining the axial power shape are specified at the axial segment level interfaces from one end of the fuel rod to the other. There are NPSZ axial power shapes, each having (ICRU-ICRL+1) values.
PSRF	NPSRF*2	Rate factor table for the trip-controlled axial-power-shape-table independent variable defined by IPSSV on Card Number 9; input pairs (trip signal minus the set point that turns the trip OFF, rate factor to be applied to the axial-power-shape table independent variable).

(Omit the next three variables if $N D H X \leq 0$ is input; the default 11 group decay heat constants are defined internally in TRAC.)

Variable	Dimension	Description
LAMDH	NDHX	The decay-heat decay constant (s^{-1}).
EDH	NDHEX	The ${ }^{\text {t) }}$ effective decay-heat energy fraction.
CDHN	NDHX	The decay-heat concentrations. If 0.0 is input, steady-state values are evaluated internally based on LAMDH, EDG, and RPOWRI.
NFAX	ICRU-ICRL	Number of permanent fine-mesh intervals per coarse-mesh interval added at the start of the reflood calculation. (The total number of heattransfer rows per fuel rod must be less than NZMAX).
FPUO2	ICRR*NTSX	Fraction of plutonium dioxide $\left(\mathrm{PuO}_{2}\right)$ in mixed oxide fuel.
FTD	ICRR*NTSX	Fraction of theoretical fuel density.
GMIX	ICRR*NTSX*7	Mole fraction of gap gas constituents. Array is not used if NFCI $=0$ but still must be input. Enter data for each gas in the order indicated.
		Index Gas
		1 Helium
		2 Argon
		3 Xenon
		4 Krypton こ
		5 Hydrogen
		6 Air/nitrogen
	0	7 Water vapor
GMLES	ICRR*NTSX	Moles of gap gas per fuel rod (not used).
PGAPT	ICRR*NTSX	Average gap gas pressure (Pa) (not used if $\mathrm{NFCI}=0$) 。
PLVOL	ICRR*NTSX	Plenum volume (m^{3}) in each fuel rod above the" pellet stack (not used).
PSLEN	ICRR*NTSX	Pellet stack length (m) (not used).
CLENN	ICRR*NTSX	Total cladding length (m) (not used).

VESSEL Level Cards. Twenty-eight sets of cards, one for each of the following variables for each axial segment level. Use LOAD format. If desired, an entire level can be repeated by a single REPEAT LEVEL card. (See description after the level data description.)

Note: The following parameters (dimensioned NRSX*NTSX) are read in for each (r, θ) mesh cell at each axial segment level. Here they extend over the entire vessel horizontal plane for each axial segment level. Because a separate data set is read for each axial segment level, these parameters are supplied for all mesh cells in the vessel.

Variable	Dimension	Description
HSA	NRSX*NTSX	Heat-slab area $\left(m^{2}\right)$. If no slab is desired in a cell, input 0.0 for the area.
HSX	NODHS*NRSX*NTSX	Heat-slab node position (m). For each cell, HSX should increase monotonically; the first node sees the adiabatic boundary; and node NODHS sees the fluid-heat-transfer boundary.
CFZL-T	NRSX*NTSX	Liquid additive friction loss coefficients (θ-direction).
CFZL-Z	NRSX*NTSX	Liquid additive friction loss coefficients (z-direction).
CFZL-R	NRSX*NTSX	Liquid additive friction loss coefficients (r-direction).
CFZV-T	NRSX*NTSX	Vapor additive friction loss coefficients (θ-direction).
CFZV-Z	NRSX*NTSX	Vapor additive friction loss coefficients (z-direction).
CFZV-R	NRSX*NTSX	Vapor additive friction loss coefficients (r-direction).
VOL	NRSX*NTSX	Cell fluid volume fractions.
FA-T	NRSX*NTSX	Cell fluid-edge average area fractions (θ-direction).
FA-Z	NRSX*NTSX	Cell fluid-edge average area fractions (z-direction).

Variable	Dimension	Description
FA-R	NRSX*NTSX	Cell fluid edge average area fractions (r-direction).
HD-T	NRSX*NTSX	Hydraulic diameters (m) (θ-direction).
HD-Z	NRSX*NTSX	Hydraulic diameters (m) (z-direction).
HD-R	NRSX*NTSX	Hydraulic diameters (m) (r-direction).
HSTN	NODHS*NRSX*NTSX	Heat-slab temperatures (K). Do not input 0.0 temperatures.
MATHS	(NODHS-1)*NRSX*NTSX	```Heat-slab material ID numbers. All material ID"numbers must , be defined (see Sec. V.F.5.e--card 2).```
ALPN	NRSX*NTSX	Vapor fraction (-).
VVN-T	NRSX*NTSX	Vapor velocity (m/s) (θ-direction).
VVN-Z	NRSX*NTSX	Vapor velocity (m/s) (z-direction).
VVN-R	NRSX*NTSX	Vapor velocity (m/s) (r-direction).
VLN-T	NRSX*NTSX	Liquid velocity (θ-direction).
VLN-Z	NRSX*NTSX	Liquid velocity (z-direction).
VLN-R	$\underset{4}{\mathrm{NRSX} * N T S X}$	Liquid velocity (r-direction).
TVN	NRSX*NTSX	Vapor temperature (K).
TLN	NRSX*NTSX	Liquid temperature (K).
PN	NRSX*NTSX	Pressure (Pa).
PAN	NRSX*NTSX	Air partial pressure (Pa). "
REPEAT L	d. (Format A12, 2 x , datá from one le be used as neede after the data for the next lev	I14) This card can be used to repeat the vel to another. As many of these cards can d. Each REPEAT LEVEL card should be placed or the preceding level and before the data el. These cards may be used consecutively.
Columns	Variable	Description
1-14	AREP	The character string: "REPEAT, LEVEL."

Columns	Variable		
4. $15-18$		\quad	Description
:---	\quad	The number of the level to be repeated.	
:---			
The value of NLEV must be greater than one			
but less than the number of the level that			

VESSEL Fuel-Rod Cards. Two sets of cards, one for each of the following variables for each fuel rod. Omit these cards if there is no core. Use LOAD format.

Variable	Dimension	Description
BURN	(ICRU-ICRL+1)	Fuel burnup (MWD/MTU).
RDTN	NODES*(ICRU-ICRL+1)	Fuel-rod temperatures (K).

6. . PWR-Initialization Data. The following cards are required only if a PWR-initialization calculation is to be performed. (This is indicated by setting STDYST $=2$ or 3 on Main Control Card 1.)

Card Number 1. (Format Il4) NLOOP

Card Number 3. (Format I14, E14.6) JNLPC1, WLPC1

Columns	Variable	Description
1-14	JNLPC1	Identification number of the vessel junction connected to the outlet side of the first primary-1oop coolant pump.
15-28	WLPC1	Desired mass flow"(kg/s) through the first primary-loop coolant pump.

Card Number 4. (Format I14, E14.6) JNLPC2, WLPC2
(Omit this card if $\operatorname{NLPMP}=1$.)

Columns	Variable	Description $1-14$
JNLPC2	Identification number of the vessel junction connected to the outlet side of the second primary-loop coolant pump.	
$15-28$	WLPC2	Desired mass flow (kg/s) through the second primary-loop coolant pump.

7. Time-Step Data. The last data block of input information is the time-step cards for directing the calculation and output edit. The problem time span is separated into domains. Each domain (specified by two cards) may have different minimum and maximum time-step sizes and edit intervals. Any number of time domains may be input. The end of the calculation is specified by making the minimum time-step size a negative number. An exception to this rule occurs if a PWR-initialization calculation is done. See Sec. III.D. 2 for a detailed description of the steady-state calculations. The format of each set of two time-step cards is as follows.

Card Number 1. (Format 5E14.6) DTMIN, DTMAX, TEND, RTWFP, RELX

Columns	Variable	Description
1-14	DTMIN	Minimum allowable time-step size (s) for this time domain.
15-28	DTMAX	Maximum allowable time-step size (s) for this time domain.
29-42	TEND	End time (s) of this time domain.
43-56	RTWFP	Ratio between heat-transfer and fluid-dynamics time-step sizes. (Used only for steady-state calculations, suggested value $=1000.0$.)
57-70	RELX	PWR-initialization relaxation factor (suggested value $=1.0$).

Card Number 2. (Format 4E14.6) EDINT, GFINT, DMPINT, SEDINT

Columns	Variable	Description $1-14$
EDINT	Print edit interval (s) for this time domain.	
29-42	GFINT	Graphics edit interval (s) for this time domain.
$43-56$	SEDINT	Restart dump interval (s) for this time domain.

G. LOAD Subroutine

The TRAC program uses the LOAD subroutine to read most subscripted array variables. The arrays may be read in floating point or integer format. The input card images for subscripted variables consist of up to six fields. . The first five fields consist of an (Al), a repeat count (I2) (for operations R, M, and I), and a floating point or integer data constant (Ell. 2 or Ill) (except for operatives E and S). The sixth field can be used for operation E only if the array data end in the fifth field. In formatted input decks, cards with an asterisk in column 1 are ignored and may be used as spacers or for comments.

Seven operations are defined. These operations and an explanation of each are listed below.

Operation

Description

Fill array starting at current data index with data constant No action Repeat data constant I2 times Multiple repeat. Repeat data constant 10*I2 times Interpolate between data constant and succeeding data constant with 12 points
E End of data array (must be followed by at least one blank)
S Skip to next card

Some restrictions in the use of the LOAD format are:

1. end of data for an array must be signaled by E,
2. overstore or partial fill of an array is not allowed,
3. Integer interpolation is not allowed, and
4. data for different arrays must be on different records.

Following are examples of the use of the options listed above to fill an array of dimension 11 with data.

EXAMPLE 1. Fill an integer array with a value of 61.

EXAMPLE 2. Use of the repeat option to fill an array with a value of 1.2. Rlla^^anl.2aの^E

EXAMPLE 3. Use of the skip option.

EXAMPLE 4. Use of the multiple repeat option to fill an array with 101 values.

EXAMPLE 5. Use of the interpolation option to get points 1.0, 2.0, 3.0, ..., 11.0 .
I. 9 \qquad
H. Free Format

Appendix C shows part of a TRACIN deck in free format that illustrates the points discussed here. Section V.F gives the TRAC-PF1 input specifications for formatted input. When the free-format option is chosen, TRAC-PFl Internally converts a free- format TRACIN deck to a new deck in TRAC format that is written to a file called TRCINP. File TRCINP is subsequently and automatically read by the standard input routines. Therefore, to use the free-format option, all cards must be kept in the same order as shown in Sec. V.F and all variables must stay in the same order on those cards. Input records may be up to 80 columns long. All data not to be read by the LOAD routine must be delimited by at least one blank column. (However, data may start in column 1 or end in column 80.) Array data to be read by the LOAD routine may be blank delimited: delimited by any of the LOAD control characters, F, R, S, I, M, or E; or delimited by a control-character repeat count.

Note the following examples，all of which will run in free－format mode．

Faのananl．OE +07 E
also TRAC format

F～1．OE＋07E
Fanl．OE $+07 E$
F1．OE +07 E

etc．
free format

also TRAC format；both modes read 10 repeats， 2 repeats

Rlへの＾anl． $0 \mathrm{E}+07$
free－format reads 1 repeat；TRAC format（I2）reads 10 repeats

R＾10＾1．0E＋07の＾Rの2＾1．1E＋07

R＾のค101．OE +07 ค＾のR＾2＾1．1E +07
etc．
Eree format；all three read 10 repeats， 2 repeats

Note the Ranal01．0E＋07 example．The free－format parser scans to the first character after the R ；it includes the next character in the repeat count if that character is a nonblank numeric．There is one exception to this rule：a situation such as R－112．3456E＋07，where the control character is followed by one space，a two－digit repeat count，and a nonblank column．To facilitate conversion of existing TRAC－format decks，this field is assumed to indicate 1 repeat of $12.3456 \mathrm{E}+07$ ，not 11 of $2.3456 \mathrm{E}+07$ ．The following examples will give 11 repeats：

R11．2．3456E＋07
R＾11，2．3456E＋07
Rのヘ112．3456E＋07
R112．3456E＋07

The E character of the LOAD subroutine is recognized as part of the string "E^an" so the three columns after the E should be blank. The E can appear in column 78,79 , or 80 with any remaining columns blank.

The LOAD data must be 11 characters or less; non-LOAD data, 14 or less.
The requirement to blank-delimit data carries with it the requirements that embedded and significant trailing blanks be punched explicitly as zero. The user of the free-format option also should note that to run previously formatted decks that have all-blank 14 -column fields meant to represent zero, the zero must be entered explicitly. Of course, this is not necessary for trailing fields. In this regard, note, for exampı, the one-dimensional component variable IHYDRO that presently is not used by TRAC-PFl. A dummy value must be input for this variable. The NAMELIST input is presently implemented using CDC-FTN-FORTRAN. The format is essentially free but there are a few restrictions that are discussed in Sec. V.I.

1. Free-Format Comments, Problem Title Cards, and Hollerith

Component Descriptions. Free-format TRACIN decks may be annotated with user comments. These comments must be delimited by asterisks (*) in unbroken strings of any length. The first card of the deck is an exception to this requirement. Comments and their delimiters are equivalent to blank columns. Should an input record have an odd number of comment delimiters (where *, **, ***, ****, etc. are all considered to be a single delimiter), everything on the record to the right of the last delimiter is considered a comment. Entire records may be comments, for example, by making the first nonblank character an asterisk. Comments and comment cards may appear anywhere in the deck except

1. in and immediately before the problem title cards,
2. before Main Control Card Number 1,
3. within NAMELIST group records (see additional comments on NAMELIST in Sec. V.I).

The NUMTCR title cards immediately following Main Control Card Number 2 (from which NUMTCR is read) are written to TRCINP exactly as they are read: asterisks, ${ }^{i} b l a n k$ cards, and all. B1ank and comment cards may appear between the first two main control cards and immediately after the NUMTCR title cards. Hollerith descriptions of individual components (the CTITLE.information) are written to TRCINP, left justified, starting in column 43. Asterisk strings in component descriptions are treated as comment delimiters. advantages over formatted runs in handing of many types of input errors. Free-format input-error handling occurs during two stages, first as TRACIN is being converted to TRCINP, and later as TRCINP is being read. In the first stage, when an error is detected (such as detectable errors that might arise from failure to blank-delimit data properly, for example, using $1.0 E_{\wedge} 07$ instead of 1.0 E 07 or $1.0 \mathrm{E}+07$) processing of the record in question is immediately halted, subroutine ERROR is called to send warning messages, and the record is flagged before it is written to TRCINP. In the second stage, under most circumstances a fatal FORTRAN input error will not force an immediate program abort; the entire deck will be processed and appropriate error messages issued before program termination. An exception to this situation occurs in the case of fatal NAMELIST errors. In situations where there are no errors detected but input problems are suspected, the user should inspect the file TRCINP, "where faulty records may be readily apparent.
I. NAMELIST Format

The NAMELIST statement is an extrenely useful--but nonstandard--FORTRAN statement that can be "used to input selectively values to subsets of groups of variables named in a program. The user-convenience features in TRAC available through NAMELIST input options are described in Sec. V.F, "TRAC-PF1 Input Specifications." The TRAC NAMELIST options are implemented using NAMELIST as described in the CDC-FTN-FORTRAN manual. (A somewhat more flexible NAMELIST is available at Los Alamos.) The reader is referred to the FTN manual for details. Here we point out that, although NAMELIST is essentially in free format, there are certain restrictions. At present these restrictions apply to all TRAC input decks, whether the TRAC free-format option is selected. The restrictions include the following (Los Alamos available extensions are indicated in parentheses):

1. Hollerith constants are not allowed (allowed).
2. The first column of all physical records is ignored [terminating dollar sign (\$) can appear in any column].
3: There must be no embedded blanks in the string \$NAME; where NAME is a NAMELIST group name, there must be at least one trailing blank. The initial \$ must appear in column 2.
3. Free-format *-delint cards. Also, free-f comment cards, are not allowed among the physical records of N 南价IST group record, although all-blank cards are allowed.

As an example, the following five cards might be used to input data for the NAMELIST group INOPTS (described in Sec. V.F).

```
123456789...
^$INOPTS^IELV=1, ^^IKFAC^=^1,
~~~ISTOPT=2,
ALP=0.,VL=0.,VV=0.,TL=550.,TV=550.,
~P=1.55E+07,PA=0..,QPPP=0., ~TW=5.5E+02,HSTN=550.,
~ $END
```


J. Output Files

Figure 42 shows the files read and written by TRAC during a problem. We discussed the two input files, TRACIN and TRCRST, in Sec. V.A, the free-format option output-input file TRCIND in Sec. V.H, and the dump output file, TRCDMP, in Sec. V.E. This section describes the remaining three output files, TRCOUT, TRCGRF, and TRCMSG.

The TRCOUT file contains printer output. This file is produced with standard FORTRAN write statements contained in the various component module output subroutines. Included are complete descriptions of the problem input file that was read by the code and the time edits that are produced with a frequency specified on the time-step cards. Each tine edit includes a printout of results from each component in a problem. The component output includes pressures, temperatures, and other important results. The TRAC error messages, if any, also are, written in the TRCOUT file. Appendix D describes these messages. Section IV gives a more complete description of individual component output.

The TRCGRF file contains graphics output and is a structured binary file produced with unformatted write statements. This file structure is discussed in Sec. VI.F. A Livermore Time Sharing System (LTSS) library computer code, GRIT, generates plots of the problem calculation from,trenRCGRF file. A versatile graphics package TRAP/EXCON also has been developed to produce high-quality plots and movies from the TRCGRF file. This package is designed for the Los Alamos National Laboratory $C D C 7600$ computer and is documented separately (to be published).

The TRCMSG file contains warning messages that are sometimes produced by various computational modules within TRAC. These warnings, written with formatted input/output (I/O), indicate difficulty with the progress of the problem.

Fig. 42.
TRAC input and output files.

VI. PROGRAMMING DETAILS

A. Overall Code Organization

During TRAC development, much attention was paid to the programming techniques. The decision was made to strive for a code structure that minimizes the problems of maintaining and extending the code. In addition, we attempted to program inll a manner that is understandable to knowledgeable persons in the LWR safety field and that reduces the difficulties of implementing TRAC at other"sites and/or computers. We also recognized that we should take advantage of the Laboratory's efficient, computing facility. In this case, the system is a CDC 7600 computer running on LTSS. In conflict situations, we ranked the importance of these goals in the order presented. Whenever possible, we segregated specialized coding to subprograms that perform specific, low-level service functions.

To attain these goals, modularity is the best approach. The TRAC program is modular in two important ways. Because it analyzes reactor systems that consist of specific types of components, the program contains subroutines that treat each component type. The TRAC components are described in Sec. IV. This modularity simplifies both the subroutine programming and the data associated with particular components. For example, because fuel rods are associated only with the VESSEL component, no fuel-rod data are referenced, nor are fuel-rod calculations performed by the subroutines that treat any other component.

Second, the TRAC program is functionally modular; that is, each TRAC subprogram performs a specific function. If the performance of a function requires modification, only those routines that perform that function must be altered. For example, if the dump/restart capability needs modification, only those routines that perform the dump/restart for the affected components require changes. Some low-level subprograms are used by all components, thereby strengthening this modularity. The most important low-level routines and a brief description of their functions are listed in Table IX. All TRAC subroutines are described in Appendix E.

Functional modularity within TRAC is taken a step further by its division into overlays. The use of an overlay structure originally was mandated by computer size limitations because the small CDC 7600 core memory, where all executable instructions must reside, is limited to 65536 60-bit words. This division isolates functional subunits within TRAC. Figure 43 displays a

Subprogram	Function
BKMOM	Initiates back-substitution'for stabilizing momentum equations.
BKSSTB	Initiates back-substitution for stabilizing mass and energy equations.
CHEN	Uses Chen correlation to evaluate the forced-convection nucleateboiling HTC.
CHF	Evaluates the critical heat flux based on a local-conditions formulation.
CLEAR	Sets an array to a constant value.
CYLHT	Calculates temperature-fields in a cylinder.
ERROR	Processes error conditions.
FEMOM	Sets up stabilizing momentum equations.
FF3D	Makes final pass update for all variables in three-dimensional vessel.
FLUX	Calculates mass flow at boundary of one-dimensional components for use in mass inventory.
FPROP	Calculates values for fluid enthalpy, transport properties, and surface tension.
FWALL	Computes a two-phase friction factor.
HTCOR	Computes HTCs from material surfaces to vapor and liquid.
HTPIPE	Averages velocities and generates HTCs for one-dimensional components.
HTVSSL	Averages velocities and generates HTCs for the vessel.
INNER	Performs an inner iteration for a one-dimensional component.
J1D	Fills boundary array at component junctions.
JUNSOL	Determines junction parameters for connecting and sequencing components.

TABLE IX (cont.)

Subprogram	Function
MFROD	Orders fuel-rod property selection and evaluates an average temperature for property evaluation.
MPROP	Orders structure property selection and evaluates an average temperature for property evaluation.
POSTER	Ferforms postpass calculation for a one-dimensional component.
PREPER	Performs prepass calculation for a one-dimensional component.
RDLCM	Transfers data from LCM into SCM.
RKIN	Integrates the neutron point-kinetics equations.
RODHT	Calculates the fuel-rod temperature field.
SAVBD	Moves boundary information into component arrays.
SCMLCM	Transfers the fixed-length, variable-length, and pointer tables to LCM.
SETBD	Stores component information into boundary arrays.
SLABHT	Calculates the slab temperatures.
STBME	Sets up stabilizing mass and energy equations.
TF1D	Controls solution of the hydrodynamic equations for one-dimensional components.
TF3DE	Evaluates constitutive relations for interfacial heat transfer and shear; makes an initial evaluation of new time velocities.
TF3DI	Sets up the linearized three-dimensional finite-difference equations.
THERMO	Calculates thermodynamic properties of water.
TRIP	Returns status of a TRIP.
TRPSET	Sets up trip status flags.
VOLV	Calculates cell average phase velocities for one-dimensional components.

$\begin{array}{ll}\text { WARRAY } & \text { Writes a real array to TRCOUT. } \\ \text { WIARR } & \text { Writes an integer array to TRCOUT. } \\ \text { WRLCM } & \text { Transfers a given number of words from SCM to LCM. }\end{array}$
calling tree of the TRAC overlays. Table X briefly describes the function of each overlay.

The TRAC component modularity can be seen in the data structure as well as in the program structure. We used the data modularity in a manner that efficiently utilizes the CDC 7600 computer. The CDC 7600 central memory is divided into two segments: small-core memory (SCM) and large-core memory (LCM). The CPU must retrieve the instruction stream from SCM, which is limited in size, but may retrieve data from either segment. Single-word accesses to SCM require between 27.5 and 275 ns to complete. S Single-word accesses to the 512 000-word LCM require 1760 ns to complete. For transfers of large data blocks between SCM and LCM, the transfer time per word is as low as 27.5 ns.

To take advantage of this feature, TRAC divides the data for each component into four blocks. These are the fixed-length table, the variable-length table, the pointer table, and the array data. The first three of these blocks are stored in SCM in the COMMON blocks, FLTAB, VLTAB, and PTAB, respectively. The structure of the FLTAB COMMON area is the same for all components. The variables in the VLTAB and PTAB COMMON areas differ from one component to another. Appendix F describes the fixed-length, variable-length, and pointer tables for each component.

The array data are stored in SCM within the dynamic storage array. The location of individual arrays is determined by the value of variables in the pointer table. Dynamic storage of data arrays permits effective use of space for many different problems. The array data for all components are contained in the SCM blank COMMON dynamic area. The pointer tables for all one-dimensional components have a common structure. The first 111 pointers locate the basic hydrodynamic, thermodynamic, and heat-transfer information and have the same interpretation for all one-dimensional components. The next 12 pointers locate data for wall heat transfer in those components that support

Fig. 43.
TRAC overlay structure.

TABLE X
TRAC OVERLAYS

Overlay	Function
MAIN	Controls overall flow of calculation. (The MAIN overlay also contains many service routines used throughout the code.)
INPUT	Reads input and restart files, assigns LCM storage space and saves input data there, and analyzes PWR loops for PWR-initialization calculations.
INIT	Initializes component data and graphics tables.
OUTER	Performs one complete outer iteration for all components.
PREP	Performs prepass for all components.
POST	Performs postpass for all components.
PWRSS	Evaluates new parameter values for the PWR-initialization option.
DUMP	Adds a dump at the current time to the TRCDMP file.
EDIT	Adds an edit at the current time to the TRCOUT file.
GRAF	Adds a graphics edit at the current time to the TRCGRF file.
CLEAN	Closes all output files.

the calculation. This comon structure permits construction of low-level subroutines that can manipulate data for any one-dimensional component, for example, subroutine INNER in overlay OUTER.

Data for a particular component are stored in the dynamic SCM areas only while TRAC processes that component. At other times the data are retained in LCH. Two service subroutines, RDLCM and WRLCM, use the efficient blocktransfer capability to transfer data to and from SCM as required. Processing of a component by TRAC begins with the transfer of its component data from LCM to SCM and the computation of the pointer variables based on the available space in the dynamic storage array. The processing of this component ends with the reverse data transfer from SCM to LCM. Figure 44 shows the relationship between SCM and LCM storage areas.

In addition to the data that refer to a particular component, TRAC uses many variables to describe the overall state of the calculation. These variables are grouped according" to their use into several other COMMON areas. Appendix G describes the structure of these COMMON areas, which are identical throughout TRAC.

The overall sequence of calculations is directed by the main program. Overlay INPUT always is invoked at the start of each TRAC execution to read component and control input data. The component data are initialized by overlay INIT. The reactor power level is set to zero at this point. The steady-state calculation (if requested) is performed by subroutine STEADY. Output operations are performed using the EDIT, GRAF, and DUMP overlays as required. During the steady-state calculation, the reactor power is turned on after the fluid flow rates have been established. This is to prevent high rod temperatures early in the steady-state calculation when the flow rates are small. If no steady-state calculation is performed, the reactor power is turned on by subroutine STEADY in preparation for the transient calculation, which is performed by subroutine TRANS. Overlays EDIT, GRAF, and DUMP are Invoked by TRANS to generate output as required. Overlay CLEAN is invoked to close all output files at the end of the problem or when a fatal error occurs. B. Input Processing

The processing of all TRAC input information is performed by the INPUT overlay. This information is of two types: input data cards retrieved from the input file, TRACIN, and restart information from the problem restart file,

TRCRST: In addition to obtaining the input data from the appropriate location, overlay INPUT also organizes the component data in LCM, assigns the array pointer variables for every component, allocates one fixed segment of the blank COMMON area, and analyzes the problem loop structure.

Subroutine INPUT is the entry point for this overlay and controls the input process. The main control parameters (see Sec. V.F.1) are read from the TRACIN file by subroutine INPUT. Using this information, INPUT allocates one

TABLE XI (cont.).

Pointer	Dimension	Array Description
LIVCON	NVCON+1	Pointer to network junction numbers that connect to a vessel.
LJJUT	$I T+1^{\text {b }}$	Storage area for pointers that locate the beginning of each system loop within data for IOU.
LNVCNL	IT+1	IA(LNVCNL+IL-1) points to the elements of IVCON and IVLJN that begin the $L^{\text {th }}$ loop.
LLOOPN	IT+1	IA(LLOOPN+IL-1) gives the element of the IORDER array that begins the ILth loop.
LNSIGP	IT	NSIGP(IL) is NSIG(IL) plus the number of steam generators in loop IL.
LNSIG	IT	NSIG(IL) is the total number of components excluding breaks and fills in a loop.
LNJN	IT	NJN(IL) is the number of network junctions in loop IL.
LIVLJN	NVCON+1	IVLJN(I) is the vessel junction number corresponding to the network junction number given by IVCON(I).
L IOU	IT2 ${ }^{\text {c }}$	Network junction numbers for the junctions of all components exclưding breaks and fills.
LLOOP	LENPCL ${ }^{\text {d }}$	Loop data for PWR-initialization calculations.
LVJN	4*NCSR	```Vessel junction data area within loop data area for PWR-initialization calculation.```
LVRH	NJNT	Storage for explicit information to evaluate equations of motion at network junctions.
LDVB	NJNT	Storage for the right-hand side of the network junction equations or the changes in junction velocities.
LDREV	NJNT	Storage for right-hand side of the vapor stabilizer equation.

TABLE XI (cont.)

Pointer	Dimension	Array Description
LDREL	NJNT	Storage for right side of the Liquid stabilizer equation.
LDRA	NJNT	Storage for right side of the air stabilizer equation.
LIDPCV	NVCON	Pointers to coefficients stored in DPCV.
LDPVC	Je	Locator that shows the beginning of coefficients to evaluate the derivatives of junction velocities with respect to vessel pressures:
LAOU	$J C^{f}$	Network junction coefficient matrix.
LOD	4*NJNMX	Temporary storage for intercomponent coupling information.

```
    \(a_{\mathrm{KPTT}}=7 * \mathrm{NTSV}+80 * \mathrm{NTRP}+38 *\) NTSE \(+12 * \mathrm{NTCT}+23 * \mathrm{NTSF}^{2}+\mathrm{NTDP}+15 * \mathrm{NTSD}+10\).
    \(\mathrm{b}_{I T}=(N V C O N+\) the number of BREAKS + the number of FILLS) \(/ 2+2\).
CIT2 \(=\operatorname{MAXO}\{3,3 *[\) IA(LJOUT + NLOOPS \()-1]\}\).
\(\mathrm{d}_{\text {LENPCL }}=\) the amount of storage needed for all the primary
    coolant loops + 2 .
\(e_{j}=\) Product of the number of junctions in each loop and the number of
    vessel connections in each loop summed over all loops.
\(\mathrm{f}_{\mathrm{JC}} \quad=\) MAXO \(\left[\mathrm{NVCON}^{*} 2 *(\mathrm{JNVSSL}+1), \operatorname{NJNMX} *(N J N M X+2)\right]\).
```

fixed segment of the SCM blank COMMON area, as described in Table XI. The remainder of the fixed seqment of $S C M$ is allocated by subroutine INIT. At the end of each of the overlays, INPUT and INIT, these fixed segments are moved to the end of the dynamic SCM area. (This is done to facilitate special handing of this area on the Laboratory computer.) The signal-variable and trip data from the TRACIN file are read and processed by subroutine RCNTL, which creates the CNTL array described in Fig. 45. Subroutine RDCOMP reads the component data from the TRACIN file, assigns pointer values to the data, and then stores the data in LCM. Signal-variable, trip, and component data are retrieved from the restart file TRCRST by subroutine RDREST. This subroutine is analogous to

RDCOMP, as described below. Finally, INPUT utilizes the subroutines, ASIGN, SRTLP, and RDLOOP, to fill the component LCM pointer array; to sort system components; and to process the PWR-initialization input, respectively.

Subroutine RDCOMP invokes a component input routine to process each component. Table XII lists these routines. Input routines for one-dimensional components utilize subroutine RCOMP to read data that are common to all one-dimensional components. Subroutine RDCOMP determines each component type by reading the first input card. When a component type "END" is encountered, RRDCOMP knows that all component input has been read. The component input routines perform the following functions: read input cards for a component, store data in the component data tables and write them to LCM, assign relative pointers for the component array data, and fill in the JUN array, as described in Table XIII.

If not all components have been read from the TRACIN file, subroutine RDREST reads the remaining components from the restart file, TRCRST. This file is opened and the dump corresponding to the requested time-step number (input on Main Control Card 1) is located. (If the requested time step is negative, RDREST uses the last dump.) This dump then is used to initialize the components and trips that were not found in the TRACINfile, using the component restart subroutines listed in Table XII. Restart subroutines for one-dimensional components utilize subroutine RECOMP to read data that are common to all one-dimensional components. The detailed structure of the restart file is described in Sec. VI.F in conjunction with the dump capability.

The subroutine SRTLP sorts through the components of the system and groups them by loops that are isolated from one another by a vessel component. The IORDER array is rearranged to reflect this grouping and to provide a convenient order within each group for the flow network solution procedure.

The PWR-initialization input data are read and the reactor structure analyzed by subroutine RDLOOP, if a PWR-initialization calculation was requested on Main Control Card 2. The analysis of the reactor loop geometry results in the creation of a PWR-initialization data area, which also resides in the fixed segment of the blank COMMON area. Figure 46 shows this data structure. The overall prologue, loop prologues, and VESSEL junction data area are created by subroutines RDLOOP. The data structure for each loop is generated by subroutine FNDLP.

KPTT	Length of trip data array
NTSV	Number of signal variables
NTRP	Number of trips
NTCN	Number of controllers (currently not used)
NTSE	Number of signal-expression trips
NTCT	Number of trip-controlled trips
NTSF	Number of set-point factor tables
NTDP	Number of trips that generates restart dumps and possible problem termination
NTSD	Number of trip time-step data sets
SignalVariable Data	7*NTSV entries
General Trip Data	80*NTRP entries
Signal- Expression Trip Data	$38 *$ NTSE entries
Trip- Controlled Trip Data	12*NTCT entries
Trip Set-Point Factor Tables	23*NTSF entries
Trip, Dump, and Termination Data	NTDP+1 entries
Trip Time-Step Data	```15*NTSD entries Fig. }45 Signal-variable and trip data.```

TABLE XII
COMPONENT INPUT SUBROUTINES

Component Type	Card Input	Restart Input
ACCUM	RACCUM	REACCM
BREAK	RBREAK	REBRK
CORE	RCORE	RECORE
FILL	RFILL	REFILL
PIPE	RPIPE	REPIPE
PRIZER	RPRIZR	REPRZR
PUMP	RPUMP	REPUMP
STGEN	RSTGEN	RESTGN
TEE	RTEE	RETEE
VALVE	RVLVE	REVLVE
VESSEL	RVSSL	REVSSL

TABLE XIII
JUNCTION-COMPONENT PAIR ARRAY

The JUN array is doubly subscripted, JUN(4,2*NJUN). The second index indicates the order in which the junction-component pair was encountered during input. The four values of the first index correspond to:

Index \quad Description
1 Junction number.
2 Component number.
3 Component type.
4 Junction direction flag.
$=0$, if positive flow in this component is into the component at this junction, or
$=1$, if positive flow in this component is out of the component at this junction.

The data area shown in Fig. 46 describes the geometry of PWR systems from a specific point of view. Of principal interest in the PWR-initialization calculations are the components through which the primary coolant flows during steady-state conditions. To isolate these components, the components in each primary-coolant flow loop are grouped into subloops of three kinds indicated by

Overall Structure

Loop Prologue Structure

ILOOP
KNLOOP
JNLPC1
JNLPC2
JNLPCH
TILPC1
WLPC1
WLPC2
NSLP
KTEE

0

Loop index.
Pointer to next loop.
First vessel cold-leg junction.
Second vessel cold-leg junction.
Vessel hot-leg junctios.
Desired temperature at JNLPC1.
Desired flow rate through JNLPCl.
Desired flow rate through JNLPC2.
Nower of subloops in this loop.
Pointer to tee that joins loop pumps 9
Fig. 46.

PWR-initialization data structure.

Subloop Prologue Structure

ISL
KNSL
ISLTP
NSLCMP
KSLP
KSLS
SGAREA
PMSPD

Subloop index.
Pointer to next subloop.
Subloop type index.
Number of subloop components.
Pointer to subloop pump.
Pointer to subloop steam generator.
Steam-generator area.
Pump speed.

Subloop Component Data Structure

KCOMP
NUM
TYPE

(Repeats for each component in the subloop.)
Pointer to LCM data.
Component number.
Component type.

3
VESSEL Junction Data Structure

Fig. 46. (cont.)
the associated value of ISLTP. The components through which the primary coolant normally flows are identified by ISLTP $=1$ and constitute one or two principal subloops (depending on the number of pumps). Subloops with ISLTP $=0$ are called passive; they are connected to the principal flow loop by a TEE and have zero flow at steady-state conditions (for example, a pressurizer). Secondary-loop components (identified by ISLTP $=2$) are connected to the steam-generator-secondary side. For the system to be processed by the PWR-initialization calculation, the secondary loops must be quite simple. One side of the steam generator must be connected by a sequence of pipes to a FILL component and the other side to a BREAK. (The first sequence is identified by ISLTP $=2$ and the second by ISLTP $=-2$.)
C. Component Initialization

The transient or steady-state calculation cannot be initiated directly from the input data. Many arrays and variables for each component are required that are not read by overlay INPUT. Overlay INIT initializes these data based on the values of the input information. It also creates a table that supplies information to the graphics routines. The entry point subroutine, INIT, controls the initialization process by calling ICOMP and IGRAF. Subroutine ICOMP completes the component data tables and IGRAF initializes the graphics capability.

Subroutine ICOMP checks the junction input data (stored in the junction component pair array, JUN, to ensure that the system is configured properly, then fills in the JSEQ and VSI arrays in the fixed segment. of the blank COMMON area (Table XI). Then, ICOMP initializes the data for each one-dimensional component by transferring the "component data from LCM to SCM, adjusting the array pointers to reflect the origin of the array data, invoking the appropriate component initialization subroutine (listed in Table XIV), and then returning the initialized data to LCM. For each three-dimensional component, ICOMP invokes subroutine CIVSSL. Subroutine CIVSSL transfers the component data from LCM to SCM; adjusts the array pointers; calls the initialization routine, IVSSL; and then returns the initialized data to LCM.

TABLE XIV
COMPONENT INITIALIZATION SUBROUTINES

0	$\begin{gathered} \text { Component } \\ \text { Type } \\ \hline \end{gathered}$	Initialization Routine \qquad	Graphics Initialization Routine
	ACCUM	IACCUM	IGACUM
	BREAK	IBRK	IGBRAK
	CORE	ICORE	IGCORE
	FILL	IFILL	IGFILL
	PIPE	IPIPE	IGPIPE
	PRIZER	IPRIZR	IGPRZR
	PUMP	IPUMP	IGPUMP
	STGEN	ISTGEN	IGSTGN
"	TEE	ITEE	IGTEE
	0 VALVE	IVLVE	IGVLVE
	VESSEL	IVSSL	IGVSSL

Using subroutine JlD, the component initialization routines originate geometric and heat- transfer arrays; fluid properties (by calling subroutines THERMO and FPROP); and the junction data array, as described in Table XV. Other individual and array variables are initiated for specific components. Most of these one-dimensional routines use COMPI and IPROP to initialize the data that are common among one-dimensional components.

The subroutine SETNET provides information to the individual components through the IOU array that is passed on to the network junction matrix described in Sec. III.D. The graphics initialization subroutine, IGRAF, creates the TRCGRF file; writes the header, catalog, and geometric data onto the file; and places the catalog in a LCM storage area. The catalog, which contains information about the data to be written on the TRCGRF file during the course of a problem, is constructed by the component graphics initialization routines. The data to be edited for each component are specified in these routines. Each data type adds one entry to the catalog. This entry describes the data location and identifies it with the variable name containing the data and a three-word Hollerith field. The catalog stored in LCM is interrogated later by subroutine GRAF to create each graphics edit.
D. Transient Calculation

1. General. The transient calculation is directed by subroutine TRANS. The system state is advanced through time by a sequence of prepass, outer iteration, and postpass calculations that TRANS requests by invoking overlay PREP, subroutine HOUT, and overlay POST, respectively. In these calculations one or more sweeps are made through all the components in the system. To provide the output requested by the user, TRANS invokes the EDIT, DUMP, and GRAF overlays by calling sübroutine PSTEPQ.

Subroutine TRANS is structured as shown in Fig. 47. The major control variables within the time-step loop are: NSTEP, the current time-step number; TIMET, the time since the transient began; DELT, the size of the current time step; and OITNO, the current outer iteration number. The time-step loop begins with the selection of the time-step size, DELT, by subroutine TIMSTP. A prepass is performed for each component by overlay PREP. At this point, if the current time step is zero, TRANS calls in the EDIT overlay to print the system state at the beginning of the transient. Subroutine TRANS then calls subroutine EOUT that performs one or more outer iterations to solve the basic

BOUNDARY ARRAY DATA*

The specific eleinents of the array are:

Index
Description

1 Width of the adjacent mesh cell.
2 Volume of the adjacent mesh cell.
3 Old mixture density at space point 2.
4 Product of new vapor density and void fraction ($\alpha \rho_{g}$) at space point 2.
Product of liquid density and liquid fraction $\left[(1-\alpha) \rho_{\ell}\right]$ at space point 2.

6

7

8
9
10
11
12

13

Sign multiplier used on velocities in the adjacent component for consistency.

Old void fraction at space point 2.
Old vapor density at space point 2.
Old liquid density at space point 2.
New liquid velocity at space point 3.
New vapor velocity at space point 3 .
Contribution to liquid momentum at space point 1 if there is a tee junction at point 2.
Contribution to vapor space point 1 if there is a tee junction at point 2.
)
*The boundary array data are stored in a doubly dimensioned array, $\operatorname{BD}(54, N J U N)$, whose second index indicates the order in which the junctions occur in the input data. The data in this array indicate the current condition of the adjacent component. Because both components connected to the junction use the same storage space, the JUN array reflects the state of the last of these components processed. The fluid properties are evaluated at one of three space points:

1. at the edge of the mesh cell closest to the junction,
2. at the mid-point of that mesh cell, or
3. at the other edge of that mesh cell.

Index
14

Description

Old pressure at space point 2.
New void fraction at space point 2.
New vapor density at space point 2.
New liquid density at space point 2.
New stabilizer liquid velocity at space point 3.
New stabilizer vapor velocity at space point 3.
Further contribution to liquid momentum at
point 1 if there is a tee junction at space point 2.
Further contribution to vapor momentum at point 1
if there is a tee junction at space point 2.
New pressure at space point 2.
New liquid velocity at space point 1.
New vapor velocity at space point 1.
Surface tension at space point 2.
Derivative of liquid velocity at point 1 with respect to pressure at space point 2. .
Derivative of vapor velocity at point 1 with respect to pressure at space point 2.
New macroscopic liquid energy density $\left[(1-\alpha) \rho_{\ell} e_{\ell}\right]$ at space point 2.
New macroscopic vapor energy density ($\alpha \rho_{g} e_{g}$) at space point 2.
Vapor viscosity at space point 2.
Liquid viscosity at space point 2.
Flow area at space point 1.
Hydraulic diameter at space point 1.
Old stabilizer liquid velocity at space point 3.
Old stabilizer vapor velocity at space point 3.
Component type of last component to enter data into this array.
Component number of last component to enter data into this array.
Old bit flags for donor-cell logic and detecting crossings of the saturation line.
01d air density $\left(\rho_{a}\right)$ at space point 2.

Index

Description

New macroscopic air density ($\alpha \rho_{a}$) at space point 2.
01d macroscopic vapor density (α_{g}) at space point 2.
Old macroscopic liquid density $\left[(1-\alpha) \rho_{\ell}\right]$ at space point 2.
Old macroscopic vapor energy density ($\alpha \rho_{g} e_{g}$) at space point 2.
Old macroscopic liquid energy density $\left[(1-\alpha)_{\ell} \mathbf{e}_{\ell}\right]$ at space point 2.
Void fraction at the beginning of the previous time step at space point 2.
Old macroscopic air density ($\alpha \rho_{a}$) at space point 2.
Old partial pressure of air at space point 2 .
Old vapor temperature at space point 2.
old liquid temperature at space point 2.
Vapor velocity averaged for space point. 2.
Liquid velocity averaged for space point 2.
Droplet interfacial drag coefficient for space point 3.
New bit flag information for space point 2.
hydrodynamic equations. Each outer iteration is performed by overlay OUTER and corresponds to one iteration in a Newton solution procedure for the fully, coupled difference equations for the flow network (see Sec. III.D.). The outer iteration loop normally completes when the outer "iteration convergence criterion (EPSO on Main Control Card 3) is met. This crititerion is applied to the maximum fractional change in the pressures throughout the system during the last iteration.

The outer iteration loop alternatively may terminate when the number of outer iterations reaches a user-specified limit (OITMAX on Main Control Card 4). In this case, TRAC restores the state of all components that at the beginning of the time step, halves the time-step size (with the constraint that DELT be greater than or equal to DTMIN), and continues the calculation with the new time-step size.

When the outer iteration converges, TRANS calls in the POST overlay to perform a postpass. The time-step number then is incremented and TIMET is increased by DELT. A calculation is complete when TIMET reaches the last time specified on the time-step input cards.
2. Time-Step Selection and Output Control:" The transient calculation interval is a sequence of time domains specified by the user on the time-step input cards. During each of these domains, the minimum and maximum time-step sizes and the edit, dump, and graphics intervals are fixed. When the EDIT, DUMP, and GRAF overlays are invoked, they calculate the time when the next output of the associated type is to occur. When TRANS finds that TIMET has reached or exceeded the indicated time, the corresponding output overlay is invoked again. When a new time domain is reached, the output indicators are set to the requested time plus the new value of the appropriate interval.

Subroutine TIMSTP reads the time-step control cards and evaluates the "size" of the next time step. At the beginning of the transient, DELTis set to the minimum size specified for the first time domain. At other times, TIMSTP applies several algorithms, implemented in subroutine NEWDLT, to avaluate the size of the next time step. Subroutine TIMSTP then limits DELT to values between the minimum and maximum specified for 'this time step, unless the minimum time-step size is greater than the computed Courant limit in three-dimensional regions. In this case, DELT is set equal to the Courant limit.

Two types of algorithms, inhibitive and promotional, are implemented in subroutine NEWDLT to evaluate the next time"step. The inhibitive algorithms "imit" the new time-step size to ensure stability and to reduce errors". The promotional algorithm increases the time-step size to improve computational efficiency.
v
Iteration counts are used by both the inhibitive and promotional algorithms. Both the number of outer iterations (MAXIT) and the number of vessel, iterations (IIBIG) requirea for the previous time step are utilized. If MAXIT is less than four and IIBIG is below 70% of the maximum allowed number of vessel iterations (input as IITMAX), the promotional algorithm increases the time-step size (DELT) by 5%. If MAXIT exceeds five, DELT is reduced by the factor $5 / \mathrm{MAXIT}$; if IIBIG exceeds $0.7 *$ IITMAX+1, DELT is reduced by (7*IITMAX+10)/(10*IIBIG).

If a new time-step size was estimated in this manner, NEWDLT then invokes the remaining inhibitive algorithms to reduce DELT, if needed for stability or accuracy. The Courant condition in three forms is applied to ensure stability. The three forms use the new, old, and extrapolated fluid velocities to evaluate the limit. The accuracy limits are based on the fractional changes in pressure and void fraction and the calculated error in the new total vessel mass.

During the last outer iteration calculation of the previous time step, the maximum changes in the pressure and void fraction over all fluid cells are evaluated. (Cells in which the void fraction is below 1% are not considered in evaluating the maximum fractional change of the void fraction.) The fractional pressure change ordinarily is limited by the outer convergence criterion, EPSO. If the maximum number of outer iterations is input as one, however, this is not the case. In this instance NEWDLT compares the maximum fractional pressure change (VARERM) to 0.1 . If the shange exceeds 10%, a maximum time-step size of $0.1 * D E L T / V A R E R M$ is imposed. Similarly, if the maximum void-fraction change (DAMX) exceeds 0.5 , a maximum time-step size of $0.5 *$ DELT/DAMX is used.
. The error in the vessel mass inventory caused by the previous time step is evaluated by subtracting the mass at the previous time step and the net mass flow into the vessel from the new mass inventory. If the fractional mass error exceeds 0.01%, another maximum time-step size, is evaluated as 10^{-4} *DELT divided by the mass error.

Another maximum time-step size calculation is based on the maximum liquid, vapor, slab, and rod temperature changes during the last. time step. For temperature changes that exceed 20 K , the smallest value of DELT*20./ AT is used.

The diffusion number for the rod conduction calculation, DIFMIN, also is used to evaluate a maximum time-step size. It is evaluated as DIFMIN if DIFMIN is nonzero or 1×10^{8} if DIFMIN is zero.
3. Prepass Calculations. The prepass calculation uses the system state at the completion of the previous time step to evaluate numerous quantities to be used during the outer iteration. The prepass begins by evaluating trip signal variables and by determining the set position of all trips. The prepass then loops over all components in the system and performs an extra loop over all one-dimensional components. Each component begins the prepass by moving the values calculated during the last time step into the
storage area for old time values. (See Appendix for a variables list.) Next, wall and interfacial friction coefficients are calculated and an initial forward' elimination on the stabilizer equations is performed. For components that require heat-transfer calculations, the prepass also evaluates material properties and HTCs. A second pass through all one-dimensional components is required to do the back-substitution on the stabilizer equations of motion.

The prepass for vessel components can be more complex. Besides calculating material properties and HTCs for both average and hot rods, the prepass evaluates quench-front positions and fine-mesh properties if the reflood segment is under way, as indicated by the reflood flag NRFD."

The prepass calculation is controlled by overlay PREP, whose entry point routine has the same name. Subroutine PREP first processes all one-dimensional components by calling PREPID, which loads data for each component into SCM, invoking the appropriate component prepass subroutine (see Table XVI), then transfers the component data back to LCM. The prepass for all three-dimensional components is performed by PREP3D, which is called once by PREP after all one-dimensional components have been processed.

The one-dimensional component prepass routines utilize the common low-level routines $S A V B D$, PREPER, SVSET, TRPSET, and SETBD to avoid redundant coding. Subroutine $S A V B D$ retrieves boundary data from adjacent components, stores it in the appropriate array locations, and moves data for the last completed time step into the old time arrays." Subroutine PREPER evaluates wall friction bycalling FWALL, evaluates interfacial fricition coefficients and begins solution of the stabilizer equations of motions by calling FEMOM, and uses subroutines MPROP and HTPIPE to evaluate material properties and HTCs. For a specific component, any or all of these steps may occur under the control of the PREPER argument list.

Subroutine SVSET uses current values of system state variables to evaluate trip signal variables. Subroutine TRPSET uses the current signal-variable values to set the status of trips. (This is in contrast to subroutine TRIP that interrogates the trip status in preparation for specific consequences of trips.) Subroutine SETBD uses the information in the component data arrays to reset the boundary data at both ends of a component.

ITERATION SUBROUTINES

Component Type	Prepass	Outer	Postpass
ACCUM	ACCUM1	ACCUM2	ACCUM3
BREAK	BREAK1	BREAK2	BREAK3
CORE	CORECl	COREC2	COREC3
FILL	FILLI	FILL2	FILL3
PIPE	PIPE1	PIPE2	PIPE3
PRIZER.	PRIZR1	PRIZR2	PRIZR3
PUMP	PUMP1	PUMP2	PUMP3
STGEN	STGEN1	STGEN2	STGEN3
TEE	TEE1	TEE2	TEE3
VALVE	VLVE1	VLVE2	VLVE3
VESSEL	VSSLI	VSSL2	VSSL3

Each three-dimensional component is processed by subroutine VSSL1, which PREP3D calls between loading and unloading the appropriate data areas. Subroutine VSSLl uses subroutine RKIN to solve the reactor-kinetics problem; subroutine HTVSSL to evaluate fluld cell HTCs; and CORE1 to evaluate rod HTCs, fine-mesh properties, and quench-front positions.
4. Outer Iterations. The hydrodynamic state of the system is analyzed in TRAC by a sequence of Newton iterations that use full inversion of the linearized equations for each external loop and vessel at each iteration (see Sec. III.D). Throughout the sequence of iterations that constitute a time step (each called an outer iteration within TRAC), the properties evaluated during the prepass and the previous postpass remain fixed. These include wall and rod temperatures, HTCs, wall friction factors, relative velocities, and quench-front positions. The remaining fluid properties are varied to obtain hydrodynamic model solutions.

Each call to overlay OUTER completes a single outer (Newton) iteration. Subroutine OUTER, which is the entry point routine of this overlay, controls the overall structure of an outer iteration, as presented in Fig. 48. Both the forward-elimination and back-substitution sweeps through the external loops are performed by subroutine OUT1D and the associated outer iteration routines. The calculations that these routinesperform are controlled by the common variable IBKS, which is set by subroutine OUTER. Subroutine OUT3D solves the

hydrodynamic equations for all vessel components (I BKS $=0$) or updates boundary data (IBKS = 1) .

All one-dimensional components in a particular external loop are handled by a single call to subroutine OUT1D. This routine loads the data blocks for a component into $S C M$, then invokes the appropriate component outer iteration subroutine (as listed in Table XVI), and returns the data to LCM. Subroutine OUT3D works in a similar manner, except that all three-dimensional components use the single subroutine VSSL2.

The outer iteration subroutines for one-dimensional components utilize subroutine INNER to perform common funcitions. Subroutine INNER retrieves boundary information from the boundary arrays, tests other boundary information for consistency, calls subroutine TFlD to perform the appropriate hydrodynamic calculation, and resets the boundary data arrays by calling subroutine J1D. Subroutine TFID invokes subroutines TF1DS1, TF1DS, and TF1DS3 to solve the basic semi-implicit equation.

Subroutine VSSL2 solves the appropriate problem (depending on the value of IBKS) for a single vessel component. Subroutines TF3DE and TF3DI are invoked to lineariže the hydrodynamic equations. The linear system then is solved by one of two methods depending on the value of the input variable IITMAX. A value of IITMAX $=0$ causes direct inversion of the vessel matrix. If IITMAX > 0, the system is solved by Gauss-Seidel iteration with coarse-mesh acceleration. Subroutine VELCK then is utilized to check for velocity sign changes. If any are found, TF3DI is called for the appropriate ciells.

Subroutine STDIR sets up the vessel matrix for direct inversion when IITMAX $=0$. Subroutine SOLVE is called to solve the linear system and then subroutine BACIT stores the new time pressures that were calculated. Subroutine ITRI is utilized to solve the system by Gauss-Seidel iteration when IITMAX >0. Subroutines SREBAL and SOLVE are called to set up and solve the coarse-mesh equations for coarse-mesh rebalance. Next, subroutine BREBAL is invoked to apply the coarse-mesh scaling factor to the new time pressures.
5. Postpass Calculations and Backup. After the system hydrodynamic state has been evaluated by a sequence of outer iterations, TRAC performs a postpass to solve the stabilizer mass and energy equations and to determine both mixture properties and wall and rod temperatures. These are based on the new fluid conditions. Overlay POST performs this postpass. The same overlay
also implements the time-step backup procedure. Time-step backup is caused by failure of the outer iteration process or extreme changes in void fraction. When failure occurs, the outer iteration counter, OITNO, is set equal to - 100 and overlay POST is invoked. Under these conditions, POST returns the component data arrays to their state at the beginning of the time step.

Subroutine POST is the entry point for this overlay. Subroutine POST first processes all one-dimensional components by loading the proper data into SCM, calling the appropriate component postpass subroutine (see Table XVI), and then returning the data to LCM. Then POST invokes subroutine POST3D to handle all three-dimensional components. Subroutine POST3D loads the vessel data areas, calls VSSL3, and returns the vessel data to LCM for each vessel in the problem.

The one-dimensional component postpass subroutines use the low-level routines $S A V B D, P O S T E R$, "and SETBD to retrieve boundary conditions; to evaluate the stabilizer equations, wall temperatures, mixture properties, and transport properties; and to reset the boundary arrays, respectively. The vessel processor, VSSL3, first must invoke subroutine FF3D to complete the hydrodynamic calculation, then call subroutine CORE3 to evaluate rod temperatures. When in the backup mode, the postpass subroutine for each component moves data as necessary within the time-dependent array area, then uses subroutine THERMO to reinitialize the thermodynamic property arrays.
6. Vessel Data Structure. All array data for any one-dimensional component are loaded into the core when that component is processed. Because the amount of array data is much larger for the three-dimensional VESSEL component, this is not possible for components of this type. Therefore, the array data for the VESSEL component are subdivided. There are three categories of VESSEL array data: component, level, and rod.

The component data arrays describe the overall VESSEL state. These arrays are loaded into SCM before VESSEL processing begins and remain there throughout the VESSEL calculation.

The level data arrays contain fluid-dynamics and wall-temperature data organized by axial level within the VESSEL. A data management subroutine, MANAGE, is used by all VESSEL subroutines to load single le: als into SCM and to replace them in LCM. There are never more than three levels of data in SCM at
one time. These arrays are rotated through the SCM area during the fluid-dynamics calculation by the VESSEL iteration subroutines.

The rod data arrays contain detailed information about the heat-transfer calculation in the fuel rods. These data are organized by fuel rod so that only data pertaining to the rod under study are in SCM at once. These data arrays are loaded into (and unloaded from) the blank COMMON area by calls to the MANAGE subroutine. Subroutines CORE1 and CORE3 coordinate the rod heat-transfer calculations including the management of rod data.

In addition to solving the data space problem, the organization of the VESSEL array data improves the calculation efficiency by grouping data by their use. However, it introduces a communcation problem between the fluid-dynamics and heat-transfer calculations b"ecause some data must be in both the rod and the level arrays. This problem is resolved by a data transfer between the rod and the level data arrays. This transfer is performed by direct LCM to LCM copies using subroutine LCMOVE during the prepass calculation. E. Steady-State Calculations

Subroutine STEADY directs steady-state calculations. The calculation sequence of this subroutine is similar to that of the transient driver subroutine TRANS. Both STEADY and TRANS use subroutine HOUT to perform a group "of outer iterations. The same sequence of iterations used for transient calculations also is used to advance the steady-state calculation. The main difference is the addition of steady-state convergence tests and PWR-initialization calculations to STEADY. To provide output requested by the user, STEADY invokes the EDIT, DUMP, and GRAF overlays by calling subroutine PSTEPQ. These overlays are described in Sec. VI.F. If the calculation includes PWR initialization, overlay PWRSS is called by STEADY to evaluate new PWR operating parameters. Subroutine STEADY is called by the main program even if a steady-state calculation has not been requested. If no calculation is required, STEADY simply initializes the VESSEL power and returns control to the main program.

The steady-state calculation is determined by the value of the input variable STDYST on Main" Control Card 1, as described in the input specifications in Sec. V.F.l. The code sets the steady-state indication flag, ISTDY, to 1 and the transient calculation time, TIMET, to -1 to begin the steady-state calculations. (In steady-state calculations the time variable is

TABLE XVII

STEADY-STATE CALCULATION EFFECTS

Subroutine	Effects
CYLHT	Causes implicit treatment of the convective boundary conditions.
HTCOR	Eliminates CHF calculation.
RODHT	Causes implicit treatment of the convective boundary conditions.
PRIZER	Bypasses calculation of fluid and thermal conditions. Causes cataloging of mass flow through the system junctions.
PUMP 2	Causes momentum source to be time averaged.
TIMSTP	Multiplies time-step size for heat transfer by RTWFP.
TRPSET	Causes trips not to be activated.

STIME instead of TIMET.) These values of ISTDY and TIMET have the effects indicated in Table XVII.

The time-step control in STEADY is identical to that implemented in TRGNS. This includes the selection of the time-step size, the output timing, and the restarting of time steps if the outer iteration. limit is exceeded. (In STEADY the input variable SITMAX, from Main Control Card 4, is used as a delimiter in place of OITMAX.) The maximum normalized rates of change are calculated by subroutines TF1DS3 and FF3D. These rates and their locations in the system are transmitted to STEADY through the variables FMX and LOK in COMMON block SSCON. Tests for steady-state convergence are performed every 50 time steps and before every edit. The maximum normalized rates of change and their locations are included in the printed output, as shown in Table XVIII. The maximum normalized rate of change for the axial valocity in the vessel (FMXLVZ) determines "when the reactor power should be turned on. Once this value falls below 0.5, the reactor power is set to the input value, RPOWRI (specified on card 12 of the vessel input data or card 8 of the core input data). The generalized steady state completes when all normalized rates of change are below the user-specified convergence criterion, EPSS (on Main

EXAMPLE OF A STEADY-STATE CONVERGENCE EDIT

Steady-State Time-Step Number 114, Converged in 2 Iterations. TIME $=5.187 \times 10^{-2} \quad$ DELT $=2.480 \times 10^{-3}$

Variable

Pressure
Liquid velocity
Vapor velocity
Void fraction
Liquid temperature
Vapor temperature
Air pressure

Maximum Change Ratio	Component	Cell
-5.228985×10^{-1}	1	43
3.85848×10^{1}	14	1
0	0	0
0	0	0
-2.00387×10^{-2}	6	2
2.12964×10^{-2}	0	0
0	0	0

Control Card 3) or when STIME reaches the end of the last time domain specified. in the steady-state time-step input cards.

Both steady-state and transient calculations may be performed in one computer run. The end of the generalized steady-state time-step cards is signified by a single card containing a -1.0 in columns 11-14. The transient time-step input cards should follow immediately. If the generalized steady state converges before reaching the end of the last time domain, the remaining steady-state time-step input cards are read so that the transient calculation proceeds correctly.

Control of the PWR-initialization calculation necessarily is more complex. The time domains are divided into groups delimited by negative DTMIN values. The completion of each groüp of time-step cards or convergence to a steady state causes a re-evaluation of the loop parameters. The last group of time domains is marked by a card containing negative values for both DTMIN and DTMAX. As in the generalized calculation, a transient calculation may follow the PWR initialization. The time-step cards for the transient caiculation follow those for the PWR initialization.

The PWR-initialization calculation completes when the relative errors in the flow rates and inlet temperatures fall below a user-specified criterion, EPSP (on Main Control Card 3) for all loops. Figure 49 is a flow diagram for the steady-state calculation.

Overlay PWRSS uses the system state, as represented in the LCM component data tables, to evaluate new pump speeds and steam-generator fouling factors for the PWR-initialization calculation. The reactor loop data area (Fig. 46) is used by this overlay for data storage and calculation control.
() Subroutine LPSET is the entry point and controlling subroutine for the PWRSS overlay. It calls subroutine VSCON to evaluate the VESSEL pressures as well as mass and energy flow rates at all VESSEL junctions. These data are retrieved from the boundary data arrays. Each primary coolant loop is considered in turn by LPSET. The loop flow resistances, specific enthalpy differentials, and the steam-generator overall HTC are evaluated by subroutine LPCON. The PMPP, TEEP, and STGNP subroutines provide LPCON with data derived from the PUMP, TEE, and STGEN component data tables, respectively. The equations presented in Sec. III.D. 2 are solved for the pump heads and steam-generator area by subroutine SLVLP. Finally, LPSET calls subroutine LPRPL to convert these parameters to pump speeds and fouling factors, to relax them as required, and to store them into the appropriate component data tables. F. Output Processing

The TRAC program produces five output files: TRCOUT, TRCMSG, TRCGRF, TRCDMP, and TRCINP. The first of these files is in printer format and contains a user-oriented analysis of the calculation. During the input process, an input data description is placed in this file. At selected times during the calculation, overlay EDIT is invoked to add to this file a description of the current system state. The TRCGRF and TRCDMP files are binary files designed to allow analysis by graphics postprocessing programs and problem restart by TRAC, respectively. The TRCGRF file is created and the header, catalog, and geometric data are written into it during the initialization phase. File TRCDMP is created immediately thereafter by overlay DUMP. The TRCMSG file is in printer format and contains diagnostic messages concerning the progress of the calculation. File TRCINP is created only wher the TRACIN input file is in free format. The data from TRACIN is written into file TRCINP in a form that

Fig. 49.
Flow diagram for steady-state calculation.
can be read by the TRAC input routines. TRCINP then is used as the input file to TRAC.

Subroutine WCOMP, which is called by the entry-point routine EDIT, directs the addition of a time-step edit to the TRCOUT file. Subroutine WCOMP writes general overall data first, then invokes lower level routines to describe the state of each component. For one-dimensional components, WCOMP directly calls the appropriate component edit subroutine. Table XIX lists the component edit subroutines. These routines invoke subroutine ECOMP to write the data common between one-dimensional components. For three-dimensional components, WCOMP calls subroutine CWVSSL, which loads the oomponent data tables into SCM and then invokes the component-edit-subroutine WVSSL. The component edit routines add the data that are important for that component to the TRCOUT file in an appropriate format.

After initialization by IGRAF, the time-edit data are added to the TRCGRF file, by overlay GRAF. This overlay contains the single subroutine, GRAF, which uses the LCM graph data area. The TRCGRF file is a structured binary file written with unformatted write statements and containing information for graphics processing.

TABLE XIX
COMPONENT EDIT SUBROUTINES

Data contained on the TRCGRF file may be divided into four sections:

1. general information,
2. catalog information,
3. geometric information, and
4. time-edit data.

These data appear on the file in the above order, as shown in Fig. 50. The structure of the general information section of the file is given in Fig. 51. This section contains title cards for problem identification and size information needed to describe the problem and the remainder of the file. The catalog section (Fig. 52) contains information that is used to describe the: data stored in the time-edit section. The geometric section contains information relating to the cell structure of components. The time-edit section is made up of blocks of data as shown in Fig. 53. Indiviaual /farrays within each block are packed to save space. A block is written at each graphics edit taken during the course of a problem. The number of time-edit blocks written on the file is determined by the graphics edit frequency specified on the time-step cards. The last block is followed by the acronym "EOF" to signify the "end of file."

The structure and lengths of the time-edit blocks are identical, minimizing the required catalog information. The catalog is made up of NCTX data entries with one catalog entry for each data type in a block: This relationship is displayed in Fig. 54. Each catalog entry contains six virds that provide a data description and a pointer, relative to the beginning of the block, to a specific section in each block. A catalog entry: may describe a single variable or a data array. The word count also is included in the catalog. The data types stored are pressures, temperatures, void fractions, θ and other important' system parameters.

The TRCDMP file is a structured binary file written with unformatted write statements. It contains sufficient data to restart, the calculation from" the current" state, as described in Sec. VI.B. "This file is created by a sequence of calls to overlay DUMP. The entry point subroutine, DMPIT, writes the dump header data and calls the component dump subroutines, which are listed in Table XX.

First packed word of description Second packed word of description Dependent variable name First word of Hollerith Second word of Hollerith description Third word of Hollerith description

FIRST PACKED WORD OF DESCRIPTION

ICOMP	NUM	ITYPE	NWRD
SECOND PACKED WORD OF DESCRIPTION ILRN KPT NSKIP IPOS			

