One and Two Electron Integrals over Cartesian Gaussian Functions

Larry E．McMurchie and

Ernest R．Davidson
Department of Chemistry BG－10
University of Washington
Sミミさ亡le，Washington 98195
P.0.3549003

Abstract

A formalism is developed which allows overlap, kinetic energy, potential energy and electron repulsion integrals over cartesian Gaussian functions to be expressed in a very compact form involving easily computed auxiliary functions. Similar formulas involving the same auxiliary functions are given for the common charge moments, electric-field operators, and spin-interaction operators. Recursion relations are given for the auxiliary functions whic, make possible the use of Gaussian functions of arbitrarily large angular momentum. An algorith is described for the computation of electron repulsion inteฐここ!

i. INTRODUCTION

Cartesian Gaussian functions of the form $x_{A}^{n} y_{A}^{\ell} z_{A}^{m} \exp \left(-\alpha_{A} r_{A}^{2}\right)$ were first proposed as basis functions by Boys. ${ }^{1}$ The obvious exploitable advantage of Gaussian functions over Slater type orbitals (STO's) is the ease with which a product of Gaussians on two different centers can be written as a simple function on a common center. ${ }^{2}$ In the 1960^{\prime} s when calculations on diatomic systems were already common, the intractability of the four-center integral over STO's appeared to present a major block to polyatomic calculations. ${ }^{3}$ Gaussians began to enjoy increased popularity when it was found that a fixed linear combination (a so-called "contracted Gaussias") could be "ised to approximate an atomic orbital to good accuracy. Initially fie trend was to use combinations of simple Gaussi三: "Icbes" ($n=:=-=0$). ${ }^{4}$ The resulting electron repulsion integnEi had been \equiv :nc... by Boys ${ }^{1,2,3}$ to involve only a square root, an expenential, ane $-=$ error function. Functions of p or a type
 from ēci other. For ingh angular momentum basis functions this approaci becomes intractable both because of the large numbers of lobes involved and because of large differencing errors in combining the integrals over the basic lobes.

The obvious alternative to. contracted gaussian lobes was contracted cartesian Gaussians. Basis sets involving these functions are now more-or-less standardized. ${ }^{5}$ Formulas for integrals over p-type Gaussians were easily derived ${ }^{2}$ and programmed. Standard program packages such as POLYATOM ${ }^{6}$ and GAUSSIAN 70^{6} have been available for some time. Some versions of these packages have included d and
f orbitals. The formulas available for these integrals, ${ }^{2}$ while completely general, do not allow systematic calculation oí integrals for higher angular momentum. In this paper we present auxiliary functions and recursion relations from which integrals for all values of $n+\ell+m$ can be systematically (and efficiently) computed

II．CHARGE DISTRIBUTIONS
An unnormalized Gaussian function on center A will be given by

$$
\begin{equation*}
\phi\left(n, l, m, \alpha_{A}, A\right)=x_{A}^{n} y_{A}^{\ell} Z_{A}^{m} \exp \left(-\alpha_{A} r_{A}^{2}\right) \tag{2.1}
\end{equation*}
$$

where $\left(X_{A}, y_{A}, z_{A}\right)$ ．are the components of the vector $r_{A}=\underline{r}-A$ with norm r_{A} ：The normalization constant for this function is

$$
\begin{equation*}
N_{n \ell m}\left(\alpha_{A}\right)=N_{n}\left(\alpha_{A}\right) N_{\ell}\left(\alpha_{A}\right) N_{m}\left(\alpha_{A}\right) \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
N_{k}(\alpha)=(2 \alpha / \pi)^{\frac{?}{1 / 4}}(4 \alpha)^{k / 2}[(2 k-1)!!]^{-1 / 2} \tag{2.3}
\end{equation*}
$$

Such funzions are＝eE＝rred to as s, p, d, \ldots when $L=\Omega+\ell+m$ is $0, I, 2, \ldots$ ；reミミミニミively，Contracted basis functions can be formac＝om the fe zarious ways．For example，it is usual to define

$$
\begin{equation*}
\bar{i}_{n 2 \pi A}=\int_{\alpha_{A}} c^{i_{1}}\left(\pi_{n l m}\left(\alpha_{A}\right) \phi\left(n, l, m, \alpha_{A}, A\right)\right. \tag{2.4}
\end{equation*}
$$

where $C^{-}\left(I_{A}\right)$ is inceperdent of n, l, n（for fixed L ）．Alternatively a more general

$$
\begin{equation*}
g_{L M A}=\sum_{\alpha_{A}} c^{L}\left(c_{A}\right) \sum_{n \ell m} B_{n \ell m}^{L M} \phi\left(n, \ell, m, \alpha_{A}, A\right) \tag{2.5}
\end{equation*}
$$

can be considered which allows true angular momentum eigenfunctions to be formed（with the α dependent part of $N_{n \ell m}(\alpha), \alpha^{(2 L+3) / 4}$ ， absorbed in $c^{L}\left(a_{A}\right)$ and the a independent factors absorbed into $B_{n \ell m}^{L M}$ ．

Efficient computation of integrals requires that $f_{\text {nlmA }}$ or $g_{\text {LMA }}$ which involve the same α＇s and same nucleus be treated as sets．

For maximum efficiency these sets should be large enough that calculation of the auxiliary functions common to a block of integrals becomes insignificant. On the other hand, excessively large blocks of integrals which resuit from treating all fifteen $L=4$ functions as one set should be avoided.

