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Abstract'

A formalism is developed which alléws overlap,lkinetié
energy, potential energy and electron repulsion integraié
over cartesian Gaussian functions to be expressed in a vefy
compact form involving easily computed.auxiliary functions.
Similar formulas involving the same auxiliary functions are
given for the common charge moments,electric-fieldAoperators,.
and spin-interaction opefators. Recursion relations are given
for the au#iliary functions whicn make possible the usébof
Gaussizn functions of arbitrarily large angular momentum. An
algorithm is described for the computation of electron repulsion

integrals.
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f.  INTRODUCTION |

Cartesian'Gaussian functions of the form xzyizz exp(j&Arz)
were.first proposed as basis functions by Boyé.l The obvious
ekploitabie advantage of Gaussian fuﬂctions over Slater type orbi-~
tals (8T0's) is the ease with which a product of Gaussians on two
different centers éan be written as a simple function on a common
'cenfer.z In the 1960's when calculations on diatomic systems were:
" already common, the intractability of the four-center integral
over ST0's appeared to present a major block to polya{omié calcula-
tions.? Gaussians began to enjby inereased popularity when it was
. found that z fixed lirear combination (a so-called "contracted
Gaussian™) could be :s2d to approximate an atomic erbital to good

accuracy. Initially —m2 trend was to use combinations of simple’

Gaussizn "lebes” (::1::=G).u The resulting electron rgpulsion
integra® had been sho = by Boysl’z’3 to involve only a square‘root,
an exrenzntial, and —h= errdr-function. Tunctions of p or d typet
were aoproximated br ZiZferences of Gaussian lobeé displaced'slightly

from.ea:h other. For Zigh angular momentum basis functions this
~approach bacomes intractable both because of the large nnmbers of
" lobes involved and because of large differencing errors in combining
the'integrals,over the basic lobes.

The obvious alternative to.contracted ggussian lobes was con-
' trécted cartesian Gaussians. Basis sets involving these functions

5

are now more-or-less standardized.” Formulas for integrals over

~ p-type Gaussians were easily derived2 and programmed. Standard pro-

6

. gram packages such as POLYATOM® and GAUSSIAN 70° have been available |

‘for some time. -Some versions of these packages have inclided d and
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f orbitals. The formulas available for these integrals,z while
completely general,‘do not allow systematic calculation of integrals
for higher angular momentum.- In this ﬁaper we present auxiliary'
fuﬁctions and recursion relations from which integrals fop all

values of n+l+m can be systematically (and efficiently) combuted
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II. CHARGE DISTRIBUTIONS

.An unnormalized Gaussian function on center A will be given

. by

30, 1,m,00,8) = iya? ewpoayr,?) , e

‘where (xA,yA,zAl are the components of the.vector ?A.= g -'5

with norm r,. The normalization constant for this function is

A
_ NnimqqA) : N MCIREM YOOI, . (2[2):
where
L - e
(e = Comaa® e e
" Such functicns are r=fzrred to as 5, p, d, ... when L = n + L+m
is 0, I, 2,..., TesczcTively. Contracted basis functions can be -
formec Zrom the 3’z I~ various ways. For example, it is usual to
defins
S a} C“(z_%ziinlm(uA)¢(n,£,m,aA,A) (2.1)
A .

where C7(z,) is independent of n,4,m (for flxed L) Alfernatively

a more gzneral

Ea --2 cbe,) 2 BLM | o(n,2,m, oot (2.5)

]
L

can be éonsidered ﬁhich allows true angular momentum eigenfunctions
. . e

to be formed (with' the « dependent part of N , (&),

e abSorbed in CL(an and the ¢ independent factors absorbed into

).

nzm .
EfflClent computatlon of integrals requires that £ ndma ©

::gLMA whlch 1nvolve”the,same o's and same nucleus be treated as séts,
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For maximum efficiency these sets should be large enough that
calculation of the auxiliary functions common to a block of
integrals becomes insignificant. On the other hand, exc_es'sively

large blocks of integrals which result from treating all fifteen L=4

. functions as one set should be avoided.