```
ICOMP -- TRAC-assigned component number
NUM -- User-assigned component number
ITYPE -- Data type
NWRD -- Number of unpacked words stored
ILRN -- Level or rod number
KPT -- Relative pointer to data in TRCGRF
NSKIP -- Data skip frequency
IPOS -- Relative pointer to where data were extracted
    from TRAC data base
```

 Fig. 52.
 Structure of graphics file catalog.

Fig. 53.
Structure of graphics file time-edit data section.

Fig. 54.
Graphics file catalog and time-edit data correspondence.

COMPONENT DUMP SUEROUTINES

Component TyPe	
ACCUM	Subroutine
BREAK	DCOMP
CORE	DBRK
FLLL	DCORE
PIPE	DFILL
PRIZER	DCOMP
PUMP	DCOMP
STGEN	DPUMP
TEE	DCOMP
VALVE	DCOMP
VESSEL	DVLVE

The resulting file is structured as shown in Figs. 55-57. This structure permits easy location of specific dumps and specific components within each dump. This reduces the effort required to restart the problem.

Figure 55 shows the overall dump file structure with a general information section at the beginning followed by a series of time-edit blocks. A block is written at each dump edit taken during a problem. The number of time-edit blocks written on the file is determined by the dump-edit frequency specified on the time-edit cards. The last block is followed by the acronym "EOF"

The structure of each time-edit block in the dump file is illustrated in Fig. 56. Data from each component is included in the component dump section shown at the bottom of the figure. Figure 57 shows a more detailed structure of the component dump section.
G. Storage Requirements

Although maximum use is made of dynamic storage allocation within TRAC, there are limitations on the complexity of problems that may be simulated. These limitations arise from the finite extent of the component data storage areas, as listed in Table XXI. These limitations are imposed on the complexity of single components as well as on the system as, whole.

ETIME	Current time
NSTEP	Time-step number
DELT	Time-step size
OITNO	Outer iteration number
VMAXT	Maximum Courant number
VMAXO	Maximum Courant number found during current time step
VMNEW	V essel water mass (liquid and vapor) at $\mathrm{t}^{\mathrm{n+1}}$
VMOLD	Vessel water mass (liquid and vapor) at t^{n}
VMCON	Net water mass convected into vessel during the interval $\mathrm{t}^{\mathrm{n+1}}-\mathrm{t}^{\mathrm{n}}$
DAMX	Error caused by relative change in void fraction
DAU 气;	Maximum increase in void fraction
DAL	Maximum decrease in void fraction
OAU	Maximum increase in void fraction after a decrease
OAL	Maximum decrease in void fraction after an increase
V ERERM	Maximum variable error
IIBIG	Maximum number of inner iterations per outer iteration
ISOLUT	Interactive control-panel vector (optional)
NTRX	Number of trips
Signal-Variable, Trip, and Controller Data	Signal-variable, trip, and controller data array
Struct	```Component dump Fig. 56. re of dump file time-edit data section.```

Fig. 57.
Component dump structure.

TABLE XXI

TRAC STORAGE ALLOCATIONS

Storage Area	Size (Words)
COMMON/LCMSP/	131071
BLANK COMMON	20000

Figure 58 displays the organization of the blank $C O M M O N$ dynamic storage area in SCM. The fixed segment, which is described in Table XI, contains information that is used by all system component subroutines and, therefore, must remain in $S C M$ throughout the calculation. The PWR-initialization data area, shown in Fig. 46, is required only during f_{f}, PWR-initialization calculations. Thus, this area does not affect storage requirements when no PWR initialization is performed.

The area that remains, marked as the component data area in Fig. 58, is available to each component when its data are in SCM. Each component type requires varying amounts of array space. Other than CORE, the required space for component types that are modeled with one-dimensional fluid dynamics is linear in the number of fluid cells, the number of heat-transfer nodes, and the product of these numbers. Table XXII lists the coefficients of these three quantities for each component type along with the constant requirement.

The CORE component requires

127*NCELLS+5*NODES* (NCELLS +1) +NRODS +2 *NPWX +2 *NRPRF + 2*NPSRF+4*NDGX+4*NDHX
$+7 * N Z M A X+3 * N I N T+N D R D S *(N Z M A X+8)+(3 * N I N T+5 * N D R D S+N P S Z+22) *($ ICRU-ICRL $)+79$
words of space in the component data area. In addition,

NDRDS*NZMAX+ICRU-ICRL+1
words are required for each rod. The definitions of all the individual variables except NINT that are used in these expressions are given in the CORE

Fig. 58.
Blank COMMON dynamic storage area organization.

ONE-DIMENSIONAL COMPONENT ARRAY STORAGE REQUIREMENTS

Component Type	Coefficients for Total Array Requirements							
	Fixed			NCELLS	/.1	NODES	NCELL	S*NODES
ACCUM	112			117		0		0
BREAK ${ }^{\text {a }}$	57			115		0		0
FILib	57			115		0		0
PIPEC	55			120		4		5
PRIZER	112			116		0		0
PuMPd	141			120		4		5
STGEN ${ }^{\text {e }}$	168	,	122,	120, 117		4	5,	2,2
TEE ${ }^{\text {f }}$	231			120		8		5
VALVE ${ }^{\text {b }}$	55			-120		4		5

a For BREAKs, NCELLS $\equiv 1$ and NODES $\equiv 0$.
An additional $2 *[I B R O P+M A X O(0, I S A T-3)] * N B T B$ words are required for the BREAK tables.
$\mathrm{b}_{\text {For }}$ FILLS, NCELLS $\equiv 1$ and NODES $\equiv 0$. An additional $2 *$ NFTX words are required when IFTY $>$ 3. For IFTY $=6$ and IFTY $=9$, an additional $12 * N F T X$ words are required.
${ }^{C}$ An additional $2 * N P O W T B$ words are required sor the ${ }^{\text {PAPIPE power table. }}$
${ }^{d}$ Each PUMP also requires room for pump curves. The built-in Semiscale pump, requires 332 additional words, whereas the built-in LOFT pump requires an additional 304 words. An additional (NPMPTX+NPMPRF)*2 words are required for the pump-speed table.
eThe STGENS can have up to four sets of cells: primary side, secondary side, primary tee, and secondary tee. The number of cells is denoted by NCELLl, NCELL2, NCELL3, and NCELL4, respectively. For the table, NCELTT $=$ NCELL3 + NCELL4 (the total number of cells in the primary and secondary tees). The coefficients listed for expressions with NCELLS are for NCELLI, NCELL2, and NCELTT, respectively. Primary and secondary tees require an additional (NODES+117) words each.

EThe TEEs have two sets of cells but space is allocated in a uniform manner $^{\text {mat }}$ with NCELLS $=$ NCELL1 + NCELL2.
gThe VALVEs also require (NVOTB+NVCTB+NVRF)* $2^{\prime \prime}$ words for the valve tables.

$$
\sqrt{\digamma} \quad, \quad 281
$$

input data description (Sec. V.F.5.c). Variable NINT is the total number of interfaces between dissimilar materials in the rods.

The array data for the VESSEL component are subdivided into three categories: component, level, and rod. The component data arrays describe the overall VESSEL state and remain in SCM throughout the VESSEL calculation. These arrays require

4*NASX $+2 *$ NRSX $+2 * N T S X+36 * N C S R+3 * N O D E S+2 * N R O D S+2 * N P W X+17 * N T S X * I C R R+(N P S Z+1)$

* (ICRU-ICRL) $+6 *$ NVENT $+2 *$ NPSZ $+2 *$ NPSRF $+2 *$ NRPRF +66
words of space in the component data area. The definitions of the individual variables úsed in this expression are given in the VESSEL input data description in Sec. V.F.5.k.

The VESSEL component data arrays remain in SCM throughout the VESSEL calculation; however, the level and rod data arrays are transferred to SCM only when they are needed. The hydrodynamic variables for each axial level in the VESSEL are transferred between SCM and LCM as a uniti At certain points in the calculation, three distinct levels of data must be in SCM simultaneously. Therefore, the maximum size of the data associated with a single level is one-third of the available space in SCM. Each level of data requires

143*NRSX*NTSX+8*NODHS*NRSX*NTSX+4*INHSM*NRSX*NTSX+NCSR+7* (ICRR*NSTX)

words of space.
In a similar manner, the heat-transfer data for each fuel rod are transferred between $S C M$ and LCM as a unit. Because the data for only one rod must be in SCM at any point in the calculation, the rod data may extend over the available space in SCM. Each rod requires
$(48+6 *$ NODES $+3 *$ NINT $) *($ ICRU-ICRL $)+7 *$ NODES $+3 *$ NINT $+(7+2 *$ NODES $)$
*MAXO(NZMAX, ICRÚ-ICRL+1)+71
words of space, where NINT is the number of interfaces between dissimilar materials in the rods.

In addition to the component, level, and rod data arrays, an additional NVCELL* (NVCELL+2) words of SCM space are needed for VESSEL components. This space is needed efther for direct inversion of the vessel matrix when IITMAX $=0$ or for solving the system by Gauss-Seidel iteration with coarse-mesh acceleration when IITMAX >0. If IITMAX $=0$, then NVCELL is the total number of vessel cells. If IITMAX >0, NVCELL is the total number of vessel coarse-mesh regions.

The finite extent of the LCM component storage area (COMMON block LCMSP) limits the total amount of component data that can be handled in a calculation. This amount is found by summing the SCM array requirements including all VESSEL levels and rods and adding the space required for the fixed-length, variable-length, and pointer tables for each component, as listed in Table XXIII. The graphics catalog, discussed in Sec. VI.F, also is stored in this LCM block. This area requires one word for each component plus six words for every catalog entry. Figure 59 shows the organization of LCMSP.

TABLE XXIII

COMPONENT TABLE LENGTHS

Component Type	Fixed Length Table		Variable Length Table	Pointer Table
ACCUM		20	18	113
BREAK	(1)	20	13	113
CORE		20	132	199
FILL		20	17	116
PIPE		20	35	123
PRIZER		20	28	113
PUMP		20	62	146
STGEN		20	90	134
TEE		20	59	124
VALVE		20	41	126
VESSEL		20	169	238

PRLTAB

THERMODYNAMIC AND TRANSPORT FLUID PROPERTIES

The thermodynamic and transport properties subroutines used in TRAC are based on polynomial fits to steam table data for water and ideal gas behavior for the noncondensable gas component. Transport property fits were obtained from Ref. 52, The thermodynamic property routines are used by all TRAC component modules. Tables A-I through A-VII, which list the values of the constants, are given at the end of this appendix.

I. THERMODYNAMIC PROPERTIES

Subroutine THERMO supplies thermodynamic properties for TRAC. The input variables are the total pressure, the partial pressure of the noncondensable gas component, and the líquid and gas-phase temperatures. The output variables include the saturation temperature corresponding to total pressure; the saturation temperature corresponding to the partial pressure of steam; the specific internal energies of liquid, gas phase, and noncondensable; the saturated liquid and steam enthalpies corresponding to the partial pressure of steam; the liquid, gas-phase, and noncondensable densities; the derivatyves of saturation temperatures and saturation enthalpies with respect to pressure; and, finally, the partial derivatives of liquid, steam, and noncondensable internal energies and densities with respect 50 pressure (at constant temperature) and with respect to temperature (at constant pressure).

The range of validity for the thermodynamic properties supplied by THERMO is:
$280.0 \mathrm{~K} \leq \mathrm{T}_{\ell} \leq 647 \mathrm{~K}$,
$280.0 \mathrm{~K} \leq \mathrm{T}_{\mathrm{g}} \leq 3000 \mathrm{~K}$,
and
$1.0 \times 10^{3} \mathrm{~Pa} S \mathrm{p} S 190 \times 10^{5} \mathrm{~Pa}$.

If THERMO is provided with data outside this range, it adjusts the data to the corresponding limit and issues a warning message.

Polynomial equations for the various properties used in THERMO are given below. Values of the constants are given in Tables A-I and A-II. A. Saturation Properties

1. Saturation Temperature Corresponding to a Given Pressure.
$T_{s}=C_{1}\left(A_{14} P\right)^{C_{2}}+C_{3} \quad$ for $T_{s} \leq C_{23}$, (higher saturation temperatures cause THERMO to abort),
and
$\frac{d T}{d p}=A_{1}\left(A_{14} p\right)^{A_{2}}$.
2. Internal Energy of Steam.
$e_{v s}=c_{6}+\frac{c_{7}}{c_{8}+p_{v}}$,
and
$\frac{d e_{v s}}{d p_{v}}=-\frac{c_{7}}{\left(C_{8}+p_{v}\right)^{2}}, f_{v} \quad i_{21} ;$
$e_{v s}=c_{12}+\left(C_{14}^{/}+p_{i 3}\right) p_{v} \quad, \quad$ and
$\frac{d e_{v s}}{d p_{v}}=C_{13}+A_{17} p_{v} \quad, \quad$ for $p_{s}>C_{21} ;$
where P_{v} is the partial pressure of steam.
3. Heat Capacity of Steam at Constant Pressure. Although the heat capacity of steam is not an output variable from THERMO, it is required in subsequent subcooled and superheated steam internal energy calculations.
$c_{\text {pvs }}^{i /}=C_{52}+T_{1}\left(C_{53} T_{1}+C_{54}\right)+\frac{\left(\frac{C_{55}}{T_{1}}+C_{56}\right)}{T_{1}} ;$
and
$\frac{d c_{p v s}}{d p_{v}}=-A_{15} \frac{d T_{s}}{d p_{v}}\left[C_{54}+2 C_{53} T_{1}-\frac{\left(\frac{2 C_{55}}{T_{1}}+C_{56}\right)}{T_{1}^{2}}\right]$,
where T_{s} is the saturation temperature corresponding to the partial pressure of steam and $T_{1}=1.0-A_{15} \cdot T_{s}$.
4. Enthalpy.
$h_{v S}=e_{v s} \gamma_{s}$
and
$\frac{d h_{v s}}{d p_{v}}=\frac{d e_{v s}}{d p_{v}} \gamma_{s}$,
where

$$
\gamma_{s}=C_{9}+\left(C_{11} p_{v}+C_{10}\right) p_{v} \quad, \quad \text { for } p_{v}<C_{21} ;
$$

and
$\gamma_{s}=C_{15}+\left(C_{17} 7 P_{v}+C_{16}\right) p_{v} \quad, \quad$ for $p_{v}>C_{21}$.
$h_{\ell s}=e_{\ell s}+\frac{p}{\rho_{\ell s}}$
and
II
$\frac{d h_{\ell s}}{d p}=\frac{d e_{\ell s}}{d T_{s}} \frac{d T_{s}}{d p}+\frac{1}{\rho_{\ell s}}-\frac{p}{\rho_{\ell s}^{2}}\left[\left(\frac{\partial \rho_{\ell s}}{\partial p}\right)_{T}+\left(\frac{\partial \rho_{\ell s}}{\partial T}\right) \frac{d T_{s}}{d p}\right]$,
where $e_{\ell s}, \rho_{\ell s}$, and their derivatives are evaluated using the liquid equations given below.
B. Liquid Properties

1. Internal Energy. We define
$T L C=T_{\ell}-273.15$,

PSL $=\frac{\left[\frac{\left(T_{\ell}-C_{3}\right)}{C_{1}}\right]^{1 / C_{2}}}{A_{14}}$ (saturation pressure corresponding to T_{ℓ}),
$E L P=(p-P S L) \cdot\left(C_{k O}+C_{k 2} P S L{ }^{2}\right)$,
and
$E R T=\frac{-C_{k 0}+C_{k 2} \cdot\left(2 \cdot P S L \cdot p-3 \cdot P S L^{2}\right)}{A_{1} \cdot\left(A_{14} \cdot P S L\right)^{A_{2}}}$.

There are three temperature domains used in evaluating the liquid internal energy.

$$
\mathbf{e}_{\ell}=\mathrm{ELCO}+\mathrm{ELCl} \cdot \mathrm{TLC}+\mathrm{ELC2} \cdot \mathrm{TLC}^{2}+\mathrm{ELC} 3 \cdot \mathrm{TLC}^{3}+\mathrm{ELC}^{2} \cdot \mathrm{TLC}^{4}+\mathrm{ELP} \cdot
$$

$$
\left(\frac{\partial e_{\ell}}{\partial T_{\ell}}\right)_{p}=\text { DELCO }+ \text { DELCl } \cdot \mathrm{TLC}+\mathrm{DELC} 2 \cdot \mathrm{TLC}^{2}+\text { DELC3 } \cdot \mathrm{TLC}^{3}+\mathrm{ERT}
$$

$$
\text { b. } \quad 548.15 \mathrm{~K} \leq \mathrm{T}_{\ell} \leq 611.15 \mathrm{~K}
$$

$$
e_{\ell}=E L D 0+E L D 1 \cdot T L C+E L D 2 \cdot T L C^{2}+E L D 3 \cdot T L C^{3}+E L D 4 \cdot T L C^{4}+E L P \cdot
$$

$$
\left(\frac{\partial e_{\ell}}{\partial T_{\ell}}\right)_{p}=\text { DELDO }+ \text { DELD1 } \cdot \operatorname{TLC}+\text { DELD2 } \cdot \mathrm{TLC}^{2}+\text { DELD3 } \cdot \mathrm{TLC}^{3}+\text { ERT }
$$

$$
\text { c. } \quad T_{\ell}>.611 .15 \mathrm{~K}
$$

$$
\mathrm{e}_{\ell}=\mathrm{ELE} 0+\mathrm{ELE} 1 \cdot \mathrm{TLC}+\mathrm{ELE} 2 \cdot \mathrm{TLC}^{2}+\mathrm{ELE} 3 \cdot \mathrm{TLC}{ }^{3}+\mathrm{ELE}^{2} \cdot \mathrm{TLC}^{4}+\mathrm{ELP} \cdot
$$

$$
\left(\frac{\partial e_{\ell}}{\partial \mathrm{T}_{\ell}}\right)_{p}=\text { DELEO }+ \text { DELE1 } \cdot \mathrm{TLC}+\mathrm{DELE} 2 \cdot \mathrm{TLC}^{2}+\text { DELE } 3 \cdot \mathrm{TLC}^{3}+\text { ERT }
$$

For all three domains

$$
\left(\frac{\partial e_{\ell}}{\partial \mathrm{p}}\right)_{\mathrm{T}_{\ell}}=\mathrm{C}_{\mathrm{k} 0}+\mathrm{C}_{\mathrm{k} 2} \cdot \mathrm{PSL}^{2}
$$

$$
\vec{a}
$$

2. Density-
Define $P B A R=1.0 \times 10^{-5} \mathrm{p}$ and $\mathrm{TLC}=\mathrm{T}_{\ell}-273.15$. There are three temperature domains.
a. $\quad \mathrm{T}_{\ell}>525.15 \mathrm{~K}$ -

$$
\rho_{\ell}=1.43+\frac{1000}{\left(\mathrm{CVH} 1+\mathrm{CVH} 2 \cdot \mathrm{PBAR}+\mathrm{CVH} 3 \cdot \mathrm{PBAR}^{2}+\beta_{1} \cdot \mathrm{TLC}+\gamma_{1} \cdot T L C^{2}\right)},
$$

$\left(\frac{\partial \rho_{\ell}}{\partial \mathrm{p}}\right)_{\mathrm{T}_{\ell}}=-\left(\rho_{\ell}-1.43\right)^{2} \cdot 1.0 \times 10^{-8}[\mathrm{CVH} 2+2 \cdot \mathrm{CVH} 3 \cdot \mathrm{PBAR}$ $\left.+\operatorname{TLC}(\mathrm{CVH} 5+2 \cdot \mathrm{CVH} 6 \cdot \mathrm{PBAR})+\mathrm{TLC}^{2}(\mathrm{CVH} 8+2 \cdot \mathrm{CVH} 9 \cdot \mathrm{PBAR})\right]$,
and

$$
\left(\frac{\partial \rho_{\ell}}{\partial \mathrm{T}_{\ell}}\right)_{\mathrm{p}}=-\left(\rho_{\ell}-1.43\right)^{2} \cdot 1.0 \times 10^{-3}\left(\beta_{1}+2 \cdot \gamma_{1} \cdot \mathrm{TLC}\right)
$$

where

$$
\begin{aligned}
& \mathrm{B}_{1}=\mathrm{CVH} 4+\mathrm{CVH5} \cdot \mathrm{PBAR}+\mathrm{CVH} 6 \cdot \mathrm{PBAR}^{2} \\
& \text { and }
\end{aligned}
$$

$\gamma_{1}=\mathrm{CVH} 7+\mathrm{CVH} 8 \cdot \mathrm{PBAR}+\mathrm{CVH} 9 \cdot \mathrm{PBAR}^{2} \cdot$

$$
\mathrm{b} . \quad \mathrm{T}_{\ell}<521.15 \mathrm{~K} .
$$

$$
\begin{aligned}
\rho_{\ell}= & \frac{1000}{\left(\mathrm{CVL1}+\mathrm{CVL} 2 \cdot \operatorname{PBAR}+\mathrm{CVL} 3 \cdot \mathrm{PBAR}^{2}+\beta_{1} \cdot \mathrm{TLC}+\gamma_{1} \cdot \mathrm{TLC}^{2}\right)}-2.01, \\
\left(\frac{\partial \rho_{\ell}}{\partial \mathrm{p}}\right)_{\mathrm{T}_{\ell}}= & -\left(\rho_{\ell}+2.01\right)^{2} \cdot 1.0 \times 10^{-8}[\mathrm{CVL} 2+2 \cdot \mathrm{CVL} 3 \cdot \mathrm{PBAR} \\
& \left.+\mathrm{TLC}(\mathrm{CVL} 5+2 \cdot \mathrm{CVL} 6 \cdot \mathrm{PBAR})+\mathrm{TLC}^{2}(\mathrm{CVL} 8+2 \cdot \mathrm{CVL} 9 \cdot \mathrm{PBAR})\right] . \\
\left(\frac{\partial \rho_{\ell}}{\partial \mathrm{T}_{\ell}}\right)_{\mathrm{p}}= & -\left(\rho_{\ell}+2.01\right)^{2} \cdot 1.0 \times 10^{-3}\left(\beta_{1}+2 \cdot \gamma_{1} \cdot \mathrm{TLC}\right),
\end{aligned}
$$

where
$\beta_{1}=C V L 4+C V L 5 \cdot P B A R+C V L 6 \cdot$ PBAR 2
and
$\gamma_{1}=\mathrm{CVL} 7+\mathrm{CVL} 8 \cdot \mathrm{PBAR}+\mathrm{CVL9} \cdot \mathrm{PBAR}^{2} \cdot$
c. $\quad 521.15 \mathrm{~K} \leq \mathrm{T}_{\ell} \leq 525.15 \mathrm{~K}$.

An average of the functions in (a) and (b) above is used in this range. Call the two values $\rho_{\ell a}$ and $\rho_{\ell b}$, then

$$
\begin{aligned}
\rho_{\ell} & =\left(\frac{525.15-T_{\ell}}{4.0}\right) \rho_{\ell b}+\left(\frac{T_{\ell}-521.15}{4.0}\right) \rho_{\ell \mathrm{a}}, \\
\left(\frac{\partial \rho_{\ell}}{\partial \mathrm{p}}\right)_{T_{\ell}} & =\left(\frac{525.15-T_{\ell}}{4.0}\right)\left(\frac{\partial \rho_{\ell b}}{\partial \mathrm{p}}\right)_{T_{\ell}}+\left(\frac{T_{\ell}-521.15}{4.0}\right)\left(\frac{\partial \rho_{\ell \mathrm{a}}}{\partial \mathrm{p}}\right)_{\mathrm{T}_{\ell}}
\end{aligned}
$$

and

$$
\left(\frac{\partial \rho_{\ell}}{\partial \mathrm{T}_{\ell p}}\right)_{p}\left(\frac{525.15-T_{\ell}}{4.0}\right)\left(\frac{\partial \rho_{\ell b}}{\partial \mathrm{~T}_{\ell}}\right)+\left(\frac{\mathrm{T}_{\ell}-521.15}{4.0}\right)\left(\frac{\partial \rho_{\ell \mathrm{a}}}{\partial \mathrm{~T}_{\ell}}\right)_{\mathrm{p}}+\frac{\rho_{\ell \mathrm{a}}-\rho_{\ell b}}{4.0} .
$$

d. Residual Void Correction. After evaluation in sections (a) through (c), ρ_{ℓ} and its derivatives are corrected to reflect a residual void fraction. In the following, the values calculated by (a) through (c) above are denoted by a tilde (~).
(1) $\quad \mathrm{p} \geq 4.0 \times 10^{5} \mathrm{~Pa}$.

$$
\begin{aligned}
& \left(\frac{\partial \rho_{\ell}}{\partial \mathrm{T}_{\ell}}\right)_{\mathrm{p}}=\left(1-\frac{1000}{\mathrm{p}}\right)\left(\frac{\partial \tilde{\rho}_{\ell}}{\partial \mathrm{T}_{\ell}}\right)_{\mathrm{p}}, \\
& \left(\frac{\partial \rho_{\ell}}{\partial \mathrm{p}}\right)_{\mathrm{T}_{\ell}}=\left(1-\frac{1000}{\mathrm{p}}\right)\left(\frac{\partial \tilde{\rho}_{\ell}}{\partial \mathrm{p}}\right)_{\mathrm{T}_{\ell}}+\frac{1000 \tilde{\rho}_{\ell}}{\mathrm{p}^{2}}
\end{aligned}
$$

and

$$
\rho_{\ell}=\left(1-\frac{1000}{\mathrm{p}}\right) \tilde{\rho}_{\ell}
$$

(2) $\quad \mathrm{P}<4.0 \times 10^{5} \mathrm{~Pa}$.

$$
\begin{aligned}
\left(\frac{\partial \rho_{\ell}}{\partial \mathrm{T}_{\ell}}\right)_{\mathrm{p}} & =\left(0.995+6.25 \times 10^{-9} \mathrm{p}\right)\left(\frac{\partial \tilde{\rho}_{\ell}}{\partial \mathrm{T}_{\ell}}\right)_{\mathrm{p}} \\
\left(\frac{\partial \rho_{\ell}}{\partial \mathrm{p}}\right)_{\mathrm{T}_{\ell}} & =\left(0.995+6.25 \times 10^{-9} \mathrm{p}\right)\left(\frac{\partial \tilde{\rho}_{\ell}}{\partial \mathrm{p}}\right)_{\mathrm{T}_{\ell}}+6.25 \times 10^{-9} \tilde{\rho}_{\ell} \\
\rho_{\ell} & =\left(0.995+6.25 \times 10^{-9} \mathrm{p}\right) \tilde{\rho}_{\ell}
\end{aligned}
$$

3. Enthalpy. Enthalpy is not evaluated by the water property routines, but may be evaluated easily through
$h_{\ell}=e_{\ell}+\frac{p}{\rho_{\ell}}$.

C. Vapor Properties

1. Superheated Steam. $\left(T_{g}-T_{S}\right)>0$, where T_{S} is the saturation temperature corresponding to partial pressure of steam.
a. Internal Energy.
$e_{v}=e_{v s}+A_{12}\left[\left(T_{g}-T_{s}\right)+\left(T_{g}^{2}-\beta\right)^{1 / 2}-\frac{T_{s}}{\left(A_{11} c_{p v s}-1.0\right)}\right]$,
where

$$
\mathrm{B}=\mathrm{T}_{\mathrm{S}}^{2}\left[1.0-\frac{1.0}{\left(\mathrm{~A}_{11} \mathrm{c}_{\mathrm{pVs}}-1.0\right)^{2}}\right]
$$

The internal energy derivatives are calculated as

$$
\begin{aligned}
& \left(\frac{\partial e_{v}}{\partial T_{g} p_{v}}=\left[\frac{A_{13}}{2}\left(1.0-\frac{\beta}{k^{2}},\right]^{-1.0}\right.\right. \\
& \left(\frac{\partial e_{v}}{\partial p_{v} T_{g}}=-\frac{1}{2}\left(\frac{\partial e_{v}}{\partial T_{g}}\right)_{p_{v}}\left[\left(1.0-\frac{\beta}{k^{2}}\right) k_{p}^{\prime}+\frac{1}{k} \frac{d \beta}{d p_{v}}\right]\right.
\end{aligned}
$$

where

$$
\begin{aligned}
k= & A_{13}\left(e_{v}-e_{s}\right)+T_{s}\left[1.0+\frac{1.0}{\left(A_{11} c_{p v s}-1.0\right)}\right] \\
k_{p}^{\prime}= & -A_{13} \frac{d e_{v s}}{d P_{v}}+\left[1.0+\frac{1.0}{\left(A_{11} c_{p v s}-1.0\right)}\right] \frac{d T_{s}}{d p_{v}} \\
& -T_{s A_{11}}\left[-\frac{1.0}{\left(A_{11} c_{p v s}-1.0\right)^{2}}\right] \frac{d c_{p v s}}{d p_{v}},
\end{aligned}
$$

and

$$
\frac{d B}{d p}=\frac{2.0}{T_{s}}\left[\beta\left(\frac{d T_{s}}{d p_{v}}\right)+\frac{T_{s}^{3} A_{11}}{\left(A_{11} c_{p v s}-1.0\right)^{3}}\left(\frac{d c_{p v s}}{d p_{v}}\right)\right]
$$

b. Density.

$$
\begin{equation*}
\rho_{v}=\frac{p_{v}}{\left(\gamma_{s}-1.0\right) e_{v s}+C_{26}\left(e_{v}-e_{v s}\right)}, \tag{11}
\end{equation*}
$$

$\left(\frac{\partial \rho_{v}}{\partial T_{g}}\right)_{p_{v}}=-\left(\frac{\partial e_{v}}{\partial T_{g}}\right)_{p_{v}}\left[\frac{c_{26} \rho_{v}}{\left(\gamma_{s}-1.0\right) e_{v s}+C_{26}\left(e_{g}-e_{v s}\right)}\right]$,
and

$$
\begin{aligned}
\left(\frac{\partial \rho_{v}}{\partial p_{v}}\right)_{T_{g}}= & \rho_{v}\left[\frac{1.0}{p_{v}}-\left[e_{v s} "\left(\frac{d \gamma_{s}}{d p_{v}}\right)+\left(\gamma_{s}-1.0-c_{26}\right) \frac{d e_{v s}}{d p_{v}}\right]\right. \\
& \left.\cdot\left[\frac{1.0}{\left(\gamma_{s}-1.0\right) e_{v s}+C_{26}\left(e_{v}-e_{v s}\right)}\right]\right\}+\left(\frac{\partial \rho_{v}}{\partial e_{v}}\right)\left(\frac{\partial e_{v}}{\partial p_{v}} T_{\mathrm{T}}\right.
\end{aligned},
$$

where

$$
\begin{aligned}
& \frac{d \gamma_{s}}{d p_{v}}=C_{10}+A_{16} P_{v} \quad \text { for } p_{v} \leq c_{21}, \\
& \frac{d \gamma_{s}}{d p_{v}}=C_{16}+A_{18} p_{v} \quad \text { for } p_{v}>C_{21},
\end{aligned}
$$

and

$$
\frac{\partial \rho_{v}}{\partial e_{v}}=\frac{-C_{26 \rho_{v}}}{\left[\left(\gamma_{s}-1.0\right) e_{\gamma s}+C_{26}\left(e_{v}-e_{v s}\right)\right]} .
$$

If ρ_{v} exceeds $0.9 \rho_{\ell}$ or is less than zero, the above is superceded by

$$
\begin{aligned}
\rho_{v} & =0.9 \rho_{\ell}, \\
\left(\frac{\partial \rho_{\mathbf{v}}}{\partial T_{g}}\right)_{p_{v}} & =0.9\left(\frac{\partial \rho_{\ell}}{\partial \mathrm{T}_{\ell}}\right)_{\mathrm{p}}
\end{aligned}
$$

and

$$
\left(\frac{\partial \rho_{v}}{\partial{P_{v}}_{v}}\right)_{g}=0.9\left(\frac{\partial \rho_{\ell}}{\partial \mathrm{P}_{g}}\right)_{T_{\ell}}
$$

c. Enthalpy. Enthalpy is not evaluated by the water property routines, but may be calculated easily through

$$
h_{v}=e_{v}+\frac{p_{v}}{\rho_{v}}
$$

!

0
[

2. Subcooled Vapor. $\left(T_{g}-T_{s}\right) \leq 0$
a. Internal Energy.

$$
e_{v}=e_{v s}+\left(T_{g}-T_{s}\right) \frac{c_{p v s}}{c_{24}}
$$

$\left(\frac{\partial e_{v}}{\partial T_{g}}\right)_{p_{v}}=\frac{c_{\text {pvs }}}{C_{24}}$,
$\left(\frac{\partial e_{v}}{\partial p_{v}}\right)_{T_{g}}=-\left(\frac{\partial e_{v}}{\partial T_{g}}\right)\left\{\frac{d T_{s}}{d p_{v}}-\left(\frac{C_{24}}{c_{p v s}}\right)\left[\frac{d e_{v s}}{d p_{v}}+\frac{\left(e_{v}-e_{v s}\right)}{c_{p v s}}\left(\frac{d c_{p v s}}{d p_{v}}\right)\right]\right\}$.
b. Density. The formulas are identical to the superheated vapor case above, but the subcooled vapor energy is used in this case.
c. Enthalpy. Enthalpy is not evaluated ly the water property routines, but may be calculated easily through
$h_{v}=e_{v}+\frac{p_{v}}{\rho_{v}}$.
3. __ Noncondensable Gas (Air).
a. Internal Energy.

$$
e_{a}=c_{v a}{ }^{T} g,
$$

$\left(\frac{\partial e_{a}}{\partial T_{g}}\right)_{p_{a}}=c_{v a}$,
and
$\left(\frac{\partial e_{a}}{\partial \mathrm{p}_{\mathrm{a}}}\right)_{\mathrm{T}}=0.0$.
b. Density.

$$
\begin{aligned}
& \rho_{a}=\frac{p_{a}}{R_{a} T_{g}}, \\
&\left(\frac{\partial \rho_{a}}{\partial \rho_{a}}\right)_{g}=\frac{1.0}{R_{a} T_{g}}, \\
& \text { and } \\
& \\
&\left(\frac{\partial \rho_{a}}{\partial T_{g}}\right)_{a}=-R_{a} \rho_{a}\left(\frac{\partial \rho_{a}}{\partial \rho_{a}} T_{g},\right.
\end{aligned}
$$

where R_{a} is the gas constant for air.
-
II. TRANSPORT PROPERTIES

Subroutine FPROP is used to obtain transport properties for water and the noncondensable gas. The input variables for this routine are the saturation temperature, pressure, enthalpies of each phase, vapor density, and the vapor temperature. The output transport variables include the latent heat of vaporization, surface tension, constant pressure specific heat, viscosity, and thermal conductivity of steam, the liquid, and the noncondensable gas. The transport property calls are function calls within the FPROP subroutine. The polynomial equation fits for the transport properties used in FPROP are described. Note that the curve fits for σ and $c_{p \ell}$ have been updated since TRAC-P1A. Values of the constants are given in Tables A-III through A-VII. A. Latent Heat of Vaporization

The latent heat of vaporization is calculated as
$h_{\ell v}=h_{v s}-h_{\ell s}$,
where $h_{v s}$ and $h_{l s}$ are calculated according to Appendix A, Sec. I. A. B. Constant Pressure Specific Heats

Constants used in this section are given in Table A-III.
$c_{p \ell}=\left\{h_{\ell}\left[h_{\ell}\left(D_{0 \ell}+D_{1 \ell} p\right)+\left(c_{0 \ell}+c_{1 \ell} p\right)\right]+B_{0 \ell}+B_{1 \ell} p\right\}^{-1}$
and
$c_{p v}=c_{1 g}+c_{2 g} T_{g}+\frac{c_{3 g} p}{\left(C_{5 g} T_{g}-C_{6 g}\right)^{2.4}}+\frac{c_{4 g} p^{3}}{\left(C_{5 g} T_{g}-C_{6 g}\right)^{9}}$.

Because these values are used only for calculating heat-transfer coefficients, these fits were chosen for simplicity and smoothness and are not necessarily consistent with those derivable from the thermodynamic routines.

The specific heat of the noncondensable gas is 1037. C. Fluid Viscosities

1. Liquid. Constants used in tivs section are given in Table A-IV. The evaluation of liquid viscosity is divided into three different enthalpy ranges. For $h_{\ell} \leq h_{1}$,

$$
\begin{aligned}
\mu_{\ell}= & \left(A_{0 \ell}+A_{1 \ell} x+A_{2 \ell} x^{2}+A_{3 \ell} x^{3}+A_{4 \ell} x^{4}\right) \\
& -\left(B_{0 \ell}+B_{1 \ell} \eta+B_{2 \ell} \eta^{2}+B_{3 \ell} \eta^{3}\right)\left(p-p_{i}\right),
\end{aligned}
$$

where
$x=\left(h_{\ell}-c_{0_{n}}\right) h_{0}$
and
$\eta=\left(h_{\ell}-e_{c O n}\right) e_{h O}$.

In the range $h_{1}<h \leq h_{2}$,

$$
\begin{aligned}
\mu_{\ell}= & \left(E_{0 \ell}+E_{1 \ell} h_{\ell}+E_{2 \ell} h_{\ell}^{2}+E_{3 \ell} h_{\ell}^{3}\right) \\
& +\left(F_{0 \ell}+F_{1 \ell} h_{\ell}+F_{2 \ell} h_{\ell}^{2}+F_{3 \ell} h_{\ell}^{3}\right)\left(p-p_{i}\right)
\end{aligned}
$$

For $h_{\ell}>h_{2}$,
$\mu_{\ell}=\left(D_{0 \ell}+D_{1 \ell} z+D_{2 \ell} z^{2}+D_{3 \ell} z^{3}+D_{4 \ell} z^{4}\right)$,
where

$$
z=\left(h_{\ell}-c_{n}\right) h_{00} .
$$

2. Steam. Constants used in this section are given in Table A-V. Three vapor temperature ranges are used to represent the data.
a. $\quad \mathrm{T}_{\mathrm{g}} \leq \mathrm{T}_{1}$.
$\mu_{v}=\left[B_{I_{g}}\left(T_{g}-273.15\right)+C_{1 g}\right]-\rho_{v}\left[D_{1 g}-E_{1 g}\left(T_{g}-273.15\right)\right]$.

If $\mu_{v}<10^{-7}$, it is set to that value.

$$
\text { b. } \quad \mathrm{T}_{1}<\mathrm{T}_{\mathrm{g}}<\mathrm{T}_{2}
$$

$$
\mu_{v}=B_{1_{g}}\left(T_{g}-273.15\right)+C_{1 g}+\rho_{v}\left[F_{1 g}+F_{2 g}\left(T_{g}-273.15\right)\right.
$$

$$
\left.+F_{3 g}\left(T_{g}-273.15\right)^{2}+F_{4 g}\left(T_{g}-273.15\right)^{2}\right]
$$

$$
+\rho_{v}\left[G_{1 g}+G_{2 g}\left(T_{g}-273.15\right)+G_{3 g}\left(T_{g}-273.15\right)^{2}\right.
$$

$$
\left.+G_{4 g}\left(T_{g}-273.15\right)^{3}\right]\left(A_{0 g}+A_{1} \rho_{v}+A_{2} \rho_{v}^{2}\right)
$$

c. $\quad T_{g}{ }^{2} T_{2}$.
$\mu_{v}=B_{1_{g}}\left(T_{g}-273.15\right)+C_{1 g}+\rho_{v}\left(A_{O_{g}}+A_{1 g} \rho_{v}+A_{2 g} \rho_{v}^{2}\right) \quad$.
d. Noncondensable Gas. For the noncondensable gas, two ranges of T_{g} are used.
(1) $\quad T_{g} \leq 502.15 \mathrm{~K}$.
$H_{a}=H_{\ell 1}+H_{\ell 2}\left(T_{g}-273.15\right)+H_{\ell 3}\left(T_{g}-273.15\right)^{2}$.
(2) $\quad T_{g}>502.15 \mathrm{~K}$.
$\mu_{a}=H_{u 1}+H_{u 2}\left(T_{g}-273.15\right)+H_{u}\left(T_{g}-273.15\right)^{2}$.

D. Fluid Thermal Conductivities

The liquid thermal conductivity is given by
$k_{\ell}=A_{\ell O}+A_{\ell 1} x_{k}+A_{\ell 2} x_{k}^{2}+A_{\ell} x^{3}$,
where
$x_{k}=\frac{h_{\ell}}{h_{0}}$,
and the constants are given in Table A-VI.
The steam thermal conductivity is given by
$k_{v}=x_{1}+\rho_{v}\left[x_{2}+\frac{C_{\rho}}{\left(\mathrm{T}_{\mathrm{g}}-273.15\right)^{4.2}}\right]$,
where
$x_{1}=A_{g 0}+A_{g 1}\left(T_{g}-273.15\right)+A_{g 2}\left(T_{g}-273.1!\right)^{2}+A_{g}\left(T_{g}-273.15\right)^{3}$
and
$x_{2}=B_{g 0}+B_{g 1}\left(T_{g}-273.15\right)+B_{g 2}\left(T_{g}-273.15\right)^{2}$.

However, the minimum permitted value for k_{v} is 1.0×10^{-4}.
The thermal conductivity of the noncondensable gas is 0.0228 . E. Surface Tension

Above 647.3 K the surface tension is zero. Below this temperature it is given by
$\sigma=C_{21} T_{R}^{2}+A_{3} T_{R}^{3}+A_{4} T_{R}^{4}+A_{5} T_{R}^{5}$,
where
$C_{21}=A_{2}+\frac{A_{1}}{1.0+B \cdot T_{R}}$,
$T_{R}=647.3-T_{S}$,
and the constants are given in Table A-VII.

III. VERIFICATION

The thermodynamic and transport property fits ${ }^{18}$ used in TRAC have been compared with steam table data over a wide range of parameters. The agreement is satisfactory in the saturation region and in the superheated steam region for $1.0 \times 10^{5} \mathrm{~Pa}<\mathrm{p}<100.0 \times 10^{5} \mathrm{~Pa}$ and $423.0 \mathrm{~K}<\mathrm{T} \mathrm{g}<823.0 \mathrm{~K}$. The agreement also is good in the subcooled water region for $373.0 \mathrm{~K}<\mathrm{T}_{\ell}<523.0 \mathrm{~K}$ and $0.417 .8 \times 10^{6} \mathrm{~J} / \mathrm{kg}<\mathrm{e}_{\ell}<1.0808 \times 10^{6} \mathrm{~J} / \mathrm{kg}$.

Further verification was performed by comparing the TRAC polynomial fits with the WATER package ${ }^{52}$ over a wider range of nonequilibrium (99 K of both superheat and subcooling) for a pressure variation of $1.0 \times 10^{5} \mathrm{~Pa}$
to $2.0 \times 10^{7} \mathrm{~Pa}$. The comparisons showed good agreement for both the thermodynamic and transport properties throughout the saturation and nonequilibrium regions except for very extreme cases. for instance, the vapor specific-heat-equation fit used in TRAC diverges to infinity at saturation conditions above $1.8 \times 10^{7}-\mathrm{Pa}$ pressure. Also, at high degrees of subcooling or superheat, some inconsistencies are noticed. Because no data exist for comparison in these extreme cases, it is impossible to compare TRAC and the WATER package adequately.

In conclusion, for most TRAC applications, the thermodynamic and transport property routines provide realistic values over a wide range. The simplified polynomial fits provide an efficient and low-cost method compared to other approaches such as steam table interpolation.

POLYNOMIAL CONSTANTS FOR THERMO
$C_{1}=117.8$
$C_{2}=0.223$
$C_{3}=255.2$
$C_{4}=958.75$
$C_{5}=-0.856 .6$
$C_{6}=2.619410618 \times 10^{6}$
$C_{7}=-4.995 \times 10^{10}$
$C_{8}=3.403 \times 10^{5}$
$C_{9}=1.06655448$
$C_{10}=1.02 \times 10^{-8}$
$C_{11}=-2.548 \times 10^{-15}$
$C_{12}=2.589600 \times 10^{6}$
$C_{13}=6.350 \times 10^{-3}$
$C_{14}=-1.0582 \times 10^{-9}$
$C_{15}=1.0764$
$C_{16}=3.625 \times 10^{-10}$
$C_{17}=-9.063 \times 10^{-17}$
$C_{20}=461.7$
$C_{21}=2.0 \times 10^{6}$
$C_{23}=647.3$

$$
\begin{aligned}
& \mathrm{C}_{24}=1.3 \\
& \mathrm{C}_{26}=0.3 \\
& \mathrm{C}_{28}=1.0 \times 10^{5} \\
& \mathrm{C}_{40}=273.0 \\
& \mathrm{C}_{41}=239.36 \\
& \mathrm{C}_{42}=2.7867 \\
& \mathrm{C}_{43}=-5.77626 \\
& \mathrm{C}_{44}=3.938 \\
& \mathrm{C}_{45}=1.0 \times 10^{-6} \\
& \mathrm{C}_{47}=1.0 \times 10^{3} \\
& \mathrm{C}_{48}=-0.15 \times 10^{3} \\
& \mathrm{C}_{49}=-20.0 \\
& \mathrm{C}_{51}=0.657 \times 10^{-6} \\
& \mathrm{C}_{52}=2.996018036 \times 10^{3} \\
& \mathrm{C}_{53}=9.700016602 \times 10^{3} \\
& \mathrm{C}_{54}=-8.448077393 \times 10^{3} \\
& \mathrm{C}_{55}=8.349824 \\
& \mathrm{C}_{56}=3.49519444 \times 10^{2} \\
& \mathrm{C}_{\mathrm{k}}= \\
& \mathrm{C}_{\mathrm{k} 2}=-8.33544 \times 10^{-4} \\
& =-2.24745 \times 10^{-17}
\end{aligned}
$$

TABLE A-I (cont.)

