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Abstract 

A formalism is developed which allows overlap, kinetic 
energy, potential energy and electron repulsion integrals 
over cartesian Gaussian functions to be expressed in a very 
compact form involving easily computed auxiliary functions. 
Similar formulas involving the same auxiliary functions are 
given for the common charge moments,electric-field operators, . 
and spin-interaction operators. Recursion relations are given 
for the auxiliary functions whic i make possible the use' of 
Gaussian functions of arbitrarily large angular momentum. An 
algorithm is described for the computation of electron repulsion 
integrals. 
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I. INTRODUCTION 
Cartesian Gaussian functions of the form x ^ y ^ exp(-<y A) 

were first proposed as basis functions by Boys. The obvious 
exploitable advantage of Gaussian functions over Slater type orbi-
tals (STO's) is the ease with which a product of Gaussians on two 
different centers can be written as a simple function on a common 

2 . . • 

center. In the 1960's when calculations on diatomic systems were-
already common, the intractability of the four-center integral 
over .STO's appeared to present a major block to polyatomic calcula-
tions. Gaussians began to enjoy increased popularity when it was 
found that a fixed linear combination (a so-called "contracted 
Gaussian") could be used to approximate an atomic orbital to good 
accuracy. Initially The trend was to use combinations of simple 
Gaussian "lobes" (r.=-=r=0). The resulting electron repulaion 
integral had been S'-:-T. by Boys ' , J to involve only a square root, 
an exrcr.ential, and -he error function. Functions of p or d type 
were approximated by differences of Gaussian lobes displaced slightly 
from each other. For high angular momentum basis functions this 
approach becomes intractable both because of. the large numbers of 
lobes involved and because of large differencing errors in combining 
the integrals :over the basic lobes. 

The obvious alternative to. contracted gaussian lobes was con­
tracted cartesian Gaussians. Basis sets involving these functions 
are now more-or-less standardized. Formulas for integrals, over 

2 p-type Gaussians were easily derived and programmed. Standard pro-
gram packages such as POLYATOM and GAUSSIAN 70 have been available 
for some time. Some versions of these packages have included d and 
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2 f orbitals. The formulas available for these integrals, while 

completely general, do not allow systematic calculation of integrals 
for higher angular momentum. • In this paper we present auxiliary 
functions and recursion relations from which integrals for all 
values of n+S.+m can be systematically (and efficiently) computed 
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II. CHARGE DISTRIBUTIONS . 
An unnormalized Gaussian function on center A will be given 

b y ' . - ' . ' • ' 

^n,i,m,aA,A) = xjyjzj exp(-a Ar A
2) . (2.1) 

where (xijyA»z^). are the components of the.vector r A = r - A 
with norm r. .'• The normalization constant for this function is 

. Hnta«V 'WWW t2'-2); 
where 

• \(a) = (2a/3i) 1 / 4(4a) k / 2[(2k-l)!!]' : L / 2 (2.3) . 

Such ructions are referred to as s, p, d, ... when L = n + t * m 
is 0, 1, 2,..., respectively. Contracted basis functions can be • 
foraec from the f'= i: various ways. For example, if is usual to 
define 

W I C L(a.):; n | B(a A)#Cn lt,» ta A,A) (2.*) 
aA 

where C^CaJis independent of ns£,m (for fixed L). Alternatively 
a more general 

e L M A = t C V ]%L«n>l>»**A>M ( 2 ' 5 ) 

°A • nwn 

can be considered 'tohich allows true angular momentum eigenfunctions 
to be formed (with: the a dependent part of N n a m ( a ) , a , 
absorbed in C (aA and the « independent factors absorbed into 
B L M )• ] • 

Efficient computation of integrals requires that f-.,.̂  o r 

gjw. which involve.the same a's and same nucleus be treated as sets. 
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For maximum efficiency these sets should be large enough that 
calculation of the auxiliary functions common to a block of 
integrals becomes insignificant. On the other hand, excessively 
large blocks of integrals which result from treating all fifteen L=H-
functions as one set should be avoided. 