For the sake of simplicity, the formulas in this paper will be given only for integrals over ϕ^{\prime} s rather than $f^{\prime} s$ or $g^{\prime} s$, in order to avoid writing explicitly the sums over α. .To this end it is convenient to define the charge distribution $\Omega_{I J}$ of two functions $\phi_{I}\left(n, \ell, m, \alpha_{A}, A\right)$ and $\phi_{J}\left(\bar{n}, \bar{\ell}, \bar{m}, \alpha_{B}, B\right)$ as

The key to the urinity of Gaussians is the well-known identizy winich trenseras the above exponential to a single exponential about a $c=-=$ rer \underline{P} on the line segment $\overline{A B}$:

$$
\begin{equation*}
\operatorname{ex}\left[-\left(\alpha_{A} r_{A}^{2}+\alpha_{D} r^{2}\right)\right]=E_{I J} \exp \left(-\alpha_{P} r_{P}^{2}\right) \tag{2.7}
\end{equation*}
$$

where

$$
\begin{align*}
& \underline{P}=\left(\alpha_{A} \underline{A}+\alpha_{B} B\right) /\left(a_{A}+\alpha_{B}\right), \tag{2,8}\\
& \alpha_{P}=\alpha_{A}+\alpha_{B}, \tag{2.9}
\end{align*}
$$

and

$$
\begin{equation*}
E_{I J}=\cdot \exp \left\{-\alpha_{A} \alpha_{B}\left(\alpha_{A}+\alpha_{B}\right)^{-1}|\underline{A}-\underline{B}|^{2}\right\} . \tag{2.10}
\end{equation*}
$$

Since molecular calculations usually require absolute rather than relative accuracy, all integrals involving $\Omega_{I J}$ can be neglected if the constant $F_{I J}$ is sufficiently small.

The products $x_{A}^{n} x_{B}^{\bar{n}}, y_{A}^{\ell} y_{B}^{\bar{l}}$, and $z_{A}^{m} Z_{B}^{\bar{m}}$. could be converted into polynomials in x_{p}, y_{p} and z_{p} using relations like

$$
\begin{equation*}
x_{A}=x_{P}+\overline{P A}_{x} \tag{2.11}
\end{equation*}
$$

where

$$
\begin{align*}
& x_{A}=x-A_{x} \tag{2.12}\\
& x_{P}=x-p_{x} \tag{2.13}
\end{align*}
$$

and

$$
\begin{equation*}
\overline{P A}_{x}=\dot{P}_{x}-A_{x} \tag{2.14}
\end{equation*}
$$

It is more convenient in what follows, however, to define

$$
\begin{equation*}
\Lambda_{j}\left(x_{p} ; \alpha_{p}\right) \exp \left(-\alpha_{p} x_{p}^{2}\right)=\left(\frac{\partial}{\partial P_{x}}\right)^{j} \exp \left(-\alpha_{p} x_{p}^{2}\right) \tag{2.15}
\end{equation*}
$$

from which it follows that. Λ_{j} is related to the Hermite polynomial H_{j} by

$$
\begin{equation*}
A_{j}\left(x_{E} ; a_{p}\right)=a_{p}^{j / n_{j}}\left(a_{p}^{1 / 2} x_{p}\right) . \tag{2,16}
\end{equation*}
$$

The utility of the A^{\prime} : is obvious - they will allow the charge distrizution to be wizten as a sum of derivatives with respect to the coordinates of ? and these derivatives can be taken outside of any integral over electronic coordinates.

Now let us find the coefficients for expanding $x_{A}^{n} x_{B}^{n}$ in the A's:

$$
\begin{equation*}
x_{A}^{n} x_{B}^{\bar{n}}=\sum_{N=0}^{n+\stackrel{n}{n}} d_{N}^{n n} n_{N}\left(x_{P} ; \alpha_{P}\right) \tag{2.17}
\end{equation*}
$$

The recursion relation for the Hermite polynomials is

$$
\begin{equation*}
\xi H_{N}(\xi)=N H_{N-1}(\xi)+\frac{1}{2} H_{N+1}(\xi) \tag{2.18}
\end{equation*}
$$

Consequentiy

$$
\begin{equation*}
x_{A} A_{N}\left(x_{P} ; \alpha_{P}\right)=N \Lambda_{N-1}+\overline{P A}_{X} \Lambda_{N}+\frac{1}{2} \Lambda_{N+1} / \alpha_{P} \tag{2.19}
\end{equation*}
$$

The recursion relations on the $d_{N}^{n \overline{1}}$ are then easily seen to be

$$
\begin{align*}
& d_{N}^{n+1, \bar{n}}=\left(2 \alpha_{P}\right)^{-1} d_{N-1}^{n \bar{n}}+\overline{P A}{ }_{x} d_{N}^{n \bar{n}}+(N+1) d_{N+1}^{n \bar{n}}, \tag{2.20}\\
& d_{N}^{n, \bar{n}+1}=\left(2 \alpha_{P}\right)^{-1} d_{N-1}^{n \bar{n}}+\overline{P B} \bar{x}_{x} d_{N}^{n \bar{n}}+(N+1) d_{N+1}^{n \bar{n}} \tag{2.21}
\end{align*}
$$

where

$$
\begin{equation*}
c_{0}^{0}=1 . \tag{2.22}
\end{equation*}
$$

Similarly we can write

$$
\begin{equation*}
y_{A}^{\ell} y_{B}^{\bar{l}}=\sum_{L=0}^{\ell+\bar{l}} e_{L}^{\ell \bar{l}} \Lambda_{L}\left(y_{P} ; \alpha_{P}\right) \tag{2.23}
\end{equation*}
$$

and

$$
\begin{equation*}
z_{A}^{m} z_{B}^{\bar{m}}=\sum_{M=0}^{m+\bar{m}} f_{M}^{m \bar{m}} A_{M}\left(z_{p} ; \alpha_{p}\right) \tag{2.24}
\end{equation*}
$$

so that

If is often con $\because=$ Eient to write $\Omega_{I J}$ as

$$
\begin{equation*}
\delta_{I J}=\sum_{k} D_{k} \Lambda_{N_{k}}\left(x_{P}\right) x_{K}\left(y_{P}\right) \Lambda_{M_{k}}\left(z_{p}\right) \exp \left(-\alpha_{P} r_{P}^{2}\right) \tag{2.26}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{k}=\Sigma_{I J} d_{N_{k}}^{n \bar{n}_{k}^{l}} e_{L_{k}}^{l \bar{l}_{M}^{m \bar{M}}} \tag{2.27}
\end{equation*}
$$