```
ELCO \(=1.75880 \times 10^{4}\)
ELCl \(=3.7402 \times 10^{3}\)
\(E L C 2=4.02435\)
ELC3 \(=-0.0157294\)
ELC4 \(=3.1301 \times 10^{-5}\)
ELDO \(=6.18527 . \times 10^{6}\)
ELD1 \(=-8.14547 \times 10^{4}\)
\(\operatorname{ELD} 2=4.46598 \times 10^{2}\)
ELD3 \(=-1.04116\)
ELD4 \(=9.26022 \times 10^{-4}\)
CVH1 \(=1.00213623\)
CVH2 \(=-5.632785 \times 10^{-5}\)
СVH3 \(=-8.97130477 \times 10^{-9}\)
\(\mathrm{CVH}_{4}=-2.28287459 \times 10^{-5}\)
CVH5 \(=4.76596787 \times 10^{-7}\)
CVH6 \(=5.021318 \times 10^{-10}\)
\(\mathrm{CVH} 7=4.10115658 \times 10^{-6}\)
CVH8 \(=-3.80398908 \times 10^{-9}\)
CVH9 \(=-1.42199752 \times 10^{-12}\)
```

$$
\begin{aligned}
& \text { ELEO }=2.283789029 \times 10^{9} \\
& \text { ELE1 }=-2.62215677 \times 10^{7} \\
& \text { ELE2 }= \\
& \text { ELE3 }= \\
& \text { ELE4 }= \\
& \\
& C_{\mathrm{va}}=714.162389 .67 \times 10^{5} \\
& R_{\mathrm{a}}=287.12
\end{aligned}
$$

CVLI $=2.25262$
CVL2 $=0.0148594$
CVL3 $=-7.15488 \times 10^{-5}$
CVL4 $=0.0104588$
CVL5 $=-1.02962 \times 10^{-4}$
CVL5 $=5.09135 \times 10^{-7}$
CVL7 $=2.59266 \times 10^{-5}$
CVL8 $=1.7241 \times 10^{-7}$
CVL9 $=-8.98419 \times 10^{-10}$

DERIVED CONSTANTS FOR THERMODYNAMIC PROPERTIES OF WATER AND AIR

A_{1}	$=\mathrm{C}_{1} \cdot \mathrm{c}^{2} / \mathrm{C}_{28}$
A_{2}	$=\mathrm{C}_{2}-1.0$
A_{3}	$=-C_{4} \cdot c^{5} / C_{23}$
A_{4}	$=\mathrm{C}_{5}-1.0$
A_{5}	$=\mathrm{C}_{45} \cdot \mathrm{C}_{49}$
${ }^{A_{6}}$	$=2 \cdot \mathrm{C}_{45} \cdot \mathrm{C}_{48}$
${ }^{A_{7}}$	$=4 \cdot \mathrm{C}_{44} \cdot \mathrm{C}_{45}$
A_{8}	$=3 \cdot \mathrm{C}_{43} \cdot \mathrm{C}_{45}$
A9	$=2 \cdot \mathrm{C}_{42} \cdot \mathrm{C}_{45}$
A_{10}	$=C_{41} \cdot C_{45}$
DELCO	$=\mathrm{ELCl}$
DELCI	$=2 \cdot E L C 2$
DELC2	$=3 \cdot E L C 3$
DELC3	$=4 \cdot E L C 4$
DELEO	= ELE1
DELEl	$=2 \cdot E L E 2$
DELE2	= 3-ELE3
DELE3	$=4 \cdot$ ELE 4

$$
\begin{aligned}
& A_{11}=2 \cdot C_{26} /\left(C_{24} \cdot C_{20}\right) \\
& A_{13}=A_{11} \cdot\left(1.0+C_{26}\right) \\
& A_{12}=1 \cdot 0 / A_{13} \\
& A_{14}=1 \cdot 0 / C_{28} \\
& A_{15}=1 \cdot 0 / C_{23} \\
& A_{16}=2 \cdot C_{11} \\
& A_{17}=2 \cdot C_{14} \\
& A_{18}=2 \cdot C_{17} \\
& A_{19}=2 \cdot C_{48} \cdot C_{45} \\
& A_{20}=C_{45} \cdot C_{49} \\
& \text { DELDO }=E L D 1 \\
& \text { DELD1 }=2 \cdot E L D 2 \\
& D E L D 2=3 \cdot E L D 3 \\
& D E L D 3=4 \cdot E L D 4
\end{aligned}
$$

DELEO = ELE1

$$
\text { DELE1 }=2 \cdot E L E 2
$$

$$
\text { DELE2 }=3 \cdot \text { ELE3 }
$$

$$
\text { DELE3 }=4 \cdot \text { ELE4 }
$$

TABLE A-III

BASIC CONSTANTS FOR TRANSPORT PROPERTIES OE WATER AND AIR

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{g} 0}=2.739623397 \times 10^{6} \\
& \mathrm{H}_{\mathrm{g} 1}=3.758844554 \times 10^{-2} \\
& \mathrm{H}_{\mathrm{g} 2}=-7.163990945 \times 10^{-9} \\
& \mathrm{H}_{\mathrm{g} 3}=4.200231947 \times 10^{-16} \\
& \mathrm{H}_{\mathrm{g} 4}=9.850752122 \times 10^{-24}
\end{aligned}
$$

$$
\begin{array}{ll}
\mathrm{B}_{0 \ell}=2.394907 \times 10^{-4} & \mathrm{~B}_{1 \ell}=-5.196250 \times 10^{-13} \\
\mathrm{C}_{0 \ell}=1.193203 \times 10^{-11} & \mathrm{C}_{1 \ell}=2.412704 \times 10^{-18} \\
\mathrm{D}_{0 \ell}=-3.944067 \times 10^{-17} & \mathrm{D}_{1 \ell}=-1.680771 \times 10^{-24}
\end{array}
$$

$$
\begin{aligned}
& \mathrm{C}_{1 g}=1.68835968 \times 10^{3} \\
& \mathrm{C}_{2 \mathrm{~g}}=0.6029856 \\
& \mathrm{C}_{3 g}=4.820979623 \times 10^{2} \\
& \mathrm{C}_{4 g}=2.95317905 \times 10^{7} \\
& \mathrm{C}_{5 g}=1.8 \\
& \mathrm{C}_{6 g}=4.60 \times 10^{2}
\end{aligned}
$$

LIQUID VISCOSITY CONSTANTS

$$
\begin{aligned}
& { }^{A_{O \ell}}=1.299470229 \times 10^{-3} \\
& A_{1 \ell}=-9.264032108 \times 10^{-4} \\
& A_{2 \ell}=3.81047061 \times 10^{-4} \\
& A_{3 \ell}=-8.219444458 \times 10^{-5} \\
& A_{4 \ell}=7.022437984 \times 10^{-6}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{B}_{0 \ell}=-6.5959 \times 10^{-12} \\
& \mathrm{~B}_{1 \ell}=-6.763 \times 10^{-12} \\
& \mathrm{~B}_{2 \ell}=-2.88825 \times 10^{-12} \\
& \mathrm{~B}_{3 \ell}=4.4525 \times 10^{-13}
\end{aligned}
$$

$$
\begin{aligned}
& D_{0 \ell}=3.026032306 \times 10^{-4} \\
& D_{1 \ell}=-1.836606896 \times 10^{-4} \\
& D_{2 \ell}=7.567075775 \times 10^{-5} \\
& D_{3 \ell}=-1.647878879 \times 10^{-5} \\
& D_{4 \ell}=1.416457633 \times 10^{-6}
\end{aligned}
$$

$$
\begin{aligned}
& E_{0 \ell}=1.4526052612 \times 10^{-3} \\
& E_{1 \ell}=-6.9880084985 \times 10^{-9} \\
& E_{2 \ell}=1.5210230334 \times 10^{-14} \\
& E_{3 \ell}=-1.2303194946 \times 10^{-20}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{F}_{0 \ell}=-3.8063507533 \times 10^{-11} \\
& \mathbf{F}_{1 \ell}=3.9285207677 \times 10^{-16} \\
& \mathrm{~F}_{2 \ell}=-1.2585799292 \times 10^{-21} \\
& \mathrm{~F}_{3 \ell}=1.2860180788 \times 10^{-27}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{h}_{0}=8.581289699 \times 10^{-6} \\
& \mathrm{c}_{\mathrm{On}}=4.265884 \times 10^{4} \\
& \mathrm{p}_{\mathrm{i}}=6.894575293 \times 10^{5}
\end{aligned}
$$

$$
h_{00}=3.892077365 \times 10^{-6}
$$

$$
e_{h 0}=6.484503981 \times 10^{-6}
$$

$$
e_{c 0 n}=5.53588 \times 10^{4}
$$

$$
c_{n}=4.014676 \times 10^{5}
$$

$$
h_{1}=2.76 \times 10^{5}
$$

$$
h_{2}=3.94 \times 10^{5}
$$

VAPOR VISCOSITY CONSTANTS

$$
\ddot{z}
$$

$$
\begin{aligned}
& { }^{A} 0_{g}=3.53 \times 10^{-8} \\
& A_{1_{g}}=6.765 \times 10^{-11} \\
& \mathrm{~A}_{2 \mathrm{~g}}=1.021 \times 10^{-14} \\
& F_{1 g}=-0.2885 \times 10^{-5} \\
& F_{2 g}=0.2427 \times 10^{-7} \\
& F_{3 g}=-0.6789333 \times 10^{-10} \\
& \mathrm{~F}_{4 \mathrm{~g}}=-0.6317037037 \times 10^{-13} \\
& \begin{array}{l}
\mathrm{B}_{1 \mathrm{~g}}=0.407 \times 10^{-7} \\
\mathrm{C}_{1 \mathrm{~g}}=8.04 \times 10^{-6} \\
\mathrm{D}_{1 \mathrm{~g}}=1.858 \times 1 \mathrm{in}^{-7} \\
\mathrm{E}_{1 \mathrm{~g}}=5.9 \times 10^{-17} \\
\mathrm{G}_{1 \mathrm{~g}}=176.0 \\
\mathrm{G}_{2 \mathrm{~g}}=-1.6 \\
\mathrm{G}_{3 \mathrm{~g}}=0.0048 \\
\mathrm{G}_{4 \mathrm{~g}}=-0.474074074 \times 10^{-5}
\end{array} \\
& \mathrm{H}_{\ell 1}=1.708 \times 10^{-5} \\
& \mathrm{H}_{\ell 2}=5.927 \times 10^{-8} \\
& \mathrm{H}_{\ell 3}=8.14 \times 10^{-11} \\
& \because \\
& \mathrm{~T}_{1}=573.15 \\
& \mathrm{~T}_{2}=648.15 \\
& \mathrm{H}_{\mathrm{ul}}=1.735 \times 10^{-5} \\
& \mathrm{H}_{\mathrm{u} 2}=4.193 \times 10^{-8} \\
& \mathrm{H}_{\mathrm{u} 3}=1.09 \times 10^{-11}
\end{aligned}
$$

TABLE A-VI

THERMAL CONDUCTIVITY CONSTANTS

$$
\begin{aligned}
& \mathbf{h}_{0}=5.815 \times 10^{5} \\
& \mathbf{A}_{\ell 0}=0.573738622 \\
& \mathbf{A}_{\ell 1}=0.2536103551 \\
& \mathbf{A}_{\ell 2}=-0.145468269 \\
& \mathbf{A}_{\ell 3}=-0.01387472485 \\
& \mathbf{C}=2.1482 \times 10^{5}
\end{aligned}
$$

$$
A_{g 0}=1.76 \times 10^{-2}
$$

$$
A_{g 1}=5.87 \times 1 C^{-5}
$$

$$
\mathrm{A}_{\mathrm{g} 2}^{\delta^{-}}=1.04 \times 10^{-7}
$$

$$
A_{g} 3=-4.51 \times 10^{-11}
$$

$$
\begin{aligned}
& B_{g 0}=1.0351 \times 10^{-4} \\
& B_{g 1}=0.4198 \times 10^{-6} \\
& B_{g 2}=-2.771 \times 10^{-11}
\end{aligned}
$$

TABLE AVI

SURFACE TENSION CONSTANTS

$$
\begin{aligned}
A_{1} & =1.160936807 \times 10^{-4} \\
A_{2} & =1.12140468 \times 10^{-6} \\
A_{3} & =-5.75280518 \times 10^{-9} \\
A_{4} & =1.28627465 \times 10^{-11} \\
A_{5} & =-1.14971929 \times 10^{-14} \\
B & =0.83
\end{aligned}
$$

APPENDIX B

MATERIAL PROPERTIES

I. INTRODUCTION

An extensive library of temperature-dependent material properties is incorporated in TRAC. The entire library is accessible by the vessel component; however, the ex-vessel components have access to structural material property sets only. Twelve sets of material properties comprise the library; each set supplies values for thermal conductivity, specific heat, density, and spectral emissivity for use in the heat-transfer calculations. The first 5 sets and set 11 contain properties for nuclear-heated or electrically heated fuel-rod simulation. Included are: nuclear fuels, Zircaloy cladding, fuel-cladding gap gases, electrical heater rod filaments, electrical heater rod insulating material, and Zircaloy dioxide. Sets $6-10$ and 12 are for structural materials including stainless steels, carbon steel, and Inconels. In addition, fuel and clad coefficients of thermal expansion, obtained from MATPRO (Ref. 53) subroutines FTHEX and CDTHEX, are available when the gap conductance thermal expansion model is used.

Figure $\mathrm{B}-1$ illustrates the calling tree for obtaining the property values. The subroutines MFROD and MPROP are simple processors for calculating the average temperature and calling the appropriate subroutine based on the user-specified material index. Subroutine FROD controls the fuel-clad gap conductance and fuel-rod thermal conduction calculations. The material indexes in the library are:

1	--	mixed oxide fuel;
2	--	Iircaloy;
3	--	gap gases;
4	--	boron nitride insulation;
5	--	Constantan/Nichrome heater;
6	--	stainless steel, type 304;
7	--	stainless steel, type $316 ;$
8	--	stainless steel, type $347 ;$
9	--	carbon, steel, type A508;
10	--	Inconel, type 718;

(1) Fig. B-1.

Material properties code organization.

11 -- Zircaloy dioxide; and
12 -- Inconel, type 600.
Gap gas properties are calculated only when the dynamic fuel-clad gap HTC option is used (NFCI = 1) .

II. NUCLEAR FUEL MIXED-OXIDE PROPERTIES

Subroutine MFUEL calculates the properties for mixed-oxide (UO_{2} and PuO 2) nuclear fuels. Values obtained are influenced by three user-specified input variables: the fraction of theoretical density, the fraction of plutonium oxide in the fuel, and the fuel burnup. Property changes upon melting are not included in this code version.
A. Density

The mixed-oxide fuel density is calculated with a correction factor to account for thermal expansion, which is assumed to be axisymmetric,

$$
\rho=\frac{d}{\left(1+3 \frac{\Delta L}{L}\right)}
$$

where

$$
\begin{aligned}
& \rho=\text { density }\left(\mathrm{kg} / \mathrm{m}^{3}\right), \\
& \mathrm{d}=\mathrm{f}_{\mathrm{TD}}\left[\left(1-\mathrm{f}_{\mathrm{PuO}_{2}}\right) \rho_{\mathrm{UO}_{2}}+\mathrm{f}_{\mathrm{PuO}_{2}} \rho_{\mathrm{PuO}_{2}}\right], \\
& \mathrm{f}_{\mathrm{TD}}=\text { fraction of theoretical fuel density }, \\
& \mathrm{f}_{\mathrm{PuO}_{2}}=\text { weight fraction of } \mathrm{PuO}_{2} \text { in the fuel }, \\
& \rho_{\mathrm{UO}}^{2} \\
&=1.097 \times 10^{4}, \\
& \rho_{\mathrm{PuO}_{2}}=1.146 \times 10^{4},
\end{aligned}
$$

and

$$
\frac{\Delta L}{L}=\text { linear thermal expansion. }
$$

The value calculated for the linear thermal expansion is based on the MATPRO formulation, ${ }^{53}$
$\frac{\Delta L}{L_{0}}=K_{1} T-K_{2}+K_{3} \exp \left(-E_{D} / k T\right)$,
where

$$
\begin{aligned}
& \frac{\Delta \mathrm{L}}{\mathrm{~L}_{0}}=\text { linear strain caused by thermal expansion (equal to } 300 \mathrm{~K} \text {)(unitless), } \\
& \mathrm{T}=\text { temperature }(\mathrm{K}), \\
& \mathrm{k}=\text { Boltamann } \\
& \text { and constant }\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right),
\end{aligned}
$$

Constant	Uranium Dioxide	Plutonium Dioxide	Units K_{1}
$\mathrm{~K}_{2}$	3.0×10^{-5}	2.0×10^{-6}	$\mathrm{~K}^{-1}$
$\mathrm{~K}_{3}$	4.0×10^{-3}	7.0×10^{-2}	Unitless
E_{D}	6.9×10^{-20}	7.0×10^{-20}	Unitiess
		J	

B. Specific Heat

The mixed oxide fuel specific heat correlations are taken from the MATPRO reports, 53,54
$c_{p}=15.496 \frac{b_{1} b_{4}^{2} \exp \left(b_{4} / T\right)}{T^{2}\left[\exp \left(b_{4} / T\right)-1\right]^{2}}+2 b_{2} T+\frac{b_{3} b_{5}}{b_{6} T^{2}} \exp \left(-b_{5} / b_{6} T\right)$,
where

$$
\begin{aligned}
& c=\text { specific heat capacity }(\mathrm{J} / \mathrm{kg} \cdot \mathrm{~K}), \\
& T=\text { fuel temperature }(\mathrm{K}),
\end{aligned}
$$

and

C. Thermal Conductivity

The mixed-oxide fuel thermal conductivity correlations are taken from the MATPRO report ${ }^{53}$ and include porosity and density correction factors. For ${ }^{T} c \leq T_{1}$,
$k=c\left[\frac{c_{1}}{c_{2}+T_{c}}+c_{3} \exp \left(c_{4} T_{c}\right)\right] ;$
and for $T_{c}>T_{1}$,
$k=c\left[c_{5}+c_{3} \exp \left(c_{4} T_{c}\right)\right]$,
where
$\mathrm{T}_{\mathrm{c}}=$ temperature $\left({ }^{\circ} \mathrm{C}\right)$,
$c=100.0\left[\frac{1-\beta\left(1-f_{T D}\right)}{1-0.05}\right]$,
$\beta=c_{6}+c_{7} T_{c}$,
$\mathrm{E}_{\mathrm{TD}}=$ fraction of theoretical density,
and

D. Spectral Emissivity The mixed-oxide spectral emissivity is calculated as a function of temperature based on the MATPRO correlations. The values for uranium dioxide and mixed-oxide fuels are assumed equivalent:

```
\varepsilon=0.8707 for T { , fo00 C,
\varepsilon=1.311-4.404\times1\mp@subsup{0}{}{-4}T
```

and

```
\varepsilon=0.408 3
```

for $T>2$ 0500C.
III. ZIRCALOY CLADDING PROPERTIES

Subroutine MZIRC calculates the properties, for Zircaloy and oxidized Zircaloy cladding. The values obtained are for Zircaloy-4. Zircaloy-2 properties are assumed to be identical. The equations used are based on the correlations in the MATPRO report. 53
A. Density

Zircaloy cladding exhibits an asymmetric thermal expansion behavior. Thermal expansion is calculated in the radial and axial directions and these effects are included in the density calculation,
$\rho=\frac{6.551 .4}{1+\left[2\left(\frac{\Delta \mathrm{~L}}{\mathrm{~L}}\right)_{\mathrm{r}}+\left(\frac{\Delta \mathrm{L}}{\mathrm{L}}\right)_{\mathrm{z}}\right]}$,
where
$\left(\frac{\Delta \mathrm{L}}{\mathrm{L}}\right)_{\mathrm{I}}=-2.373 \times 10^{-4}+6.721 \times 10^{-6} \mathrm{~T}_{\mathrm{C}}$
and
$\left(\frac{\Delta \mathrm{L}}{\mathrm{L}}\right)_{z}=-2.506 \times 10^{-5}+4.441 \times 10^{-6} \mathrm{~T}$,
for $T \leq 1073.15 ;$
$\left(\frac{\Delta \mathrm{L}}{\mathrm{L}}\right)_{\mathbf{r}}=5.1395 \times 10^{-3}-1.12 \times 10^{-5}\left(\mathrm{~T}_{\mathrm{c}}-1073.15\right)$

D
and

$$
\left(\frac{\Delta \mathrm{L}}{\mathrm{~L}}\right)_{z}=3.527 .7 \times 10^{-3}-1.06385 \times 10^{-5}\left(\mathrm{~T}_{\mathrm{c}}-1073.15\right)
$$

for $1073.15<T \leq 1273.15 ;$
$\left(\frac{\Delta \mathrm{L}}{\mathrm{L}}\right)_{\mathrm{I}}=-6.8 \times 10^{-3}+9.7 \times 10^{-6} \mathrm{~T}_{\mathrm{c}}$
and

$$
\left(\frac{\Delta \mathrm{L}}{\mathrm{~L}}\right)_{\mathrm{z}}=-8.3 \times 10^{-3}+9.7 \times 10^{-6} \mathrm{~T}_{\mathrm{c}}
$$

for $\mathrm{T}_{\mathrm{c}}>1273.15$; and $\mathrm{T}_{\mathrm{c}}=$ temperature $\left({ }^{\circ} \mathrm{C}\right)$.
B. Specific Heat

Because Zircaloy undergoes a phase change (alpha to beta) from 1090 to 1248 K , with a resultant sharp spike in the specific heat value during the transition, "the specific heat is calculated by linear interpolation. Table B-I is used for $T \leq 1248 \mathrm{~K}$. For $T>1248 \quad \mathrm{~K}, \quad c_{p}=356 \quad \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$. C. Thermal Conductivity

Four-term polynomials are used to calculate the zircaloy and oxidized Zircaloy thermal conductivities. The Kelvin temperature is the independent variable; the polynomial constants are

	Zirconium	Zirconium Dioxide
a_{0}	7.51	1.96
a_{1}	2.09×10^{-2}	-2.41×10^{-4}
a_{2}	-1.45×10^{-5}	6.43×10^{-7}
a_{3}	7.67×10^{-9}	-1.95×10^{-10}

The form of the polynomial used in this section and in the subsequent material properties sections is
$y=a_{0}+a_{1} x+a_{2} x^{2}+\cdot \cdot \cdot+a_{m} x^{m} \quad$.

TABLE B-I
SPECIfIC heat vs Temperature

T (K)	$\mathrm{c}_{\underline{p}}(\mathrm{~J} / \mathrm{kg} \cdot \mathrm{K})$		
300	281		
400	302		
640	381		
1090	375		
1093	502	1	
1113	590		
1133	615		
1153	719		
1173	816	\#	-
1193	770		
1213	619		
1233	469		
1248	356		0

D. Spectral Emissivity

The emissivity of zircaloy is temperature dependent and the emissivity of Zircaloy oxide is temperature and time dependent. For simplicity, a constant value of $\varepsilon=0.75$ is used.

IV. FUEL-CLADDING GAP GAS PROPERTIES

Subroutine MGAP calculates values for the gap gas mixture thermal conductivity that ars used in predicting gap HTCs. The method is taken from the MATPRO report ${ }^{5 \%}$ and is based on calculating mixture values for seven possible constituent gases:

where $k_{g a p}=$ gap mixture thermal conductivity (W/m • K) ,
$\psi_{i j}=\phi_{i j}\left[1+2.41 \frac{\left(M_{i}-M_{j}\right)\left(M_{i}-0.142 M_{j}\right)}{\left(M_{i}+M_{j}\right)^{2}}\right]$,
$\phi_{i j}=\frac{\left[1+\left(\frac{k_{i}}{k_{j}}\right)^{1 / 2}\left(\frac{M_{i}}{M_{j}}\right)^{1 / 4}\right]^{2}}{2^{3 / 2}\left(1+\frac{M_{i}}{M_{j}}\right)^{1 / 2}}$,
$k_{i}=$ constituent gas thermal conductivity (W/m • K), $M_{i}=$ constituent gas molecular weight, and $x_{i}=$ constituent gas mole fraction.

The seven constituent gases considered are helium, argon, xenon, krypton, hydrogen, air/nitrogen, and water vapor. Except for water vapor, their thermal conductivities are defined as:
$k=a T^{b}$,
where
$\mathrm{T}=$ temperature (K) ,
and

Gas	a	b
helium	3.36×10^{-3}	0.668
argon	3.421×10^{-4}	0.701
xenon	4.0288×10^{-5}	0.872
krypton	4.726×10^{-5}	0.923
hydrogen	1.6355×10^{-3}	0.8213
air/nitrogen	2.091×10^{-4}	0.846

For water vapor the following correlation is used:
$k_{\text {steam }}=\left(-2.8516 \times 10^{-8}+9.424 \times 10^{-10} \mathrm{~T}-6004 \times 10^{-14} \mathrm{~T}^{2}\right)^{\mathrm{P}} \frac{\mathrm{T}}{\mathrm{T}}$
$+\frac{1.009 \mathrm{p}^{2}}{\mathrm{~T}^{2}(\mathrm{~T}-273)^{4.2}}-84083 \times 10^{-3}-1.19998 \times 10^{-5} \mathrm{~T}$
$-6.706 \times 10^{-8} \mathrm{~T}^{2}-4.51 \times 10^{-11} \mathrm{~T}^{3}$,
where p is the gap gas pressure $\left(N / m^{2}\right)$.
When the gap dimension shrinks to the order of the gas mean-free path, a correction factor is applied to the light-gas thermal conductivities to account for the change in energy exchange between the gas and the surface. Once again, using the MATPRO recommendations, ${ }^{53}$ the correction factor for hydrogen and helium is
$k=\frac{k_{i}}{1+f k_{i}}$,
where
$f=\frac{0.2103 T_{g}}{P_{g}{ }^{\lambda}}$,
T_{g} is the average gap gas temperature (K), and λ is the characteristic fuel root mean square roughness equal to $4.389 \times 10^{-6} \mathrm{~m}$.
V. ELECTRICAL FUEL-ROD INSULATOR (BN) PROPERTIES

Subroutine MBN calculates values for boron nitride insulators that are used in electrically heated nuclear fuel-rod simulators. Magnesium oxide insulators are assumed to have roughly equivalent values.
A. Density

A constant value of $2002 \mathrm{~kg} / \mathrm{m}^{3}$ from Ref. 55 is used. B. Specific Heat

A four-term polynomial is used to calculate the specific heat. The independent variable is temperature in degrees Fahrenheit and the constants are modifications of those reported in an EPRI report: 56
${ }^{a_{0}}$
760.59
a_{1}
1.7955
$-8.670 \frac{a_{2}}{4} \times 10^{-4}$
$1.589 \frac{a_{3}}{6} \times 10^{-7}$

C: Thermal Conductivity
The boron nitride thermal conductivity calculation is based on a conversion to $S I$ units of a curve fit reported in Ref. 57:
$k=25.27-1.365 \times 10^{-3} \mathrm{~T}_{\mathrm{f}}$,
where k is the thermal conductivity ($W / m \cdot K$), and I_{f} is the temperature (${ }^{\circ} F$). D. Spectral Emissivity

A constant value of unity is used for the boron nitride spectral emissivity.
VI. ELECTRICAL FUEL-ROD HEATER COIL (CONSTANTAN) PROPERTIES

Subroutine MHTR calculates property values for Constantan heater colls as used in electrically heated nuclear fuel-rod simulators. Nichrome coils, used in some installations in place of Constantan, are assumed to have similar properties. The correlations used are from Ref. 57.
A. Density

A constant value of $8393.4 \mathrm{~kg} / \mathrm{m}^{3}$ is used.
B. Specific Heat

The specific heat is
$c_{p}=110 \mathrm{~T}_{\mathrm{f}}^{0.2075}$,
where C_{p} is the specific heat ($\mathrm{J} / \mathrm{kg} \cdot \mathrm{K}$) and T_{f} is the temperature (${ }^{\circ} \mathrm{F}$). C. Thermal Conductivity

The thermal conductivity is
$k=29.18+1.683 \times 10^{-3}\left(\mathrm{~T}_{\mathrm{f}}-100\right)$,
where k is the thermal conductivity ($\mathrm{W} / \mathrm{m} \cdot \mathrm{K}$) and T_{f} is the temperature (${ }^{\circ} \mathrm{F}$). D. Spectral Emissivity

A constant value of unity is used.
*
vil. Structural material properties
Subroutine MSTRCT supplies property values for six types of structural materials normally used in LWRs: stainless steel, type $\mathbf{3 0 4}$; stainless steel, type 316; stainless steel, type 347; carbon steel, type A508; and Inconel, types 600 and 718. These properties were obtained from Refs. 57-59. A tabulation of the correlations used is given in Tables B-II through B-VII.

TABLE B-II
STRUCTURAL MATERIAL PROPERTIES
STAINLESS STEEL, TYPE 304

TABLE B-III

STRUCTURAL MATERIAL PROPERTIES

 STAINLESS STEEL, TYPE 316Property | Independent |
| :---: |
| Variable |

$\rho \quad T$
c_{p}
T_{f}
Polynomial
Reference
Variable
Constants

ρ	T
c_{p}	T_{f}
k	
β	-

$$
\begin{aligned}
& a_{0}=8084.0 \\
& a_{2}=-3.894 \times 10^{-5} \\
& a_{0}=426.17 \\
& a_{1}=0.43816 \\
& a_{3}=\quad 4.4803 \times 10^{-7} \\
& a_{4}=-1.0729 \times 10^{-10}
\end{aligned}
$$

STRUCTURAL MATERIAL PROPERTIES

 STAINLESS STEEL, TYPE 347

STRUCTURAL MATERIAL PROPERTIES
CARBON STEEL, TYPE 508

TABLE B-VI

STRUCTURAL MATERIAL PROPERTIES INCONEL, TYPE 718

TABLE B-VII

STRUCTURAL MATERIAL PROPERTIES INCONEL, TYPE 600°

"Inconel, type 600 coefficients are in British units; then ρ is multiplied by $16.01846 ; c_{p}$, by 4.1868×10^{-3}; and k, by 1.729577 .

APPENDIX C

CHOKED-FLOW MODEL

The TRAC choking model originally was developed by Ramson and Trapp 60 using the characteristic analysis approach. A simplified version of this model has been implemented in RELAP5 (Ref. 61) computer code.
im
I. TWO-PHASE-FLOW CHOKING CRITERION

The model is based on thermal equilibrium assumption between the phases because the frozen (adiabatic phases without phase change) assumption was found to be in poor agreement with the data as compared to the equilibrium assumption.

The two-fluid model under thermal equilibrium is described by the overall continuity equation, two phasic momentum equations, and the mixture energy equation.' Omitting the nondifferential source terms (as they do not enter into characteristic analysis), the equations are

$$
\begin{align*}
& \frac{\partial \rho_{m}}{\partial t}+\frac{\partial}{\partial x}\left(\rho_{m} V_{m}\right)=0 \tag{c-1}\\
& \alpha \rho_{g}\left(\frac{\partial V_{g}}{\partial t}+V_{g} \frac{\partial V_{g}}{\partial x}\right)+\alpha \frac{\partial p}{\partial x}
\end{align*}
$$

$(1-\alpha) \rho_{\ell}\left(\frac{\partial V_{\ell}}{\partial t}+V_{\ell} \frac{\partial V_{\ell}}{\partial x}\right)+(1-\alpha) \frac{\partial p}{\partial x}$

$$
\begin{equation*}
+C \alpha(1-\alpha) \rho_{m}\left(\frac{\partial V_{\ell}}{\partial t}+V_{g} \frac{\partial V_{\ell}}{\partial x}-\frac{\partial V_{g}}{\partial t}-V_{\ell} \frac{\partial V_{g}}{\partial x}\right)=0 \tag{c-3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\rho_{m} s_{m}\right)+\frac{\partial}{\partial x}\left[\alpha \rho_{g} v_{g} s_{g}+(1-\alpha) \rho_{\ell} V_{\ell} s_{l}\right]=0 \tag{c-4}
\end{equation*}
$$

The last terms in Eqs. (C-2) and (C-3) represent interphasic force terms caused by relative acceleration with the virtual mass coefficient given by $C \alpha(1-\alpha) \rho_{m}$. For dispersed flow, the constant $C=0.5$; whereas, for separated flow, $C \sim 0$. The energy equation is written in the form of mixture specific entrophy, which is conserved for adiabatic flow (neglecting irreversibilities associated with interphasic mass transfer and relative phase acceleration).

In the thermal equilibrium case, $\rho_{g}, \rho_{\ell}, s_{g}$, and s_{ℓ} are known functions of pressure. Thus, Eqs. ($\mathrm{C}-1)-(\mathrm{C}-4)$ can be written in terms of the four unknowns $\alpha, \mathrm{p}, \mathrm{V}_{\mathrm{g}}$, and V_{ℓ}. The matrix representation of these equations is
$A(\bar{U}) \frac{\partial \bar{U}}{\partial t}+B(\bar{U}) \frac{\partial \bar{U}}{\partial \mathbf{x}}+C(\bar{U})=0$,
where \bar{U} is a vector consisting of α, p, V_{g}, and V_{ℓ}; and A and B are fourth-order square coefficient matrices. Because the source terms in the governing equations were neglected, the coefficient $C(U)$ for this system of equations is zero.

The characteristic roots, λ_{i}, of the above system of equations are defined as the roots of the fourth-order polynomial,
$\operatorname{det}(A \lambda+B)=0$.

The first two roots for λ are calculated between V_{g} "and $V_{\ell}, C-1, C-2$ and therefore, are not of any consequence for choked-flow calculations. The remaining two roots are

$$
\begin{equation*}
\lambda_{3,4}=V_{\text {m }}+D\left(v_{g}-V_{\ell}\right) \pm a \tag{C-7}
\end{equation*}
$$

where
$a=a_{H E}\left[\frac{\mathrm{C}_{\mathrm{m}}^{2}+\rho_{\mathrm{m}}\left[\alpha \rho_{\ell}+(1-\alpha) \rho_{\mathrm{g}}\right]}{\mathrm{c} \mathrm{\rho}_{\mathrm{m}}^{2}+\rho_{\mathrm{g}} \rho_{\ell}}\right\}^{1 / 2}$,
and

$$
\begin{align*}
\mathrm{D}= & 0.5\left\{\frac{\alpha \rho_{\ell}-(1-\alpha) \rho_{\mathrm{g}}}{\rho_{\mathrm{m}} \mathrm{C}+\alpha \alpha_{\mathrm{g}}+(1-\alpha) \rho_{\ell}}+\frac{\rho_{\mathrm{g}} \rho_{\ell}\left[(1-\alpha) \rho_{\ell}-\alpha \rho_{\mathrm{g}}\right]}{\rho_{\mathrm{m}}\left(\rho_{\mathrm{g}} \rho_{\ell}+C \rho_{\mathrm{m}}^{2}\right)}\right. \\
& \left.-\mathrm{a}_{\mathrm{HE}}^{2} \frac{\rho\left[\alpha \rho_{\mathrm{g}}^{2} \frac{d s_{g}}{\mathrm{dp}}+(1-\alpha) \rho_{\ell}^{2} \frac{d s_{\ell}}{\mathrm{dp}}\right]}{\rho_{\mathrm{g}} \rho_{\ell}\left(\mathrm{S}_{\mathrm{g}}-\mathrm{s}_{\ell}\right)}\right\} . \tag{C-9}
\end{align*}
$$

The quantity, $a_{H E}$, is the homogeneous equilibrium speed of sound. Choking will occur when the signal propagating with the largest velocity relative to the ${ }^{\prime}$ fluid is just stationary, that is, $\lambda_{\text {real, } \max }=0$. (The real part of λ represents the speed of the disturbance, and the imaginary part its rate of growth or attenuation.) Thus, the choking criterion is established from Eq. ($\mathrm{C}-7$) as
$v_{m}+D\left(v_{g}-v_{\ell}\right)= \pm a$,
as $\lambda_{3,4}$ have only real values.
The calculation sequence for the two-phase choking in TRAC-PFl is as
follows:

1. At each time step the choking criterion is checked from Eq. (c-10) using the previous time-step values. If the flow is choked, steps (2) and (3) are followed.
2. An estimate of either an intermediate value of the relative velocity between the phases $\left(\mathrm{V}_{\mathrm{g}}-\mathrm{V}_{\ell}\right)^{\mathrm{n}+1 / 2}$ or an intermediate liquid velocity $\left(\mathrm{V}_{\ell}\right)^{\mathrm{ntl} / 2}$ is made depending upon whether the void fraction is low or high, respectively. (At low α the new relative velocity is assumed equal to the old time-step value, and at high α che 1 iquid velocity is assumed unchanged. A linear interpolation is used for intermeáate α).

Equation ($C-10$) and the above estimate thus give intermediate values of the velocities $V_{g}^{n+1 / 2}$ and $V_{l}^{\mathrm{n}+1 / 2}$.
3. Using the above values of the velocities, the TRAC hydrodynamic equations are solved. This gives the new time-step values $\mathrm{v}_{\mathrm{g}}^{\mathrm{n}+1}$ and $\mathrm{v}_{\ell}^{\mathrm{n}+1}$.

II. SUBCOOLED-FLOW CHOKING CRITERION

During the subcooled blowdown phase, the fluid undergoes a phase change at the break because the containment pressure is much below the saturation pressure corresponding to the system fluid temperature. The transition from single- to two-phase flow is accompanied by discontinuous change in the fluid bulk modules. This gives rise to a large discontinuity in the speed of sound at the break.

To understand the physical process during the subcooled blowdown, consider a converging-diverging nozzle shown in Fig. C-1. The pressure downstream is such that the throat pressure is just equal to the local saturation pressure, P_{s}. The flow upstream of the throat is subsonic. However, because the speed of sound is discontinuous when the fluid becomes saturated and because mass conservation dictates that the velocity just upstream of the throat must be equal to the velocity just downstream of the throat (just downstream of the throat the fluid has only miniscule void fraction), the flow is supersonic throughout the diverging section. Thus, there is no point" in the nozzle where the Mach number $M=1$. The velocity profile and the speeds of sound for this situation also are presented in Fig. C-1.

The velocity at the throat is calculated from the Bernoulli's equation,
$V_{t}=\left[V_{o}^{2}+\frac{2\left(p_{0}-p_{t}\right)}{\rho_{m}}\right]^{1 / 2}$,
where subscripts o and t refer to the upstream and the throat conditions, respectively. Clearly, $p_{t}=p_{s}$ as discussed above.

Any further reduction in the downstream pressure has no effect on the flow, as the disturbance cannot move upstream because the flow is supersonic in the diverging section. Thus, for a containment pressure lower than this value

Fig. C-1
Subcooled choking process at the onset of nucleation at the throat.
of the pressure (which is the case for most problems of interest in LWR applications), the throat velocity is given by Eq. (C-11).

Now consider the situation when the subcooled choked flow, as described above, initially exists, and the upstream pressure i's lowered. As the upstream pressure decreases, the pressure at the throat still remains p_{s} and the throat velocity can still be calculated using Eq. ($C-11$). However, the throat velocity decreases because the upstream pressure decreases. "If the upstream pressure is lowered further, a point $/ \mathrm{is}$ reached when $V_{t}=a_{H E}$. SAny further
reduction in the upstream pressure moves the point where $p=p_{s}$ upstream. In this case, the flow is subsonic in the subcooled zone and in the two-phase zone upstream of the throat. The flow at the throat is sonic with $V_{t}=a_{H E}$ and that in the diverging portion is supersonic. If the upstream pressure is reduced still further, the p_{s} point moves upstream until the flow becomes completely two phase.

Thus, based on the foregoing physical process, the chocking velocity, V_{c}, is
$V_{c}=\operatorname{Max}\left\{a_{H E},\left[v_{o}^{2}+\frac{2\left(p_{0}-p_{t}\right)}{\rho_{m}}\right]^{1 / 2}\right\}$,
where $p_{t}=p_{s}$. However, for fast transients, nonequilibrium can result, in which case, P_{t} can be much lower than p_{s}. A nucleation delay model is required to account for such a discrepancy; however, the model has not yet been implemented in TRAC-PFI.

The calculation sequence is similar to that for the two-phase model. The only unknown in this case is the liquid-phase choking velocity that is explicity set using Eq. $(C-12)$ and gives $V_{\ell}^{n+1 / 2}$.

III. TRANSITION REGIME

Because there is a discontinuity in the speed of sound during liquid- to two-phase transition, care must be exercised in analyzing the flow during the transition regime. In TRAC-PF1, this transition is handled by linear interpolation between the subcooled $(\alpha<0.01)$ and the two-phase ($\alpha \geqslant 0.1$) regimes.

APPENDIX D

SYSTEM CONTROL WITH TRIPS

TRIP AND TRIP-CONTROLLED COMPONENT ACTION EXAMPLES

TRAC-PFl has an enhanced trip control procedure for modeling the more complex control logic required for operational transients. The control model is general in nature to allow users the ability to model a spectrum of foreseen as well as unforeseen control scenarios. It is the code user through input and not the code programmer through internal contris options who sets up apecific control procedure for TRAC-PFl to follow. While internal control options are easier to use when a specific control procedure is spelled out in detail, they severely restrict the user only to those options programmed. A control scenario that differs from the available options requires that it be programmed as another option or that it be modeled approximately with the closest available option. The route of specific control options has not been followed in TRAC-PFl to gain flexibility and generality. In the process, the user pays a penalty in having to think through the modeling details when constructing a desired control model. This is difficult initially because the capabilities" of the building blocks (signal variables, trips, controllers, and component action tables) are unfamiliar. With experience, however, these tools enable the user to construct a desired control model with the ease of setting up a hardware component model. The frustration of not having the desired control option capability is avoided.

To gain this experience, some examples are given now for defining trips and the component action tables they control. It is assumed the reader has read the TRAC-PFl manual sections on signal variables, trips, and the input data for signal variables, trips, and components with trip-controlled actions. The examples to be given are by no means complete or representative of the spectrum of control procedures that can be modeled. They contain some modeling considerations that might commonly be used but that may not be obvious from the manual's description of trips. The very simple and the very complex examples of control models that a user might wish to construct for a problem are somewhat under represented in this set. The examples are complicated only to

Hilustrate how a user might set up the model to perform a certain control function. By seeing how the modeling tools are used to construct a specific control capability, it is hoped the reader will gain the insight to use these tools. creatively to construct the control capabilities that are needed.

The first five examples to be considered involve the definition of a trip signal. There are three types of trip signals: signal variables? signal-variable expressions, and the combined set status of trips assigned to a trip-controlled trip. The description of signal variables in the manual is complete and straightforward. A signal variable defines the local, maximum, minimum, average, or difference value of a parameter within a component at the beginning-of-time-step time or it describes the change in the parameter's value over the last time step. The point to keep in mind is that a signal variable is a parameter value local to a specific component and current problem time.

To extend that definition to the combination of several parameters, several components, or to a larger interval of problem time, the user must use the second type of trip signal, a signal-variable expression. The following signal-variable expression Involves a problem time interval with a combination of several signal-variable parameters.

Example 1. Define as a trip signal the average time derivative of a parameter f. Consider doing it for each of the following intervals: (a) previous time step, (b) time since the trip involved was last set $O N$, and (c) time since the start of the problem.
a. Define $\left(f_{t}-f_{t-\Delta t}\right) / \Delta t$ as a trip signal.

Signal variables Δt and ($f_{t}-f_{t}-\Delta t$) equivalent to $\Delta_{t} f$ are parameters defining their value change over the last time step. Define the following signal variables:

$\frac{\text { ID }}{1}$	$\frac{\text { Signal Variable }}{}$
2	$\Delta_{t} f$
Δt	

Then define the following signal-variable expression for the trip signal:

Subexpression	$\begin{aligned} & \text { Operator } \\ & \text { ISE(1,J) } \end{aligned}$	lst Argument $\operatorname{ISE}(2, J)$	2nd Argument $\operatorname{ISE}(3, \mathrm{~J})$	Subexpression
1	6	2	801	$\max \left(\Delta t, 10^{-9}\right)$
2	4	1	901	$\Delta_{t} \mathrm{f} / \max \left(\Delta_{t, 10^{-9}}{ }^{\prime \prime}\right.$

where $\operatorname{SCN}(1)=1.0 \mathrm{E}-09$. To avoid division by $\Delta t=0$ during the first time step, the maximum of Δt and 10^{-9} defines the divisor. The time derivative is evaluated to be zero during the first time step.
b. Define $\left(f_{t}-f_{O N}\right) /\left(t-t_{O N}\right)$ as a trip signal.

Signal variables $f_{O N}$ and $t_{O N}$ are the values of f and problem time at the start of the problem or at the time when the trip involved was last set ON . Define the following signal variables:

$\frac{\text { ID }}{1}$	$\frac{\text { Signal Variable }}{}$
2	f_{t}
3	t
4	f_{ON}
	t_{ON}

Define the following signal-variable expression:

where $\operatorname{SCN}(1)=1.0$ E 10^{-9}. Signal variable IDs 1^{1} and 3 for. parameter f and 2 and 4 for problem time are defined identically. It is through the definition of signal variable IDs 3 and 4 as 400-series IDs in the signal-variable expression that they are flagged for re-evaluation only during time steps that the trip is set $O N$. $t-t_{O N}=0$ with the maximum function is avoided only for
the first time step. During time steps when the trip is set $0 N$, the signal-variable expression is evaluated before the trip is set $O N$ and thereafter $t_{O N}$ is defined the beginning-of-time-step time of that step. The next evaluation of the signal-variable expression is at the start of the next time step when t is greater than $t_{O N}$ by the previous time step size.
c. Define $\left(f_{t}-f_{o}\right) /\left(t-t_{o}\right)$ as a trip signal.

Signal variables f_{o} and t_{o} are the values of f and problem time at the start of the problem. They are known quantities and are to be input as constants. Define the following signal variables:

$\frac{\text { ID }}{1}$	$\frac{\text { Signal Variable }}{}$
2	f_{t}

Define the following signal-variable expression:

$\begin{gathered} \substack{\text { Subexpression } \\ J} \\ \hline \end{gathered}$	Operator $\operatorname{ISE}(1, J)$	1st Argument ISE (2,J)	2nd Argument $\operatorname{ISE}(3, J)$	Subexpression
1	2	2	801	$t-t_{0}$
2	6	901	802	$\max \left(\mathrm{t}-\mathrm{t}_{0}, 10^{-9}\right.$)
3	2	1	803	$\mathrm{f}_{\mathbf{t}}-\mathrm{f}_{\mathbf{0}}$,
4	4	903	902	$\left(f_{t}-f_{0}\right) / \max \left(t-t_{0}, 10^{-9}\right)$

where $\operatorname{SCN}(1)$ equals the value of TIMET in the input data, $\operatorname{SCN}(2)=1.0 E-09$, and $\operatorname{SCN}(3)$ equals the value of f_{o} in the input data.

The next example of a signal-variable expression involves the combination of parameters from several components.

Example 2. Define as a trip signal the liquid water level in the LOFT steam generator secondary-side downcomer of Fig. D-1.

Fig. D-1.
LOFT steam-generator secondary-side model.

There are three components in the LOFT steam generator secondary-side model. The height of vertically collapsed liquid water in cells 1 to 4 of component 3 and cell 4 of component 2 is the water level we wish to define. This can be evaluated from the following signal variables:

ID	Signal Variable	Component Number	Cell Numbers
2	L	3	4 to 1
2	α,	2	4

Signal-variable parameter L is the summed length of component $3^{\prime \prime}$ s primary side cells 4 to 1 having liquid water from the primary side vertically collapsed into them. Vapor water that is present is assumed to occupy component 3's primary side volume above that. L needs to have 0.56895 m subtracted from it to define the liquid water height because the lower half of cell 4 is modeled to have no vertical height. Signal-variable parameter α is the vapor volume fraction in cell 4 of component 2. It is used to define the liquid in cell 4 that needs to be vertically collapsed into, component 3. Cell 4 of component 2 has the same volume, vertical height, and horizontal cross section area as cells 1 and 2 of component 3 . The horizontal cross section area does change in going from cell 2 to cell 3 in component 3. Because of this area change, we will assume that if the water level in component 3 lies below 1.70685 m (below cell 2), there is no liquid water in cell 4 of component $2(\alpha=1)$. This simplifies the combined water level definition because liquid in céll 4 maintains the same cross section area when vertically collapsed into component 3. Thus, the height of liquid water in cell 4 of component 2 , ($1-\alpha$) * 0.7338 m , is added to the height of liquid water in component 3 , L -0.56895 m , to define the combined liquif level. This is done by the following signal-variable expression:

Subexpression J	Operator $\operatorname{ISE}(1, J)$	1st Argument ISE(2,J)	2nd Argument $\operatorname{ISE}(3, \mathrm{~J})$	Subexpression
1	2	1	801	L-0. 56895
2	3	2	802	$\alpha * 0.7338$
3	2	802	902	(1- 1)*0.7338
4	1	901	903	$\mathrm{L}-0.56895+(1-\alpha) * 0.7338$

where $\operatorname{SCN}(1)=0.56895$ and $\operatorname{SCN}(2)=0.7338$.
The third type of trip signal is the combined set status of trips assigned to a trip-controlled trip. An addition or multiplication arithmetic operator is used to combine the set status values ($-1=0 \mathrm{~N}_{\text {reverse }}, 0=0 \mathrm{FF}$, $+i=O N$ and $O_{\text {forward }}$) of the assigned trips. These arithmetic operations on set status values achieve logical operations on the status of trips. The summed set status values achieve an AND logical operation on trips having an ON status. The resulting trip-controlled trip is commonly referred to as a coincidence trip. Multiplication of the set status values achieves an OR logical operation on trips having an OFF status. This trip-controlled trip is commonly referred to as a blocking trip. An example of each type follows.

Example 3. Coincidence Trip: A nuclear reactor is to have its control rods inserted (by evaluating a trip-controlled power reduction or negative reactivity insertion table) when two of three trips are set ON. Define a coincidence trip that activates the evaluation of the power-reactivity table when the above criterion is satisfied.

The three trips to be tested are assumed to have IDs 1,2 , and 3. Assignment of these trips to a trip-controlled trip that sums their set status values for defining its trip signal gives the desired coincidence trip. The trip-signal-range type 2 trip with constant set point values between 1 and 2 in Fig. D-2 has an OFF set status when none or one of the three trips is $0 N$ and an ON set status when two or three of the three trips are ON. The power-reactivity table is evaluated when this controlling trip-controlled trip is ON .

Example 4. Blocking Trip: Evaluate a pump coastdown table when any one of four trips is set $0 F F$. Among the four trips, an $O N_{\text {reverse }}$ and $O N$ and $\mathrm{ON}_{\text {forward }}$ set status are possible.

Fig. D-2.
Coincidence trip for controlling the power-reactivity table.

Assume the four trips to be tested have IDs 1, 2, 3, and 4. Assignment of these trips to a trip-controlled trip that multiplies their set status values for defining its trip signal gives the desired blocking trip. The trip-signal-range type 5 trip is needed with constant set point values S_{1} and S_{2} between -1 and 0 and S_{3} and S_{4} between 0 and 1 in Fig. $D-3$ When any one of the four trips is OFF, the trip-controlled trip signal value is 0 , which lies within the $O N$ set status subrange. Otherwise, the trip signal value is -1 when an odd number of the four trips are in $0 N_{\text {reverse }}$ or +1 when an even number of the four trips are in $\mathrm{ON}_{\text {reverse }}$ with the remaining trips having 0 N or $\mathrm{ON}_{\text {forward }}$ set status. These latter trip signal values correspond to OFF set status subranges. Control of the pump coastdown table with this trip-controlled trip results in evaluation of the table when the trip signal value is 0 and the trip is ON. This example shows how activation of a component action can be accomplished when a trip is set OFF with a trip-controlled trip.

Fig. D-3.
Blocking trip for controlling the pump speed table.

The previous two examples defined a trip-controlled trip with an AND or OR logical expression. The next example defines an AND logical expression with OR logical subexpressions to show how trip-controlled trips also can be assigned to a trip-controlled trip. In this way, a logical expression trip signal can be defined with several levels of logical subexpressions.

Example 5. A component action table is controlled by one of three trips. Figure $D-4$ defines the trip to be used based on where a signal value lies within the subranges. When the signal is less than S_{12}, use the trip with $I D=1$. When the signal is greater than or equal to S_{12} but less than S_{23}, use the trip with $I D=2$. When the signal is greater than or equal to S_{23}, use the trip with ID $=3$.

In this example the signal could be any one of the three trip signal types. A very common situation, however, is where the signal is problem time. During different time intervals of a problem, different trip criteria should be used to control a component action.

To define the component action controlling trip, start by defining the three trips in Fig. D-5 so that each is set ON only during one of the signal's three subranges. Then define the three blocking trips in Fig. $D-6$ that combine by multiplication the set status value of each of the above three trips with the trip to be used during the above trip's ON subrange. These three trip-controlled blocking trips then are assigned to the trip-controlled coincidence $t r i p$ in Fig. $D-7$ for control of the component action.

Two of the ISET7, ISET8; and ISET9 set status values are zero. The other value is the set status of trip 1,2 , or 3 , which controls the component action while the signal lies within its assigned subrange.
c

Fig. D-4.
The controlling trip is based on the signal subrange.

Trip ID $=5 \quad$ Trip-signal-range type 5

Trip ID $=6$
Trip-signal-range type 2

Fig. D-5.
Trips with $0 N$ set status for a specific subrange of the signal.
Trip ID $=7,8$, and $9 \quad$ Trip-signal-range type 3

Fig. D-6.
Blocking trips for specific subranges of a signal.

$$
\text { Trip ID }=10
$$

Trip-signal-range type 3

Fig. D-7.
Coincidence trip for controlling the component action.

If the signal in the previous example is a signal-variable parameter, the same control function can be accomplished using set-point factor tables for the set points of trip IDs 1,2 , and 3. By doing so, trip IDs 4 through 9 need not be defined.

Example 6. In the control scenario of Example 5, the signal is defined by a signal-variable parameter. Define the set points of trip IDs 1, 2, and 3 to have set-point table factors applied to them. The signal-variable parameter signal is specified to be the independent variable for those tables. For, each trip, the set-point factors are defined to be unity for signal values in the subrange where the trip is to control the component action. Outside of that subrange, the set-point factors are defined to be very large, small, positive, or negative values so that the OFF set status subrange of the trip expands to cover the entire trip signal range. For example, if trip ID $=1$ has a trip-signal-range type 3, the set-point factor tables in Fig. $D-8$ are applied to its set points. If S_{1} and S_{2} are positive, apply f_{2} to their set-point values. If S_{1} and S_{2} are negative, apply f_{1} to them. If S_{3} and S_{4} are positive, apply f_{1} to their set-point values. If S_{3} and S_{4} are negative, apply f_{2} to them. Then, when the signal is greater than or equal to S_{12}, the OFF set status subrange of trip $I D=1$ expands to cover the trip signal value range from roughly -10^{30} to $+10^{30}$. As a result, $\operatorname{trip} I D=1$ is forced to be OFF whenever the signal is greater than or equal to S_{12}. After proceeding to apply in a similar fashion other set-point table factors to the set points of trip IDs 2 and 3, the coincidence trip in Fig. D-9 is defined to control the

Trip ID $=1$

Fig. D-8.
Set point factor tables for trip $I D=1$.

Trip ID $=10 \quad$ Trip-signal-range type 3

Fig. D-9.
Coincidence trip for controlling the component action.
component action. ISET $_{1}$, ISET $_{2}$, and ISET $_{3}$ have the same values as ISET7, ISET $_{8}$, and ISET9, respectively, in Example 5.

In the examples thus far, zero delay times for each set point have been assumed. The delay time is the time interval that passes after the set-point criterion is met before the trip set status is changed. Delay times model the actual interval after a trip signal is sent out from the detector to when the trip-controlled component hardware begins its action. In the following example, delay times are used another way to avoid spurious trip signals that would momentarily change the trip set status.

Example 7. Define a trip that requires the set-point criterion for setting the trip ON to be satisfied continuously for 0.1 s before setting the trip $0 N$. If at any moment during that interval the set-point criterion is violated, do not set the trip ON.

For the trip-signal-range type 2 trip in Fig. $D-10$, define the delay time for set point S_{1} to be zero and the delay time for set point S_{2} to be 0.1 s. As the trip signal $S_{t r i p}$ increases to equal or exceed S_{2}, the $O N$ set status criterion is met. A delay time of 0.1 s then must pass before the trip is set ON. If, during this time, $S_{t r i p}$ decreases to equal or lie below S_{1}, the $0 F F$ set status criterion is met. Then is added to the list of pending trips whose criteria have been met but whose delay times have not elapsed. The criterion for changing to $O N$ would be first in the list; the criterion for changing to OFF would be second. A maximum of five pending criteria can be stacked up in this way. Then TRAC-PFl checks to see if the delay time for any of the pending. criteria has elapsed. Finding one, TRAC-PF1 then deletes all pending criteria earlier in the list and defines the new set status of the criterion whose delay

time has elapsed. In our example, the pending OFF set-status-criterion delay time would be met in that same time step, the pending $0 N$ set status criterion would be deleted, and the trip that was OFF would be set to OFF. While the trip set status never changes, TRAC-PFl edits the fact that the set status is set to OFF. This might be confusing if it were not for the earlier edit that both the trip's ON and OFF set status critera were met.

TRAC-PFl allows the user to choose a trip-signal-range type having two or three set status subranges over the trip signal range. The next example shows how this situation can be extended to four or more subranges by combining several trips with a trip-controlled coincidence trip.

Example 8. Define a trip with five set-status subranges for the trip signal. As the trip signal value increases, define the subrange set status to be $\mathrm{ON}_{\text {forward, }}$, $\mathrm{OFF}, \mathrm{ON}_{\text {reverse }}, \mathrm{OFF}$, and $\mathrm{ON}_{\text {forward }}$ -

Two trips with trip-signal-range type 1 and one trip with trip-signal-range type 3 are defined with the same trip signal, $S_{\text {trip }}$, in Fig. D-ll. Their set-point values are chosen to give the desired five subranges when later combined. By summing the set status values of these three trips with the trip-controlled coincidence trip in Fig. D-12, the five desired set status subranges for $\mathrm{S}_{\text {trip }}$ shown in Fig. $\mathrm{D}-13$ are obtained. This is possible with a three-subrange trip because the trip signal for the coincidence trip is $\mathrm{ISET}_{1}+\mathrm{ISET}_{2} \mathrm{fr}_{\mathrm{I}} \mathrm{ISET}_{3}$ and not Strip .

Trip-controlled component actions can be perturbing enough to require a shorter time step for accurate evaluation of the resulting transient. TRAC-PF1 is programmed to adjust the time step automatically when the rate of change varies in the solution. When that ${ }^{\text {change }}$ is abrupt and large, as a trip-controlled component action might be, the procedure for automatically reducing the time step size becomes nefficient. The same time step may have to be recalculated a number of times with a progressively smaller time step size before a stable time"step solution is achieved. Even then, it may not be small enough to prevent discretization error from entering the solution. A. better alternative is provided in the following example by assigning special time step data to the controlling trip.

Example 9. A trip-controlled valve adjustment perturbs the fluid system so severely that TRAC-PFl needs to reduce the time step size by three decades to continue the calculation. We would like to avoid the inefficiency of the

Trip ID $=1$

Trip ID $=2$

Trip ID $=3$

ISET_{3}

Fig. D-11.
Trips for defining five subranges to the trip signal.
automatic time step reduction procedure and would like to get more edits of the fluid-state condition during the rapid transient that follows.

This is possible by assigning a special time-step data set to the controlling trip. When the trip is set to $0 N, 0 N_{\text {forward, }}$ or $0 N_{r e v e r s e, ~ i t s ~}$ assigned special time-step data set replaces for a specified interval of time the normal sequence of time step data. The current time step size is redefined or multiplied by a factor $\left(10^{-3}\right.$ for this example) to obtain a new time step

Fig. D-12.
Coincidence trip which behaves' like a trip with five subranges.

Fig. D-13.
The five subranges of the trip signal.
size. New minimum and maximum time steps, as well as time intervals for editing the fluid state, are assigned. After the specified interval for the "special time step data, the time step data that normally would be applied at that time are restored.

The examples thus far have defined trips. Now let us turn our attention to specific component actions that are trip controlled. These actions are normally defined by a component action table specified as part of the component data. The table defines the component action as a function of a signal-variable parameter. A model of component action that is trip controlled involve evaluating its table when the assigned trip has an $O N$, $O_{\text {forward, }}$ or $O N_{\text {reverse }}$ set status. When the trip is $O F F$, no evaluation of the component
action table occurs. Its last defined state is held constant. Thus, when a controlling trip is OFF, it means that no change occurs in the adjustable action of the component. When the trip is $0 N$, any change in the adjustable action depends on the table evaluation. The following example is a trip-controlled mass flow boundary condition defined by a FILL component.

Example 10. Feedwater is to be supplied initially at a mass flow of $50 \mathrm{~kg} / \mathrm{s}$ to the secondary side of a steam generator. If at any time the water level in the steam-generator secondary-side downcomer falls below 1.7 m , define feedwater mass flow from Fig. $D-14$ until the water level increases to 3.1 m . Thereafter, supply feedwáter at a mass flow of $75 \mathrm{~kg} / \mathrm{s}$ unless the water level again falls to 1.7 m and the above procedure needs to be repeated.

Assume the steam-generator secondary-side model we are working with is that of Example 2 shown in Fig. D-1. The required feedwater mass flow will be defined by a FILL component joined to cell 6 on the secondary side of TEE component 3. FILL-type option IFTY $=8$ is chosen where the FILL component defines constant mass flow until trip, then mass flow vs signal-variable form from a FILL table. The initial constant mass flow is specified to be $50 \mathrm{~kg} / \mathrm{s}$, and the mass flow is specified to be $75 \mathrm{~kg} / \mathrm{s}$ when the FILL table-controling trip is OFF after being ON. Figure D-14 defines the FILL table with the

Pressure Feedwater Inlet * 10^{-6}

$$
\text { Fig. } \mathrm{D}-14 .
$$

Steam generator secondary-side feedwater mass flow table.
signal-variable form being the absolute value of the signal-variable parameter pressure in cell 6 on the secondary side of TEE component 3. The trip for controlling evaluation of mass flow from the FILL table is assigned the trip signal from Example., That trip is shown in Fig. D-15 as having a trip-signal-range type 1 with set points $S_{1}=1.7$ and $S_{2}=3.1$ and zero delay times.

The next trip-controlled component action example will be trip control of pump speed to achieve a desired mass flow.

Example 11. In a steady-state calculation, use trip control to regulate pump speed to obtain a $500 \mathrm{~kg} / \mathrm{s}$ mass flow through the pump. Activate trip control after 30 s of problem time.

Start by defining the Erip-signal-range type 3 trip in Fig. D-16 to decide when increasing or decreasing the pump speed is needed to obtain a mass flow of $500 \pm 0.5 \mathrm{~kg} / \mathrm{s}$ through the PUMP component. The trip ID is negative to indicate that the trip is to be evaluated during steady-state as well as transient calculations. When $\dot{m}_{p u m p} \leq 499.5 \mathrm{~kg} / \mathrm{s}$, the trip is set to $\mathrm{ON}_{\text {reverse }}$ to indicate that the pump speed is to be increased; when $\dot{m}_{\text {pump }} \geq 500.5 \mathrm{~kg} / \mathrm{s}$, the trip is set to $0 N_{\text {forward }}$ to indicate that the pump speed is to be decreased. This is accomplished by applying trip ID $=-1$ to the pump speed table defined in Fig. D-17.

In Fig. D-17, $\Omega_{M I N}, \Omega_{0}$, and $\Omega_{M A X}$ are the minimum, initial, and maximum pump speeds, respectively. $\Delta t_{\text {TOTAL }}$ is the total time required to vary the pump speed over its $\Omega_{\text {MIN }}$ to $\Omega_{\text {MAX }}$ range. Δ tTOTAL should be large enough to allow

$$
\begin{aligned}
S_{\text {trip }}= & \text { SGS Downcomer Water Level } \\
& \text { (a signal-variable expression) }
\end{aligned}
$$

Fig. D-15.
Trip for controlling the FILL mass flow table.

Trip ID $=-1$

Fig. D-16.
Trip for controlling the pump speed table.

Fig. D-17.
Pump speed table.
feedback from changing the pump speed to effect the trip signal $\dot{m}_{\text {pump }}$ so that pump speed over adjustment can be prevented by the trip. The pump speed table's abscissa coordinate is the time step size with a rate factor $f_{R F}$ applied to it.

At this point there are two ways to proceed in defining the control model: (a) define a trip that is OFF until 30 s and a trip-controlled blocking trip that combines that trip and trip $I D=-1$. to override any $O N$ set status during the initial 30 s , or (b) define set point factors for trip $I D=-1$ to expand the $O F F$ set status subrange to cover the physical range of the trip signal $\dot{m}_{\text {pump }}$ during the intial 30 s .

A similar situation was considered earlier in examples 5 and 6. The first approach has the disadvantage of requiring the definition of two more trips. However, in this example, it has an additional disadvantage in that the rate factor table (defining the rate factor for the pump speed table abscissa coordinate) would be dependent on the blocking trip's signal because the blocking trip would control the pump speed table. Instead, we would like trip $I D=-1$ to control the pump speed table so that the rate factor table would be a function of $\dot{m}_{\text {pump }}$.

The second approach does this for us. With trip ID $=-1$ controlling the pump speed table, the rate factor table is a function of the tirip signal $\dot{m}_{p u m p}$ minus the set point value whose criterion changes the trip's set status. When trip $I D=-1$ is in $O N_{\text {forward, }}$ the rate factor table is a function of $\dot{m}_{\text {pump }}-500.4$, a positive value; when trip $I D=-1$ is.in $0 N_{\text {reverse, }}$ the rate factor table is a furction of $\dot{m}_{\text {pump }}-499.6$, a negative value. The rate factor is needed only to evaluate the pump speed table's abscissa coordinate when this trip is in either set status.

Now let us define the rate factor table so that it slows the rate of pump speed change as $\dot{m}_{\text {pump }}-\left\{\begin{array}{l}500.4 \\ 499.6\end{array}\right\}$ approaches zero and the trip is about to be set OFF. This helps prevent overadjustment of pump speed. However, as $\dot{m}_{\text {pump }}-\left\{\begin{array}{l}509.4 \\ 499.6\end{array}\right\}$ gets large, we would like to increase the rate of pump speed change so that the mass flow discrepancy can be corrected more expediently. The rate factor table in Fig. $D-18$ does this for us. The slope to use in defining the rate factor in Fig. $D-18$ depends on the rate of pump-speed adjustment in Fig. D-17, ($\left.\Omega_{\text {MAX }}-\Omega_{M I N}\right) / \Delta t_{T O T A L}$. and on the optimum acceleration

Fig. D-18.
Rate factor table for the pump speed table's abscissa coordinate.
or deceleration of that rate based on the departure of $S_{t r i p}$ from its set point for setting the trip OFF.

To assure that trip $I D=-1$ is OFF during the inftial 30 s of problem time, apply the set point factors defined in Fig. D-19 to trip ID $=-1$. Multiply $S_{1}=499.5$ and $S_{2}=499.6$ by f_{1} and $S_{3}=500.4$ and $S_{4}=500.5$ by f_{2}.

The next three examples consider a VALVE component with an adjustable flow. area interface that is trip controlled. Adjustment of the flow area is by a guillotine cut of a circular cross-section pipe. Valve closure is measured by the flow area fraction or the valve stem fractionai position of the guillotine blade at the adjustable flow area interface. The first example is a check valve or power-operated relief valve that generally operates in one of two ways.

Example 12. Model a check valve or power-operated relief valve that defines its closure state as a function of the pressure difference across the adjustable flow area interface. Model the valve to operate in each of the following ways:

(a) The valve is closed with a minimum flow area fraction $f_{m i n}$ when the pressure difference is less than or equal to $\Delta \mathrm{P}_{\mathrm{min}}$. As the pressure difference increases from $\Delta P_{m i n}$ to $\Delta P_{\text {max }}$, the valve flow area increases linearly to a maximum flow area fraction $f_{\max }$ at $\Delta \mathrm{P}_{\text {max }}$. Any further increase in the pressure difference maintains the $f_{\text {max }}$ open condition of the valve.
(b) The valve is closed initially with a minimum flow area fraction $f_{m i n}$ when the pressure difference is less than $\Delta P_{\text {open }}$. When the pressure difference increases to or exceeds $\Delta P_{\text {open }}$, the valve flow area fraction increases to $f_{\text {max }}$ during the interval $\Delta t_{\text {open }}$. Thereafter, the valve maintains its $f_{\text {max }}$ open condition until the pressure difference decreases to or lies below " $\Delta \mathrm{P}_{\text {close }}$. When this occurs, the valve closes to $f_{\text {min }}$ during the interval $\Delta t_{\text {open }} \cdot \Delta P_{\text {close }}$ is less than $\Delta P_{\text {open }}$.

The models for a check valve and a power-operated relief valve are similar with only the following major differences: (a) generally $\Delta P_{\max }$ and $\Delta P_{\text {open }}$ are small for a check valve and large for a power-operated relief valve relative to the absolute pressure, (b) the flow area adjustment of a power-operated relief valve is sometimes modeled as a function of the upstream pressure rather than the pressure difference because the downstream pressure is
small in comparison and approximately constant, and (c) check valves generally operate by (a) above and power-operated relief valves by (c) above.

The first way of valve operation only requires the valve table in Fig. D-20 without trip control. The upstream minus downstream pressure difference, ΔP, is definable as a signal variable parameter. For the user to know when the valve reaches its open or closed condition, the trip-signal-range type 2 trip in Fig. D-2l can be defined to indicate when the valve table limits are reached. When ΔP increases to or exceeds $\Delta P_{\text {max }}$, the trip is set to $O N$,

3

at

Fig. D-20.
Valve flow area adjustment table.

OFF

$$
\Delta \mathrm{P}_{\min } \Delta \mathrm{P}_{\max } \quad \Delta \mathrm{P}=\mathrm{P}_{1}-\mathrm{P}_{2}
$$

ON

Fig. $D-21$.
indicating the valve is open; when ΔP decreases to or lies below $\Delta P_{m i n}$, the trip is set to OFF, indicating the valve is closed.

The second valve operation requires the valve flow area adjustment table to be trip controlled. The trip differentiates which closure state the valve is in when ΔP lies between $\Delta P_{\text {close }}$ and $\Delta P_{\text {open }}$. The trip-signal-range type 3 trip in Fig. D-22 is assigned to control the value table in Fig. $D-23$. Define the valve table's abscissa coordinate rate factor to unity. The valve table is defined assuming the valve is initially closed. If it is open initially, the

Fig. D-22.
${ }^{0}$ Trip for controlling the valve flow area adjustment table.

Relative Problem Time $=\mathrm{f}_{\mathrm{RF}} * \Delta t$

Fig. D-23.
Valve flow area adjustment table.
abscissa coordinate of $f_{\text {max }}$ should be zero and the abscissa coordinate of $f_{\text {min }}$ should be $-\Delta t_{\text {open }}$ During the calculation, TRAC-PFl translates the abscissa coordinate so that zero always corresponds to the last interpolated point in the table. Extrapolation beyond the left or right-most table entries is not allowed. For example, when the trip is set to $\mathrm{ON}_{\text {forward, }}$ the interpolated flow area fraction increases as problem time increases by $\Delta t_{\text {open }}$. Thereafter, the interpolated point is the right-most entry in the table as long as the trip remains in $\mathrm{ON}_{\text {forward }}$.

The next example is a regulating valve which adjusts the valve flow area to achieve a desired trip signal value within a specified range.

Example 13. Model a regulating valve that adjusts the flow area of a valve to keep a trip signal valve between S_{1} and S_{4}. The flow area should be decreased when the trip signal exceeds S_{4} and increased when the trip signal falls below $\$_{1}$.

This can be accomplished when the valve table in Fig. D-23 is controlled by the trip-signal-range type 4 trip in Fig. D-24. A trip-signal-range type 3 trip could be used, but then the slope of the flow area fraction in Fig. D-23 would have to be negative. Rather than using a rate factor of unity, the rate factor form defined in Fig. D-18 provides feedback to control the rate of valve adjustment. A smaller rate of"valve adjustment would be performed when the trip signal is slightly out of the desired range. Then, overadjustment might be avoided. As the trip signal further departs from the desired range, the valve adjustment rate gets larger because the trip signal behavior indicates a need for it. Some regulating valves, however, have a constant valve adjustment speed. They should be modeled with a rate factor of unity. Their constant

Fig. D-24.
Trip for controlling a regulating valve.
valve adjustment speed would be defined by the slope of the flow area fraction in the Fig. D-23 valve table.

The next valve example considers the hysteresis effect in valve adjustment where the manner of opening a valve differs from that of closing it.

Example 14. Model a valve that opens in five stages with each progressive opening stage taking place when the signal-variable parameter S_{v} crosses the value $S_{o_{i}}, i=1,2, \cdots, 5\left(S_{o_{i}}<S_{o_{i+1}}\right)$. Closure occurs in threc stages when S_{v} crosses the values $S_{c_{i}}, i=1,2,3\left(S_{c_{i}}<S_{c_{i+1}}\right)$.

This can be done by defining two valve tables that are controlled by a trip-signal-range type 3 or 4 trip. The first valve table is used when the trip is set to $\mathrm{ON}_{\text {forward }}$ the second valve table is used when the trip is set to $O N_{\text {reverse }}$. The valve tables in Fig. D-25 is controlled by a trip. When defining the valve tables, they both need to increase monitonically or decrease as the abscissa coordinate increases. A valve closure state defined by two or more values of S_{v} should be avoided in a valve table when there are two tables defined. This is to assure uniqueness when TRAC-PFl interpolates a new valve closure state out of one of the tables, because it translates the abscissa coordinate of the other table so that the value of S_{v} corresponds to the same

closure state. When inserting the valve tables, the user needs to assure this as well. If initially the valve is closed with a flow area of $f_{m i n}$, then $S_{o_{1}} \equiv S_{v}(t=0) \equiv S_{c_{1}}$ is required for both tables to be consistent with each other and with the initial state of the valve.

The final component action table example to be considered involves two component actions controlled by the same trip.

Example 15. Model the reactivity effect and axial power shape dist́ortion from control rod bank movement that under trip control shuts down the reactor core power within 60 s .

This model is applied in a CORE or VESSEL component having fuel rods. The point-reactor kinetics equations, driven by the sum of programmed reactivity from the control rod bank and feedback reactivity, are evaluated to determine reactor power. Programmed reactivity is input vs relative problem time by the power-reactivity table. It defines the negative reactivity worth of the control rod bank as it is continuously inserted into the core at its normal operational rate as shown in Fig. D-26. The $\Delta \rho_{C R B}$ total reactivity worth of the control rod bank (CRB) is assumed large enough in this exampíle to shut down the reactor power within 60 s for the duration of the calculation. The effect of control-rod-bank" movement on distortion of the axial power shape

Relative Problem Time $=\underset{\mathrm{PR}}{\mathrm{f}_{\mathrm{RP}}} * \Delta \mathrm{t}(\mathrm{s})$
Fig. D-26.
Control-rod-bank programmed reactivity.

Fig. D-27.
Axial power shape table.
is defined by the axial power shape table in Fig. D-27 as a function of relative problem time.

The behavior in Fig. D-27 is consistent with that of Fig. D-26. A trip is needed to determine when control-rod-bank movement is needed to maintain a 60-s power decay. The trip-signal-range type 3 trip in Fig. D-28 provides that control.

A reactor period greater than 61 s sets the trip to $0 \mathrm{~N}_{\text {forward, while a }}$ reactor period less than 59 s sets the trip to $0 \mathrm{~N}_{\text {reverse }}$ Both activate evaluation of the programmed reactivity and axial power shape tables. $\mathrm{ON}_{\text {forward }}$ moves the interpolation point to the right in both tables, causing negative reactivity to be added and its effect on axial power shape to be made. $\mathrm{ON}_{r e v e r s e}$ moves the interpolation' point to the left with the 'opposite result. In either case, the effect on reactor power decay is to return it to the desired value of 60 s . If $\Delta t_{C R B}$ is small or the calculational time step is large, the desired value may be overshot. This difficulty can be minimized by

Fig. D-28.
Trip for controlling programmed reactivity and axial power shape.
defining the rate factor table form in Fig. D-18 to the power-reactivity and axial power shape tables rather than to a rate factor of unity.

APPENDIX E

SAMPLE PROBLEM

This sample problem shows the setup of a large, complicated TRAC problem. Test S-SB-P7 (Ref. 62) conducted in the Semiscale Mod-3 (Ref. 63) facility at INEL was chosen to demonstrate the modeling techniques. Section E-I discusses the Semiscale Mod-3 system briefly. Section E-II summarizes Test S-SB-P7. Section E-III describes the TRAC one-dimensional model. Section E-IV discusses the steady-state calculation. Finally, Secs. E-V.A and E-V.B include listings of the steady-state and transient input decks, respectively. Section E-V.C illustrates use of the free-format input option and describes a three-dimensional TRAC VESSEL configuration that is equivalent to the one-dimensional configuration used in Sec. E-V.A.

I. SEMISCALE MOD-3 SYSTEM DESCRIPTION

The Semiscale Mod-3 "system includes an intact loop, a broken loop, an external downcomer assembly, and a pressure vessel to simulate a PWR. An isometric drawing of the system configured for cold-leg break tests is shown in Fig. E-l. The intact loop includes a pressurizer, steam generator, and pump. The broken loop includes a steam generator, pump, and rupture valve assembly. The pressure vessel includes an upper head, an upper plenum, a 25 -rod electrically heated core with thermocouples located 0.75 mm beneath the cladding surface, and a lower plenum. The external downcomer assembly includes an inlet annulus and downcomer pipe. Most system components have the same elevations as those in a full-sized PWR.
II. TEST DESCRIPTION 【

Test S-SB-P7 simulated a 2.5% cold-leg communicative break with delayed pump coastdowns (1099.7 s after the pressurizer pressure reached 12.48 MPa). The simulated core had a flat radial power profile with three unpowered rods in a 5×5 matrix.

The initial steady-stiate operating conditions were: $15.73-\mathrm{MPa}$ system pressure, $1.97-\mathrm{MW}$ corè power, $549-\mathrm{K}$ core inlet temperature, and $33-\mathrm{K}$ core temperature differential. Core power decay, pump coàstdowns, and steam-generator valve actions were sequenced" relative to a trip signal
\square

Semiscale Mod-3 system for cold-1eg break configuration-isometric (Ref. 62).

[^3]9

* 365
generated by a specified low pressure (12.48 MPa) in the pressurizer. The ECC was provided by the high-pressure injection system (HPIS) only. The accumulators in the intact and broken loops were valved out and the test was terminated before the system pressure fell below the normal low-pressure injection system (LPIS) set point.

The pressure-suppression tank, was bypassed for the test and the break discharge was drained through a condensing system into a small catch tank. The catch-tank inventory was measured before and after the test to obtain the total integrated break flow.

A small break was simulated with a bell-mouthed orifice attached to the side of the broken-loop cold-leg piping. A valve was opened to initiate the transient, which lasted for 2465 s . All the trips, except those for the HPIS and the primary pumps, were initiated within $\sim 8 \mathrm{~s}$ after the pressurizer pressure dropped to 12.48 MPa . The HPIS was started at 46 s and the primary coolant pumps tripped at 1117 s into the transient. The test was terminated by closing the valve downstream of the break when the system pressure dropped to a predetermined level.
III. .TRAC ONE-DIMENSIONAL MODEL

Figures E-2 and E-3 show the loop and vessel arrangement, respectively. The setup includes at least one of every type of TRAC component module except for a three-dimensional vessel. Figure E-4 shows an equivalent vessel-downcomer configuration that uses the TRAC three-dimensional VESSEL. An input listing for this three-dimensional model is given in Sec. E-V.D. The junction and component numbers are shown in circles and squares, respectively. These junctions and component numbers can be used as guides when referring to the input listings in Sec. E-V. The input model consists of 42 components containing a total of 172 cells and 46 junctions. Table $E-I$ lists the components. The input model corresponds to the Semiscale Mod-3 hardware configuration with the following exceptions:

Fig. E-2.
TRAC model for Semiscale Mod-3 facility.
11

Fig. E-3.
One-dimensional downcomer and vessel noding for Semiscale Mod-3 facility.

Fig. E-4.
Three-dinensional VESSEL noding combining all the components shown in Fig . E-3.

TRAC MODEL COMPONENTS

Component Number	$\begin{gathered} \text { Component } \\ \text { Type } \\ \hline \end{gathered}$	Description S	Number of Fluid Cells (Primary Side, Secondary Side)
1	TEE	Intact-1oop hot leg	4, 3
2	StGEN	Intact-loop steam generator	10, 5
3	PIPE	Intact-loop pump suction	10
4	PUMP	Intact-loop pump	2
5	TEE	Intact-loop cold leg	4, 1
6	PRIZER	Intact-loop pressurizer	5
7	FILL	Intact-loop steam-generator feedwater	1
8	Valve	Intact-loop steam line	2
9	BREAK	Intact-loop steam-generator-secondary pressure set point	1
10	TEE	Intact-loop ECC line	2,1
11	VALVE	Intact-loop accumulator valve	2
12	ACCUM	Intact-loop accumulator	4
13	FILL	Intact-loop HPIS	1
14	TEE	Intact-loop steam-generator-secondary steam dome	2, 1
15	TEE	Intact-loop steam-generator-secondary downcomer	5, 1
16	FILL	Pressurizer inlet	1
21	PIPE	Broken-loop hot leg	3
22	STGEN	Broken-loop steam generator	12, 6
23	PIPE	Broken-loop pump suction	7
24	PUMP	Broken-loop pump	2
25	TEE	Broken-loop cold leg	3, 2
26	FILL	Broken-loop steam-generator feedwater	1
27	VALVE	Broken-loop steam line	2
28	BREAK	Broken-loop steam-generator-secondary pressure set point	1
34	TEE	Broken-loop steam-generator-secondary steam dome	2, 1
35	TEE	Broken-loop steam-generator-secondary downcomer	6, 1
40	FILL, BREAK	Fill for steady-state run, break for transient run	1
41	TEE	Broken-loop cold leg	3, 1
42	TEE	Broken-loop ECC line	2, 1
43	FILL	Broken-loop HPIS	1
44	VALVE	Broken-loop accumulator valve	2
45	ACCUM	Broken-loop accumulator	4

TABLE E-I (cont.)

Component Number	$\begin{gathered} \text { Component } \\ \text { Type } \\ \hline \end{gathered}$	Description	Number of Fluid Cells (Primary Side, Secondary Side)
65	TEE	Upper section of upper plenum	1, 1
70	PIPE	Middle section of upper plenum	1
75	TEE	Lower section of upper plenum and guide and core support tubes	1, 1
80	CORE	Core	9
83	PIPE	Lower plenum	3
90	TEE	Intact-loop side downcomer inlet and downcomer	2,10
92	TEE	Broken-loop side downcomer inlet 0 and upper-head bypass	$\cdots 2,1$
97	TEE	Lower section of upper head and upper-head bypass	3, 2
98	PIPE	Upper section of upper head	2
99	FILL	Upper-head zero-velocity fill	1

The total number of components is 42.
The total number of cells is 172.

The total number of junctions is 46 .

1. The pressure-suppression system is not modeled directly. During the steady-state calculation, a zero-velocity FILL (component 40) is introduced at the pressure-suppression system junction. At the beginning of the transient, as shown in the transient restart listing (Sec. E-V.B), this FILL component is replaced by a BREAK component and the pressure and temperature at the break are specified as boundary conditions.
2. The secondary feedwater systems, both main and auxiliary, are represented by FILL components 7 and 26 for the intact and broken loops, respectively.
3. The HPIS is represented by FILL components 13 and 43 for the intact and broken loops, respectively. For tests that have an LPIS also, the same components can represent both the HPIS and the LPIS. Both the accumulators (components 12 and 45) are valved out in the calculation using TRIP 7 because there was no accumulator injection in Test S-SB-P7. The modeling of the accumulators permits generality and allows the model to be adapted easily for tests that have accumulator injection.

The TRAC-PFI choked-flow model was used to calculate the break flow. The secondary side of the break TEE (component 25) was modeled using two cells, with the second cell representing the break orifice. Because the orifice used in the test had a rounded entrance, the second cell represents the geometric area of the orifice.

The intact-loop pump used the Semiscale pump curves. Revised singlephase curves* for the broken-loop pump were obtained from INEL and incorporated into the input model. Because the radial power profile in Test S-SB-P7 was flat, only the average-power rods were modeled in the core.

The structural heat losses in the Semiscale Mod-3 system were measured experimentally and were shown to be a significant portion of the heat generated in the core during simulated decay heat. 64 Therefore, the heat losses were incorporated in the TRAC model. Assuming the surrounding air temperature to be 300 K , we calculated a film coefficient based on the outside surface area of the primary system, a primary liquid temperature from a previous TRAC steady-state run, and an $80-\mathrm{kW}$ heat loss.**

[^4]The primary data base for the input model noding is the Semiscale Mod-3 drawings ${ }^{65}$ and the system design description. ${ }^{63}$ The data base for the initial and boundary conditions incorporated in the TRAC input model includes the experiment operating test specifications, 66,67 the quick-look report, ${ }^{68}$ and the data report. 62
IV. STEADY-STATE CALCULATION

Based on the geometry and the" noding described in Sec. E-III, a steady-state calculation was performed using the generalized steady-state TRAC option. The calculation took 777 s of CPU time to simulate 400 s of reactor steady-state time at an average $0.27-s$ time step. As noted in $S e c . E-V$, all the initial velocities were zero. At the beginning of the calculation, the reactor power was automatically set to zero. At $\sim 1 \mathrm{~s}$, the system parameters, such as velocities and temperatures, almost reached a zero-power steady state and the power was turned on. The velpcities and pressures did not converge to a steady state until ~ 40 s later. The temperature convergence was much slower because of large system thermal inertia caused by the heat structures. For all practical purposes, the temperatures converged near the end of the run. Table E-II lists the initial conditions and specified test parameters. The TRAC steady-state calculation closely approximates the actual test conditions.

Figures E-5 through E-14 show representative steady-state results for the system pressures, velocities, and temperatures. Figure E-5 shows the upper-plenum pressure history. Figure E-6 shows the velocity in the pressurizer. surge line. Note that the pressurizer was treated simply as a constant pressure break during the steady-state calculation to prevent the pressurizer from emptying. Figures E-7 through E-10 show the velocities in the intact-loop hot leg, intact-loop cold leg, broken-loop hot leg, and broken-loop cold leg, respectively. The liquid temperatures at the same locations are presented in Figs. E-11 through E-14, respectively. As mentioned earlier, the temperature convergence is much slower than the convergence of the other system parameters. However, the temperatures are practically converged at $\sim 300 \mathrm{~s}$ when the rate of change is only $\sim 0.005 \mathrm{~K} / \mathrm{s}$. The oscillations in the broken-loop cold-leg temperature (Fig. E-14) result from erratic steam-generator secondary behavior that causes fluctuations in the secondary-side heat transfer.

TABLE E-II
TEST S-SB-P7 INITIAL CONDITIONS

Parameter

Core power (MW) ${ }^{\text {a }}$
Pressurizer pressure (MPa)
Pressurizer liquid volume (m3)
Intact-loop mass flow (kg/s)
Intact-loop cold-leg temperature (K)
Intact-loop hot-leg temperature (K)
Broken-loop mass flow (kg / s)
Broken-1oop cold-leg temperature (K)
Broken-loop hot-leg temperature (K)
Intact-100p pump, speed (rad/s)
Broken-loop pump speed (rad/s)
Intact-loop steam-generator-secondary pressure (MPa)
Intact-loop steam-generator-secondary temperature (K)
Intact-loop steam-generator-secondary water mass (kg)
Intact-loop steam-generator-secondary feedwater temperature (K)
Broken-loop steam-generator-secondary pressure (MPa) 5.09
Broken-loop steam-generator-secondary temperature (K) 538.2
Broken-loop steam-generator-secondary water mass (kg) 322.0
Broken-loop steam-generator-secondary
b) feedwater temperature (K)

Actual
1.97
15.73
0.0215
8.07
547.9
583.8
2.63
549.8
581.0
247.
1285.
5.42
542.2
127.8
486.3
486.3

Calculated

$$
1.97_{\mathrm{b}}^{\mathrm{b}}
$$

$$
15.73^{b}
$$

$$
0.0215^{\mathrm{b}}
$$

$$
8.14
$$

547.9
582.7
2.62
552.0
582.6
262.
1629.
4.74
533.7
142.9
486.3^{b}
5.14
538.7
324.1
486.3^{b}
$a_{\text {Flat }}$ radíal profile.
${ }^{\mathrm{b}}$ Specified as input parameter.

Fig. E-5.
Upper-plenum pressure.

Fig. E-6.
Liquid velocity at the pressurizer outlet.

Fig. E-8.
Liquid velocity in the intact-loop cold leg.

Fig. E-9.
Liquid velocity in the broken-loop hot leg.

Fig. E-11.
Liquid temperature in the intact-loop hot leg.

Fig. E-12.
Liquid temperature in the intact-loop cold leg.

Fig. E-13.
Liquid temperature in the broken-loop hot leg.

Fig. E-14.
Liquid temperature in the broken-loop cold leg.

V. INPUT LISTINGS

This section contains four separate input listings. The first is a complete steady-state one-dimensional input deck. The second is a restart input deck that begins the transient calculation. The third shows a section of the steady-state input deck recast to illustrate various aspects of the free-format input option. This free format listing is not arranged aesthetically, Rather, it shows the flexibility of a free-format input. Finally, the fourth listing presents a three-dimensional vessel input that is equivalent to the one-dimensional input. This listing demonstrates how the vessel and the downcomer can be modeled using the three-dimensional vessel modeling capability. In this case, all the components shown in Fig. E-3 were combined into a single three-dimensional VESSEL component and three one-dimensional PLPE components, as shown in Fig. E-4. A detailed description of another sample TRAC three-dimensional VESSEL is given in Appendix C of the TRAC-PD2 users manual. 69 The geometrical considerations given there aiso apply to TRAC-PFl.