For the sake of simplicity, the formulas in this paper will
be given only for integrals over ¢'s rather than f'sor g's, in
order to avoid writing explicitly the sums over ¢. .To this end
it is convenient to define the chafge.distribution QIJ‘of two
‘functions $fn,1,m,uA,A) and ¢J(H,I,ﬁ,aB,B) as

g

} g imm 2 2,4 . '
2 385 = XpXn¥pVpZaZp exp[-(aArA + QBPB)]<' (2.6)
The‘key to the utility of Gaussians is the well-known

identity wnich treneisr=c the above exponential to a single

exponen=ial ebout a czxzar P on the line segment AB:

(=5 R -3

. : "2 ‘
ex;;—(aAr£_+ aBrE)] = Epy exp(-aprp) (2.7)
where
P= (aAé + aBg)/(aA + “B) . »' (2.8)
@y =3y toag, (2.9)
and
E .. = exp {-a,0.(a,*a )-llA-BIZ} (2.10)
1J 5 GXP 1-0p0ptagTeg) qa-2i Se e

Since molecular calculations usually require absolute rather than
relafive accuracy, all integrals involving QIJ can be néglected
if the constant-}_lIJ is sufficiently smallr

The pfoducfs xﬁxg, yﬁyg,-and zﬂzglcould be converted into

polynomials'in~xp, yp and 2, using relations like



.

Xy = %Xp + pr , o ' (2.11)
whgre '
%y T X A (2.1;1
Xp T X - P (2.13)
and
PAx = Px - Ax . ’ (2.1%)
It is more convenient in what follows, however, to define
nseemtoasd) « (2 emtcad . s
j.%P’“P exp.-anP z EF; exp(-dpxp) , :15)

from which it follows that'Aj is related to the Hermite polynomial
. S _
By by

a;’z . 12.16)

1-_1:.]»
\

A (‘L-,EP)

The ‘wtility of the A's is obvious - they will allow the>charge
distritwtion to be written as a sum of derivatives with respect
‘to the cooréingtgs of 2 énd these derivatives can be taken. outside .
of_ény integral over electronic coordinates.

Now let us flnd the coeff1c1ents for expandlng XA g in the

M's: ’ ‘
nf . n o . (2.17)
XX * E dy Ay (xp3ep) - _
The recursion relation for the Hermite polynomials is
‘gﬁn(ﬁ),= N!i () + ~HN+1(£) . | . (2.18)

‘ ‘Consequhtiy

......~
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The recursion relations on the dﬁ" are then easily seen to be

,dﬁﬁl,n - (ZaP)“ld;q“_‘l + PALd ,’\,‘ ¥ (N+1)dN+1 , (2.20) -
dg,n+1 - (ga )-1 Rnl + ﬁﬁxdgn (N+1)dN+1 . (2.21).
where . '
J&U =1. o (2.22)
Similarly we can write
. T f."'l . )
Ia% = Ze Ay (yp3ep) (2.23)
and
P m+m . ' .
mm mm
zp2p = Z fM My(zg0p) | (2.24)
so that
- ot 27, 2 .
D5 = Eog N%MdN e "y i (xP)A.(yP)AH(,P)exp( aprp)  (2.25)
Iz iz often comvsafent to write QIJ
fo = ZD Ry (Yq) . (yP)AMk(zp)exp(-uPrg) , (2.26)
" .where _ :
D = nn LT nn Co@an

® g N Lk Mk
This allows generalization to include spherical harmonic basis

functions when Dk is replaced by

= E ’ (2.28)

Dx
In these equations k indexes all (N,L,M) gombinations for which
D is non-zero and the charge distribution is specified by a list of

the non-zerc D, and the corresponding (Nk,Lk,Mk) "In practice the

C (a )C (a ) and normallzatlon are also incorporatad into the Dy
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Some integrals which must be evaluated involve derivatives -
"of the basis functions. Consequently, it 'is convenient to define .

‘the additional charge distributions

GIJ.: 01245 | \‘ ’ o ’ B (2.29)
I S S (2.30)
and ) .