This allows generalization to include spherical harmonic basis functions when D_{k} is replaced by

In these equations k indexes all (N, L, M) combinations for which D is non-zero and the charge distribution is specified by a list of the non-zero D_{k} and the corresponding $\left(N_{k}, L_{k}, M_{k}\right)$. In practice the $c^{L}\left(\alpha_{A}\right) C^{\bar{L}}\left(\alpha_{B}\right)$ and normalization are also incorporated into the D_{k}.

Some integrals which must be evaluated involve derivatives of the basis functions. Consequently, it is convenient to define the aclditional charge distributions

$$
\begin{align*}
& G_{I J}=\phi_{I} \nabla \phi_{J} \tag{2.29}\\
& \cdot T_{I J}=\nabla \phi_{I} \cdot \nabla \phi_{J} \tag{2.30}
\end{align*}
$$

and

$$
\begin{equation*}
Q_{I J}=\left(\underline{\nabla}_{\underline{I}}\right) \times\left(\underline{\nabla}_{J}\right) \tag{2.31}
\end{equation*}
$$

The x component of $G_{I J}$ is easily obtained from

$$
\frac{\partial}{\partial x} \phi\left(\bar{r}, \bar{l}, \bar{n}, a_{B}, B\right)=\bar{n} \phi\left(\bar{n}-1, \bar{l}, \bar{m}, \alpha_{B}, B\right)-2 \alpha_{B} \phi\left(\bar{n}+1, \bar{l}, \bar{m}, \alpha_{B}, B\right)
$$ so that

$$
\begin{equation*}
G_{T}^{(x)}=\sum_{k} g_{k}^{(x)} A_{x}: A_{M_{k}} \exp \left(-\alpha_{p} r_{P}^{2}\right) \tag{2.33}
\end{equation*}
$$

with

- The distribution $I_{\text {IJ }}$ may be expanded in an analogous manner to give

$$
\begin{equation*}
T_{Z_{J}}=\int_{k} t_{k} \Lambda_{N_{k}} \Lambda_{L_{k}} \Lambda_{M_{k}} \exp \left(-\alpha_{P} r_{P}^{2}\right) \tag{2,35}
\end{equation*}
$$

with

$$
\begin{align*}
& \quad t_{k}=\left(t_{k}^{x x}+t_{k}^{y y}+t_{k}^{z z}\right) E_{I J} \tag{2:36}\\
& t_{k}^{x x}=\left[n \bar{n} d_{N_{k}}^{n-1, \bar{n}-1}-2 n \alpha_{B} d_{N_{k}}^{n-1, \bar{n}+1}-2 \bar{n}_{A} d_{N_{k}}^{n+1, \bar{n}-1}+4 \alpha_{A} \alpha_{B} d_{N}^{n}{ }_{k}^{n+1, \bar{n}+1}\right] e_{L_{k}}^{\ell \bar{q}} f_{M_{k}}^{m \pi n}
\end{align*}
$$

and similar expressions for $t_{k}^{y y}$ and $t_{k}^{z z}$. The z component of $Q_{I J}$ may be similarly shown to be of the form

$$
\begin{equation*}
Q_{I J}^{(z)}=q_{k}^{(z)} \Lambda_{N_{k}} \Lambda_{L_{k}} \Lambda_{M_{k}} \exp \left(-\alpha_{P} r_{P}^{2}\right), \tag{2.38}
\end{equation*}
$$

where

$$
\begin{equation*}
q_{k}^{(z)}=f_{M_{k}}^{m m_{I J}} E_{k}^{x y} \tag{2.39}
\end{equation*}
$$

The $q_{k}^{x y}$ obtained directly from $\partial \phi_{I} / \partial x \hat{c} \phi_{J} / \partial y-\partial \phi_{I} / \partial y \partial \phi_{J} / \partial x$ involve new ϕ^{\prime} s of total powers of x, y, and z higher by two than the starting ones. These highest powers cancel since