```
    A. Steady-State One-Dimensional Input Deck
    CARD 12345678901234567890123456789012345678901234567890123456789012345678901234567890
    TRAC
    SEMISCALE (MOD3) SMALL BREAK MODEL
        TEST S-SB-P7 (2.5% COLD LEG COMMUNICATIVE BREAK) - DELAYED PUMP TRIP
            DATA BASE
                                    \hdashline
            1. L.L. WEIDERT AND I.B. CLEGG,"EXPERIMENT DATA REPORT FOR SEMISCALE
                MOD-3 SMALL BREAK TEST SERIES (TESTS S-SB-P1, S-5B-P2 AND
                S-SB-P7)," EGG-2053, SEPTEMBER 1980.
            2: S.E. DINGMAN, T.J. FAUBLE, AND J.R. HEWITT,"QUICKLOOK REPORT
                FOR SEMISCALE MOD-3 SMALL BREAK TESTS S-SB-P1, S-SB-P2, AND
                S-SB-P7," EGG-SEMI-5137, APRIL 1980.
            3. G.W. JOHNSEN,"TRANSMITTAL OF SEMISCALE EOS APPENDIX FOR SMALL
                BREAK TESTS S-SB-P1 AND S-SB-P2," GWJ-8-80, EG&G IDAHO, INC.,
                FEBRUARY 1980.
            MODEL INFORMATION
            1. MODEL PREPARATION BEGUN WITH INPUT DECK USED FOR SMALL BREAK TEST
                S-07-10B.
            2. STEAM GENERATOR COMPONENT 2 REVISED BY ADDING
                COMPONENTS 14& 15 TO REPRESENT THE UPPER AND LOWER
                SECONDARY SHROUDS.
            3. SAME AS ITEM 2 FOR COMPONENT 22 BY ADDING COMPONENTS 34 & % 35.
            4. PUMP SUCTION PIPES CONSOLIDATED INTO SINGLE PIPES, COMPONENTS 3 & 23,
                FOR THE INTACT AND BROKEN LOOPS, RESPECTIVELY.
            5. BROKEN LOOP PUMP COMPONENT 24 CHARACTERISTIC CURVES UPDATED.
```

$\begin{aligned} & 37 \\ & 38 \end{aligned}$	6. PIPE COMPONENT 27 REPLACED BY VALVE COMPONENT 27.						
39							
40	7. TEE COMPONENTS $41 \& 42$, FILL 43, ACCuM 45 AND Valve 44 ADDEDTO SIMulate Cold leg eccs.						
41							
42	Note	E *** fTLl Component 40 must		ANGED T	O BREAK	COMPONEN	
43		$\therefore 1$. NHEN	NSIENT				
44							
45	END OF TITLE	CARDS					
46	0	0.0					
47	1	0	42	46		1	
48	$1.0 \mathrm{E}-3$	1.0E-6	$1.0 \mathrm{E}-5$	$1.0 \mathrm{E}-3$			
49	10	0	10				
50	5	12	0				
51		2	3	4		5	
52	6	7	8	9		10	
53	11	12	13	14		15	
54	16	21	22	23		24	
55	25	26	27	28		34	
56	35	40	41	42		43	
57	44	45	65	70		75	
58	80	83	90	92		97	
59	98	99 E					
60	1	21	6	1		0	IDSV 1
61	2	0	0	0		0	IDSV 2
62	3	21	10	4		0	IDSV 3
63	4	21	42	4		0	IDSV 4
64	5	27	25	5		$=0$	IDSV 5
65	0	0	0	0		0	DIMEN
66	1	1	0	1		1	TRIP 1
67	$12.480 \mathrm{E}+6$	$12.481 \mathrm{E}+6$					IL PUMP
68	1099.7	10000.0					
69	0	0					
70	2	1	0	1		1	TRIP 2
71	12.480E+6	$12.481 \mathrm{E}+6$					BL PUMP
72	1099.7	10000.0					

	73	0 3	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	0	1	1	TRIP 3
	75	12.480E+6	12.481E+6				CORETRIP
	76	3.4	10000.0				
	77	0	0				
	78	4	1	0	1	1	TRIP 4
	79	12.480E+6	12.481E+6				FİNE MSH
	80	1099.7	10000.0				
	81	0	0				
	82	5	1	0	1	1	TRIP 5
	83	12.480E+6	12.481E+6				IL HPIS
	84	28.4	10000.0				
	85	0	0				
	86	6	1	0	1	1	TRIP 6
	87	12.480E+6	12.481E+6				BL HPIS
	88	28.4	10000.0				
	89	0	0				
	90	7	1	0	1	1	TRIP 7
	91	12.480E+6	12.481E+6				ACC
	92	10000.0	10000.0				
	93	0	0				
	94	8	1	0	1	1	TRIP 8
-	95	12.480E+6	12.481E+6				IL SG IN
	96	8.4	10000.0				
	97	0	0				
	98	9	1	0	1	1	TRIP 9
	99	12.480E+6	12.481E+6				BL SG IN
	100	8.4	10000.0				
	101	0	0				
	102	10	$=1$	0	1	1	TRIP10
	103	12.480E+6	$12.481 \mathrm{E}+6$				Il Sgout
	104	0.0	10000.0				
	105	0	0				
	106	11	1	0	1	1	TRIPII
	107	12.480E+6	12.481E+6				BL SgOUT
$\stackrel{\sim}{\infty}$	108	0.0	10000.0				

109		0	0				
110		12	2	0	1	5	TRIP12
111		0.49	0.50				ALPH
112		0.0	0.0				
113		0	0				
114	TEE		1	1	INTACT LOOP HOT LEG		
115		3	3	7	0.0	1	-
116		0	4	1	2		
117		$3.33248 \mathrm{E}-2$	1.112.52E-2	0.0	26.76782	300.0	
118		300.0					
119		0	3	7			
120		$4.69900 \mathrm{E}-3$	$1.65100 \mathrm{E}-3$	0.0	0.0	300.0	
121		300.0 :					
- 122	F	7.54799E-1E					DX P
123		2.66781E-3R 3	$32.63340 \mathrm{E}-3 \mathrm{E}$				VoL P
124		4.20283E-3R 4	3.48887E-3E				FA P
125		$5.589 \mathrm{E}-1 \mathrm{R} 3$	3 3.717E-2	1.635 E			FRIC P
126	R 4	0.0	0.63045 E				GReV P
127		$3.00000 \mathrm{E}-1 \mathrm{R} 4$	$46.66496 \mathrm{E}-2 \mathrm{E}$				HD P
128	F	4E					NFF P
129	F	0.0E					ALP P
130	F	0.0E					VL P
131	F	0.0E					VV P
132	F	583.8 E					TL P
133	F	583.8 E					TV P
134	F	15.730E+6E					P P
135	F	$0.00 \mathrm{E}+00 \mathrm{E}$					PA P
136	F	0.0E					QPPP P
137	F	583.8 E		*			TW P
138	R 2	1.34620	4.76250E-1E				DX S
139	R 2	9.33835E-5	$4.75410 \mathrm{E}-4 \mathrm{E}$				VOL S
140	R 3	6.93683E-5	$9.07130 \mathrm{E}-4 \mathrm{E}$				FA S
141		$2.98106 \mathrm{E}-3$	$1.56432 \mathrm{E}-3$	$2.31106 \mathrm{E}-3$	0.0E		FRIC 5
142		0.30954	$=0.27536$	0.46472	1.0E		GRAV S
143	R 3	9.39800E-3	3.39852E-2E				HD S
144	F	CE					NFF S

181		$5.10540 \mathrm{E}-3$	$1.24460 \mathrm{E}-3$				
182		5	17	15			
183		7.33209E-1R 3	6.13341E-1R 2	$6.40900 \mathrm{E}-1 \mathrm{R} 36$	6.13341E-1	$7.33209 \mathrm{E}-1 \mathrm{E}$	DX P
184		$1.00563 \mathrm{E}-2 \mathrm{R} 3$	2.71210E-3R 2	$2.83396 \mathrm{E}-3 \mathrm{R} 32$	2.71210E-3	$1.02573 \mathrm{E}-2 \mathrm{E}$	VOL P
185		3.48887E-3R 9	$4.42184 \mathrm{E}-3$	3.48887E-3E			FA P
186		1.635	3.076E-3R 3	0.0	$9.711 \mathrm{E}-4 \mathrm{R} 3$	0.0	FRIC P
187		$4.993 \mathrm{E}-3$	1.570 E				FRIC P
188		0.630450R 4	$\cdots \quad 1.0$	0.0R 4	-1.0	-0.854486E	GRAV P
189		6.66496E-2K 9	$1.02108 \mathrm{E}-2$	6.66496E-2E			HD P
190		4R 9	1	4E			NFF P
191	F	0.0E					ALP P
192	F	0.0E					VL P
193	F	0.0E					VV P
194	F	565.9 E	.	\because		S	TL P
195	F	565.9E					TV P
196	F	$15.730 \mathrm{E}+6 \mathrm{E}$					P P
197	F	$0.00 \mathrm{E}+00 \mathrm{E}$					PA P
198	F	542.2E					TW P
199	R 4	$6.13341 \mathrm{E}-1$	$2.09826 \mathrm{E}-1 \mathrm{E}$	\therefore			DX S
200	R 3	$2.11528 \mathrm{E}-2$	$2.07757 \mathrm{E}-2$	8.08639E-3E			VOL S
201	R 4	3.44878E-2	4.81689E-2	$2.31608 \mathrm{E}-2 \mathrm{E}$			FA S
202	F	0.0E					FRIC S
203		$\therefore 0.0 \mathrm{~F}$	1.0E				GRAV S
204	R 4	2.71183E-2	$2.47650 \mathrm{E}-1$	$1.71724 \mathrm{E}-1 \mathrm{E}$			HD S
205	F	1 E					NFF S
206	F	0.0E					ALP S
207	F	0.0E					VL S
208	F	0.0E					VV S
209	F	542.2E	-				TL S
210	F	542.2 E					TV S
211	F	$5.420 \mathrm{E}+6 \mathrm{E}$					P S
212	F	0.00E+00E					PA S
213		0.0R 3	\% 1.06244R 2	1.11018 R 3 -	1.06244	0.0E	WAl
214	R 3	1.32145	1.38082 R 1	0.0E			WA2
215	TEE	.	14	14 IL S	SG SEC UPPER	SHROUD	
216		2	0	10	1.0	1	

217		0		15	9		
218		0.1445	0.0079	0.0	0.0	300.0	
219		300.0					
220		0 :	1	16			
221		0.0859	-0.0079	0.0	0.0	- 300.0	
222		300.0					
223		0.37973	0.59944 E				DX P
224		8.79485E-3	3.93081E-1E				VoL P
225	R 2	$2.31608 \mathrm{E}-2$	$3.14159 \mathrm{E}-2 \mathrm{E}$				FA P
226	R 2	0.0	$1.0 \mathrm{E}+30 \mathrm{E}$				FRIC P
227	F	1.0 E					GRAV P
228	R 2	$1.71724 \mathrm{E}-1$	0.2E				HD P
229	F	4 E		$\underline{=}=$			NFF P
230		0.0	9.85127E-1E				ALP P
231	F	0.0 E		=			VL P
232	F	0.0E					VV P
233	F	542.2 E					TL P
234	F	542.2 E					TV P
235	F	$5.420 \mathrm{E}+6 \mathrm{E}$					P P
236	F	$0.00 \mathrm{E}+00 \mathrm{E}$					PA P
237		0.37973 E					DX S
238		$1.54725 \mathrm{E}-2 \mathrm{E}$					VOL S
239	F	$4.07461 \mathrm{E}-2 \mathrm{E}$					FA S
240	F	0.0E					FRIC S
241		-1.0	-1.0E				Grav s
242	F	0.11115 E					HD S
243	F	4 E		- -			NFF S
244	F	0.0E	\square				ALP S
245	F	0.0 E					VL S
246	F	0.0 E					VV S
247	F	$520.6{ }^{\text {c }}$					TL S
248	F	520.0 E					TV S
249	F	$5.420 \mathrm{E}+6 \mathrm{E}$		\because			P S
250	F	$0.00 \mathrm{E}+00 \mathrm{E}$					PA S
251	tee		15	15 LOWER	IL SG SEC		
252		5	0	10	0.0	1	

	361		116.0	0.080972	123.0		0.000000s			TSPTBL
	362		10000.0	0.000000 E						TSPTBL
	363		-10000.0	1.0	10000.0		1.0E			RFTBL
	364	F	5.84376E-1E							DX
	365		2.03881E-3E		:					VOL
	366	F	3.48887E-3E							FA
	367	F	0.0 E				:			FRIC
	368		0.0	$\bigcirc 0.0$	0.0E		;			GRAV
	369		6.66496E-25							HD
	370		4	0	$4 E$					NFF
	371	F	0.0E							ALP
	372	F	0.0E							VL
	373	F	0.0E	4						vv
	374	F	547.9 E							TL
	375	F	547.9 E							TV
	376	F	$15.730 \mathrm{E}+6 \mathrm{E}$							P
	377	F	$0.00 \mathrm{E}+00 \mathrm{E}$							PA
	378	F	0.0E			\therefore		\div		QPPP
	379	F	547.9E							TW
	380	TEE		$=5$	5	INTACT	LOOP COLD	LEG		
	381		3	3	7		0.0		1	
	382		0	4	5		6			
	383		$3.33248 \mathrm{E}-2$	1.11252E-2	0.0		26.76782		300.0	
	384		-300.0	$=$						
	385		$=0$	1	11					
	386		1.21539E-2	4.54660E-3	0.0		0.0		300.0	
	387		300.0					$\%$		
	388		$6.14590 \mathrm{E}-1 \mathrm{E}$					-		DX P
	389	R 3	$2.14423 \mathrm{E}-3$	2.16067E-3E						VOL P
	390	R 4	3.48887E-3	4.20283E-3E						FA P
	391		0.0 R 3	3.283E-1	9.566E-2E					FRIC ${ }^{\text {P }}$
	392	F	0.0E							GRAV P
	393	R 4	6.66496E-2	7.31520E-2E						HD P
	394	F	- $4 \mathrm{E}^{*}$				*			NFF P
${\underset{\sim}{*}}^{\sim}$	395	F F	$\bigcirc 0.0 \mathrm{E}$	0	- .			\%		ALP P
$\stackrel{\square}{\square}$	396	F	0.0E							VL P

397	F	0.0E					VV P
398	F	547.9E					TL P
399	F	547.9 E	\because				TV P
400	F	15.730E+6E					P P
401	F	$0.00 \mathrm{E}+00 \mathrm{E}$					PA P
402	F	0.0E					QPPP P
403	F	547.9 E					TW P
404	F	2.49528 E					DX S
405	F	$1.15798 \mathrm{E}-3 \mathrm{E}$					VOL S
406	F	$4.64068 \mathrm{E}-4 \mathrm{E}$					FA S
407		0.504784	0.259133 E				FRIC S
408		-1.0	0.0E				GRAV S
409	F	$2.43078 \mathrm{E}-2 \mathrm{E}$					HD S
410	F	1 E					NFF S
411	F	0.0E					ALP S
412	F	0.0 E	.				VL S
413	F	0.0E					VV S
414	F	500.0 E					TL S
415.	F	500.0 E					TV S
416.	F	15.730E+6E			0		P S
417	F	$0.00 \mathrm{E}+00 \mathrm{E}$					PA S
418	F	0.0E				-	QPPP S
419	F	500.0E					TW S
420	TEE		10	10	INTACT LOOP ECC LINE		
421		2	0	7	0.0	1	
422		0	2	12	11		
423		1.21539E-2	4.54660E-3	0.0	0.0	300.0	
424		300.0					
425		0	1	14			
426		1.21539E-2	4.54660E-3	0.0	0.0	300.0	
427		. 300.0					
428	F	2.49528 E					DX P
429	F	$1.15798 \mathrm{E}-3 \mathrm{E}$					VOL P
430	F	4.64068E-4E	\%				FA P
431	F	0.259133 E					FRIC P
432	F	0.0E					GRAV P

CARD
12345678901234567890123456789012345678901234567890123456789012345678901234567890

	433	F	$2.43078 \mathrm{E}-2 \mathrm{E}$						HD P
	434	F	1 E						NFF P
	435	F	0.0E						ALP P
	436	F	0.0E						VL P
	437	F	0.0E						VV P
	438	F	400.0 E						TL P
	439	F	400.0E						TV P
	440		$15.730 \mathrm{E}+6$	$15.730 \mathrm{E}+6 \mathrm{E}$					P P
	441	F	$0.00 \mathrm{E}+00 \mathrm{E}$						PA P
	442	F	1.0 E						DX S
	443	F	$4.64068 \mathrm{E}-4 \mathrm{E}$						VOL S
	444	F	4.64068E-4E						FA S
	445	F	0.0E						FRIC S
	446	F	0.0E						GRAV S
	447	F	$2.43078 \mathrm{E}-2 \mathrm{E}$						HD S
	448	F	1 E						NFF S
	449	F	0.0E	.					ALP S
	450	F	0.0E						VL S
	451	F	0.0E						vv S
	452	F	300.0 E						TL S
	453	F	300.0 E						TV S
	454	F	$15.730 \mathrm{E}+6 \mathrm{E}$						P S
	455	F	0.00E+00E						PA S
	456	FILL		13	13	InTACT	LOOP HPIS		
	457		14	8	3		5	15	
	458		0						
	459		1.0	4.64068E-4	0.0	.	0.0	300.0	
	460		$5.5 \mathrm{E}+6$	0.0	-0.0	-	0.0	300.0	
	461		1.0						
	462		$0.00 \mathrm{E}+0$	0.12878	$1.21 \mathrm{E}+5$		0.11250 S		VMTB
	463		2.61E+5	0.09075	4.23E+5		0.06030 S		VmTB
	464		$6.14 \mathrm{E}+5$	0.04148	7.81E+5		0.023935	:	VMTB
	465		$3.44 \mathrm{E}+6$	0.01973	$5.78 \mathrm{E}+6$		0.01643 S		VMTB
	466		7.39E+6	0.01343	9.01E+6		0.00848 S		VMTB
	467		$9.90 \mathrm{E}+6$	0.00464	$1.19 \mathrm{E}+7$		0.00280 S		vmtb
-	468		$1.30 \mathrm{E}+7$	0.00245	$1.40 \mathrm{E}+7$		0.00000 s		VMTB

541		2.79400E-2R11	$1.97358 \mathrm{E}-2$	2.79400E-2E				HD P
542		4R11	1	4E				NFE P
543	F	$\because 0.0 \mathrm{E}$						ALP P
544	F	0.0E						VL P
545	F	0.0E						VV P
546	F	565.4E						TL P
547	F	565.4E						TV P
548	F	$15.730 \mathrm{E}+6 \mathrm{E}$						P P
549	F	$0.00 \mathrm{E}+00 \mathrm{E}$						PA P
550	F	538.2E						TW P
551	R 5	1.84895	1.07730 E					DX S
552	R 4	$4.92129 \mathrm{E}-2$	$4.90267 \mathrm{E}-2$	3.95682E-2E				VOL S
553	R 5	$2.66166 \mathrm{E}-2$	3.51514E-2	5.50165E-2E				FA S
554	R 6	0.0	$1.202 \mathrm{E}-2 \mathrm{E}$					FRIC S
555		0.0F	1.0E					GRAV S
556	R 5	4.83783E-2	$2.11556 \mathrm{E}-1$	$2.64668 \mathrm{E}-1 \mathrm{E}$				HD S
557	F	1E						NFF S
558	F	0.0E						ALP S
559	F	0.0E						VL S
560	F	0.0E						VV S
561	F	538.2E						TL S
2562	F	538.2E						TV S
563	F	$5.090 \mathrm{E}+6 \mathrm{E}$						P S
564	F	$0.00 \mathrm{E}+00 \mathrm{E}$						PA S
565		0.0R 4	2.29277E-1R 2	$2.31981 \mathrm{E}-1 \mathrm{R} 4$	$2.29277 \mathrm{E}-1$		0.0E	WAl
566	R 4	$2.58195 \mathrm{E}-1$	$2.61240 \mathrm{E}-1$	0.0E				WA2
567	TEE		34	34 BL	SG SEC UPPER	SHROUD		
568		2	0	10	1:0		1	
569		0	2	35	28			
570		0.1323	0.0042	0.0	0.0		300.0	
571		300.0	$=$					
572		0	1	36				
573		0.2048	0.0238	0.0	0.0		300.0	
574		300.0						
575		1.01270	2.28397E-1E					DX P
576		$5.57151 \mathrm{E}-2$	3.00880E-1E					VOL P

577	R 2	$5.50165 \mathrm{E}-2$	$7.85398 \mathrm{E}-3 \mathrm{E}$						FA P
578	R 2	0.0	1.0E+30E						FRIC P
579	F	1.0E							GRAV P
580	R 2	$2.64668 \mathrm{E}-1$	0.1 E						HD P
581	F	4E							NFF P
582		8.67319E-1	1.OE						ALP P
583	F	0.0E							VL P
584	F	0.0E							VV P
585	F	538.2E							TL P
586	F	538.2E							TV P
587	F	$5.090 \mathrm{E}+6 \mathrm{E}$							P P
588	F	0.00E+00E							PA P
589		1.01270 E							DX S
590		6.69540E-2E							VOL S
591		7.31971E-2	2.06167E-2E						FA S
592	F	0.0E							FRIC S
593		-1.0	-1.0E						GRAV S
594		0.13650	0.04450 E						HD S
595	F	4E							NFF S
596	F	9.33751E-1E	-						ALP S
597	F	0.0E							VL S
598	F	0.0E							VV S
599	F	520.0E							TL S
600	F	520.0E							TV S
601	F	$5.090 \mathrm{E}+6 \mathrm{E}$							P S
602	F	0.00E+00E							PA S
603	TEE		35	35	LOWER BL	SG SEC	SHROUD		
604		6	0	10		0.0		1	
605		0	6	37		36			
606		0.1209	0.0151	0.0		0.0		300.0	
607		300.0			\because				
608		0	1	27					
609		0.01905	0.00508	0.0		0.0		300.0	
610		300.0							
611	R 4	1.84895	2.08625	8.40001E-1					DX P
612	R 4	$1.59655 \mathrm{E}-2$	$1.80146 \mathrm{E}-2$	$2.95771 \mathrm{E}-2 \mathrm{E}$					VOL P

613		$2.66166 \mathrm{E}-2 \mathrm{R}$	$58.63491 \mathrm{E}-3$	$2.06167 \mathrm{E}-2 \mathrm{E}$			FA P
614	F	0.0E				\sim	FRIC P
615		0.0F	1.0E				GRAV P
616		4.83783E-2R	$52.37998 \mathrm{E}-2$	0.04450 E			HD P
617	F	4E					NFF P
618	F	0.0E					ALP P
619	F	0.0E					VL P
620	F	0.0E					Vv P
621	F	510.0 E					TL P
622	F	510.0 E					TV P
623	F	$5.090 \mathrm{E}+6 \mathrm{E}$					P P
624	F	$0.00 \mathrm{E}+00 \mathrm{E}$		$=$			PA P
625		1.0 E			$\underline{=}$		DX S
626		0.001 E					VOL S
627	R 2	0.01E					FA S
628	F	0.0E					FRIC S
629	F	0.0E					GRAV S
630	F	0.0381 E					HD S
631	F	4E	:				NFF S
632	F	0.0E					ALP S
633	F	0.0E					VL S
634	F	0.0E					vV S
635	F	500.0 E					TL S
636	F	500.0 E					TV S
637	F	$5.090 \mathrm{E}+6 \mathrm{E}$			2		P S
638	F	$0.00 \mathrm{E}+00 \mathrm{E}$					PA S
639	FILL		26	26	BROKEN LOOP SG	FeEDWATER	
640		27	8	2	9		
641		2					
642		1.0	0.001	0.0	0.0	486.3	
643		5.090E+6	0.0	0.190000	0.0	486.	
644		1.0					
645		0.0	0.190000	4.0	0.05		VMTB
646		55.0	0.0	55.1	0.05		vmtb
647		2438.9	0.0	2439.0	0.0 S		VMTB
648		10000.0	0.0E				VMTB

685		$6.13116 \mathrm{E}-4 \mathrm{R}$	$9.07130 \mathrm{E}-4 \mathrm{E}$					FA
686		$2.239 \mathrm{E}-2$	$2.434 \mathrm{E}-3$	$3.928 \mathrm{E}-3$		$2.883 \mathrm{E}-3$	5.437E-3	FRIC
687		$3.843 \mathrm{E}-3$	$2.035 \mathrm{E}-3$	0.0E				FRIC
688		-0.93829R	-1.0	0.0R	2	1.0	0.86232 E	GRAV
689		$2.79400 \mathrm{E}-2 \mathrm{R}$	$3.39852 \mathrm{E}-2 \mathrm{E}$					HD
690	R 7	4	OE					NFF
691	F	0.0E		$=$				ALP
692	F	0.0 E						VL
693	F	0.0E						VV
694	F	549.8 E						TL
695	F	549.8 E						TV
696	F	15.730E+6E						P
697	F	$0.00 \mathrm{E}+00 \mathrm{E}$						PA
698	F	0.0E						QPPP
699	玉	549.8E						TW
700	PUMP		24	24	BROKEN	N LOOP PUMP		
701		2	3	24		25	7	
702		1	0	1		1	1	
703		2	2	5		2		
704		$1.69926 \mathrm{E}-2$	$7.13740 \mathrm{E}-3$	0.0		0.0	300.0	
705		300.0						
706		780.13	2.9828	3.2365E-3		997.96	1597.0	
707		$9.2709 \mathrm{E}-3$	2.4811	0.0		1628.92	1628.92	
708		0						
709		9	8	10		5	16	
710		7	19	8		13	13	
711		11	12	2		2	2	
7:12		2	5	9				
713		-1.0000	1.5000	-0.8000		1.2750S		HHSP1
714		-0.6000	1.3750	-0.4000		1.3750S		HSP1
715		0.0000	1.7821	0.2845		1.7059 S		HSP1
716		0.5690	1.6270	0.8535		1.1878 S		HSP1
717		1.0000	1.0000 E					HSP1
718		-1.0000	0.1750	-0.7500		-0.1500s		HHSP2
719		-0.5500	-0.3000	-0.2750		-0.4000s		HSP2
720		0.0000	-1.6359	0.7130		0.0000 S		HSP2

IdSLL		S0089＊0	0008＊0－	$0029 \cdot 0$	$0000 \cdot 1$－	951	$\stackrel{7}{0}$
ทdIH		300でプと	0000 ${ }^{\text {I }}$	$0006{ }^{\circ} \mathrm{Z}$	0008＊0	SSL	${ }^{+}$
†dปН		S000サ「で	0009＊0	$0026{ }^{\circ} \mathrm{I}$	0007＊	7SL	
		S009サ「	000\％ 0	OS 26.0	$0000 \cdot 0$	ESL	
†dILH		S0059．0	0005：0－	OSLTO	0000＊	2SL	
EdJH				400でプを	$0000{ }^{\circ} \mathrm{T}$	ISL	
عaLH		S00ヶ\％${ }^{\text {－}}$	$0006 \cdot 0$	$0010{ }^{\circ}$	0008＊0	OSL	
£dIH	د	S006ザT	000 $L^{\circ} 0$	OS $90^{\circ} \mathrm{T}$	0009＊0	$67 L$	
とdЈH	－	S0058．0	0005＊0	$00 \angle 9{ }^{\circ}$	000ヶ＊ 0	$8 \square^{\text {¢ }}$	
عdLul		S0009＊0	0052•0	0565＊0	000T＊0	Lヵし	
EdJH		SOST9．0	0000＊0	$00 \angle 9^{\circ} 0$	000T＊0－	972	
عdIL		SoszL．0	0002＊－	$0028{ }^{\circ}$	00sE ${ }^{\circ}-$	Sti	
ε ¢ ${ }^{\text {d }}$		S00 $6^{\circ} \mathrm{O}$	0005＊0－	002T•	0009＊－	カカレ	
£d工Н		S009E．I	$000{ }^{\circ} 0$	0059 ${ }^{\text {I }}$	0008＊0－	モヵL	
عdЈНн		S000T・て	0006＊0－	$0099^{\circ} \mathrm{Z}$	0000＊	でし	
乙dLH				10000＊0	0000＊	エヶし	
てdİH		SOOZO＊－	$0006{ }^{\circ} 0$	OSZT•0－	00008．0	07L	
2dIH		SOOTE＇0－	000ヶ＊ 0	000E＊－	$000 \varepsilon^{\circ} 0$	6 6L	
てdЈН		SOOSE $0-$	0000．0	OSLI＇0	0000＊ 1 －	$8 \varepsilon L$	
TdJH		70000＊0	0000＊ I	000T＊0	0006＊0	LEL	
LdLH		S000T＊0	$000 L^{\circ} 0$	00ヶり100	0005＊0	$9 E L$	
LdLH		SOOTI：0	0002＊0	002T•0	000T＊0	SEL	
LdLH		S00ZでT	0000＊0	00ヶヶく「1	0001＊0－	ワモL	
LdIH		S007\％${ }^{\text {\％}}$	0052＊0－	00ヶ0ッカ	000ヶ＊－	$\varepsilon \varepsilon L$	
LdJH		S006I＇†	0005＊0－	$0091 \cdot \square$	0009＊－	2EL	
IdIH		S002L＇\％	000 $L^{\circ} 0-$	$0070 \cdot \varepsilon$	0008＊0－	TEL	
［dJHH		S0009 ${ }^{\circ} \mathrm{Z}$	0006＊－	$0099^{\circ} \mathrm{Z}$	0000＊ 1 －	0¢L	
†dSH				7005 $6^{\circ} \mathrm{I}$	0000＊${ }^{\text {T }}$	622	
†dSH		S00SE•I	0005＊0	OS $26{ }^{\circ} 0$	0000＊0	872	
†dSHH		SOOS $9^{\circ} 0$	0005＊0－	OSLT＊	0000＊ T －	LZL	
£dSH		70056．1	0000＊I	OSZO．T	0009＊0	$92 L$	
£dSH		S0008．0	000ヶ＊ 0	OSZL＊0	0002＊0	SZL	
£dSH		SOSZL＊0	$0000{ }^{\circ}$	OSLL＇0	0002•0－	カZL	
£dSH		SOOE8．0	000ヶ＊－	$0056{ }^{\circ}$	0009＊0－	£ZL	
£dSHH		SOOSI＇I	0008＊－	0005．${ }^{\text {¢ }}$	0000＊ 5 －	てZL	
ZdSH		70000＊${ }^{\text {I }}$	0000° โ	$6562^{\circ} 0$	TLZ $8^{\circ} 0$	TZL	

	793		1.0000	0.0000E					TDM
	794		0.0	1.000000	22.0	0.351751 s		!	TSPTBL
	795		61.0	0.336965	66.0	0.000000 s			TSPTBL
	796		10000.0	0.000000 E					TSPTBL
	797		-10000.0	1.0	10000.0	1.0E			RFTBL
	798	F	7.33573E-1E						DX
	799	F	$6.65446 \mathrm{E}-4 \mathrm{E}$						VOL
	800	F	9.07130E-4E						FA
	801	F	0.0E						FRIC
	802		+0.86232R 2	0.0E					GRAV
	803	F	3.39852E-2E						HD
	804	F	OE						NFF
	805	F	0.0 E						ALP
	806	F	0.0 E						VL
	807	F	0.0E						VV
	808	F	549.8 E						TL
	809	F	549.8 E						TV
	810	F	15.730E+6E						P
	811	F	$0.00 \mathrm{E}+00 \mathrm{E}$						PA
	812	F	0.0E			-			QPPP
	813	F	549.8E						TW
	814	TEE		41		BROKEN LOOP COLD	LEG		
	815		2	3	7	0.0		1	
	816		1	3	25	60			
	817		1.69926E-2	7.13740E-3	0.0	$26.76782=$		300.0	
	818		300.0						$=$
	819		1	1	61				
*	820		9.42340E-3	$3.91160 \mathrm{E}-3$	0.0	0.0		300.0	
	821		300.0						
	822		0.500000	0.250000	0.250000 E				DX P
	823		$4.53565 \mathrm{E}-4$	2.26783E-4	2.26783E-4E			:	VOL P
	824	F	$9.07130 \mathrm{E}-4 \mathrm{E}$						FA P
	825		0.0	$2.098 \mathrm{E}-1$	$3.148 \mathrm{E}-1$	$3.148 \mathrm{E}-1 \mathrm{E}$	$=$		FRIC P
	826	F	0.0E						GRAV P
	827	F	3.39852E-2E						HD P
$\stackrel{\stackrel{\rightharpoonup}{\omega}}{ }$	828	F	4E	-					NFF P

CARD

12345678901234567890123456789012345678901234567890123456789012345678901234567890

973	F	0.0E					VL S
974	F	0.0E					Vv s
975		540.0 F	530.0 E				TL S
976		540.0F	530.0 E				TV S
977	F	15.730E+6E					P S
978	F	0.00E+00E					PA S
979	FIL		40	40	FILL FOR STEADY	State run	
980		30	1	0	0	0	
981		0					
982		$9.85500 \mathrm{E}-3$	$6.04658 \mathrm{E}-8$	0.0	0.0	530.0	
983		15.730E+6	0.0	0.0	0.0	530.0	
984	TEE		90	90	IL DNCMR INLET	AND DNCMR	
985		2	5	7	0.0	- 1	
986		0	2	6	229		
987		0.1	0.01	0.0	0.0	300.0	
988		300.0					
989		0	10	215			
990		0.1	0.01	0.0	26.76782	300.0	
991		300.0					
992		7.54799E-01	$8.12900 \mathrm{E}-01 \mathrm{E}$				DX P
993		$2.6678 \mathrm{E}-03$	$3.529 \mathrm{E}-03 \mathrm{E}$				VOL P
994	R 2	$4.20283 \mathrm{E}-3 \mathrm{R}$	$14.90998 \mathrm{E}-3 \mathrm{E}$				FA P
995		$9.566 \mathrm{E}-2$	0.0	0.0E			FRIC P
996	F	0.0E					GRAV P
997		$7.3152 \mathrm{E}-02 \mathrm{R}$	$2 \quad 1.9258 \mathrm{E}$				HD P :
998	F	1E					NFF P
999	F	0.0E					ALP P
1000	F	0.0E					VL P
1001	- F	0.0E					VV P
1002	F	547.9 E					TL P
1003	F	547.9E					TV P
1004	F	15.730E+6E					P P
1005	F	0.0E					PA P
1006	F	0.0E					QPPP P
1007	F	547.9E					TW P
1008		0.3147 R	20.4572	0.3048	0.6096	0.1524	DX S

1009		0.3048R	3 0.4572E					DX S
1010		$7.61076 \mathrm{E}-4 \mathrm{R}$	$2 \quad 1.1057 \mathrm{E}-3$	$7.37134 \mathrm{E}-4$	1.47426	7E-3	$3.685669 \mathrm{E}-4$	vol S
1011		$7.37134 \mathrm{E}-4$	$1.1057 \mathrm{E}-3 \mathrm{R} 2$	$1.91799 \mathrm{E}-3 \mathrm{E}$				Vol s
1012	R 9	$2.4184 \mathrm{E}-3 \mathrm{R}$	$24.19507 \mathrm{E}-3 \mathrm{E}$:			FA S
1013	F	0.0 E						FRIC S
1014	F	-1.0E						GRAV S
1015	F	0.055 E						HD S
1016	F	1E						NFF S
1017	F	0.0 E						ALP S
1018	F	0.0 E						VL S
1019	F	0.0E						VV S
1020	F	548.9E					$=$	TL S
1021	F	548.9E.						TV S
1022	F	15.730E+6E						P S
1023	F	0.0 E						PA S
1024	F	0.0 E						QPPP S
1025	F	548.9E						TW S
1026	TEE		92	92 BL	DNCMR	INLET	AND BYPASS	
1027		2	5	7		0.0	1	
1028		0	2	26		229		
1029		0.1	0.01	0.0		0.0	300.0	
1030		300.0						
1031		0	1	235				5
1032		0.1	0.01	0.0		0.0	300.0	
1033		300.0						
1034	F	0.3 E						DX P
1035	F	$1.473 \mathrm{E}-3 \mathrm{E}$						VoL P
1036	R 1	$9.0713 \mathrm{E}-4 \mathrm{R}$	$24.90998 \mathrm{E}-3 \mathrm{E}$					FA P
1037		$3.525 \mathrm{E}-2$	0.0	0.0E				FRIC P
1038	F	0.0 E						GRAV P
1039		$3.39852 \mathrm{E}-2 \mathrm{R}$	21.9258 E					HD P
1040	F	1 E						NFF P
1041	F	0.0 E						ALP P
1042	F	0.0 E						VL P
1043	F	0.0 E						VV P
1044	F	549.8 E						TL P

1045	F	549.8E					TV P
1046	F	15.730E+6E					P P
1047	F	0.0 E					PA P
1048	F	0.0E					QPPP P
1049	F	549.8 E					TW P
1050	F	0.22265 E					DX S
1051	F	1.29774E-4E					VOL S
1052	F	$3.705 \mathrm{E}-4 \mathrm{E}$					FA S
1053	F	0.0E					FRIC S
1054	F	1.0 E					GRAV S
1055	F	$6.4 \mathrm{E}-4 \mathrm{E}$					HD S
1056	F	1E					NFF S
1057	F	0.0E					ALP S
1058	F	0.0E					VL S
1059	F	0.0E					vv s
1060	F	548.9 E					TL S
1061	F	548.9 E					TV S
1062	F	15.730E+6E					P S
1063	F	0.0E					PA S
1064	F	0.0 E					QPPP S
1065	F	548.9 E					TW S
1066	PIPE		83	83	Lower Plenum		
1067		3	5	215	210	7	
1068		1	0				
1069		0.15	0.01	0.0	26.76782	300.0	
1070		300.0					
1071		0.4762	0.2	0.4762 E			DX
1072		$2.453858 \mathrm{E}-3$	$1.34172 \mathrm{E}-2$	$2.32522 \mathrm{E}-3 \mathrm{E}$			VOL
1073		4.19507E-3	$7.67759 \mathrm{E}-3$	4.29953E-3	2.8558E-3E		FA
1074	R 3	0.0	$7.870 \mathrm{E}-3 \mathrm{E}$	=			FRIC
1075	R 2	-1.0R 2	1.0E				GRAV
1076	R 3	0.055	0.0103 E				HD
1077	F	1 E					NFF
1078	F	0.0E					ALP
1079	F	0.0E					VL
1080	F	0.0E					VV

CARD 12345678901234567890123456789012345678901234567890123456789012345678901234567890

1117		$\therefore 0.4572$	0.9144	1.3716	1.6764	1.8288	Z
1118		2.4384	2.7432	3.2004	3.6576 E		Z
1119		0.0R 2	1.0R 5	0.0E			RDPWR
1120	F	1.0E					CPOWR
1121		0.0	0.2916	0.5908	0.9949	1.4351	ZPOWR
1122	R 2	1.5499	1.4351	1.0013	0.5908	0.2916 E	ZPOWR
1123	F	22.0E					NRDX
1124		0.0	1.588E-03	2.4E-03	$3.844 \mathrm{E}-034$	$4.368 \mathrm{E}-03$	RADR
1125		4.369E-03	4.699E-03	5.359E-03E			RADR
1126		4	5R 2	4	3R 2	7E	MATR
1127		0.0	1.0000	3.0	0.4000 S		PWTB
1128		- 6.0	0.2500	20.0	0.1000 S		PWTB
1129		30.0	0.0520	60.0	0.04405		PWTB
1130		100.0	0.0400	200.0	0.0350 S		PWTB
1131	-	1000.0	0.0230	3000.0	0.0170 E		PWTB
1132		-10000.0	1.0	10000.0	1.0E		RPRF
1133	R 2	5	9	5	9	5	NFAX
1134		9R 2	5E				NFAX
1135	F	0.0E	-				FPUO
1136	F	1.0E					FTD
1137	F	0.0E					GMIX
1138	F	0.0E					GMLS
1139	F	0.0E					PGAP
1140	F	0.0 E		.			PLVL
1141	F	0.0E					PSLN
1142	F	0.OE					CLNN
1143	F	0.0E					BURN
1144	F	565.6E			「		RFTN
1145	TEE		75	75	BOTTOM UPPER PLENUM		
1146		1	5	7	-1.	1	
1147		0	1	205	208		
1148		0.061	0.01	0.0	26.76782	300.0	
1149		300.0					
1150		0	1	240			
1151		0.01	0.01	0.0	0.0	300.0	
1152		300.0					

CARD 12345678901234567890123456789012345678901234567890123456789012345678901234567890