Cpp = (Top)x(ep) . . (2.31)

The x component of G1g is easily obtained from -

D 4G5, T, B) = TY(A-1,T,Msg,B) = Zogo(Et 1,7, isag,B) (2.32)

B,
so that
50 . gf‘)r- : My expl-aprd) : (2.33)
- k
with e
e 2 n,o-1 ghoiitl 23, cmm '
o g = (nd —EaB N )e k Mk (2.34)
S " The distribution Tyg may be expanded in an analogous manner
to give ‘ -
; _ 9 X : o
Tor = It Ay Ay Ay explegpry) C (2.35).
T R Py e SO |
with
'+ 4 vy 22z oy
LN AR AL (2.36)
A m, o=l Bl el Bl - nkl Rl n#l,fiel, (T om.
L ST £ e s P (L TN Wt L T letts
SRR BN, "% "A%B%, LM
(2.37)

"'_'and sunllar‘ expressmns for tiy and tk The z componen'tv of QI J

-may be s.u.mllarly shown to be of the form

(7‘) Eq](CZ)AN AL AM exp(-aprp) > . o (2.38)



vhere

(z)

k

The qk obtained directly from 3¢I/3x E¢J/ay - a¢1/8y B¢J/8x
involve new ¢'s of total powers of x, ¥y, and z highgr by two thaﬂ

the starting ones. These highest powers cancel since

_ ¢(n+1,z,m,aA,A)¢<a,§+1,ﬁ,aB,B) - ¢(n,£+l,m,uA,A)¢(ﬁ+l,§,ﬁ,aB,B) o

(xAyB —‘yAxB)¢(n,£,m,aA,A)¢(ﬁ,§,ﬁ,aB,B)

H

[E§9¢(ﬁ+l,&,m,GA,A) - FB$(n, 2+1,m,0,,A) 100, 8,m,05,B)  (2.40)

Consequently,

qu-- x(ndM n-EaA n+1,n)ef,2 l-ZnaBd; “Lon, i 1+l

e k = Tk k k k
- A,R-1 2-1,7 nnlMlR.
2Rl i+l B-1,E 5oy gns 2

Ny Ny Lk %A N Lk

* toazg [ZE a§+“ U ABde’n L *”,z] : (2.41)
B e k Mk _

it is important To note that different sets of (Nk,Lk;Mk)
appear in 2.27, 2.28, 2.33, 2.35, and 2.38. Also, larger values

of N+L+M appear in the derivatives than in the charge distribution.
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III. BASIC INTEGRALS

_ From the previous section it is clear that the one-electron

integrals to be evaluated all reduce to the form
, [NLM!G] = 00y My (xypsap) Ay (v psopd Ay, p3ap)
2 . LA .
exp(-apry p)dry (3.1)

Likewise thé basic two-electron integrals all take the form

, 1 T .

INLM{@[NLHM] = fo(ry,ry Ay (nypsap) Ay (y piagdiy (zlP,uP
exp(—aPr€P)AN.(xZQ;aQ)AL,(yZQ;aQ)AM.(ZQQ;qQ)
exp(-adrgq)dtlde (3.2)

The one slzctron intszrzis can be further classified as. (a) those
thet can be done in clzsed form and (b) those that ryequire the

same nimsrically approxinated auxiliary functions as the two-

- electron integrals.

-A, One electron integrals, closed form

The ba51c 1nteg"al of this type is the one dimensional

1ntegral
: fdxﬁN(xP;a)exp(—axg) z SN 0(“/“)1/2 (3.3)

{the EN 0 BTISES from the orthogonallty of the Hermlte polynomlals)

", Thus the overlap 1ntegra1 is simply

3/2° ' :
[NLMll] N OaL 0%, of™/ay) : N NS

B - The relation

-.“xCAN(fP’qP} = NAN_1,+ 5 ANfl/uP +‘chﬂN . . 3.8)
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then gives

‘ PC . 3/2
(1 * Py 0’ 8,08, 00 o) (3.5)

L

[NLM]xC]

with similar results for Vo and zc. The second moments are just

24 = 3/2
INLM[x 1 = [25N,2+2ch6 +(PC + )éN 0] L,0%, ofmop) ™%
(3.7)
and
My ] = (6, tTCL6 (6 s 96 (ay¥? (a
Je M, 0N, 07 0L, e 0L, 07,00 T Op PO
with similz»r results “or y2 22 X Z Or :
iler x 5 : s 2,0 XoZg OF YoZoe

s -

" The hinetic enzrgy and gradient matrix elements are given

directly =7 +he fzr=:l:z for [NLM|1]. Notice that only the ty
(and g’ zoefficientz Iir (Mya by Mk) = (O,O,O)Iare required to
avaluztz The kinefi: zmzrgy and gradient ratrix elements.
B, Z+zer one elzzzTon integrals -
T=z basic intszrzl in this category is the nuclear attraction

integral [NL M{rEl]. Zrom the definitionof the A's, this may be

written as

B TR

[

Loty = st (a/2®, yEarar Mooo[ =7ty (3.9)