$$
\begin{aligned}
& \phi\left(n+1, \ell, m, a_{A}, A\right) \phi\left(\bar{n}, \bar{l}+1, \bar{m}_{m}, \alpha_{B}, B\right)-\phi\left(n, \ell+1, m, \alpha_{A}, A\right) \phi\left(\bar{n}+1, \vec{l}, \bar{m}, \alpha_{B}, B\right) \\
& =\left(x_{A} y_{B}-y_{A} x_{B}\right) \phi\left(n, l, m, \alpha_{A}, A\right) \phi\left(\bar{n}, \bar{l}, \bar{m}, \alpha_{B}, B\right) \\
& \left.=\left[\overline{A B}_{y} \phi\left(n+1, \ell, m, \alpha_{A}, A\right)-\overline{A B}_{x} \phi\left(n, \ell+1, m, \alpha_{A}, A\right)\right] \phi\left(\bar{n}, \bar{l}_{l}, \bar{m}_{n}, a_{B}, B\right) \quad \text { 2. } 40\right)
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
& q_{k}^{x y}=\bar{l}\left(n d_{N_{k}}^{n-1}, \bar{n}_{-2 \alpha_{A}} A_{N_{k}}^{n+1, \bar{n}}\right) e_{L_{k}}^{\ell, \bar{l}-1}-2 n \alpha_{B} d_{N_{k}}^{n-1, n} e_{L_{k}}^{\ell ; \bar{l}+1} \\
& -2\left(\bar{n} d_{N_{k}}^{n, \bar{n}-\bar{I}}-2 \sum_{z}^{n} d_{N_{k}}^{n, \bar{n}+1}\right) e_{L_{k}}^{\ell-1, \bar{l}}-2 \bar{n} \alpha_{A} d_{N_{k}}^{n, \bar{n}-1} e_{L_{k}}^{\ell+1, \bar{l}} \\
& \div 4 a_{2} 2_{B}\left[\overline{A B}_{y} a_{N_{k}}^{n+1} \bar{F}_{=}^{i}, \bar{l}-\overline{A B}_{x} d_{N_{k}}^{n, \bar{n}_{L_{k}}^{\ell+1}, \bar{l}}\right]
\end{aligned}
$$

it is important $t=$ note that different sets of (N_{k}, L_{k}, M_{k}) appear in 2.27, 2.28, 2.33, 2.35; and 2.38. Also, larger values of $N+L+M$ appear in the derivatives than in the charge distribution.

III. BASIC INTEGRALS

From the previous section it is clear that the one-electron integrals to be evaluated all reduce to the form

$$
\begin{array}{r}
{[N L M \mid \theta]=\int \theta\left(r_{1}\right) \Lambda_{N}\left(x_{1 P} ; \alpha_{P}\right) \Lambda_{L}\left(y_{1 P} ; \alpha_{P}\right) \Lambda_{M}\left(z_{1 P} ; \alpha_{P}\right)} \\
\exp \left(-\alpha_{P} r_{1 P}^{2}\right) d \tau_{1} \tag{3.1}
\end{array}
$$

Likewise the basic two-electron integrals all take the form

$$
\begin{gather*}
{[N L M|\theta| N L H]=\int \theta\left(\underline{r}_{1}, \underline{r}_{2}\right) A_{N}\left(x_{1 P} ; \alpha_{P}\right) \Lambda_{L}\left(y_{1 P} ; \alpha_{P}\right) A_{M}\left(z_{1 P} ; \alpha_{P}\right)} \\
\exp \left(-\alpha_{P} r_{1 P}^{2}\right) A_{N}\left(x_{2 Q} ; \alpha_{Q}\right) \Lambda_{L}\left(y_{2 Q} ; \alpha_{Q}\right) \Lambda_{M \prime}\left(z_{2 Q} ; \alpha_{Q}\right) \\
\exp \left(-\alpha_{Q} r_{2 Q}^{2}\right) d \tau_{1} d \tau_{2} \tag{3.2}
\end{gather*}
$$

The one \equiv iectron integreis can be further classified as. (a) those thet $c=a$ be done in ciosed form and (b) those that require the same numerically approxinated auxiliary functions as the twoelectroz integrals.
A. Ore electron integrals, closed form

The basic integral of this type is the one dimensional integral

$$
\begin{equation*}
\int d x_{N}\left(x_{p} ; \alpha\right) \exp \left(-\alpha x_{p}^{2}\right)=\delta_{N, 0}(\pi / \alpha)^{1 / 2} \tag{3.3}
\end{equation*}
$$

(the $\delta_{N, 0}$ arises from the orthogonality of the Hermite polynomials). Thus the overlap integral is simply

$$
\begin{equation*}
[N L M \mid 1]=\delta_{N, 0^{\delta} L, 0^{\delta} M, 0^{\left(\pi / \alpha_{\mathrm{P}}\right)^{3 / 2}} .} \tag{3.4}
\end{equation*}
$$

The relation

$$
\begin{equation*}
x_{C} A_{N}\left(x_{p} ; a_{p}\right)=N A_{N-1}+\frac{1}{2} \Lambda_{N+1} / a_{p}+\widetilde{P C}_{x} \Lambda_{N} \tag{3.5}
\end{equation*}
$$

then gives

$$
\begin{equation*}
\left[\left.N L M\right|_{c}\right]=\left(\delta_{N, I}+\overline{P C}_{x} \delta_{N, 0}\right) \delta_{L, 0} \delta_{M, 0}\left(\pi / o_{p}\right)^{3 / 2} \tag{3.6}
\end{equation*}
$$

with similar results for y_{c} and z_{c} ．The second moments are just

$$
\begin{equation*}
\left[N L M \mid x_{C}^{2}\right]=\left[2 \delta_{N, 2}+2 \overrightarrow{\mathrm{PC}}_{\mathrm{x}} \delta_{\mathrm{N}, 1}+\left(\overline{\mathrm{PC}}_{\mathrm{x}}^{2}+\frac{1}{2} \alpha_{\mathrm{P}}^{-1}\right) \delta_{\mathrm{N}, 0}\right] \delta_{\mathrm{L}, 0} \mathrm{~J}_{\mathrm{M}, 0}\left(\pi \pi^{\prime} \alpha_{\mathrm{P}}\right)^{3 / 2} . \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[N L M \mid x_{c} y_{c}\right]=\left(\delta_{N, 2}+\overline{? C}_{x} \delta_{N, 0}\right)\left(\delta_{L, 1}+\overline{P C}_{y} \delta_{L, 0}\right) \hat{o}_{M, 0}\left(\pi / \alpha_{P}\right)^{3 / 2} \tag{3.8}
\end{equation*}
$$

with simi
The ：inetic energy and gradient matrix elements are given directur $\because \because$ fan form for［NLM｜1］．Notice that only the t_{k} （and E_{k} ：Geefficien＝$==r\left(N_{k}, L_{k}, M_{K}\right)=(0,0,0)$ are required to