```
    CARD 12345678901234567890123456789012345678901234567890123456789012345678901234567890
```



```
B. Restart Input Deck for a Transient Calculation
CARD 12345678901234567890123456789012345678901234567890123456789012345678901234567890
```

```
    TRAC
```

 TRAC
 SEMISCALE (MOD3) SMALL BREAK MODEL
 TEST S-SB-P7 (2.5% COLD LEG COMMUNICATIVE BREAK) - DELAYED PUMP TRIP
 RESTART DECK
 NOTE *** FILL COMPONENT 40 REPLACED BY BREAK COMPONENT }4
 TO RUN THE TRANSIENT ***
 SEE STEADY STATE INPUT FOR MORE COMMENTS
    ```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline END OF TITLE -1 & CARDS
\[
0.0
\] & & & & & \\
\hline 0 & \(=1\) & 42 & & 46 & 0 & \\
\hline 1.0E-3 & 1. \(0 \mathrm{E}-6\) & 1. \(0 \mathrm{E}-5\) & & 1.0E-3 & & \\
\hline 10 & 0 & 10 & & & & \\
\hline 5 & 12 & 0 & & & & \\
\hline 1 & 2 & 3 & & 4 & 5 & \\
\hline 6 & 7 & 8 & & 9 & 10 & \\
\hline 11 & 12 & 13 & & 14 & 15 & \\
\hline 16 & 21 & 22 & & 23 & 24 & \\
\hline 25 & 26 & 27 & & 28 & 34 & \\
\hline 35 & 40 & 41 & & 42 & 43 & \\
\hline 44 & 45 & 65 & & 70 & 75 & \\
\hline 80 & 83 & 90 & . & 92 & 97 & \\
\hline 98 & 99E & & & & & \\
\hline -1 & & & & & & TD-1 \\
\hline 0 & 0 & 0 & & 0 & 0 & DIMEN \\
\hline -1 & & & & & & TD-2 \\
\hline BREAK & 40 & 40 & BREAK & FOR TRANSIENT & RUN & \\
\hline 30 & 0 & 0 & & 3 & & \\
\hline \(9.85500 \mathrm{E}-3\) & \(=6.04658 \mathrm{E}-8\) & 1.0 & & 392.69 & \(2.0 \mathrm{E}+5\) & \\
\hline 0.0 & & & & & & \\
\hline END & & & & & & \\
\hline \(1.0 \mathrm{E}-3\) & 1.0 & 2464.8 & & 1.00 .5 & & TIME STP \\
\hline 20.0 & 1.0 & 20.0 & & 1.0 & & TIME STP \\
\hline -1.0 & & & & & & \\
\hline
\end{tabular}
C. Section of Input Deck (Appendix C.A) Recast in Free Format
```

CARD
NUMTCR *IEOS* *INOPT*
43 0 1
SEMISCALE (MOD3) SMALL BREAK MODEL
TEST S-SB-P7 (2.5% COLD LEG COMMUNICATIVE BREAK) - DELAYED PUMP TRIP

```
CARD 123456789012345678901234567890123456789012345678901234567890123456789012345678908
```

DATA BASE

* 1. l.l. weidert and l.b. ClegG,"experiment data report for SEmiscale
MOD-3 SMALL BREAK TEST SERIES (TESTS S-SB-P1, S-SB-P2 AND
S-SB-P7)," EGG-2053, SEPTEMBER 1980.
2. S.E. DINGMAN, T.J. FAIJBLE, AND J.R. HEWITT,"QUICKLOOK REPORT
FOR SEMISCALE MOD-3 SMALL BREAK TESTS S-SB-P1, S-SB-P2, AND
S-SB-P7," EGG-SEMI-5137, APRIL 1980.
3. G.W. JOHNSEN,"TRANSMITTCAL OF SEMISCALE EOS APPENDIX FOR SMALL
BREAK TESTS S-SB-P1 AND S-SB-P2," GWJ-8-80, EG\&G IDAHO, INC.,
FEBRUARY 1980.
MODEL INFORMATION
=
4. MODEL PREPARATION BEGUN WITH INPUT DECK USED FOR SMALL BREAK TEST
S-07-10B.
5. STEAM GENERATOR COMPONENT 2 REVISED BY ADDING
COMPONENTS 14\& 15 'TO REPRESENT THE UPPER AND LOWER
SECONDARY SHROUDS.

3. SAME AS ITEM 2 FOR COMPONENT 22 BY ADDING COMPONENTS $34 \& 35$.
4. PUMP SUCTION PIPES CONSOLIDATED INTO SINGLE PIPES, COMPONENTS 323 , FOR THE INTACT AND BROKEN LOOPS RESPECTIVELY.
5. BROKEN LOOP PUMP COMPONENT 24 CHARACTERISTIC CURVES UPDATED.
6. PIPE COMPONENT 27 REPLACED by VALVE COMPONENT 27.
7. TEE COMPONENTS $41 \& 42$, FILL 43, ACCUM 45 AND VALVE 44 ADDED TO SIMULATE COLD LEG ECCS.
```
```

 NOTE *** FILL CONPONENT 40 MUST BE CHANGED TO BREAK COMPONENT
 40 WHEN RUN TRANSIENT ***
 END OF TITLE CARDS
 *after the numtCR (IN this CASE, 43) tItle CardS the uSER may
*INSERT ADDITIONAL BLANK CARDS AND LOCAL COMMENTS.
*NOTE that COMMENTS ARE NOT alLOWEd WITHIN the following namelist
*GROUP RECORD, WHICH INCLUDES ALL COLUMNS FROM \$ TO \$.
*THE NAMELIST OPTIONS MAY ALSO BE USED IN TRAC-FORMAT DECKS.
\$INOPTS IELV=0, ICFLOW = 1, NOAIR = 1,
ISTOPT = 2,
VL=0.0, VV = 0.0, PA=0.0 \$
*(THIS NAMELIST RECORD IS ONLY FOR ILLUSTRATION, AS IT SETS SWITCHES TO
* default values and doeSN`T Change the variables.)
DSTEP *TIMET*
DSTEP *TIMET*

* STDYST TRANSI NCOMP NJUN IPAK
1 < 0 42 46 1*PACKER ON*
EPSO 1.0E-3 *EPSI** 1.0E-6 *EPSS* 1.0E-5 *EPSP* 1.0E-3
*OITMAX,IITMAX,SITMAX*** 10 0 10 ***REMEMBER TO EXPLICITLY INCLUDE THE 0
*SIGNAL VARIABLE, TRIP, AND CONTROLLER TOTALS
5 12 0

```
```

 CARD 12345678901234567890123456789012345678901234567890123456789012345678901234567890
 *** IORDER ARRAY *
 1 2 3 4 5
 6
 lllllllll}12141
 162122 23 24
 2526 27 28 34
 35404114243
 4445657075
 80 83 90 92 97
 98 99E
 *** SIGNAL VARIABLE DATA***
 * IDSV ISVN ILCN ICN1 ICN2
 1 21 6 1 0 0 % % % SSURIZER PRESSURE SIGNAL
 2 0
 3
 4 21 42 4, 4 0 0 *ECE-LINE PRESSURE, BKN LOOP
 5 27 25 5 0 *COLD LEG VOID FR, BKN LOOP
 *** TRIP-DIMENSION VARIABLES CARD ***
 NTSE NTCT NTSF NTDP NTSD
    ```

```

 *** TRIP~DEFINING VARIABLES CARDS ***
 *SETS OF: IDTP(TRIP ID #),IPOS,ISET,ITYP,IDSG(SIG VAR ID)
 * SETP(1,2,3,4) (SET POINT VALUES)
 * DTSP(1,2,3,4) (DELAY TIMES)
 IFSP(1,2,3,4) (SET-POINT FACTOR TABLE ID``)
 TRIP 1, INTACT LOOP PUMP
 11011
 12.480E+6 12.481E+6
 1099.7 10000.0
 0
 TRIP 2, BROKEN LOOP PUMP
    ```
```

210111
12.480E+6 12.481E+6
1099.7 10000.0
0
TRIP 3, CORE TRIP
31011
12.480E+6 12.481E+6
3.4 10000.0
00
TRIP 4, FINE MESH
41011
12.480E+6 12.481E+6
1099.7 10000.0
0
TRIP 5, INTACT LOOP HPIS
51011
12.480E+6 12.481E+6
28.4 10000.0
0
TRIP 6, BROKEN LOOP HPIS
6 1 0 1 1
12.480E+6 12.481E+6
28.4 10000.0
0
TRIP 7, ACCUMULATORS
71011
12.480E+6 12.481E+6
10000.0 10000.0
0
TRIP 8, INTACT LOOP STEAM GEN; IN

```

\section*{15281011}

153 12.480E+6 12.481E+6
\(154 \quad 8.410000 .0\)
155
156
157
158
159
\(\therefore \quad 160\)
161
162
163
164
165
166

\section*{180}

181
182
***'TRIP SIGNAL-EXPRESSION CARDS***
*NONE*
***TRIP-CONTROLLED-TRIP CARDS***
*NONE*
```

 TRIP SET-POINT FACTOR-TABLE CARDS
 NONE
 TRIP-INITIATED RESTART DUMP PROBLEM TERMINATION CARDS
 NONE
 TRIP-INITIATED TIME-STEP DATA CARDS
 NONE
 CONTROLLER DATA
 NONE

 COMPONENT DATA

 COMPONENT 1, TEE - INTACT LOOP HOT LEG
 TEE 1 1 INTACT LOOP HOT LEG
JCELL 3 *NODES* 3 *MATID* 7 *COST* 0.0 *ICHF* 1
IHYDl(DUMMY VALUE) 0 *NCELLL* 4 *JUN1* l *JUN2* 2
3.33248E-2 1.11252E-2 0.0 26.76782 300.0

* RADIN1 HOUTL1 TH1 HOUTV1 TOUTL1
300.0
TOUTV1
0 37*IHYD2(DUMMY),NCELL2,JUN3
4.69900E-3 1.65100E-3 0.0 0.0 300.0*RADIN2,TH2,HOUTL2,HOUTV2,TOUTL2

```
```

CARD 12345678901234567890123456789012345678901234567890123456789012345678901234567890
224 300.0 ****TOUTV2*
225
ARRAY CARDS
227 F7.54799E-1E *DX-PRIMARY
228 2.66781E-3 R 3 2.63340E-3 E *VOL-PRIMARY
229 4.20283E-3R4 3.48887E-3E
5.589E-1 R 33.717E-2 1.635 E *FRIE-PRIMARY(NOTE \$INOPTS IKFAC)
R4 0.0 0.63045E
3.0E-1 R 4 6.66496E-2 E
F4E
F0.0E
F0.0E
F 0.0
F583.8 E
F583.8E
F 15.730E+6E
F 0.0E+00 E
F 0.0 E
F583.8E
SECONDARY TUBE
244
245
246 R*COMMENT*2 1.34620*COM-T*4.76250E-1E*DX

VOL R 2 9.33835E-5 *,* 4.75410E-4 E

FA R 3 6.93683E-5 *PRIZER INTERFACE* 9.07130E-4 E

FRIC *1ST*2.98106E-3 *2ND*1.56432E-3 *3RD*2.31106E-3 *4TH*0.0 E


```
```

CARD 12345678901234567890123456789012345678901234567890123456789012345678901234567890
GRAV 0.30954 0.27536 0.46472 1.0 E

HD R 39.39800E-3 3.39852E-2 E =

*NFF** FOE

*ALP** F 0.0 E

VL F 0.0 E

VV F 0.0 E

TL 550.0R 2 550.0 E

TV 550.0 R 2, 550.0 E

P* *IST CELL* 15.730E+6 *2ND CELL* 15.730E+6 *3RD CELL* 15.730E+6 E


```
```

 CARD 12345678901234567890123456789012345678901234567890123456789012345678901234567890
 296 **PA** FO.OE
 297 ******
 298
 299 ******
 QPPP FO.OE

 TW R 3 550.0 R 6 550.0 E

 306
 307
 308 FILL 16 16 PRIZER INLET
 309 * .
310 *
311 * .
312 *
313 * *
314 *
315 *
D. Input Equivalent ti) the Ten One-Dimensional Downcomer and Vessel
Components of Input Deck (Appendix C.A), Using Three-Dimensional VESSEL

| CARD | 12345678901234 | 50 | | 50 | DOWNCOMER | VESSEL | HEAD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 19 | 2 | | 2 | 10 | | |
| 3 | 16 | 2 | | 1 | 12 | 3 | |
| 4 | 1 | | | | | | |
| 5 | 0 | 0 | | 0 | 2 | | |
| 6 | 10.0 | 75.0 | | 0.005 | | | |
| 7 | . $100000 \mathrm{E}+10$ | .133400E+01 | 0. | | $=$ | | |
| 8 | 8 | 10 | | 7 | 3 | 1 | |
| 9 | 1 | 1 | | 0 | 0 | 0 | |
| $\stackrel{*}{ }{ }^{\text {c }}$ | 4 | 0 | | 0 | 0 | 75 | |
| 11 | 0 | 0 | | 500 | 2 | 2 | |
| 12 | .197000E+07 | 0. | 0. | | | 1.0 | |

```


CARD 12345678901234567890123456789012345678901234567890123456789012345678901234567890
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 49 & F & 0.0 E & & & & gmLes \\
\hline &  & F & 0.0E & & & & PGAPT \\
\hline & 51 & F & 0.0E & \(=\) & & & PLVOL \\
\hline & 52 & F & 0.0 E & & & & PSLEN \\
\hline & 53 & F & 0.0E & & & & CLENN \\
\hline & 54 & R 2 & 0.0R 2 & 0.1029E & & & HSA \\
\hline & 55 & 0. & 0. & & .28214E-02 & . \(28214 \mathrm{E}-02 \mathrm{E}\) & HSX \\
\hline & 56 & F & 0.0E & & & & CFZL-T \\
\hline & 57 & F & 0.0 E & & & & CFZL-Z \\
\hline & 58 & F & 0.0E & & & & CFZL-R \\
\hline & 59 & F & 0.0E & & & & CFZV-T \\
\hline & 60 & F & 0.0E & & & & CFZV-2 \\
\hline & 61 & F & 0.0E & & & & CFZV-R \\
\hline & 62 & R 2 & 0.3678 R 2 & 1.0 E & & & VOL \\
\hline & 63 & R 2 & 0.5292 R 2 & 0.9719 E & & & FA-T \\
\hline & 64 & R 2 & 0.3678 R 2 & 0.4395 E & & & FA-Z \\
\hline & 65 & R 2 & 0.7489 R 2 & 0.0E & & & FA-R \\
\hline & 66 & F & 0.0852 E & & & & HD-T \\
\hline & 67 & F & 0.0852 E & & & & HDP-Z \\
\hline § & 68 & F & 0.0852 E & & & & HD-R \\
\hline & 69 & F & 565.6 E & & & & HSTN \\
\hline & 70 & F & 7 7 E & & & & MATHS \\
\hline & 071 & F & \(\checkmark 0.0 \mathrm{E}\) & & & & ALPN \\
\hline & 72 & F & 0.0 E & & & & VVN-T \\
\hline & 73 & F & 0.0E & & & & VVN-Z \\
\hline & 74 & F & 0.0E & & & & VVN-R \\
\hline & 75 & F & 0.0E & & & & VLN-T \\
\hline & 76 & F & - 0.0E & & & & VLN-Z \\
\hline & 77 & F & 0.0E & & & & VLN-R \\
\hline & 78 & F & 565.6 E & & & & TVN \\
\hline & 79 & F & 565.6 E & & & & TLN \\
\hline & 80 & F & 15.730E+6E & & & & PN \\
\hline & 81 & F. & 0.00E+00E & & & & PAN \\
\hline & 82 & R 2 & 0.0R 2 & 0.0336E & & & HSA \\
\hline & 83 & 0. & 0. & & .31714E-02 & . \(31714 \mathrm{E}-02 \mathrm{E}\) & HSX \\
\hline & 84 & F & = 0.0 E & \(=\) & & & CFZL-T \\
\hline
\end{tabular}


CARD 12345678901234567890123456789012345678901234567890123456789012345678901234567890
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & 121 & F & 0.0E & & & & & FA-R \\
\hline & 122 & R 2 & 0.0655 R 2 & 0.0229 E & & & & HD-T \\
\hline \(\cdots\) & 123 & R 2 & 0.0655 R 2 & 0.0229 E & & & & HD-Z \\
\hline & 124 & R 2 & 0.0655 R 2 & 0.0229E & & & & HD-R \\
\hline & 125 & F & 565.6E & & & & & HSTN \\
\hline & 126 & F & 7E & & & & & MATHS \\
\hline & 127 & F & 0.0E & & & & & ALPN \\
\hline & 128 & F & 0.0E & & & & & VVN-T \\
\hline & 129 & F & 0.0 E & & & & & VVN-Z \\
\hline & 130 & F & 0.0E & & & & & VVN-R \\
\hline & 131 & F & 0.0E & & & & & VLN-T \\
\hline & 132 & F & 0.0E & & & & & VLN-Z \\
\hline & 133 & F & - 0.0E & & & & & VLN-R \\
\hline & 134 & F & 565.6 E & & & & & TVN \\
\hline & 135 & F & 565.6 E & & & & & TLN \\
\hline & 136 & F & 15.730E+6E & & & & & PN \\
\hline & 137 & F & \(0.00 \mathrm{E}+00 \mathrm{E}\) & & & & & PAN \\
\hline & 138 & R 2 & 0.0654 & 0.3438 & .0.0E & & & HSA \\
\hline & 139 & & .17767E-02 & .17767E-02 & .28990E-02 & 0. & E & HSX \\
\hline & 1.40 & F & 0.0E & & & & & CFZL-T \\
\hline - & 141 & F & 0.0 E & & & & & CFZL-Z \\
\hline & 142 & F & 0.0 E & & & & & CFZL-R \\
\hline & 143 & F & 0.0E & & & & & CFZV-T \\
\hline & 144 & F & 0.0 E & & & & & CFZV-Z \\
\hline & 145 & F & 0.0E & & & & & CFZV-R \\
\hline & 146 & R 2 & 0.2443 & 0.1778 & 0.0E & & & VOL \\
\hline & 147 & R 2 & 0.1468 R 2 & 0.0E & & & & FA-T \\
\hline & 148 & R 2 。 & 0.2443 & 0.1479 & 0.0E & & & FA-Z \\
\hline & 149 & F & 0.0E & & & & & FA-R \\
\hline & 150 & R 2 & 0.0103 R 2 & 0.0667 E & : & & & HD-T \\
\hline & 151 & R 2 & 0.0103 R 2 & 0.0667 E & & & & HD-Z \\
\hline & 152 & -R 2 & 0.0103 R 2 & 0.0667 E & & & & HD-R \\
\hline & 153 & F & 565.6 E & & & & & HSTN \\
\hline & 154 & F & 7 E & & & & & MATHS \\
\hline \(\underset{\sim}{\omega}\) & 155 & F & 0.0E & & & & & ALPN \\
\hline & 156 & F & 0.0E & & & & & VVN-T \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 157 & F & 0.0E & \(\cdots\) & & & & vvn-z \\
\hline 158 & F & 0.0 E & & & & & VVN-R \\
\hline 159 & F & 0.0E & & & & & VLN-T \\
\hline 160 & F & 0.0 E & & & & & Se VLN-Z \\
\hline 161 & F & 0.0E & & & & & - VLN-R \\
\hline 162 & F & 565.6 E & & & & & TVN \\
\hline 163 & F & 565.6E & & & & & TLi \(=\) \\
\hline 164 & F & 15.730E+6E & & & & & PN \\
\hline 165 & F & 0.00E+00E & & & & & PAN \({ }^{\prime \prime}\) \\
\hline 166 & R 2 & 0.0654 & 0.06382 & 0.0E & & & HSA \\
\hline 167 & & .17767E-02 & .17767E-02 & . \(12978 \mathrm{E}-01\) & 0. & E & HSX/ \\
\hline 168 & F & 0.0E & & & & & CFZL-T \\
\hline 169 & F & 0.0E & & & & & CFZL-Z \\
\hline 170 & F & 0.0 E & & & & & CFZL-R \\
\hline 171 & F & 0.0 E & & & & & CFZV-T \\
\hline 172 & F & 0.0E & & & & & CFZV-Z \\
\hline 173 & F & 0.0E & & & & & CFZV-R \\
\hline 174 & R 2 & 0.2443 & 0.1778 & 0.0E & & & VOL \\
\hline 175 & R 2 & 0.1468 R 2 & 0.0E & & & & FA-T \\
\hline 176 & R 2 & 0.2443 & 0.1025 & 0.0E & & & FA-Z \\
\hline 177 & F & 0.0E & & & & & FA-R, \\
\hline 178 & R 2 & 0.0103 R 2 & 0.0667E & & & & HD-T \\
\hline 179 & R 2 & 0.0103 R 2 & 0.0667 E & & & & HD-2 \\
\hline 180 & R 2 & 0.0103 R 2 & 0.0667 E & & & & HD-R \\
\hline 181 & F & 565.6 E & & & & & HSTN \\
\hline 182 & F & 7E & & & & & MATHS \\
\hline 183 & F & 0.0E & & & & & ALPN \\
\hline 184 & F & 0.0 E & & & & & VVN-T \\
\hline 185 & F & 0.0E & & & & & VVN-Z \\
\hline 186 & F & 0.0E & & & & & VVN-R \\
\hline 187 & F & 0.0E & & & & & VLN-T \\
\hline 188 & F & 0.0E & & & & & VLN-Z \\
\hline 189* & F & 0.0E & \(\therefore\) & & & & VLN-R \\
\hline 190 & F & 565.6 E & & & & & TVN \\
\hline 191 & F & 565.6 E & & & & & TLN \\
\hline 192 & F & 15.730E+6E & & & & & PN \\
\hline
\end{tabular}

CARD 1 「 2345678901234567890123456789012345678901234567890123456789012345678901234567890
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & 193 & F & \(0.00 \mathrm{E}+00 \mathrm{E}\) & & & & & PAN \\
\hline & 194 & R 2 & 0.0654 - & 0.1063 & 0.0E & & & HSA \\
\hline & 195 & & .17767E-02 & .17767E-02 & . \(25175 \mathrm{E}-02\) & 0. & E & HSX \\
\hline & 196 & F & 0.0E & & & & & CFZL-T \\
\hline & 197 & F & 0.0 E & & & & & CFZL-Z \\
\hline & 198 & F & 0.0 E & & & & & CF2L-R \\
\hline & 199 & F & 0.0 E & & & & & CFZV-T \\
\hline & 200 & F & 0.0E & & & & & CFZV-Z \\
\hline . & 201 & F & 0.0E & & & & & CFZV-R \\
\hline & 202 & R 2 & 0.2443 & 0.1219 & 0.0E & & & vol \\
\hline & 203 & R 2 & 0.1468 R 2 & 0.0E & & & & FA-T \\
\hline & 204 & R 2 & 0.2443 & 0.1025 & 0.0E & & & FA-Z \\
\hline & 205 & F & 0.0E & & & & & FA-R \\
\hline " & 206 & R 2 & 0.01013 R 2 & 0.0555E & & & & HD-T \\
\hline & 207 & R 2 & 0.01013 R 2 & 0.0555 E & & & & HD-2 \\
\hline & 208 & R 2 & -0.01013R 2 & 0.0555 E & & & & HD-R \\
\hline = & 209 & F & 565.6E & & & & & HSTN \\
\hline & 210 & F & 7E & & & & & MATHS \\
\hline & 211. & F & 0.0E & * & & & & ALPN \\
\hline & 212 & F & 0.0 E & & & & & VVN-T \\
\hline & 213 & F & 0.0 E & & & & & VVN-Z \\
\hline & 214 & F & 0.0E & & & & & VVN-R \\
\hline & 215 & F & 0.0E & - & & & & VLN-T \\
\hline & \({ }^{\text {® }} 216\) & F & 0.0E & , & & & & VLN-Z \\
\hline & 217 & F & 0.0E & & & & & VLN-R \\
\hline & 218 & F & 565.6 E & * & & & & TVN \\
\hline & 219 & \(F\) & 565.6 E & & & & & TLN \\
\hline & 220 & F & \(15.730 \mathrm{E}+6 \mathrm{E}\) & & : & & & PN \\
\hline & 221. & F & \(0.00 \mathrm{E}+00 \mathrm{E}\) & & & & & PAN \\
\hline & 222 & R 2 & 0.0436 & 0.05314 & 0.0E & & & HSA \\
\hline & 223 & & . \(17767 \mathrm{E}-02\) & . \(17767 \mathrm{E}-02\) & .25192E-02 & 0. & E & HSX \\
\hline & 224 & F & \(0.0 \mathrm{E}^{\text {c }}\) & & & & & CFZL-T \\
\hline & 225 & F & 0.0E & & & & & CFZL-2 \\
\hline & 226 & \({ }_{F}\) & 0.0 E & & & & & CFEL-R \\
\hline & 227 & F & 0.0E & & & & & CFZV-T \\
\hline \(\stackrel{\sim}{\omega}\) & , 228 & F & 0.0E & & & & & CFZV-Z \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 229 & F & 0.0E & & & & & & CFZV-R \\
\hline 230 & R 2 & 0.2443 & & 0.1025 & 0.0E & & & VOL \\
\hline 231 & R 2 & 0.1468 R & 2 & 0.0E & & & & FA-T \\
\hline 232 & R 2 & 0.2443 & & 0.1025 & 0.0E & & & FA-Z \\
\hline 233 & F & 0.0E & & & & & & FA-R \\
\hline 234 & R 2 & 0.01013 R & 2 & 0.0555 E & & & & HD-T \\
\hline 235 & R 2 & 0.01013 R & 2 & 0.0555E & & & & HD-Z \\
\hline 236 & R 2 & 0.01013 R & 2 & 0.0555E & & & & HD-R \\
\hline 237 & F & 565.6E & & & & :- & & HSTN \\
\hline 238 & F & 7 E & & \(\because\) & & - & & MATHS \\
\hline 239 & F & 0.0E & & \(\cdots\) & & \(\therefore\) & & ALPN \\
\hline 240 & F & 0.0 E & & & & & & VVN-T \\
\hline 241 & F & 0.0E & & & & & & VVN-2 \\
\hline 242 & F & 0.0E & & & & & & VVN-R \\
\hline 243 & F & 0.0 E & & & & & & VLN-T \\
\hline 244 & F & 0.0 E & & & & & & VLN-Z \\
\hline 245 & F & 0.0 E & & & & & & VLN-R \\
\hline 246 & F & 565.6 E & & & & & & TVN \\
\hline 247 & F & 565.6 E & & & & & & TLN \\
\hline 248 & F & \(15.730 \mathrm{E}+6 \mathrm{E}\) & & & & & & PN \\
\hline 249 & F & 0.00E+00E & & & & \% & & PAN \\
\hline 250 & R 2 & 2. 0.0218 & & 0.10629 & 0.0E & & & HSA \\
\hline 251 & & .17767E-02 & & .17767E-02 & .25177E-02 & 0. & E & HSX \\
\hline 252 & F & 0.0E & & - - & - & & & CFZL-T \\
\hline 253 & F & 0.0 E & & & & & & CFZL-Z \\
\hline 254 & F & 0.0E & & & & & & CFZL-R \\
\hline 255 & F & 0.0E & & & & & & CFZV-T \\
\hline 256 & F & 0.0E & & & & & & CFZV-Z \\
\hline 257 & F & 0.0E & & & & & & CFZV-R \\
\hline 258 & R 2 & : 0.2443 & & 0.1025 & 0.0E & & & VOL \\
\hline 259 & R 2 & 0.1468 R & 2 & 0.0E & & & & FA-T \\
\hline 260 & R 2 & 0.2443 & & 0.1025 & 0.0E & & & FA-Z \\
\hline 261 & F & 0.0 E & & & & & & FA-R \\
\hline 262 & R 2 & 0.01013 R & 2 & 0.0555E & & & & HD-T \\
\hline 263 & R 2 & 0.01013 R & 2 & 0.0555E & & & & HD-2 \\
\hline 264 & R 2 & 0.01013 R & & 0.0555 E & & & & HD-R \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 337 & F & 0.0 E & & & & & CFZL-Z \\
\hline 338 & F & 0.0E & & & & & CFZL-R \\
\hline 339 & F & 0.0 E & & & & & CFZV-T \\
\hline 340 & F & 0.0 E & & & & & CFZV-Z \\
\hline 341 & F & 0.0 E & & & & & CFZV-R \\
\hline 342 & R 2 & 0.2443 & 0.1025 & 0.0E & & & VOL \\
\hline 343 & R 2 & 0.1468 R 2 & 0.0E & & & & FA-T \\
\hline 344 & R 2 & 0.2443 & 0.1025 & 0.0E & & & FA-Z \\
\hline 345 & F & 0.0E & & & & & FA-R \\
\hline 346 & R 2 & 0.61013 R 2 & - 0.0555E & & & & HD-T \\
\hline 347 & R 2 & 0.01013 R 2 & 0.0555 E & \% & & & HD-Z \\
\hline 348 & R 2 & 0.01013 R 2 & 0.0555E & & & & HD-R \\
\hline 349 & F & 565.6 E & & & & & HSTN \\
\hline 350 & F & 7E & & & & & MATHS \\
\hline 351 & F & 0.0 E & & & - & & ALPN \\
\hline 352 & F & 0.0 E & & & & & VVN-T \\
\hline 353 & F & 0.0 E & & & & & VVN-Z \\
\hline 354 & F & 0.0 E & & & & & VVN-R \\
\hline 355 & F & 0.0E & : & & & & VLN-T \\
\hline 356 & F & 0.0 E & & & & & VLN-Z \\
\hline 357 & F & 0.0E & & & & & VLN-R \\
\hline 358 & F & 565.6 E & & & & & TVN \\
\hline 359 & F & 565.6 E & & & & & TLN \\
\hline 360 & F & 15.730E+6E & & & & & PN \\
\hline 361 & F & \(0.00 \mathrm{E}+00 \mathrm{E}\) & & & & & PAN \\
\hline 362 & R 2 & 0.0654 & 0.1063 & 0.0 E & & & HSA \\
\hline 363 & & .17767E-02 & .17767E-02 & . \(25175 \mathrm{E}-02\) & 0. & E & HSX \\
\hline 364 & F & 0.0 E & & & & & CFZL-T \\
\hline 365 & F & 0.0E & & & & & CFZL-Z \\
\hline 366 & F & 0.0E & & & & & CFZL-R \\
\hline 367 & F & 0.0 E & & & & & CFZV-T \\
\hline 368. & F & 0.0E & I & & & & CFZV-Z \\
\hline 369 & F & 0.0E & & & & & CFZV-R \\
\hline 370 & R 2 & 0.2443 & 0.1025 & - 0.0E & & & VOL \\
\hline 371 & R 2 & 0.1468 R 2 & 0.0E & & & & FA-T \\
\hline 372 & R 2 & 0.2443 & 0.1025 & 0.0E & & & FA-Z \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 373 & F & 0.OE & & & & & FA-R \\
\hline 374 & R 2 & 0.01013R 2 & 0.0555 E & & & & HD-T \\
\hline 375 & R 2 & 0.01013R 2 & 0.0555 E & & & & HD-Z \\
\hline 376 & R 2 & O.01013R 2 & 0.0555 E & & & & HD-R \\
\hline 377 & F & 565.6E & & & & & HSTN \\
\hline 378 & F & 7 E & & & & & MATHS \\
\hline 379 & F & 0.0 E & & & & & ALPN \\
\hline 380 & F & 0.0E & & & & & VVN-T \\
\hline 381 & F & 0.0 E & & & & & VVN-Z \\
\hline 382 & F & 0.0E & & & & & VVN-R \\
\hline 383 & F & 0.0E & & & & & VLN-T \\
\hline 384 & F & 0.0E & & & & & VLN-Z \\
\hline 385 & F & 0.0E & & & & & VLN-R \\
\hline 386 & F & 565.6E & & & & & TVN \\
\hline 387 & F & 565.6 E & & & & & TLN \\
\hline 388 & F & 15.730E+6E & & & & & PN \\
\hline 389 & F & \(0.00 \mathrm{E}+00 \mathrm{E}\) & & & & & PAN \\
\hline 390 & R 2 & 0.0386 & 0.05487 & 0.0E & & & HSA \\
\hline - 391 & & .12581E-01 & .12581E-01 & .25188E-02 & 0. & E & HSX \\
\hline 392 & F & 0.0E & & & & & CFZL-T \\
\hline 393 & F & 0.0E & & & & & CFZL-Z \\
\hline 394 & F & 0.0E & & & & & CFZL-R \\
\hline 395 & F & 0.0E & & & & & CFZV-T \\
\hline 396 & F & 0.0E & & : & & & CFZV-Z \\
\hline 397 & F & 0.0E & & & & & CFZV-R \\
\hline 398 & R 2 & 0.389 & 0.1025 & 0.0E & & & VOL \\
\hline 399 & R 2 & 0.3277 R 2 & 0.0E & & & & fa-T \\
\hline 400 & & 0.3771 & 0.2289 & 0.1025 & & 0.0E & FA-Z \\
\hline 401 & F & 0.0E & & & & & FA-R \\
\hline 402 & R 2 & 0.07416 R 2 & 0.0555 E & & & & HD-T \\
\hline 403 & R 2 & 0.07416 R 2 & 0.0555 E & & & & HD-Z \\
\hline 404 & R 2 & 0.07416 R 2 & 0.0555E & & & & HD-R \\
\hline 405 & F & 565.6E & & & & & HeSTN \\
\hline 406 & F & 7E & & & & & MATHS \\
\hline 407 & F & 0.0 E & & & & & ALPN \\
\hline . 408 & F & 0.0 E : & & & & & VVN-T \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 409 & F & 0.0E & & & & & vWN-Z \\
\hline 410 & F & 0.0E & & & & & VVN-R \\
\hline 411 & F & 0.0E & & & & & VLN-T \\
\hline 412 & F & 0.0E & & & & & VLN-Z \\
\hline 413 & F & 0.0E & & & & & VLN-R \\
\hline 414 & F & 565.6E & & & & & TVN \\
\hline 415 & F & 565.6 E & : & & & & TLN \\
\hline 416 & F & \(15.730 \mathrm{E}+6 \mathrm{E}\) & & \% & & & PN \\
\hline 417 & F & 0.00E+00E & & - & & & PAN \\
\hline 418 & & 0.1723 & 0.07868R 2 & 0.1032E & & & HSA \\
\hline 419 & & .26160E-02 & .16544E-02 & . \(38248 \mathrm{E}-02\) & . \(38248 \mathrm{E}-02 \mathrm{E}\) & & HSX \\
\hline 420 & F & 0.0E & & & & & CFZL-T \\
\hline 421 & F & 0.0E & & & & & CFZL-Z \\
\hline 422 & F & 0.0E & & & & & CFZL-R \\
\hline 423 & F & 0.0E & & & & & CFZV-T \\
\hline 424 & F & 0.0E & & & & & CFZV-Z \\
\hline 425 & F & 0.0E & & & & & CFZV-R \\
\hline 426 & & 0.6455 & 0.1692 R 2 & 0.094 E & & & VOL \\
\hline 427 & R 2 & 0.0438 R 2 & 0.08065 E & & & & FA-T \\
\hline 428 & & 0.5997 & 0.0R 2 & 0.2081E & - & & FA-Z \\
\hline 429 & F & 0.0E & & & - & & FA-R \\
\hline 430 & & 0.08489 & 0.04087R 2 & 0.06992 E & & & HD-T \\
\hline 431 & & 0.08489 & 0.04087 R 2 & 0.06992 E & & & HD-Z \\
\hline 432 & & 0.08489 & 0.04087 R 2 & 0.06992 E & & & HD-R \\
\hline 433 & F & 565.6 E & & & & & HSTN \\
\hline 434 & F & 7 E & & & & & MATHS \\
\hline 435 & F & 0.0E & & & & 8 & ALPN \\
\hline 436 & F & 0.0 E & & & & & VVN-T \\
\hline 437 & F & 0.0 E & & * & & & VVN-Z \\
\hline 438 & F & 0.0E & & & & & VVN-R \\
\hline 439 & F & 0.0 E & & . & & & VLN-T \\
\hline 440 & F & 0.0 L & & : & & & VLN-Z \\
\hline 441 & F & 0.0E & & & & & VLN-R \\
\hline 442 & F & 565.6 E & & & & & TVN \\
\hline 443 & F & 565.6 E & 6 & & & & TLN \\
\hline 444 & F & \(15.730 \mathrm{E}+6 \mathrm{E}\) & & & & & PN \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & 9 & & & & \\
\hline 445 & F & \(0.00 \mathrm{e}+00 \mathrm{E}\) & & & & PAN \\
\hline 446 & R 2 & 0.0466R 2 & 0.1186 E & & & HSA \\
\hline \(447{ }^{\circ}\) & & . \(35519 \mathrm{E}-02\) & . \(35519 \mathrm{E}-02\) & . \(38258 \mathrm{E}-02\) & . \(38258 \mathrm{E}-02 \mathrm{E}\) & HSX \\
\hline 448 & F & 0.0E & & & & CFZL-T \\
\hline 449 & F & 0.0E & & & & CFZL-Z \\
\hline 450 & F & 0.0E & & & & CFZL-R \\
\hline 451 & F & 0.0E & & & & CFZV-T \\
\hline 452 & F & 0.0E & & & & CFZV-Z \\
\hline 453 & F & 0.0E & * & & & CFZV-R \\
\hline 454 & & 0.1753 & 0.2986R 2 & 0.2031 E & & VOL \\
\hline 455 & R 2 & 0.2908 R 2 & 0.2803 E & & & FA-T \\
\hline 456 & R 2 & 0.3339 R 2 & - 0.2081 E & & & FA-Z \\
\hline 457 & F & 00.0 E & & & & FA-R \\
\hline 458 & R 2 & 0.045 R 2 & 0.0485 E & & & HD-T \\
\hline 459 & R 2 & 0.045 R 2 & 0.0485 E & & & HD-2 \\
\hline 460 & R 2 & 0.045 R 2 & 0.0485E & & & HD-R \\
\hline 461 & F & 565.6E & & & & HSTN \\
\hline 462 & F & 7E & & & & MATHS \\
\hline 463 & F & 0.0E & & & & ALPN \\
\hline 464 & F & 0.0E & & & & VVN-T \\
\hline 465 & F & 0.0E & & & & VVN-Z \\
\hline 466 & F & 0.0E & & & & VVN-R \\
\hline 467 & F & 0.0 E & - & & & VLN-T \\
\hline 468 & F & 0.0E & 0 & \(=\) & & VLN-Z \\
\hline 469 & F & 0.0E & 9 & & & VLN-R \\
\hline 470 & F & 565.6E \({ }^{\text {* }}\) & & & & TVN \\
\hline 471 & F & 565.6E & & & & TLN \\
\hline 472 & F & \(15.730 \mathrm{E}+6 \mathrm{E}\) & & & & PN \\
\hline 473 & F & \(0.00 \mathrm{E}+00 \mathrm{E}\) & & & & PAN \\
\hline 474 & R 2 & 0.0312R 2 & 0.0796E & & & HSA \\
\hline 475 & & . \(35573 \mathrm{E}-02\) & . \(35573 \mathrm{E}-02\) & . \(38230 \mathrm{E}-02\) & . \(38230 \mathrm{E}-02 \mathrm{E}\) & HSX \\
\hline 476 & F & 0.0E & & & & CFZL-T \\
\hline 477 & F & 0.0 E & & & & CFZL-Z \\
\hline 478 & F & 0.0E & & & & CFZL-R \\
\hline 479 & F & 0.0E & & & & CFZV-T \\
\hline 480 & F & 0.0E & & & " & CFZV-Z \\
\hline
\end{tabular}

CARD
12345678901234567890123456789012345678901234567890123456789012345578901234567890

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 517 & F & 565.6E & & & & & HSTN \\
\hline 518 & F & 7E & & & & & MATHS \\
\hline 519 & F & 0.0E & & & & & ALPN \\
\hline 520 & F & 0.0E & & & & & VVN-T \\
\hline 521 & F & 0.0E & & & & & VVN-Z \\
\hline 522 & F & 0.0E & & & & & VVN-R \\
\hline 523 & F & 0.0E & & & & & VLN-T \\
\hline 524 & F & 0.0E & & & & & VLN-Z \\
\hline 525 & F & \(\therefore \quad 0.0 \mathrm{E}\) & & & & & VLN-R \\
\hline 526 & F & 565.6E & & & & & TVN \\
\hline 527 & F & 565.6E & & & & & TLN \\
\hline 528 & F & \(15.730 \mathrm{E}+6 \mathrm{E}\) & & & & & PN \\
\hline 529 & F & \(0.00 \mathrm{E}+00 \mathrm{E}\) & & & & & PAN \\
\hline 530 & R 2 & 0.2282R 2 & 0.0E & & & & HSA \\
\hline 531 & & . \(38391 \mathrm{E}-02\) & .38391E-02 0 . & 0. & E & & HSX \\
\hline 532 & F & 0.0E & & & & & CFZL-T \\
\hline 533 & F & 0.0E & & & & & CFZL-Z \\
\hline 534 & F & 0.0E & & & & & CFZL-R \\
\hline 535 & F & 0.0E & & & & & CFZV-T \\
\hline 536 & F & 0.0 E & & & & & CFZV-Z \\
\hline 537 & F & 0.0E & & & & & CFZV-R \\
\hline 538 & & 0.4571 & 0.3026 R 2 & 0.0E & & \(=\) & VOL \\
\hline 539 & R 2 & 0.5155 R 2 & 0.0E & & & & FA-T \\
\hline 540 & R 2 & 0.2718 R 2 & 0.0E & & & & FA-Z \\
\hline 541 & F & 0.0E & & & & = & FA-R \\
\hline 542 & F & 0.0838 E & & & & & HD-T \\
\hline 543 & F & 0.0838 E & & & & & HD-Z \\
\hline 544 & F & 0.0838 E & & & & & HD-R \\
\hline 545 & F & 565.6E & & & & & HSTN \\
\hline 546 & F & 7E & & & & & MATHS \\
\hline 547 & F & 0.0E & & & & & ALPN \\
\hline 548 & F & 0.0E & & & & & VVN-T \\
\hline 549 & F & 0.0E & & & & & VVN-Z \\
\hline 550 & F & 0.0E & & & & & VVN-R \\
\hline 551 & F & 0.0E & & & & & VLN-T \\
\hline 552 & F & 0.0E & & & & & VLN-Z \\
\hline
\end{tabular}


CARD 12345678901234567890123456789012345678901234567890123456789012345678901234567890


TRAC SUBPROGRAMS
\begin{tabular}{|c|c|c|}
\hline Name & Overlay & Function \\
\hline ACCMBD & MAIN & Sets boundary array for the accumulator component. \\
\hline ACCMIX & PREP & Evaluates accumulator water level. \\
\hline ACCUM1 & PREP & Controls accumulator prepass. \\
\hline ACCUM2 & OUTER & Controls accumulator outer iteration. \\
\hline ACCUM3 & POST & Controls accumulator postpass. \\
\hline ALLBLK & INPUT & Tests for "all blanks in specified substring of string. \\
\hline ANNSH & OUTER &  \\
\hline ASIGN & \({ }_{0}^{\text {INPUT }}\) & Assigns the component LCM pointers according to the iteration number. \\
\hline AXPOW & PREP & Linearly interpolates the axial power shape for the core and vessel components. \\
\hline BACIT & OUTER & Initiates back-substitution after direct vessel matrix inversion. \\
\hline BFALOC & MAIN ‘ & Allocates files and buffers for buffered I/O. \\
\hline BFCLOS & MAIN & Empties buffers and closes file. \\
\hline BFIN & MAIN & Initiates binary input subroutine. \\
\hline BFOUT & MAIN & Initiates binary output subroutine. \\
\hline BITS & MAIN & Manages bit address flags. \\
\hline BKMOM & PREP & Initiates back-substitution for stabilizing momentum equations. \\
\hline BKSMOM & PREP & Back-substitution for stabilizing momentum equations. \\
\hline BKSSTB & POST & Initiates back-substitution for stabilizing mass and energy equations. \\
\hline BLOCK DATA & MAIN & Initializes common variables. \\
\hline
\end{tabular}





\begin{tabular}{|c|c|c|}
\hline Name & Overlay & Function \\
\hline IGStGN & INIT & Supplies steam-generator data for graphics. \\
\hline IGTEE & INIT & Supplies tee data for graphics. \\
\hline IGVLVE & INIT & Supplies valve data for graphics. \\
\hline IGVSSL & INIT & Supplies vessel data for graphics. \\
\hline INDEL & InPuT & Searches specified substring of string for first nonoccurrence of any one character in a set of specified characters. \\
\hline INIT & INIT & Supplies entry routine for overlay INIT. \\
\hline INNER & OUTER & Performs an inner iteration for a one-dimensional component. \\
\hline INPUT & INPUT & Supplies entry routine for overlay INPUT. \\
\hline IOVLY & MAIN & Initializes overlay bookkeeping. \\
\hline IPIPE: & INIT & Inftializes the pipe data arrays that are not input from cards. \\
\hline IPRIZR & INIT & Initializes the pressurizer data arrays that are not input from cards. \\
\hline IPROP & INIT & Calls subroutines THERMO, FPROP, and MIXPRP for most one-dimensional components. \\
\hline IPUMP & INIT & Initializes the pump data arrays that are not input from cards. \\
\hline ISORT & MAIN & Sorts a list of integers in ascending order. \\
\hline ISTGEN & INIT & Initializes the steam-generator data arrays that are not input from cards. \\
\hline Itee & INIT & Initializes the tee data arrays that are not input from cards. \\
\hline ITRI & OUTER & Gives iterative solution of reduced, linearized three-dimensional finite-difference equations. \\
\hline IVLVE & INIT & Initializes the valve data arrays that are not input from cards. \\
\hline IVSSL & INIT & Initializes the vessel data arrays that are not input from cards. \\
\hline J1D & MAIN & Fills boundary array at component junctions. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Name & Overlay & Function \\
\hline JFIND & INIT & Locates junctions in junction sequence array. \\
\hline JUNSOL & INIT & Determines junction parameters for connecting and sequencing components. \\
\hline JVALUE & INPUT & \begin{tabular}{l}
Converts one character of a string to a binary number; 0-9 returned as binary mode; \\
blank, as binary 0 ; all others, as less than 0 .
\end{tabular} \\
\hline LCMOVE & MAIN & Copies data from one part of LCM to another. \\
\hline LEVEL & OUTER & Calculates water level in pipe during stratified flow. \\
\hline LININT & MAIN & Performs linear interpolation on arrays. \\
\hline LOAD & INPUT & Reads in specially formatted input data. \\
\hline LPCON & PWRSS & Evaluates loop properties. \\
\hline LPRPL & PWRSS & Replaces pump heads and steam-generator areas and checks for convergence of steady-state calculation. \\
\hline LPSET & PWRSS & Supplies PWRSS overlay entry point; resets PWR loop parameters for steady state. \\
\hline manage & MAIN & Performs all level and rod data management operations for the vessel. \\
\hline MBN & PREP & Calculates values for electrically heated nuclear fuel-rod insulator properties. \\
\hline MFROD & PREP & Orders fuel-rod property selection and evaluates an average temperature for property evaluation. \\
\hline MFUEL & PREP & Calculates values for uranium dioxide and uranium-plutonium dioxide properties. \\
\hline MiAP & POST & Calculates values for the thermal conductivitysof the gap gas mixture. \\
\hline MHTR & PREP & Calculates values for electrically heated fuel-rod heater coil properties. \\
\hline MIXPRP & MAIN & Calculates mixture properties from those of separate phases. \\
\hline MPROP & PREP & Orders structure property selection and evaluateig an average temperature for property evaluation. \\
\hline
\end{tabular}




\begin{tabular}{|c|c|c|}
\hline Name & Overlay & Function \\
\hline RTEE & INPUT & Reads tee data from input file and sets up a pointer table for that data. \\
\hline RVLVE " & INPUT & Reads valve data from input file and sets up a pointer table for that data. \\
\hline RVSSL & INPUT & Reads vessel data from input file and sets up a poincer table for that data. \\
\hline S1DPTR & INPUT & Sets pointers for one-dimensional components. \\
\hline SAVBD & MAIN & Moves boundary information into component arrays. \\
\hline SCLTBL & INPUT & Scales input table acccrding to scale factor passed by input routine. \\
\hline SCMLCM & INPUT 0 & Checks for overflow. Transfers fixed length, variable length, and pointer tables to LCM. Adjusts pointers. \\
\hline SCMOVE & MAIN & Copies a given number of words from one SCM array into another. \\
\hline SEDIT & MAIN & Writes short edit to TRCOUT file. \\
\hline SETBD & MAIN & Stores component information into boundary arrays. \\
\hline SETLCM & MAIN & Monitors use of LCM dynamic area. \\
\hline SETNET & INIT & Provides the information needed to set up the network solution matrices. \\
\hline SETPOW & MAIN & Initializes"reactor power. \\
\hline SETPRP & MAIN & Determines pump speed and steam-generator heat-transfer area. \\
\hline SETSCM & MAIN & Monitors use of SCM dynamic area. \\
\hline SGTBC & PREP & Boundary cell calculations for the special case where the tee junction cell is the first or last cell in a main steamgenerator pipe. This logic duplicates the logic in subroutine TEE1 after the call to BKMOM. \\
\hline SHRINK & PREP & Removes rows of conduction nodes within the vessel rods during reflood. \\
\hline SIGMA & MAIN & Returns sürface tension of water as a function of pressure. \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|c|}
\hline Name & \(\cdot \%\) & Overlay & Function \\
\hline WBREAK & & EDIT & Writes selected break data to output file TRCOUT. \\
\hline WCOMP & & EDIT & Controls the writing of selected component data to output file TRCOUT. \\
\hline WCORE & & EDIT & Writes selected core data to output file TRCOUT. \\
\hline WFILL & & EDIT & Writes selected fill data to output file TRCOUT. \\
\hline WIARR & & MAIN & Writes an integer array to output file TRCOUT. \\
\hline WP IPE & & EDIT & Writes selected pipe data to output file TRCOUT. \\
\hline WPRIZR & & EDIT & Writes selected pressurizer data to output file TRCOUT. \\
\hline WPUMP & & EDIT & Writes selected pump data to output file TRCOUT. \\
\hline WRCOMP & 6 & INPUT & Writes data common to one-dimensional components (1 to output files. \\
\hline WRLCM & & MAIN & Transfers a given number of words from SCM to LCM. \\
\hline WRSLP & & INPUT & Prints out subloop description. \\
\hline WSTGEN & & EDIT & Writes selected steam-generator data to output file TRCOUT. \\
\hline WTEE & & EDIT & Writes selected tee data to output file TRCOUT. \\
\hline WVLVE & & EDIT & Writes selected valve data to output file TRCOUT. \\
\hline WVSSL & & EDIT & Writes selected vessel data to output file TRCOUT. \\
\hline
\end{tabular}

Errors diagnosed by TRAC are handled by subroutine ERROR. The level number associated with each error listed below is used by ERROR to determine its course of action.
\begin{tabular}{ll} 
Level & Actions \\
1,3 & Fatal error, stop problem. \\
2 & Nonfatal error, continue proólem. \\
4 & Fatal error, add dump to the TRCDMP file, then stop problem. \\
I. OVERLAY MAIN
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Subroutine & Leve1 & Message* & Explanation \\
\hline MAIN & 1 & NO SPACE FOR VERSION INFORMATION & Insufficient LCM space is available to store version information. \\
\hline BFIN & 1 & DATA SET TYPE ERROR & An error exists in reading data in the binary format. \\
\hline BFIN & 31 & DATA SET EOF ERROR & An illegal end-of-file was found when the data were read. \\
\hline BFOUT & 1 & DATA SET TYPE ERROR & An error exists in writing the data in a binary format. \\
\hline BITS & 1 & ILLEGAL BIT SPECIFIED & An attempt was made to set bit beyond the word length. \\
\hline CHBD & 2 & BOUNDARY ERROR DETECTED & Ad jacent components have mismatched geometry. \\
\hline ENDDMP & 2 & DUMP FILE NOT CLOSED G & An I/O error occurred when an attempt was made to close file TRCDMP. \\
\hline
\end{tabular}

\footnotetext{
\({ }^{\star}\) Each message also identifies the subroutine detecting the error.
}
\begin{tabular}{|c|c|c|c|}
\hline Subroutine & Leve1 & Message & Explanation \\
\hline ENDGRF & 2 & GRAPHICS FILE NOT CLOSED & An I/O error occurred when an attempt was made to close file TRCGRF. \\
\hline EOVLY & 2 & OVERLAY UNLOAD ERROR & An illegal overlay sequence exists. \\
\hline FILLX & 1 & \begin{tabular}{l}
FILL TABLE SIGNAL \\
VAR. NOT FOUND
\end{tabular} & The fill-table signal-variable ID number is not listed in the signal-variable ID numbers. \\
\hline FILLX & 1 & ERROR IN RATE-FACTOR TABLE LOOPUP & An error occurred when a linear interpolation was performed for the rate-factor table that is applied to the fill-table independent variable. \\
\hline FILLX & 2 & MASS FLOW RATE TOO LARGE FROM ADJACENT CELL & The mass flow specified in a FILL is negative and |MFLOW|*DELT exceeds the total mass in the adjacent cell. No action is taken. \\
\hline FILLX & 1 & ERROR IN TABLE LOOKUP & There are zero entries in the fill table. \\
\hline GETBIT & 1 & ILLEGAL BIT SPECIFIED & : The bit position specified is either too small or too large. \\
\hline HOUT & 1 & OUTER ITERATION DID NOT CONVERGE & The outer iteration procedure failed three consecutive times. \\
\hline IOVLY & 1 & ERROR INITIIALIZING SCM & Subroutine SETSCM found an error. \\
\hline IOVLY & 1 & SCM SPACE TOO SMALL FOR OVERLAY & Insufficient dynamic SCM space exists for this overlay. \\
\hline MANAGE & 1 & SCM MEMORY OVERFLOW & Insufficient dynamic SCM space exists. \\
\hline MANAGE & 1 & LEVEL PROBLEM & The core level or rod number requested does not exist. \\
\hline PUMPD & 1 & CANNOT LOCATE HEAD CURVE & The pump regime is outside the data base. \\
\hline PUMPD & 1 & CANNOT LOCATE TORQUE CURVE & The pump regime is outside the data base. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Subroutine & Leve1 & Message & Explanation \\
\hline SETPOW & 2 & REACTOR POWER INITIALIZED & The reactor power has been initiated for a steady-state calculation. \\
\hline STEADY & 1 & STEADY STATE DID NOT CONVERGE & The problem did not reach \(\rightarrow\) a steady state within the specified time domains. \\
\hline StEADY & 1 & PWR INITIALIZATION INCOMPLETE & Convergence was not achieved for the PWR initialization and all specified time domains were completed. \\
\hline THERMO & 2 & PRESSURE L'IMIT EXCEEDED & . The pressure in some cell has fallen below \(1.0 \times 10^{3}\) or risen above \(1.9 \times 10^{7}\). \\
\hline THERMO & 2 & VAPOR TEMPERATURE LIMIT EXCEEDED & The vapor temperature in some cell has fallen below 280 K . \\
\hline THERMO & 2 & \begin{tabular}{l}
LIQUID TEMPERATURE \\
LIMIT EXCEEDED
\end{tabular} & The liquid temperature in some cell has fallen below 280 K or risen above 647 K . \\
\hline THERMO & 1 & SATURATION TEMPERATURE tOO LARGE & A temperature above the range of THERMO was encountered. \\
\hline TIMSTP & 4 & CANNOT REDUCE TIME STEP FURTHER & The time step was reduced to the minimum allowed and the outer iteration failed to converge. \\
\hline TRIP & 1 & TRIP NUMBER NOT DEFINED & The status of an undefined trip was requested. \\
\hline TRPSET & 1 & TRIP SIGNAL NOT FOUND & The 'ignal-variable ID number that defines the signalvariable trip signal is not listed in the signal-variable ID numbers. \\
\hline TRPSET & 1 & SIGNAL EXP. NOT FOUND & The signal-expression ID number that defines the signalexpression trip signal is not listed in the signalexpression ID numbers. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Subroutine L & Leve 1 & Message & Explanation \\
\hline TRP SET & 1. & EXP. SIGNAL NOT FOUND & A signal-variable ID number that defines a subexpression argument value for the signalexpression trip signal is not listed in the .signal-variable ID numbers. \\
\hline TRPSET & 1 & TRIP TRIPS NOT FOUND & The trip-controlled trip-signal ID number that defines the trip-controlled trip signal is not listed in the tripcontrolled trip-signal ID numbers. \\
\hline TRPSET & 1 & TRIP ID NO. NOT FOUND & The trip ID number that defines the trip-controlled trip signal is not listed in the trip ID numbers evaluated previously during this time step. \\
\hline TRPSET & 1 & SF FACTOR ID NOT FOUND & The set-point factor-table ID number is not listed in the set-point factor-tsble ID numbers. \\
\hline TRPSET & 1 & FACTOR SIG. NOT FOUND & The signal-variable ID number that defines the set-point factor-table independent variable is not listed in the signal-variable ID numbers. \\
\hline TRPSET & 1 & TOO MANY DELAYED TRIPS & After five trip criteria are satisfled and a trip setstatus change is pending because of delay time, all subsequent trip criteria that are fulfilled are ignored. \\
\hline II. OVERLAY & INPUT & & \\
\hline INPUT & 1 & FILE TRACIN DOES NOT EXIST & An input deck does not exist. \\
\hline INPUT & 1 & VERSION INFORMATION EXCEEDS LCM & The version information exceeds its allocated LCM space. \\
\hline INPUT & 1 & INOPTS NAMELIST DATA NOT FOUND & The option that indicates NAMELIST data exist for group INOPTS was selected; however, the data are not in the TRACIN file. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Subroutine & Level & Message & Explanation \\
\hline INPUT & 2 & COMPONENT ID.GT. 99 & A component with an ID number larger than 99 exists in the IORDER array. \\
\hline INPUT & 1 & NO SPACE FOR BUFFERS & Insufficient LCM space exists for \(I / 0\) buffers. \\
\hline INPUT & 1 & FATAL INPUT ERROR(S) & A fatal input error occurred when an input or restart file was read. \\
\hline CHKSR & 2 & TWO VESSEL SOURCES LOCATED IN ONE CELL & The vessel input specifies two sources in one fluid cell. \\
\hline CHKSR & 2 & VESSEL SOURCE POSITION ERROR & The specified source position is impossible. \\
\hline FNDLP & 1 & INVALID VESSEL JUNCTION. & There is a PWR-initialization input error: A junction that is not connected to the vessel is specified. \\
\hline FNDLP & 1 & TEE MISSING FROM JUN ARRAY & There is a PWR-initialization input error. A loop tee is not specified in the JUN array. \\
\hline FNDLP & 1 & STGEN MISSING FROM JUN ARRAY & There is a PWR-initialization input error. A loop steam generator is not specified in the JUN array. \\
\hline FNDLP & 1 & COMPLEX SECONDARY LOOP & There Is a PWR-initialization input error. The steamgenerator secondary side must be connected only to pipes, fills, and breaks. \\
\hline FNDLP & 1 & LAST COMMON COMPONENT NOT FOUND & There is a PWR-initialization input error. In a two-pump loop, the connecting tee is not specified. \\
\hline FNDLP & 1 & LAST COMMON COMPONENT NOT A TEE & There is a PWR-initialization input error. In a two-pump loop, the connecting component is not a tee. \\
\hline LOAD & 2 & REPEAT LEVEL CARD & A REPEAT LEVEL data card was found when the array data were read. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Subroutine & Level & Message & Explanation \\
\hline LOAD & 2 & OPERATION END ENCOUNTERED BUT INTERPOLATION INCOMPLETE & When the array data were read, operation \(E\) was specified before both end points of an interval to be interpolated were read. \\
\hline LOAD & 2 & ARRAY FILLED BUT OPERATION END NOT FOUND & When the array data were read, operation \(E\) was not specified after the array was filled. \\
\hline LOAD & 2 & data overflowed array REPEAT COUNT RESET TO ONE & When the array data were read, a repeat operation overfilled the array. \\
\hline LOAD & 2 & REPEAT COUNT LESS THAN ONE, COUNT RESET TO ONE " & When the array data were read, a repeat count of less than one was found. \\
\hline LOAD & 2 & INTEGER INTERPOLATION NOT ALLOWED & When an integer array was read, an incerpolation operation was specified. \\
\hline LOAD & 2 & \begin{tabular}{l}
ZERO OR FEWER \\
INTERPOLATIONS - \\
OPERATION TREATED AS BLANK
\end{tabular} & When the array data were read, an interpolation count less than one was specified. \\
\hline LOAD & 2 & UNDEFINED OPERATION repeat count set to one & When the array data were read, an undefined load operation was specified. \\
\hline LOAD & 2 & NOT ENOUGH DATA TO FILL ARRAY & Insufficient data were input to fill an array. \\
\hline LOAD & 2 & UNEXPECTED END-OF-FILE REACHED & When the array data were read, an unexpected end-of-file was specified. \\
\hline LOAD & 2 & INPUT ERROR - NEW COMPONENT WAS ENCOUNTERED UNEXPECTEDLY & When the array data for a component were loaded, data for an additional component or an "END" card was specifed. \\
\hline LOAD & 2 & \begin{tabular}{l}
INPUT ERROR - UNEXPECTED \\
nAMELISI DATA ENCOUNTERED
\end{tabular} & When the array data were loaded, NAMELIST data were specified. \\
\hline LOAD & 2 & REAL DATA ENCOUNTERED IN INTEGER ARRAY & When data were loaded into an integer array, real data were specified. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Subroutine & Level & Message & Explanation \\
\hline 1) NXTCMP & 1 & END-OF-FILE REACHED WHILE SEARCHING FOR NEXT COMPONENT & \begin{tabular}{l}
An end-of-file was \\
specified when data for an \\
new component were read \\
for a new component.
\end{tabular} \\
\hline NXTCMP & 2 & CARD SKIPPED - DATA FOR NEW COMPONENT OR END CARD WAS EXPECTED & Too many data were encountered for the component being processed. \\
\hline PATH & 1 & ADJACENT COMPONENT MT SSING & There is a PWR initialization input error. A junction was encountered that is connected only to one component. \\
\hline PA,TH & 1 & COMPONENT NOT FOUND IN IORDER ARRAY & There is a PWR initialization input error. A component was encountered that is not listed in the IORDER array. \\
\hline PATH & 1 & PIPE JUNCTIONS NOT ADJACENT & There is a PWR initialization input error. The two entries in JUN for a pipe are not consecutive. \\
\hline RBREAK & 2 & ERROR IN TABLE SPECIFICATIONS & Incompatible BREAK options were selected. \\
\hline RBREAK & 2 & LCM OVERFLOW & LCM area overflowed during input of data for a break. \\
\hline RBREAK & 2 & SCM OVERFLOW & There is insufficient SCM for this break. \\
\hline RCNTL & 2 & BAD TRIP ID DEFINITION & A trip ID was read in, the absolute value of which was either zero or greater than 9999. \\
\hline RCNTL & 2 & \begin{tabular}{l}
TRIP. SET POS. \\
INVALID
\end{tabular} & The trip set status variable ISET has an invalid input value. \\
\hline RCNTL & 2 & BAD SIG. EXP. OPERATOR & The arithmetic operator ID number for a subexpression within the signal expression definition has an invalid input value less than one or greater than eight. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Subroutine & Leve1 & Message & Explanation \\
\hline RCORE & 2 & BAD TRIP ID DEFINITION & A trip ID was read in that " was either equal to -1 , less than -9999, or greater than 9999. \\
\hline RCORE & 2 & LCM OVERFLOW & LCM area overflowed during input of data for a core. \\
\hline RCORE & 2 & SCM OVERFLOW & There is insufficient SCM for this core. \\
\hline RCORE & 2 & ```
NZ MAX. LT. (NCRZ+1)
+SUM OF NFAX(I)
``` & The number of allowable rows of rod conduction nodes is less than the minimum specified by the user for reflood calculations. \\
\hline RDCOMP & 1 & COMPONENT TYPE NOT RECOGNIZED & An invalid component type was encountered. \\
\hline RDCOMP & 1 & DUPLICATE COMPONENT NUMBERS & At least two components were assigned the same No. during input. \\
\hline RDDIM & 2 & ILLEGAL PUMP CURVE OPTICN & Illegal pump option was specified on pump card 9. \\
\hline RDLOOP & 1 & VESSEL NOT FOÚND IN JUN ARRAY & There is a PWR initialization input error. The vessel is not listed in the JUN array. \\
\hline RDLO0P * & 1 & VESSEL NOT FOUND IN IORDER ARRAY & There is a PWR initialization input error. The vessel is not listed in the IORDER array. \\
\hline RDREST & 1 & FILE TRCRST DOES NOT EXIST