 The integral [OOOJPEIJ was shown by Boys to be given by -

[ooo|r51] = (21/a)F (T, : - (3.10) -

£
-
=

where

_ a2 ' :
= aPC s o . (3.1

and

. ~ l ? "
F (1) = &) exp{-Tu")du. : . (3.12)



- If we define the auxiliary functicn RﬁLM by
Root (08 )N Corep 3 carae WE () (3.13)
‘ NLM o X STyt TR Tttt '
hPV o then ' '
' R, P - , L .
[NLner 1 "‘”’“P’RNLM' . (3.11;,) _

The computatlon of RNLM w111 be described 1n a later sectlon.

o

Matrix elements of the components of the electric fleld, such
as xcras'can be evaluated in two ways which illustrate the

tricks needed for more complicated integrals. First
ST S | S
XTo = Brc /ch, _ o , | (3.15)
where it should be noted that differentiation is with‘réspect- ’
to the muclear posi=izn. Therefore ‘ |

;_ 'v 'h - eI : _1 | '.
_HLJ n.ct. :! - 5 -vx)[NLMIrC ] . (3-16)

: But'si:cé T depenés -z C~Pyo
(2/30,)g(T) = ~(3/8P )g(T)

(3.17)
' forl ay £ anctlon gl '
"Hence, | :
[‘uﬂxcrc 1= -(2n/a JRN+1 LM S (aas)

: ;f‘Alternatlvely this 1ntegra1 can be evluated by noting that

CKeP Toarg /e - o Bay

»VVHeth;lbyfihfegratiqn by parts,

" (3.20)




o ¥ -

o — v PO W T TR

AN A e R BB N Nhade W
I

——

NS

P emar—t——— s e =
P

13-

~(N+1,L,M),

a1, M)/ ox

50

"

~(27/a,)R ‘ . {3.21)

-3
ENLi | xpre ) P Ryer, LM

The components of the electric field gradient are similarly

obtained using

2,002 gyl a2 2y =S
(3°/3C, ~ 3 /BCy)rC = 3xp -~ ypre o, (3.22)
2 ol 2 1 am? 2 2,.~1 _ 2 2,._~5 '
and ‘ ' )
(2273000 Vet = 3xpyern | ' IR
© febytvylTe = XY P o , .
Notlc: +“hegse formizszarewritten 50 as to av01d
pro>lzzs with ths :alta function which arises in Vzﬁal. Hence
the zlzctric Fisl7 =i ent 11tegr 1s are given by
‘LMla(x -.ﬁ.uq‘J (2v/aP)(RN+2 L, M'RN 142, M)' . (3i25)

] (323070 D = (2"/ap)(2RN Lot R L, M’RN a3
(3.26)

[NLMf3xcycr65] = (2n/opdRyyy o g 3.2

Yatrix elements over the cne-clectron spin-orbit operator -

" may be evaluated by two different methods. .If the space part

of the basic sp1n~orb1t operator is con51dered to be PCS va then

the z component, for example, is r (x a/By - ycalax). Matrix
elements of this operator can be evaluated by combining the

results given above for the eleetfic field with the'gk expansidn ’

coéfficiénts given previously for the gradient,” Alternatively

integration by parts gives
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o 3. 30, D0, 8.
) -3 I dJ I J
<¢1_‘*’c (x¢ ay yc axMJ> ' [Tﬁ? ETR S

rEIJ (3.28)

. The spin-orbit in{egral then reduces to using the qk»coefficients

in summing'[NLeral] matrix elements.

C. Two electron integrals
The simplest- integral in this category is-the electron

. repulsioh
. S ST L N L
- [NLM]ry N LY 3= (3/2P, o (a/3P,) (a/aP ! (a/aQ ) (a/aQ )
Mt/ -1 : .
(3/3Q,) [000|r12|000] (3.29)'
Boys evaluated the bzsic integral as

I::czr foor? = :F_(T) B ' - (3.30)

where _
x = Zwslzaglzg;i:?+uq)'l(2 ' v ‘ (3731)
+ and .
T = apoplogte, ~i5g? (3.3

; Because T involves cnly the combination P-Q,

(330 )%g(m) = (-ar0p )Ve(m)
' ' (3.3%)
for any function g{T).