For the sake of simplicity, the formulas in this paper will 
be given only for integrals over <|)'s rather than f's'or g's, in 
order to avoid writing explicitly the sums over a. To this end 
it is convenient to define the charge distribution fl-rj'of two 
functions iJjCn>£,ra,a«,A) and <()jCn))l,i,ctg,B) as 

RIJ = *!% = X A V A y B Z A Z B e x P [ - ( a A r A + a B r B ) ] - - ( 2' 6 ) 

The key to the utility of Gaussians is the well-known 
identity which transfrr^is the above exponential to a single 
exponential about a cer.-er P on the line segment AB: 

2 2 2 
exp[-(aAr. + cs3r-)3 = EJJ exp(-a pr p) (2.7) 

where 
P = CaAA + a BB)/(a A + « E) , (2.8) 

and 
dp = a A + a B , (2.9) 

EJJ =exp {-a Aa B(a A+a B) _ 1|A-B| 2}. (2.10)' 

Since molecular calculations usually require absolute rather than 
relative accuracy, all integrals involving JLj can be neglected 
if the constant-ILT is sufficiently small. 

The products xjfxg, y Ay B> and zAZg could be converted into 
polynomials in x p, y p and z p using relations like 
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x A = x p + PA X , (2.11) 
where 

and 

x A = x - A x , (2.12) 

x p = x - P x > " (2.13) 

P A X = P X - A X (2.14) 

It is more convenient in what follows, however, to define . 

2 / 3 \̂  2 A.(xp;ap)exp(-OpXp) = j-gp-j exp(-ctpxp) , (2.15) 

from which it follows that A. is related to the Hermite polynomial 

H 3 b y 

A-CxsJOp) = 4 / ::-^(aJ / 2x p) . (2.16) 

The xrtility of the A's is obvious - they will allow the charge 
distrir-Jtion to be written as a sum of derivatives with respect : 
to the coordinates of ? and these derivatives can be taken outside 
of any integral over electronic coordinates. 

Now let'us find the coefficients for expanding xjjxg in the 

A's: ' 

x n n _ n y n

d n n \ , , (2.17) 
A B N=0 N N U P'V -

The recursion relation for the Hermite polynomials i s 

5HN(0.= M H n _ i c 5) + | H

N + 1 ( | ) ' ( 2 ' 1 8 ) 

Consequently 

••; ' xhWxFi<*?) * % _ ! + PAXAN + ^ A N + 1 / a p . (2.19) 
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The recursion relations on the d^0 are then easily seen to be 

d j * 1 ' 5 = (2a p)" 1d™ 1 + ?Kxdf * (N+DdJ^ , . (2.20) 

d J ' K + 1 = ( ^ o , , ) - 1 ^ • PB xdf • (N+DdJ^ , ; (2.21) 

where 

?° = 1 . " (2.22) 

and 

Similarly we can write 

44= Te?¥v°P> ' ' ( 2 > 2 3 ) 

so that 

IT is often convenient to write ATT as • 

n " = I Dk AN ( V A : ( y P ) A R (ZpJexpC-otprJ) , (2.26) 
~ k k ~k K 

where 
Dk ^ ̂ J ^ I ^ * • < 2' 2 7 ) 

This allows generalization to include spherical harmonic basis 
functions when D, is replaced by 

n - r V V B^V nM 1 ,nn H,mm 
k " I J n,{,, ni,m*n A l , i \ \ \ . > (2.28) 

In these equations k indexes all (N,L,M) combinations for which 
D is non-zero and the charge distribution is specified by a list of 
the non-zero D k and the corresponding (N,,L, , M k ) . In practice the 
C ( a

A)C (<*„) and normalization are also incorporated into the Dj.. 



Some integrals which must be evaluated involve derivatives ' 
of the basis functions. Consequently, it is convenient to define 
the. additional charge distributions 

GIj = *I2+J , ' ' • ( 2 , 2 9 ) 

• T J J = Vfj-VJij ' (2.30) 

and 

Ctj-j = (Vfy.WVtfij) • . (2.31) 

The x component of GTT i s eas i ly obtained from • 

^HKrr,£-,n,aB,B) = n<$(n-l,£ 5m,aB,B) - 2aB$(n+l,£,,m,aB,B) (2.32) 

so tha t 

K T\ JC K 

with 

k̂ " E I J ( n \ _ 2 a B d N k \ \ ( 2 - 3 4 ) 

The distribution ?,, may be expanded in an analogous manner 
to g£ve 

with 
V^VNAV^-V^ ' (2-35) 

k k k k 

t, f (if .• t f • t f )E X J , (2.36), 

+ xx _ r - , n - l , n - l „ .n-l ,n+l „- ,n+l,n-l . . , . n+l,n+l1„JlI fmra 
t k -- [nnd^ -2notBdN f c - ^ / \ , + S«B<V '. H / M ^ . 