\(\propto\) & Component data was omitted from the input deck, but a restart dump file to initilize missing components cannot be found. \\
\hline RDREST & 1 & RESTART FILE OPEN ERROR

\(\theta\) & An I/O error was made while attempting to open the restart file. \\
\hline \begin{tabular}{l}
RDREST \\
\(\epsilon^{\circ}\)
\end{tabular} & 1 & RESTART FILE INCOMPATIBLE WITH THIS PROBLEM & The restart file cannot be used with this TRAC version. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline & Subroutine & Level & Message & Explanation \\
\hline & READR & 1 & INPUT ERROR - ENCOUNTERED UNEXPECTED LOAD DATA & A load operation was encountered while trying to read non-array real data in E14.6 format. \\
\hline & READR & 1 & INPUT ERROR - NEW COMPONENT WAS ENCOUNTERED UNEXPECTEDLY & Data for new component was encountered before all of the data for the current component was read in. \\
\hline & READR & 2 & \begin{tabular}{l}
INPUT ERROR - UNEXPECTED \\
namelist data encountered
\end{tabular} & NAMELIST data was encountered while trying to read real data in E14.6 format. \\
\hline & REBRK & 2 & LCM OVERFLOW & LCM area overflowed while reading break data from restart file. \\
\hline & REBRK & 2 & SCM OVERFLOW & There is insufficient SCM for this break. \\
\hline & REBRK & 1 & ERROR IN TABLE SPECIFICATIONS & Processing of input data stopped because of a previous error. \\
\hline & REBRK & 2 & POİNTER TABLE MISMATCH & Break pointer table does not match restart file. \\
\hline & REBRK & \[
1
\] & FATAL ERROR & Processing of input data stopped because of a previous error. \\
\hline , & RECNTL & 1 & CNTL STORAGE TOO SMALL & The variable storage for signal variables, trips, and controllers that was dimensioned on input data is too small to contain the remaining data from the restart file. \\
\hline & RECNTL & 1 & SIGNAL VAR. EXCEED , DIM & The number of signal variables with different ID numbers from input and the restart file exceeds the input data dimension. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Subroutine & Level & Message & Explanation \\
\hline RECNTL & 1 & TOO MUCH TIME STEP DAT & The number of tripcontrolled time-step data sets on the restart file exceeds the input data dimension. \\
\hline RECNTL & 1 & TIME STEP DATA EXC. DIM. & The number of tripcontrolled time-step data sets with different ID numbers from Inpul and from the restart file exceeds the input data dimension. \\
\hline RECORE & 2 & POINTER TABLE MISMATCH & CORE pointer table does not match restart file. \\
\hline RECORE & 2 & LCM OVERFLOW & LCM area overflowed during input of data for a core. \\
\hline RECORE & 2 & SCM OVERFLOW & There is insufficient SCM for this core. \\
\hline REFILL & = & LCM OVERFLOW & LCM area overflowed while reading fill data from restart file. \\
\hline REFILL & 2 & SCM OVERFLOW & There is insufficient SCM for this fill. \\
\hline REFILL & 2 & POINTER TABLE MISMATCH & Fill pointer table does not match restart file. \\
\hline REFILL & 1 & FATAL ERROR & Processing of input data stopped because of a previous error. \\
\hline REP IPE & 2 & POINTER TABLE MISMATCH & Pipe pointer table does not match restart file. \\
\hline REPRZR & 2 & POINTER TABLE MLSMATCH & Pressurizer pointer table does not match restart file. \\
\hline REPUMP & 2 & POINTER TABLE MISMATCH & Pump pointer table does not match restart file. \\
\hline REPUMP & 1 & SCM OVERFLOW & SCM area overflowed while reading pump data from restart file. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Subroutine & Leve1 & Message & Explanation \\
\hline RESTGN & 2 & POINTER TABLE MLSMATCH & Steam-generator pointer table does not match restart file. \\
\hline RETEE & 2 & POINTER TABLE MISMATCH & Tee pointer table does not match restart file. \\
\hline REVLVE & 2 & POINTER TABLE MISMATCH & Valve pointer table does not match restart file. \\
\hline REVSSL & 2 & POINTER TABLE MISMATCH & Vessel pointer table does not match restart file. \\
\hline REVSSL & 2 & LCM OVERFLOW & LCM area overflowed while reading vessel data from restart file. \\
\hline REVSSL & 2 & SCM OVERFLOW & SCM area overflowed while reading vessel data from restart file. \\
\hline RFILL & 2 & LCM OVERFLOW & ```
LCM area overflowed while
reading fill data from
input file.
``` \\
\hline RFILL & 2 & ILLEGAL FILL TYPE OPTION & An illegal fill-type option was read in from fill card 2. \\
\hline RFILL & 2 & NFTX .LT. 1 & \begin{tabular}{l}
FILL type options 4 \\
to 9 require at least one FILL table pair.
\end{tabular} \\
\hline RFILL & 2 & IFSV .LT. 1 & The signal-variable ID number for FILL type options 4 to 9 must be greater than zero. \\
\hline RFILL & 2 & BAD TRIP ID DEFINITION & A trip ID was read in that was either equal to -1 , less than -9999, or greater than 9999. \\
\hline RFILL & 2 & SCM OVERFLOW & ```
SCM area overflowed while
reading fill data from
input file.
``` \\
\hline RPUMP & 2 & PUMP TYPE NOT RECOGNIZED & IPMPTY is allowed to be only 1 or 2. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Subroutine & Leve1 & Message & Explanation \\
\hline RPUMP & 2 & NCELLS .LT. 2 & Number of fluid cells in the pump must be at least two. \\
\hline RPUMP & 2 & BAD TRIP ID DEFINITION & ```
A trip ID was read in
that was either equal to -1,
less than -9999,
or greater than 9999.
``` \\
\hline RPUMP & 2 & SPEED TABLE PARAM.
BAD & The signal variable ID number for the pump type 1 rotational-speed table-s independent variable is invalid. \\
\hline RPUMP & 2 & RATE FACTOR NPMPRF BAD & ```
The signal variable ID
number for the rate factor
table's independent variable
is Invalid.
``` \\
\hline RPUMP & 2 & IPMPSV.NE. 0 & The signal variable ID number defining the pump speed table's independent variable should not be defined for pump type 2. \\
\hline RPUMP & 2 & NPMPTX.NE. 0 & The number of pump speed table pair entries input should be zero for pump type 2, which is defined internally in TRAC. \\
\hline RPUMP & 2 & NPMPRF.NE. 0 & No rate factor table can be applied to the pump speed table's independent variable for pump type 2. \\
\hline RPUMP & 2 & FRIC(2) .NE. 0. & FRIC(2) must be input 0.0 in PUMP. \\
\hline RSTGEN & 2 & STGEN MUST HAVE HEAT-TRANSFER NODES & No nodes were specified for a STGEN. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Subroutine & Level & Message & Explanation \\
\hline RSTGEN & 2 & ERROR IN S/G TEE INPUT & \begin{tabular}{l}
There is an inconsistency or error in one or more of the following steamgenerator tee noding input: JCELLS, JCELLP, NCELL3, NCELL4. \\
An error results for the following input combinations: \\
(1) JCELLP \(>0\) and JCELLS \(\leq 0\) \\
(2) JCELLP \(>0\) and NCELL4 \(\leq 0\) \\
(3) JCELLS >0 and NCELL3 \(\leq 0\)
\end{tabular} \\
\hline RSTGEN & 2 & STEAM GENERATOR WALL AREAS INCONSISTANT. SECONDARY CELL NO. XXX. & Secondary-side wall area is not consistant with primary side \(\{\) WA2 \(=\) WA1 * \([1 .+(T H / R A D I N)]\}\). \\
\hline RVLVE & 2 & FAVLVE AND XPOS INVALID & The input values of FAVLVE and XPOS are both outside their 0 to 1 physical range. \\
\hline -RVLVE & 2 & BAD VALVE TYPE OPTION & The valve option parameter IVTY has an input value outside the 0 to 4 defined range. \\
\hline RVLVE & 2 & BAD VALVE TABLE SIZE & The number of pair entries in the first valve table is inconsistent with the valve option IVTY value. \\
\hline RVLVE & 2 & BAD VALVE TABLE SIGNAL & The signal variable ID number defining the valve table's independent variable is inconsistent with the valve option IVTY value. \\
\hline RVLVE & 2 & BAD TRIP ID DEFINITION & The trip ID number that controls valve table usage is either equal to -1 , less than -9999, or greater than 9999. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Subroutine & Level & Message & Explanation \\
\hline RVLVE & 2 & BAD 2ND VALVE TAB. SIZE & The number of pair entries in the second valve table is invalid. A first valve table must be input before the second valve table can be input. \\
\hline RVLVE & 2 & BAD RATE FACT. TAB. SIZE & The number of pair entries in the rate factor table is invalid. A rate factor table is input only when the valve table usage is trip controlled. \\
\hline RVLVE & 2 & INVALID VALVE POSITION & The input location of the adjustable valve cell interface is invalid. \\
\hline RVSSL & 2 & BAD TRIP ID DEFINITION & A trip ID number was either input equal to -1 , less than -9999, @ or greater than 9999. \\
\hline RVSSL & 2 & INCONSISTENT CORE INPUT & An error was made in specifying the core positional parameters, ICRU, ICRL, ICRR, or the number of heat-transfer nodes. \\
\hline RVSSL & 2 & INCONSISTENT DOWNCOMER INPUT & An error was made in specifying the downcomer positional parameters, IDCU, IDCL, and IDCR. \\
\hline RVSSL & 2 & NRODS IS LESS THAN NCRX & Number of computational fuel rods ncecessary to perform the fluid-dynamics analysis is less than the number of fluid-dynamics segments (\(r, \theta\)). \\
\hline RVSSL & 2 & LCM OVERFLOW & ```
/f LCM area overflowed while
// reading vessel data from
 an input file.
``` \\
\hline RVSSL & 2 & SCM OVERFLOW & SCM area overflowed while reading vessel data from an input file. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Subroutine & Level & Message & Explanation \\
\hline RVSSL & 2 & VESSEL CONVERGENCE CRITERIA TOO LOOSE & The convergence criterion for vessel iteration (EPSI) was set to a value greater than \(1.0 \times 10^{-05}\). \\
\hline RVSSL & 2 & \begin{tabular}{l}
VESSEL ITERATION \\
MAX SHOULD BE \\
AT LEAST 50
\end{tabular} & The maximum number of vessel iterations (IITMAX) is less than 50. \\
\hline RVSSL & 2 & \[
\begin{aligned}
& \text { NZMAX.LT.NCRZ+1 } \\
& + \text { SUM OF NFAX(I) }
\end{aligned}
\] & The number of allowable rows of rod conduction nodes is less than the minimum spe:ified by the user for reflood calculations. \\
\hline RVSSL & 2 & ILLEGAL REPEAT LEVEL NUMBER & An illegal level number was read off a REPEAT LEVEL card. \\
\hline RVSSL & 2 & INCONSISTENT SLAB INTERFACE INPUT & An incorrect value for INHSMX was input. \\
\hline RVSSL & 1 & UNEXPECTED END-OF-FILE & An end-of-file was encountered while reading VESSEL level data. \\
\hline SCMLCM & 2 & LCM OVERFLOW & Insufficient LCM space is available for storing component data. \\
\hline SCMLCM & 2 & SCM OVERFLOW & Insufficient SCM space is available for reading in component array data. \\
\hline TRCE & 1 & TOO MANY NESTED TEES & There is a PWR initialization input error. More than 5 tees are connected. \\
\hline TRCE & 1 & COMPONENT TYPE NOT LOCATED & There is a PWR initialization input error. A steam generator, pump, or vessel hot leg is not connected to the wessel col.d leg. \\
\hline TRCE & 1 & TEE JUNCTIONS NOT ADJACENT & There is a PWR initialization input error. The entries in the JUN array for a tee are not consecutive. \\
\hline
\end{tabular}

Subroutine Level Message
TRCE \(1 \quad\)\begin{tabular}{l} 
COMPONENT \\
ADJACENT
\end{tabular}
III. OVERLAY INIT
\(\left.\begin{array}{lcll}\text { CIVSSL } & \text { JUNCTION PROBLEM } & \begin{array}{l}\text { A component adjacent to } \\
\text { the vessel cannot be found }\end{array} \\
\text { CIVSSL } & 1 & \begin{array}{l}\text { The calculational sequence }\end{array} \\
\text { must compute the component } \\
\text { connected to the vessel } \\
\text { before it calculates the } \\
\text { vessel. }\end{array}\right]\)\begin{tabular}{l} 
The component calculational \\
sequence must compute the \\
connections before the \\
vessel.
\end{tabular}

There is a PWR initialization input error. The entries in the JUN array for a component are not adjacent.

The calculational sequence ast before it calculates the vessel.

The component calculational sequence must compute the connections before the

A vessel cannot be

A vessel cannot be

Integer is too large to be

The number of junctions specified is inconsistent with the number found. recognized.
\begin{tabular}{|c|c|c|c|}
\hline Subroutine & Level & Message & Explanation \\
\hline ICORE & 1 & ROD POWER PROBLEM & The input parameters for the fuel rod geometry, number, and power distribution are invalid. A nonpositive unnormalized power from a fuel rod was evaluated. \\
\hline IGRAF & 1 & \begin{tabular}{l}
GRAPHICS FILE ALLOCATION FAILURE \\
is
\end{tabular} & An I/O error occurred while attempting to allocate space for graphics file. \\
\hline IGRAF & 1 & COMPONENT TYPE NOT RECOGNIZED & An invalid component type was encountered. \\
\hline IGRAF & 1 & NO LCM SPACE FOR GRAPH CATALOG. & Insufficient LCM is available. \\
\hline IGRAF & - 1 & SCM OVERFLOW & Insufficient SCM is available. \\
\hline IVLVE & 1 & INVALID VALVE LOCATION & The valve interface where the flow area is adjustable doesn't lie between two cells within the valve component. \\
\hline IVSSL & 1 & ROD POWER PROBLEM & The reactor power option specified is not within allowable limits. \\
\hline JFIND & 1 & JUNCTION PROBLEM & A junction number could not be located in the junction sequence array. \\
\hline IV. OVERLAY & DUMP & & \\
\hline Subroutine & Leve1 & Message & Explanation \\
\hline DMPIT & 3 & TYPE NOT RECOGNIZED & An invalid component type was encountered. \\
\hline DMPIT & 3 & DUMP FILE DEFINE ERROR & File TRCDMP could not be created. \\
\hline V. OVERLAY & PWRSS & - & . \\
\hline Subroutine & Level & Message & Explanation \\
\hline LPCON & 1 & NO PUMP IN PRINCIPAL LOOP & No pump was found in the loop description. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Subroutine & Level & Message & Explanation \\
\hline PIPE1 & 1 & ERROR IN TABLE LOOKUP & There is an error in interpolating pipe power table. \\
\hline PREP3D & 1 & COMPONENT TYPE NOT RECOGNIZED & An invalid component type was encountered. \\
\hline PUMPSR & 1 & PUMP TABLE SIGNAL VAR. NOT FOUND & The signal variable ID number defining the pump speed table's independent variable was not found in the list of signal variable ID numbers. \\
\hline PUMPSR & 1 & RATE FACTOR TABLE LOOKUP ERROR & An error was encountered while interpolating in the rate factor table that is applied to the pump speed tablés independent variable. \\
\hline PUMPSR & 1 & PUMP SPEED TABLE LOOKUP ERROR & \begin{tabular}{l}
An error was encountered while interpolating \\
in the pump speed table.
\end{tabular} \\
\hline PUMPSR & 1 & INSUFFICIENT SCM SPACE & There is insufficient dynamic SCM for pump since calculations. \\
\hline PUMPSR & 1 & ERROR IN; ROUTINE PUMPX & An error was encountered while evaluating a pump head or torque. \\
\hline RKIN & 1 & \begin{tabular}{l}
POWER-REACT.TABLE \\
SIGNAL NOT FOUND
\end{tabular} & There was an error in interpolating the reactor kinetics table. \\
\hline RKIN & 1 & ERROR IN RATE FACTOR TABLE LOOKUP & An error was encountered while interpolating in the rate factor table that is applied to the power or reactivity table's independent variable. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Subroutine & Level & Message & Explanation \\
\hline RKIN & 1 & ERROR IN POWER REACT. TABLE LOOKUP & An error was encountered while interpolating in the power or reactivity table. \\
\hline SVSET3 & 1 & LOCAL DIM. GT. 50 NEEDED & There are more than 50 signal variables defined in the vessel component that require local variable storage in subroutine SVSET3 while searching over two or more axial levels to evaluate their signal variable value. \\
\hline VLVEX & 1 & VALVE TABLE SIGNAL VARIABLE NOT FOUND & The signal variable ID number defining the valve table's independent variable was not found in the list of signal variable ID numbers. \\
\hline VLVEX & 1 & ERROR IN RATE FACTOR TABLE LOOKUP & An error was encountered while interpolating in the rate factor table that is applied to the valve tablés independent variable. \\
\hline VLVEX & 1 & \begin{tabular}{l}
FIRST VALVE TABLE LOOKUP ERROR \\
\(!\)
\end{tabular} & An error was encountered while interpolating in the first valve table. \\
\hline VLVEX & 1 & SECOND VALVE TABLE LOOKUP ERROR & An error was encountered while interpolating in the second valve table. \\
\hline VSSLI & 2 & REACTOR POWER INITIALIZED & The reactor core's total power is turned on to its input initial value. \\
\hline VII. OVERLA & Y OUTER & & \\
\hline Subroutine & Level & Message & Explanation \\
\hline OUTER & 1 & FATAL ERROR & A fatal error has occurred. \\
\hline CTAIN2 & 1 & CONTAINMENT MODULE NOT YET IMPLEMENTED & Containment component will be in a future TRAC version. \\
\hline OUTlD & 1 & COMPONENT TYPE NOT RECOGNIZED & Invalid component type was encountered. \\
\hline
\end{tabular}


Invalid component type was encountered.

\section*{Explanation}

An invalid component type was encountered.

The signal variable ID number defining the axial power shape tablés dependent vari was not found in the list of signal variable ID numbers.

An error was encountered while interpolating in the rate table that is applied to the axial power shape table's independent variable.

There is insufficient SCM space.
The signal variable ID number defining the axial power shape table's inde. found in the list of signal variable ID numbers.

An error was encountered while interpolating in the rate'factor table that is applied to the axial power shape table's independent variable.
be in a future TRAC version.

An invalid component type was encountered.

There is insufficient dynamic SCM space.


\section*{Explanation}

There is insufficient dynamic SCM space.

\section*{Explanation}

There is an invalid data type in the graphics catalog.

There is insufficient SCM for packing graphics data.

The option that indicates NAMELIST data exist for group INOPTS was selected; however, the data are not in the TRACIN file.

A REPEAT LEVEL data card was found when the array data were read.

A REPEAT LEVEL data card was encountered when trying to read integer data (I14).

A RePEAT LEVEL data card was encountered while trying to read real data in E14.6 format.

An illegal level number was read from a REPEAT LEVEL card.

An end-of-file was encountered when reading VESSEL level data.
§
There was an error in interpolating the reactorkinetics table.

There is insufficient SCM space available to solve the ROD conduction equations.

\section*{APPENDIX H \\ DESCRIPTION OF COMMON BLOCK VARIABLES}

COMMON A(20000)
A(20000)Dynamic SCM storage area.
COMMON/ALP10/NMSAL/FMSLQ/FMSVP
NMSAL: Variable not implemented.
FMSLQ: Variable not implemented.
FMSVP: " Variable not implemented.
COMMON/BKCNTRL/LREIT,LREITV,LBCKV,IPREIT,IPBCKV
LREIT: If .TRUE., then variable forces a reiteration.
LREITV: If .TRUE., then variable forces a reiteration.
LBCKV: If .TRUE., then variable forces a time-step back-up.
IPREIT: Flag to print messages on forced reiteration. if
IPBCKV: Flag to print messages on forced back-up.
COMMON/DONR/IDON, ITDON, NCOMDP , JDONP
IDON: Variable not implemented.
ITDON: If flow reversals occur for :OITNO \(>\) ITDON the time step is backed up.

NCOMDP: Component number of flow reversal förcing back-up.
JDONP: Cell number in NBCOMDP.
COMMON/BKPOST/LBKPST,IBKPST, JBKPST
LBKPST: Logical variable. If .TRUE., then a time-step back-up is forced from POST.

IBKPST: Component forces back-up.
JBKPST: Cell number.
```

COMMON/CHGALP/DAU ,DAL , OAU , OAL , XDAU , XDAL , XOAU, XOAL , JDAU ,JDAL ,JOAU , JOAL ,NDAU ,
NDAL ,NOAU,NOAL
DAU: Maximum increase in void fraction over the time step.
DAL: Maximum decrease in void fraction.
OAU: Maximum increase in void immediately following a decrease.
OAL: Maximum decrease in void immediately following an increase.
XDAU: Limit on DAU beyond which the time step is reduced.
XDAL: Limit on DAL beyond which the time step is reduced.
XOAU: Limit on OAU beyond which the time step is reduced.
XOAL: Limit on OAL beyond which the time step is reduced.
JDAU: Cell where DAU occurred.
JDAL: Cell where DAL occurred.
JOAU: Cell where OAU occurred.
JOAL: Cell where OAL occurred.
NDAU: Component rhere D゙AU occurred.
NDAL: Component where DAL occurred.
NOAU: Component where OAU occurred.
NOAL:. Component where OAL occurred.
COMMON/CODEBK/CBNAM(5),ILEV,MAXLEN,MAXLN3, MAX1LV,MLNVMT
CBNAM: Array containing the names of the overlays currently in core.
ILEV: The number of overlays currently in core. i;
MAXLEN: Maximum amount of SCM storage needed to process any one-
dimensional component.
MAXLN3: Maximum amount of SCM storage needed to process any three-
dimensional component.
MAX1LV: Maximum amount of SCM storage needed for three-dimensional
components when only one level of data is required.

```

MLNVMT: The amount of \(S C M\) space required to solve the vessel matrix.
```