B．ごこer one eleこ＝ran integrals
F：basic intミミミミ in this category is the nuclear attraction integrai $\left[N L M \mid r_{C}^{-1}\right]$ ．Eron the definition of the Λ＇s，this may be written as

$$
\begin{equation*}
\left[\operatorname{TLL} \mid r_{C}^{-1}\right]=\left(\partial / \partial_{x}\right)^{N}\left(\partial / \partial P_{y}\right)^{L}\left(\partial / \partial P_{z}\right)^{M}\left[000 \mid r_{C}^{-1}\right] \tag{3.9}
\end{equation*}
$$

The integral $\left[000 / \mathrm{r}_{\mathrm{C}}^{-1}\right.$ ］was shown by Boys to be given by

$$
\begin{equation*}
\left[000 \mid \mathrm{r}_{\mathrm{C}}^{-1}\right]=\left(2 \pi / \alpha_{\mathrm{P}}\right) F_{o}(T) \tag{3.10}
\end{equation*}
$$

where

$$
\begin{equation*}
T=\alpha_{\mathrm{P}} \overline{C \bar{P}^{2}} \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{0}(T)=\int_{0}^{1} \exp \left(-T u^{2}\right) d u \tag{3.12}
\end{equation*}
$$

If we define the auxiliary function $\dot{R}_{\text {NLM }}$ by

$$
\begin{equation*}
R_{N L M}=\left(\partial / \partial P_{x}\right)^{N}\left(\partial / \partial P_{y}\right)^{L}\left(\partial / \partial P_{z} M_{F_{0}}(T)\right. \tag{3.13}
\end{equation*}
$$

then

$$
\begin{equation*}
\left[\mathrm{NLM} \mid r_{\mathrm{C}}^{-1}\right]=\left(2 \pi / \alpha_{\mathrm{P}}\right) R_{\mathrm{NLM}} . \tag{3.14}
\end{equation*}
$$

The computation of $R_{\text {NLM }}$ will be described in a later section. Matrix elements of the components of the electric field, such as $X_{C} r_{C}^{-3}$ can be evaluated in two ways which illustrate the tricks needed for mone complicated integrals. First.

$$
\begin{equation*}
x_{C} r_{C}^{-3}=\partial r_{C}^{-1} / \partial C_{x}, \tag{3.15}
\end{equation*}
$$

where it should be noted that differentiation is with respect to the melear posi-inn. Therefore

$$
\begin{equation*}
\text { MTM| } \left.\left.x_{C}{ }^{-3}\right]=3 C_{X}\right)\left[N L M \mid I_{C}^{-1}\right] \tag{3.26}
\end{equation*}
$$

But \equiv Bince T depencs $=C_{x}-P_{x}$,

$$
\begin{equation*}
\left(2 / \partial C_{x}\right) g(T)=-\left(3 / \partial P_{x}\right) g(T) \tag{3.17}
\end{equation*}
$$

for amy function $g(I)$.
Hence,

$$
\begin{equation*}
\left[\mathrm{NLM} / \mathrm{x}_{\mathrm{C}} \mathrm{C}^{-3}\right]=-\left(2 \pi / \alpha_{\mathrm{P}}\right) R_{\mathrm{N}+1, L, M} \tag{3.18}
\end{equation*}
$$

Alternatively this integral can be evluated by noting that

$$
\begin{equation*}
x_{c}^{n_{c}^{-3}}=-\partial r_{c}^{-1 / \partial x} \tag{3.19}
\end{equation*}
$$

Hence, by integration by parts,

$$
\begin{equation*}
\left[\mathrm{NLM} / x_{\mathrm{C}^{-}}^{\mathrm{C}}\right]=\left[\partial(\mathrm{NLM}) / \partial \times \mid \mathrm{r}_{\mathrm{C}}^{-1}\right] \tag{3.20}
\end{equation*}
$$

But, from the definition of $\bar{\Lambda}_{N}$,

$$
\partial(N, L, M) / \partial x=-(N+1, L, M),
$$

so

$$
\begin{equation*}
\left[N L M \mid x_{C} r_{C}^{-3}\right]=-\left(2 \pi / a_{P}\right) p_{N+1, L, M} . \tag{3.21}
\end{equation*}
$$

The components of the electric field gradient are similarly obtained using

$$
\begin{align*}
& \left(\partial^{2} / \partial c_{x}^{2}-\partial^{2} / \partial c_{y}^{2}\right) r_{c}^{-1}=3\left(x_{c}^{2}-y_{c}^{2}\right) r_{c}^{-5} \tag{3.22}\\
& \left(2 \partial^{2} / \partial c_{z}^{2}-\partial^{2} / \partial c_{x}^{2}-\partial^{2} / \partial c_{y}^{2}\right) r_{c}^{-1}=3\left(3 z_{c}^{2}-r_{c}^{2}\right) r_{c}^{-5} \tag{3.23}
\end{align*}
$$

and

$$
\begin{equation*}
\left(a^{2} / \partial C_{x} \partial C_{y}\right) r_{C}^{-1}=3 x_{C} C_{C} C^{-5} \tag{3.24}
\end{equation*}
$$