" Hence

. -
[vLt] ] IN L'H'] = M- 1)N i S (3.3

Just as for the electric field and field gradient, integrals

A ; -3 -5 o _ .
iovgr *12r12’ % 2y12r12, etc., are easily gvaluated. For example

NULI+M ‘ (3.35)

[NLM’X lN'L'M'] = ~A(-1) RN+N'+1 ,LHLY MM

12 12



-16~

-5 _ NTHLI+Y?
[NLM|3x12y12r12|N'L'M'] = A(-1) RN+N,+1’L+L,+1,MfM,

. (3.36)

2 .2 ,.~5 N'+L ! _ '
[NL}“3(X12'y12)1‘12]N'L'M'] A(=1) (RN'I'N""?,L*'L',M‘FM'

Ryt Lenz ) 3237,

N L /
[NLH] (32 A-1) C2Ryan, LaL! M#M'+2

2 -r2 e Nt )

Rysrirez, oLt e Ruaw Lente2, ey (3038)

T T12
spin interaction matrix elements.

Integrals over these - operators appear in calculation of spin-

The space part - the. two electron spin-orbit operator has -

a
i -3 s .
the fcm rl,r12w?-. T=2 z component of this operator is then
s -
R i vi S 3x1

Intégrstion‘by parTs ~i21ds a result similar to that obtained for

the ons-zlectron In-=zzrsl,

D (3.39)

Consequently, fhis integral is given simply as a sum over
[NLMIrI%INfL'M‘] using coefficients q for the I orbitals and
Dk for the XL orbitals. Alternatively, of course, thé integral
could be written as a sum over integrals like [NLMleériglN‘L'M‘]

with & coefficients for,thé IJ orbitals.
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IV, "AUXILIARY FUNCTIONS

A. RNLM

" -The function RNLM is defined as

2 -
Ry = 2@/ /a0 [ e ™ au (4:1)
'where

T = a(a?4plec?) ' | | R

-+ By direct chain-rule differentiation an explicit formula for R

can be found:

/2] FL2) 2]y g 19 2m
Z b o]

R, )
Wl afr i
EH S M (4.9)
(21)-.‘4-41)' I -22)' (Zm)"(% 2m) ! N+L+M-n-2—m )
Tor generating = tsble of all RNLN up to some maximum N+L+M,

as 1s nseded in doi=z >locks of integrals, recursion relations

~are more useful. Tksse can be found from introduction of the

' more gereral 11teg : -
- RNLM"' (- /—)N+L+I( 2 )Jfl N+L+M+23HN(/Eau)HL({Ebu)HM(/Ecg)e"Te du

 'Let'us F1rst note th

c za)Jr m | | Gy

fluzjexp( Tu? )du.' - R (%9
fijrom the recur51on relatlons for the Hermlte polynomlals, 1t

v fbllows that

. f"-'RU"os”—*i.l:'j.';;:- -'?RG,O»M,J'H + 'MRo,d',M-l,jﬂ gu.s)

Ro,iea,t * PRo, Lm0 T BRo i gh (v.7)
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+ NR - (4.8)

Re1,uM,3 2R, 501 N-1,L,M, 541

Thus. the Qe31red RNLM (given as RNLMO) can be generated from a
table of Fj(T) for all j between 0 and the maximum N+L#M.

B. T,
J

Shavittzhés given several formulas useful for evaluafing

Fj(T). Rapid and accurate evaluation of this function for a wide

range of j and T reguires some care, hoﬁéver. Our best program

at presgnt evaluatss Fj(T) by different formulas dependipg‘on T.
For §<T<12 énd Oi'fJ,»FJ(T) is first evaluated using'the

seven term Taylor expznsion

5 ’ ‘ :
SR I S N Te C LY S (4.9)

where T, {T#) has Izzx pretabulated Ior T* at intervals of 0.1,

The Zownwards recirziz> relation

I = [2TF,,.0T) + exp(~T)1/(25+1) C(4.10)°

can thzn be used to citain all Fj(T).
Tor the range 12<7<30 we note that
FAT) = IV - [ ex (~Tu?)du . ' C (1D
o 7 n i P . ‘ . . -
If the integral L:exp(-Tuz)du is now expressed as exp(FT)g(T, then’

g can be computed from

12<T<15
g = 0.4939489092 - 0.2473631686 T |
4 0,321180909 772 . 0.3811558346 T°° (4.12)


file:///fSlff-

TRy vy ] »- e ad vl

-18- : N ' RS

15¢T <18,
g = 0.4998436875 - 0.24269438 T™X + 0.24642845 T°2  (4.13)