(2.37) 

and similar expressions for t? J and t. •. The z component of Q_j 
iiay be similarly shown to be of the form 

«£•> | q k z ) A N k \ V " p ( ' a P I , p ) • ( 2 , 3 8 ) 
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where 
Az) _ fmmF xy ( 2 39) 

q k " f H , I J k 

K 
The q ? y obtained directly from Hj/Sx Ŝ ij/ay .- 3f,./3y 3«tj/3x 
involve ..new <f>*s of total powers of x, y, and z higher by two than 
the starting ones. These highest powers cancel since 

*(n+l,K.,m,aA,A)'l>(n,^+l,ni?aB,B) - $(n,j,+ l,m,aA,A)(|>(n+l,j&,in,aB,B) 

= (x Ay g - yAxB)<Kn,Jl,jn,ciA,A)<J>(n,£,in,aB,B) 

= [AB <J(n+l^,m,oiA)A) - SSx*(n,il+l,m,aA,A)]<(i(n>I,m,aB,B) (2.HO) 

Consequently, • ' 

xy -f jn-lsiT -> .n+l,n» £,1-1 ~ „ ,n- l ,n £.'»T+1 

It is important TO note that different sets of (N. >L.M. ) 
appear ir. 2.27, 2.28, 2.33, 2.3S, and 2.38. Also, larger values 
of tl+L+M appear in the derivatives than in the charge distribution. 
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I I I . BASIC INTEGRALS 

From the previous section i t is c lear that the one-electron 

in tegra ls to be evaluated a l l reduce to the form ' . 

. [NLM|8J = /e(r 1)A KCx 1p;ap)A l )Cy l p;oip)AM(z ; L p;ap) 

2 expC-ap^pJdt-,^ (3.1) 

Likewise the basic' two-electron in tegrals a l l take the form 

[NLM|9|NLM] = J e ( r 1 , r 2 ) A N ( x 1 p ; a p ) A L ( y l p ; a p ) A H ( z ; L p ; a p ) 

exp( -o p r 1 p)A N , (x 2 Q ; a Q )A I j I (y 2 Q ; aQ)A M , ( z 2 ( j ; aQ) 

e x p t - c u r L M ^ d t j (3.2) 

The one electron integrals can be further classified as. (a) those 
that can be done in closed form and (b) those that require the 
same numerically approximated auxiliary functions as the two-
electron integrals. 

A. One electron integrals, closed form 
The basic integral of this type is the one dimensional 

integral 

2 1/2 
JdxAN<xp;a)exp(-<jxp = $ H Q(jr/o) <3.3) 

(the Sj, Q arises from the orthogonality of the Hermite polynomials). 
Thus the overlap integral is simply 

[NLHll] = 5 N > 0 5 L ) 0 6 H j 0 ( , / « p ) 3 / 2 ' (3.*) 

• The relation 

'; . .xcAN(xp;ap) = N A ^ t \ \,fy * P C ^ . (3.5) 
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then gives 

CHLH|xe]-= ( ^ • PC xfi M, O> 5L,0 6M,O ( l f /«P ) 3 / 2 ( 3" 6 ) 

with similar results for y and zQ. The second moments are just 

[ NLM[x^ s [ 2«M,2 + 2P 5x^,l* ( Kx tK 1-> jII,0 3'L,0 5M,0 ( , , / BP ) J / 2-
(3.7) 

and 
. a/o 

[NLMlx cyJ = CS, j l
+?C x6 N j 0)(« L j l^C y6 L j 0)6 M ) 0( 1r/a p) (3.8) 

2 2 with similar results for y , z , x z or y cz c. 
The kinetic er.erry and gradient matrix elements are given 

directly zy the fcrruli for [NLMJll. N'otice that only the t, 
(and gy) =oeffici2r." zzv llU,L.,H,J = (0,0,0) are required to 
aval•-=•:= The kineti; £-ergy and gradient matrix elements. 

