Production of $K^{+} K^{-}$and pp paira in Four-body reactiong at $13.1 \mathrm{GeV} / \mathrm{e}$.*

J. A, Gaidor, T. A. Mulera, G. R. Bzell,
J. H. Lamsa, R. B. Willmamp

Purdue Univeraity
West Lafayette, oIndiana 47907

```
Abstract: Data in the channelg m+p }\mp@subsup{\pi}{0}{+}\mp@subsup{\pi}{}{+}P\mp@subsup{K}{}{+}\mp@subsup{K}{}{+
and #+p}->\mp@subsup{\boldsymbol{\pi}}{}{+
the \mp@subsup{A}{}{++}}\mp@subsup{\textrm{K}}{}{+}\mp@subsup{\textrm{K}}{}{-}\mathrm{ and P K}\mp@subsup{K}{}{+}\mp@subsup{K}{}{*}(890) aubsatuples ar
discusbed in tecma of a double-Regge model. No
resonance structurg at M(pPp) = 3.755 Gev 1%
obseryed,
```

*Work supported in part by the Atomic Bnergy Comm.

[^0]
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereot, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

A. Introduction

We have extended an analysis of the four-constraint four-prong $\pi^{+}{ }_{p}$ Interactions at $13.1 \mathrm{GeV} / \mathrm{c}$ to include $\mathrm{K}^{+} \mathrm{K}^{-}$and Pp pairs. The data derives from a ~ 9 event/ $\mu \mathrm{b}$ equivalent exposure obtained in the SLAC $82^{\prime \prime}$ hydrogen bubble chamber. The r-f separated π^{+}beam had a momentum spread of $\sim 1.5 \%$ in the chamber; however, from the known dispersion, beam nomenta were correlated with chamber coordinates and determined to ${ }^{\circ} .5 \%$.

The $\mathrm{K}^{+} \mathrm{K}^{-}$and $\mathrm{P} \mathrm{\bar{P}}$ candidates were selected from some 70,000 events which failed the $\pi^{+} \mathrm{p}^{+} \pi^{+} \pi^{-}$hypothesis [1] and for which the unbalance of measured momenta was less than $2 \mathrm{GeV} / \mathrm{c}$. By varying the beam until momentum was conserved,
 was suggested and employed by Ehrlich et al. [2]. This procedure was complicated in most cases by the inability to uniquely identify $\pi^{+}, \mathrm{p}, \mathrm{K}^{+}$components of the three positive tracks produced; for these events, permutations of identity were included. The mass spectrum of the assumed particle-antiparticle paizs thus obtained, contained large contributions extending through the K and P mass values. Those combinations for which at least one permutation had $\mathrm{m}^{2}>\left(5 \mu_{\pi}\right)^{2}$ $\sim 13,500$ events, were processed in the usual manner by the SQUAW fitting routines with $\Pi^{+} \mathrm{pK}^{+} \mathrm{K}^{-}$and $\mathrm{T}^{+}{ }^{+}-\overline{p p}$ four-constraint hypotheses. Each of the 1,310 events passing SQUAW was examined on the scanning table to ascertain whether observed Lonizations were consistent with particle assignments of the fitted hypothesis; 560 events were acceptable. Finally a $P\left(X^{2}\right)<.1 \%$ cut was imposed, reducing the sample to 468 good events. The m^{2} distribution of those combinationa which passed SQUAW is shown in Fig. 1; the solid sub-histogram cor* responds to the 468 good events. The ordinate label applys strictly only to the solid area in that there are from $1 \rightarrow 6$ combinations possible before applying the lortzation criterion. Evidently the $\overline{K K}$ and $\mathbf{P P}$ events are well separated in mi^{2}. This selection yielded $343 \pi^{+} \mathrm{PK}^{+} \mathrm{K}^{-}$and $125 \pi^{+} \mathrm{p}$ $\overline{\mathrm{p}}$ events, corresponding to crosa sections of $39 \pm 8 \mu \mathrm{~b}$ and $14 \pm 5 \mu \mathrm{~b}$ respectively.

Each step in sifting the data preferentially reduced the number of event points outside of the K and p mass ranges in the m^{2} plot, the final chisquared cut nearly eliminating values of m^{2} not in the desired peaks. It 2 is apparant that selecting only on narrou m bands about the K and p masses in the original data sample would save much labor and generate little real event loss; our choice of $m^{2}>54 \pi^{2}$ was very conservative.