Notice these form. $=$ ere written 50 as to avoid proji=-s witn the $=$ function which arises in $\nabla^{2} r_{C}^{-1}$. Hence the E=ctric fiéz =Eiient integrais are given by
$\left[H L M \mid 3 x_{C} y_{C} r^{-5}\right]=\left(2 \pi / a_{P}\right) R_{N+1, i+1, M}$.
Katrix elements over the one-electron spin-orbit operator may be evaluated by two different methods. If the space part of the basic spin-orbit operator is considered to be $r_{C}^{-3} \underline{r}_{C}^{x} \underline{D}$ then the z component, for exampie, is $r_{C}^{-3}\left(x_{C} \partial / \partial y-y_{C} \partial / \partial x\right)$. Matrix elements of this operator can be evaluated by combining the results given above for the electric field with the g_{k} expansion coefficients given previously for the gradient. Alternatively integration by parts gives

$$
\begin{equation*}
\left\langle\phi_{I}\right| r_{C}^{-3}\left(x_{C} \frac{\partial}{\partial y}-y_{C} \frac{\partial}{\partial x}\left|\phi_{J}\right\rangle=\left[\left.\frac{\partial \phi_{I}}{\partial x} \frac{\partial \phi_{J}}{\partial y}-\frac{\partial \phi_{I}}{\partial y} \frac{\partial \phi_{J}}{\partial x} \right\rvert\, r_{C}^{-1}\right]\right. \tag{3,28}
\end{equation*}
$$

The spin-orbit integral then reduces to using the q_{k} coefficients in summing $\left[\mathrm{NLM} \mid \mathrm{C}_{\mathrm{C}}^{-1}\right.$] matrix elements.
C. Two electron integrals

The simplest integral in this category is the electron repulsion

$$
\begin{array}{r}
{\left[N L M\left|r_{12}^{-I}\right| N^{\prime} L^{\prime} M^{\prime}\right]=\left(\partial / \partial P_{x}\right)^{N}\left(\partial / \partial P_{y}\right)^{L_{1}}\left(\partial / \partial P_{z}\right)^{M}\left(\partial / \partial Q_{x}\right)^{I^{\prime}}\left(\partial / \partial Q_{y}\right)^{L^{\prime}}} \\
\left(\partial / \partial Q_{z}\right)^{M^{\prime}}\left[000\left|r_{12}^{-1}\right| 000\right] \tag{3.29}
\end{array}
$$

Boys eveluated the sesic integral as

$$
\begin{equation*}
-\infty o\left|r_{12}^{-1}\right| 000==\sum_{0}(T) \tag{3.30}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda=2 \pi^{5 / 2} \alpha_{F}-\alpha_{\mathrm{F}}=\left(\alpha_{\mathrm{P}}+\alpha_{Q}\right)^{-1 / 2} \tag{3.31}
\end{equation*}
$$

and

$$
\begin{equation*}
I=\alpha_{P} \alpha_{Q}\left(\alpha_{P} \div \tilde{\sigma}_{\underline{C}}\right)^{-i \underline{P Q}}{ }^{2} \tag{3.32}
\end{equation*}
$$

Because T involves only the combination $P-Q$,

$$
\begin{equation*}
\left(\partial / \partial Q_{X}\right)^{N_{g}(T)}=\left(-\partial / \partial P_{x}\right)^{N_{g}(T)} \tag{3.33}
\end{equation*}
$$

for any Eunction $g(T)$.
Hence

$$
\begin{equation*}
\left[N L M\left|r_{12}^{-1}\right| N^{\prime} L^{\prime} M^{\prime}\right]=\lambda(-1)^{N^{\prime}+L^{\prime}+M^{\prime}} R_{N+N^{\prime}, L+L^{\prime}, M+M^{\prime}} \tag{3.34}
\end{equation*}
$$

Just as for the electric field and field gradient, integrals over $x_{12} r_{12}^{-3}, x_{12} y_{12} r_{12}^{-5}$, etc., are easily evaluated. For example

$$
\begin{equation*}
\left[N L M\left|x_{12} r^{-3}\right| N^{\prime} L^{\prime} M^{\prime}\right]=-\lambda(-1)^{N^{\prime}+L^{\prime}+M^{\prime}} \cdot R_{N+N^{\prime}+1, L+L^{\prime}, M+M^{\prime}} \tag{3.35}
\end{equation*}
$$

$$
\begin{equation*}
\left[N L M \mid 3 x_{12} y_{12} r^{r_{12}^{-5}}\left\{N^{\prime} L^{\prime} M^{\prime}\right]=\lambda(-1)^{N^{\prime}+L^{\prime}+M^{\prime}} R_{N+N^{\prime}+1, L+L^{\prime}+1, M+M^{\prime}}\right. \tag{3.36}
\end{equation*}
$$

$\left[N L M\left|3\left(x_{12}^{2}-y_{12}^{2}\right) r_{12}^{-5}\right| N^{\prime} L^{\prime} M^{\prime}\right]=\lambda(-1)^{N^{\prime}+L^{\prime}+M^{\prime}}\left(R_{N+N^{\prime}+2, L+L^{\prime}, M^{\prime}+M^{\prime}}\right.$

$$
\begin{equation*}
\left.-R_{N+N^{\prime}, L+L^{\prime}+2, M+M^{\prime}}\right) \tag{3.37}
\end{equation*}
$$

$$
\left[N L M\left|\left(3 z_{12}^{2}-1_{12}^{2}\right) r_{12}^{-5}\right| N^{\prime} L^{\prime} M^{\prime}\right]=\lambda(-1)^{N^{\prime}+L^{\prime}+M^{\prime}}\left(2 R_{N+N}{ }^{\prime}, L+L^{\prime}, M+M^{\prime}+2\right.
$$

$$
\begin{equation*}
-R_{\left.N+N^{\prime}+2, L+L^{\prime}, M+M^{\prime}-R_{T N+N^{\prime}}, L+L^{\prime}+2, M+M^{\prime}\right) / 3} \tag{3,38}
\end{equation*}
$$