13<T<2W

g = 0.499093162 - 0.2152832 T~F o , - C(h1w)
2H<T<30 - " '

g = 0,490, " C (4.15)

 Upwards recursion, -which is unstable for small T of'large I,

~can be useﬁ_tq obtain Fj(T) with a felative accuracy. of 3 ¥ 10712
for §516 and T212. , '

"For T>30, F (1) = %/E//T'combined with upwards recirsion .
‘is accurate to fourtzen s}gnificant figures. Finally, for
© T»2J+:2 the exact 2wards recursion ,

Topa (D) = (2?:'-:::2j+1)Fj(Ti;expc-T)] © 7 (4,18)
" can bs r=zplaced by

T = QDTTRDE(D X Cwan

without loss of accuracy.
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V. COMPUTATIONAL CONSIDERATIONS

The tractability of the two electron integral formulas
hinges upon doing all integrals involving‘four sets of basis
functions concurrently, as all require the same R table. If
the sets are large enouOh (say all four arve p's) then the

calculation of R requires only a small fraction of the total time,

It then becomes important to perform the loops over basis

functions and sums over contraction terms efficiently.
Table 1 shows one such scheme. A significant'advéntage is
gained by forming +ne intermediate array I which allows the

actual intagral to e ‘ormed outside the sums over uc and ape

“=Z

" It is nctsworthy that with only obvious minor modlflcatlons this

- scheme == be emplsvzs %o calculate spin-spin and spin-orbit

’

A —rogram has == written employing the scheme in table 1
for thz repulsion Imz=zrvals, Expllclt formulas for the elements

of I were added fer czrrain s and p integrals. The computatlon

: time for a S10-36 sat on hydrogen peroxide is 38.5 sec on a.

CDC 6450. ﬁupuis, Rvs, and,King,7 performing the sameicalculation.
on a CDC 6400, obtained times of 8.4 sec for GAUSSIAN 70# 39.9 sec
for HONDO, a program o their own; and, 132.7 sec For PHANTOﬁ 75,
fhe most recent vefsion of POLYATOM. Upon adding twd sets of d
functions to the STO-3G set we obtained a computation time of o
about 124.3 sec, somewhat less than HONDO's 152.2 sec and -
éonsiderablf leés than PHANTOM's 775.6 sec.

It is obvious from these running times that GAUSSIAN 70 is

"- elearly superior for integrals over s and p functions. 'There are

three reasons for this superiovityé. (1) GAUSSIAN 70's infegrals are
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accurafe to only 8 figures owing to a less accurate but faster
calculation of rm(T),‘(2) a coordinate transformaticn is employgd
to méximi;e the local éymmetry of the integral over primitive
Gaussians{'a distinct advantage fér highly contracted basis
sets;8 and (3) s and p basis functions are combined into one set.
GAUSSiAN 70 and HONDO, like our program, compute all integrgls..
over four sets of basis functions (or "shells" in the terminology
of Dupuis, Rys and King) concurrently. "Judging from the funniﬁg_
times this ;tructure has a clear advantage over the one-integral-
at-a-time method oI PHANTOM 75. Our method and the qﬁadratﬁre

scheme exzployed by ZCHDO seem to be roughly equivalent, at -

" least for s's and o's.




Table 1. Scheme for the computation of all two electron
repulsion integrals over [fiIA]’ ?fjJB]’ [kaCB, and -
1.8 ' '
ELD

Sum over aA? op

Zero 1
 Sum over oo Up
Compute ij (T),
Compute anm

———Loop cver X, L

’——:m over (N',L!, H‘)q

Loop over (N,L, M)

i
¢

I(p,k,t) = I(p,k 2)
M1
NAAE Dk!L

oo +(-1 Rysw Lanaeme

Loop over X,4

Loop cver i,j

t

{ i

i g - Sum over p
'

H

}((i,j,k,l) s X(.i,j,k,!') + D;JI(Pnkal)-.

s m—

-

aFiiA denotes the ith member of set I on center A.
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