The ratios $\Pi^{+} \mathrm{P} \mathrm{K}^{+} \mathrm{K}^{-} / \pi^{+} \mathrm{PH}^{+} \pi^{-\quad}$ and $\pi^{+}{ }_{\mathrm{PPP}}^{-} / \pi^{+} \mathrm{p}^{+} \pi^{-}$are $\sim 1 / 30$ and $\sim 1 / 85$ respectively at $13.1 \mathrm{GeV} / \mathrm{c}$. If we define $\mathrm{r}(\mathrm{a})$ as the ratio of cross sections for $\pi^{+} p \rightarrow \pi^{+} p$ aa production at $8 \mathrm{GeV} / \mathrm{c}^{[3]}$ to that at $13.1 \mathrm{GeV} / \mathrm{c}$. The data yields $\mathrm{t}\left(\mathbb{1}^{+}\right)$; $\mathrm{r}\left(\mathrm{K}^{+}\right): \mathrm{r}(\mathrm{p})=1.61$ 1.8: 1.1 witch can be compared with $\left(\mathrm{P}_{1 \mathrm{ab}}=8.0 / \mathrm{P}_{1 \mathrm{ab}}=13.1\right)^{-.5}=1.3$. B. $\boldsymbol{T}^{+} \mathrm{P}^{+} \mathrm{K}^{-}$

A scatterplot of $\mathrm{M}\left(\mathrm{K}^{-} \mathrm{T}^{+}\right)$vs $\mathrm{M}_{\left(\mathrm{T}^{+} \mathrm{p}\right.}$) is given in fig, 2 , with a projection on the $M\left(\Pi^{+}+\right.$axis showing a conspicuous Δ^{++}signal of ~ 99 events within the mass band $M(\Delta)=1.24 \pm .1$ Gev. Events in the $K^{*}(890)-\Delta^{++}$overlap region were divided between the Δ and K^{*} in ratio to the poptilation of their respective non-overlapping adfacent side bands. The projection on the M(K H^{+}) axis is given in fig. 3(a), where the shaded portion corresponds to removal of A^{++}events. There are ~ 106 points in the K^{*} (890) region defined as $M\left(K^{*}\right)=0.89 \pm .1 \mathrm{GeV}$, and in addition there is some indication of $a \mathrm{~K}^{*}(1420)$ signal. Removing the $K^{*}(890)$ bend yields the shaded area in the M($\left.\mathrm{r}^{+} \mathrm{p}\right)$ distribution of fig. 2. The marginal enhancenent at ditrip) ~ 1.6 Gev is also observed in the $\pi^{+} \mathrm{pr}^{+} \Pi^{-}$data where again it is more suggestive than indicative. Within the present data, the A^{+4} decay is described by ($1+3 \cos ^{2} \theta_{J}$) where θ_{J} is the usual Jackson angle; the $M\left(T^{+}{ }^{+}\right) \sim 1.6$ Gev region is flat in $\cos \theta_{j}$, and beyond $\mathrm{M}\left(\mathrm{TH}^{+} \mathrm{P}\right) \sim 1.7 \mathrm{GeV}$, the eventa are almost wholiy within $\cos \theta_{3}>.8$.

The $M\left(K^{+}{ }^{-}\right)$spectrum is given in fig. 3-b where the hatched area indicates removal of K^{*} (890) events and the double hatched portion shows the $\mathrm{M}\left(\mathrm{K}^{+} \mathrm{K}^{-}\right.$) distribution produced with the Δ. There is, perhaps, an indication of a shoulder in the or S^{*} band and a modest f° and/or $A_{2}{ }^{0}$ signal. Selecting on the A does not sharpen the f^{0} / A_{2} signal, a result evidently different from the 8 Gev data. ${ }^{[3]}$ A preliminary sample of ~ 50 events in the $\pi^{+}{ }^{+} K^{0}{ }^{0}$ channel also shows no signal, and comparably modest $F^{\circ} / A_{2}{ }^{\circ}$ production. $[4]$ The M(K p) spectrum suggesta no clear resonance fonmation.

A lownasg_enhancenent is evident in the $M\left(K^{+} K^{\prime \prime} \boldsymbol{T}^{+}\right)$distribution in fig. 4 . The hatched area remains after removed of Δ^{++}events and the double-hatched part is left following the further substraction of $\mathrm{K}^{*}(890)$ events. A possible explanation of the $M\left(K^{*} K\right)$ threshold enhancement will be given in the following section.
C. $K^{*} K P$