Integrels over these r_{12}^{-5} operators appear in calculation of spin－ spin interaction matrix elements．

The space par：：E the two electron spin－orbit operator has the $E=n_{12}^{-3} \underline{N}_{12}=$ ．Te z component of this operator is then

$$
=x_{12} \frac{\partial}{\partial y_{1}}-\theta_{-}\left(\frac{\partial}{3 x_{1}}\right)
$$

Inteぞミーion by parミミ－iミlds a result similar to that obtained for

$$
\begin{align*}
& \left.\left\langle\dot{y}_{I}(I) \phi_{K}(2)\right| r_{I}^{-i} x_{I 2} \frac{\partial}{\partial y_{I}}-y_{12} \frac{\partial}{\partial x_{I}}\right)\left|\phi_{J}(1) \phi_{L}(2)\right\rangle \\
& =\left[\frac{\partial \phi_{I}}{\partial x_{1}} \frac{\partial \phi_{J}}{\partial y_{I}}-\frac{\partial \phi_{I}}{\partial y_{I}} \frac{\partial \phi_{J}}{\partial x_{I}}\left|r_{I 2}^{-1}\right| \phi_{K} \phi_{I}\right] \tag{3.39}
\end{align*}
$$

Consequently，this integral is given simply as a sum over ［NLM $\left.\left|r_{12}^{-1}\right| N^{\prime} L^{\prime} M^{\prime}\right]$ using coefficients q_{k} for the $I J$ orbitals and D_{k} for the KL orbitals．Alternatively，of course，the integral could be written as a sum over integrals like $\left[\mathrm{NLM}\left|\mathrm{x}_{12} 2_{12}^{-3}\right| N^{1} L^{\prime} \mathrm{M}^{\prime}\right]$ with g_{k} coefficients for the IJ orbitals．
IV. AUXILIARY FUNCTIONS
A. $\mathrm{R}_{\text {NLM }}$

The function $\mathrm{R}_{\mathrm{NLM}}$ is defined as

$$
\begin{equation*}
R_{N L M}=(\partial / \partial a)^{N}(\partial / \partial b)^{L}(\partial / \partial c)^{M} \int_{0}^{I} e^{-T u^{2}} d u \tag{4.1}
\end{equation*}
$$

where

$$
\begin{equation*}
T=a\left(a^{2}+b^{2}+c^{2}\right) \tag{4.2}
\end{equation*}
$$

By direct chain-rule differentiation an explicit formula for R can be found:

$$
P_{N L M}=\sum_{n=0}^{[N / 2]} \sum_{2=2}^{[L / 2]} \sum_{m=0}^{[M / 2]} a^{N-2 n_{b} L-2 \ell} c^{M-2 m}
$$

$\frac{3!}{(2 n)!(1-2 n)!} \frac{-!}{(2 \lambda!!-2 \ell)!} \frac{M!}{(2 m)!!(14-2 m)!} F_{N+L+M-n-\ell-m} \quad(4,3)$

For generatins $=\div$ able of all $\mathrm{R}_{\mathrm{NLM}}$ up to some maximum $\mathrm{N}+\mathrm{L}+\mathrm{M}$, as is reeded in doins zlocks of integrals, recursion relations are more yseful. Tose can be found from introduction of the more general integres:
 Let us first note the:

$$
\begin{equation*}
\mathrm{R}_{000 j}=(-2 \alpha)^{j_{F_{j}}(T)} \tag{4.4}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{j}(T)=\int_{0}^{1} u^{2} \exp \left(-T u^{2}\right) d u \tag{4.5}
\end{equation*}
$$

From the recursion relations for the Hemite polynomials, it follows that

$$
\begin{align*}
& R_{0,0, M+1, j}=c R_{0,0, M, j+1}+M R_{0,0, M-1, j+1} \tag{4.6}\\
& R_{0, L+1, M, j}=b R_{0, L, M, j+1}+L R_{0, L-1, M, j+1} \tag{4.7}
\end{align*}
$$

$$
\begin{equation*}
R_{N+1, L, M, j}=\dot{a} R_{N, L, M, j+1}+N R_{N-1, L, M, j+1} \tag{4,8}
\end{equation*}
$$

Thus the desired $R_{N L M}$ (given as $R_{N L M O}$) can be generated from a table of $F_{j}(T)$ for all j between 0 and the maximum $N+L+M$.

B. F_{j}

Shavitt ${ }^{2}$ has given several iormulas useful for evaluating $F_{j}(\Gamma)$. Rapid and accurate evaluation of this function for a wide range of j and T requires some care, however. Our best program at present evaluates $\Gamma_{j}(T)$ by different formulas depending on T.

For $0<T<12$ anc $0 \leq j \leq J, F_{J}(T)$ is first evaluated using the seven tera Taylor expansion

$$
\begin{equation*}
E_{-}(-)=\sum_{x=0}^{6} F_{i-K}(2 \dot{\#})\left(T^{*}-T\right)^{k} / k!, \tag{4,9}
\end{equation*}
$$

$$
\begin{equation*}
\left.\Xi_{-}(\bar{Z})=\left[2 T F_{-}-\overline{-}\right)+\exp (-T)\right] /(2 j+1) \tag{4.10}
\end{equation*}
$$

can then be used to ctrain all $\mathrm{F}_{\mathrm{j}}(\mathrm{T})$.
Fon the renge $22<T<30$ we note that

$$
\begin{equation*}
F_{e}(T)=\frac{1}{2} \sqrt{\pi} / \sqrt{2}-\int_{1}^{\infty} \exp \left(-T u^{2}\right) d u \tag{4.11}
\end{equation*}
$$