COMMON/CONST/PI,GC,ZERO,ONE,EPSALP
PI: Constant \pi
GC: Gravitational constant.
ZERO: Real constant zero.
ONE: Real constant one.
EPSALP: Void-fraction cutoff for thermodynamic vapor properties.
COMMON/CONTRL/STDYST,TRANSI,DSTEP,ICP,LCMPTR,ETIME,DELT,TIMET, EPSO,EPSI,EPSS,
OITMAX, IITMAX , SITMAX, IEOS,VMAXT, DAMX, VARER, ICMP ,DTMIN, DTMAX,
ISTDY,TEND, IPAK , EPSP, ICCMX,KCCMX , NITMX ,NITMN , NITAV ,NSTP,NCMX,
NCMN ,NSMN ,NSMX ,VCMX ,VCMN,NSVSMX ,NSV SMN ,NIVSMX ,NIVSMN ,VMOLD,
VMNEW,VMCON, DTLMX ,DTVMX ,DTSMX , DTRMX, DAMMC ,NSEO, VMAXO,DELTHT,
ITMIN,DTO,DIFMIN,DPRMX,ODELT,IM1OO,I SSFLG, IACCMD, IPAKON, ITPAKO,
NSEND, NSPL,NSPU, IPKPMP, IFPREP , ISTTC ,HTLOST ,HTLOSO.
INTEGER STDYST,TRANSI,DSTEP,OITMAX,SITMAX
STDYST: Steady-state calculation indicator.
TRANSI: Transient calculation indicator.
DSTEP: Time-step number of dump to be used for restart.
ICP: Temporary pointer to next free location in the dynamic storage
area for component data.
LCMPTR: Pointer to end of component data for last component read in.
ETIME: Current calculation time used for edits.
DELT: Current time increment for advancement of finite-difference
equations.
TIMET: Current calculation time.
EPSO: Convergence criterion for outer iteration.
EPSI: Convergence criterion for vessel iteration.
EPSS: Convergence criterion for steady-state calculation.
OITMAX: Maximum number of outer iterations.
IITMAX: Maximum number of vessel iterations.

```

SITMAX: Maximum number of outer iterations for steady-state calculation.
IEOS: Flag to indicate either steam-air-water (0) or air-water (1).
VMAXT: Maximum Courant number.
DAMX: Error caused by relative change in void fraction.
VARER: Variable error.
ICMP: Component indicator.
DTMIN: Minimum allowable time-step size for time interval.
DTMAX: " Maximum allowable こime-step size for tine interval.
ISTDY: Flag to indicate type of calculation ( \(0=\) transient; \(1=\) steady state).

TEND: End of time domain.
IPAK: \(\quad\) Flag to indicate water packer option ( \(0=\) off; \(1=0 n\).
EPSP: Convergence criteria for PWR-initialization calculation.
ICCMX: Component number in the IORDER array with the most severe time-step limit for stability.

KCCMX: Cell in above component that limits stability.
NITMX: Maximum number of outer iterations taken since the last edit.
NITMN: Minimum number of outer iterations since the last edit.
NITAV: Average number of outer iterations since the iast edit.
NSTP: Number of time steps since the last edit.
NCMX: Position in IORDER array for component that was last to converge at step NSMX.

NCMN: Position in IORDER array for component that was last to converge at step NSMN.

NSMN: Last step at which NITMN outer iterations occurred.
NSMX: Last step at which NITMX outer iterations occurred.
VCMX: Final convergence for component NCMX at step NSMX.
VCMN: Final convergence for component NCMN at step NSMN.
\begin{tabular}{|c|c|}
\hline NSVSMX: & Last time step at which NIVSMX vessel iterations occurred. \\
\hline NSUSMN: & Last time step at which NIVSMN vessel iterations occurred. \\
\hline NIVSMX: & Maxinum number of vessel iterations required since the last edit. \\
\hline NIVSMN: & Minimum number of vessel iterations required since the last edit. \\
\hline Vi10LD: & Vessel water mass (1iquid + vapor) at ( \(t^{\mathrm{n}}\) ). \\
\hline VMNEW: & Vessel water mass (1iquid + vapor) at ( \(t^{\mathrm{n+1}}\) ) . \\
\hline VMCON: & Net water mass (liquid + vapor) convected into vessel during time interval \(\left(t^{n+1}-t^{n}\right)\). \\
\hline DTLMX: & Maximum liquid temperature change during time step. \\
\hline DTVMX: & Maximum vapor temperature change during time step. \\
\hline DTSMX: & Maximum metal temperature change during time step. \\
\hline DTRMX: & Maximum rod temperature change during time step. \\
\hline DAMMC: & Maximum void fraction change during time step. \\
\hline NSEO: & Time-step number of last completed edit. \\
\hline VMAXO: & Maximum Courant number found during time step. \\
\hline DELTHT: & Heat-transfer time-step size. \\
\hline ITMIN: & Minimum stable film boiling option flag. \\
\hline DT0: & Previous time-step size. \\
\hline DIFMIN: & Minimum diffusion number required for stability of the nod conduction solution. \\
\hline DPRMX: & Maximum pressure change during the current time step. \\
\hline ODELT: & Time increment for previous time-step. \\
\hline IM100: & Flag to indicate that back-up occurred on previous time-step (used for mass check on logic). \\
\hline ISSFLĠ: & Flag for controlling editing in steady state. \\
\hline IACCMD: & Variable not currently implemented. \\
\hline
\end{tabular}

IPAKON: Flag to indicate that water-packer logic is on during time-step.
ITPAKO: Iteration number for which water-packing was detected.
NSEND: End the calculation at this step number.
NSPL: Print if NSPL < NSTEP < NSPU.
NSPU: Print if NSPL < NSTEP < NSPU.
IPKPMP: \(\quad 0=\) (default) do not do water packing corrections at a pump source. \(1=\) do water packing corrections at a pump source.

IFPREP: Flag indicating sections of preper to be executed (nonzero only for 1-D cores).

ISTTC: Static check flag. 0 = normal mode. 1 = a static balance check has been requested by inputing; STDYST \(=5\).

HTLOSI Inside system heat loss-1D component only (total system heat loss to the inside walls-1D component only).

HTLOSO Outside system heat loss-1D components only (total heat loss from the outside of the heat structures to the surroundings-1D component only).

COMMON/CTRLDP/ICTRLD (8) ,DMPFLG,TDUMP ,DMP INT, LTDUMP , LDMPTR,NDMPTR, NSDO

\section*{INTEGER DMPFLG}

REAL LTDUMP
ICTRLD (8): Array that contains buffering information about the dump output file.

DMPFLG: Flag that signals whether the dump output file has been initialized ( \(0=\) uninitialized; 1 = initialized).

TDUMP: Calculation time at which next dump is to be taken.
DMPINT: Dump interval for time domain.
LTDUMP: ; CPU time when last dump was taken.
LDMPTR: Pointer to dump trip data.
NDMPTR: Number of trips when a dump is to be taken.
\begin{tabular}{|c|c|}
\hline NSDO: & Time-step number of last completed dump. \\
\hline \multicolumn{2}{|l|}{COMMON/DEFVAL/ISTOPT, ALP, VL, VV, TL, TV, P, PA , QPPP, TW, HSTN} \\
\hline ISTOPT: & Default value input option. Option is off when \(\operatorname{ISTOPT}=0\), or when ISTOPT = 1 or 2 . \\
\hline ALP : & Default value for initial void fractions used during input when ISTOPT \(=0\). \\
\hline VL: & Default value for initial liquid velocities used during input when ISTOPT \(=0\). \\
\hline VV: & Default value for initial vapor velocities used during input when ISTOPT \(=0\). \\
\hline TL: & Default value for initial liquid temperatures used during input when ISTOPT \(=0\). \\
\hline TV: & Default value for initial vapor temperatures used during input when ISTOPT \(=0\). \\
\hline P : & Default value for initial pressures used during input when ISTOPT \(=0\). \\
\hline PA: & Default value for initial air pressures used during input when ISTOPT \(=0\). \\
\hline QPPP: & Default value for volumetric heat sources in Pipe wall used during input when ISTOPT \(=0\). \\
\hline TW: & Default value for initial wall temperatures used during input when ISTOPT \(=0\). \\
\hline HSTN: & Default value for initial heat slab temperatures used during input when ISTOPT \(=0\). \\
\hline \multicolumn{2}{|l|}{COMMON/DF1DC/IDF1D, ISRB, ISLB, JSTART, IL, I CME , IBKS , SSMC2, SSMC, SSVE, SSVC ,} \\
\hline & SSMOM, SSE, VJS , DVJP, SSAC, SRHE ,SRHVC, SRHEV, R1V, R1L, R2V, R2L , SAVT, \\
\hline & SALT, VVJS, VLJS ,DVVJP, DVLJP, SRHAC,MSC,I01,I02,I03, S01, S02,IIO1, \\
\hline & IIO2,II03, NTEE,NSTG, FL1, FV1, FL2, FV2, CT, ClA , C2A , ISLBP, ISRBP, IACC2 \\
\hline & CTP, ClAV, C2AV, NC2. \\
\hline IDF1D: & Hydrodynamics trigger. \\
\hline ISRB: & Right-hand boundary switch. \\
\hline ISLB \({ }^{\text {! }}\) & Left-hand boundary switch. \\
\hline JSTART: & Cell number at left end of one-dimensional segment. \\
\hline
\end{tabular}

0
\begin{tabular}{|c|c|}
\hline IL: & Loop number index. \\
\hline ICME : & Component index for referencing IOU array. \\
\hline IBKS: & Indicator for network solution. \\
\hline SSMC2 : & Momentum source to right-hand cell boundary. \\
\hline SSMC: & Mass source. \\
\hline SSVE: & Vapor energy source. is \\
\hline SSVC: & Vapor mass source. \\
\hline SSMOM : & Momentum source to left-hand cell boundary. \\
\hline SSE: & Energy source. \\
\hline VJS: & Source velocity. \\
\hline DVJP: & Pressure derivative of source velocity. \\
\hline SSAC: & Air source. \\
\hline SRHE: & Variable not implemented. \\
\hline SRHVC: & Variable not implemented. \\
\hline SRHEV: & Variable not implemented. \\
\hline RlV: & Coefficient for the vapor momentum source term at the left edge of the tee junction cell. \\
\hline R1L: & Coefficient for the liquid momentum source term at the left edge of the tee junction cell. \\
\hline R2V: & Coefficient for the vapor momentum source term at the right edge of the tee junction cell. \\
\hline R2L: & Coefficient for the liquid momentum source term at the right edge of the tee junction cell. \\
\hline SAVT: & Source term to vapor for compressible work. \\
\hline SALT: & Source term to liquid for compressible work. \\
\hline VVJS: & Variable not implemented. \\
\hline VLJS: & Variable not implemented. \\
\hline DVVJP: & Variable not implemented. \\
\hline
\end{tabular}

DVLJP: Variable not implemented.
SRHAC: Variable not implemented.
MSC: Cell number for source terms.
IO1: \(\quad \operatorname{ABS}(\operatorname{IOU}(1\), current component)).
IO2: \(\operatorname{ABS}(\operatorname{IOU}(2\), current component)).
IO3: \(\quad\) IOU(3, current component)(always positive).
SO1: Sign of IOU(1, current component).
SO2: Sign of IOU(2, current component).
II01: IO1 plus a displacement for the current loop.
II02: IO2 plus a loop displacement.
II03: IJ3 plus a loop displacement.
NTEE: Counter for tees.
NSTG: Counter for steam generators.
FL1: Temporary storage for liquid mass flow corrections for mass conservation checks at low~numbered cell face.

FV1: Temporary storage for vapor mass flow corrections for mass conservation checks at lownumbered cell face.

FL2: Temporary storage for liquid mass flow corrections for mass conservation checks at high-numbered cell face.

FV2: Temporary storage for vapor mass flow corrections for mass conservation checks at high-numbered cell face.

CT: Momentum source coefficient.
ClA: Fraction of liquid velocity at the left face of the tee junction cell contributing to the momentum transfer into the tee side leg.

C2A: Fraction of liquid velocity at the right face of the tee junction cell contributing to the momentum transfer into the tee side leg.

ISLBP: Variable not implemented.
ISRBP: Variable not implemented.
IACC2: Flag for pipe used to model accumulator.
CTP: Moinentum source coefficient.
ClAV: "Vapor velocity fraction at the left face of the tee junction cell contributing to the momentum transfer into the tee side leg.
C2AV: Vapor velocity fraction at the right face of the tee junction cell contributing to the momentum transfer into the tee side leg.
NC2: Ce'll number which begins a tee and steam generator tee secondary.
COMMON/DIDDLE/ALPSHL, ALPSHU, ENFAC1, ENFAC2, ENMIN, IAV, IAVA , AFCT, ENCUT, NIFSLB, VWALLW, VWALUP, FMDI, FMD2
ALPSHL: Void below which the interface sharpener is off.
ALPSHU: Void above which the interface sharpener is completely on.
ENFACl: Scaling factor for minimum entrainment velocity.
ENFAC2: Scaling factor for entrainment correlation exponent.
ENMIN: Variable, not implemented.
IAV: Variable not implemented.
IAVA: Variable not implemented.
AFCT: Area scaling for waves on inverted annular interface.
ENCUT: Minimum droplet entrainment fraction.
NIFSLB: If nonzero then slabs should be used to test for inverted annular flow.
VWALLW: Variable not implemented.
VWALUP: Variable not implemented.
FMDI: Factor scaling the gravity void-fraction adjustment. If both are zero, there is no manometer damping.
FMD2: Factor scaling the gravity void-fraction adjustment. If both are zero, there is no manometer damping.
COMMON/DLDDLH/ALP2, ALPCUT, ALP3, FDFHL, LHTCN, NSHTCN, IHTAV, CFWH
ALP2: Void above which vapor is in forced convection.
ALPCUT: Void above which nucleate boiling is not permitted (if othercriteria are met).
ALP3: Void above which there is no liquid heat-transfer.
FDFHL: Time averaging factor for heat-transfer.
IHTCN: Variable is normally 0 . If set to 1 , then heat-transfercoefficients are forced to remain constant.NSHTCN: Variable is normally 10000000 . If NSTEP \(>\) NSHTCN, then IHTCHis set to 1 (for debugging only).
IHTAV: Variable is normally 1 . If IHTAV is 0, then there is no timeaveraging of heat-transfer coefficients.
CFWH: Variable not used.
COMMON/DIMEN/NUMTCR,NCOMP,NJUN,LENTBL, IFREE,LAST,LFREE,LLAST,LENBD,NTHM, NJNT, NMVSSL, NJNMX , NLOOPS, JNVSSL, NVCON,LVER,NTHMID, NTHM3D.
NUMTCR: Number of title cards.
NCOMP: Number of components.
NJUN: Number of junctions.
LENTBL: Length of fixed length table.
IFREE: First free word in the dynamic storage area.
LAST: Last word in the dynamic storage area.
LFREE: First free location in LCM.
LLAST: Last location in LCM.
LENBD: Length of boundary data array for each junction.
NTHM: Number of elements per cell in the DRIV array.
NJNT: Total number of network junctions for all loops.
NMVSSL: Number of vessels.
NJNMX: Maximum number of network junctions. ..... \({ }^{\circ}\)

NLOOPS: Number of one-dimensional loops in the system.
JNVSSL: Maximum number of vessel junctions in a loop.
NVCON: Total number of vessel connections.
LVER: Location in LCM of version information data.
NTHM1D: Length of the data stored per cell in the DRIV array (mostly thermodynamic derivatives) in one-dimensional components.

NTHM3D: Length of the data stored per cell in the DRIV array (mostly thermodynamic derivatives) in three-dimensional components.

COMMON/DLIM/DELAMX,DELEMX,DELRMX, DELVMX,DELCMX, DELDMX,NLIM(6)
DELAMX: Time step limit due to void fraction change.
DELEMX: Time step limit due to vessel mass errors.
DELRMX: Time step limit due to final value of the percentage variation in pressure from iteration to iteration.
DELVMX: Material courant stability limit (computed only in vessels).
DELCMX: Time step limit due to maximum changes in pressures and temperatures.

DELDMX: Time step limit due to numerical considerations in the rod heat transfer.

NLIM(6): Array storing the number of times each of the above limits out the time step size since the last major edit.

COMMON/ERRCON/DALPC,DALPCA,DARV,DARL,DDVV,DDVL,JDARV, IDARV, JDARL, IDARL, JDDVV, IDDVV, JDDVL, IDDVL, IPTEST, JPTEST, NSDL, NSDU, TIMDL, TIMDU, ILREIT,ICHGA,DARA, JDARA, IDARA,DTVL, JDTVL, IDTVL, DTVU, JDTVU,IDTVU, DTLL , JDTLL , IDTLL, DTLU, JDTLU, IDTLU, CTVL , JCTVL, ICTVL, CTVU, JCTVU, ICTVU, C'ILL, JCTLL, I CTLL, CTLU, JCTLU, ICTLU, DTVLM,DTVUM,DTLLM,DTLUM, CTVLM, CTVUM, CTLLM, CTLUM

DALPC: Variable not implemented.
DALPCA: Vaŕiable not implemented.
DARV: Measure of the maximum difference in \(\alpha \rho_{g}\) between the basic and stablizer steps.

DARL: Measure of the maximum difference in a ( \(1-\alpha\) ) \(\rho_{\ell}\) between the basic and stabilizer steps.

DDVV: Measure of the maximum difference in \(\mathrm{V}_{\mathrm{g}}\) between the basic and stabilizer steps.

DDVL: Measure of the maximum difference in \(V_{\ell}\) between the basic and stabilizer steps.

JDARV: Cell where DARV occurred.
IDARV: Component where DARV occurred.
JDARL: Cell where DARL occurred.
IDARL: Component where DARL occurred.
JDDVV: Ce11 where DDVV occurred.
IDDVV: Component where DDVV occurred.
JDDVL: Cell where DDVL occurred.
IDDVL: Component where DDVL occurred.
IPTEST: Component with maximum \(|\delta \mathrm{p} / \mathrm{p}|\).
JPTEST: Cell with maximum \(|\delta \mathrm{p} / \mathrm{p}|\).
NSDL: If NSDL \(\leq\) NSTEP \(\leq\) NSDU, a detailed diagnostic should be printed to TRCMSG of DARV; etc.

NSDU: \(\quad\) IF NSDL \(\leq\) NSTEP \(\leq\) NSDU, a detailed diagnostic should be printed TRCMSC of DARV, etc.

TIMDL: If TIMDL \(\leq\) TIMET \(\leq\) TIMDU details of DARV, etc., should be printed.

TIMDU: If TIMDL \(\leq\) TIMET \(\leq\) TIMDU "details of DARV, etc:, should be printed. "

ILREIT: Flag to allow reiteration messages when equation set changes.
ICHGA: Flag to print maximum void fraction changes to the message file.
DARA: Maximum change in \(\alpha \rho_{a}\).
JDARA: Cell location for DARA.
IDARA: Component location for DARA.
DTVL: Largest decrease in vapor temperature in a given iteration.
JDTVL: Cell location of DTVL.

IDTVL: Component location of DTVL.
DTVU: Largest increase in \(T_{g}\) for current iteration.
JDTVU: Cell location for DTVU.
IDTVU: Component location for DTVU.
DTLL: Largest decrease in \(\mathrm{T}_{\ell}\) for current iteration.
JDTLL: Cell location of DTLL.
IDTLL: Component location of DTLL.
DTLU: Largest increase in \(T_{\ell}\) for current iteration.
JDTLU: Cell location of DTLU.
IDTLU: Component location of DTLU.
CTVL: Largest decrease in vapor temperature on a given time step.
JCTVL: Cell location of CTVL.
ECTVL: Component location of CTVL.
CTVU: "Largest increase in \(\mathrm{T}_{\mathrm{g}}\) for current time.
JCTVU: Cell location for CTVU.
ICTVU: Component location for CTVU.
CTLL: Largest decrease in \(T_{\ell}\) for current time step.
JCTLL: Cell location for CTLL.
ICTLL: Component location for CTLL.
CTLU: Largest increase in \(T_{\ell}\) for current time step.
JCTLU: Cell location for CTLU.
ICTLU: Component location for CTLU.
DTVLM: DTVLM and DTLLM are limits on DTVL and DTLL beyond which another iteration must be performed.
DTVUM: DTVLM and DTLLM are limits on DTVL and DTLL beyond which another iteration must be performed.

DTLLM: DTVLM and DTLLM are limits on DTVL and DTLL beyond which another iteration must be performed.

DTLUM: DTVLM and DTLLM are limits on DTVL and DTLL beyond which another iteration must be performed.

CTVLM: CTVLM and -CTLLM are limits on CTVL-CTLL beyond which the time step is reduced.

CTVUM: CTVLM and CTLLM are limits on CTVL-CTLL beyond which the tite step is reduced.

CTLLM: CTVLM and CTLLM are limits on CTVL-CTLL beyond which the time step is reduced.

CTLUM: CTVLM, and CTLLM are bounds on CTVL-CTLL beyond which the time step is reduced.

\section*{COMMON/ELVKF/IELV,IINL,IKFAC}

IELV: Input option switch to allow user to input cell centered elevations for gravity term.

IINL: Index for the two passes through INIT.
IKFAC: Input option switch to allow user to input \(K\) factors for additive loss coefficients.

COMDECK, ERRCON
COMMON/ERRCON/DALPC,DALPCA,DARV,DARL,DDVV,DDVL,JDARV, IDARV,JDARL, 1 IDARL, JDDVV, IDDVY, JDDVL, IDDVL, IPTEST, JPTEST, NSDL, NSDU, T IMDL , TIMDU 2,ILREIT,ICHGA
2 ,DARA,JDARA, IDARA,DTVL, JDTVL, IDTVL,DTVU, JDTVU, IDTVU
3 ,DTLL, JDTLL, IDTLL, DTLU,JDTLU, IDTLU, CTVL, JCTVL, ICTVL
4 , CTVU, JCTVU, I.CTVU, CTLL, JCTLL, ICTLL, CTLU, JCTLU, ICTLU
5 ,DTVLM,DTVUM,DTLLM,DTLUM,CTVLM,CTVUM, CTLLM,CTLUM
DALPC: Not used.

DALPCA: Not used.
DARV: Measure of the maximum difference in \(\alpha \rho_{g}\) between the basic and stabilizer steps.

DARL: \(\quad\) Same as DARV but \((1-\alpha) \rho_{\ell}\).
DDVV: \(\quad\) Same as DARV but \(V_{g}\).
DDVL: \(\quad\) Same as DARV but \(V_{\ell}\).
JDARV: CELL where DARV occurred.
IDARV: Component where DARV occurred.

JDARL: CELL where DARL occurred.
LDARL: Component where DARL occurred.
JDDVV: CELL where DDVV occurred.
LDDVV: Component where DDVV occurred.
JDDVL: CELL where DDVL occurred.
IDDVL: Component where DDVL occurred.
IPTEST: Component with maximum \(\left|\frac{\delta \rho}{\rho}\right|\).
JPTEST: CELL with maximum \(\left|\frac{\delta \rho}{\rho}\right|\).
.. NSDL: If NSDL \(\leq\) NSTEP \(\leqslant\) NSDU do a detailed diagnostic print to TRCMSG of DARV etc.

NSDU: If NSDL <_ NSTEP <_ NSDU do a detailed diagnostic print to TRCMSG of DARV etc.

TIMDL: If TIMDL \(\leq\) TIMET \(\leq\) TIMDU print details of DARV etc.
TIMDU: If TIMDL<_ TIMET <_ TIMDU print details of DARV etc.
ILREIT: Flag to allow reiteration messages when equation set changes.
ICHGA: Fiag to imprint maximum void fraction changes to the message file.

DARA: \(\quad\) Maximum change in \(\alpha \rho_{a}\).
JDARA: Cell location for DARA.
IDARA: Component location for DARA.
DTVL: Largest decrease in vapor temperature on a given iteration;
JDTVL: Cell lecation of DTVL.
IDTVL: Component location of DTVL.
DTVU: Largest increase in \(\mathrm{T}_{\mathrm{g}}\) for current iteration.
JDTVU: Cell location for DTVU.
IDTVU: Component location for DTVU.
DTLL: Largest decrease in \(T_{\ell}\) for current iteration.

JDCLL: Cell location of DTLL.
IDTLL: Component location of DTLL.
DTLU: Largest increase in \(\mathrm{T}_{\ell}\) for current iteration.
JDTLU: Cell location of D'TLU.
IDTLU: Component location of DTLU.
CTVL: Largest decrease in vapor temperature on a given time step.
JCTVL: Cell location of CTVL.

ICTVL: Component location of CTVL.
CTVU: Largest increase in \(\mathrm{T}_{\mathrm{g}}\) for current time step.
JCTVU: Cell location for CTVU.
ICTVU: Component location for CTVU.
CTLL: Largest decrease in \(T_{\ell}\) for current time step.
JCTLL: Cell location of C'rLL.
ICTLL: Component location of CTLL.
CTLU: Largest increase in \(\mathrm{T}_{\ell}\) fór current time step.
JCTLU: Cell location of CTLU.
ICTLU: Component location of 'CTLU.
DTVLM:
DTVUM: DTVLM-DTLLM are bounds on DTVL-DTLL beyond which another
DTLLM: iteration must be taken.
DTLUM:
CTVLM: CTVLM-CTLLM are bounds on CTVL-CTLL beyond which the time step is reduced.

CTLLM: Not currently used.
CTLUM: Not currently used.
COMMON/FIXUM/NTHRMC, NSMEC, NVTC, NVTCP, NOAIR
NTHRMC: Variable that turns off (debugs) basic equation set.
```

 NSMEC: Variable that turns off stabilizer mass and energy equations.
 NVTC: Variable that turns off stabilizer motion equations.
 NVTCP: Variable not implemented.
 NOAIR: Variable that turns off air fleld calculations.
 COMMON/GRAPH/IBUFF,LCMGCT,NCTX,NWTX,KLENTH,KP, LCAT,TEDIT, EDLNT,TGRAF,GFINT,
IPKG,ICTRLG(8) ,NSGO,TSEDIT,SEDINT,LENCAT
IBUFF: Length of graphics buffer.
LCMGCT: Address of graphics catalog in LCM.
NCTX: Number of graphics catalog entries.
NWTX: Number of words written to disk per graphics edit.
KLENTH: Length of the graphics disk file.
KP: Pointer in graphics catalog block.
LCAT: Address of graphics catalog in SCM.
TEDIT: Time of next print edit.
EDINT: Print edit interval for time domain.
TGRAF: Time of next graphics edit.
GFINT: Graphics edit interval for time domain.
IPKG: Graphics file packing density.
ICTRLG(8): Array that contains buffering information about the graphics
output file.
NSGO: Time-step number of last completed graphics edit.
TSEDIT: Time for next short edit.
SEDINT: Interval for short edits.
LENCAT: Number of words of each catalog entry.

```
```

COMMON/HOLL/PIPEH,PUMPH,TEEH,VALVEH, BREAKH,FILLH,CTAINH,PRIZRH,STGENH, ACCUMH,
VSSLH, COREH
INTEGER PIPEH,PUMPH,TEEH,VALVEH, BREAKH,FILLLH, CTAINH, PRIZRH, STGENH, ACCUMH,VSSLLH,CORE
PIPEH: Hollerith representation of word "PIPE."
PUMPH: Hollerith representation of word "PUMP."
TEEH: Hollerith representation of word "TEE."
VALVEH: Hollerith representation of word "VALVE."
BREAKH: Hollerith representation of word "BRFAr."
FILLH: Hollerith representation of word "F\perp..
CTAINH: Hollerith representation of word "CTAIN."
PRIZRH: Hollerith representation of word "PRIZER"."
STGENH: Hollerith representation of word "STGEN."
ACCUMH: Hollerith representation of word "ACCUM."
VSSLH: Hollerith representation of word "VESSEL."
COREH: Hollerith representation of word "CORE."
COMMON/ISTAT/NSTEP,OITNO,IITNO,VERR,VARERM,TIBIG,ILFAIL,IITV,IOTT
INTEGER OITNO
NSTEP: Number of time steps taken.
OITNO: Outer iteration number.
IITNO: Inner iteration number.
VERR: Velocity error at component junction.
VARERM: Maximum variable error.
IIBIG: Maximum number of inner iterations per outer iteration.
IIFAIL: Flag to indicate failure of hydrodynamics to converge.
IITV: Variable passes the vessel inner iteration count.
IOTT: Temporary storage for IITNO.

```
```

COMMON/NMFAIL/NFLMX,ITFL1,NFL1,NFL3,IFTP,ICMPF,JCFL,S1,S2,S3,S4
NFLMX: Variable not implemented.
ITFLI: Stores iteration number of last TFID failure.
NFL1: Count of total number of TFID failures in the current time step.
NFL3: Total number of TFID failures in the current time step.
IFTP: " Flag to prevent thermo fallure messages if a message has come
from TFID3 or FF3D.
ICMPF: Variable not implemented.
JCFL: Variable not implemented.
Sl: Variable not implemented.
S2: Limit on Interfacial heat-transfer coefficient.
S3: Offset on liquid super heat used in interfacial area adjustment.
S4: Variable not implemented.
COMMON/PSE/NPSE,NPSE1,NPSE3,NPICMP,NPSJ,NPSIZ ,NPSK,NPSV1
NPSE: Pause in TRANS if NSTEP = NPSE.
NPSE1: Pause in TFIDS if NSTEP = NPSE1. The cell number is NPSJ, and
the component number is NPICMP.
NPSE3: Pause in TF3DI if NSTEP = NPSE3. The cell index K is NPSK, and
the second level is NPSIZ.
NPICMP: Component number in TFlDS (pause) if NSTEP = NPSEl.
NPSJ: Cel1 number in TFIDS (pause) if NSTEP = NPSE1.
NPSIZ: Level in TF3DI (pause) if NSTEP = NPSE3.
NPSK: Ce11 index in TF3DI (pause) if NSTEP = NPSE3.
NPSV1: Pause in TF1DS1 if NSTEP = NPSE1. The cell number is NPSJ, and
the component number is NPICMP.

```



DHP2: Specific enthalpy differential for second loop pump.
DHV1: Specific enthalpy differential for vessel as seen by first loop pump.

DHV2: Specific enthalpy differential for vessel as seen by second loop pump.

RELX: A relaxation factor for changes in pump speed and steam generator area that are automatically made during the PWR steady-state initialization.

COMMON/JUNCT/JPTR
JPTR: Number of junction-component pairs.
COMMON/LCMSP/ALCM(131071)
ALCM(131071) Dynamic LCM storage area.
COMMON/RESTART/ICTRLR(8), DDATE,DDTIME, DNCOMP, DLNFLT
INTEGER DNCOMP,DLNFLT
ICTRLR(8): Array that contains buffering information about the restart file.

DDATE: Date restart file was created.
DDTIME: Time restart file was created.
DNCOMP: Number of components in the restart file.
DLNFLT: Length of fixed length tables read from restart file.
COMMON/SIGNAL/ISVF (100) , CPV(42), DSV(2)
ISVF(100): ISVF(I) is the flag vector for one or more signal variables being defined in the Ith component evaluated by TRAC.
\(\operatorname{CPV}(42)\) : Control Panel Vector for storing the values of signal variable parameter numbers 1 through 6 and 7 through 15 for up to four coolant loops.

DSV(2): Dummy Signal Variable vector for storin the values of signal variable parameter numbers 16 and 17.

COMMON/SSCON/FMAX, LOK, RTWFP, MCELL, FMX, FMXLVZ, MAXFLO, MAXFLN, STIME, NEF , EPS , IPOWR. REAL MAXFLO,MAXFLN

FMAX(7): Maximum normalized errors.
\(\operatorname{LOK}(7,2):\) Location of maximum normalized errors.
RTWFP: Ratio of heat-transfer to fluid-dynamics time-step sizes.
MCELL(7): Cell numbers of maximum normalized rates of change for a component.

FMX(7): Maximum normalized rates of change for a component.
FMXLVZ: Maximum normalized rate of change for axial vessel velocities.
MAXFLO: Maximum one-dimensional mass flow at last steady-state convergence test times \(10^{-3}\).

MAXFLN: Maximum one-dimensional mass flow at this steady-state convergence test.

STIME: Current calculation time for steady state.
NEF: \ Number of time steps between steady state checks.
EPS: Convergence criterion.
IPOWR: : FLAY for turning on power in steady state.
COMMON/TF3DC/KU,KL, ORG, IZ, INSCT,KABSO,KCMSH
KU: Displacement of level (IZ+1) from level (IZ) in A3D array.
KL: Displacement of level (IZ-1) from level (IZ) in A3D array.
ORG: \(\quad\) Origin of level (IZ) data A3D array.
IZ: Vessel level number currently being used.
INSCT: Variable used to obtain a displacement into network arrays involving vessel junctions when there is more than one vessel.

KABSO: Storage offset to obtain an absolute cell number when there are multiple vessels.

KCMSH: Offset for coarse-mesh indexing with multiple vessels.

COMMON/TSATCN/Cl, C2, C3, A1 4
Cl: Constant in expression for saturation temperature, set in routine THERMO.

C2: Constant in expression for saturation temperature.
C3: Constant in expression for saturation temperature.
A14: Constant in expression for saturation temperature.
COMMON/TWOSTP /CORPOW,NUMCOR,NTSPRN, NPSFE, NPSME
CORPOW: Variable not implemented.
NUMCOR: Variable not implemented.
NTSPRN: Flag for printing extra stabilizer step information to TRCOUT.
NPSFE: Pause in FEMOM if NSTEP = NPSE1. The cell number is NPSJ, and the component number is NPICMP.

NPSME: Pause in STBME if NSTEP = NPSEl. The cell number is NPSJ, and the component number is NPICMP.

COMMON/UNITS/IN, IOUT, ITTY, IGOUT,IDOUT, IRSTRT, IMOUT, IBFADG, IBFADR,IBFADD, IBFLNG, IBFLNR, I BFLND, IODONE, IOERR, IOSKIP, CARD(9), INPROC.

INTEGER CARD(9)
IN: I/O unit number for input data file.
IOUT: \(\quad\) I/O unit number for output data file.
ITTY: I/O unit number for terminal output.
IGOUT: I/O unit number for graphics output file.
IDOUT: \(\quad\) I/O unit number for dump output file.
IRSTRT: I/O unit number for restart input file.
IMOUT: I/O unit number for warning messages.
IBFADG: Pointer to beginning of graphics LCM buffer.
IBFADR: Pointer to beginning of restart LCM buffer.
IBFADD: Pointer to beginning of dump LCM buffer.
IBFLNG: Length of graphics buffer.


SX4: The SX1-NX5 variables are reserved for code testing purposes. SX5: The SX1-NX5 variables are reserved for code testing purposes. SX6: The SX1-NX5 variables are reserved for code testing purposes.

SX7: The SX1-NX5 variables are reserved for code testing purposes. SX8: The SX1-NX5 variables are reserved for code testing purposes.

NX1: \(\quad\) The SXI-NXS variables are reserved for code testing purposes. NX2: \(\quad\) The SX1-NX5 variables are reserved for code testing purposes.

NX3: The SXI-NX5 variables are reserved for code testing purposes.
NX4: The SX1-NX5 variables are reserved for code testing purposes.
NX5: Variable set to 1 to bypass coarse-mesh rebalance in the VESSEL. COMMON/XVOL/DAXVL, DAXVU, LDAX, FREV ,DGSS, BGSS ,DAWL , DAWU, IFVT

DAXVL: Bypass switches on special TFIDS flux logic.
DAXVU: Bypass switches on special TFIDS flux logic.
LDAX: Bypass switches on special TFIDS flux logic.
FREV: Sensitivity level for reiteration on flow reversal.
DGSS: \(\quad\) Limits on special void-fraction prediction logic.
BGSS: Limits on special void-fraction prediction logic.
DAWL: Weighting factors in special TFIDS flux logic.
DAWU: Weighting factors in special TFIDS flux logic.
IFVT: Flag for setting velocities passed to TFIDS for special flux logic.

\section*{COMPONENT DATA TABLES}

\section*{I. FIXED-LENGTH TABLES}

The structure of the fixed-length data tables is shown below and is identical for all the TRAC components. Refer to Sec. VI for a detailed discussion of the TRAC data base.


Position(s) Parameter Description
20-50 FLTDUM(31) Dummy variable.
II. GENERAL POINTER TABLES

The pointer tables for one-dimensional components (described below) use four general sets of pointers, DUALPT, HYDROPT, INTPT, and HEATPT.
A. DUALPT

These pointers refer to variables whose value is stored at both old and new time values.
\begin{tabular}{llll} 
Word & Name & Array & Dimension
\end{tabular} \begin{tabular}{l} 
Description \\
1
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Word (s) & Name & Array & Dinension & Description \\
\hline 17 & LEV & EV & NCELLS & Old vapor internal energy. \\
\hline 18 & LHILO & HILO & NCELLS & Old HTC between inside wall and liquid. \\
\hline 19 & LHIVO & HIVO & NCELLS & 01d HTC between inside wall and vapor. \\
\hline 20 & LHLV & HLV & NCELLS & Old interfacial HTC. \\
\hline 21 & LP & P & NCELLS & 01d pressure. \\
\hline 22 & LPA & PA & NCELLS & Old air partial pressure. \\
\hline 23 & LROA & ROA & NCELLS & 01d air densities. \\
\hline 24 & LROL & ROL & NCELLS & 01d liquid densities. \\
\hline 25 & LROV & ROV & NCELLS & Old vapor densities. \\
\hline 26 & LTD & TD & 0 & Variable not currently implemented. \\
\hline 27 & LTL & TL & NCELLS & Old liquid temperature. \\
\hline 28 & LTV & TV & NCELLS & Old vapor temperature. \\
\hline 29 & LCIF & CIF & 2(NCELLS+1) & 01d interfacial drag coefficients. \\
\hline 30 - & LVM & VM & NCELLS+1 & Initial mixture velocities. \\
\hline 31 & LTW & TW & NCELLS*NODES & 01d wall temperatures. \\
\hline 32 & LVL & VL & NCELLS+1 & 01d liquid velocities. \\
\hline 33 & LVV & VV & NCELLS+1 & Old vapor velocities. \\
\hline 34 & LALPN & ALPN & NCELLS & New vapor fraction. \\
\hline 35 & LALPDN & ALP DN & 0 & Variable not currently implemented. \\
\hline 36 & LALVN & ALVN & NCELLS & New interfacial surface area. \\
\hline 37 & LARAN & ARAN & NCELLS & New stabilizer value for \(\alpha \rho_{a}\). \\
\hline 38 & LARELN & ARELN & NCELLS & New stabilizer value for ( \(1-\alpha\) ) \(\rho_{\ell} e_{\ell}\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Word(s) & Name & Array & Dimension & Description \\
\hline 39 & LAREVN & AREVN & NCELLS & New stabilizer value for \(\alpha \rho_{v} e_{v}\). \\
\hline 40 & LARLN & ARLN & NCELLS & New stabilizer value for \((1-\alpha) p_{\ell}\). \\
\hline 41 & LARVN & ARVN & NCELSS & New stabilizer value for \(\alpha \rho_{v}\). \\
\hline 42 & LBITN & BITN & NCELLS +1 & Bit flags for current time step. \\
\hline 43 & LVLT & VLT & NCELLS+1 & New stabilizer liquid velocity ( \(\mathrm{V}_{\mathrm{e}}^{\mathrm{n+1}}\) ). \\
\hline 44 & LVVT & VVT & NCELL+1 & New stabilizer vapor velocity \(\left(\tilde{V}_{\mathrm{g}}^{\mathrm{n}+1}\right)\). \\
\hline 45-47 & J_DN ( 3 ) & DN & 0 & Variable not currently implemented. \\
\hline 48 & LEAN & EAN & NCELLS & New air internal energy. \\
\hline 49 & LELN & ELN & NCELLS & New liquid internal energy. \\
\hline 50 & LEVN & EVN & NCELLS & New vapor internal energy. \\
\hline 51 & LHIL & HIL & NCELLS & New HTC between inside wall and liquid. \\
\hline 52 & LHIV & HIV & NGELLS & New HTC between inside wall and vapor. \\
\hline 53 & LHLVN & HLVN & NCELLS & New interfacial HTC. \\
\hline 54 & LPN & PN & NCELLS & New pressure. \\
\hline 55 & LPAN & PAN & NCELLS & New air partial pressure. \\
\hline 56 & LROAN & ROAN & NCELLS & New air density. \\
\hline 57 & LROLN & ROLN & NCELLS & New liquid density. \\
\hline 58 & LROVN & ROVN & NCELLS & New vapor density. \\
\hline 59 & LTDN & TDN & 0 & Variable not currently implemented. \\
\hline 60 & LTLN & TLN & NCELLS & New 1 iquid temperature. \\
\hline 61 & LTVN & TVN & NCELLS & New vapor temperature. \\
\hline 62 & LCIFN & CIFN & 2(NCELLS +1 ) & New interfacial drag coefficients. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Word(s) & Name & Array & Dimension & Description \\
\hline 15 & LH(3) & DHLDZ & NCELLS +1 & Gravitational head force caused by alpha gradient. \\
\hline 16 & LH(4) & -- & 0 & Variable currently not implemented. \\
\hline 17 & LHD & HD & NCELLS+1 & Hydraulic diameters. \\
\hline 18 & LHFG & HFG & NCELLS & Latent heat of vaporization. \\
\hline 19 & LQPPP & QPPP & NCELLS & Wall heat source. \\
\hline 20 & LRMEM & RMEM & NCELLS & Variable not currently implemented. \\
\hline 21 & LRMVM & RMVM & NCELLS+1 & Mixture density times mixture velocity. \\
\hline 22 & LROM & ROM & NCELLS & Mixture density. \\
\hline 23 & LRHS & RHS & NCELLS & Right side for vapor continuity and energy equations. \\
\hline 24 & LSIG & SIG & NCELLS & Surface tension. \\
\hline 25 & LTRID & TRID & 6* (NCELLS +1 ) & Storage for stabilizer linear system. \\
\hline 26 & LTSAT & TSAT & NCELLS & Saturation temperature. \\
\hline 27 & LTSSN & 'ISSN & NCELLS & Saturation temperature for steam pressure. \\
\hline 28 & LVISL & VISL & NCELLS & Liquid viscosity. \\
\hline 29 & LVISV & VISV & NCELLS & Vapor viscosity. \\
\hline 30 & LVOL & VOL & NCELLS & Cell volumes. \\
\hline 31 & LVR & VR & NCELLS +1 & Relative velocity. \\
\hline 32 & LWA & WA & NCELLS & Wall areas. \\
\hline 33 & LDFV DP & DFVDP & NCELLS+1 & Derivative of vapor velocity with respect to pressure. \\
\hline 34 & LDFLDP & DFLDP & NCELLS +1 & Derivative of liquid velocity with respect to pressure. \\
\hline 35 & LVLX & VLX & 0 & Variable not currently implemented. \\
\hline 36 & LVVX & VVX & 0 & Variable not currently implemented. : \\
\hline 37 & LWFL & WFL & NCELLS +1 & Wall friction factor for liquid. \\
\hline
\end{tabular}
\begin{tabular}{lllll} 
Word (s) & Name & Array & Dimension & Description \\
38 & LWFV & WFV & NCELLS 1 & Wall friction factor for vapor.
\end{tabular}
C. INTPT

These pointers refer to variables with integer values.
\begin{tabular}{lllll} 
Word (s) & Name & Array & Dimension & Description \\
\hline 1 & LIDR & IDR & NCELLS & Heat-transfer regime. \\
2 & LMATID. & MATID & NODES-1 & Material identifications. \\
3 & LNFF & NFF & NCELLS+1 & Friction correlation options.
\end{tabular}
D. HEATPT

These pointers refer to variables associated with the wall heat-transfer calculations.
\begin{tabular}{|c|c|c|c|c|}
\hline Word (s) & Name & Array & Dimension & Description \\
\hline \(\cdots 1\) & LCPW & CPW & \[
\begin{aligned}
& \text { (NODES-1) } \\
& \text { *NCELLS }
\end{aligned}
\] & Specific heat of wall. \\
\hline 2 & LCW & CW & \begin{tabular}{l}
(NODES-1) \\
*NCELLS
\end{tabular} & Wall conductivity. \\
\hline 3 & \[
\mathrm{I}_{\mathrm{DR}}
\] & DR & NODES-1 & Radial mesh size. \\
\hline 4 & LEMIS & EMIS & NCELLS & Wall emissivity. \\
\hline 5 & LHOL & HOL & NCELLS & HTC between outside wall and liquid. \\
\hline 6 & LHOV & HOV & NCELLS & HTC between outside wall and vapor. \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|}
\hline Position(s) & Parameter & Description \\
\hline 8 & ' JS1 & Junction sequence number at low-numbered core end. \\
\hline 9 & JS2 & Junction sequence number at high-numbered core end. \\
\hline 10 & ISOLLB & Indicator for velocity update at JUNl. \\
\hline 11 & ISOLR & Indicator for velocity update at JUN2. \\
\hline 12 & ICHF & CHF calculation option. \\
\hline 13 & IHYDRO & One-dimensional hydrodynamics option. \\
\hline 14 & BSMASS & Total fluid mass for core. \\
\hline 15 & RADIN & Inner radius of core wall. \\
\hline 16 & TH & Thickness of core wall. \\
\hline 17 & HOUTL & Heat-transfer coefficient between outer boundary of core wall and liquid. \\
\hline 18 & HOUTV & Heat-transfer coefficient between outer boundary of core wall and vapor. \\
\hline 19 & TOUTL & Liquid temperature outside core. \\
\hline 20 & TOUTV & Vapor temperature outside core. \\
\hline 21 & ICJ 1 & Iteration index of adjcent component at JUN1. \\
\hline 22 & IGT2 & Iteration index of adjcent component at JUN2. \\
\hline 23 & ICRU & Core upper boundary segment number, Z (ICRU) . \\
\hline 24 & ICRL & Core lower boundary segment number, Z (ICRL). \\
\hline 25 & LNPTRR & Number of pointers of rod data. \\
\hline 26 & LENGEN & Length of the general data. \\
\hline 27 & LENRD & Length of rod data. \\
\hline 28 & LFVG & Relative postion of old time power data. \\
\hline 29 & LFVGN & Relative position of new time power data. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Position(s) & Parameter & Description \\
\hline 30 & LENFVG & Length of power data stored at both the old and new times. \\
\hline 31 & LFVR & Relative position of old time rod data. \\
\hline 32 & LFVRN & Relative position of new time rod data. \\
\hline 33 & LNFVR & Length of rod data stored at both old and new times. \\
\hline 34 & LFVS & Relative position of old time slab data (unused). \\
\hline 35 & LFVSN & Relative position of new time slab data (unused). \\
\hline 36 & LNFVS & Length of slab data at both old and new times. \\
\hline 37 & NCRZ & Number of axial mesh cell. \\
\hline 38 & HGAPO & Rod gap-conductance coefficient (MATRD \(=3\) ). \\
\hline 39 & NFUEL & number of nodes in fuel pellet. \\
\hline 40 & NMWRX & ```
Metal-water reaction flag.
(0 = no calculation;
l = calculation.)
``` \\
\hline 41 & NINT & Number of interfaces between dissimilar materials in rods. \\
\hline 42 & NRODS & Number of computational rods. \\
\hline 43 & NSLBS & Number of computational slabs (unused). \\
\hline 44 & NDSLB & Number of slab heat transfer nodes (unused). \\
\hline 45 & NDRDS & Number of rod heatatransfer nodes: \\
\hline 46 & NFCI & ```
Fuel-clad interaction (FCI) flag.
(0 = no calculation;
l = calculation.)
``` \\
\hline 47 & NFCIL & Upper limit on number of FCI calculations per time step. \\
\hline 48 & PLDR & \begin{tabular}{l}
Pellet dish radius. \\
( \(P\) LDR \(=0.0\), no calculation of pellet dishing).
\end{tabular} \\
\hline 49 & PDRAT & Rod pitch-to-diameter ratio. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Position(s) & Parameter & Description \\
\hline 50 & NRFDS & \[
\begin{aligned}
& \text { Rod fine-mesh status flag. } \\
& (0=\text { coarse-mesh flag; } \\
& 1=\text { fine-mesh flag. }
\end{aligned}
\] \\
\hline 51 & NRFD & Reflood flag. ( \(0=\) no action; 1 = turn on fine-mesh flag.) \\
\hline 52 & NRFDT & Kod fine-mesh flag trip identification. \\
\hline 53 & NDGX & Number of delayed neutron groups. \\
\hline 54 & NDHX & Number of decay heat group. \\
\hline 55 & TNEUT & Neutron generation time. \\
\hline 56 & BEFF & Total delayed neutron fraction. \\
\hline 57 & ENEFF & Total decay heat fraction. \\
\hline 58 & REACT & Total reactivity at the beginning time of the present time step. \\
\hline 59 & NPWX & Number of power table entries. \\
\hline 60 & IRPOP & Reactor kinetics option flag. \\
\hline 61 & IRPTR & Reactor kinetics trip indentification number. \\
\hline 62 & RPOWR & Old reactor power. \\
\hline 63 & RPOWRN & New reactor power. \\
\hline 64 & RPOWKI & Initial reactor power. \\
\hline 65 & NRAMAX & Cell number of the average-rod peak clad temperature (always 1). \\
\hline 66 & TRAMAX & Average-rod peak clad temperature. \\
\hline 67 & NRHMAX & Cell number of the supplemental rod peak clad temperature. \\
\hline 68 & TRHMAX & Maximum supplemental rod temperature. \\
\hline 69-70 & DTNHT (2) \({ }^{\text {\% }}\) & Delta \(\mathrm{T}_{\text {mins }}\) used in reflood calculation. \\
\hline 71-72 & DTXHT(2) & Delta \(T_{\text {maxs }}\) used in reflood calculation. \\
\hline 73 & DZNHT & Delta \(\mathrm{Z}_{\text {min }}\) used in reflood calculation. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Position(s) & arameter & Description \\
\hline 74 & NZMAX & Maxinum number of rows of heat-transfer nodes used in reflood calculation. \\
\hline 75 & QSLTOT & Total slab heat flux. \\
\hline 76 & QRDTOT & Total rod heat flux. \\
\hline 77 & FUCRAC & Fraction of uncracked fuel. \\
\hline 78 & AMH2 & Hydrogen mass generated from metal-water reaction. \\
\hline 79-80 & FL(2) & The liquid mass flux correction for use in checking mass conservation. \\
\hline 81-82 & FV(2) & \begin{tabular}{l}
The vapor mass flux correction for use in checking mass conservation. \\
4
\end{tabular} \\
\hline 83-85 & R'CFORM(3) & The form number for the reactivity coefficient type. \\
\hline 86-88 & RCA(3) & The zeroth order polynomial term coefficient defining the reactivity coefficient. \\
\hline 89-91 & RCB (3) & The first order polynomial term coefficient defining the reactivity coefficient. \\
\hline 92-94 & RCC(3) & The second order polynomial term coefficient defining the reactivity coefficient." \\
\hline 95-97 & XO(3) & The old time value of the independent variable of the second order polynomial defining the reactivity coefficient. \\
\hline 98-100 & XN(3) & The new time value of the independent variable of the second order polynomial defining the reactivity coefficient. \\
\hline 101 & RMCKO & The reactor multiplication constant at the beginning time of the previous time step. \\
\hline 102 & RMCK & The reactor multiplication constant at the beginning time of the present time step. \\
\hline 103 & RMCKN & The reactor, multiplication constant estimate at the ending time of the present time step. \\
\hline 104 & REACTN - & The total reactivity estinate at the ending time of the present time step. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Position(s) & Parameter & Description \\
\hline 105 & REAC & The reactivity feedback at the beginning of the previous time step. \\
\hline 106 & REACE & The reactivity feedback at the beginning of the present time step. \\
\hline 107 & REACN & The reactivity feedback estinate at the end of the present time step. \\
\hline 108 & STIMET & The problem time at which the last reactivity change was summed to variable storage for late printout(s). \\
\hline 109 & SUT & The time interval since the last reactivity change printout(s). \\
\hline 110-121 & SRP(12) & The summed progranmed reactivity and feedback reactivity changes since the last printout, the last table printout, and the beginning of the problem. (NBTB equals the number of pairs for each break table.) \\
\hline 122 & NRTS & The number of time steps the programmed reactivity and reactivity feedback changes are summed over for printout. \\
\hline 123 & NPSZ & The number of axial power shape table entries. \\
\hline 124 & IPSTR & The axial power shape trip ID number. \\
\hline 125 & IPSSV & The signal variable ID number defining the axial power shape table \({ }^{-}\)s* independent variable. \\
\hline 126 & NPSRF & The number of axial power shape rate factor table entries. \\
\hline 127 & IRPSV & The signal variable ID number defining the power or reactivity tables independent variable. \\
\hline 128 & NRPRF & The number of power or reactivity rate factor table entries. \\
\hline 129 & KPOINT & The previous power or reactivity table entry point where the power or reactivity value was linearly interpolated. \\
\hline 130 & NPOINT & \begin{tabular}{l}
The previous power or reactivity rate factor table entry point, where the rate factor \\
"value was linearly interpolated.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Position( & (s) & Parameter & \multicolumn{2}{|l|}{Description} \\
\hline 131 & & NSET & \multicolumn{2}{|l|}{The previous reflood fine-mesh trip set position status value.} \\
\hline 132 & & NSHP & \multicolumn{2}{|l|}{The previous axial power shape table entry point where the axial power shape was linearly interpolated.} \\
\hline 133-300 & & VLTDUM (43) & Duminy va & able. \\
\hline \multicolumn{5}{|c|}{Core Pointer Table} \\
\hline Word (s) & Name & Array & Dimension & Description \\
\hline 1-66 & \multicolumn{2}{|l|}{DUALPT} & \multicolumn{2}{|r|}{General pointer table.} \\
\hline 67-108 & \multicolumn{2}{|l|}{HYDROPT} & \multicolumn{2}{|r|}{General pointer table.} \\
\hline 109-111 & \multicolumn{2}{|l|}{INTPT} & \multicolumn{2}{|r|}{General pointer table.} \\
\hline 112-123 & \multicolumn{2}{|l|}{HEATPT} & \multicolumn{2}{|r|}{General pointer table.} \\
\hline 124 & LRDA & RDA & NCELLS & Total rod area. \\
\hline 125 & LICRN & ICRN & NCELLS & Core volume number. \\
\hline 126 & LRDTL & RUTL & NCELLS & Average rod temperature to liquid. \\
\hline 127 & LRDTV & RDTV & NCELLS & Average rod temperature to vapor. \\
\hline 128 & LRDHL & RDHL & NCELLS & Average rod HTC (liquid). \\
\hline 129 & LRDHV & RDHV & NCELLS & Average rod HTC (vapor). \\
\hline 130 & L2 & 2 & NCELLS & Arial segment upper elevation. \\
\hline 131 & LRDPWR & RDPWR & NDRDS & Rod relative radial power density. \\
\hline 132 & LCPOWR & CP OWR & 1 & Relative rod power density. \\
\hline 133 & LRPKF & RPKF & NRODS & Rod power peaking factor. \\
\hline 134 & LZP OWK & 2P OWR & \begin{tabular}{l}
NCRZP2 \\
*NPSZ
\end{tabular} & Relative axial power shape table. [1 \\
\hline 135 & LPSRF & PSRF & NRSRF*2 & Power shape rate factor table. \\
\hline . 136 & - LNRDX & NRDX & 1 & Number of rods in volume: \\
\hline 137 & LRADRD & RADRD & NDRDS & Rod node radius (cold)." \\
\hline 138 & LMATRD & MATRD & NDM1 & Rod material identification. . \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Word(s) & Name & Array & Dimension & Description \\
\hline 139 & LPWTB & PWTB & NPWX*2 & Power or reactivity table. \\
\hline 140 & LRPRF & RPRF & NRPRF*2 & Power or reactivity rate factor table. \\
\hline 141 & LBETA & BETA & NDGX & Delayed group neutron. \\
\hline 142 & LLAMDA & LAMDA & NDGX & Delay constant of neutron delayed groups. \\
\hline 143 & LLAMDH & LAMDH & NDHX & Delay constant of decay heat groups. \\
\hline 144 & LEDH & EL: & NDHX & Energy yield fraction of decay heat groups. \\
\hline 145 & LNFAX & NFAX & NCRZ & Rod fine-mesh noding factor. \\
\hline 146 & LFPU02 & FPU02 & 1 & Fraction of plutonium oxide in mixed oxide fuel fraction. \\
\hline 147 & LFTD & FTD & 1 & Fuel theoretical density. \\
\hline 148 & LGMIX & GMIX & 7 & Mole fraction of gap gas constituents. \\
\hline 149 & LGMLES & GMLES & 1 & Moles of gap gas. \\
\hline 150 & LPGAPT & PGAPT & 1 & Gap total gas pressure. \\
\hline 151 & LPLVOL & PLVOL & 1 & Rod plenum volume. \\
\hline 152 & LPSLEN & PSLEN & 1 & Pellet stack length. \\
\hline 153 & LCDG & CDG & NDGX & Old concentration of delayed neutron groups. \\
\hline 154 & LCDH & CDH & NDHX & Old concentration of decay heat groups. \\
\hline 155 & LCLEN & CLEN & 1 & O1d total cladding length. \\
\hline 156 & LCUGN & CDGN & NDGX & New concentration of delayed neutron groups. \\
\hline 157 & LCDHN & CDHN & NDHX - & New concentration of decay heat groups. \\
\hline \(\therefore 158\) & LCLENN & CLENN & 1-1 & New total cladding length. \\
\hline 159 & LBURN & BURN & NCRZ +1 & Fuel burnup. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Word (s) & Name & Array & Diunension & Description \\
\hline 160 & LCND & CND & \begin{tabular}{l}
NDRDS \\
(NCRZ+1)
\end{tabular} & Rod conductivity. \\
\hline 161 & LCPND & CPND & \begin{tabular}{l}
NDRDS \\
(NCRZ+1)
\end{tabular} & Rod specific heat. \\
\hline 162 & LZHT & 2HT & NZMAX & Axial location of heat transfer node. \\
\hline 163 & LEmisR & EMLSR & NDRDS NCRZ+1 & Rod emissivity. \\
\hline 164 & LHDR & HDR & & Rod bundle hydraulic diameter. \\
\hline 165 & LHGAP & HGAP & NCRZ 1 & Gap conductance. \\
\hline 166 & LHLVR & HLVR & NCRZ & Interfacial HTC. \\
\hline 167 & LRDTLR & RDTLR & NCKZ & Average rod wall temperature seen by liquid. \\
\hline 168 & LRDTVK & RDTVR & NCRZ & Average rod wall temperature seen by vapor. \\
\hline 169 & LHRFL & HRFL & NZMAX & Fine mesh liquid HTC. \\
\hline 170 & LHRFV & HRFV & NZMAX & Fine mesh vapor HTC. \\
\hline 171 & LHRLL & HRLL & NCR \(2+1\) & Liquid heat transfer coefficient. \\
\hline 172 & LHRLV & HRLV & NCR2+1 & Vapor heat transfer coefficient. \\
\hline 173 & LIDRGR & IDRGR & NCR2 & Flow regime flag. \\
\hline 174 & LIHTF & IHTF & NXMAX & Fine mesh heat transfer regime flag. \\
\hline 175 & LPGAP & PGAP & NCRZ+1 & Gap local gas pressure. \\
\hline 176 & LPINT & PINT & NCRZ+1 & Pellet-clad contact pressure. \\
\hline 177 & \({ }_{\text {LPLDV }}\) & . PLDV & NCRZ & Pellet dish volume. \\
\hline 178 & LQWRX & QWRX & NCRZ+1 & Metal-water reaction heat source. \\
\hline 179 & LRND & RND & \begin{tabular}{l}
NDRDS \\
(NCRZ+1)
\end{tabular} & Rod density. \\
\hline 180 & LRPOWF & RPOWF & NDRDS & Rod power density. \\
\hline 181 & LTCHFR & TCHFR & NCR2 & Wall temperature at CHF point. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Word (s) & Name & Array & Dimension & Description \\
\hline 182 & LTCHFF & TCHFE & NZMAX \({ }^{\prime}\) & \begin{tabular}{l}
Fine-mesh wall \\
temperature at CHF point.
\end{tabular} \\
\hline 183 & LTLELi) & TLEID & NZ:MAX & Leiden frost temperature. \\
\hline 184 & LIDHT & [UHT & NZMAX & Heat-transfer cell identifier. \\
\hline 185 & LNOHT & NOHT & 1 & Number of rows of heat-transfer nodes for each rod. \\
\hline 186 & LRADR & RADR & \begin{tabular}{l}
NURDS \\
(NCRZ+1)
\end{tabular} & Old radial node positions. \\
\hline 187 & LDRVUT & DRVDT & NCR2 & Derivative of vapor density with respect to vapor temperature. \\
\hline 188 & LURLDT & DRLDT & NCRZ & Derivative of liquid density with respect to liquid temperature. \\
\hline 189 & LRFT & RFT & NDRDS NZMAX & Old fine-uesh rod temperature. \\
\hline 190 & LRDHLO & RDHLO & NCRZ & Variable not currently implemented. \\
\hline 191 & LRUHVO & RDHVO & (NCR2 & Variable not currently implemented. \\
\hline 192 & LDRZ & DRZ & NCRZ+1 & Old zirconium dioxide reaction depth. \\
\hline 193 & LRFTN & RFTN & \begin{tabular}{l}
NDRDS \\
NZMAX
\end{tabular} & New fine-mesh rod temperatures. \\
\hline 194 & LRDHLR & RDHLR & NCRZ & Liquid HTC. \\
\hline 195 & LRDHVR & RDHVR & NCRZ & Vapor HTC. \\
\hline 196 & LDRZN & \begin{tabular}{l}
DRZN \\
i)
\end{tabular} & NCRZ+1 & New zirconium dioxide reaction depth. \\
\hline 197 & LCNDR & CNDR & \begin{tabular}{l}
NINT* \\
NCRZ+1
\end{tabular} & Rod heat conductivity at right of interface. \\
\hline 198 & LCPDR & CPDR & \begin{tabular}{l}
NINT* \\
(NCRZ+1)
\end{tabular} & Rod heat capacity at specific heat. \\
\hline 199 & LRNDR & RNDR & \begin{tabular}{l}
NINT \\
( \(\mathrm{NCRZ}+1\) )
\end{tabular} & Rod density at right of interface. \\
\hline 200-300 & PTDUM & PTDUM & 101 & Dummy variable. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Position(s) & Parameter & Description \\
\hline 1 & NODES & Number of heat-transfer nodes ( \(=0\) ). \\
\hline 2 & Jun1 & Junction number where fill is located. \\
\hline Position(s) & Parameter & Description \\
\hline 3 & IGJ & Iteration index of adjacent component. \\
\hline 4 & TYPE1 & Type of component adjacent to fill. \\
\hline 5 & JS1 & Junction sequence number at junction 1. \\
\hline 6 & FXMASS & Current mass flow rate out of fill. \\
\hline 7 & FSMASS & Time-integrated mass flow rate out of fill. \\
\hline 8 & IFTY & FILL type. \\
\hline 9 & IFTR & FILL trip number. \\
\hline 10 & NFTX & Number of FILL table pairs. \\
\hline 11 & Kpoint & Pointer to last utilized interval in the FILL velocity table. \\
\hline 12 & INEXTI & Implicitness level of adjacent component. \\
\hline 13 & FLOWIN & Initial mass flow into or from adjacent component. \\
\hline 14 & IFSV & The signal variable ID number that defines the fill table independent variable. \\
\hline 15 & NFRF & The number of rate factor table pairs whose rate factor is applied to the fill table independent variable. \\
\hline 16 & NPOINT & The rate factor table's previous pair number where interpolation was evaluated. \\
\hline 17 & TWTOLD & The fraction of a previous fill fluid dynamic state parameter that is averaged with the fill-table-defined parameter in defining the fill parameter value for this time step \((0.0 \leq\) TWTOLD \(<1.0)\). \\
\hline 18-175 & VLTdum(158) & Dummy variable. \\
\hline
\end{tabular}
B. FILL Pointer Table (For FILLS, NCELLS \(=1\) )
\begin{tabular}{|c|c|c|c|c|}
\hline Word(s) & Name & Array & Dimension & Description \\
\hline 1-66 & DUALPT & -- & -- & General pointer table. \\
\hline 67-108 & HYDROPT & -- & -- & General pointer table. \\
\hline 109 & LPTB & PTB & 2*NFTX & Pressure table. \\
\hline 110 & LTLTB & TLTB & 2*NFTX & Liquid temperature table. \\
\hline 111 & LTVTB & TVTB & 2*NFTX & Vapor temperature table. \\
\hline 112 & LALPTB & ALPTB & 2*NFTX & Void fraction table. \\
\hline 113 & LVMTB & VMTB & 2*NFTX & Liquid velocity table. \\
\hline 114 & LVVTB & VVTB & 2*NFTX & Vapor velocity table. \\
\hline 115 & LPATB & PATB & \(2 * N F T X\) & Air partial pressure table \\
\hline 116 & LRFTB & RFTB & \(2 * N F R F\) & The pointer for the fill-rate-factor table. \\
\hline 117-300 & PTDUM & PTDUM & 184 & Dummy variable. \\
\hline \multicolumn{5}{|l|}{(NFTX equals number of FILL table pairs.)} \\
\hline \multicolumn{5}{|l|}{VII. PIPE MODULE} \\
\hline \multicolumn{5}{|l|}{A. PIPE Variable-Length Table} \\
\hline \multicolumn{2}{|l|}{Position(s)} & Parameter & \multicolumn{2}{|l|}{Description} \\
\hline 1 & & ODES & \multicolumn{2}{|l|}{Number of wall heat-transfer nodes.} \\
\hline 2 & & CELLS & \multicolumn{2}{|l|}{Number of fluid cells.} \\
\hline 3 & & UN1 & \multicolumn{2}{|l|}{Junction number of low-numbered pipe end.} \\
\hline 4 & & UN2 & \multicolumn{2}{|l|}{Junction number of high-numbered pipe end.} \\
\hline 5 & & MAT & \multicolumn{2}{|l|}{Material identification.} \\
\hline 6 & & RADIN & \multicolumn{2}{|l|}{Inner radius of pipe wall.} \\
\hline 7 & & TH & \multicolumn{2}{|l|}{Thickness of pipe wall.} \\
\hline 8 & & HOUTL & HTC bet 1iquid. & n outer boundary of pipe wa \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Position(s) & Parameter & Description \\
\hline 9 & HOUTV & HTC between outer boundary of pipe wall and vapor. \\
\hline 10 & TOUTL & Liquid temperature outside pipe. \\
\hline 11 & TOUTV & Vapor temperature outside pipe. \\
\hline 12 & ICJ 1 & Iteration index of adjacent component at junction 1 . \\
\hline 13 & IG 2 & Iteration index of adjacent component at junction 2. \\
\hline 14 & TYPE1 & Type of adjacent component at junction 1. \\
\hline 15 & TYPE2 & Type of adjacent component at junction 2. \\
\hline 16 & JS1 & Junction sequence number at low-numbered pipe end. \\
\hline 17 & JS2 & Junction sequence number at high-numbered pipe end. \\
\hline 18 & ISOLLB & Indicator for velocity update at junction 1. \\
\hline 19 & ISOLRB & Indicator for velocity update at junction 2. \\
\hline 20 & ICHF & CHF calculation option. \\
\hline 21 & IHYDRO & One-dimensional hydrodynamics option. \\
\hline 22 & BSMASS & Time-integrated mass flow out of pipe. \\
\hline 23-24 & FL(2) & Liquid mass flow corrections for mass constructive checks. \\
\hline \[
25-26
\] & FV(2) & Vapor mass flow corrections for mass constructive checks. \\
\hline 27 & CPOW & Special pipe power input. \\
\hline 28 & KPOINT & Current position in pipe power table. \\
\hline 29 & NPOWTB & Length of pipe power table. \\
\hline 30 & IACC & Pipe accumulator option switch. \\
\hline 31 & QINT & Initial water volume in pipe. \\
\hline 32 & QOUT & Volume of liquid that has been discharged from pipe used as accumulator. \\
\hline
\end{tabular}




\begin{tabular}{|c|c|c|}
\hline Position(s) & Paraneter & Description \\
\hline 40 & TOUTL & Liquid temperature outside wall. \\
\hline 41 & TOUTV & Vapor temperature outside wall. \\
\hline 42 & JS1 & Junction sequence number at low-numbered pump end. \\
\hline 43 & JS2 & Junction sequence number at high-numbered pump end. \\
\hline 44 & ICHF & CHF calculation option. \\
\hline 45 & IHYDRO & One-dimensional hydrodynamics option. \\
\hline 46 & NDMAX & Size of scratch storage array. \\
\hline 47 & MFLOW & Pump mass flow"rate. * \\
\hline 48 & IPMPTR & Pump trip identification. \\
\hline 49 & NPMP TX & Number of pump-speed table entries. \\
\hline 50 & ISAVE & The pump speed table's previous pair number where interpolation was evaluated. \\
\hline 51 & ICOND & Trip condition. \\
\hline 52 & OPTION & Pump curve option. \\
\hline 53 & BSMASS & Time-integrated mass flow out of pump. \\
\hline 54 & DSMOM & Derivative of pump head with velocity. \\
\hline 55-56 & FL(2) & Liquid mass flow corrections for mass conservation checks. \\
\hline 57-58 & FV(2) & Vapor mass flow corrections for mass conservation checks. \\
\hline 59 & ALPHAO & Void fraction used on previous time step for pump head calculation. \\
\hline 60 & IPMPSV & ```
The signal variable ID number
that defines the pump speed table
independent variable.
``` \\
\hline \[
{ }^{61}
\] & NPMPRF & The number of rate factor table pairs whose rate factor is applied to the pump speed table independent variable. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Position(s) & Parameter & & Description \\
\hline 62 & RTIVP & " & Coefficient for the vapor momentum source term at the left edge of the primary tee-junction cell. \\
\hline 63 & RT2LP & & Coefficient for the liquid momentum source term at the right edge of the primary tee-junction cell. \\
\hline 64 & R'T2 VF & & Coefficient for the upper monentun source lerm at the right edge of the primary tee junction. \\
\hline 65 & CAP & & Fraction of liquid velocity at the left face of the primary tee-junction cell contributing to the momentum transfer into the tee-side leg. \\
\hline 66 & CAlP & & Fraction of liquid velocity at the right face of the primary tee-junction cell contributing to the momentum transfer into the primary tee-side leg. \\
\hline 67 & CAVP & & Fraction of vapor velocity at the left face of the primary tee-junction cell contributing to the momentum transfer into the primary tee-side leg. \\
\hline 68 & calve & & Fraction of vapor velocity at the right face of the prinary tee-junction cell contributing to the momentum transfer into the primary tee-side leg. \\
\hline 69 & ISLBTP & & Variable not currently implemented. \\
\hline 70 & ISRBTP & & Variable not currently implemented. \\
\hline 71 & JCELLS & & Junction cell index of a secondary tee connection. \\
\hline 72 & IHYD3 & & Hydrodynamics option of secondary tee. \\
\hline 73 & NCELL3 & & Number of cells in secondary tee. \\
\hline 74 & JUN3 & \(\therefore\) & Junction number of the high-numbered end of a secondary tee. \\
\hline 75 & costs & & Cosine of the angle from the low-numbered segment to the secondary side. \\
\hline 76 & NCELLS & & Total number of fluid cells. NCELLI + NCELL2+1. \\
\hline 77 & ICJ3 & & Iteration index of adjacent component at JUN3. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Position(s) & Parameter & Description \\
\hline 78 & TYPE3 & Type of adjacent component at JUN3. \\
\hline 79 & ISOL3 & Indicator for velocity update at JUN3. \\
\hline 80 & JS3 & Junction sequence number at JUN3. , \\
\hline 81 & JCELLP & Junction cell index of a primary tee connection. \\
\hline 82 & IHYD4 & Hydrodynamics option of a primary tee. \\
\hline 83 & NCELL4 & Number of cells in primary tee. \\
\hline 84 & JUN4 & Junction number of the high-numbered end of a primary tee. \\
\hline 85 & COSTP & Cosine of the angle of a primary tee. \\
\hline 86 & NCELST & NCELL1 + NCELL2 + NCELL3 + 2. \\
\hline 87 & ICJ4 & Iteration index of adjacent component at JUN4. \\
\hline 88' & TYPE4 & Type of adjacent component at Jun4. \\
\hline 89 & ISOL4 & Indicator for velocity update at JUN4. \\
\hline 90 & JS4 & Junction sequence number at JUN4. \\
\hline 91-175 & VLTDUM \({ }^{\text {(85 }}\)) & Dummy variable. \(\quad\) " \\
\hline \[
\frac{\text { B. } \quad \text { STCEN }}{\text { +NCELL4+3NCE }}
\] & ter Table & STGEN, NCELLS \(=\) NCELL1 + NCELL2 + NCELL3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Word (s) & Name & Array & Dimension & Description \\
\hline 1-66 , & DUALPT & -- & -- & General pointer table. \\
\hline 67-108 & HYDROPT & -- & -- & General pointer table. \\
\hline 109-111 & INTPT \({ }^{\prime \prime}\) & -- & -- & General pointer table. \\
\hline \[
112-123
\] & 'HEATPT & -- & -- & General pointer table. \\
\hline 124 & LHLEFF & HLEFF & NCELL2 & Effective wall-to-liquid HTC. (Stored within HIL array.) \\
\hline 125 & LHVEFF & HVEFF* & NCELL2 & Effective wall-to-vapor HTC. (Stored within HIV array.) \\
\hline 126 & .LTWEFF & TWEFF & NODES*NCELL2 & Effective wall temperature. (Stored within TW array.) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Position(s) & Parameter & Description \\
\hline 9 & MATID & Material identification for tee. \\
\hline 10 & Cost & Cosine of the angle from the low-numbered segment to the secondary tube. \\
\hline 11 & RADIN1 & Inner radius of the primary tube. \\
\hline 12 & RADIN2 & Inner radius of the secondary tube. \\
\hline 13 & TH1 & Wall thickness of the primary tube. \\
\hline 14 & TH2 & Wall thickness of the secondary tube. \\
\hline 15 & HOUTL1 & HTC to liquid at the outer boundary of the primary tube wall. \\
\hline 16 & HOUTV1 & HTC to vapor at the outer boundary of the primary tube wall. \\
\hline 17 & HOUTL2 & HTC to liquid at the outer boundary of the secondary tube wall. \\
\hline 18 & HOUTV2 \({ }_{\text {, }}\) & HTC to vapor at the outer boundary of the secondary tube wall. \\
\hline 19 & - TOUTL1 & Temperature of liquid outside the primary tube wall. \\
\hline 20 & \({ }_{0}\) TOUTV1 & Temperature of vapor outside the primary tube wall. \\
\hline 21 & TOUTL2 & Temperature of liquid outside the secondary tube wall. \\
\hline 22 & TOUTV2 & Temperature of vapor outside the secondary tube wall. \\
\hline 23 & ICJ 1 & Iteration index of adjacent component to tee at JUN1. \\
\hline -2 24 & IGJ 2 & Iteration index of adjacent component to tee at JUN2. \\
\hline 25 & ICJ 3 & Iteration index of adjacent component to tee at JUN3. \\
\hline 26 & TYPE1 & Type of adjacent component at JUN1. \\
\hline 27 & TYPE2 & Type of adjacent component at JUN2. \\
\hline 28 & TYPE3 & Type of adjacent component at JUN3. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Position(s) & Parameter & Description \\
\hline 12 & ICRR & Core outer radial boundary segment number, RAD (ICRR). \\
\hline 13 & LNPTRL & Number of level data pointers. \\
\hline 14 & LENLD & Length of level data. \\
\hline 15 & LFVL & Relative position of old fundamental variables of level data. \\
\hline 16 & LFVNL & Relative position of new fundamental variables of level data. \\
\hline 17 & LNFVL & Length of fundamental variables of level data. \\
\hline 18 & LNPTRR & Number of pointers of rod data. \\
\hline 19 & IITOT & Inner iteration counter. \\
\hline 20 & LENRD & Length of rod data. \\
\hline 21 & LFVR & Relative position of old fundamental variables of rod data. \\
\hline 22 & LFVNR & Relative position of new fundamental variables of rod data. \\
\hline 230 & LNFVR & Length of fundainental variables of rod length. \\
\hline 24 & NCSR & Number of cell sources (connections). 0 \\
\hline 25 & INHSMX & Number of interfaces between dissimilar materials in the vessel slabs. \\
\hline 26 & NCRXX & Total number of core volumes. \\
\hline 27 & NCRX & Maxinum number of core volumes per level. \\
\hline 28 & NCRZ & Number of core levels. \% \\
\hline 29 & NDM1 & NODES - 1. \\
\hline 30 & HGAPO & Rod gap-conductance coefficient (MATRD \(=3\)). \\
\hline 31 & NFUEL & Number of nodes in fuel pellet. \\
\hline 32 & NMWNX & Metal-water reaction flag. \(\quad(0=\) no calculation; \(1=\) calculation.) \\
\hline 33 & NINT & Number of interfac̃es between dissimilar materials in rods. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Position(s) & Parameter & Description \\
\hline 109 & nrhmax & Location of supplemental rod peak clad temperature. \\
\hline 110 & TRHMAX & Maximum supplemental rod temperature. \\
\hline 111 & IZBK2 & Switch for re-donor cell logic. \\
\hline 112 & BSMSSN & Integrated Eluid flow from vessel at end of tine step. \\
\hline 113 & NVENT & Number of cells with vent valves in outer radial surface. \\
\hline 114-116 & RCEORM(3) & The form number for the reactivity coefticienc type. \\
\hline \[
\begin{gathered}
11 \\
117-119
\end{gathered}
\] & RCA(3) & The zeroth order polynomial term coefficient defining the react lvity coefficient. \\
\hline 120-122 & RCB(3) & The first order polynomial tern coefficient defining the reactivity coefficient. \\
\hline 123-125 & RCC(3) & The second order polynomial term coefficient defining the reactivity coefficient. \\
\hline 126-128 & XO(3) & The old time value of the independent variable of the second order polynowial defining the reactivity coefficient. \\
\hline 129-131 & XN(3) & The new tine value of the independent variable of the second order polynomial defining the reactivity coefficient. \\
\hline 132 & RMCKO & The reactor multiplication constant at the beginning of the previous time step. \\
\hline 133 & RMCK & The reaction multiplication constant at the beginning time of the present time step. \\
\hline 134 & RMCKN & The reactor multiplication constant estimate at the ending time of the present time step. \\
\hline 135 & REACTN & The total reactivity estimate at the erding time of the present time step. \\
\hline 136 & REAC & The reactivity feedback at the beginning of the previous tine step. \\
\hline 137 & REACE & The reactivity feedback at the beginning of the present time step. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Position(s) & Parameter & Description \\
\hline 138 & KEACN & The reactivity feedback estimate at the end of the present \(t\) fine step. \\
\hline 139 & STCMET & The problem time at which the last reactivity change was summed to variable storage for later printout(s). \\
\hline 140 & SDT \(\cdot\) & The time interval since the last reactivity change printout(s). \\
\hline 141-152 & SRP(12) & The summer programed reactivity and feedback reactivity changes since the last printout, the last table printout, and the beginning of the problem. \\
\hline 153 & NRTS & The number of time steps the programmed reactivity and reactivity feedback changes are summed over for printout. \\
\hline 154 & NODHS & Number of nodes in the heat slab. \\
\hline 155 & NPSZ & The number of axial power shapes in the axial power shape table. \\
\hline 156 & IPSTR & The axial power shape trip ID number. \\
\hline 157 & IPSSV & The signal variable ID number that defines the axial power shape table independent variable. \\
\hline 158 & NPSRF & The number of rate factor table pairs whose rate factor is applied to the axial power shape table independent variable. \\
\hline 159 & IRPSV & The signal variable ID number that defines the power or reactivity table independent variable. \\
\hline 160 & NRPRF & The number of rate factor table pairs whose rate factor is applied to the power or reactivity table independent variable. \\
\hline 161 & KPOINT & The power or reactivity table's previous pair number where interpolation was evaluated. \\
\hline 162 & NPOINT & The rate factor tablés previous pair number where the rate factor applied to the power or reactivity table independent variable was interpolated. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline Word(s) & Name & Array & Dimension & & Description \\
\hline 11 & LJSN & JSN & NCSR & & Junction scquence nurber associated with source. \\
\hline 12 & LICJ & ICJ & NCSR & & Adjacent cimponent associated with source. \\
\hline 13 & LMSC & MSC & NCSR & & Absolute cell number of source. \\
\hline 14 & LNSRL & NSRL & NASX & & Number of sources on level. \\
\hline 15 & LISOLB & ISOLB & NCSR & & Indicator for velocity update. \\
\hline 16 & LICREP
\(\square\) & LZREP & VidSX & & Indivaiut for levels to be re-donor celled. \\
\hline \[
\text { /// } 17
\] & LSVC & SVC & NCSR*2 & 3 & Vapor continuity source. \\
\hline 18 & LSAC & SAC & NCSR*2 & & Air continuity source. \\
\hline 19 & LSLC & SLC & NCSR*2 & & Liquid continuity source. \\
\hline 20 & LSVE & SVE & NCSR*2 & & Vapor energy source. \\
\hline 21 & LSLE & SLE & NCSR*2 & & Liquid energy source. \\
\hline 22 & LDVVDP & DVVDP & NCSR & & Derivative of vapor source velocity for pressure. \\
\hline 23 & LDVLDP & DVLDP & NCSR & & Derivative of liquid source velocity for pressure. \\
\hline 24 & LSMOMV & SMOMV & NCSR*6 & & Vapor monentum source. \\
\hline 25 & LSMOML & SMOML & NC3R*6 & & Liquid momentum source. \\
\hline 26 & LVELSV & VELSV & NCSR & & Vapor source velocity. \\
\hline 27 & LVELSL & VELSL & NCSR & & Liquid source velocity. \\
\hline 28 & LPSOLD & PSOLD & NCSR & & Old source pressure. \\
\hline 29 & LPSNEW & PSNEW & NCSR & " & New source pressure. \\
\hline 30 & LRDPWR & RDPWR & NODES & & Rod relative radial power density. \\
\hline 31 & LCPOWR & CPOWR & NCRX & & Relative power per rod. \\
\hline 32 & LZPOWR & ZPOWR & NCRZ +1 & & Relative axial power density. \\
\hline 33 & LNRDX & NRDX & NCRX & & Number of rods in volume. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Word(s) & Name & Array & Dimension & Description \\
\hline 34 & LRPKF & KPKF & NKOUS & Rod power peaking Eactor. \\
\hline 35 & LIUROD & IUROD & NRODS & Cell identifiler for rods. \\
\hline 36 & LRADRD & RADRD & NODES & Kod node radius (cold). \\
\hline 37 & LMATRD & MATRD & NOUES-1 & Rod material identification. \\
\hline 38 & LNFAX & NFAX & NCR2 & Rod fine-mesh noding factor. \\
\hline 39 & LBETA & BETA & NDGX & Delayed group neutron fraction. \\
\hline 40 & Llamba & LAMUA & NUEX & vecay constant of delayed groups. \\
\hline 41 & LLANDH & LAMDH & NDHX & Decay constant of decay heat groups. \\
\hline 42 & LEUH & EDH & NDHX & Energy yield fraction of decay heat groups. \\
\hline 43 & LPNTB & PWTB & NPWX*2 & Power table. \\
\hline 44 & LFPU02 & FPUO2 & NCRX & Fraction of plutonium oxide in mixed oxide fuel fraction. \\
\hline 45 & LFTD & FTD & NCRX & Fuel density (fraction of theoretical). \\
\hline 46 & LGMIX & GMIX & NCRX*7 & Mole fraction of gap gas constituents. \\
\hline 47 & LGMLES & GMLES & NCRX & Moles of gap gas. \\
\hline 48 & LPGAPI & PGAPT & NCRX & Gap total gas pressure. \\
\hline 49 & LPLVOL & PLVOL & NCRX & Rod plenum volume. \\
\hline 50 & LPSLEN & PSLEN & NCRX & Pellet stack length. \\
\hline 51 & LCUG & CUG & NDGX & 01d concentration of delayed neutron groups. \\
\hline 52 & LCDH & CDH & NDHX & Old concentration of decay heat groups. \\
\hline 53 & LCLEN & CLEN & NCRX & 01d total cladding length. \\
\hline 54 & LCDGN & CDGN & NDGX & New concentration of delayed neutron groups. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Word(s) & Name & Array & Dimension & Description \\
\hline 72 & LICKN & ICRN & NCLX & Core volume number. \\
\hline 73 & LTCHE & TCHF & NCRX & Rod critical temperature. \\
\hline 74 & LIURG & İURG & NCRX & Flow-regime flag. \\
\hline 75 & LRDHL & RDHL & NCRX & Average-rod HTC (Liquid). \\
\hline 76 & LRDIIV & RDAV & NCRX & Average-rod HTC (vapor). \\
\hline 77 & LRDA & RDA & NORXX & Total rod area. \\
\hline 78 & 1.519: & T \(116 \%\) & \(\therefore C L \therefore\) & Heal sidib number. \\
\hline 79 & LHSA & HSA & NCLX & Heat-slab area. \\
\hline 80 & LHSX & HSX & NCLX*NODHS & Spacing of heat transfer nodes in the slabs. \\
\hline 81 & LTCHFS & TCHFS & NCLX & Slab critical temperature. \\
\hline 82 & LIDRGS & IDRGS & NCLX & Slab heat-transfer regime flag. \\
\hline 83 & LHSHL & HSHL & NCLX & Slab HTC (liquid). \\
\hline 84 & LHSHV & HSHV & NCLX & Slab HTC (vapor). \\
\hline 85 & LARV & ARV & NCLX & Product of void fraction and vapor density. \\
\hline 86 & LRMEM & RMEM & NCLX & Mixture internal energy. \\
\hline 87 & LROM & ROM & NCLX & Mixture density. \\
\hline 88 & LVM & VM & NCLX*3 & Mixture velocity. \\
\hline 89 & LVLC & VLC & NCLX & Liquid cross-flow velocity. \\
\hline 90 & LVVC & VVC & NCLX & Vapor cross-flow velocity. \\
\hline 91 & LQRD & QRD & NCLX & Rod heat flux. \\
\hline 92 & LQSL & QSL & NCLX & Slab heat flux. \\
\hline 93 & LCFZL & CFZL & NCLX*3 & Total friction factors (1iquid). \\
\hline 94 & LCF2V & CFZV & NCLX*3 & Total friction factors (vapor). \\
\hline 95 & LFRICL & FRICL & NCLX*3 & Friction multipliers (liquid). \\
\hline 96 & LFRICV & FRICV & NCLX*3 & Friction multipliers (vapor). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Word(s) & Name & Array & Dimension & Description \\
\hline 97 & LDVV & DVV & NCLX*3 & Derivative used in momentun update (1iquid). \\
\hline 98 & LDLL & DLL & NCLX*3 & Derivative used in momentum update (vapor). \\
\hline 99 & LVOL & VOL & NCLX & Cell fluid volumes. \\
\hline 101 & LVOLG & VOLG & NCLX & Cell geometric volumes. \\
\hline 102 & LFA & FA & NCLX*3 & Cell-edge fluid areas. \\
\hline 103 & LFAG & FAG & NCLX*3 & Cell-edge geometric areas. \\
\hline 104 & LGRAV & GRAV & NCLX & Gravitation terms. \\
\hline 105 & LMFRL & MFRL & NCLX & Liquid mass flow. \\
\hline 106 & LMFKV & MFRV & NCLX & Vapor mass flow. \\
\hline 107 & LHD & HD & NCLX*3 & Hydraulic diameters. \\
\hline 108 & LCPL & CPL & NCLX & Liquiá specific heat at constant pressure. \\
\hline 109 & LCPV & CPV & NCLX & Vapor specific heat at constant pressure. \\
\hline 110 & LTSAT & TSAT & NCLX & Saturation temperature. \(\quad\) \\
\hline 111 & LTSSN & TSSN & NCLX & Saturation temperature corresponding to steam partial pressure. \\
\hline 112 & LCL & CL & NCLX & Liquid conductivity. \\
\hline 113 & LCV & CV & NCLX & Vapor conductivity. \\
\hline 114 & LVISL & VISL & NCLX & Liquid viscosity. \\
\hline 115 & LVISV & VISV & NCLX & Vapor viscosity. \\
\hline 116 & LHFG & HFG & NCLX & Latent heat of vaporization. \\
\hline 117 & LRDTL & RDTL & NCRX & Average-rod temperature to liquid. \\
\hline 118 & LRDTV & RDTV & NCRX & Average-rod temperature to vapor. \\
\hline 119 & LHLV & HLV & NCLX & Old interfacial HTC. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Word(s) & Name & Array & Dimension & Description \\
\hline 120 & LALV & ALV & NCLX & O1d interfacial area. \\
\hline 121 & LFRICI & FRICI & NCLX*3 & 0ld interfacial friction factors. \\
\hline 122 & LALD & ALD & NCLX & Old droplet fraction. \\
\hline 123 & LAND & AND & NCLX & Reserved for a droplet field. \\
\hline 124 & LPA & PA & NCLX & O1d air partial pressure. \\
\hline 125 & LROA & ROA & NCLX & Old air density. \\
\hline 126 & LEA & EA & NCLX & Old air energy \\
\hline 127 & LVD & VD" & NCLX*3 & Storage currently not implemented. \\
\hline 128 & LHST & HST & NCLX & O1d heat-slab temperatures. \\
\hline 129 & LROHS & ROHS & NCLX*NODHS & SLAB densities. \\
\hline 130 & LCPHS & CPHS & NCLX*NDHS & SLAB specific heats. \\
\hline 131 & LCNHS & CNHS & NCLX*NODHS & SLAB conductivities. \\
\hline 132 & LEMHS & EMHS & NCLX*NODHS & SLAB enmissivities. \\
\hline 133 & Lmaths & maths & NCLX*NHSML & SLAB material ID numbers. \\
\hline 134 & LALP & ALP & NCLX & Old vapor fraction. \\
\hline 134 & LHSHLO & HSHLO & NCLX & Variable not currently implemented. \\
\hline 135 & LHSHVO & HSHVO & NCLX & Variable not currently implemented. \\
\hline 136 & LBIT & BIT & NCLX -m & Bit flag. \\
\hline 137 & ' LROV & ROV & NCLX & O1d vapor density. \\
\hline 138 & LROL & ROL & NCLX & Old liquid density. \\
\hline 139 & LVV & VV & NCLX*3 & Old vapor velocity. \\
\hline 140 & LVL & VL & NCLX*3 & 01d 1iquid velocity. \\
\hline 141 & LEV & EV & NCLX & Old vapor internal energy. \\
\hline 142 & LEL & EL & NCLX & O1d liquid internal energy. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Word (s) & Name & Array & Dimension & Description \\
\hline 143 & LTV & TV & NCLX & Old vapor temperature. \\
\hline 144 & LTL & TL & NCLX & 01d Iiquid temperature. \\
\hline 145 & LP & P & NCLX & 01d pressure. \\
\hline 146 & LHLVN & HLVN & NCLX & New interfacial HTC. \\
\hline 147 & LALVN & ALVN & NCLX & New interfacial area. \\
\hline 148 & LFRCIN & FRCIN & NCLX*3 & New interfiarial friction factors. \\
\hline 149 & LALDN & ALDN & NCLX & New droplet fraction. \\
\hline 150 & LANDN & ANDN & NCLX & Reserved for a droplet field. \\
\hline 151 & LPAN & PAN & NCLX & New air partial pressure. \\
\hline 152 & LROAN & ROAN & NCLX & New air density. \\
\hline 153 & LEAN & EAN & NCLX & New air energy. \\
\hline 154 & LVDN & VDN & NCLX*3 & Variable not currently implemented. \\
\hline 155 & LHSTN & HSTN & NCLX & New heat-slab temperatures. \\
\hline 156 & LALPN & ALPN & NCLX & New vapor fraction. \\
\hline 157 & LBITN & BITN & NCLX & Bit flag. \\
\hline 158 & LROVN & ROVN & NCLX & New vapor density \(\because\) \\
\hline 159 & LROLN & ROLN & NCLX & New liquid density. \\
\hline 160 & LVVN & VVN & NCLX*3 & New vapor velocity. \\
\hline 161 & LVLN & VLN & NCLX* 3 & New liquid velocity. \\
\hline 162 & LEVN & EVN & NCLX & New vapor internal energy * \\
\hline 163 & LELN & ELN & NCLX & New liquid internal energy. \\
\hline 164 & LTVN & TVN & NCLX & New vapor remperature. \\
\hline : & \multicolumn{4}{|r|}{--Items Below are Repeated for Each Rod--} \\
\hline 165 : & LTLN & TLN & NCLX & New 1iquid temperature. \\
\hline 166 & LPN & PN & NCLX & New pressure. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Word(s) & Name & Array & Dinension & Description \\
\hline 167 & LROHSN & ROHSN & LNHSNX*NCLX & Slab density at a material interface. \\
\hline 168 & LCPHSN & CPHSN & INHSMX*NCLX & Slab specific heat at a material interface. \\
\hline 169 & LCNHSN & CNHSN & INHSMX*NCLX & Slab conductivities at a material interface. \\
\hline 170 & LALPR & ALPR & NCRZ+2 & Vapor fraction. \\
\hline 171 & LALVR & ALVR & \(\mathrm{NCRZ}+2\) & Interfacial area. \\
\hline 172 & LBURN & BURN & NCRZ+1 & Fuel burnup. \\
\hline 173 & LCLR & CLR & NCRZ+2 & Liquid conductivity. \\
\hline 174 & LCND & CND & \begin{tabular}{l}
NODES* \\
(\({ }^{(N C R Z+1)}\)
\end{tabular} & Rod conductivity. \\
\hline 175 & LCNDR & CNDR & \begin{tabular}{l}
NINT** \\
(\(\mathrm{NCRZ}+1\))
\end{tabular} & Rod heat conductivity at right of interface. \\
\hline 176 & LCPLR & CPLR & NCR2+2 & Liquid specific heat. \\
\hline 177 & LCPND & CPND & \[
\begin{aligned}
& \text { NODES* } \\
& (\text { NCRZ+1) }
\end{aligned}
\] & Rod specific heat. \\
\hline 178 & LCPDR & CPDR & \begin{tabular}{l}
NINT* \\
(\(\mathrm{NCRZ}+1\))
\end{tabular} & Rod heat capacity at specific heat. \\
\hline 179 & LCPVR & CPVR & NCRZ+2 & Vapor specific heat. \\
\hline 180 & LCVR & CVR & NCRZ+2 & Vapor conductivity. \\
\hline 181 & LZHT & ZHT & NZMAX & Axial location of heat-transfer node. \\
\hline 182 & LEMIS & EMIS & \[
\begin{aligned}
& \text { NODES* } \\
& \text { (NCRZ+1) }
\end{aligned}
\] & Rod emissivity. \\
\hline \(183^{\circ}\) & LHDR & HDR & NCRZ+2 & Rod-bundle hydraulic diameter. \\
\hline 184 & LHFGR & HFGR & NCRZ+2 & Latent heat of vaporization. \\
\hline 185 & LHGAP & HGAP & NCRZ+1 & Gap conductance. \\
\hline 186 & LHLVR & HLVR & NCRZ+2 & Interfacial HTC. \\
\hline 187 & LRDHLR & RDHLR & NCRZ & Liquid HTC. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Word(s) & Name & Array & Dimension & Description \\
\hline 188 & LRDHVR & RDHVK & NCRZ & Vapor HTC. \\
\hline 159 & LHRFL & HHFL & NCiLAX & Fine-mesh liquid HTC." \\
\hline 190 & LHRFV & HRFV & N2. MAX & Fine-mesh vapor HTC \\
\hline 191 & LHRLL & HRLL & NCRZ+1/ & Liquid heat-transfer coefficient. \\
\hline 192 & LHRLV & HRLV & NCRZ +1 & Vapor heat-transfer coefficient. \\
\hline 193 & LIDRGK & IDRGK & \(\mathrm{NCKZ}+2\) & Flow-regime flag. \\
\hline 194 & Lihte & IHTE & NZMAX & Fine-mesh heat-transfer regime flag. \\
\hline 195 & LPR & PR & NCRZ +2 & Coolant pressure. \\
\hline 196" & LPGAP & PGAP & NCRZ+1 & Gap local gas pressure. \\
\hline 197 & LPINT & YINT & NCRZ +1 & Pellet-clad contact pressure. \\
\hline 198 & LPLDV & PLDV & NCRZ+1 & Pellet dish volume. \\
\hline 199 & LQWRX & QWRX & NCRZ
\[
<
\] & Metal-water reaction heat source. \\
\hline 200 & LRDTLR & RDTLR & NCR2 & Average-rod wall temperature seen by liquid. \\
\hline 201 & LRDTVR & RDTVR & NCRZ & Average-rod wall temperature seen by vapor. \\
\hline 202 & LRND & RND & NODES*
\[
(\mathrm{NCRZ}+1)
\] & Rod density. \\
\hline 203 & LRNDR & RNDR & \[
\begin{aligned}
& \text { NINT } \\
& \left(\text { NCRZ }^{2}\right)
\end{aligned}
\] & Rod density at right of interface. \\
\hline 204 & LROLR & ROLR & NCRZ+2 & Liquid density. \\
\hline 205 & LROVR' & ROVR & \(\mathrm{NCRZ}+2{ }^{\text {- }}\) & Vapor density." \\
\hline 206 & LROMR & ROMR & NCRZ +2 & Mixture density. \\
\hline 207 & LRPOWF & RPOWF & \begin{tabular}{l}
NODES* \\
(\(\mathrm{NCRZ}+1\))
\end{tabular} & Rod power density. \\
\hline 208 & LSIGR & SIGR & NCRZ +2 & :Surface tension. \\
\hline 209 & LTCHFR & TCHFR & NCRZ & Wall temperature at CHF point. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Word (\(s^{\prime}\)) & Name & Array & Dimension & Description \\
\hline 210 & LTCHFF & TCHFF & NZMAX & Fine-inesh wall temperature at CHF point. \\
\hline 211 & LTLEID & TLEID & NZMAX & Leidenfrost temperature. \\
\hline 212 & LTLR & TLR & NCRZ+2 & Liquid temperature. \\
\hline 213 & LTSATR & TSATR & NCRZ+2 & Saturation temperature. \\
\hline 214 & LTVK & TVR & NCRZ+2 & Vapor temperature. \\
\hline 215 & LVISLR & VISLR & NCRZ+2 & Liquid viscosity. " \\
\hline 216 & LVISVR & VISVR & NCRZ+2 & Vapor viscosity. \\
\hline \[
217
\] & LVLCR & VLCK & NCRZ+2 & Liquid cross-flow velocity. \\
\hline 218 & LVLZR & VLSR & NCKZ+2 & Axial liquid velocity. \\
\hline 219 " & LVVCR, & VVCR & NCRZ+2 & Vapor cross-flow velocity. \\
\hline 220 & LVVZR & VVZR & NCRZ+2 & Axial vapor velocity. \\
\hline 221 & LVIVR & VMZR & NCRZ+2 & Axial mixture velocity. \\
\hline 222 & LIDHT & IDHT & NZMAX & Heat-transfer cell identifier. \\
\hline 223 & LNOHT & NOHT & 1 & Number of rows of heat-transfer nodes for each rod. \\
\hline 224 & LDRZ & DRZ & NCRZ +1 & Old zirconium dioxide reaction depth. \\
\hline 225 & LBITR & BITR & 0 & Variable not currently implemented. \\
\hline 226 & LRADR & RADR & \begin{tabular}{l}
NODES*: \\
(NCRZ+1)
\end{tabular} & , 01d radial node positions. \\
\hline \[
227
\] & LRFT & RFT & NODES*NZMAX & 01d fine-mesh rod temperatures. \\
\hline 228 & LDRZN & DRZN & NCRZ+1 & New zirconium dioxide reaction depth. \\
\hline 229 & LBITRN & BITRN & \(0 \because\) & Variable not currently implemented. \\
\hline \[
230
\] & LRADRN & RADRN & \begin{tabular}{l}
NODES* \\
(NCRZ+1)
\end{tabular} & New radial node positions. \\
\hline 231. & LRFTN & RFTN & NODES*NZMAX & New fine-mesh rod temperatures. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Word (s) & Name & Array & Dimension & Description \\
\hline 232 & LRDHLO & RDHLO & NCRZ & Variable not currently implemented. \\
\hline 233 & LRDHVO & RDHVO & NCRZ & Variable not currently implemented. \\
\hline 234 & LELR & ELR & NCRZ+2 & 01d liquid internal energy. \\
\hline 235 & LEVR & EVR :, & NCRZ+2 & 01d vapor internal energy. \\
\hline 236 & LDRVDT & DRVDT & NCRZ+2 & Derivative of vapor density for vapor temperature. \\
\hline 237 & LDRLDT & DRLDT & NCRZ+2 & Derivative of liquid density for liquid temperature. \\
\hline 238 & LVOLR & VOLR & NCRZ+2 & The pointer variable for the fluid volume in axial mesh cells associated with the fuel rod. \\
\hline 239-300 & PTDUM & PTDUM & 62 & Dummy variable. \\
\hline
\end{tabular}