The K^{*} Kp subsampie of the data is characterized by low four-momentum trangers $t\left(\Pi K^{*}\right), t(\Pi K)$ and $t(p p)$ and consequently a tendancy towards Iow values of $M\left(K^{*} K\right)$; these features are reniniscent of the (户, 1) behaviour through the A_{1} enhancement region and suggest that a similar interpretation in terns of double-exchange peripheral amplitude may be appropriate [1]. By requiring $-t\left(\pi K^{*}\right)$ and $-t(\Pi K)<2.0(G e V / c)^{2}$ and $-t(p p)<0.5$ (GeV/c) ${ }^{2}$ a peripheral set of 60 events is obtained with the t-distributions shown in fig. 5; also pictured is the double-Regge diagran assumed. The amplitude was taken as
with the usual Reggeized K^{*}-exchange propogator $R\left(K^{*}\right)^{\dagger}$ and a linear trojectary $\alpha_{K}^{*}=1-\alpha^{\prime \prime}(0)_{K}{ }_{K}\left[M_{K} *^{2}=t\right]$. The values $\alpha^{\prime}(0)_{K}^{*}=1(G e V / c)^{2}$ and $S_{0}=1(G e V / c)^{2}$ are used throughout. Pomeranchuk exchange is described by $0_{\text {Pom }}=1$ and an expanential residue determined from elastic scattering. The predictions are normalized to the dsta and comparisons to the t-spectra and mass distributions are shown in fig. 5 and fig. 6 respectively. Evidently there is no necessity
to include a diggram involving K-exchange (K *and K positions interchanged). Dualicy arguments would suggest that the observed $M\left(\mathrm{~K}^{*} \mathrm{~K}\right)$ threshold enhancement corresponds to the existence of a resonance in the $K{ }^{*}$, system at a low mass value; in addition to the $A_{3}(1640)^{\dagger}$, there is a reported abnormal (spin-parity) state decaying into the KK^{*} channel with a mass of 1.54 GeV , 1isted as the F_{1}. ${ }^{\text {[5] }}$
D. $\mathrm{K}^{+} \mathrm{K}^{-} \mathrm{A}^{++}$

A description of the $K^{+} K^{-} \Delta$ channel is given in terms of che doubleexchange diagram shown in fig.7. There are 49 events within the kinematical region defined by $-t\left(\pi K^{+}\right)<1.0(\mathrm{GeV} / \mathrm{c})^{2}$ and $-t(\mathrm{pA})<0.5(\mathrm{GeV} / \mathrm{c})^{2}$. The couble-Regge amplitude assumed to describe this data is teken as:

$$
A\left(K^{*} \pi\right)=R\left(K^{*}\right)\left(S_{K^{+}} K^{-/ S_{0}}\right)^{\alpha_{K} K^{*}} \cdot R(\pi)\left(S_{K_{p}}^{-} / S_{0}\right)^{\alpha}
$$

with $\alpha_{\pi}=-\left(\mu_{j T}^{2}-t(p A)\right)$ and $R\left(K^{*}\right)$ as in section C. The t distributions and mass spectra are given in fig. 7 and fig. 8 respectively along with curves representing the predictions of $A\left(\mathrm{~K}^{*} \pi\right)$. Although sparse, the dsta are well described by the double-exchange mechanism.
E. $\Pi^{+}{ }^{+} \overline{P P P}$

Both combinations of $M\left(\pi^{+} p\right)$ are shown in fig, θ-a where Δ production is clearly evident, with approximately 30% of the reaction involving a 0 . The curve in fig. 9-a is the prediction of phase space. There is no suggestion of a resonant atace at 3.755 GeV in the M (ppp) distribution shown in fig. 9-b; the only deviation from phase space is the high rass peaking which reflects Δ formation in $M\left(\pi^{+} p\right)$. ${ }^{[3]}$ The $M(\overline{p p})$ spectrum is given in Eig. 10; the two small enhancements in the low masa range may correspond to production of $N \bar{N}(2190)$ and ρ (2290) respectively. [6]
P. Conalusion