B. :r-er one elerirrr. integrals 
Tr.a basic ir.terr=I in this category is the nuclear attraction 

integral LHLHJr" ]. irora the definition of the A's, this may be 
written as 

[SLMJrl1] = (3/??v)"(3/3P )L(3/3Pj"[000|r:i] • " (3.9) u x y L. \^ 

The integral t000|r" ] was shown by Boys to be given by 

[OOOlr^1] s (2u/ap)Fo(T), (3.10) 
where 

T = ctpCP2, (3.11) 
and 

F (T) = J 1 exp(-Tu2)du. (3.12) 
o 'o 
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If we define the auxiliary function ii.,M by 

R N L M,= (9/aP x) N(3/3P y) LO/3P z) MF 0(T) (3.13) 
then 

[NLHlr^1] =.(2^/a p)R N L r . €3.14) : 

The computation of Kriu will be described in a later section. 
Matrix elements of the components of the electric field, such 

-3 as j^rp can be evaluated in two ways which illustrate the 
tricks needed for more complicated integrals. First 

x cr* 3 = 3^ 2/3C x, ' . (3.15) 

where it should be noted that differentiation is with respect 
to the midsar posiri-n. Therefore 

ENLMi x crg 3] = O-'SC^WLMlrg 1] . .(3.16) 

But si_:ce T' depend? — C X~P X, 
(5/3C„)g(T) = -C-/3Pv)g(T) 

• •. ' . - (3.17) 
for any function g(T). 
Hence, 

Alternatively this integral can be evluated by noting that 

Vc 3 = - 3 5 ; ' c 1 / 8 x ' (3.19) 

Hence, by integration by parts, 

[NLM|x cr^ 3] = [3(NLM)/3X|r^1]. " (3.20) 

But, from the definition of A.,, 
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3'(N,L,M)./3x =--(N+l,L,H), 

so . 

WLM|x cr- 33 = - ( 2 , ; « p ) E N n ) L ? M . . (3.21) 

The components of the electric field gradient are similarly 

obtained using 

(3 2AC 2 - S ^ C 2 ) ^ 1 = 3 { x
2 - y 2 ) ^ 5 (3.22) 

(232/3C2 - 3 2/3C 2 - ^ncbv'^ =3(3z£ - r j ) ^ 5 (3.23) 

(a 2/eC x3CJrr 1 = 3x cy crc 5 • (3.24) 
and 

y 

Motics these forruZ.= = are written so as to avoid 
• 2 - 1 i , 

problems with the islta function which arises in 7 r»c . Hence 
the electric f ie l ; —=cient integrals are- given by 

::;LMJ3Cx2-rJr:5] . ( 2 t / O p ) < y 2 t L , r t , w - 2 l K > - < 3 " 2 5 ) 

[NU.l|(3r>r :Jr" c

5] = « 2 * / « p ) < 2 ^ t L i » 2 " V 2 , L 1 r t , ' i ; 2 , M ) ^ 

(3.26) 

EKLKlSx^" 5] = (2^«p>% + 1 , L 4i. , M - ( 3 , 2 7 ) ' 

Matrix elements over the one-electron spin-orbit operator • 
may be evaluated by two different methods. If the space part 

-3 of the basic spin-orbit operator is considered to be r^ r^l? then 
— 3 the z component, for example, is r_ (x_3/3y - yc3/3x).. Matrix 

elements of this operator can be evaluated by combining the • 
results given above for the electric field with the' g k expansion 
coefficients given previously for the .gradient.' Alternatively 
integration by parts gives 
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»llrC V*C By." *C ax'*J/ " L3x 3y " 3y 3x P C 

The spin-orbit integral then reduces to using the q^ coefficients 

in summing CNLH|r" ] matrix elements. 

C. Twp electron integrals , 
The simplest- integral in this category is the electron 

repulsion • : 

[NLMjr^|N'L'H'3 = £3/3P x) N(.3/3P y) L0/3P z) M0/3Q x) H'<3/3Q y) L' 

(3/3Q )M'[000|r^|000] (3.29) 

Boys evaluated the basic integral as 

:OGC|r^|0OC-7 = ?.F0(T) (3.30) 
where 

and 
X = 2vS/2a^i~-i^aq)-m (3.31) 

a po Q(Op*a :)" iPQ 2 < 3 > 3 2 ) 

Because T involves only the combination P-<3, 
(3/3Qx)Mg(T> = (-3/3Px)NgCT) 

for any function g(T). 