Many people contributed to the TRAC-PF1 code development and to this report. Because it was a team effort, there was considerable overlap in responsibilities and contributions. The participants are listed according to their primary activity. Those with the prime responsibility for each area are listed first.

PRINCIPAL INVESTIGATORS:
FLUID DYNAMICS:
heat transfer:
CODE DEVELOPMENT AND PROGRAMMING:

TRIPS AND CONTROLS:
GRAPHICS:
SAMPLE PROBLEM:
REPORT COMPILATION:

REPORT EDITING:
REPORT TYPING:

Dennis R. Liles and John H. Mahaffy
John H. Mahaffy, Dennis R. Liles, Susan B. Woodruff, and Manjit S. Sahota

Frank L. Addessio and David A. Mandell
Ronald P. Harper, Paul T. Giguere Jennie R. Netuschil, and Terry F. Bott

Robert G. Steinke
Michael R. Turner
Manjit S. Sahota and Paul T. Giguere
John H. Mahaffy, Dennis R. Liles, and Vera B. Metzger

Nancy N. Sheheen
Nancy Warnes

In addition to those listed above, acknowledgment is made of all others who contributed to earlier versions of TRAC. In particular, Richard Pryor and James Sicilian's major contributions to the code architecture still are used in the code. We also acknowledge useful discussions and technical exchanges from: Louis Shotkin, Novak Zuber, and Stan Fabic, US Nuclear Regulatory Commission; Tony Hirt, Dan Butler, Frank Harlow, William Rivard, and Burton Wendroff, Los Alamos National Laboratory; John Meyer and Peter Griffith, Massachusetts Institute of Technology; George Bankoff, Northwestern University; and Garrett Birkhoff, Harvard University. Thanks also are due to all Los Alamos users who supplied comments and corrections to this: document, particularly Charles Watson, Gordon Willcutt, and James Lime.

\section*{REFERENCES}
1. G. Kocomustafaogullari, "Thermo-Fluid Dynamics of Separated Two-Phase Flow," Ph.D. Thesis, School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia (December 1971).
2. M. Ishii, Thermo-Fluid Dynamic Theory of Two-Phase Flow, Collection de la Direction des Etudes et Recherches D Electricite de France, Eyrolles, Paris (1975).
3. F. H. Harlow and A. A. Amsdem, "A Numerical Fluid Dynamics Calculation Method for All Flow Speeds," J. Comp. Phys. 8, 197 (1971).
4. F. H. Harlow and A. R. Amsdem, "KACHINA: An Eulerian Computer Program for Multifield Fluid Flows," Los Alamos Scientific Laboratory report LA-5680 (1975).
5. D. R. Liles and W. H. Reed, "A Semi-Implicit Method for Two-Phase Fluid Dynamics," J. of Comp. Physics 26, No. 3, 390-407 (1978).
6. J. H. Mahaffy, "A Stability-Enhancing Two-Step Method for One-Dimensional Two-Phase Flow," Los Alamos Scientific Laboratory report LA-795l-MS (1979).
7. J. H. Mahaffy, "A Stability-Enhancing Two-Step Method for Fluid Flow Calculations," submitted to J. Comp. Phys. [Los Alamos National Laboratory report LA-UR-81-1398 (October 1981)].
8. J. G. Collier, Convective Boiling and Condensation (McGraw-Hill Book Company, New York, New York, 1972).
9. W. M. Rohsenow and H. Y. Choi," Heat, Mass, and Momentum Transfer (Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1961).
10. C. W. Hirt and N. C. Romero, "Application of a Drift-Flux Model To Flashing In Straight Pipes," Los Alamos Scientific Laboratory report LA-6005-MS (1975).
11. G. W. Govier and A. Aziz, The Flow of Complex Mixtures in Pipes (Van Nostrand-Rheinhold Co., New York, New York, 1972).
12. B. S. Massey, Mechanics of Fluids (D. Van Nostrand Co., New York, New York, 1968).
13. V. L. Streeter, Fluid Mechanics (McGraw-Hill Book Company, New York, New York, 1966).
14. "Flow of Fluics," Crane Company technical paper 409 (May 1942).
15. S. Lekach, "Develsopment of \(\dot{\text { a }}\) Computer Code for Thermal Hydraulics of Reactors (THOR)," Brookhaven National Laboratory Quarterly Progress report BNL-19978 (1975).
16. C. J. Crowley, J. A. Block, and C. N. Cary, "Downcomer Effects in a 1/15-Scale PWR Geometry: Experimental Data Report," Creare, Inc. report NUREG-0281 (May 1977).
17. W. C. Rivard and M. D. Torrey, "Numerical Calculation of Flashing from Long Pipes Using a Two-Field Model," Los Alamos Scientific Laboratory report LA-6104-MS (1975).
18. K!'Lee and D. J. Ryley, "The Evaporation of Water Droplets in Superheated Steam," ASME paper 68-HT-11 (1968).
19. A. E. Dukler, "Two Phase Interactions in Countercurrent Flow," U. of llouston, Department of Cheraical Engineering annual report Nov. 1978-Oct. 1979 (January 1980).
20. V. G. Levich, Physicochemical Hydrodynamics (Prentice-Hall Inc., New York, New York, 1962), pp. 430-432.
21. V. P. Isachenko, "Heat Transfer in Condensation in Turbulent Jets," Teploenergetika No. 2, 7-1.0 (1976).
22. Y. Taitel and A. E. Dukler, "A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas-Liquid Flow," AIChE Journal 22, No. 1, 47-55 (1976).
23. P. J. Roache, Computational Fluid Dynamics, (Hermosa Publishers, Albuquerque, New Mexico, 1972).
24. G. Yadigaroglu, "The Reflooding Phase of the LOCA in PWRs. Part I: Core Heat Transfer and Fluid Flow," Nuclear Safety 19, I (1978).
25. "Reactor Safety Research, Progran, Quarterly Report for the Period July 1--September 30, 1978," Battelle Pacific Northwest Laboratories report PNL-2653-3, NUREG/CR-0546 (1978).
26. L. S. Tong and J. Weisman, Thermal Analysis of Pressurized Water Reactors, Second Edition (American Nuclear Society, LaGrange Park, Illinois, 1979:.
27. P. E. MacDonald and J. Weisman, "Effect of Pellet Cracking on Light Water Reactor Fuel Te..peratures," Nuc1. Tech. 31, 357-366 (1976).
28. B. A. Boley and J. H. Weiner, Theory of Thermal Stresses (John Wiley and Sons, Inc., New York, New York, 1960).
29. J. V. Cathcart, "Quarterly Progress Report on the Zirconium Metal-Water Oxidation Kinetics Program," Oak Ridge National Laboratory report ORNL/NUREG/TM-41 (August 1976).
30. "MATPRO-Version 11: A Handbook of Materials Properties for Use in the Analysis of Light Water Reactor Fuel Rod Behavior," Idaho National Engineering Laboratory report NUREG/CR-0497, TREE-1280 (February 1979).
31. J. C. Chen, "A Correlation for Boiling Heat Transfer of Saturated Fluids in Convective Flow," ASME paper 63-llT-34 (1963).
32. J. P. Holman, Heat Transfer, Third Edition (McGraw-Hill Book Company, New York, New York, 1972).
33. T. A. Bjornard and P. Griffith, "PWR Blowdown Heat Transfer," in Thermal and Hydraulic Aspects of Nuclear Reactor Safety, Vol. 1 (American Society of Mechanical Engineers, New York, New York, 1977), pp. 17-41.
34. R. P. Forslund and W. M. Rohsenow, "Dispersed Flow Film Boiling," J. Heat Trans. 90, 399-407 (November 1968).
35. L. A. Bromley, "Heat Transfer in Stable Film Boiling," Chem. Eng. Prog. 46, 221-227 (May 1950).
36. S. S. Kutateladze, "Heat Transfer During Film Boiling," in Heat Transfer in Condensation and Boiling, Atomic Energy Commission report AEC-TR-3770 (1952).
37. W. H. McAdams, Heat Transmission, Third Edition (McGraw-Hill Book Company, New York, New York, 1954).
38. R. S. Dougall and W. M. Rohsenow, "Film Boiling on the Inside of Vertical Tubes with Upward Flow of the Fluid at Low Qualities," Massachusetts Institute of Technology Mechanical Engineering report 9079-26 (1963).
39. L. Biasi, G. C. Clerici, S. Garribba, R. Sala, and A. Tozzi, "Studies on Burnout: Part 3," Energia Nucleare 14, 530-536 (1967).
40. F. B. Hildebrand, Introduction to Numerical Analysis (McGraw-Hill Book Company, New York, New York, 1974).
41. R. E. Henry, "A" Correlation for the Minimum Fflm Boiling Temperature," AIChE Symposium Series 138, 81-90 (1974).
42. "RELAP4/MOD5: A Computer Program for Transient Thermal-Hydraulic Analysis of Nuclear Reactors and Related Systems," Vol. 1, Idaho National Engineering Laboratory report ANCR-NUREG-1335 (September 1976).
43. "RETRAN--A Program for One-Dimensional Transient Thermal-Hydraulic Analyses of Complex Fluid Flow Systems," Electric Power Research Institute report EPRI-NP-408 (January 1977).
44. S. Gill, "A Process for the Step-by-Step Integration of Differential Equations in an Automatic Digital Computing Machine," Proc. Cambridge Philos. Soc. 47, 96-108 (1951).
45. Robert J. Thompson, "Improving Roundoff in Runge-Kutta Computations with Gil1's Method," Communication of the ACM 13, No. 12 (December 1970).
46. D. A. Sharp, "The PWR Steady-State Capability of WRAP--A Water Reactor Analysis Package," Savannah River Laboratory report DPST-NUREG-77-3 (June 1977).
47. V. L. Streeter and E. B. Wylie, Hydraulic Transients (McGraw-Hili Book Company, New York, New York, 1967), pp. 151-160.
48. D. J. Olson, "Experiment Data Report for Single- and Two-Phase Steady-State Tests of the \(1-1 / 2-L o o p\) MOD-1 Semiscale System Pump," Aerojet Nuclear Company report ANCR-1150 (May 1974).
49. G. G. Loomis, "Intact Loop Pump Performance During the Semiscale MOD-1 Isothermal Test Series," Acrojet Nuclear Company report ANCR-1240 (October 1975).
50. D. J. Olson, "Single- and Two-Phase Performance Characteristics of the MOD-1 Semiscale Pump Under Steady-State and Transient Fluid Conditions," Aerojet Nuclear Company report ANCR-1165 (October 1974).
51. Douglas L. Reeder, "LOFT System and Test Description (5.5-Ft. Nuclear Core. 1 LOCES)," EG\&G Idaho, Inc. report TREE-1208, NUREG/CR-0247 (July 1978), pp. 161-166.
52. W. A. Coffman and L. L. Lynn, "WATER: A Large Range Thermodynamic and Transport Water Property FORTRAN-IV Computer Program," Bettis Atomic Power Laboratory report WAPD-TM-568 (December 1966).
53. D. L. Hagrman, G. A. Reymann, and R. E. Mason, "MATPRO-Version 11 (Revision 1): A Handbook of Material Properties for Use in the Analysis of Light Water Reactor Fuel Rod Behavior," EG\&G Idaho, Inc., NUREG/CR-0497, TREE-1280, Rev. 1 (February 1980).
54. "MATPRO-Version 09: A Handbook of Materials Properties for Use in the Analysis of Light Water Reactor Fuel Rod Behavior," Idaho National Engineering Laboratory report TREE-NUREG-1005 (December 1976).
55. Y. S. Touloukian, Editor, Thermophysical Properties of High Temperature Solid Materials (MacMillan Co., New York, 1967).
56. "A Prediction of the SEMISCALE Blowdown Heat Transfer Test S-02-8 (NRC Standard Problem Five)," Electric Power Research Institute report EPRI-NP-212 (October 1976).
57. W. L. Kirchner, "Reflood Heat Transfer In A Light Water Reactor," US Nuclear Regulatory Commission report NUREG-0106, Vols. I and II (August 1976).
58. J. C. Spanner, Editor, "Nuclear Systems Materials Handbook - Vol. 1 Design Data," Hanford Engineering Development Laboratory report TID-26666 (1976).
59. "Properties for LMFBR Safety Analysis," Argonne National Laboratory report ANL-CEN-RSD-76-1 (1976).
60. V. H. Ransom and J. A. Trapp, "The RELAP5 Choked Flow Model and Application to a Large Scale Flow Test," Proceedings of the ANS/ASME/NRC International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Saratoga Springs, New York, October 5-8, 1980, pp. 799-819.
61. "RELAP5/MOD1 Code Manual, Volume 1: System Models and Numerical Methods," Idaho National Engineering Laboratory report NUREG/CR-1826, EGG-2070 DRAFT, Revision 1 (March 1981).
62. L. L. Weidert and L. B. Clegg, "Experiment Data Report for Semiscale Mod-3 Small Break Test Series (Tests S-SB-P1, S-SB-P2, and S-SB-P7)," Idaho National Engineering Laboratory report NUREG/CR-1640, EGG-2053 (September 1980).
63. "System Design Description for the Mod-3 Semiscale System," Idaho National Engineering Laboratory report, original issue (July 1978), revision A (June 1979).
64. T. K. Larson, J. L. Anderson, and D. J. Shimeck, "Scaling Criteria and an Assessment of Semiscale Mod-3 Scaling for Small Break Loss-of-Coolant Transients," Idaho National Engineering Laboratory report EGG-SEMI-5121 (March 12, 1980).
65. D. J. 01son, "Transmittal of Semiscale Mod-3 Documents" (DJO-129-78), Idaho National Engineering Laboratory letter to R. E. Tiller (October 5, 1978).
66. G. W. Johnsen, "Transmittal of Semiscale EOS Appendix for Small Break Tests \(\mathrm{S}-\mathrm{SB}-\mathrm{P} 1\) and \(\mathrm{S}-\mathrm{SB}-\mathrm{P} 2^{\prime \prime}\) (GWJ-8-80), Idaho National Engineering Laboratory letter to R. E. Tiller (February 13, 1980).
67. L. P. Leach, "Experimental Operating Specification for Semiscale Small Break Test S-SB-P7" (LPL-33-80), Idaho National Engineering Laboratory letter to R. E. Tiller (March 13, 1980).
68. S. E. Dingman, T. J. Fauble, and J. R. Hewitt, "Quick Look Report for Semiscale Mod-3 Sma11 Break Tests S-SB-P1, S-SB-P2, and S-SB-P7," Idaho National Engineering Laboratory report EGG-SEMI-5137 (April 1980).
69. "TRAC-PD2, An Advanced Best-Estimate Computer Program for Pressurized Water Reactor Loss-of-Coolant Accident Analysis," Les Alamos National Laboratory report LA-8709-MS, NUREG/CR-2054 (Apri1 1981).
DISTRIBUTION11II
1 Copies
Nuclear Regulatory Commission, R4, Betresda, Maryland 298
Technical Information Center, Oak Ridge, Tennessee 2
Los Alamos National Laboratory, Los Alamos, New Mexico 50
\(!\) 350
\begin{tabular}{|c|c|c|c|}
\hline Unit & S1 Description (x) & English Description (y) & \(\underline{x}=\mathrm{f}(\mathrm{y})\) \\
\hline length & meter (m) & foot (ft) & \(x=3.048000 \cdot 10^{-1} y\) \\
\hline area & square meter (\(\mathrm{m}^{2}\)) & square foot \(\left(f^{\text {f }}{ }^{2}\right)\) & \(x=9.290304 \cdot 10^{-2} y\) \\
\hline volume & cuble meter (\(\mathrm{a}^{3}\)) & cuble foot (\(\mathrm{ft}^{3}\)) & \(x=2.831685 \cdot 10^{-2} y\) \\
\hline mass & kilogram (kg) & pound (\(\mathrm{lb}_{\text {m }}\)) & \(x=4.535924 \cdot 10^{-1} y\) \\
\hline \multirow[t]{2}{*}{time} & second (a) & second (a) & \(x=y\) x \\
\hline & second & hour (h) & \(x=3.600000 \cdot 10^{+3} y\) \\
\hline temperature & kelvin (K) & degree Fahrenheit (\({ }^{\circ} \mathrm{F}\)) & \(x=(y+459.67) / 1.8\) \\
\hline pressure & pascal (Pa) & pound force per square inch \(\left\lfloor(\mathrm{pBi})\right.\) or (\(\mathrm{lb}_{\mathrm{f}} \cdot \mathrm{Li}^{-2}\)) & \(x=6.894757 \cdot 10^{+3} y\) \\
\hline mass flow & kilogram per second (\(\mathrm{kg} \cdot \mathrm{s}^{-1}\)) & pound per second (\(1 \mathrm{bb}_{\mathrm{m}} \cdot \mathrm{e}^{-1}\)) & \(x=4.535924 \cdot 10^{-1} y\) \\
\hline velocity & meter per second (\(\mathrm{a} \cdot \mathrm{s}^{-1}\)) & foot per second (\(\mathrm{ft} \cdot \mathrm{s}^{-1}\)) & \(x=3.048000 \cdot 10^{-1} y\) \\
\hline density & k 1 logram per cubic meter (\(\mathrm{kg} \cdot \mathrm{ma}^{-3}\)) & pound per cubic foot (\(1 \mathrm{~b}_{\mathrm{n}} \cdot \mathrm{ft}^{-3}\)) & \(x=1.601846 \cdot 10^{+1} y\) \\
\hline torque & newton meter (\(\mathrm{N} \cdot \mathrm{m}\)) & & \(x=1.355818 \cdot 10^{0} y\) \\
\hline \multirow[t]{2}{*}{power} & & British thermal unit per second (\(\mathrm{Btu} \cdot \mathrm{s}^{-1}\)) & \(x=1.055056 \cdot 10^{+3} y\) \\
\hline & Joule per second [(\(\mathrm{J} \cdot \mathrm{s}^{-1}\)) or watt (H)] & Bcu per hour (\(\mathrm{Btu} \cdot \mathrm{h}^{-1}\)) & \(x=2.930711 \cdot 10^{-1} y\) \\
\hline pump head (\(\Delta \mathrm{p} / \mathrm{\rho}\)) & square meter per second squared (\(\mathrm{m}^{2} \cdot \mathrm{~g}^{-2}\)) & foot (ft) (\(\mathrm{ft} \cdot 1 \mathrm{lb}_{\mathrm{f}} \cdot 1 \mathrm{lb}_{\mathrm{m}}^{-1}\) gctual units) & \(x=2.989066 \cdot 10^{0} y\) \\
\hline mass flux & k 1 logram per second per aquare meter (\(\mathrm{kg} \cdot \mathrm{s}^{-1} \cdot \mathrm{~m}^{-2}\)) & pound per second per equare foot (\(1 \mathrm{~b}_{\mathrm{m}} \cdot \mathrm{s}^{-1} \cdot \mathrm{ft}^{-2}\)) & \(x=4.882427 \cdot 10^{0} y\) \\
\hline volumetric flow & cublc meter per second (\(\mathrm{m}^{3} \cdot \mathrm{~B}^{-1}\)) & cuble foot per second (\(\mathrm{ft}^{3} \cdot \mathrm{~s}^{-1}\)) & \(x=2.831685 \cdot 10^{-2} y\) \\
\hline \multirow[t]{2}{*}{heat flux} & watt per square meter (\(\mathrm{W} \cdot \mathrm{m}^{-2}\)) & wait per square foot (H . \(\mathrm{ft}^{-2}\)) & \(x=1.076391 \cdot 10^{+1} y\) \\
\hline & watt per square meter (\(\mathrm{W} \cdot \mathrm{ra}^{-2}\)) & Btu per hour per square foot (\(\mathrm{Bru} \cdot \mathrm{h}^{-1} \cdot \mathrm{ft}^{-2}\)) & \(x=3.154591 \cdot 10^{0} y\) \\
\hline \multirow[t]{2}{*}{volumetric heat source} & watt per cubic meter (\(\mathrm{H} \cdot \mathrm{m}^{-3}\)) & watt per cuble foot (\(\mathrm{W} \cdot \mathrm{ft}^{-3}\)) & \(x=3.531467 \cdot 10^{+1} y\) \\
\hline & watt per cubic meter (\(\mathrm{N} \cdot \mathrm{mg}^{-3}\)) & Btu per hour per cuble fnot (\(\mathrm{Btu} \cdot \mathrm{h}^{\mathbf{- 1}} \cdot \mathrm{ft}^{-3}\)) & \(x=1.034970 \cdot 10^{+1} y\) \\
\hline moment of inertia & kilogram square meter (\(\mathrm{kg} \cdot \mathrm{m}^{2}\)) & pound square foot (\(1 \mathrm{~b}_{\mathrm{m}} \cdot \mathrm{ft}{ }^{2}\)) & \(x=4.214011 \cdot 10^{-2} y\) \\
\hline specific heat & joule per kllogram per kelvin (\(\mathrm{J} \cdot \mathrm{kg}^{-1} \cdot \mathrm{k}^{-1}\)) & Btu per pound per degree Fahrenhelt (\(\mathrm{Btu} \cdot \mathrm{lb}_{\mathrm{m}}{ }^{-1} \cdot{ }^{0} \mathrm{~F}^{-1}\)) & \(x=4.186800 \cdot 10^{+3} y\) \\
\hline \multirow[t]{2}{*}{thermal conductivity} & watt per meter per kelvin (\(k \cdot{ }^{-1}{ }^{-1} \cdot k^{-1}\)) & Btu inch per hour per square foot per degree Fahrenheif
\[
\left(\text { Btu } \mathrm{In} \cdot \mathrm{~h}^{-1} \cdot \mathrm{ft}^{-2} \cdot \mathrm{o}^{\mathrm{F}}\right. \text {) }
\] & \(x=1.442279 \cdot 10^{-1} y\) \\
\hline & watt per meter per kelvin (\(\mathrm{H}_{\mathrm{m}} \mathrm{m}^{-1} \cdot \mathrm{~K}^{-5}\)) & Btu per hour per foot per degree Fahrenhele
\[
\left(B t u \cdot h^{-1} \cdot \mathrm{ft}^{-10} \mathrm{~F}^{-1}\right)
\] & \(x=1.730734 \cdot 10^{0} y\) \\
\hline gap conductance & & Beu per hour per square foot per degree Fahrenheit
\[
\left(B C u \cdot h^{-1} \cdot \mathrm{ft}^{-2} \cdot 0^{-1}\right)
\] & \(x=5.678263 \cdot 10^{0} y\) \\
\hline heat-transfer coefficient & & Htu per hour per square foot per degree Fahrenhelt (Btu• \(\mathrm{h}^{-1} \cdot \mathrm{ft}^{-2} \cdot{ }^{0} \mathrm{~F}^{-1}\)) & \(x=5.678263 \cdot 10^{\circ} \mathrm{y}\) \\
\hline
\end{tabular}

\footnotetext{
"Standard for Metric Practice," American Society for Testing and Materials designation E 380-76 (iEEE standard 268-1976), Philadelphia, Pennaylvania (February 1976). The British thermal unit (Btu) used in this table is the Btu unit from the International Table.
}
```


[^0]:    Fig. 6.
    Node located at the interface between two dissimilar materials.
    

[^1]:    ${ }^{\text {* M. J. Thurgood and J. M. Kelley, Battelle Pacific Northwest Laboratories }}$ (December 1979).

[^2]:    ${ }^{\text {a }}$ For the special case of both $\omega=0.0$ and $q=0.0$, the code sets $h=0.0$.

[^3]:    0 .

[^4]:    *C. B. Davis, 'Idaho National Engineering Laboratory, personal communication (December 1980).
    **T. K.eLarson, Idaho National Engineering Laboratory, personal communication (March 1981).