The reaction $\pi^{+} p \rightarrow \pi^{+} \mathrm{pK}^{+} \mathrm{K}^{-}$occurs with a frequency of $1 / 30$ th of that of the $\pi^{+} p \pi^{+} \pi^{-}$chanel; whereas the latcer is dominsted by p, f^{0} and d^{++}production,
the former consists mostly of the $K^{*}(890)$ and Δ^{++}states, each of which constitutes $\sim 30 \%$ of the resction; there is some evidence for a $\chi^{*}(1420)$. The significant difference is the lack of two-particle final states in the $\mathrm{K}^{+} \mathrm{K}^{-}$ case, no evidence for a strong (e.g.) is observed. The d\&ta are consistent with the predictions of double-Regge exchange; $\mathrm{K}^{*} /$ Pomeranchuk exchanges in the $\mathrm{K}^{+} \mathrm{K}^{-} \mathrm{p}$ state and K^{*} / π exchanges in the $\Delta^{++} \mathrm{K}^{+} \mathrm{K}^{-}$channel. The $\Pi^{+}{ }_{\mathrm{P}} \rightarrow \pi^{+}{ }_{\mathrm{p} P \mathrm{p}}^{-}$ reaction is 2.8 times less frequent than the $\pi^{+} \mathrm{pK}^{+} \mathrm{K}^{*}$ state. Formation of $\Delta^{+\boldsymbol{+}}$ occurs in $\sim 30 \%$ of these events with the remainder evidently following phase spare. At resonance at $M(\overline{p p D})=3.755 \mathrm{GeV}$, reported by Ehrlich et al. [2], was not obaerved.
(I) J. A. Gaidos, G. R. Ezell, J. W. Lamse, and R. B. Willmann, Phys. Rev. Vol. 2 D(1970) 1226.
(2) R. Ehrlich, R. J. Plamo, and J. B. Whittaker, Phys. Rev. Letters 20 (1968) 686.
(3) M. Aderholz et al., Nucl. Phys. b14 (1969) 255.
(4) J. Tebes, private communication, to be published.
(5) M. Aguilar-Benitez et al., Nuci. Phys. B14 (1969) 195.
M. Aguilar-Benitez et al., Phys. Letters 29B (1969) 379.
(6) Reviews of Particle Properties, Phys. Letters 338 (1970).

$$
\because, t R(i)=\frac{\left[1+\tau_{i} e^{-i n \alpha_{i}}\right]}{\Gamma\left(1+\alpha_{i}\right) \sin \left(\pi \alpha_{i}\right)}
$$

it The possibility that the low masa KK^{*} enhanceant ia a decay made of the diffractively produced A_{3} (1640) 1: under investigation.

Fig. 1. Distribution $i n m^{2}$ for the reaction $\pi^{+}{ }_{p} \rightarrow \pi^{+}{ }_{p n+}{ }^{+} m^{-}$at $\mathrm{GeV} / \mathrm{c}$ of those event combinations for which a fit was obtained with $m=M_{K}$ or K_{p}. The solid area indicates the m^{2} distribution of the final good event s smple.
Fig. 2. Scatterplot of $M\left(K^{-} n^{*}\right)$ va, $M\left(\pi^{+} p\right)$ axi日. An event with $\left|M\left(\pi^{*} p\right)=1.236\right|<0.1$ GeV was accepted as a Δ^{+4}; the solid area corresponds to the removal of $K^{*}(890)$ points.

Fig. 3. (a) Distribation in $N\left(K^{-} \pi^{+}\right)$; the hatched portion remains after $\Delta^{+\dagger}$ Sube craction.
(b) Distribution in $M\left(K_{.}^{+} K^{-}\right)$; removal of $X^{*}(890)$ eventa yielda the hatched area and aelecting on the ${S^{+}}^{+}+i^{+}$ives the crosa-hatched spectrum.
Fig. 4. Distịibution in $M\left(K^{+} K^{-} n^{+}\right)$; removing $\Delta^{+\dagger}$ evente gives the hatched spectrum; further removal of $\mathrm{K}^{*}(890)$ data yielde the cross-hatched area.

Fig. 5. Four-momentum transfer distributione in the procese $\pi^{+} p \rightarrow p X^{+} X^{*}(890)$; the curves represent the prediction of the doubleexchange diagram shown.
Fig. 6. Invariant mase distributiona in the reaction $\pi^{\dagger} p \rightarrow p K^{+} \mathrm{K}^{*}(890)$; the curves are from the double-Regge model.

Fig. 7. Fourmmontum tranafer diatribucions in the process $\pi^{+} p \rightarrow \Delta^{++} K^{+} K^{-}$; the curves repreaent the predictions of the double-exchange diagram shown.

Yig. B. Invariant mase distributions in the reaction $\pi^{+} p \rightarrow d^{++} K^{+} X^{-}$; the curves are from the double-Regge model,

Fig. 9. (a) Dietribution in $M\left(\pi^{+} p\right.$) of the reaction $\pi^{+} p \rightarrow \pi^{+} p p p$ at $13.1 \mathrm{GeV} / \mathrm{c}$.
(b) Diatribution in $M\left(p p_{p}\right)$ of the reaction $\pi^{+} p \rightarrow \pi^{\dagger} p p p$ at 13.1 cev/e.

EVENTS / O.1 GeV

EVENTS / 0.15 GeV

EVENTS / 0.10 GeV

EVENTS / O.I GeV

EVENTS / 0.05 GeV

[^0]: Ths ruport wat prepired of in acecurl of work sognsored by the Unuled Slatef Government Neuner the United Sfotes noc the Unuted Stotes Atomach Fanariy

 pitetager ar usefulnets of any imformation, apparatus, product or prosess difctosed, or representit that its ute product not mafinge privitity owned rughts