Hence 

(3.33) 

[NLM|r-l|N'L'H'] = X ( - l ) N , + L ' + M , R N + N , 5 L + I ] l 5 M + M ( (3.34) 

Just as for the electric field and field gradient, integrals 
- 3 - 5 over ^IO^I?' x12^12 r12' e t c , > a r e e asily evaluated. For example 

rwiMi „ - 3 U m l M n . u ^N'+L'+M' (3.35) 
[NLM|x 1 2r 1 2|N'L'M»] = -X(-l) W + l . W L ' . H H i ' 
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- S | « „ . , M n = K.nN'+L'+M'p CNLM|3x 1 2y 1 2r^|M'L'M'3 = U-lV •M+N'+ljL+L' + l.M+M' 

(3.36) 

[NLM|3(x^-yJ2)r^|N'L'M'] = A(-l) r + L' + M'(R N +N'+2,L>L'8M+M' 

) (3.37). 

[NLM|(342-r22)r-2
5|N'L'M'] = At-l^'^'^'^VH'.L+L'.MtM^ 

~RN+H«+2,L+L',M+M»"RN+N,,LHl + 2,M+M,)/3 ( 3 , 3 8 ) 

-5 . . . 
Integrals over these rT„ operators appear in calculation of spin-
spin interaction matrix elements. 

The space part :f the-two electron spin-orbit operator has 
the fcrr. r! 12^12^1 ..-.s z component of th i s operator i s . then 

r i : \ : < 12 3y. h '-- 3 x i i 
IntegrsTion by parrs -ields a. r esu l t similar to tha t obtained for 

the 0"-5-electron inT=| rs l , 

< o : C l ) ¥ 2 ) | r ^ ( x 1 2 ± - y u ^ . ) | * J C 1 ) * L < 2 ) > 

H ^ J 3 * I 3 <^J 
3 * 1 ^ 1 ~ ^ 1 ^ 1 li hh (3.39) 

Consequently, this integral is given simply as a sum over 
[NLMlrCjlH'L'M1] using coefficients q. for the IJ orbitals and 
D^ for the KL orbitals. Alternatively, of course, the integral 
could be written as a sum over integrals like [NLM|x,2r72|N1I',M'] 
with g, coefficients for.the IJ orbitals. 
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IV. AUXILIARY FUNCTIONS 

A > RNLM 
•The function R„,w is defined as 

2 
•Rum = O/3a) M C3/3b) L O/3c) M / 0

1 e " T u du (4.1) 

where 

T = a(a 2+b 2+c 2) (4.2) 

By direct chain-rule differentiation an explicit formula for R 

can be found: 

• [N/2] EL/2] CM/2] 2 u n . M . 2 m 

V « - 1 L i a b c 
: < - ' • n = 0 i=D m=0 

H ! - (4.3) .(2n)'i:Oi-2n)! (2 i ; i . "1-2*)I (2m)!!(M-2ra)J N+L+M-n-4-m 

Par generating = Table of all R..^ up to some maximum N+L+H, 
as is needed in doirg ilocks of integrals, recursion relations 
are more useful. These can be found from introduction of the 

more general integral: 
R ^ - . r (-^) W + L + H{-2a)3/ o

1Xi N* L + M + 2\(Aau)H L(^bu)H M(^cu)e- T u du 

Let us first note that 

\m = ( " 2 a ) J F j ( T ) > . ' « A y 

where 
• F.(T) ='/V^exp(-Tu2-)du. " • ' (4.5) 

J o .. 
From the recursion relations for the Hermite polynomials, it 

follows that 
R0,0,M*l,j = cK0,0,M,j+l + K R 0,0,11-1,]+! ^ ' 6 ) 

^.L+l.H.j S. b R0 J,L,M,j+l + L R0,L-l,M,j+l . U ' 7 ) 
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Thus the desired R.,„.'( given as Rm Mg) can be generated from a • 
table of F.(T) for all j between 0 and the maximum N+L+M. 

B. F. 
2 ' • 

Shavitt has given several formulas useful for evaluating 
F.(T). Rapid and accurate evaluation of this function for a wide 
range of j and T requires some care, however. Our best program 
at present evaluates F.(T) by different formulas depending on T. 

For 0<T<12 and OfjiJ, Fj(T) is first evaluated using the 
seven tars Taylor expansion 

F-C) = I F-., .I=)(T*-T)K/k! , (4.9) 
k=0 " '• 

where F.̂ ,.C7!'!) has ;•==- pretabul-ated for T* at intervals of 0.1. 
The d-wr.wards rec^rn." relation 

J-'?) = [2TF^-\T) + exp(-T)]/(2j+l) (4.10)' 

can then be used to cbta'in all F.(T). 
For the range 12<T<30 we note that , , 

Fe(T) = \fSlff- J"exp(-Tu2)du . (4.11.) 