If the integral $\int_{1}^{\infty} \exp \left(-T u^{2}\right) d u$ is now expressed as $\exp (-T) g / T$, then g can be computed from
$12<T<15$

$$
\begin{align*}
& \mathrm{g}=0.4999489092-0.2473631686 \mathrm{~T}^{-1} \\
&+0.321380909 \mathrm{~T}^{-2}-0.3811559346 \mathrm{~T}^{-3} \tag{4.12}
\end{align*}
$$

$15<T<18$

$$
\mathrm{g}=0.4998436875-0.24249438 \mathrm{~T}^{-1}+0.24642845 \mathrm{~T}^{-2} \quad \text { (4.13) }
$$

$18<T<24$

$$
\begin{equation*}
g=0.499093162-0.2152832 T^{-1} \tag{4.14}
\end{equation*}
$$

$24<T<30$

$$
\begin{equation*}
g=0.490 \tag{4.15}
\end{equation*}
$$

Upwards recursion, which is unstable for small T or large j, can be used to obtain $F_{j}(T)$ with a relative accuracy of 3×10^{-12} for $j \leq 16$ and $T>12$.

For $T>30, F_{0}(T)=\frac{1}{2} \sqrt{\pi} / \sqrt{T}$ combined with upwards recursion is accurate to foureen significant figures. Finally, for $T>2 \mathrm{~J}+$ ミล the exact \because ands recursion

$$
\begin{equation*}
\bar{E}_{j} \div(T)=\left(2 T-2-(2 j+1) F_{j}(T)-\exp (-T)\right] \tag{4.16}
\end{equation*}
$$

can $\mathrm{d}=$ zeplaced by

$$
\begin{equation*}
E_{i \div 1}(T)=(2 T)^{-*}(2 j+1) F_{j}(T) \tag{4.17}
\end{equation*}
$$

without loss of accurecy.

v. COMPUTATIONAL CONSIDERATIONS

The tractability of the two electron integral formulas hinges upon doing all integrals involving four sets of basis functions concurrently, as all require the same R table. If the sets are large enough (say all four are p 's) then the calculation of R requires only a small fraction of the total time. It then becomes important to perform the loops over basis functions and sums over contraction terms efficiently,

Table 1 shows ore such scheme. A significant advantage is gained by forming the intermediate array I which allows the actual integral to $5 e$ Formed outside the sums over α_{C} and α_{D}.

\therefore zrogran has $== \pm$ written employing the scheme in table 1 for the repulsion in==vals. Explicit formulas for the elements of I üre added for こ三-min s and p integrals. The computation time for a STO-3G set on hydrogen peroxide is 38.5 sec on a. CDC 6400. Dupuis, Rys, and King, ${ }^{7}$ performing the same calculation on a CDC 6400 , obtained times of 8.4 sec for GAUSSIAN $70 ; 39.9 \mathrm{sec}$ for HONDO, a program on their own; and, 132.7 sec for PHANTOM 75, the most recent version of POLYATOM. Upon adding two sets of d functions to the STO-3G set we obtained a computation time of about 124.3 sec , somewhat less than HONDO's 152.2 sec and considerably less than PHANTOM's 775.6 sec .

It is obvious from these running times that GAUSSIAN 70 is clearly superior for integrals over s and p functions: There are three reasons for this superiority: (1) GAUSSIAN 70 's integrals are
accurate to only 8 figures owing to a less accurate but faster calculation of $I_{m}\left(I^{\prime}\right)$ ，（2）a coordinate transformation is employed to maximize the local symmet：ry of the integral over primitive Gaussians，a distinct advantage for highly contracted basis sets；${ }^{8}$ and（3）s and p basis functions are combined into one set． GAUSSIAN 70 and HONDO，like our program，compute all integrals over four sets of basis functions（or＂shells＂in the terminology of Dupuis，Rys and King）concurrently．Judging from the running times this structure has a clear advantage over the one－integral－ at－a－time method of PHANTOM 75．Our method and the quadrature scheme employed by EDIDO seem to be roughly equivalent，at least ت゚：s＇s and ごミ．

Table 1. Scheme for the computation of all two electron repulsion integrals over $\left[f_{i I A}\right],\left[f_{j J B}\right],\left[f_{k K C}\right]$, and. [$_{\text {lLD }}$]. ${ }^{a}$
——Loop over $k, 2$

${ }^{a} F_{\text {iIA }}$ denotes the i th member of set I on center A.

References

1．S．F．Boys，Proc．Roy．Soc．（London）A200， 542 （1950）．
2．See，for example，Isaiah Shavitt，in Methods in Computational Physics，Vol．2，edited by B．Alder，S．Fernback，and M．Rotenberg（Academic Press，New York，1963）•pp．1－45．

3．For a good review，see S．Huzinaga，Supp．Prog，Theo．Phys． 40， 52 （1967）．

4．J．L．Whitten，J．Chen，Phys．39， 349 （1963）．
5．S．Huzinaga，J．Chem．Phys．42， 1293 （1965）；T．H．Dunning， Jr．and P．J．Hay，in Modern Theoretical Chemistry，Vol．3， edited by H．F．Schaefer III；T．H．Dunning，J．Chem．Phys． 53， 2823 （1970）；R．Ditchfield，W．J．Hehre，and J．A．Pople， J．Chom．Phys．52， 5001 （1970）；W．J．Hehwe，R．F．Stewart， and J．A．Pople，J．Chem．Phys．51， 2657 （1969），

6．Quentun Chemistzy Program Exchange，Indiana University， Bloc－ington，InEiana．

7．M．İpuis，J．シ－ミ，and H．F．King，J．Chem．Phys．65， 111 （ごロ）

NOTICE