If the integral /™exp(-Tu )du is now expressed as exp(-T)g/T, then' 

g can be computed from 

12<T<15 
g = 0.4999489092 - 0.2473631686 f 1 

+ 0.321180909 T" 2 - 0.3811559346 T" 3 (4.12) 

file:///fSlff-


15 < T < 18 

g = 0.4998436875 - 0.24249438 T" 1 + 0.24642845 T~2 (4.13) 

18 < T < 24 

g = 0.499093162 - 0.2152832 T" 1 ' . (4.14) 

24 <T< 3D 

g = 0.490. (4.15) 

Upwards recursion which is unstable for small T or large j, 
-1' can be used.to obtain F. (T) with a relative accuracy of 3 tf 10 

for jil5 and Tll2. 
For T>30, F (T) = i/if/vf combined with upwards recursion . 

is accurate to fourteen significant figures.. Finally* for 
T>?J+3£ the exact u^vards recursion 

F* + 1CT) = (2rr::'.:2i+l)F.(T)-exp(-T)] " (4.16) 

can be replaced by 

F ^ C T ) = (2T)"-:23+l)F.(T) ' (4.17) 

withaut loss of accuracy. 
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V. COMPUTATIONAL CONSIDERATIONS 
The tractability of the two electron integral formulas 

hinges upon doing all integrals involving four sets of basis 
functions concurrently, as all require the same R-table. If 
the .sets are large enough (say all four are p's) then the 
calculation of R requires only a small fraction of the total time. 
It then becomes important to perform the loops over basis 
functions and sums over contraction terms efficiently. 

Table 1 shows one such scheme. A significant advantage is 
gained by forming the intermediate array I which allows the 
actual integral to is formed outside the sums over a^ and Op. 
It is noteworthy that with only obvious minor modifications this 
scheme zzrj be esplr/ec to calculate spin-spin and spin-orbit 
two electron ir.tegr=Lr. 

A program has "r-==r. written employing the scheme in table 1 
for the repulsion intervals. Explicit formulas for the elements 
of I were added for terrain s and p integrals. The computation 
time for a ST0-3S set on hydrogen peroxide is 38.5 sec on a. 

7 . . 
CDC 64-Gi?- Dupuis, Rys, and. King, performing the same calculation 
on a CDC B!*00, obtained times of 8.4 sec for GAUSSIAN 70; 39.9 sec 
for H0?JD0, a program of their own; and, 132.7 sec for PHANTOM 75, 
the most recent version of POLYATOM. Upon adding two sets .of d 
functions to the ST0-3S set we obtained a computation time of 
about 124.3 sec, somewhat less than HONDO'S 152.2,sec and 
considerably less than PHANTOM'S 775.6 sec. 

It is obvious from these running times that GAUSSIAN 70 is 
clearly superior for integrals over s and p functions. There are 
three reasons for this superiority:. (1) GAUSSIAN 70's integrals are 
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accurate to only 8 figures owing to a less accurate but faster 
calculation of F (T), (2) a coordinate transformation is employed 
to maximize the local symmet.vy of the integral over primitive 
Gaussians, a distinct advantage for highly contracted basis 
sets, and (3) s and p basis functions are combined into one set.. 
GAUSSIAN 70 and HONDO, like our program, compute all integrals . 
over four sets of basis functions (or "shells" in the terminology 
of Dupuis, Rys and King) concurrently. Judging from the running 
times this structure has a clear advantage over the one-integral-
at-a-tise method of PHANTOM 75. Our method and the quadrature 
scheme employed by KCilDO seem to be roughly equivalent, at • 
least for s's and r Ts. 



Table 1. Scheme for the computation of all two electron 

repulsion integrals over Cfjj^3) t^je-'' ^kKC^' a n d 

Tf ] . a 

• Sum over a,., ou 

Zero I 

Sum over a„, a^ 

Compute \F.(T). ' 

Compute A R n £ m 

• Loop ever k,£ 

r Sua over CM',Lf,M') 

"Loop over (N,L,M) 

I(p5k,JD = I(p,le,l) 
., .N'+L'+M' kJL 

-Loop over k,£ 

j——-Loop ever i,j 

i i — — Sua over p 

X(i,j,k,*> = x('i,j,k,*) + D*jI(p,k,*) 

L.__ 

a F . T . denotes the ith member of set I on center A. 
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